
Chapter 8
Probability Density Estimation

8.1 Introduction

We discussed several techniques for graphical exploratory data analysis in
Chapter 5. One purpose of these exploratory techniques is to obtain informa-
tion and insights about the distribution of the underlying population. For
instance, we would like to know if the distribution is multi-modal, skewed,
symmetric, etc. Another way to gain understanding about the distribution of
the data is to estimate the probability density function from the random sam-
ple, possibly using a nonparametric probability density estimation tech-
nique.

Estimating probability density functions is required in many areas of com-
putational statistics. One of these is in the modeling and simulation of phys-
ical phenomena. We often have measurements from our process, and we
would like to use those measurements to determine the probability distribu-
tion so we can generate random variables for a Monte Carlo simulation
(Chapter 6). Another application where probability density estimation is
used is in statistical pattern recognition (Chapter 9). In supervised learning,
which is one approach to pattern recognition, we have measurements where
each one is labeled with a class membership tag. We could use the measure-
ments for each class to estimate the class-conditional probability density
functions, which are then used in a Bayesian classifier. In other applications,
we might need to determine the probability that a random variable will fall
within some interval, so we would need to evaluate the cumulative distribu-
tion function. If we have an estimate of the probability density function, then
we can easily estimate the required probability by integrating under the esti-
mated curve. Finally, in Chapter 10, we show how to use density estimation
techniques for nonparametric regression.

In this chapter, we cover semi-parametric and nonparametric techniques
for probability density estimation. By these, we mean techniques where we
make few or no assumptions about what functional form the probability den-
sity takes. This is in contrast to a parametric method, where the density is
estimated by assuming a distribution and then estimating the parameters.

© 2002 by Chapman & Hall/CRC

260 Computational Statistics Handbook with MATLAB

We present three main methods of semi-parametric and nonparametric den-
sity estimation and their variants: histograms, kernel density estimates, and
finite mixtures.

In the remainder of this section, we cover some ways to measure the error
in functions as background to what follows. Then, in Section 8.2, we present
various histogram based methods for probability density estimation. There
we cover optimal bin widths for univariate and multivariate histograms, the
frequency polygons, and averaged shifted histograms. Section 8.3 contains a
discussion of kernel density estimation, both univariate and multivariate. In
Section 8.4, we describe methods that model the probability density as a finite
(less than n) sum of component densities. As usual, we conclude with
descriptions of available MATLAB code and references to the topics covered
in the chapter.

Before we can describe the various density estimation methods, we need to
provide a little background on measuring the error in functions. We briefly
present two ways to measure the error between the true function and the esti-
mate of the function. These are called the mean integrated squared error
(MISE) and the mean integrated absolute error (MIAE). Much of the under-
lying theory for choosing optimal parameters for probability density estima-
tion is based on these concepts.

We start off by describing the mean squared error at a given point in the
domain of the function. We can find the mean squared error (MSE) of the esti-
mate at a point x from the following

. (8.1)

Alternatively, we can determine the error over the domain for x by integrat-
ing. This gives us the integrated squared error (ISE):

. (8.2)

The ISE is a random variable that depends on the true function , the
estimator , and the particular random sample that was used to obtain the
estimate. Therefore, it makes sense to look at the expected value of the ISE or
mean integrated squared error, which is given by

. (8.3)

To obtain the mean integrated absolute error, we simply replace the inte-
grand with the absolute difference between the estimate and the true func-
tion. Thus, we have

f̂ x()

MSE f̂ x()[] E f̂ x() f x()–()2[]=

ISE = f̂ x() f x()–()
2

xd∫

f x()
f̂ x()

MISE =E f̂ x() f x()–()
2

xd∫

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 261

. (8.4)

These concepts are easily extended to the multivariate case.

8.2 Histograms

Histograms were introduced in Chapter 5 as a graphical way of summarizing
or describing a data set. A histogram visually conveys how a data set is dis-
tributed, reveals modes and bumps, and provides information about relative
frequencies of observations. Histograms are easy to create and are computa-
tionally feasible. Thus, they are well suited for summarizing large data sets.
We revisit histograms here and examine optimal bin widths and where to
start the bins. We also offer several extensions of the histogram, such as the
frequency polygon and the averaged shifted histogram.

1111----D HistogD HistogD HistogD Histogrrrraaaammmmssss

Most introductory statistics textbooks expose students to the frequency his-
togram and the relative frequency histogram. The problem with these is that
the total area represented by the bins does not sum to 1. Thus, these are not
valid probability density estimates. The reader is referred to Chapter 5 for
more information on this and an example illustrating the difference between
a frequency histogram and a density histogram. Since our goal is to estimate
a bona fide probability density, we want to have a function that is nonne-
gative and satisfies the constraint that

. (8.5)

The histogram is calculated using a random sample . The ana-
lyst must choose an origin for the bins and a bin width h. These two param-
eters define the mesh over which the histogram is constructed. In what
follows, we will see that it is the bin width that determines the smoothness of
the histogram. Small values of h produce histograms with a lot of variation,
while larger bin widths yield smoother histograms. This phenomenon is
illustrated in Figure 8.1, where we show histograms with different bin
widths. For this reason, the bin width h is sometimes referred to as the
smoothing parameter.

Let denote the k-th bin, where , for all k. We rep-
resent the number of observations that fall into the k-th bin by . The 1-D
histogram at a point x is defined as

MIAE =E f̂ x() f x()– xd∫

f̂ x()

f̂ x() xd∫ 1=

X1 X2 … Xn, , ,
t0

Bk [tk tk 1+),= tk 1+ tk– h=
νk

© 2002 by Chapman & Hall/CRC

262 Computational Statistics Handbook with MATLAB

, (8.6)

where is the indicator function

This means that if we need to estimate the value of the probability density for
a given x, then we obtain the value by taking the number of observa-
tions in the data set that fall into the same bin as x and multiplying by

.

FFFFIIIIGUGUGUGURE 8.RE 8.RE 8.RE 8.1111

These are histograms for normally distributed random variables. Notice that for the larger
bin widths, we have only one bump as expected. As the smoothing parameter gets smaller,
the histogram displays more variation and spurious bumps appear in the histogram esti-
mate.

−2 0 2
0

0.2

0.4

h = 1.1

−2 0 2
0

0.2

0.4

h = 0.53

−2 0 2
0

0.2

0.4

h = 0.36

−2 0 2
0

0.2

0.4

h = 0.27

f̂Hist x() vk

nh

1
nh
------ IBk

Xi();

i 1=

n

∑= = x in Bk

IBk
Xi()

IBk
Xi()

1 Xi in Bk,
0 Xi not in Bk.,




=

f̂Hist x()

1 nh()⁄

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 263

Example 8.1
In this example, we illustrate MATLAB code that calculates the estimated
value for a given x. We first generate random variables from a stan-
dard normal distribution.

n = 1000;
x = randn(n,1);

We then compute the histogram using MATLAB’s hist function, using the
default value of 10 bins. The issue of the bin width (or alternatively the num-
ber of bins) will be addressed shortly.

% Get the histogram-default is 10 bins.
[vk,bc] = hist(x);
% Get the bin width.
h = bc(2)- bc(1);

We can now obtain our histogram estimate at a point using the following
code. Note that we have to adjust the output from hist to ensure that our
estimate is a bona fide density. Let’s get the estimate of our function at a point

% Now return an estimate at a point xo.
xo = 0;
% Find all of the bin centers less than xo.
ind = find(bc < xo);
% xo should be between these two bin centers.
b1 = bc(ind(end));
b2 = bc(ind(end)+1);
% Put it in the closer bin.
if (xo-b1) < (b2-xo) % then put it in the 1st bin
 fhat = vk(ind(end))/(n*h);
else
 fhat = vk(ind(end)+1)/(n*h);
end

Our result is fhat = 0.3477. The true value for the standard normal eval-
uated at 0 is , so we see that our estimate is close, but not
equal to the true value.
�

We now look at how we can choose the bin width h. Using some assump-
tions, Scott [1992] provides the following upper bound for the MSE
(Equation 8.1) of :

, (8.7)

where

f̂Hist x()

x0 0.=

1 2π⁄ 0.3989=

f̂Hist x()

MSE f̂Hist x()() f ξk()
nh

----------- γk
2h2;+≤ x in Bk

© 2002 by Chapman & Hall/CRC

264 Computational Statistics Handbook with MATLAB

 . (8.8)

This is based on the assumption that the probability density function is
Lipschitz continuous over the bin interval . A function is Lipschitz contin-
uous if there is a positive constant such that

. (8.9)

The first term in Equation 8.7 is an upper bound for the variance of the den-
sity estimate, and the second term is an upper bound for the squared bias of
the density estimate. This upper bound shows what happens to the density
estimate when the bin width h is varied.

