
This page has been reformatted by Knovel to provide easier navigation.

3 Theory of
Structures

W M Jenkins BSc, PhD, CEng, FICE,
FIStructE
Emeritus Professor of Civil Engineering,
School of Engineering, The Hatfield Polytechnic

Contents

3.1 Introduction 3/3
3.1.1 Basic concepts 3/3
3.1.2 Force-displacement relationships 3/3
3.1.3 Static and kinetic determinacy 3/4

3.2 Statically determinate truss analysis 3/4
3.2.1 Introduction 3/4
3.2.2 Methods of analysis 3/5
3.2.3 Method of tension coefficients 3/5

3.3 The flexibility method 3/6
3.3.1 Introduction 3/6
3.3.2 Evaluation of flexibility coefficients 3/7
3.3.3 Application to beam and rigid frame

analysis 3/8
3.3.4 Application to truss analysis 3/10
3.3.5 Comments on the flexibility method 3/10

3.4 The stiffness method 3/11
3.4.1 Introduction 3/11
3.4.2 Member stiffness matrix 3/11
3.4.3 Assembly of structure stiffness matrix 3/12
3.4.4 Stiffness transformations 3/13
3.4.5 Some aspects of computerization of the

stiffness method 3/13
3.4.6 Finite element analysis 3/14

3.5 Moment distribution 3/16
3.5.1 Introduction 3/16
3.5.2 Distribution factors, carry-over factors

and fixed-end moments 3/16
3.5.3 Moment distribution without sway 3/17
3.5.4 Moment distribution with sway 3/18
3.5.5 Additional topics in moment

distribution 3/18

3.6 Influence lines 3/19
3.6.1 Introduction and definitions 3/19
3.6.2 Influence lines for beams 3/19
3.6.3 Influence lines for plane trusses 3/20
3.6.4 Influence lines for statically

indeterminate structures 3/20
3.6.5 Maxwell’s reciprocal theorem 3/21
3.6.6 Mueller-Breslau’s principle 3/21
3.6.7 Application to model analysis 3/21
3.6.8 Use of the computer in obtaining

influence lines 3/22

3.7 Structural dynamics 3/23
3.7.1 Introduction and definitions 3/23
3.7.2 Single degree of freedom vibrations 3/23
3.7.3 Multi-degree of freedom vibrations 3/25

3.8 Plastic analysts 3/26
3.8.1 Introduction 3/26
3.8.2 Theorems and principles 3/27
3.8.3 Examples of plastic analysis 3/28

References 3/31

Bibliography 3/31



3.1 Introduction

3.1.1 Basic concepts
The Theory of Structures' is concerned with establishing an
understanding of the behaviour of structures such as beams,
columns, frames, plates and shells, when subjected to applied
loads or other actions which have the effect of changing the state
of stress and deformation of the structure. The process of
'structural analysis' applies the principles established by the
Theory of Structures, to analyse a given structure under speci-
fied loading and possibly other disturbances such as tempera-
ture variation or movement of supports. The drawing of a
bending moment diagram for a beam is an act of structural
analysis which requires a knowledge of structural theory in
order to relate the applied loads, reactive forces and dimensions
to actual values of bending moment in the beam. Hence 'theory'
and 'analysis' are closely related and in general the term 'theory'
is intended to include 'analysis'.

Two aspects of structural behaviour are of paramount im-
portance. If the internal stress distribution in a structural
member is examined it is possible, by integration, to describe the
situation in terms of 'stress resultants'. In the general three-
dimensional situation, these are six in number: two bending
moments, two shear forces, a twisting moment and a thrust.
Conversely, it is, of course, possible to work the other way and
convert stress-resultant actions (forces) into stress distributions.
The second aspect is that of deformation. It is not usually
necessary to describe structural deformation in continuous
terms throughout the structure and it is usually sufficient to
consider values of displacement at selected discrete points,
usually the joints, of the structure.

At certain points in a structure, the continuity of a member,
or between members, may be interrupted by a 'release'. This is a
device which imposes a zero value on one of the stress resul-
tants. A hinge is a familiar example of a release. Releases may
exist as mechanical devices in the real structure or may be
introduced, in imagination, in a structure under analysis.

In carrying out a structural analysis it is generally convenient
to describe the state of stress or deformation in terms of forces
and displacements at selected points, termed 'nodes'. These are
usually the ends of members, or the joints and this approach
introduces the idea of a structural element such as a beam or
column. A knowledge of the forces or displacements at the
nodes of a structural element is sufficient to define the complete
state of stress or deformation within the element providing the
relationships between forces and displacements are established.
The establishment of such relationships lies within the province
of the theory of structures.

Corresponding to the basic concepts of force and displace-
ment, there are two important physical principles which must be
satisfied in a structural analysis. The structure as a whole, and
every part of it, must be in equilibrium under the actions of the
force system. If, for example, we imagine an element, perhaps a
beam, to be removed from a structure by cutting through the
ends, the internal stress resultants may now be thought of as
external forces and the element must be in equilibrium under the
combined action of these forces and any applied loads. In
general, six independent conditions of equilibrium exist; zero
sums of forces in three perpendicular directions, and zero sums
of moments about three perpendicular axes. The second princi-
ple is termed 'compatibility'. This states that the component
parts of a structure must deform in a compatible way, i.e. the
parts must fit together without discontinuity at all stages of the
loading. Since a release will allow a discontinuity to develop, its
introduction will reduce the total number of compatibility
conditions by one.

3.1.2 Force-displacement relationships

A simple beam element AB is shown in Figure 3.1. The
application of end moments MA and MB produces a shear force
Q throughout the beam, and end rotations 0A and 0B. By the
stiffness method (see page 3/11), it may be shown that the end
moments and rotations are related as follows:

_4£WA 2H9.
MA — + —T

(3.1)
_4EKB 2£/0A

MB J-+—T .

Or, in matrix notation,

FMA1 -2£/p npAl
IMJ / Ll 2JUJ

which may be abbreviated to,

S = M (3.2)

Figure 3.1

Equation (3.2) expresses the force-displacement relationships
for the beam element of Figure 3.1. The matrices S and B
contain the end 'forces' and displacements respectively. The
matrix k is the stiffness matrix of the element since it contains
end forces corresponding to unit values of the end rotations.

The relationships of Equation (3.2) may be expressed in the
inverse form:

fvu^-r2 -1IrNL0BJ 6EiI-I 2 J LMJ

or

0 = fS (3.3)

Here the matrix f is the flexibility matrix of the element since it
expresses the end displacements corresponding to unit values of
the end forces.

It should be noted that an inverse relationship exists between
k a n d f

i.e.

kf=7

or,

k = f ' (3.4)

or,

f=k '



The establishment of force-displacement relationships for struc-
tural elements in the form of Equations (3.2) or (3.3) is an
important part of the process of structural analysis since the
element properties may then be incorporated in the formulation
of a mathematical model of the structure.

3.1.3 Static and kinematic determinacy

If the compatibility conditions for a structure are progressively
reduced in number by the introduction of releases, there is
reached a state at which the introduction of one further release
would convert the structure into a mechanism. In this state the
structure is statically determinate and the nodal forces may be
calculated directly from the equilibrium conditions. If the
releases are now removed, restoring the structure to its correct
condition, nodal forces will be introduced which cannot be
determined solely from equilibrium considerations. The struc-
ture is statically indeterminate and compatibility conditions are
necessary to effect a solution.

The structure shown in Figure 3.2(a) is hinged to rigid
foundations at A, C and D. The continuity through the founda-
tions is indicated by the (imaginary) members, AD and CD. If
the releases at A, C and D are removed, the structure is as shown
in Figure 3.2(b) which is seen to consist of two closed rings.
Cutting through the rings as shown in Figure 3.2(c) produces a
series of simple cantilevers which are statically determinate. The
number of stress resultants released by each cut would be three
in the case of a planar structure, six in the case of a space
structure. Thus, the degree of statical indeterminacy is 3 or 6
times the number of rings. It follows that the structure shown in
Figure 3.2(b) is 6 times statically indeterminate whereas the
structure of Figure 3.2(a), since releases are introduced at A, C
and D, is 3 times statically indeterminate. A general relationship
between the number of members m, number of nodes n, and
degree of static indeterminacy ns, may be obtained as follows:

n.-6
3(m-n+l)-r (3 5)

where r is the number of releases in the actual structure

Figure 3.2

Turning now to the question of kinematical determinacy; a
structure is defined as kinematically determinate if it is possible
to obtain the nodal displacements from compatibility condi-
tions without reference to equilibrium conditions. Thus a fixed-
end beam is kinematically determinate since the end rotations
are known from the compatibility conditions of the supports.

Again, consider the structure shown in Figure 3.2(b). The

structure is kinematically determinate except for the displace-
ments of joint B. If the members are considered to have
infinitely large extensional rigidities, then the rotation at B is the
only unknown nodal displacement. The degree of kinematical
indeterminacy is therefore 1. The displacements at B are con-
strained by the assumption of zero vertical and horizontal
displacements. A constraint is defined as a device which con-
strains a displacement at a certain node to be the same as the
corresponding displacement, usually zero, at another node.
Reverting to the structure of Figure 3.2(a), it is seen that three
constraints, have been removed by the introduction of hinges
(releases) at A, C and D. Thus rotational displacements can
develop at these nodes and the degree of kinematical indetermi-
nacy is increased from 1 to 4.

A general relationship between the numbers of nodes H,
constraints c, releases r, and the degree of kinematical indeter-
minacy «k is as follows,

"^("-O-c + r (3.6)

The coefficient 6 is taken in three-dimensional cases and the
coefficient 3 in two-dimensional cases. It should now be appar-
ent that the modern approach to structural theory has de-
veloped in a highly organised way. This has been dictated by the
development of computer-orientated methods which have
required a re-assessment of basic principles and their applica-
tion in the process of analysis. These ideas will be further
developed in some of the following sections.

3.2 Statically determinate truss
analysis

3.2.1 Introduction

A structural frame is a system of bars connected by joints. The
joints may be, ideally, pinned or rigid, although in practice the
performance of a real joint may lie somewhere between these
two extremes. A truss is generally considered to be a frame with
pinned joints, and if such a frame is loaded only at the joints,
then the members carry axial tensions or compressions. Plane
trusses will resist deformation due to loads acting in the plane of
the truss only, whereas space trusses can resist loads acting in
any direction.

Under load, the members of a truss will change length slightly
and the geometry of the frame is thus altered. The effect of such
alteration in geometry is generally negligible in the analysis.

The question of statical determinacy has been mentioned in
the previous section where a relationship, Equation (3.5) was
stated from which the degree of statical indeterminacy could be
determined. Although this relationship is of general application,
in the case of plane and space trusses, a simpler relationship may
be established.

The simplest plane frame is a triangle of three members and
three joints. The addition of a fourth joint, in the plane of the
triangle, will require two additional members. Thus in a frame
having j joints, the number of members is:

H = 2(y-3) +3 = 2/-3 (3.7)

A truss with this number of members is statically determinate,
providing the truss is supported in a statically determinate way.
Statically determinate trusses have two important properties.
They cannot be altered in shape without altering the length of
one or more members, and, secondly, any member may be
altered in length without inducing stresses in the truss, i.e. the



truss cannot be self stressed due to imperfect lengths of members
or differential temperature change.

The simplest space truss is in the shape of a tetrahedron with
four joints and six members. Each additional joint will require
three more members for connection with the tetrahedron, and
thus:

n = 3(7- 4) + 6 = 3/- 6 (3.8)

A space truss with this number of members is statically determi-
nate, again providing the support system is itself statically
determinate. It should be noted that in the assessment of the
statical determinacy of a truss, member forces and reactive
forces should all be considered when counting the number of
unknowns. Since equilibrium conditions will provide two rela-
tionships at each joint in a plane truss (there is a space truss), the
simplest approach is to find the total number of unknowns,
member forces and reactive components, and compare this with
2 or 3 times the number of joints.

3.2.2 Methods of analysis

Only brief mention will be made here of the methods of
statically determinate analysis of trusses. For a more detailed
treatment the reader is referred to Jenkins1 and Coates, Coutie
and Kong.2

The force diagram method is a graphical solution in which a
vector polygon of forces is drawn to scale proceeding from joint
to joint. It is necessary to have not more than two unknown
forces at any joint, but this requirement can be met with a
judicious choice of order. The two conditions of overall equili-
brium of the plane structure imply that the force vector polygon
will form a closed figure. The method is particularly suitable for
trusses with a difficult geometry where it is convenient to work
to a scale drawing of the outline of the truss.

