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FOREWORD

Linear partial differential equations arise in various fields of science and numerous applications,
e.g., heat and mass transfer theory, wave theory, hydrodynamics, aerodynamics, elasticity, acous-
tics, electrostatics, electrodynamics, electrical engineering, diffraction theory, quantum mechanics,
control theory, chemical engineering sciences, and biomechanics.

This book presents brief statements and exact solutions of more than 2000 linear equations
and problems of mathematical physics. Nonstationary and stationary equations with constant and
variable coefficients of parabolic, hyperbolic, and elliptic types are considered. A number of new
solutions to linear equations and boundary value problems are described. Special attention is paid
to equations and problems of general form that depend on arbitrary functions. Formulas for the
effective construction of solutions to nonhomogeneousboundary value problems of various types are
given. We consider second-order and higher-order equations as well as the corresponding boundary
value problems. All in all, the handbook presents more equations and problems of mathematical
physics than any other book currently available.

For the reader’s convenience, the introduction outlines some definitions and basic equations,
problems, and methods of mathematical physics. It also gives useful formulas that enable one to
express solutions to stationary and nonstationary boundary value problems of general form in terms
of the Green’s function.

Two supplements are given at the end of the book. Supplement A lists properties of the most
common special functions (the gamma function, Bessel functions, degenerate hypergeometric func-
tions, Mathieu functions, etc.). Supplement B describes the methods of generalized and functional
separation of variables for nonlinear partial differential equations. We give specific examples and
an overview application of these methods to construct exact solutions for various classes of second-,
third-, fourth-, and higher-order equations (in total, about 150 nonlinear equations with solutions are
described). Special attention is paid to equations of heat and mass transfer theory, wave theory, and
hydrodynamics as well as to mathematical physics equations of general form that involve arbitrary
functions.

The equations in all chapters are in ascending order of complexity. Many sections can be read
independently, which facilitates working with the material. An extended table of contents will help
the reader find the desired equations and boundary value problems. We refer to specific equations
using notation like “1.8.5.2,” which means “Equation 2 in Subsection 1.8.5.”

To extend the range of potential readers with diverse mathematical backgrounds, the author
strove to avoid the use of special terminology wherever possible. For this reason, some results are
presented schematically, in a simplified manner (without details), which is however quite sufficient
in most applications.

Separate sections of the book can serve as a basis for practical courses and lectures on equations
of mathematical physics.

The author thanks Alexei Zhurov for useful remarks on the manuscript.
The author hopes that the handbook will be useful for a wide range of scientists, university

teachers, engineers, and students in various areas of mathematics, physics, mechanics, control, and
engineering sciences.

Andrei D. Polyanin
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BASIC NOTATION

Latin Characters� �
fundamental solution

Im[ � ] imaginary part of a complex quantity ��
Green’s function� � �

-dimensional Euclidean space,
� �

= {− � < � � < � ; 	 = 1, 
�
�
 , � }
Re[ � ] real part of a complex quantity �� ,  , � cylindrical coordinates, � = � � 2 + � 2 and � = � cos  , � = � sin � , � ,  spherical coordinates, � = � � 2 + � 2 + � 2 and � = � sin � cos  , � = sin � sin  , � = � cos ��

time (
� ≥ 0)� unknown function (dependent variable)� , � , � space (Cartesian) coordinates� 1, 
�
�
 , � � Cartesian coordinates in

�
-dimensional space

x
�

-dimensional vector, x = { � 1, 
�
�
 , � � }
|x| magnitude (length) of

�
-dimensional vector, |x| = � � 2

1 + � 2
2 + ����� + � 2�

y
�

-dimensional vector, y = { � 1, 
�
�
 , � � }

Greek Characters�
Laplace operator�

2 two-dimensional Laplace operator,
�

2 = � 2� � 2 + � 2� � 2�
3 three-dimensional Laplace operator,

�
3 = � 2� � 2 + � 2� � 2 + � 2� � 2� � �

-dimensional Laplace operator,
� � =

��� =1
� 2� � 2��

( � ) Dirac delta function; � �
− �

�
( � )

�
( � − � )  � =

�
( � ), where

�
( � ) is any continuous function,! > 0� � " Kronecker delta,

� � " = # 1 if
�

= $ ,
0 if

�
≠ $%

( � ) Heaviside unit step function,
%

( � ) = # 1 if � ≥ 0,
0 if � < 0

Brief Notation for Derivatives& ' � =
& �& � ,

& � � =
& �& � ,

& '(' � =
& 2 �& � 2 ,

& � � � =
& 2 �& � 2 (partial derivatives)

� )� =
 � � ,

� )*)� � =
 2 � � 2 ,

� )*)*)� � � =
 3 � � 3 ,

� ( � )� =
 � �
 � � (derivatives for

�
=

�
( � ))

Special Functions (See Also Supplement A)

Ai( � ) =
1+ � ,

0
cos - 1

3
� 3 + � �/.  � Airy function; Ai( � ) = 10 1 1

3 � 2 1 3 3 - 2
3 � 3 3 2 .