 We can try to minimize the MSE by varying the bin width h. We could set
h very small to reduce the bias, but this also increases the variance. The
increased variance in our density estimate is evident in Figure 8.1, where we
see more spikes as the bin width gets smaller. Equation 8.7 shows a common
problem in some density estimation methods: the trade-off between variance
and bias as h is changed. Most of the optimal bin widths presented here are
obtained by trying to minimize the squared error.

A rule for bin width selection that is often presented in introductory statis-
tics texts is called Sturges’ Rule. In reality, it is a rule that provides the number
of bins in the histogram, and is given by the following formula.

STURGES’ RULE (HISTOGRAM)

 .

Here k is the number of bins. The bin width h is obtained by taking the range
of the sample data and dividing it into the requisite number of bins, k.

Some improved values for the bin width h can be obtained by assuming the
existence of two derivatives of the probability density function . We
include the following results (without proof), because they are the basis for
many of the univariate bin width rules presented in this chapter. The inter-
ested reader is referred to Scott [1992] for more details. Most of what we
present here follows his treatment of the subject.

Equation 8.7 provides a measure of the squared error at a point x. If we
want to measure the error in our estimate for the entire function, then we can
integrate over all values of x. Let’s assume has an absolutely continuous
and a square-integrable first derivative. If we let n get very large ,
then the asymptotic MISE is

hf ξk() f t() td
Bk

∫ ;= for some ξk in Bk

f x()
Bk

γk

f x() f y()– γk x y– ;< for all x y, in Bk

k 1 log2+ n=

f x()

f x()
n ∞→()

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 265

, (8.10)

where is used as a measure of the roughness of the function,
and is the first derivative of . The first term of Equation 8.10 indicates
the asymptotic integrated variance, and the second term refers to the asymp-
totic integrated squared bias. These are obtained as approximations to the
integrated squared bias and integrated variance [Scott, 1992]. Note, however,
that the form of Equation 8.10 is similar to the upper bound for the MSE in
Equation 8.7 and indicates the same trade-off between bias and variance, as
the smoothing parameter h changes.

The optimal bin width for the histogram is obtained by minimizing
the AMISE (Equation 8.10), so it is the h that yields the smallest MISE as n gets
large. This is given by

. (8.11)

For the case of data that is normally distributed, we have a roughness of

.

Using this in Equation 8.11, we obtain the following expression for the opti-
mal bin width for normal data.

NORMAL REFERENCE RULE - 1-D HISTOGRAM

. (8.12)

Scott [1979, 1992] proposed the sample standard deviation as an estimate of
 in Equation 8.12 to get the following bin width rule.

SCOTT’S RULE

.

A robust rule was developed by Freedman and Diaconis [1981]. This uses the
interquartile range (IQR) instead of the sample standard deviation.

AMISEHist h() 1
nh

1
12
------h2R f ′()+=

R g() g2 x() xd∫≡
f ′ f x()

hHist
*

hHist
* 6

nR f ′()

 
 

1 3⁄

=

R f ′() 1

4σ3 π
----------------=

hHist
* 24σ3 π

n

 
 
 

1 3⁄

= 3.5σn 1 3⁄–≈

σ

ĥHist
*

3.5 s n 1 3⁄–××=

© 2002 by Chapman & Hall/CRC

266 Computational Statistics Handbook with MATLAB

FREEDMAN-DIACONIS RULE

.

It turns out that when the data are skewed or heavy-tailed, the bin widths
are too large using the Normal Reference Rule. Scott [1979, 1992] derived the
following correction factor for skewed data:

. (8.13)

The bin width obtained from Equation 8.12 should be multiplied by this fac-
tor when there is evidence that the data come from a skewed distribution. A
factor for heavy-tailed distributions can be found in Scott [1992]. If one sus-
pects the data come from a skewed or heavy-tailed distribution, as indicated
by calculating the corresponding sample statistics (Chapter 3) or by graphical
exploratory data analysis (Chapter 5), then the Normal Reference Rule bin
widths should be multiplied by these factors. Scott [1992] shows that the
modification to the bin widths is greater for skewness and is not so critical for
kurtosis.

Example 8.2
Data representing the waiting times (in minutes) between eruptions of the
Old Faithful geyser at Yellowstone National Park were collected [Hand, et al,
1994]. These data are contained in the file geyser. In this example, we use an
alternative MATLAB function (available in the standard MATLAB package)
for finding a histogram, called histc. This takes the bin edges as one of the
arguments. This is in contrast to the hist function that takes the bin centers
as an optional argument. The following MATLAB code will construct a his-
togram density estimate for the Old Faithful geyser data.

load geyser
n = length(geyser);
% Use Normal Reference Rule for bin width.
h = 3.5*std(geyser)*n^(-1/3);
% Get the bin mesh.
t0 = min(geyser)-1;
tm = max(geyser)+1;
rng = tm - t0;
nbin = ceil(rng/h);
bins = t0:h:(nbin*h + t0);
% Get the bin counts vk.
vk = histc(geyser,bins);
% Normalize to make it a bona fide density.

ĥHist
*

2 IQR n 1 3⁄–××=

skewness factor Hist
21 3⁄ σ

e5σ2
4⁄ σ2 2+()1 3⁄

eσ2

1–()
1 2⁄

--=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 267

% We do not need the last count in fhat.
fhat(end) = [];
fhat = vk/(n*h);

We have to use the following to create a plot of our histogram density. The
MATLAB bar function takes the bin centers as the argument, so we convert
our mesh to bin centers before plotting. The plot is shown in Figure 8.2, and
the existence of two modes is apparent.

% To plot this, use bar with the bin centers.
tm = max(bins);
bc = (t0+h/2):h:(tm-h/2);
bar(bc,fhat,1,’w’)

�

MultMultMultMultiiiivvvvarararariiiiaaaatttteeee HHHHiiiissssttttooooggggrrrraaaammmmssss

Given a data set that contains d-dimensional observations , we would like
to estimate the probability density . We can extend the univariate histo-
gram to d dimensions in a straightforward way. We first partition the d-
dimensional space into hyper-rectangles of size . We denote

FFFFIIIIGUGUGUGURE 8.RE 8.RE 8.RE 8.2222

Histogram of Old Faithful geyser data. Here we are using Scott’s Rule for the bin widths.

40 50 60 70 80 90 100 110 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Waiting Times (minutes)

P
ro

ba
bi

lit
y

Old Faithful − Waiting Time Between Eruptions

Xi

f̂ x()

h1 h2 … hd×××

© 2002 by Chapman & Hall/CRC

268 Computational Statistics Handbook with MATLAB

the k-th bin by and the number of observations falling into that bin by ,
with . The multivariate histogram is then defined as

. (8.14)

If we need an estimate of the probability density at x, we first determine the
bin that the observation falls into. The estimate of the probability density
would be given by the number of observations falling into that same bin
divided by the sample size and the bin widths of the partitions. The MATLAB
code to create a bivariate histogram was given in Chapter 5. This could be
easily extended to the general multivariate case.