The method of resolution at joints is suitable for a complete
analysis of a truss. The reactions are determined and then,
proceeding from joint to joint, the vertical and horizontal
equilibrium conditions are set down in terms of the member
forces. Since two equations will result at each joint in a plane
truss, it is possible to determine not more than two forces for
each pair of equations. As an illustration of the method,
consider the plane truss shown in Figure 3.3. The truss is
symmetrically loaded and the reactions are clearly 15 kN each.

Consider the equilibrium of joint A,

vertically, PAEcos 45° = /?A; hence PAE=15V2kN (compres-
sion)

horizontally, PAC = PAE cos 45°; hence />AC= 15 kN (tension)

It should be noted that the arrows drawn on the members in
Figure 3.3 indicate the directions offerees acting on the joints. It
is also seen that the directions of the arrows at joint A, for
example, are consistent with equilibrium of the joint. Proceed-
ing to joint C it is clear that PCE= 1OkN (tension), and that
^CD = ^AC = 15 kN (tension). The remainder of the solution may
be obtained by resolving forces at joint E, from which
^ED = V2 kN (tension) and PEF = 20 kN (compression).

The method of sections is useful when it is required to
determine forces in a limited number of the members of a truss.
Consider, for example, the member ED of the truss in Figure
3.3. Imagine a cut to be made along the line XX and consider the
vertical equilibrium of the part to the left of XX. The vertical
forces acting are /?A, the 1OkN load at C and the vertical
component of the force in ED. The equation of vertical equili-
brium is:

15-10 = PEDcos45° henceP£D = 5V2kN

Since a downwards arrow on the left-hand part of ED is
required for equilibrium, it follows that the member is in
tension. The method of tension coefficients is particularly suit-
able for the analysis of space frames and will be outlined in the
following section.

3.2.3 Method of tension coefficients

The method is based on the idea of systematic resolution of
forces at joints. In Figure 3.4, let AB be any member in a plane
truss, rAB = force in member (tension positive), and LAB = length
of member.

We define:

^AB = £AB>AB (3.9)

where ?AB = tension coefficient.

Figure 3.4

That is, the tension coefficient is the actual force in the member
divided by the length of the member. Now, at A, the component
of rAB in the X-direction:

= TAB cos BAX

(XB-XA)_ _
~ * AB T L\B\*B •*\)1^AB

Similarly the component of 7"AB in the Y-direction:

= ^AB(FB "A)

At the other end of the member the components are:

>AB(*A -*B)> 'AB(^A ~ JV8)

If at A the external forces have components XA and YA, and if
there are members AB, AC, AD etc. then the equilibrium
conditions for directions X and Y are:

'AB(*B ~ *A) + >AC(*C ~ *A) + >AD(*D ~ *A) + • • • + XA = O
•(3.10)

^Cy8 ~ ̂ A) + ̂ Ac(Jc - ̂ A)+^AoOo-^A)+ ... +YA = 0Figure 3.3



Similar equations can be formed at each joint in the truss.
Having solved the equations, for the tension coefficients, usually
a very simple process, the forces in the members are determined
from Equation (3.9).

The extension of the theory to space trusses is straightfor-
ward. At each joint we now have three equations of equilibrium,
similar to Equation (3.10) with the addition of an equation
representing equilibrium in the Z direction:

'AB(^B ~ *A) + >Acfe ~ ZA) + . . . + ZA = O
(3.11)

The method will now be illustrated with an example. The
notation is simplified by writing AB in place of /AB etc. A fabular
presentation of the work is recommended.

Example 3.1. A pin-jointed space truss is shown in Figure 3.5.
It is required to determine the forces in the members using the
method of tension coefficients. We first check that the frame is
statically determinate as follows:

Number of members = 6
Number of reactions = 9

Total number of unknowns =15

Figure 3.5

The number of equations available is 3 times the number of
joints, i.e. 3 x 5= 15. Hence, the truss is statically determinate.
In counting the number of reactive components, it should be
observed that all components should be included even if the
particular geometry of the truss dictates (as in this case at E)
that one or more components should be zero.

The solution is set out in Tables 3.1 and 3.2 where it should be
noted that, in deriving the equations, the origin of coordinates is
taken at the joint being considered. Thus, each tension coeffi-
cient is multiplied by the projection of the member on the
particular axis.

The methods of truss analysis just outlined are suitable for
'hand' analysis, as distinct from computer analysis, and are
useful in acquiring familiarity and understanding of structural
behaviour. Much analysis of this kind is now carried out on
computers (mainframe, mini- and microcomputers) where the
stiffness method provides a highly organized and suitable basis.
This topic will be further considered under the heading of the
stiffness method.

3.3 The flexibility method

3.3.1 Introduction

The idea of statical determinacy was introduced previously (see
page 3/4) and a relationship between the degree of statical
indeterminacy and the numbers of members, nodes and releases
was stated in Equation (3.5). A statically determinate structure
is one for which it is possible to determine the values of forces at
all points by the use of equilibrium conditions alone. A statically
indeterminate structure, by virtue of the number of members or
method of connecting the members together, or the method of
support of the structure, has a larger number of forces than can
be determined by the application of equilibrium principles
alone. In such structures the force analysis requires the use of
compatibility conditions. The flexibility method provides a
means of analysing statically indeterminate structures.

Consider the propped cantilever shown in Figure 3.6(a).
Applying Equation (3.5) the degree of statical indeterminacy is
seen to be:

w s=3(2-2+l)-2=l

(Note that two releases are required at B, one to permit angular
rotation and one to permit horizontal sliding, and also that an
additional foundation member is inserted connecting A and B.)
The structure can be made statically determinate by removing
the propping force /?B or alternatively by removing the fixing
moment at A. We shall proceed by removing the reaction RB.
The structure thus becomes the simple cantilever shown in
Figure 3.6(b). The application of the load w produces the
deflected shape, shown dotted, and in particular a deflection u at
the free end B. Note also that it is now possible to determine the
bending moment at A = w/2/2, by simple statical principles. The

Table 3.1

Joint Direction

A jc

y
Z

C x

y
Z

Table 3.2

Equations

-2 AC -2AD +
2AB = O

6AC + 6AD+10 = 0
2AC -2AD = O

-4BC -4BD -2AB
+ 20 = 0

6BC + 6BD + 6BE
+ 10 = 0

-2BD + 2BC+10 = 0

Solutions

AC = AD= -{§

AB= -J?
-4BC-4BD + f

+ 20 = 0
2BC-2BD+10 = 0

BC = S

BD = ̂

Hence BE= -^

Member

AB
AC
AD
BC
BD
BE

Length (m)

2
6.62
6.62
7.48
7.48
6

Tension
coefficient

_ 10
6

-U-if
JO
24

W
-15

2

Force (kN)
(tension + )

-3.33
-5.52
-5.52
+ 3.12

+ 40.5
-45.0



Figure 3.6 Basis of the flexibility method

deflection u may be obtained from elementary beam theory as
wl*/8EL We now remove the applied load w and apply the,
unknown, redundant force x at B. It is unnecessary to know the
sense of the force Jt; in this case we have assumed a downwards
direction for positive x. The application of the force x produces
a displacement at B which we shall call/jt; i.e. a unit value of x
would produce a displacement /. The compatibility condition
associated with the redundant force x is that the final displace-
ment at B should be zero, i.e.:

«+/* = 0 (3.12)

and substituting values of u and /

x= -|w/

The process may be regarded as the superposition of the
diagrams Figures 3.6(b) and (c) such that the final displacement
at B is zero. The addition of the two systems of forces will also
give values of bending moment throughout the beam, e.g. at A:

H>/2MA = ̂ -+*/

w/2 , ,. wl2-2-iMrf> =-g-

The actual values of reactions are as shown in Figure 3.6(d).
The displacement/is called a 'flexibility influence coefficient'.

In general fn is the displacement in direction r in a structure due
to unit force in direction s. The subscripts were omitted in the
above analysis since the force and displacement considered were
at the same position and in the same direction.

3.3.2 Evaluation of flexibility influence coefficients

As seen in the above example, flexibility coefficients are dis-
placements calculated at specified positions, and directions, in a
structure due to a prescribed loading condition. The loading
condition is that of a single unit load replacing a redundant
force in the structure. It should be remembered that at this stage
the structure is, or has been made, statically determinate.

For simplicity we restrict our attention to structures in which
flexural deformations predominate. The extension to other
types of deformation is straightforward.3 In the case of pure
flexural deformation we may evaluate displacements by an
application of Castigliano's theorem or use the principle of
virtual work.3 In either case a convenient form is:

Figure 3.7 Evaluation of flexibility coefficients

These are labelled m} and m2. Consider the application of unit
force at Jt1 (Jt2 = O). Displacements will occur in the directions of
Jt1 and Jt2. Applying Equation (3.13) the displacement in the
direction of Jt1 will be:

r r ds
f\\ = ]m\m\Yj

and in the direction of Jt2: (3.14)

f f ds
/21 = Jw2W1-

Similarly, when we apply Jt2= 1, Jt1 = 0, we obtain:

f - f ds

J22-)m2m2£j

and: (3.15)

f - f ds
Jn-]m\m2—

The general form is:

f -f ds
L-]mTm— (316)

The evaluation of Equation (3.16) requires the integration of the
product of two bending moment distributions over the complete
structure. Such distributions can generally be represented by
simple geometrical figures such as rectangles, triangles and

^MdMIdE1 ^1 <3'13)

in which A1 is the displacement required, M is a function
representing the bending moment distribution and F1 is a force,
real or virtual, applied at the position and in the direction
designated by i. It follows that dMJdF1 can be regarded as the
bending moment distribution due to unit value of F-.

Consider the cantilever beam shown in Figure 3.7(a). Forces
Jt1 and Jt2 act on the beam and it is required to determine
influence coefficients corresponding to the positions and direc-
tions defined by Jt1 and Jt2. From now on we work with unit
values of Jt1 and Jt2 and draw bending moment diagrams, as in
Figure 3.7(b) and (c), due to unit values of Jt1 and Jt2 separately.



parabolas and standard results can be established in advance.
Table 3.3 gives values of product integrals for a range of
combinations of diagrams. It should be noted that in applying
Equation (3.16) in this way, the flexural rigidity EI is assumed
constant over the length of the diagram.

We may now use Table 3.3 to obtain values of the flexibility
coefficients for the cantilever beam under consideration. Using
Equations (3.14) and (3.15) with Figures 3.7(b) and (c) we
obtain:

]. I l_l_ \ _ P
J" 3222 EI 24EI

f =1! 1 LL = JL/21 22 2 EI SEI

'•"-'•'•'•STS

f =LLL.I.JL=JLJ]2 222 EI 8£7

It is seen that/21 and/12 are numerically equal, a result which
could be established using the Reciprocal Theorem. This is a
useful property since in general fn =/sr and the effect is to reduce
the number of separate calculations required. It should be
further noted that whilst /21=/,2,/21 is an angular displacement
and/12

 a linear displacement.
The evaluation of the flexibility coefficients fn provides the

displacements at selected points in the structure due to unit
values of the associated, redundant, forces. Before the compati-
bility conditions can be written down, it remains to calculate
displacements (M) at corresponding positions due to the actual
applied load. The basic equation (Equation 3.13) is applied once
more. Now the bending moment distribution M is that due to
the applied loads and we will re-designate this m0. As before,
dM/dF^ = W1, and thus:

"' = J"v4 (3.17)

The table of product integrals, Table 3.3, can be used for
evaluating the M1 in the same way as the fn.

Table 3.3

In cases where the bending moment diagrams do not fit the
standard values given in Table 3.3 or where a member has a
stepped variation in EI, the member may be divided into
segments such that the standard results can be applied and the
total displacement obtained by addition. In cases where the
standard results cannot be applied, e.g. a continuous variation
in EI, the integration can be carried out conveniently by the use
of Simpson's rule:

Jm^j^/r, + 4A2 + 2A3 + 4A4 + . . . + Hn)

where a = width of strip

h- = ̂ ~ at section i.
till

In using Simpson's rule it should be remembered that the
number of strips must be even, i.e. n must be odd.