Ce2 � + 4 ( � , 5 ) = ,�� =0
� 2 � + 4

2 � + 4 cosh[(2 	 +6 ) � ] even modified Mathieu functions, where 6 = 0, 1;
Ce2 � + 4 ( � , 5 ) = ce2 � + 4 ( 78� , 5 )
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ce2 � ( � , 5 ) = ,�� =0
� 2 �

2 � cos 2 	 � even + -periodic Mathieu functions; these satisfy the
equation � )*) + ( ! − 2 5 cos 2 � ) � = 0, where ! = !

2 � ( 5 )
are eigenvalues

ce2 � +1( � , 5 ) = ,�� =0
� 2 � +1

2 � +1 cos[(2 	 +1) � ] even 2 + -periodic Mathieu functions; these satisfy the
equation � )*) + ( ! − 2 5 cos 2 � ) � = 0, where ! = !

2 � +1( 5 )
are eigenvalues9 :

=
9 :

( � ) parabolic cylinder function (see Paragraph 7.3.4-1); it
satisfies the equation � )*)

+ -8; + 1
2 − 1

4 � 2 . � = 0

erf � =
2< + � �

0
exp - − = 2 .  = error function

erfc � =
2< + � ,� exp - − = 2 .  = complementary error function

> � ( � ) = (−1)
� ? � 2  � � � - ? − � 2 .

Hermite polynomial> (1): ( � ) = @ : ( � ) + 7BA :
( � ) Hankel function of first kind, 7 2 = −1> (2): ( � ) = @ : ( � ) − 7BA :
( � ) Hankel function of second kind, 7 2 = −1C

( ! , D , E ; � ) = 1 + ,�� =1

( ! ) � ( D ) �
( E ) � � ��

!
hypergeometric function, ( ! ) � = ! ( ! + 1) 
�
�
 ( ! +

�
− 1)

F�:
( � ) = ,�� =0

( � G 2)
:

+2 ��
! H ( ; +

�
+ 1)

modified Bessel function of first kind

@ : ( � ) = ,�� =0

(−1)
�
( � G 2)

:
+2 ��

! H ( ; +
�

+ 1)
Bessel function of first kind

2 :
( � ) =

+
2

F
−
:
( � ) −

FI:
( � )

sin( + ; )
modified Bessel function of second kindJ K � ( � ) =

1�
!
� − K ? �  � � � -L� � + K ? − � . generalized Laguerre polynomialM � ( � ) =

1�
! 2 �  � � � ( � 2 − 1)

�
Legendre polynomialM "� ( � ) = (1 − � 2)

" 3 2  " � " M � ( � ) associated Legendre functions

Se2 � + 4 ( � , 5 ) = ,�� =0 N 2 � + 4
2 � + 4 sinh[(2 	 +6 ) � ] odd modified Mathieu functions, where 6 = 0, 1;

Se2 � + 4 ( � , 5 ) = − 7 se2 � + 4 ( 78� , 5 )

se2 � ( � , 5 ) = ,�� =0 N 2 �
2 � sin 2 	 � odd + -periodic Mathieu functions; these satisfy the

equation � )*) + ( ! − 2 5 cos 2 � ) � = 0, where ! = D 2 � ( 5 )
are eigenvalues

se2 � +1( � , 5 ) = ,�� =0 N 2 � +1
2 � +1 sin[(2 	 +1) � ] odd 2 + -periodic Mathieu functions; these satisfy the

equation � )*) + ( ! − 2 5 cos 2 � ) � = 0, where ! = D 2 � +1( 5 )
are eigenvalues

A :
( � ) =

@ : ( � ) cos( + ; ) − @ −
:
( � )

sin( + ; )
Bessel function of second kind

O ( P , � ) = � �
0

? − Q = R −1  = incomplete gamma function

H ( P ) = � ,
0

? − Q = R −1  = gamma functionS
( ! , D ; � ) = 1 + ,�� =1

( ! ) �
( D ) � � ��

!
degenerate hypergeometric function,
( ! ) � = ! ( ! + 1) 
�
�
 ( ! +

�
− 1)
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�
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�
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�
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�
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�
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�
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�
)