For a density function that is sufficiently smooth [Scott, 1992], we can write
the asymptotic MISE for a multivariate histogram as

, (8.15)

where As before, the first term indicates the asymptotic inte-
grated variance and the second term provides the asymptotic integrated
squared bias. This has the same general form as the 1-D histogram and shows
the same bias-variance trade-off. Minimizing Equation 8.15 with respect to
provides the following equation for optimal bin widths in the multivariate
case

, (8.16)

where

.

We can get a multivariate Normal Reference Rule by looking at the special
case where the data are distributed as multivariate normal with the covari-
ance equal to a diagonal matrix with along the diagonal. The Nor-
mal Reference Rule in the multivariate case is given below [Scott, 1992].

Bk νk

νk∑ n=

f̂Hist x()
νk

nh1h2…hd

--------------------------;= x in Bk

AMISEHist h() 1
nh1h2…hd

1
12
------ hj

2R fj()
j 1=

d

∑+=

h h1 … hd, ,().=

hi

hiHist

* R fi() 1 2⁄– 6 R fj()1 2⁄

j 1=

d

∏ 
 
 

1
2 d+

n
1–

2 d+

=

R fi()
xi∂
∂ f x()

 
 
 

2

xd

ℜd

∫=

σ1
2 … σd

2, ,

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 269

NORMAL REFERENCE RULE - MULTIVARIATE HISTOGRAMS

.

Notice that this reduces to the same univariate Normal Reference Rule when
d = 1. As before, we can use a suitable estimate for .

FFFFrrrreeeequenquenquenquenccccy Polygonsy Polygonsy Polygonsy Polygons

Another method for estimating probability density functions is to use a fre-
quency polygon. A univariate frequency polygon approximates the density
by linearly interpolating between the bin midpoints of a histogram with
equal bin widths. Because of this, the frequency polygon extends beyond the
histogram to empty bins at both ends.

The univariate probability density estimate using the frequency polygon is
obtained from the following,

, (8.17)

where and are adjacent univariate histogram values and is the cen-
ter of bin . An example of a section of a frequency polygon is shown in Fig-
ure 8.3.

As is the case with the univariate histogram, under certain assumptions,
we can write the asymptotic MISE as [Scott, 1992, 1985],

, (8.18)

where is the second derivative of . The optimal bin width that mini-
mizes the AMISE for the frequency polygon is given by

. (8.19)

If is the probability density function for the standard normal, then
. Substituting this in Equation 8.19, we obtain the follow-

ing Normal Reference Rule for a frequency polygon.

hiHist

* 3.5σ in
1–

2 d+

≈ ; i 1 … d, ,=

σi

f̂FP x() 1
2
--- x

h
---– 

  f̂ k
1
2
--- x

h
---+ 

  f̂k 1++= ; Bk x Bk 1+≤ ≤

f̂k f̂k 1+ Bk

Bk

AMISEFP h() 2
3nh

49
2880
------------h4R f ″()+=

f ″ f x()

hFP
* 2

15
49nR f ″()

 
 
 

1 5⁄

=

f x()
R f ″() 3 8 πσ5()⁄=

© 2002 by Chapman & Hall/CRC

270 Computational Statistics Handbook with MATLAB

NORMAL REFERENCE RULE - FREQUENCY POLYGON

.

We can use the sample standard deviation in this rule as an estimate of σ or
choose a robust estimate based on the interquartile range. If we choose the
IQR and use , then we obtain a bin width of

.

As for the case of histograms, Scott [1992] provides a skewness factor for
frequency polygons, given by

. (8.20)

If there is evidence that the data come from a skewed distribution, then the
bin width should be multiplied by this factor. The kurtosis factor for fre-
quency polygons can be found in Scott [1992].

FFFFIIIIGUGUGUGURE 8.RE 8.RE 8.RE 8.3333

The frequency polygon is obtained by connecting the center of adjacent bins using straight
lines. This figure illustrates a section of the frequency polygon.

0

0.05

0.1

0.15

0.2

0.25

B
k

B
k+1

hFP
* 2.15σn 1 5⁄–=

σ̂ IQR 1.348⁄=

ĥFP
*

1.59 IQR× n 1 5⁄–×=

skewness factorFP
121 5⁄ σ

e7σ2
4⁄ eσ2

1–()
1 2⁄

9σ4 20σ2 12+ +()1 5⁄
---=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 271

Example 8.3
Here we show how to create a frequency polygon using the Old Faithful
geyser data. We must first create the histogram from the data, where we use
the frequency polygon Normal Reference Rule to choose the smoothing
parameter.

load geyser
n = length(geyser);
% Use Normal Reference Rule for bin width
% of frequency polygon.
h = 2.15*sqrt(var(geyser))*n^(-1/5);
t0 = min(geyser)-1;
tm = max(geyser)+1;
bins = t0:h:tm;
vk = histc(geyser,bins);
vk(end) = [];
fhat = vk/(n*h);

We then use the MATLAB function called interp1 to interpolate between
the bin centers. This function takes three arguments (and an optional fourth
argument). The first two arguments to interp1 are the xdata and ydata
vectors that contain the observed data. In our case, these are the bin centers
and the bin heights from the density histogram. The third argument is a vec-
tor of xinterp values for which we would like to obtain interpolated
yinterp values. There is an optional fourth argument that allows the user
to select the type of interpolation (linear, cubic, nearest and spline).
The default is linear, which is what we need for the frequency polygon. The
following code constructs the frequency polygon for the geyser data.

% For frequency polygon, get the bin centers,
% with empty bin center on each end.
bc2 = (t0-h/2):h:(tm+h/2);
binh = [0 fhat 0];
% Use linear interpolation between bin centers
% Get the interpolated values at x.
xinterp = linspace(min(bc2),max(bc2));
fp = interp1(bc2, binh, xinterp);

To see how this looks, we can plot the frequency polygon and underlying his-
togram, which is shown in Figure 8.4.

% To plot this, use bar with the bin centers
tm = max(bins);
bc = (t0+h/2):h:(tm-h/2);
bar(bc,fhat,1,'w')
hold on
plot(xinterp,fp)
hold off

© 2002 by Chapman & Hall/CRC

272 Computational Statistics Handbook with MATLAB

axis([30 120 0 0.035])
xlabel('Waiting Time (minutes)')
ylabel('Probability Density Function')
title('Old Faithful-Waiting Times Between Eruptions')

To ensure that we have a valid probability density function, we can verify
that the area under the curve is approximately one by using the trapz func-
tion.

area = trapz(xinterp,fp);

We get an approximate area under the curve of 0.9998, indicating that the fre-
quency polygon is indeed a bona fide density estimate.
�

The frequency polygon can be extended to the multivariate case. The inter-
ested reader is referred to Scott [1985, 1992] for more details on the multivari-
ate frequency polygon. He proposes an approximate Normal Reference Rule
for the multivariate frequency polygon given by the following formula.

FFFFIIIIGUGUGUGURE 8.4RE 8.4RE 8.4RE 8.4

Frequency polygon for the Old Faithful data.

30 40 50 60 70 80 90 100 110 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Waiting Time (minutes)

P
ro

ba
bi

lit
y

Old Faithful − Waiting Times Between Eruptions

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 273

NORMAL REFERENCE RULE - FREQUENCY POLYGON (MULTIVARIATE)

,

where a suitable estimate for can be used. This is derived using the
assumption that the true probability density function is multivariate normal
with covariance equal to the identity matrix. The following example illus-
trates the procedure for obtaining a bivariate frequency polygon in MATLAB.

Example 8.4
We first generate some random variables that are bivariate standard normal
and then calculate the surface heights corresponding to the linear interpola-
tion between the histogram density bin heights.