3.3.2.1 Sign convention

A flexibility coefficient will be positive if the displacement it
represents is in the same sense as the applied, unit, force. The
bending moment expressions must carry signs based on the type
of curvature developing in the structure. Since the integrand in
Equation (3.16) is always the product of two bending moment
expressions, it is only the relative sign which is of importance. A
useful convention is to draw the diagrams on the tension
(convex) sides of the members and then the relative signs of mr
and ws can readily be seen. In Figure 3.7(b) and (c), both the m}
and W2 diagrams are drawn on the top side of the member. Their
product is therefore positive. Naturally, the product of one
diagram and itself will always be positive. This follows from
simple physical reasoning since the displacement at a point due
to an applied force at the same point will always be in the same
sense as the applied force.

3.3.3 Application to beam and rigid frame analysis

The application of the theory will now be illustrated with two
examples.

Example 3.2. Consider the three-span continuous beam
shown in Figure 3.8(a). The beam is statically indeterminate to
the second degree and we shall choose as redundants the
internal bending moments at the interior supports B and C. The
beam is made statically determinate by the introduction of
moment releases at B and C as in Figure 3.8(b). We note that the
application of the load W now produces displacements in span
BC only, and in particular rotations M, and M2 at B and C. The
bending moment diagram (w0) is shown in Figure 3.8(c).

We now apply unit value of x{ and Jt2 in turn. The deflected
shapes and the flexibility coefficients, in the form of angular
rotations, are shown at (d) and (e). The bending moment
diagrams m] and m2 are shown at (f) and (g).

Using the table of product integrals (Table 3.3), we find:

EIfu=\l

EIf22 = ̂ l

EIfn = EIf21=L

Product integrals f1
_ _ — :— / t f l r /77« OS(EI uniform) -fc

lac

LOC

ioc

^o(c+d)

\(ac

ioc

L0C

*-
io(2c+ d)
O

f*

^(a+b)c

^(2o+6)c

^(a+2t>}c

^o(2c+d} +

t>(2d+c&

^ (a+b] c



Figure 3.8 Flexibility analysis of continuous beam

»,.-•(,*»)«-•.•.!«
-^w,

and

EIu,=-^b + 2a)
o<

The required compatibility conditions are, for continuity of the
beam:

at B,/, ,JC1-I-J12Jc2+ W1 = O
atC,/2I*,+/22*2+«<2 = 0

or, in matrix form:

FX + U = 0 (3.18)

i.e.:

/ ["4 1"IfJc1I Wab Ha + 26)1
6£/ Ll 4J L*2J /<*£//L.№ + 2a)J

and the solutions are:

rjc,"[_FKi6["(2fl + 76)"]
UJ 75/2 1(26 +70) J

The actual bending moment distribution may now be deter-
mined by the addition of the three systems, i.e. the applied load
and the two redundants. The general expression is:

Af=W0-I-W1Jc1-I-W2Jc2 (3.19)

In particular:

Figure 3.9
The frame has two redundancies and these are taken to be the

fixing moment at A and the horizontal reaction at D. The
bending moment diagrams corresponding to the unit redundan-
cies, w, and W2 and the applied load, W0, are shown at (b), (c)
and (d) in Figure 3.9.

Using the table of product integrals, Table 3.3, we obtain:

f -C 2dS- 14f»-r>E~r3Ei

f -f w 2^_55
f»-\m>Ei~EI

s _/• _ f d5_ 35f»-f»-\m^Trwi
_ f ds_ 1320

Ml-J"VW'£7~-^T

f dy 4600
H2 = Jw0W2-=--

Thus the compatibility equations are:

R4 35HfX1 I+TmOI
^135 165J |_*2J |_4600j

.. Wab,- , _ , ,
MB = x]=-^rjT(2a + lb)

,. Wab.-,.. .
MC = X2 = ̂ r( 2b + ld)

and the bending moment under the load W is:

Ajf __Wab b aMw — j -f- -jx} -t- ^x2

2Wab/AI2,- ,.
= —jjjr(4l2 + 5ab)

The final bending moment diagram is shown in Figure 3.8(h).

Example 3.3. A portal frame ABCD is shown in Figure 3.9(a).
The frame has rigid joints at B and C, a fixed support at A and a
hinged support at D. The flexural rigidity of the beam is twice
that of the columns.

EI constant



from which

jc,= +157 kNm

and

jc2=-f 5OkN

The bending moment at any point in the frame may now be
determined from the expression:

M=W0 + w, jc, +W2Jc2

e.g.:

MBA = 480-l(+157)-4( + 50)=123kNm

and

MCD = 3Jc2= 15OkNm

3.3.4 Application to truss analysis

The analysis of statically indeterminate trusses follows closely
on that established for rigid frames; however, the problem is
simplified due to the fact that for each system of loading
investigated, the axial forces are constant within the lengths of
the members and thus the integration is considerably simplified.
We are now concerned with deformations in the members due to
axial forces only and the flexibility coefficients are:

f -V l

Jn-LPr P*AE (3.20)

and

-V _L
Ui-LPtPiAE (3.21)

in which the pr system of forces is due to unit tension in the rth
redundant member and similarly for ps and p-. The p0 system of
forces is that due to the applied load system acting on the
statically determinate structure (i.e. with the redundant mem-
bers omitted). Equations (3.20) and (3.21) should be compared
with Equations (3.16) and (3.17) in the flexural case.

Example 3.4. The plane truss shown in Figure 3.10 has two
redundancies which we will choose as the forces in members AE
and EC. AE is constant for all the members and equal to
1 x 106kN. The member EC is //100OO short in manufacture
and has to be forced into position. The member force systems/?0,
P1 and p2 are found from a simple statical analysis and are listed
in Table 3.4.

The flexibility coefficients may now be obtained as follows:

f-'lf^E-^^

/22=/,,

f -f V ' '

f»-f»-lPJ>fAE-2AE

J JJfI

«, = 1/̂ = (̂1 + 1/^2)

Ignoring, for the moment, the effect of the shortness in length of
member EC, the compatibility equations are:

/n*,+/,2*2 + « i=0

/21*1 +/22*2 + W2 =
 0

Clearly the symmetry will produce x} — Jc2 and thus:

x-x ._„,& +JV
*' *2 (5+ 4V2)

The effect of the prestrain caused by the forced fit of member EC
may be obtained by putting:

"--[10%] <3-22>
and then solving FX + U = O
obtaining:

= _-200__
*' (47 + 32V2)

800(1+V2)
2 (47 + 32^2)

The forces in the other members may now be obtained from
p=pQ+p} Jt1 ^p2X2.

The sign of the lack of fit in Equation (3.22) should be studied
carefully and it should be noted that the convention for the signs
of forces is tension-positive throughout.

3.3.5 Comments on the flexibility method

For a more detailed treatment of the flexibility method the
reader may consult any of the standard texts, e.g. Jenkins1 and

Figure 3.10

Table 3.4

Member

AB
BC
CD
DE
EF
AF
FB
BE
BD
AE
EC

Length

I
/
/
/
/
/

V(2)/
/

A/(2)/

V(2)/
V(2)/

Po/ W

O
O

-1/2
-1/2
-1/2
-1/2
l/v/2

O
1/V2

O
O

Pl

-1/V2
O
O
O

-1/V2
- l/V'2

1
-1/V2

O
1
O

Pl
O

-1/V2
- l/v/2
-1/V2

O
O
O

-1/V2
1
O
1



Coates, Coutie and Kong.2 The method has declined in popular-
ity in recent years due to the widespread adoption of computer-
ized methods based on stiffness concepts. In the context of
automatic computation, the stiffness method, which will be
considered in the next section, offers considerable advantages
over the flexibility method. Methods based on flexibility offer
some advantage for hand computation in structures with low (1
or 2) degrees of statical indeterminacy or with lack of fit,
temperature change or flexible supports. The concept of flexibi-
lity influence coefficients is also useful in determining stiffness
coefficients, e.g. in nonprismatic members.

3.4 The stiffness method

3.4.1 Introduction

This method has been very extensively developed in recent years
and now forms the basis of most structural analysis carried out
on digital computers. The method of 'slope-deflection' is an
example of the application of the general stiffness method.

Consider the structure shown in Figure 3.11 (a) which is fixed
at A and C and has a rigid joint at B. The degree of kinematical
indeterminacy, from Equation (3.6), is:

«k = 3(«-l)-c + r

= 3(3-l)-5 + 0

= 1

The five constraints are the zero displacements, three at C and
two at B, related to the fixed point A. The single unknown

. 4EI 4EI
k=~T^~Ti\ ii

Thus:

"(H)-?
Hence:

WP1I2
r 32£/(/, + /2)

The member forces are now obtained by adding the two systems
(b) and (c) in Figure 3.11, e.g.:

_ Wl}_4EI(r)_ Wl1 f I2 \
BA 8 /, 8 V l\ + /2/

Wl\
8(/, + /2)

and

_ 4EI(r)__ Wl\
MBC T2 8(VH)

Note that in the above, clockwise moments are considered
positive.

Table 3.5 Fix-end moments for uniform beams (clockwise
moments positive)

MFL Loading MFR

3.4.2 Member stiffness matrix

In the stiffness method, a structure is considered to be an
assemblage of discrete elements, beams, columns, plates, etc.
and the method requires a knowledge of the stiffness character-
istics of the elements. In the 'finite element' method (see page 3/
14) an artificial discretization of the structure is adopted. As an

Figure 3.11 Basis of the stiffness method

displacement, nodal degree of freedom is, of course, the rotation
of the joint B.

The procedure is to clamp the joint B so constraining the
nodal degree of freedom r. On applying the load W, a constrain-
ing force, R, will be required at B to prevent the rotation of the
joint. The constraining force R is now applied to the, otherwise
unloaded, structure with its sign reversed and the nodal degree
of freedom released. The result is a rotation of joint B through
angle r. The external moment required to effect this rotation is
kr where k is the stiffness of the structure for this particular
displacement. Thus, for equilibrium:

kr = R (3.23)

From the table of fixed-end moments, Table 3.5:

*-?

and from the force-displacement relationships of Equation (3.1)



Figure 3.12 Structural beam element

example of the determination of stiffness influencing coefficients
we shall consider the simple beam element shown in Figure 3.12.
We neglect any axial deformation.

The expression for the bending moment in the beam with
origin at end 1 and deflections y positive downwards is:

EId2yjdx2 = P,x-M,

Integrating

P x2

Eldy/dx^^-M.x+C,

= £70, for * = 0

Hence:

C1 = EIO,

= EW2 for x=l

Hence:

/> /2
£/№-0,) = ̂ --M1/ (3.24)

Integrating again:

P y3 X2

EIy = ̂ --M^ + EIO]x+C2

= EIy, for jc = 0

Therefore:
C2 = EIy1

= EIy2 for jc = /

Hence:

EI(y,-y,)-Eie,l=P^-M^ (3.25)

Solving equations (3.24) and (3.25) for M, and P1:

4EI0, 6EIy^ 2E102 6EIy2
1 ~r + ~i^ + ~r~— (3.26)

and

= 6EI6, 12EIy, 6EIO2 12EIy,
1 /2 /3 /2 /3 (3.27)

Two further relationships between the forces and displacements
are obtained from statical equilibrium as follows:

For vertical equilibrium, P1 + P2 = O

Hence:

P*=-Pi (3.28)

Taking moments about end 1:

M2 = -M1-P2I

_2EW 6EIy 4EI02 6EIy2r~+~7^+~r~~v~ <3-29)
Equations (3.26X3.29) may be combined in the matrix form:

M,~] I" 4/2 6/ 2l2 -6/l[0~
P} E] 61 12 61-12 y,
M2 = -fT 2/2 6/ 4/2 -61 O2

P2

 l -61 -12 -61 12 y2

orS = kA (3.30)

The matrix k is the stiffness matrix of the beam, and S and A are
the matrices of member forces and nodal displacements respecti-
vely. Equation (3.30) expresses the force-displacement relation-
ships for the beam in the stiffness form as distinct from the
flexibility form. The symmetry of the matrix should be noted as
consistent with the symmetry exhibited by flexibility coefficients
(see page 3/9).