4.3. Equations Containing Power Functions and Arbitrary Parameters

4.3.1. Equations of the Form � 2 T� ' 2 = ( ! � + D ) � 2 T� � 2 + E � T� � + 	 � +
S

( � ,
�
)

4.3.2. Equations of the Form � 2 T� ' 2 = ( ! � 2 + D ) � 2 T� � 2 + Ec� � T� � + 	 � +
S

( � ,
�
)

4.3.3. Other Equations

4.4. Equations Containing the First Time Derivative
4.4.1. Equations of the Form � 2 T� ' 2 + 	 � T� ' = ! 2 � 2 T� � 2 + D � T� � + E � +

S
( � ,

�
)

4.4.2. Equations of the Form � 2 T� ' 2 + 	 � T� ' =
�

( � ) � 2 T� � 2 + W ( � ) � T� � + X ( � ) � +
S

( � ,
�
)

4.4.3. Other Equations
4.5. Equations Containing Arbitrary Functions

4.5.1. Equations of the Form Z ( � ) � 2 T� ' 2 = �� � [ 6 ( � ) � T� � \ − 5 ( � ) � +
S

( � ,
�
)

4.5.2. Equations of the Form � 2 T� ' 2 + ! (
�
) � T� ' = D ( � ) d �� � [ 6 ( � ) � T� � \ − 5 ( � ) � e +

S
( � ,

�
)

4.5.3. Other Equations

5. Hyperbolic Equations with Two Space Variables

5.1. Wave Equation � 2 T� ' 2 = ! 2 �
2
�

5.1.1. Problems in Cartesian Coordinates
5.1.2. Problems in Polar Coordinates
5.1.3. Axisymmetric Problems

5.2. Nonhomogeneous Wave Equation � 2 T� ' 2 = ! 2 �
2
� +

S
( � , � ,

�
)

5.2.1. Problems in Cartesian Coordinates
5.2.2. Problems in Polar Coordinates
5.2.3. Axisymmetric Problems

5.3. Equations of the Form � 2 T� ' 2 = ! 2 �
2
� − D � +

S
( � , � ,

�
)

5.3.1. Problems in Cartesian Coordinates
5.3.2. Problems in Polar Coordinates
5.3.3. Axisymmetric Problems
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5.4. Telegraph Equation � 2 T� ' 2 + 	 � T� ' = ! 2 �
2
� − D � +

S
( � , � ,

�
)

5.4.1. Problems in Cartesian Coordinates
5.4.2. Problems in Polar Coordinates
5.4.3. Axisymmetric Problems

5.5. Other Equations with Two Space Variables

6. Hyperbolic Equations with Three or More Space Variables

6.1. Wave Equation � 2 T� ' 2 = ! 2 �
3
�

6.1.1. Problems in Cartesian Coordinates
6.1.2. Problems in Cylindrical Coordinates
6.1.3. Problems in Spherical Coordinates

6.2. Nonhomogeneous Wave Equation � 2 T� ' 2 = ! 2 �
3
� +

S
( � , � , � ,

�
)

6.2.1. Problems in Cartesian Coordinates
6.2.2. Problems in Cylindrical Coordinates
6.2.3. Problems in Spherical Coordinates

6.3. Equations of the Form � 2 T� ' 2 = ! 2 �
3
� − D � +

S
( � , � , � ,

�
)

6.3.1. Problems in Cartesian Coordinates
6.3.2. Problems in Cylindrical Coordinates
6.3.3. Problems in Spherical Coordinates

6.4. Telegraph Equation � 2 T� ' 2 + 	 � T� ' = ! 2 �
3
� − D � +

S
( � , � , � ,

�
)

6.4.1. Problems in Cartesian Coordinates
6.4.2. Problems in Cylindrical Coordinates
6.4.3. Problems in Spherical Coordinates

6.5. Other Equations with Three Space Variables
6.5.1. Equations Containing Arbitrary Parameters
6.5.2. Equation of the Form b ( � , � , � ) � 2 T� ' 2 = div [ ! ( � , � , � )∇ � \ − 5 ( � , � , � ) � +

S
( � , � , � ,

�
)

6.6. Equations with
�

Space Variables
6.6.1. Wave Equation � 2 T� ' 2 = ! 2 � � �
6.6.2. Nonhomogeneous Wave Equation � 2 T� ' 2 = ! 2 � � � +