% First get the constants.
bin0 = [-4 -4];
n = 1000;
% Normal Reference Rule with sigma = 1.
h = 3*n^(-1/4)*ones(1,2);
% Generate bivariate standard normal variables.
x = randn(n,2);
% Find the number of bins.
nb1 = ceil((max(x(:,1))-bin0(1))/h(1));
nb2 = ceil((max(x(:,2))-bin0(2))/h(2));
% Find the mesh or bin edges.
t1 = bin0(1):h(1):(nb1*h(1)+bin0(1));
t2 = bin0(2):h(2):(nb2*h(2)+bin0(2));
[X,Y] = meshgrid(t1,t2);

Now that we have the random variables and the bin edges, the next step is to
find the number of observations that fall into each bin. This is easily done
with the MATLAB function inpolygon. This function can be used with any
polygon (e.g., triangle or hexagon), and it returns the indices to the points
that fall into that polygon.

% Find bin frequencies.
[nr,nc] = size(X);
vu = zeros(nr-1,nc-1);
for i = 1:(nr-1)
for j = 1:(nc-1)

xv = [X(i,j) X(i,j+1) X(i+1,j+1) X(i+1,j)];
yv = [Y(i,j) Y(i,j+1) Y(i+1,j+1) Y(i+1,j)];
in = inpolygon(x(:,1),x(:,2),xv,yv);
vu(i,j) = sum(in(:));

end
end

hi
* 2σ in

1 4 d+()⁄–=

σ i

© 2002 by Chapman & Hall/CRC

274 Computational Statistics Handbook with MATLAB

fhat = vu/(n*h(1)*h(2));

Now that we have the histogram density, we can use the MATLAB function
interp2 to linearly interpolate at points between the bin centers.

% Now get the bin centers for the frequency polygon.
% We add bins at the edges with zero height.
t1 = (bin0(1)-h(1)/2):h(1):(max(t1)+h(1)/2);
t2 = (bin0(2)-h(2)/2):h(2):(max(t2)+h(2)/2);
[bcx,bcy] = meshgrid(t1,t2);
[nr,nc] = size(fhat);
binh = zeros(nr+2,nc+2); % add zero bin heights
binh(2:(1+nr),2:(1+nc))=fhat;
% Get points where we want to interpolate to get
% the frequency polygon.
[xint,yint]=meshgrid(linspace(min(t1),max(t1),30),...
 linspace(min(t2),max(t2),30));
fp = interp2(bcx,bcy,binh,xint,yint,'linear');

We can verify that this is a valid density by estimating the area under the
curve.

df1 = xint(1,2)-xint(1,1);
df2 = yint(2,1)-yint(1,1);
area = sum(sum(fp))*df1*df2;

This yields an area of 0.9976. A surface plot of the frequency polygon is
shown in Figure 8.5.
�

AvAvAvAveeeerrrraaaaged Shifted Histogramged Shifted Histogramged Shifted Histogramged Shifted Histogramssss

When we create a histogram or a frequency polygon, we need to specify a
complete mesh determined by the bin width h and the starting point . The
reader should have noticed that the parameter did not appear in any of the
asymptotic integrated squared bias or integrated variance expressions for the
histograms or frequency polygons. The MISE is affected more by the choice
of bin width than the choice of starting point . The averaged shifted histo-
gram (ASH) was developed to account for different choices of , with the
added benefit that it provides a ‘smoother’ estimate of the probability density
function.

The idea is to create many histograms with different bin origins (but
with the same h) and average the histograms together. The histogram is a
piecewise constant function, and the average of piecewise constant functions
will also be the same type of function. Therefore, the ASH is also in the form
of a histogram, and the following discussion treats it as such. The ASH is
often implemented in conjunction with the frequency polygon, where the lat-
ter is used to linearly interpolate between the smaller bin widths of the ASH.

t0

t0

t0

t0

t0

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 275

To construct an ASH, we have a set of m histograms, with constant
bin width h. The origins are given by the sequence

.

In the univariate case, the unweighted or naive ASH is given by

, (8.21)

which is just the average of the histogram estimates at each point x. It should
be clear that the is a piecewise function over smaller bins, whose width
is given by . This is shown in Figure 8.6 where we have a single his-
togram and the ASH estimate.

In what follows, we consider the ASH as a histogram over the narrower
intervals given by , with . As before we denote
the bin counts for these bins by . An alternative expression for the naive
ASH can be written as

FFFFIIIIGUGUGUGURE 8.5.RE 8.5.RE 8.5.RE 8.5.

Frequency polygon of bivariate standard normal data.

−4
−2

0
2

−4
−2

0
2

0

0.05

0.1

f1
ˆ … f̂m, ,

t′0 t0 0 t0
h
m
---- t0

2h
m
------+ … t0

m 1–()h
m

---------------------+, , ,+,+=

f̂ASH x() 1
m
---- f̂ i x()

i 1=

m

∑=

f̂ASH

δ h m⁄=
f̂i

B′k [kδ k 1+()δ),= δ h m⁄=
νk

© 2002 by Chapman & Hall/CRC

276 Computational Statistics Handbook with MATLAB

. (8.22)

To make this a little clearer, let’s look at a simple example of the naive ASH,
with . In this case, our estimate at a point x is

We can think of the factor in Equation 8.22 as weights on the bin
counts. We can use arbitrary weights instead, to obtain the general ASH.

GENERAL AVERAGED SHIFTED HISTOGRAM

 . (8.23)

FFFFIIIIGUGUGUGURE 8.6RE 8.6RE 8.6RE 8.6

On the left is a histogram density based on 100 standard normal random variables, where
we used the MATLAB default of 10 bins. On the right is an ASH estimate for the same data
set, with m = 5.

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Histogram Density

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
ASH − m=5

f̂ASH x() 1
nh
------ 1 i

m
----– 

  νk i+ ;

i 1 m–=

m 1–

∑= x in B′k

m 3=

f̂ASH x() 1
nh
------ 1 2

3
---– 

  νk 2– 1 1
3
---– 

  νk 1– 1 0
3
---– 

  νk 0–

1 1
3
---– 

  νk 1+ 1 2
3
---– 

  νk 2+

+ + +

+ ;

=

x in B′k.

1 i m⁄–()

f̂ASH
1

nh
------ wm i()νk i+ ;

i m<
∑= x in B′k

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 277

A general formula for the weights is given by

 , (8.24)

with K a continuous function over the interval . This function K is
sometimes chosen to be a probability density function. In Example 8.5, we
use the biweight function:

(8.25)

for our weights. Here is the indicator function over the interval .
The algorithm for the general univariate ASH [Scott, 1992] is given here

and is also illustrated in MATLAB in Example 8.5. This algorithm requires at
least empty bins on either end.

UNIVARIATE ASH - ALGORITHM:

1. Generate a mesh over the range with bin widths
of size and . The quantity nbin is the number of
bins - see the comments below for more information on this num-
ber. Include at least m - 1 empty bins on either end of the range.

2. Compute the bin counts .
3. Compute the weight vector given in Equation 8.24.

4. Set all .
5. Loop over to nbin

Loop over to

Calculate: .

6. Divide all by nh, these are the ASH heights.
7. Calculate the bin centers using .

In practice, one usually chooses the m and h by setting the number of narrow
(size) bins between 50 and 500 over the range of the sample. This is then
extended to put some empty bins on either end of the range.

wm i() m K i m⁄()

K j m⁄()
j 1 m–=

m 1–

∑
----------------------------------;×= i 1 m– … m 1–, ,=

1– 1,[]

K t() 15
16
------ 1 t2–()2

I 1– 1,[] t()=

I 1– 1,[] 1– 1,[]

m 1–

t0 nbin δ t0+×,()
δ δ<<h, h mδ=

νk

wm i()
f̂k 0=

k 1=

i max 1 k m– 1+,{ }= min nbin k m 1–+,{ }

fi
ˆ fi

ˆ νkwm i k–()+=

f̂k

Bk t0 k 0.5–()δ+=

δ

© 2002 by Chapman & Hall/CRC

278 Computational Statistics Handbook with MATLAB

Example 8.5
In this example, we construct an ASH probability density estimate of the Buf-
falo snowfall data [Scott, 1992]. These data represent the annual snowfall
in inches in Buffalo, New York over the years 1910-1972. First load the data
and get the appropriate parameters.

load snowfall
n = length(snowfall);
m = 30;
h = 14.6;
delta = h/m;

The next step is to construct a mesh using the smaller bin widths of size
over the desired range. Here we start the density estimate at zero.