3.4.3 Assembly of structure stiffness matrix

The stiffness method involves the solution of a set of linear
simultaneous equations, representing equilibrium conditions,
which may be expressed in the form:

Kr = R (3.31)

Equation (3.31) is similar in form to Equation (3.23) with the
important difference that now we are concerned with a multiple
degree of freedom system as distinct from a single unknown
displacement. K is the structure stiffness matrix, r is a matrix of
nodal displacements and R a matrix of applied nodal forces.

The process of assembling the matrix K is one of transferring
individual element stiffnesses into appropriate positions in the
matrix K. Naturally, this has been the subject of considerable
organization for digital computer analysis and the subject is well
documented.3 Some aspects of a computerized approach will be
considered later but the basic process will be illustrated here
using a simple example. Consider the structure shown in Figure
3.13(a). The two beams are rigidly connected together at B
where there is a spring support with stiffness ks. End A is hinged
and end C fixed. The structure has three degrees of freedom,
rotations r, and r3 at A and B and a vertical displacement r2 at B.
The stiffness matrix for each beam has the form of Equation
(3.30) from which k may be written in the general form:

k k k if ~\/Cn /C ) 2 /Cn /C|4
Jf Jf Ir If

k = "<2I ""22 *23 ""24 (^ ?2\
k if if if vj-j^;/C3, /C32 /C33 /C34

k If if If7Ml ^42 ^43 ^44



Figure 3.13

where kll = 4EI/l; k{2 = 6EI/l\ etc.

We apply unit value of each degree of freedom in turn as shown
in Figure 3.13(b), (c) and (d). It should be noted that when r, = 1
is applied, r2 and r3 are constrained at zero value and similarly
with r2 = 1 and r3 = 1. The force systems necessary to achieve the
unit values of the degrees of freedom are also shown at (b), (c)
and (d). The equilibrium conditions are clearly:

*,,/-, + K12T2 + K13T3 = R1

K2}^ +K22T2 +K23T3 = R2

K31T1 + K32T2 -I- K33T3 = R3

i.e. Kr = R

where R is the matrix of applied loads. Clearly, the forces shown
in Figure 3.13(b), (c) and (d) constitute the elements of the
stiffness matrix K and this may now be assembled by inspection.
Using the individual beam elements from Equation (3.30) with
the notation of Equation (3.32):

(*„), -(*,2). №,3),

v_ -(*12), №44),+№22)2+*. №23)2-№.4). „_K~ (j- Jj)

(*„), (U2-(U, (U,+ (*„);

and more specifically:

•(¥)] -(?), I Z(T'),

.--«(fQ, uffl.^ffl.^ «(f).-.(f),

~(EI\ *(EI\ t(EI\ A(EI\.A(EI\2W1
 6W2-6W1

 4W1
+4W2

(3.34)

3.4.4 Stiffness transformations

The member stiffness matrix k in Equation (3.30) is based on a
coordinate system which is convenient for the member, i.e.
origin at one end and X-axis directed along the axis of the beam.
Such a coordinate system is termed 'local' as distinct from the
'global' coordinate system which is used for the complete
structure. This subject is considered in detail in a number of

texts2-3 and we shall give only a brief indication of the type of
computation required.

Consider a three-dimensional coordinate system JCYZ (glo-
bal) which is obtained by rotation of the (local) coordinate
system XYZ. In the local system the force-displacement re-
lationships for a beam element may be expressed in the par-
titioned matrix form:

R]=C: a CO

in which the subscripts refer to ends 1 and 2.
The stiffness expressed in the coordinate system %¥2 may be

obtained as follows:

[S1I FAk11A- Ak12AnFr1H
LsJ Uk21A' Ak22A-J Lr2J (3.36)

in which A is a matrix of direction cosines as follows:

~LXX Lxy LKZ O O 0~
Lyx Lyy A-, O O O

X= ^ ^ ** ° ° ° (337)O O O Lxx Lxy Lxz V'*'>
O O O Lyx Lyy Ly2

0 0 0 L2x A5, 4_

where A-x = cos %OX, etc.

3.4.5 Some aspects of computerization of the
stiffness method

The remarkable increase in popularity of the stiffness method is
due to the widespread availability of relatively cheap computing
power. The method is of limited practical use except on com-
puters. The stiffness method is eminently suitable for computers
because the setting up of the data describing the structure and
loading system to be analysed is a comparatively simple opera-
tion. Although there is then generally considerable numerical
computation to do, this is done by the computer. Thus the
human effort required is minimized and the likelihood of errors
being made also reduced. With the phenomenal development of
cheap and powerful microcomputers, which are quite suitable
for analysing most 'run-of-the-mill' structures, it is quite likely
that in the very near future almost all structural analysis will be
carried out on computers.

It will be useful to look briefly at the more important aspects
of adapting the stiffness method for use on computers. The
method may be viewed as a succession of six stages:

(1) Define the nodal degrees of freedom of the structure (ri)
(Equation (3.6)), the nodal 'coordinates'. The total number
determines the size of the structure stiffness matrix K. The
ordering is a matter of convenience but in some programs a
judicial ordering of coordinates is necessary to reduce the
'band width' of K. An array K (n x n) is now generated in the
computer and all elements are zeroed. This is necessary since
component stiffnesses are going to be added-in to this array
thus 'accumulating' the stiffnesses element by element.

(2) The individual structural elements are now defined and their
force-displacement relationships expressed in stiffness
matrices, k (Equation (3.3O)); S = kA. The dimensions of
these matrices will depend on the type of element used but
for most of the common elements (beam, column, pin-
jointed truss member, etc.) the standard matrices are pub-

Spring
stiffness

Beam I Beam 2



lished in the textbooks. The element stiffnesses are now
transformed from local to global coordinates using matrix
transformations as in Equation (3.36).

(3) The transformed stiffnesses are now transferred into appro-
priate locations of the structure stiffness matrix K. Suppose
we are to transfer the stiffnesses of a particular element and
suppose this element has two coordinates numbered 1 and 2.
If the coordinates in the actual structure which correspond
to 1 and 2 of the element are, say, i and/ then the transfer of
stiffnesses is carried out as follows:

k,i-»ki
k,2-ktt

k*-*,
k —>kK22^Kjj

There is considerable economy in organization and pro-
gramming if the above procedure is applied to 'groups' of
coordinates, e.g. all the displacements at one node. This can
be achieved by partitioning the element stiffness matrices.

(4) Once K has been set up, the applied load matrix R is
generated. This is simply a column matrix containing the
applied (nodal) loads arranged in the same order as the
nodal coordinates. If the structure is carrying loads other
than at the defined nodes, then such loads must be con-
verted to statically equivalent nodal loads. In rigid frames,
for example, this is easily done using the standard values of
'fixed-end' effects. If a concentrated load does not coincide
with the defined nodal coordinates then it is a simple matter,
as an alternative, to introduce a node at the load point. This
procedure, although it increases the size of the system to be
solved, does have the advantage of yielding the displace-
ments developing at the load point.

(5) The computer now solves the linear simultaneous equations
(Equation (3.31)) Kr = R to produce the nodal displace-
ments r.

(6) Lastly, the element forces are obtained from Equation (3.30)
S = kA. In this last operation, some logical organization is
clearly needed to extract the element nodal displacements A
from the structure displacement Sr.

The foregoing is a description of the fundamental basis of the
stiffness method applied on computers. Of course, it is possible
to incorporate many refinements and devices to simplify the
input and output, to check the results and to make changes in
data without having to re-input all data.

In its most general form the stiffness method is used to
analyse complex structures in which not only simple elements
such as beams and columns are used but 'continua' such as
plates and shells. This is the 'finite element' method which will
now be examined briefly.

3.4.6 Finite element analysis

This extremely powerful method of analysis has been developed
in recent years and is now an established method with wide
applications in structural analysis and in other fields. Space
permits only the most brief introduction here but the method is
extensively documented elsewhere.4"6 We have discussed the
application of the stiffness method to framed structures in which
the structural elements, beams and columns, have been con-
nected at the nodes and the method observes the correct
conditions of displacement compatibility and equilibrium at the
nodes. The finite element method was developed, originally, in
order to extend the stiffness method to the analysis of elastic
continua such as plates and shells and indeed to three-dimensio-
nal continua. The first step in the process is to divide the
structure into a finite number of discrete parts called 'elements'.

The elements may be of any convenient shape, e.g. a thin plate
may be represented by triangular or rectangular elements, and
the discretization may be coarse, with a small number of
elements, OT fine, with a large number of elements. The connec-
tion between elements now occurs not only at the nodal points
but along boundary lines and over boundary faces.

The procedure ensures, as for framed structures, that equili-
brium and compatibility conditions are satisfied at the nodes but
the regions of connection between nodes are constrained to
adopt a chosen form of displacement function. Thus, compati-
bility conditions along the interfaces between elements may not
be completely satisfied and a degree of approximation is gener-
ally introduced. Once the geometry of the elements has been
determined and the displacement function defined, the stiffness
matrix of each element, relating nodal forces to nodal displace-
ments, can be obtained. The remainder of the structural analysis
follows the established procedures similar to those for framed
structures. Naturally the best choice of element and discretiza-
tion pattern, the precise conditions occurring at the interfaces
and the accuracy of the solution, are matters which have
received a great deal of attention in the literature.

A central stage in the process is the adoption of a suitable
displacement function for the element chosen, and the subse-
quent evaluation of the element stiffnesses. This will be illus-
trated with one of the simplest possible elements, a triangular
plate element for use in a plane stress situation.

3.4.6.1 Triangular element for plant stress

A triangular element ijk is shown in Figure 3.14. Under load,
the displacement of any point within the element is defined by
the displacement components M, v. In particular the nodal
displacements are:

A^fyi^v^vJ (3.38)

It is now assumed that the displacements u, v are linear
functions of x, y as follows:

M = a, + a2x + a3>> ,3 3^
v=a4 + a5x + a6y

The nodal displacements A are now expressed in terms of the
displacement parameters a, from Equations (3.39) and Figure
3.14:

M1I Pl O O O O O ITa1"
MJ 1 a O O O O a2

«k 1 c b O O O a3
v; ~ O O O 1 O O a4 ^ }

v. O O O 1 a O a5

vk O O O 1 c b a6

or, A = Aa

Figure 3.14



The strains in the element are functions of the derivatives of u
and v as follows:

Fe, I Tdu/dx -|
€= UJ = \dv/dy (3.41)

[^,J \duldy + dvldx\

«.
Po 1 O O O ol a2 (3-42)

= O O O O O 1 ^
O O 1 O 1 O a<U- J OC5

« 6 _

i.e.:

C = Ba = BA-1A (3.43)

from Equation (3.40).

It should be noted that the matrix B in Equation (3.42) contains
only constant terms and it follows that the strains are constant
within the element.

The stress-strain relationships for plane stress in an isotropic
material with Poisson's ratio v and Young's modulus E are:

0\ 1 v O £v
<j,. = E

(1-v2) v 1 O £v

T,, O O Kl -v) yxy

i.e.:

C=DE=DBA 1A (3.44)
Matrix D is the 'elasticity' matrix relating stress and strain. To
obtain the element stiffness we employ the principle of virtual
work and apply arbitrary nodal displacements A producing
virtual strains in the element:

§ = BA 1A (3.45)

The virtual strain energy in the element, from Equation (2.78) of
Chapter 2, is:

J1-FcIdK

where V= volume of triangular element = tab/2, / = thickness
Substituting for 1T and <r from Equations (3.45) and (3.44)
respectively, the virtual strain energy is:

Jvo/ [BA-1AfDBA-1AdK

Now since all the matrices contain constant terms only and are
thus independent of jc and y, the expression for the virtual strain
energy may be written:

Ar{[A-']rBr DBA' 1K)A

The external work is the product of the virtual displacements A
and the nodal forces S, hence equating external virtual work and
internal virtual strain energy:

A7-S = AM[A-1FB7-DBA-1K)A

The virtual displacements are quite arbitrary and in particular
may be taken to be represented by a unit matrix, thus:

S = {[A ']rBrDBA-'K}A
= kA, from Equation (3.30)

Thus:

k = [A 1J7B7DBA 1 K (3.46)

Before the matrix multiplications required in Equation (3.46)
can be performed we need to find A~ ' . This is easily determined
as:

" ab 0 0 0 0 0 "
- b b O O O O

1 (c~a) - c a O O O
A - ' = ^ O Q Q a b O O

O O O -b b O
O O O (c-a) - c a _

Hence finally, with | A1 = J(I ~ v) and ^2
 = iO + v) we obtain the

stiffness matrix for the plane stress triangular element as shown
in equation (3.47) below.