S
( � 1, 
�
�
 , � � ,

�
)

6.6.3. Equations of the Form � 2 T� ' 2 = ! 2 � � � − D � +
S

( � 1, 
�
�
 , � � ,
�
)

6.6.4. Equations Containing the First Time Derivative

7. Elliptic Equations with Two Space Variables
7.1. Laplace Equation

�
2
� = 0

7.1.1. Problems in Cartesian Coordinate System
7.1.2. Problems in Polar Coordinate System
7.1.3. Other Coordinate Systems. Conformal Mappings Method

7.2. Poisson Equation
�

2
� = −

S
(x)

7.2.1. Preliminary Remarks. Solution Structure
7.2.2. Problems in Cartesian Coordinate System
7.2.3. Problems in Polar Coordinate System
7.2.4. Arbitrary Shape Domain. Conformal Mappings Method

7.3. Helmholtz Equation
�

2
� + f � = −

S
(x)

7.3.1. General Remarks, Results, and Formulas
7.3.2. Problems in Cartesian Coordinate System
7.3.3. Problems in Polar Coordinate System
7.3.4. Other Orthogonal Coordinate Systems. Elliptic Domain
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7.4. Other Equations
7.4.1. Stationary Schrödinger Equation

�
2
� =

�
( � , � ) �

7.4.2. Convective Heat and Mass Transfer Equations
7.4.3. Equations of Heat and Mass Transfer in Anisotropic Media
7.4.4. Other Equations Arising in Applications
7.4.5. Equations of the Form ! ( � ) � 2 T� � 2 + � 2 T� � 2 + D ( � ) � T� � + E ( � ) � = −

S
( � , � )

8. Elliptic Equations with Three or More Space Variables
8.1. Laplace Equation

�
3
� = 0

8.1.1. Problems in Cartesian Coordinates
8.1.2. Problems in Cylindrical Coordinates
8.1.3. Problems in Spherical Coordinates
8.1.4. Other Orthogonal Curvilinear Systems of Coordinates

8.2. Poisson Equation
�

3
� +

S
(x) = 0

8.2.1. Preliminary Remarks. Solution Structure
8.2.2. Problems in Cartesian Coordinates
8.2.3. Problems in Cylindrical Coordinates
8.2.4. Problems in Spherical Coordinates

8.3. Helmholtz Equation
�

3
� + f � = −

S
(x)

8.3.1. General Remarks, Results, and Formulas
8.3.2. Problems in Cartesian Coordinates
8.3.3. Problems in Cylindrical Coordinates
8.3.4. Problems in Spherical Coordinates
8.3.5. Other Orthogonal Curvilinear Coordinates

8.4. Other Equations with Three Space Variables
8.4.1. Equations Containing Arbitrary Functions
8.4.2. Equations of the Form div [ ! ( � , � , � )∇ � ] − 5 ( � , � , � ) � = −

S
( � , � , � )

8.5. Equations with
�

Space Variables
8.5.1. Laplace Equation

� � � = 0
8.5.2. Other Equations

9. Higher-Order Partial Differential Equations
9.1. Third-Order Partial Differential Equations
9.2. Fourth-Order One-Dimensional Nonstationary Equations

9.2.1. Equations of the Form � T� ' + ! 2 � 4 T� � 4 =
S

( � ,
�
)

9.2.2. Equations of the Form � 2 T� ' 2 + ! 2 � 4 T� � 4 = 0
9.2.3. Equations of the Form � 2 T� ' 2 + ! 2 � 4 T� � 4 =

S
( � ,

�
)

9.2.4. Equations of the Form � 2 T� ' 2 + ! 2 � 4 T� � 4 + 	 � =
S

( � ,
�
)

9.2.5. Other Equations
9.3. Two-Dimensional Nonstationary Fourth-Order Equations

9.3.1. Equations of the Form � T� ' + ! 2 - � 4 T� � 4 + � 4 T� � 4
. =

S
( � , � ,

�
)

9.3.2. Two-Dimensional Equations of the Form � 2 T� ' 2 + ! 2 � � � = 0
9.3.3. Three- and

�
-Dimensional Equations of the Form � 2 T� ' 2 + ! 2 � � � = 0

9.3.4. Equations of the Form � 2 T� ' 2 + ! 2 � � � + 	 � =
S

( � , � ,
�
)

9.3.5. Equations of the Form � 2 T� ' 2 + ! 2 - � 4 T� � 4 + � 4 T� � 4
. + 	 � =

S
( � , � ,

�
)