% Get the mesh.
t0 = 0;
tf = max(snowfall)+20;
nbin = ceil((tf-t0)/delta);
binedge = t0:delta:(t0+delta*nbin);

We need to obtain the bin counts for these smaller bins, and we use the histc
function since we want to use the bin edges rather than the bin centers.

% Get the bin counts for the smaller binwidth delta.
vk = histc(snowfall,binedge);
% Put into a vector with m-1 zero bins on either end.
fhat = [zeros(1,m-1),vk,zeros(1,m-1)];

Next, we construct our weight vector according to Equation 8.24, where we
use the biweight kernel given in Equation 8.25. Instead of writing the kernel
as a separate function, we will use the MATLAB inline function to create a
function object. We can then call that inline function just as we would an
M-file function.

% Get the weight vector.
% Create an inline function for the kernel.
kern = inline('(15/16)*(1-x.^2).^2');
ind = (1-m):(m-1);
% Get the denominator.
den = sum(kern(ind/m));
% Create the weight vector.
wm = m*(kern(ind/m))/den;

The following section of code essentially implements steps 5 - 7 of the ASH
algorithm.

% Get the bin heights over smaller bins.
fhatk = zeros(1,nbin);
for k = 1:nbin

δ

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 279

 ind = k:(2*m+k-2);
 fhatk(k) = sum(wm.*fhat(ind));
end
fhatk = fhatk/(n*h);
bc = t0+((1:k)-0.5)*delta;

We use the following steps to obtain Figure 8.7, where we use a different type
of MATLAB plot to show the ASH estimate. We use the bin edges with the
stairs plot, so we must append an extra bin height at the end to ensure that
the last bin is drawn and to make it dimensionally correct for plotting.

% To use the stairs plot, we need to use the
% bin edges.
stairs(binedge,[fhatk fhatk(end)])
axis square
title('ASH - Buffalo Snowfall Data')
xlabel('Snowfall (inches)')

�

The multivariate ASH is obtained by averaging shifted multivariate histo-
grams. Each histogram has the same bin dimension , and each is

FFFFIIIIGUGUGUGURE 8.7RE 8.7RE 8.7RE 8.7

ASH estimate for the Buffalo snowfall data. The parameters used to obtain this were h =
14.6 inches and m = 30. Notice that the ASH estimate reveals evidence of three modes.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
ASH − Buffalo Snowfall Data

Snowfall (inches)

h1 … hd××

© 2002 by Chapman & Hall/CRC

280 Computational Statistics Handbook with MATLAB

constructed using shifts along the coordinates given by multiples of
 Scott [1992] provides a detailed algorithm for the bivari-

ate ASH.

8.3 Kernel Density Estimation

Scott [1992] shows that as the number of histograms m approaches infinity,
the ASH becomes a kernel estimate of the probability density function. The
first published paper describing nonparametric probability density estima-
tion was by Rosenblatt [1956], where he described the general kernel estima-
tor. Many papers that expanded the theory followed soon after. A partial list
includes Parzen [1962], Cencov [1962] and Cacoullos [1966]. Several refer-
ences providing surveys and summaries of nonparametric density estima-
tion are provided in Section 8.7. The following treatment of kernel density
estimation follows that of Silverman [1986] and Scott [1992].

UUUUnnnniiiivvvvarararariiiiaaaatttteeee KKKKeeeerrrrnnnneeeellll EEEEssssttttiiiimatormatormatormatorssss

The kernel estimator is given by

, (8.26)

where the function is called a kernel. This must satisfy the condition that
 to ensure that our estimate in Equation 8.26 is a bona fide density

estimate. If we define , then we can also write the kernel
estimate as

. (8.27)

Usually, the kernel is a symmetric probability density function, and often a
standard normal density is used. However, this does not have to be the case,
and we will present other choices later in this chapter. From the definition of
a kernel density estimate, we see that our estimate inherits all of the
properties of the kernel function, such as continuity and differentiability..

From Equation 8.26, the estimated probability density function is obtained
by placing a weighted kernel function, centered at each data point and then
taking the average of them. See Figure 8.8 for an illustration of this procedure.

δi mi⁄ i, 1 … d., ,=

f̂Ker x() 1
nh
------ K

x Xi–
h

 
 

i 1=

n

∑=

K t()
K t() td∫ 1=

Kh t() K t h⁄() h⁄=

f̂Ker x() 1
n
--- Kh x Xi–()

i 1=

n

∑=

f̂Ker x()

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 281

Notice that the places where there are more curves or kernels yield ‘bumps’ in
the final estimate. An alternative implementation is discussed in the exer-
cises.

PROCEDURE - UNIVARIATE KERNEL

1. Choose a kernel, a smoothing parameter h, and the domain (the set
of x values) over which to evaluate .

2. For each , evaluate the following kernel at all x in the domain:

.

The result from this is a set of n curves, one for each data point .
3. Weight each curve by .

4. For each x, take the average of the weighted curves.

FFFFIIIIGUGUGUGURE 8.8.RE 8.8.RE 8.8.RE 8.8.

We obtain the above kernel density estimate for n = 10 random variables. A weighted kernel
is centered at each data point, and the curves are averaged together to obtain the estimate.
Note that there are two ‘bumps’ where there is a higher concentration of smaller densities.

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f̂ x()
Xi

Ki K
x Xi–

h
-------------- 

  ;= i 1 … n, ,=

Xi

1 h⁄

© 2002 by Chapman & Hall/CRC

282 Computational Statistics Handbook with MATLAB

Example 8.6
In this example, we show how to obtain the kernel density estimate for a data
set, using the standard normal density as our kernel. We use the procedure
outlined above. The resulting probability density estimate is shown in
Figure 8.8.

% Generate standard normal random variables.
n = 10;
data = randn(1,n);
% We will get the density estimate at these x values.
x = linspace(-4,4,50);
fhat = zeros(size(x));
h = 1.06*n^(-1/5);
hold on
for i=1:n
 % get each kernel function evaluated at x

% centered at data
 f = exp(-(1/(2*h^2))*(x-data(i)).^2)/sqrt(2*pi)/h;
 plot(x,f/(n*h));
 fhat = fhat+f/(n);
end
plot(x,fhat);
hold off

�

As in the histogram, the parameter h determines the amount of smoothing
we have in the estimate . In kernel density estimation, the h is usually
called the window width. A small value of h yields a rough curve, while a
large value of h yields a smoother curve. This is illustrated in Figure 8.9,
where we show kernel density estimates at various window widths.
Notice that when the window width is small, we get a lot of noise or spurious
structure in the estimate. When the window width is larger we get a
smoother estimate, but there is the possibility that we might obscure bumps
or other interesting structure in the estimate. In practice, it is recommended
that the analyst examine kernel density estimates for different window
widths to explore the data and to search for structures such as modes or
bumps.

As with the other univariate probability density estimators, we are inter-
ested in determining appropriate values for the parameter h. These can be
obtained by choosing values for h that minimize the asymptotic MISE. Scott
[1992] shows that, under certain conditions, the AMISE for a nonnegative
univariate kernel density estimator is

, (8.28)

f̂Ker x()

f̂Ker x()

AMISEKer h() R K()
nh

1
4
---σk

4h4R f ″()+=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 283

where the kernel K is a continuous probability density function with
and The window width that minimizes this is given by

. (8.29)

Parzen [1962] and Scott [1992] describe the conditions under which this
holds. Notice in Equation 8.28 that we have the same bias-variance trade-off
with h that we had in previous density estimates.

For a kernel that is equal to the normal density , we
have the following Normal Reference Rule for the window width h.

NORMAL REFERENCE RULE - KERNELS

.