It is neither necessary nor economical to carry out these
operations by hand; the computation of the element stiffness
and, indeed, the entire computational process is easily pro-
grammed for the digital computer.

Computer 'packages' for finite element analysis of structures
are highly developed, very powerful and readily available.
Because of the comparatively heavy demands on computer
storage, the use of the packages is generally confined to main-
frame computers. A good example of a finite element system
which is used very extensively is PAFEC.6 The more important
topics which should be studied in pursuing finite element
analysis include: (1) shape (displacement) functions; (2) con-
forming and nonconforming elements; (3) isoparametric ele-
ments; and (4) automatic mesh generation.

k_ Et
2(1-V2)^

b2 + ^(c-a)2

-b2- ̂ c(C- a)

^a(c -a)

-I2b(c-a)

^b(c -a)+vcb

— vab

£2+V2

— k\ac

^cb + vb(c-d)

-A2bc

vab

w
— ̂ ab

^ab

O

^b2 + (c-a)2

-^b2-c(c-a)

a(c-a)

Symmetric

V>2 + c2

— ac a2

(3.47)



3.5 Moment distribution

3.5.1 Introduction

Although the stiffness method, described in the previous section
has the merit of simplicity, the solution of the equilibrium
equations (3.31) is generally a matter for the digital computer
since only for the simplest structures can a hand solution be
contemplated. An alternative procedure which is eminently
suitable for hand computation is the method of moment distri-
bution which is essentially an iterative solution of the equations
of equilibrium.

As in the general stiffness method, we first imagine all the
degrees of freedom, joint rotations and joint translations, to be
constrained. We ignore axial effects in members and consider
flexure only. The constraints are imagined to be clamps applied
to the joints to prevent rotation and translation. The forces
required to effect the constraints are applied artificially and in
the moment distribution processes these clamping forces are
systematically released so as to allow the structure to achieve an
equilibrium state. It is important to note that in the method as
generally applied, the rotational joint restraints are relaxed by
one process and the translational restraints by another. Finally
the principle of superposition is used to combine the separate
results.

It is necessary to assemble certain standard results before we
can consider the actual process.

3.5.2 Distribution factors, carry-over factors and
fixed-end moments

For the time being we confine our attention to prismatic
members. The treatment of nonuniform section members will be
touched on later.

Standard member stiffnesses are required and these are illus-
trated in Figure 3.15. The member end forces are those required
to produce the deflected forms shown. Diagrams (a) and (b)
relate to rotation without translation (sway), and diagrams (c)
and (d) relate to sway without rotation. The results in diagrams
(a) and (c) may be deduced from the stiffness matrix in Equation
(3.30). The other results may be obtained easily from elementary
beam theory, e.g. in Figure 3.15(b), taking the origin of x at the
left-hand end and y positive downwards:

Ely = ™ ^+ (BIO- M L^ x + C2

= 0 for jc=0; hence C2 = O

n f i u ., *EI°= O for x = /; hence, M=—-.—

When loads are applied to members which are constrained at
the joints, fixed-end moments are required to prevent the end
rotations. This is another standard type of result which is
required in the moment distribution method. Table 3.5 lists
fixed-end moments for a selection of loading cases on uniform
section beams. Again, these results may be obtained from
elementary beam theory. It should be noted that the sign
convention is that a moment is positive if tending to produce
clockwise rotation of the end of the member at which it acts.
This convention is different to, and should not be confused with,
the sign convention for constructing bending moment diagrams
which must be based on the curvature produced in the member.

As an illustration of the basic process, consider the structure
ABC shown in Figure 3.11. This structure was analysed by the
stiffness method previously. Joint B is considered to be clamped
and thus a system of fixed-end moments is set up in member AB.
The end moments in the members are shown in line 1 of Table
3.6. The constraining moment at joint B is seen to be Wl J%
clockwise and we imagine this moment to be removed by the
application of a moment - Wl1 /8. The subsequent rotation of
joint B, anticlockwise through angle 0, will develop moments in
both members. Referring to Figure 3.15 the moments induced
will be:

_ 4EIO m _ 2EIO
MBA- ~—,—» ^AB- ~—J—11 'i

M _ *EW. M _ i™MB C— — —.—, MCB — ——.—
12 12

For equilibrium of joint B, the applied moment - W/,/8 must
equal the sum of the moments absorbed by the two members
meeting at the joint:

-2--^--(H)
and it is seen that the moment is 'distributed' to the members in
proportion to their /// values.

Thus:

_-Wl, Ul, _~Wl,( I2 \
MBA 8 (///,+///,) 8 U + /J

and:

_-»7, ///, _-WlJ I1 \
MK 8 (///, + ///,) 8 U + /2/

The moments induced at A and C are from Figure 3.15, one-half
of those induced at B and the factor of one-half is termed the
carry over factor. This set of moments is shown in line 2 of Table
3.6.

Joint B is now 'in balance' and since it was the only joint
which was clamped we have reached an equilibrium state and no
further distribution of moments is required. The final set of

Figure 3.15

EId2y/dx2 = —j-, where M is the moment, to be determined, at

the right-hand end,

Eldy/dx = ̂ - y+C,

= EI8 for x = l; hence C, = EIO-M^



Table 3.6

Stage Operation MAB

1 Fixed-end moments - Wl1 /8

2 Distribution at B -J¥L (-^~\
16 U + /J

3 Total moments _ K7,/2/, + 3/2\16 v / ,+ / 2 ;

moments is obtained in line 3 of Table 3.6, by the addition of
lines 1 and 2. This result is the same as that obtained from pure
stiffness considerations. It should be noted that the zero sum of
moments MBA and MBC indicates that joint B is in rotational
equilibrium.

Two further points should be noted before we consider the
moment distribution process in more detail. Referring to Figure
3.16, of the three members connected at joint A, member AD is
hinged at the end remote from A whereas the other two
members are fixed. Since D is hinged no moment can exist there
and hence there is no carry-over to D. Furthermore, the
moment-rotation relationship is different for a member pinned

MBA MBC A/CB

+ f*7,/8 O O

_wi±(_k\ _MI(JL_\ -™i(Ji_\
8 V/. + /2/ 8 U + /2/ 16 V/ ,+ /2/

Wl1, IVP, WP,
8(/, + /2) 8(/, + /2) 16(/, + /2)

at the remote end, as may be seen by comparing Figures 3.15(a)
and (b). In calculating distribution factors this is taken account
of by taking J(//0 for sucn members as compared with /// for
members fixed at the remote end.

3.5.3 Moment distribution without sway

As an example of a structure with two degrees of freedom of
joint rotation and no sway, consider the frame shown in Figure
3.17, EI (beams) = 3 x EI (columns).

Figure 3.16 Distribution factors at typical joint Figure 3.17

Table 3.7 Moment distribution for frame shown in Figure 3.17

Joint

Distribution factors
end moments

(1) Fixed-end moments
(2) Distribution at C

(3) Carry-over to A and D
(4) Distribution at D

(5) Carry-over to C, B and E
(6) Distribution at C

(7) Carry-over to A and D
(8) Distribution at D

(9) Carry-over to C, B and E
(10) Distribution at C

(11) Carry-over to A and D
(12) Distribution at D

(13) Carry-over to C, B and E

(14) Total moments (kNm)

A

AC

+ 4.75

+ 0.60

+ 0.05

+ 5.40

C

0.285
CA

+ 9.5

+ 1.20

+ 0.09

+ 10.79

0.715
CD

-33.3
+ 23.8

-4.23
+ 3.03

-0.30
+ 0.21

- 10.79

D

0.386 0.154
DC DB

+ 33.3

+ 11.9
-8.45 -3.38

+ 1.52
-0.59 -0.23

+ 0.11
-0.04 -0.02

May be neglected

+ 37.75 -3.63

0.460
DE

-23.3

- 10.07

-0.70

-0.05

-34.12

B

BD

-1.69

-0.12

-1.81

E

ED

+ 23.3

-5.04

-0.35

+ 17.91



The fixed-end moments are, (w/2/12),

MFCD= -30x2^!; MFDC= + 30 x ̂  = 33.3 kNm

^FDE= -30x^ MFED= +30x^=23.3 kNm

and the distribution factors are:

atC CD-CA- 3/3'65 • I/3-°5

' ' (1/3.05) + (3/3.65)' (1/3.05) + (3/3.65)
= 0.715:0.285

at D, DC:DB:DE =

3/3.65 1/3.05
(3/3.65) + (1/3.05) + (3/3.05): (3/3.65) + (1/3.05) + (3/3.05):

3/3.05
(3/3.65) + (1/3.05) + (3/3.05)

= 0.386:0.154:0.460

The moment distribution is carried out in Table 3.7. It should be
noted that after each distribution at a joint the distributed
moments are underlined to indicate that the joint is balanced at
that stage. At step 4, the out-of-balance moment to be distri-
buted at D is + 33.3+11.9-23.3= +21.9; hence the distributed
moments should total -21.9.

3.5.4 Moment distribution with sway

This process will be illustrated with reference to Example 3.3
(page 3/9), for which the structure is shown in Figure 3.9. We
first ignore any horizontal movement (sway) of the joints B and
C and carry out a moment distribution.

The fixed-end moments are w/2/12 = ±40kNm; and the dis-
tribution factors are:

BA:BC = i:f

CB: CD = f: i (noting J/// for CD)

The result of this (no sway) moment distribution is given in line
3 of Table 3.8. We now consider the horizontal equilibrium of
the beam BC, Figure 3.18(a), and find that a force F1 is required
to maintain equilibrium. F1 may be calculated by evaluating the
horizontal shear forces at the tops of the columns as follows:

F, = 120 + (20±M-20=I2(,8kN

This force cannot exist in practice and what happens is that the
beam BC deflects to the right and a new set of bending moments
is set up with the effect that the out-of-balance horizontal force
F1 is removed. We consider the effect of this sway separately.
Referring to Figure 3.18(b), a movement to the right of A,
without joint rotation, requires column moments as shown.
From Figure 3.15(c) and (d), these column moments are,

^FBA = ^FAB= ~6 ( -JT J AAB

Figure 3.18

MFCD= - 3 (|Q ACD (note MFDC = O)

We cannot evaluate these moments unless A is known but we
could proceed with an arbitrary value of A, and carry out a
distribution to produce rotational equilibrium of the joints B
and C. In fact, it is seen that any arbitrary values of moments
can be used providing these are in the correct proportions
between the two columns. The ratio in this example is:

»=»-(*) 40')\* / A B >' 'CD

If we adopt

^FBA = A/FAB =-90

and

MFCD =-80

the moments are in the correct proportion. A second moment
distribution is now carried out, using these values of fixed-end
moments, and the result is shown in line 1 of Table 3.8. This set
of moments is consistent with an applied horizontal force F2,
Figure 3.18(c), and:

^^±Z5+^56.3kN

Table 3.8

Joint A B C

End moments AB BA BC CB CD

(1) Arbitrary sway -78 -66 +66 +61 -61
(2) Corrected [(1) x A] -167 -141 +141 +131 -131
(3) No sway moments +10 +20 - 20 +20 - 20
(4) Final moments

[(2) + (3)] -157 -121 +121 +151 -151

Now F2 has to be scaled to equal F1 and the scaling factor is F1/
F2 = A= 120.8/56.3 = 2.14.

The corrected moments are given in line 2 of Table 3.8 and the
final moments are in line 4 obtained by adding lines 2 and 3.

3.5.5 Additional topics in moment distribution

Space has permitted only a brief introduction to the method of
moment distribution. Additional topics which should be studied
by reference to the standard texts,3-4 are as follows:

(1) Frames with multiple degrees of freedom for sway. These
are handled by carrying out an arbitrary sway distribution



for each sway in turn. Equilibrium conditions are then used
to relate the out-of-balance forces and obtain the correction
factors for each sway mode.

(2) Treatment of symmetry. In cases of symmetry the moment
distribution process can be considerably shortened. Two
cases arise and should be studied, systems in which it is
known that the final set of moments is symmetrical and
systems in which the final moments form an anti-symmetri-
cal system.

(3) Nonprismatic members. If the flexural rigidity (EI) of a
member varies within its length, then the effect is to change
the values of end stiffnesses, carry-over factor and fixed end
moments. A suitable general method for handling this
situation is to evaluate end flexibilities by the use of Simp-
son's rule and then convert the flexibilities into stiffnesses.