9.4. Fourth-Order Stationary Equations
9.4.1. Biharmonic Equation

� � � = 0
9.4.2. Equations of the Form

� � � =
S

( � , � )
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9.4.3. Equations of the Form
� � � − f � =

S
( � , � )

9.4.4. Equations of the Form � 4 T� � 4 + � 4 T� � 4 =
S

( � , � )

9.4.5. Equations of the Form � 4 T� � 4 + � 4 T� � 4 + 	 � =
S

( � , � )
9.4.6. Stokes Equation (Axisymmetric Flows of Viscous Fluids)

9.5. Higher-Order Linear Equations with Constant Coefficients
9.5.1. Fundamental Solutions. Cauchy Problem
9.5.2. Elliptic Equations
9.5.3. Hyperbolic Equations
9.5.4. Regular Equations. Number of Initial Conditions in the Cauchy Problem
9.5.5. Some Special-Type Equations

9.6. Higher-Order Linear Equations with Variable Coefficients
9.6.1. Equations Containing the First Time Derivative
9.6.2. Equations Containing the Second Time Derivative
9.6.3. Nonstationary Problems with Many Space Variables
9.6.4. Some Special-Type Equations

Supplement A. Special Functions and Their Properties
A.1. Some Symbols and Coefficients

A.1.1. Factorials
A.1.2. Binomial Coefficients
A.1.3. Pochhammer Symbol
A.1.4. Bernoulli Numbers

A.2. Error Functions and Exponential Integral
A.2.1. Error Function and Complementary Error Function
A.2.2. Exponential Integral
A.2.3. Logarithmic Integral

A.3. Sine Integral and Cosine Integral. Fresnel Integrals
A.3.1. Sine Integral
A.3.2. Cosine Integral
A.3.3. Fresnel Integrals

A.4. Gamma and Beta Functions
A.4.1. Gamma Function
A.4.2. Beta Function

A.5. Incomplete Gamma and Beta Functions
A.5.1. Incomplete Gamma Function
A.5.2. Incomplete Beta Function

A.6. Bessel Functions
A.6.1. Definitions and Basic Formulas
A.6.2. Integral Representations and Asymptotic Expansions
A.6.3. Zeros and Orthogonality Properties of Bessel Functions
A.6.4. Hankel Functions (Bessel Functions of the Third Kind)

A.7. Modified Bessel Functions
A.7.1. Definitions. Basic Formulas
A.7.2. Integral Representations and Asymptotic Expansions

A.8. Airy Functions
A.8.1. Definition and Basic Formulas
A.8.2. Power Series and Asymptotic Expansions
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A.9. Degenerate Hypergeometric Functions
A.9.1. Definitions and Basic Formulas
A.9.2. Integral Representations and Asymptotic Expansions

A.10. Hypergeometric Functions
A.10.1. Definition and Some Formulas
A.10.2. Basic Properties and Integral Representations

A.11. Whittaker Functions
A.12. Legendre Polynomials and Legendre Functions

A.12.1. Definitions. Basic Formulas
A.12.2. Zeros of Legendre Polynomials and the Generating Function
A.12.3. Associated Legendre Functions
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Supplement B. Methods of Generalized and Functional Separation of Variables in
Nonlinear Equations of Mathematical Physics
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B.2.1. Structure of Generalized Separable Solutions
B.2.2. Solution of Functional Differential Equations by Differentiation
B.2.3. Solution of Functional Differential Equations by Splitting
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B.3.2. Special Functional Separable Solutions
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B.3.4. Splitting Method. Reduction to a Functional Equation with Two Variables
B.3.5. Some Functional Equations and Their Solutions. Exact Solutions of Heat and

Wave Equations
B.4. First-Order Nonlinear Equations

B.4.1. Preliminary Remarks
B.4.2. Individual Equations

B.5. Second-Order Nonlinear Equations
B.5.1. Parabolic Equations
B.5.2. Hyperbolic Equations
B.5.3. Elliptic Equations
B.5.4. Equations Containing Mixed Derivatives

Page xvi



B.5.5. General Form Equations
B.6. Third-Order Nonlinear Equations
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B.8. Higher-Order Nonlinear Equations
B.8.1. Equations of the Form � T� ' =

C -L� ,
�
, � , � T� � , 
�
�
 , � g T� � g .

B.8.2. Equations of the Form � 2 T� ' 2 =
C -L� ,

�
, � , � T� � , 
�
�
 , � g T� � g .
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