We can use some suitable estimate for , such as the standard deviation, or
. The latter yields a window width of

FFFFIIIIGUGUGUGURE 8.9RE 8.9RE 8.9RE 8.9

Four kernel density estimates using standard normal random variables. Four
different window widths are used. Note that as h gets smaller, the estimate gets rougher.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8
h = 0.11

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8
h = 0.21

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8
h = 0.42

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8
h = 0.84

n 100=

µK 0=
0 σK

2 ∞.< <

hK er
*

R K()
nσk

4R f ″()

 
 
 

1 5⁄

=

R f ″() 3 8 πσ5()⁄=

hK er
* 4

3

 
 

1 5⁄

σn 1 5⁄–= 1.06σn 1 5⁄–≈

σ
σ̂ IQR 1.348⁄=

© 2002 by Chapman & Hall/CRC

284 Computational Statistics Handbook with MATLAB

.

Silverman [1986] recommends that one use whichever is smaller, the sample
standard deviation or as an estimate for .

We now turn our attention to the problem of what kernel to use in our esti-
mate. It is known [Scott, 1992] that the choice of smoothing parameter h is
more important than choosing the kernel. This arises from the fact that the
effects from the choice of kernel (e.g., kernel tail behavior) are reduced by the
averaging process. We discuss the efficiency of the kernels below, but what
really drives the choice of a kernel are computational considerations or the
amount of differentiability required in the estimate.

In terms of efficiency, the optimal kernel was shown to be [Epanechnikov,
1969]

It is illustrated in Figure 8.10 along with some other kernels.

FFFFIIIIGUGUGUGURE 8.10RE 8.10RE 8.10RE 8.10

These illustrate four kernels that can be used in probability density estimation.

ĥK er
*

0.786 IQR n 1 5⁄–××=

IQR 1.348⁄ σ

K t()
3
4
--- 1 t2–(); 1– t 1≤ ≤

0; otherwise.





=

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Triangle Kernel

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Epanechnikov Kernel

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Biweight Kernel

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Triweight Kernel

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 285

Several choices for kernels are given in Table 8.1. Silverman [1986] and
Scott [1992] show that these kernels have efficiencies close to that of the
Epanechnikov kernel, the least efficient being the normal kernel. Thus, it
seems that efficiency should not be the major consideration in deciding what
kernel to use. It is recommended that one choose the kernel based on other
considerations as stated above.

MultMultMultMultiiiivvvvarararariiiiaaaatttteeee KKKKeeeerrrrnnnneeeellll EEEEststststiiiimatormatormatormatorssss

Here we assume that we have a sample of size n, where each observation is a
d-dimensional vector, . The simplest case for the multivariate
kernel estimator is the product kernel. Descriptions of the general kernel den-
sity estimate can be found in Scott [1992] and in Silverman [1986]. The prod-
uct kernel is

 , (8.30)

where is the j-th component of the i-th observation. Note that this is the
product of the same univariate kernel, with a (possibly) different window

TTTTAAAABBBBLLLLE 8.1E 8.1E 8.1E 8.1

Examples of Kernels for Density Estimation

Kernel Name Equation

Triangle

Epanechnikov

Biweight

Triweight

Normal

K t() 1 t–()= 1 t 1≤ ≤–

K t() 3
4
--- 1 t2–()= 1 t 1≤ ≤–

K t() 15
16
------ 1 t2–()2

= 1 t 1≤ ≤–

K t() 35
32
------ 1 t2–()3

= 1 t 1≤ ≤–

K t() 1

2π
---------- t2–

2

 
 
 

exp= ∞ t ∞< <–

X i i, 1 … n, ,=

f̂Ker x() 1
nh1…hd

-------------------- K
xj Xij–

hj

 
 

j 1=

d

∏
 
 
 
 
 

i 1=

n

∑=

Xij

© 2002 by Chapman & Hall/CRC

286 Computational Statistics Handbook with MATLAB

width in each dimension. Since the product kernel estimate is comprised of
univariate kernels, we can use any of the kernels that were discussed previ-
ously.

Scott [1992] gives expressions for the asymptotic integrated squared bias
and asymptotic integrated variance for the multivariate product kernel. If the
normal kernel is used, then minimizing these yields a normal reference rule
for the multivariate case, which is given below.

NORMAL REFERENCE RULE - KERNEL (MULTIVARIATE)

,

where a suitable estimate for can be used. If there is any skewness or kur-
tosis evident in the data, then the window widths should be narrower, as dis-
cussed previously. The skewness factor for the frequency polygon
(Equation 8.20) can be used here.

Example 8.7
In this example, we construct the product kernel estimator for the iris data.
To make it easier to visualize, we use only the first two variables (sepal length
and sepal width) for each species. So, we first create a data matrix comprised
of the first two columns for each species.

load iris
% Create bivariate data matrix with all three species.
data = [setosa(:,1:2)];
data(51:100,:) = versicolor(:,1:2);
data(101:150,:) = virginica(:,1:2);

Next we obtain the smoothing parameter using the Normal Reference Rule.

% Get the window width using the Normal Ref Rule.
[n,p] = size(data);
s = sqrt(var(data));
hx = s(1)*n^(-1/6);
hy = s(2)*n^(-1/6);

The next step is to create a grid over which we will construct the estimate.

% Get the ranges for x and y & construct grid.
num_pts = 30;
minx = min(data(:,1));
maxx = max(data(:,1));
miny = min(data(:,2));
maxy = max(data(:,2));

hjK er

*
4

n d 2+()

 
 

1
d 4+

σ j;= j 1 … d, ,=

σ j

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 287

gridx = ((maxx+2*hx)-(minx-2*hx))/num_pts
gridy = ((maxy+2*hy)-(miny-2*hy))/num_pts
[X,Y]=meshgrid((minx-2*hx):gridx:(maxx+2*hx),...

(miny-2*hy):gridy:(maxy+2*hy));
x = X(:); %put into col vectors
y = Y(:);

We are now ready to get the estimates. Note that in this example, we are
changing the form of the loop. Instead of evaluating each weighted curve and
then averaging, we will be looping over each point in the domain.

z = zeros(size(x));
for i=1:length(x)

xloc = x(i)*ones(n,1);
yloc = y(i)*ones(n,1);
argx = ((xloc-data(:,1))/hx).^2;
argy = ((yloc-data(:,2))/hy).^2;
z(i) = (sum(exp(-.5*(argx+argy))))/(n*hx*hy*2*pi);

end
[mm,nn] = size(X);
Z = reshape(z,mm,nn);

We show the surface plot for this estimate in Figure 8.11. As before, we can
verify that our estimate is a bona fide by estimating the area under the curve.
In this example, we get an area of 0.9994.

area = sum(sum(Z))*gridx*gridy;

�

Before leaving this section, we present a summary of univariate probability
density estimators and their corresponding Normal Reference Rule for the
smoothing parameter h. These are given in Table 8.2.

8.4 Finite Mixtures

So far, we have been discussing nonparametric density estimation methods
that require a choice of smoothing parameter h. In the previous section, we
showed that we can get different estimates of our probability density
depending on our choice for h. It would be helpful if we could avoid choosing
a smoothing parameter. In this section, we present a method called finite mix-
tures that does not require a smoothing parameter. However, as is often the
case, when we eliminate one parameter we end up replacing it with another.
In finite mixtures, we do not have to worry about the smoothing parameter.
Instead, we have to determine the number of terms in the mixture.

© 2002 by Chapman & Hall/CRC

288 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 8.RE 8.RE 8.RE 8.11111111

This is the product kernel density estimate for the sepal length and sepal width of the iris
data. These data contain all three species. The presence of peaks in the data indicate that
two of the species might be distinguishable based on these two variables.