3.6 Influence lines

3.6.1 Introduction and definitions

It is frequently necessary to consider loads which may occupy
variable positions on a structure. For example, in bridge design
it is important to determine the maximum effects due to the
passage of a specified train or system of loads. In other cases the
total load on a structure may be comprised of different loads
which may be applied in various combinations and this again is
a problem of variability of load or load position. The effect of
varying a load position may be studied with the help of influence
lines.

An influence line shows the variation of some resultant action
or effect such as bending moment, shear force, deflection, etc. at
a particular point as a unit load traverses the structure. It is
important to observe that the effect considered is at a fixed
position, e.g. bending moment at C, and that the independent
variable in the influence line diagram is the load position. The
following is a summary of influence line theory. For a more
detailed treatment the reader should consult Jenkins.1

3.6.2 Influence lines for beams

Consider the simply-supported beam AB, Figure 3.19, carrying
a single unit load occupying a variable position distant y from
A. We require to obtain influence lines for bending moment and
shear force at a fixed point X distant a from A and b from B.

If the unit load lies between X and B:

MK = R^a=\^j^-a (3.48)

If the unit load acts between A and X:

MK = RB'b = l-y/l'b (3.49)

Equations (3.48) and (3.49) are linear in y and when plotted in
the regions to Which they relate, form a triangle as shown in
Figure 3.19(b). We note that, in both cases, substitution of y = a
gives Mx = 1 -ab/l. Thus the influence line for Mx is a triangle with
a peak value ab/l at the section X.

Turning now to the influence line for shearing force at X. For
unit load between X and B:

Sx = *A = ̂  (3.50)

(and now we have implied a sign convention for shear force

Figure 3.19 Influence lines and related diagrams for simply
supported beams

namely that Sx is positive if the resultant force to the left of the
section is upwards).

Where ^ = a, SK = b/l

For unit load between A and X:

S11=-R9=-y/l (3.51)

when y = a, Sx = — a/7

We note that Equations (3.50) and (3.51) give different values of
Sx for y = a and moreover the signs are opposite. This means
that the shear force influence line contains a discontinuity at X
as shown in Figure 3.19(c).

In using influence lines with a given system of loads and
having determined the locations of the loads on the span, the
total effect is evaluated as:

£(WX ordinate), for concentrated loads (3.52)

and:



(whdx= w (area under influence line) (3.53)

for distributed loads (Figure 3.19(d).
The maximum effect produced at a given position is of

interest in the design process. In the case of concentrated loads,
from Equation (3.52), this is obtained when:

£( W x ordinate) is a maximum

The process of locating the loads to produce the maximum value
is best done by trial and error. It follows from the straight-line
nature of a bending moment diagram due to concentrated loads,
that the maximum bending moment at a section will be obtained
when one of the loads acts at the section. This may be illustrated
by reference to the two-load system shown at (e) in Figure 3.19.
The shape of the bending moment diagram is as shown at (O and
at (g) is drawn a diagram which shows the maximum value of
bending moment at any section in the beam. This is the
maximum bending moment envelope Afmax which is seen to consist
of two intersecting parabolic curves Afyl and Afy2.

The curve Afyl represents the maximum bending moment at
all sections in the beam when this is obtained with load IV}

placed at the section. The curve Afy2 represents the maximum
bending moment at all sections in the beam when this is
obtained with load IV2 at the section. It is seen that W1 should be
placed at the section towards the left-hand end of the beam, and
W2 at the section towards the right-hand end of the beam.

The expressions for Afy, and Afy2 are as follows:

M^ = (W,+W^i(I-y,-a)

(3.54)

M^ = (W1+W$-f&(yi-b)

In the case of a distributed load which has a length greater than
the span, then for an influence line of type (b) in Figure 3.19, the
whole span would be loaded, whereas for an influence line of
type (c) one would place the left-hand end of the load at X thus
avoiding the introduction of a negative effect on the maximum
positive value. For a short distributed load, as at (h), for
maximum effect at y, the load must be placed so that the shaded
area in (j) is a maximum.

The rule for this is:

y 11= ale (3.55)

3.6.3 Influence lines for plane trusses

In the analysis of plane trusses, the influence line is useful in
representing the variations in forces in members of the truss.

Figure 3.20(a) shows a Warren girder AB of span 20m. For
the unit load acting at any of the lower chord joints, the force in
member 1 is:

p_^A

^'-273

The peak value occurs when the unit load is at C, and thus:

P =Ax 4xl=J-
^1""" V3 5 l 5V3

The influence line for P1 is shown at (b).
For member 2, if the unit load lies between A and E, we take:

Figure 3.20 Influence lines for plane truss

n-12*,
2 2V3

or, if the unit load lies between E and B we take:

p _ 8 * A

^2~275

The result is a triangle with peak value 12/Sx/3 at E, as shown in
diagram (c).

It should be noted that both the P1 and P2 influence lines
indicate compression for all positions of the unit load.

For members 3 and 4 it is useful to note that these members
carry the vertical shear force in the panel CE, and we proceed by
drawing the influence line for VCE as at (d).

Considering now the force in member 3 and the section XX in
diagram (a), it is clear that the relationship is:

p- ^CE
3 sin 60°

and that P3 is tensile when VCE is positive and compressive when
VCE is negative.

3.6.4 Influence lines for statically indeterminate
structures

The use of influence lines in representing the effects of variable-
position loads in statically determinate beams and trusses has
been outlined. The concept is, of course, of general application.
When dealing with statically indeterminate structures it is
convenient to introduce some additional theorems to assist the
analysis. It is possible to relate influence line shapes to deflected
shapes of structures under particular forms of applied force.
This involves an application of Mueller-Breslau's principle,
which we shall look at in this section. The application of this
principle can take the form of a model analysis, to which a
simple form or model of the structure is made and particular
distortions of the model produce scaled versions of influence
lines.

Compression



Figure 3.21

The first bracket in Equation (3.56) contains the work done
during the application of W and the second bracket the work
done (by both M and W) during the application of M.

In a similar way, if the order is reversed, the work done is:

(iM/22) + (i^/u + M/2l) (3.57)

From Equations (3.56) and (3.57) it is evident that:

JVf12 = Mf21 (3.58)

If the applied actions are taken to have unit values, then
Equation (3.58) simplifies to:

/I2
=/2, (3.59)

Equation (3.59) is a statement of Maxwell's reciprocal theorem.
A more general theorem, of which Maxwell's is a special case, is
due to Betti. This latter theorem states that if a system of forces
P1 produces displacements p} at corresponding positions and
another set of forces Q^ at similar positions to P-, produces
displacements ^1, then:

^1+^202+ . . - +^=e./>, + C2/>2+ ." +QnPn (3-60)

3.6.6 Mueller-Breslau's principle

This principle is the basis of the indirect method of model
analysis. It is developed from Maxwell's theorem as follows.
Consider the two-span continuous beam shown in Figure
3.22(a). On removal of the support at C and the application of a
unit load at C, a deflected shape, shown dotted in Figure

3.22(b), is obtained. If a unit load now occupies any arbitrary
position D, as at (c), then from Maxwell's theorem the deflec-
tion at C will be S0. In other words, the deflected form (b) is the
influence line for deflection of C.

Now the force at C to move C through Sc = 1
Hence, the force at C to move C through ^= 1 x SD/SC.
If a unit load acts at D, producing a deflection SD at C, then

the upwards force needed to restore C to the level of AB is
1 x 6D/SC. Hence, the reaction at C for unit load at D is 1 x SJS0.
Since D is an arbitrary point in the beam then it is seen that the
deflected shape due to unit load at C, Figure 3.22(b), is to some
scale, the influence line for Rc. The scale of the influence line is
determined from the knowledge that the actual ordinate at C
should equal unity. Hence, the ordinates should all be divided
by<5c.

This result leads to Mueller-Breslau's principle which may be
stated as follows:

'The ordinates of the influence line for a redundant force are
equal to those of the deflection curve when a unit load
replaces the redundancy, the scale being chosen so that the
deflection at the point of application of the redundancy
represents unity.'

With the enormous increase in computing power now avail-
able there is little need to use models in this way and it is
generally more economical to produce influence lines by com-
puter. It should be noted that it is always possible to construct
influence lines by repeated analysis of the structure under a unit
applied load, changing the load position for each analysis and
thus producing a succession of ordinates to the influence line
sought. This latter approach will be illustrated in section 3.6.8.

We now look at two important theorems concerned with
influence lines.

3.6.5 Maxwell's reciprocal theorem

Consider the propped cantilever shown in Figure 3.21 to be
subjected to a load Wat A, producing displacements/, and/21
as shown at (a), and then separately to be subjected to a moment
M at B producing displacements/J2 and/22 as at (b). Assuming a
linear load-displacement relationship we may use the principle
of superposition and obtain the combined effects of W and M by
adding (a) and (b). Clearly it will be immaterial in which order
the forces are applied. Applying W first and then M, the work
done by the loads will be:

(Wn) +(P^22+tf/12) (3.56)

Figure 3.22

3.6.7 Application to model analysis

Consider the fixed arch shown in Figure 3.23(a). The arch has
three redundancies which may be taken conveniently as //A, VK
and MA. We make a simple model of the arch to a chosen linear
scale and pin this to a drawing board. End B is fixed in position
and direction and the undistorted centreline is transferred to the
drawing paper. We then impose a purely vertical displacement
Av at A and transfer the distorted centreline to the drawing
paper. The distortion produced will require force actions at A,
V\ H' and M'. Let the displacement of a typical load point be
Aw. Applying Equation (3.60) to the two systems of forces:

KA(AV) + //A_(0) + MA(0) + Jf(AJ = F'(0) + If(Q) + Kf(O) + 0(S)

Hence:

FA+JTA^O

and if W=I:

Figure 3.23



FA = -̂  (3.61)

Similarly, we impose a purely horizontal displacement AH and
obtain:

"* = -^ (3-62>

then a pure rotation 9 and obtain:

^A=--/ (3.63)

In Equations (3.62) and (3.63) the displacements A^, and A^
represent the arch displacements due to the imposed horizontal
and rotational displacements respectively. In each case the
deflected shape, suitably scaled, gives the influence line for the
corresponding redundancy.

3.6.7.1 Sign convention

The negative sign in Equations (3.61) to (3.63) leads to the
following convention for signs. On the assumption that a
reaction is positive if in the direction of the imposed displace-
ment, then a load W will give a positive value of the reaction if
the influence line ordinate at the point of application of the load
is opposite to the direction of the load. This is evident in Figure
3.23(b) where the upward deflection A1,, being opposed to the
direction of the load W, is consistent with a positive (upwards)
direction for KA.

Unit Load Positions

3.67.2 Scale of the model

It should be noted that when using relationships (3.61) and
(3.62) the ratios AW/AV and A'W/AW are dimensionless and thus the
linear scale of the model does not affect the influence line
ordinates. On the other hand, when using Equation (3.63) in
obtaining an influence line for bending moment, AJO has the
dimensions of length and thus the model displacements must be
multiplied by the linear scale factor.

In performing the model analysis, quite large displacements
can be used providing the linear relation between load and
displacement is maintained. Hence, the indirect method is
sometimes called the 'large displacement' method.

3.6.8 Use of the computer in obtaining influence lines

With adequate computing facilities it is generally more econo-
mical to proceed directly to the computation of influence line
ordinates by the analysis of the structure under a unit load, the
unit load occupying a succession of positions. The actual
method of analysis is immaterial but for bridge-type structures
often the flexibility method offers some advantage especially if
the structural members are 'nonprismatic'. An example of this
type of computation is shown in Figure 3.24 where influence
lines for bending moments at the interior supports of a five-span
continuous beam are given. The beam is taken to be uniform in
section over its length and, due to the symmetry of the spans,
unit load positions need only be taken over one-half of the
structure as shown.

Figure 3.24 Influence lines for bending moments in a continuous
beam obtained by computer analysis



3.7 Structural dynamics

3.7.1 Introduction and definitions

Structural vibrations result from the application of dynamic
loads, i.e. loads which vary with time. Loads applied to struc-
tures are often time-dependent although in most cases the rate
of change of load is slow enough to be neglected and the loads
may be regarded as static. Certain types of structure may be
susceptible to dynamic effects; these include structures designed
to carry moving loads, e.g. bridges and crane girders, and
structures required to support machinery. One of the most
severe and destructive sources of dynamic disturbance of struc-
tures is, of course, the earthquake.

The dynamic behaviour of structures is generally described in
terms of the displacement-time characteristics of the structure,
such characteristics being the subject of vibration analysis.
Before considering methods of analysis it is helpful to define
certain terms used in dynamics.

(1) Amplitude is the maximum displacement from the mean
position.

(2) Period is the time for one complete cycle of vibration.
(3) Frequency is the number of vibrations in unit time.
(4) Forced vibration is the vibration caused by a time-dependent

disturbing force.
(5) Free vibrations are vibrations after the force causing the

motion has been removed.
(6) Damping. In structural vibrations, damping is due to: (a)

internal molecular friction; (b) loss of energy associated
with friction due to slip in joints; and (c) resistance to
motion provided by air or other fluid (drag). The type of
damping usually assumed to predominate in structural
vibrations is termed viscous damping in which the force
resisting motion is proportional to the velocity. Viscous
damping adequately represents the resistance to motion of
the air surrounding a body moving at low speed and also the
internal molecular friction.

(7) Degrees of freedom. This is the number of independent
displacements or coordinates necessary to completely define
the deformed state of the structure at any instant in time.
When a single coordinate is sufficient to define the position
of any section of the structure, the structure has a single
degree of freedom. A continuous structure with a distributed
mass, such as a beam, has an infinite number of degrees of
freedom. In structural dynamics it is generally satisfactory
to transform a structure with an infinite number of degrees
of freedom into one with a finite number of freedoms. This
is done by adopting a lumped mass representation of the
structure, as in Figure 3.25. The total mass of the structure is
considered to be lumped at specified points in the structure
and the motion is described in terms of the displacements of
the lumped masses. The accuracy of the analysis can be
improved by increasing the number of lumped masses. In
most cases sufficiently accurate results can be obtained with
a comparatively small number of masses.

Distributed moss beam Lumped mass beam

Figure 3.25

3.7.2 Single degree of freedom vibrations

The portal frame shown in Figure 3.26 is an example of a
structure with a single degree of freedom providing certain
assumptions are made. If it is assumed that the entire mass of

Figure 3.26

the structure (M) is located in the girder and that the girder has
an infinitely large flexural rigidity and further, that the columns
have infinitely large extensional rigidities, then the displacement
of the mass M resulting from the application of an exciting force
/*(/), is defined by the transverse displacement y. The girder
moves in a purely horizontal direction restrained only by the
flexure of the columns.

From Newton's second law of motion:

Force = mass x acceleration

i.e.:

£P=My (3.64)

Now from Figure 3.26(b), the force resisting motion is:

a-, (^S)

-«f (3.65,

Thus Equation (3.64) becomes:

P(t) -24 ̂ = My

or:

My + IA^-W (366)

If the effect of damping is included then the equation of motion,
Equation (3.66) is modified by the inclusion of a term cy where c
is a constant. It should be noted that since the effect of damping
is to resist the motion, then the term cy is added to the left-hand
side of Equation (3.66). Thus:

My + cy + 2A~£ = P(t) (3.67)

Equation (3.67) may be generalized for any single degree of
freedom structure by observing that the stiffness of the struc-
ture, i.e. force required for unit displacement horizontally, is
given by:

*-24^*'** V (3.68)

Combining Equations (3.67) and (3.68) we obtain the general
single degree of freedom equation of motion:

My + <$ + ky = P(t) (3.69)



If in Equation (3.69) P(t) = O, we have a state of free vibration of
the structure. The governing equation becomes:

My + cy + ky = 0 (3.70)

The situation envisaged by Equation (3.70) would arise if the
beam were given a horizontal displacement and then released.
The resulting vibrations would depend on the amount of
damping present, measured by the coefficient c.

The solution of Equation (3.70) is:

y = A,e* + &fh? (3.71)

where A1 and A2 are the constants of integration, to be evaluated
from initial conditions, and A1 and A2 are the roots of the
auxiliary equation:

AfA2 -I- cA + k = O (3.72)

or, substituting:

P
2 = h/M \

and I (3.73)
2n = c/M I

Equation (3.72) becomes:

A2 + 2wA+/72 = 0 (3.74)

Hence:

A=-«±V(«2-/>2) (3.75)

Four cases arise:

Case 3.1 p2<n2

Here (rf—p2) is always positive and <n2 and thus A1 and A2 are
real and negative.

Equation (3.71) takes the form:

y = e'"t(A^"2~^t^A2e-^2-^') (3.76)

The relationship between y and / of Equation (3.76) is shown in
Figure 3.27(a) and it is seen that the displacement y gradually
returns to zero, no vibrations taking place.

Now, since n2>p2, then:

^!_>A
4M2 M

or

02J(Mk) (3.77)

A structure exhibiting these characteristics is said to be over-
damped.

Case 3.2 p2 = n2

From Equation (3.75), A-AJ (twice)
and hence,

y = e-«(Ai + A2t) (3.78)

Figure 3.27

This is termed critical damping and the critical damping
coefficient cc is the value of the damping coefficient at the
boundary between vibratory and nonvibratory motion. The
critical damping coefficient is a useful measure of the damping
capacity of a structure. The damping coefficient of a structure is
usually expressed as a percentage of the critical damping
coefficient.

Case 3.3 p2>n2

Here c < cc and the structure is underdamped.
From Equation (3.75), A= -n±ij(p2-n2)
Hence:

y = £>-%VV("2~"2)' + A2e-^2-n2)t)

or, putting:

(P2~n2) = q2

y = e-nt(A]e
it" + A2e-Ui')

or

y = e ~ "'(A cos qt + B sin qt) (3.80)

A typical displacement-time relationship for this condition is
shown in Figure 3.27(b).

An alternative form for Equation (3.80) is:

y = Ce ntsin(qt + fi) (3.81)

where C and /? are new arbitrary constants

~i • j rr, 2n 2nThe period T= — = —T71—( , .,.F q pj{l-(n/p)2}

The period is constant but the amplitude decreases with time.
The decay of amplitude is such that the ratio of amplitudes at
intervals equal to the period is constant, i.e.:

y(t) — gnT

y«+T>
and log e"T=nT=6

Again, no vibrations result and Equation (3.78) has the form
shown in Figure 3.27(a).

From Equation (3.73) the value of c for this condition is given
by:

cc = 2J(Mk) (3.79)



S is called the logarithmic decrement, and is a useful measure of
damping capacity.

The percentage critical damping

= 10(£Cc

-'«£

This is of the order of 4% for steel frames and 7% for concrete
frames.

Case 3.4 c = 0

In the absence of damping, Equation (3.70) becomes:

My + ky = 0 (3.82)

The solution of which is:

y = A]e*\' + A2e^t

where, from Equation (3.72):

A1 = ip

I2=-ip

Thus:

y = A sinpt + Bcospt (3.83)

The period is, T=-

where p is the natural circular frequency

The natural frequency is/= ~=y-

3.7.3 Multi-degree of freedom vibrations

Vibration analysis of systems with many degrees of freedom is a
complex subject and only a brief indication of one useful
method will be given here. For a more comprehensive and
detailed treatment, the reader should consult one of the stan-
dard texts.7

For a system represented by lumped masses, the governing
equations emerge as a set of simultaneous ordinary differential
equations equal in number to the number of degrees of freedom.
Mathematically the problem is of the eigenvalue or characteristic
value type and the solutions are the eigenvalues (frequencies) and
the eigenvectors (modal shapes). We shall consider the evalu-
ation of mode shapes and fundamental, undamped, frequencies
by the process of matrix iteration using the flexibility approach
(see page 3/6). The method to be described, leads automatically
to the lowest frequency, the fundamental, this being the one of
most interest from a practical point of view. The alternative
method using a stiffness matrix approach leads to the highest
frequency.

Consider the simply-supported, uniform cross-section beam
shown in Figure 3.28(a). The mass/unit length is w and we will
regard the total mass of the beam to be lumped at the quarter-
span points as shown in Figure 3.28(b), We may ignore the end

Figure 3.28

masses w//8 since they are not involved in the motion, and
consider the three masses

Af, = Af2 = Af3 = H>//4.

The appropriate flexibilities,/^ are shown at (c), (d) and (e).
Using the flexibility method previously described, we may

obtain a flexibility matrix as follows:

~/, fi2 /i3~l |~3.00 3.67 2.33 ~

F= /21 /22 /M =25M7 3'67 5'33 3'67 (3'84)

/3, /32 /33J L2'33 3'67 3-°°_

It should be noted that/j is the displacement of mass Af1 due to
unit force acting at mass M-. Thus, if the forces acting at the
positions of the lumped masses are F12>3 and the corresponding
displacements are 7,23, then:

>>,=/;, F1 -KTi2F2 +f}3F3]
J2-/2,*1,+/22*2+/23*3 (3-85)
^3=/;.*1.+/32*2+/33*3 J

For free, undamped vibrations, F1 is an inertia force= — Mty{.

Thus:

>>, +/,W, +/,2^2 +/,3^3 = O ]

^2 +/2 W, +/22^2*2 +/23^3* = O (3.86)

y, +/3,^, +/32^2 +/33^F3 = O j

The solutions take the form:

y, = S1 cos (pt + a) (3.87)

Hence:

y~~P2yt (3-88)

Moss w /unit length



Thus, Equations (3.86) become:

<5, -/,,M./72 <5, -/,2 ̂ 2^2-/,3 **3/>2 ^3 = 0

<*2 -/2,M,/>2 <5, -/22 ̂ 2^2 ~/23 ̂ 3 /^3 = 0 (3.89)

<53-/3,^,/>2 <*, -/32 M2^2-/33 M3/ <53 = O)

or:

A=/72FMA (3.90)

where:

"̂ 1"] FM, o o n

A= S2 • M= O M2 O
<53 I O O M3

The unknowns in Equation (3.90) are the displacement ampli-
tudes S{ and the frequency p\ p has as many values as there are
equations in the system, and for every value of p (eigenvalue)
there corresponds a set of y (eigenvector).

We adopt an iterative procedure for the solution of Equation
(3.90) and first of all rewrite the equations in the form:

FMA=^A (3.91)

We start with an assumed vector A0, thus:

FMA0=^A0

Putting FMA0 = A1

A1 ̂ 2 A0 giving p2^

We cannot form A0/A, since each A is a column matrix, so we
take the ratio of corresponding elements in A0 and A, and form
the ratio 6Jd1. It is best to use the numerically greatest 6 for this
purpose.

Continuing the process:

FMA1^2-A1 giving p2 = 6} /S2

= A2

and again:

FMA2=^A2

= A3 giving P2^=S2IS3

It can be shown that this iterative process converges to the
largest value of l/p2 and hence yields the lowest (fundamental
mode) frequency.

Applying the iterative scheme to the beam of Figure 3.28, and
assuming:

*••[?]

then, A1 = FMA0

/3 [3.00 3.67 2.33~j Pw//4 O O ~|
where FM = -~- 3.67 5.33 3.67 O w//4 O

Z^hI J^2 33 3 67 3 QOJ Jj) 0 w//4j

/4 |~3.00 3.67 2.33~
= ™ 3.67 5.33 3.67

W24L1 j^2 33 3 6? 3 0()̂

TH A "'4 [££l «-«™'["!-£lTh- A'-l^[!«$J-T^[j;£]

„ , 6a 2 x 1024£/
Hence: P^= 12 6?x , 42,,/4

= 114^
w/4

A second iteration gives:

,. T3.00 3.67 2.33"! ,.,, .. ~i.00~
A =FMA = Wl 3.67 5.33 3.67 12'67vv/ 1.42A> FMA' 1024*7 [233 367 3.Q0J 1024£/ [L00_

/ wi> v T
10-54]

= 12.67177̂ =-. 14.91Vio24£/y ^1054J

Hence:

2_^_12.67xl .42w/ 4
y 1

P2 S2 IQ24EI X 12.67(M'/4/1024£/)2x 14.91

= 975^w/4

This result is very close to that produced by an exact method,
i.e. 97.41£//w/4.