TATATATABBBBLLLLE 8E 8E 8E 8....2222

Summary of Univariate Probability Density Estimators and the Normal
Reference Rule for the Smoothing Parameter

Method Estimator Normal Reference Rule

Histogram

Frequency
Polygon

Kernel

4
5

6
7

8

2

3

4

0.1

0.2

0.3

0.4

Sepal Length

Kernel Estimate for Iris Data

Sepal Width

f̂H ist x() vk

nh
------=

x in Bk

hHist
* 3.5σn 1 3⁄–=

f̂FP x() 1
2
--- x

h
---– 

  f̂k
1
2
--- x

h
---+ 

  f̂k 1++=

BK x Bk 1+≤ ≤

hFP
* 2.15σn 1 5⁄–=

f̂Ker x() 1
nh
------ K

x Xi–
h

 
 

i 1=

n

∑=
hKer

* 1.06σn 1 5⁄– ;=

K is the normal kernel.

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 289

Finite mixtures offer advantages in the area of the computational load put
on the system. Two issues to consider with many probability density estima-
tion methods are the computational burden in terms of the amount of infor-
mation we have to store and the computational effort needed to obtain the
probability density estimate at a point. We can illustrate these ideas using the
kernel density estimation method. To evaluate the estimate at a point x (in the
univariate case) we have to retain all of the data points, because the estimate
is a weighted sum of n kernels centered at each sample point. In addition, we
must calculate the value of the kernel n times. The situation for histograms
and frequency polygons is a little better. The amount of information we must
store to provide an estimate of the probability density is essentially driven by
the number of bins. Of course, the situation becomes worse when we move
to multivariate kernel estimates, histograms, and frequency polygons. With
the massive, high-dimensional data sets we often work with, the computa-
tional effort and the amount of information that must be stored to use the
density estimates is an important consideration. Finite mixtures is a tech-
nique for estimating probability density functions that can require relatively
little computer storage space or computations to evaluate the density esti-
mates.

UUUUnnnniiiivvvvarararariiiiaaaatttteeee FiniFiniFiniFinitttteeee MixtuMixtuMixtuMixturrrreeeessss

The finite mixture method assumes the density can be modeled as the
sum of c weighted densities, with . The most general case for the
univariate finite mixture is

, (8.31)

where represents the weight or mixing coefficient for the i-th term, and
 denotes a probability density, with parameters represented by the

vector To make sure that this is a bona fide density, we must impose the
condition that and To evaluate , we take our
point x, find the value of the component densities at that point, and
take the weighted sum of these values.

Example 8.8
The following example shows how to evaluate a finite mixture model at a
given x. We construct the curve for a three term finite mixture model, where
the component densities are taken to be normal. The model is given by

,

f x()
c << n

f x() pig x θ i;()
i 1=

c

∑=

pi

g x θi;()
θi.

p1 … pc+ + 1= pi 0.> f x()
g x θi;()

f x() 0.3 φ x 3 1,–;() 0.3 φ x 0 1,;()× 0.4 φ x 2 0.5,;()×+ +×=

© 2002 by Chapman & Hall/CRC

290 Computational Statistics Handbook with MATLAB

where represents the normal probability density function at x. We
see from the model that we have three terms or component densities, cen-
tered at -3, 0, and 2. The mixing coefficient or weight for the first two terms
are 0.3 leaving a weight of 0.4 for the last term. The following MATLAB code
produces the curve for this model and is shown in Figure 8.12.

% Create a domain x for the mixture.
x = linspace(-6,5);
% Create the model - normal components used.
mix = [0.3 0.3 0.4]; % mixing coefficients
mus = [-3 0 2]; % term means
vars = [1 1 0.5];
nterm = 3;
% Use Statistics Toolbox function to evaluate
% normal pdf.
fhat = zeros(size(x));
for i = 1:nterm
 fhat = fhat+mix(i)*normpdf(x,mus(i),vars(i));
end
plot(x,fhat)
title('3 Term Finite Mixture')

�

Hopefully, the reader can see the connection between finite mixtures and
kernel density estimation. Recall that in the case of univariate kernel density
estimators, we obtain these by evaluating a weighted kernel centered at each
sample point, and adding these n terms. So, a kernel estimate can be consid-
ered a special case of a finite mixture where .

The component densities of the finite mixture can be any probability den-
sity function, continuous or discrete. In this book, we confine our attention to
the continuous case and use the normal density for the component function.
Therefore, the estimate of a finite mixture would be written as

, (8.32)

where denotes the normal probability density function with mean
 and variance . In this case, we have to estimate c-1 independent mixing

coefficients, as well as the c means and c variances using the data. Note that
to evaluate the density estimate at a point x, we only need to retain these

 parameters. Since , this can be a significant computational sav-
ings over evaluating density estimates using the kernel method. With finite
mixtures much of the computational burden is shifted to the estimation part
of the problem.

φ x µ σ2,;()

c n=

f̂FM x() p̂iφ x µ̂i σ̂ i
2,;()

i 1=

c

∑=

φ x µ̂i σ̂ i
2

,;()
µ̂ i σ̂i

2

3c 1– c << n

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 291

VVVVisuisuisuisuaaaalllliiiizzzziiiinnnng Finig Finig Finig Finitttteeee MixtuMixtuMixtuMixturrrreeeessss

The methodology used to estimate the parameters for finite mixture models
will be presented later on in this section (page 296). We first show a method
for visualizing the underlying structure of finite mixtures with normal com-
ponent densities [Priebe, et al. 1994], because it is used to help visualize and
explain another approach to density estimation (adaptive mixtures). Here,
structure refers to the number of terms in the mixture, along with the compo-
nent means and variances. In essence, we are trying to visualize the high-
dimensional parameter space (recall there are 3c-1 parameters for the univari-
ate mixture of normals) in a 2-D representation. This is called a dF plot, where
each component is represented by a circle. The circles are centered at the
mean and the mixing coefficient . The size of the radius of the circle indi-
cates the standard deviation. An example of a dF plot is given in Figure 8.13
and is discussed in the following example.

Example 8.9
We construct a dF plot for the finite mixture model discussed in the previous
example. Recall that the model is given by

FFFFIIIIGUGUGUGURE 8.12RE 8.12RE 8.12RE 8.12

This shows the probability density function corresponding to the three-term finite mixture
model from Example 8.8.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
3 Term Finite Mixture

x

µi pi

© 2002 by Chapman & Hall/CRC

292 Computational Statistics Handbook with MATLAB

.

Our first step is to set up the model consisting of the number of terms, the
component parameters and the mixing coefficients.

% Recall the model - normal components used.
mix = [0.3 0.3 0.4]; % mixing coefficients
mus = [-3 0 2]; % term means
vars = [1 1 0.5];
nterm = 3;

Next we set up the figure for plotting. Note that we re-scale the mixing coef-
ficients for easier plotting on the vertical axis and then map the labels to the
corresponding value.

t = 0:.05:2*pi+eps; % values to create circle
% To get some scales right.
minx = -5;
maxx = 5;
scale = maxx-minx;
lim = [minx maxx minx maxx];
% Set up the axis limits.

FFFFIIIIGUGUGUGURE 8.13RE 8.13RE 8.13RE 8.13

This shows the dF plot for the three term finite mixture model of Figure 8.12.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Means

M
ix

in
g

C
oe

ffi
ci

en
ts

dF Plot for Univariate Finite Mixture

f x() 0.3 φ x 3 1,–;() 0.3 φ x 0 1,;()× 0.4 φ x 2 0.5,;()×+ +×=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 293

figure
axis equal
axis(lim)
grid on
% Create and plot a circle for each term.
hold on
for i=1:nterm
 % rescale for plotting purposes
 ycord = scale*mix(i)+minx;
 xc = mus(i)+sqrt(vars(i))*cos(t);
 yc = ycord+sqrt(vars(i))*sin(t);
 plot(xc,yc,mus(i),ycord,'*')
end
hold off
% Relabel the axis to show the right coefficient.
tick = (maxx-minx)/10;
set(gca,'Ytick',minx:tick:maxx)
set(gca,'XTick',minx:tick:maxx)
set(gca,'YTickLabel',...