3.8 Plastic analysis

3.8.1 Introduction

The plastic design of structures is based on the concept of a load
factor (N), where

Collapse load _ Wc '
Working load ~W~W (3.92)

A structure is considered to be on the point of collapse when
finite deformation of at least part of the structure can occur
without change in the loads. The simple plastic theory is based
on an idealized stress-strain relationship for structural steel as
shown in Figure 3.29. A linear, elastic, relationship holds up to a
stress Gy, the yield stress, and at this value of stress the material is
considered to be in a state of perfect plasticity, capable of
infinite strain, represented by the horizontal line AB continued
indefinitely to the right. For comparison the dotted line shows
the true relationship.



The term 'plastic analysis' is generally related to steel struc-
tures for which the relationship indicated in Figure 3.29 is a
good approximation. The equivalent approach when dealing
with concrete structures is generally termed 'ultimate load
analysis' and requires considerable modification to the method
described here.

The stress-strain relationship of Figure 3.29 will now be
applied to a simple, rectangular section, beam subjected to an
applied bending moment M (Figure 3.30).

Under purely elastic conditions, line OA of Figure 3.29, the
stress distribution over the cross-section of the beam will be as
shown in Figure 3.30(b) and the limiting condition for elastic
behaviour will be reached when the maximum stress reaches the
value <7y. As the applied bending moment is further increased,
material within the depth of the section will be subjected to the
yield stress ay and a condition represented by Figure 3.30(c) will
exist in which part of the cross-section is plastic and part plastic.
On further increase of the applied bending moment ultimately
condition (d) will be reached in which the entire cross-section is
plastic. It will not be possible to increase the applied bending
moment further and any attempt to do so will result in increased
curvature, the beam behaving as if hinged at the plastic section.
Hence, the use of the term plastic hinge for a beam section which
has become fully plastic.

Figure 3.30

The moment of resistance of the fully plastic section is, from
Figure 3.30(d):

*, _ L<* d_bd2v
M*-b2a>2 4^

= Ze<7w (3.93)

where Zp = plastic section modulus

In contrast, the moment of resistance at working stress crw is,
from Figure 3.30(b):

*, -L <J°*2 j-bd2

M»-b2^3d—6*» (3.94)

= Ze<rw

where Ze = elastic section modulus

The ratio Zp/Ze is the shape factor of the cross-section. Thus the
shape factor for a rectangular cross-section is 1.5.

The shape factor for an !-section, depth d and flange width b,
is given approximately by:

/l+*/2\
\l+x/3j

where x = ^T-T and /w and tf are the web and flange thicknesses

respectively

Values of plastic section moduli for rolled universal sections are
given in steel section tables.

3.8.2 Theorems and principles

The definition of collapse, which follows from the assumed basic
stress-strain relationship of Figure 3.29, has already been given.
If the structural analysis is considered to be the problem of
obtaining a correct bending moment distribution at collapse,
then such a bending moment distribution must satisfy the
following three conditions:

(1) Equilibrium condition: the reactions and applied loads must
be in equilibrium.

(2) Mechanism condition: the structure, or part of it, must
develop sufficient plastic hinges to transform it into a
mechanism.

(3) Yield condition: at no point in the structure can the bending
moment exceed the full plastic moment of resistance.

In elastic analysis of structures where several loads are acting,
e.g. dead load, superimposed load and wind load, it is permiss-
ible to use the principle of superposition and obtain a solution
based on the addition of separate analyses for the different
loads. In plastic theory the principle of superposition is not
applicable and it must be assumed that all the loads bear a
constant ratio to one another. This type of loading is called
'proportional loading'. In cases where this assumption cannot
be made, a separate plastic analysis must be carried out for each
load system considered.

For cases of proportional loading, the uniqueness theorem
states that the collapse load factor Nc is uniquely determined if a
bending moment distribution can be found which satisfies the
three collapse conditions stated.

The collapse load factor Nc may be approached indirectly by
adopting a procedure which satisfies two of the conditions but
not necessarily the third. There are two approaches of this type:

(a) We may obtain a bending moment distribution which
satisfies the equilibrium and mechanism conditions, (1) and
(2); in these circumstances it can be shown that the load
factor obtained is either greater than or equal to the collapse
load factor Nc. This is the 'minimum principle' and a load
factor obtained by this approach constitutes an 'upper
bound' on the true value.

(b) We may obtain a bending moment distribution which
satisfies the equilibrium and yield conditions, (1) and (3),
and in these circumstances it can be shown that the load
factor obtained is either less than or equal to the collapse
load factor JVC. This is the 'maximum principle' and its
application produces a 'lower bound' on the true value.

It should be observed that whilst method (a) is simpler to use in
practice, it produces an apparent load factor which is either
correct or too high and thus an incorrect solution is on the
unsafe side. A most useful approach is to employ both principles

Figure 3.29



in turn and obtain upper and lower bounds which are suffi-
ciently close to form an acceptable practical solution.

3.8.3 Examples of plastic analysis

This section contains some examples of plastic analysis based on
the minimum principle. The method employed is termed the
'reactant bending moment diagram method'.

Example 3.5. The structure is a propped cantilever beam of
uniform cross-section, carrying a central load W, as shown in
Figure 3.31(a). The bending moment distribution under elastic
conditions is shown in Figure 3.3 l(b) and it should be noted that
the maximum bending moment occurs at the fixed end A.

As the load W is increased, plasticity will develop first at end
A. As the load is further increased, end A will eventually become
fully plastic with a stress distribution of the type shown in
Figure 3.30(d) and the bending moment at A, AfA, will equal Afp
the fully plastic moment of the beam. Further increase of load
will have no effect on the value of Af A but will increase Af8 until
it also reaches the value Afp. The resulting bending moment
distribution will now be as shown in Figure 3.31(c).

Figure 3.31

The geometry of the diagram produces a relationship between
the load at collapse, W^ and the plastic moment of resistance of
the beam Afp, as follows:

^-M, + M,/2

or:

W=(^*W* ^l (3.95)

If the working load is W^ then the load factor is given by:

JV--^
^w (3.96)

Example 3.6. This is again a propped cantilever but here the
load is uniformly distributed (Figure 3.32(a)). At collapse the
bending moment diagram will be as shown in Figure 3.32(b)
with plastic hinges at A and C. It should be noted that C is not
at the centre of the beam. The location of the plastic hinge at C

Figure 3.32

and the relationship between the load and the value of Afp may
be obtained by differentiation as follows.

AtC.

\t ( \JWlX \TWX2\ \*XM = ̂ —-N-^) -Mf-j

i.e.:

*- "T^ <w
<*MP_ wl{(l+ x)(l- 2x) - x(l-x)}
djc 2 (/+x)2

= OforM p m a x

Hence: jc2 + 2jc/-/2 = 0

i.e.:

JC = /(x/2-l) = 0.414/

which locates the point C.

Figure 3.33



Also, substituting in Equation (3.97) for x:

«,,^V2zl)(2-V2)

-(Uf)O-U*

-«•(*£)

Example 3.7. A two-span continuous beam is shown in Figure
3.33. The loads shown are maximum working loads and it is
required to determine a suitable universal beam (UB) section
such that N= 1.75 with a yield stress ay = 250 N/mm2. Effects of
lateral instability are ignored for the purposes of this example.

With factored loads, the free bending moments are:

1.75 x 30 x ̂  = 420 kNmO

1.75 x 30 x ̂ +1.75 x 40 x I = 252 kNm

For collapse to occur in span AB, Figure 3.33(b)

420 x 0.686 = Mp = 288 kNm

For collapse in BC, assuming the span hinge in BC to occur at
the centre (Figure 3.33(c)):

252 = ~Mp, Mp=168<288

Hence the beam must be designed for Mp = 288 kNm

-v,
Hence:

_ 288 x l O 6 , t , M ,
Zp = 250MO^Cm H52cm

From section tables, select 406 x 178 UB 60 (Zp = 1194cm3).
This design may be compared with elastic theory from which

we obtain Afmax= 198 kNm, Z6= 1200 cm3 (using <rw=165N/
mm2). A suitable section would be 457x152 UB 67
(Ze= 1250cm3) or, 406 x 178 UB 74 (Z6 = 1324cm3).

The plastic design may be improved by choosing different
sections for spans AB and BC:

For BC, MPBC = 168 giving Zp = i|j x I?! = 672 cm3

Select 356 x 171 UB 45 (Zp = 773.7 cm3)

For AB, MPAB = 420 - iMPBC

= 420- jx773-7 ̂ 250

= 420-96.7 = 323 kNm

•••Z
P =§xw=1293cm3

Select 406 x 178 UB 67.

The weights of steel used in the different designs may be
compared.

First plastic design 780 kg
Elastic design 871 kg
Second plastic design 761 kg

As an alternative to the second plastic design the lower value of
Mp could be used, based on collapse in BC (356 x 171 UB 45,
Zp= 773.7, Mp= 193 kNm), and flange plates welded on to the
beam in the region DE, Figure 3.33(c).

The additional Mp required at the plated section

= 420-|xl93
= 130 kNm

Using plates 150mm wide top and bottom, the plastic moment
of resistance of the plates is approximately:

2^150xrx250x^^ x lO- 6

= 13.4/

where / = plate thickness in millimetres

Hence:

t — -yr-7 —10 mm)

Example 3.8. Here we consider the plastic analysis of a portal
frame type structure as in Figure 3.34(a) and (b). At (a) the
frame has pinned supports and at (b) fixed supports. A simple
form of loading is used for illustration of the principles.

The frame is made statically determinate by the removal of
//A in both cases, and by the removal of MA and ME in case (b).
The 'free' bending moment diagram is then as in diagram (c)
and the reactant bending moment diagrams are as at (d) for //A
and at (e) for MA and ME combined. We now seek combinations
of the diagrams which will satisfy the conditions of equilibrium,
mechanism and yield (see page 3/27). We consider first the case
of the two-hinged frame.

Diagram (/)
This is consistent with a pure sideway mode of collapse. From
the geometry of the diagram:

Mp = f (3.98)

The yield condition will be satisfied providing:

vW Hh
T^ 2 (3.99)

Diagram (g)
This is a combined mechanism involving collapse of the beam
and sidesway. From the geometry of the diagram:

AtD:

M9 = HhT^HJi



Figure 3.34

AtC:

*>•¥-%***

Adding:

**-?+?

or:

M=™+™p 8 4 (3.100)

In the case of the frame with fixed feet, there are three possible

modes of collapse. The corresponding bending moment dia-
grams are constructed at (h), (j) and (k) and the results are as
follows:

Diagram (h):

M-H*hM,-^r
Mp = HH-HAh-Mf

Hence:

J-Ui
Mp = — (3.101)

Diagram (J):

., Wl Hh^11.M,=-f—T±H*h

Mp = Hh + HAh-Mp

Adding:

M(4-Wl+Hh
3A*P-^- + ̂

or:

^1T+T* (3J02)

Diagram (k)
This mode is the same as the collapse of a fixed end beam; the
columns are not involved in the collapse apart from providing
the resisting moment Mp at B and D. From the geometry of the
diagram:

^P = X (3*103)

Example 3.9. Here we consider a pitched roof frame, a struc-
ture which is eminently suitable for design by plastic methods.
The frame is shown in Figure 3.35(a). The given loads are
already factored and we are to find the required section modulus
on the basis of a yield-stress ay = 280 N/mm2, neglecting instabi-
lity tendencies and the reduction in plastic moment of resistance
due to axial forces.

The bending moment diagram at collapse is shown in Figure
3.35(b). The free bending moment diagram, EFGB, is drawn to
scale after evaluating values of moment at intervals along the
rafter members. The reactant line (#A diagram) is then drawn by
trial and error so that the maximum moment in the region BC is
equal to the moment at D. This moment is the required Mp for
the frame and is found to be:

A/p = 52kNm = (7yZp

from which:

_ 52x l0 3 xl0 3
 3

Z'= 280 x lO 3 =186cm

Home8 and Baker and Heyman9 should be consulted for a more



Figure 3.35

detailed study of plastic analysis. Among the topics deserving of
further study are:

(1) Use of the principle of virtual work in obtaining relation-
ships between applied loads and plastic moments of resis-
tance.

(2) Effects of strain hardening.
(3) Evaluation of shape factors for various cross-sections.
(4) Application of the maximum principle in obtaining lower

bounds.

(5) Numbers of independent mechanisms.
(6) Shakedown.
(7) Effects of axial forces.
(8) Moment carrying capacity of columns.
(9) Behaviour of welded connections.
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