'0|0.1|0.2|0.3|0.4|0.5|0.6|0.7|0.8|0.9|1')
xlabel('Means'),ylabel('Mixing Coefficients')
title('dF Plot for Univariate Finite Mixture')

The first circle on the left corresponds to the component with and
 Similarly, the middle circle of Figure 8.13 represents the second

term of the model. Note that this representation of the mixture makes it easier
to see which terms carry more weight and where they are located in the
domain.
�

MultMultMultMultiiiivvvvarararariiiiaaaatttteeee FiniFiniFiniFinitttteeee MixtuMixtuMixtuMixturrrreeeessss

Finite mixtures is easily extended to the multivariate case. Here we define the
multivariate finite mixture model as the weighted sum of multivariate com-
ponent densities,

.

As before, the mixing coefficients or weights must be nonnegative and sum
to one, and the component density parameters are represented by . When
we are estimating the function, we often use the multivariate normal as the
component density. This gives the following equation for an estimate of a
multivariate finite mixture

pi 0.3=
µ i 3.–=

f x() pig x; θi()
i 1=

c

∑=

θi

© 2002 by Chapman & Hall/CRC

294 Computational Statistics Handbook with MATLAB

, (8.33)

where x is a d-dimensional vector, is a d-dimensional vector of means, and
 is a covariance matrix. There are still c-1 mixing coefficients to esti-

mate. However, there are now values that have to be estimated for the
means and values for the component covariance matrices.

The dF representation has been extended [Solka, Poston, Wegman, 1995] to
show the structure of a multivariate finite mixture, when the data are 2-D or
3-D. In the 2-D case, we represent each term by an ellipse centered at the
mean of the component density , with the eccentricity of the ellipse show-
ing the covariance structure of the term. For example, a term with a covari-
ance that is close to the identity matrix will be shown as a circle. We label the
center of each ellipse with text identifying the mixing coefficient. An example
is illustrated in Figure 8.14.

A dF plot for a trivariate finite mixture can be fashioned by using color to
represent the values of the mixing coefficients. In this case, we use the three
dimensions in our plot to represent the means for each term. Instead of
ellipses, we move to ellipsoids, with eccentricity determined by the covari-
ance as before. See Figure 8.15 for an example of a trivariate dF plot. The dF
plots are particularly useful when working with the adaptive mixtures den-
sity estimation method that will be discussed shortly. We provide a function
called csdfplot that will implement the dF plots for univariate, bivariate
and trivariate data.

Example 8.10
In this example, we show how to implement the function called csdfplot
and illustrate its use with bivariate and trivariate models. The bivariate case
is the following three component model:

,

,

.

% First create the model.
% The function expects a vector of weights;
% a matrix of means, where each column of the matrix

f̂FM x() p̂iφ x;µ̂i Σ̂ i,()
i 1=

c

∑=

µ̂i

Σ̂i d d×
c d×

cd c 1+()() 2⁄

µ̂ i

p1 0.5= p2 0.3= p3 0.2=

µ1
1–

1–
= µ2

1

1
= µ3

5

6
=

Σ1
1 0

0 1
= Σ2

0.5 0

0 0.5
= Σ3

1 0.5

0.5 1
=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 295

% corresponds to a d-D mean; a 3-D array of
% covariances, where each page of the array is a
% covariance matrix.
pies = [0.5 0.3 0.2]; % mixing coefficients
mus = [-1 1 5; -1 1 6];
% Delete any previous variances in the workspace.
clear vars
vars(:,:,1) = eye(2);
vars(:,:,2) = eye(2)*.5
vars(:,:,3) = [1 0.5; 0.5 1];
figure
csdfplot(mus,vars,pies)

The resulting plot is shown in Figure 8.14. Note that the covariance of two of
the component densities are represented by circles, with one larger than the
other. These correspond to the first two terms of the model. The third compo-
nent density has an elliptical covariance structure indicating non-zero off-
diagonal elements in the covariance matrix. We now do the same thing for the
trivariate case, where the model is

,

.

The mixing coefficients are the same as before. We need only to adjust the
means and the covariance accordingly.

mus(3,:) = [-1 1 2];
% Delete previous vars array or you will get an error.
clear vars
vars(:,:,1) = eye(3);
vars(:,:,2) = eye(3)*.5;
vars(:,:,3)=[1 0.7 0.2;
 0.7 1 0.5;
 0.2 0.5 1];
figure
csdfplot(mus,vars,pies)
% get a different viewpoint
view([-34,9])

µ1

1–

1–

1–

= µ2

1

1

1

= µ3

5

6

2

=

Σ1

1 0 0

0 1 0

0 0 1

= Σ2

0.5 0 0

0 0.5 0

0 0 0.5

= Σ3

1 0.7 0.2

0.7 1 0.5

0.2 0.5 1

=

© 2002 by Chapman & Hall/CRC

296 Computational Statistics Handbook with MATLAB

The trivariate dF plot for this model is shown in Figure 8.15. Two terms (the
first two) are shown as spheres and one as an ellipsoid.
�

EEEEM AM AM AM Allllggggoooorrrrithm forithm forithm forithm for EEEEstistististimmmmaaaattttinininingggg ththththeeee PPPPaaaarrrraaaammmmeeeetttteeeerrrrssss

The problem of estimating the parameters in a finite mixture has been stud-
ied extensively in the literature. The book by Everitt and Hand [1981] pro-
vides an excellent overview of this topic and offers several methods for
parameter estimation. The technique we present here is called the Expecta-
tion-Maximization (EM) method. This is a general method for optimizing
likelihood functions and is useful in situations where data might be missing
or simpler optimization methods fail. The seminal paper on this topic is by
Dempster, Laird and Rubin [1977], where they formalize the EM algorithm
and establish its properties. Redner and Walker [1984] apply it to mixture
densities. The EM methodology is now a standard tool for statisticians and is
used in many applications.

In this section, we discuss the EM algorithm as it can be applied to estimat-
ing the parameters of a finite mixture of normal densities. To use the EM algo-

FFFFIIIIGUGUGUGURE 8.14RE 8.14RE 8.14RE 8.14

Bivariate dF plot for the three term mixture model of Example 8.10.

−3 −2 −1 0 1 2 3 4 5 6 7

−1

0

1

2

3

4

5

6

0.5

0.3

0.2

µ
x

µ y

dF Plot

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 297

rithm, we must have a value for the number of terms c in the mixture. This is
usually obtained using prior knowledge of the application (the analyst
expects a certain number of groups), using graphical exploratory data analy-
sis (looking for clusters or other group structure) or using some other method
of estimating the number of terms. The approach called adaptive mixtures
[Priebe, 1994] offers a way to address the problem of determining the number
of component densities to use in the finite mixture model. This approach is
discussed later.

Besides the number of terms, we must also have an initial guess for the
value of the component parameters. Once we have an initial estimate, we
update the parameter estimates using the data and the equations given
below. These are called the iterative EM update equations, and we provide
the multivariate case as the most general one. The univariate case follows eas-
ily.

The first step is to determine the posterior probabilities given by

. (8.34)

FFFFIIIIGUGUGUGURE 8.15RE 8.15RE 8.15RE 8.15

Trivariate dF plot for the three term mixture model of Example 8.10.

.5 1M
ix

 C
oe

fs

−2 0 2 4
−2

0
2

4
6

−2

−1

0

1

2

Mu
x

Mu
y

M
u z

τ̂ij
pi
ˆ φ xj µ̂ i Σˆ i,;()

f̂ xj()
-------------------------------;= i 1 … c ; j, , 1 … n, ,= =

© 2002 by Chapman & Hall/CRC

298 Computational Statistics Handbook with MATLAB

where represents the estimated posterior probability that point belongs
to the i-th term, is the multivariate normal density for the i-th
term evaluated at , and

(8.35)

is the finite mixture estimate at point .

The posterior probability tells us the likelihood that a point belongs to each
of the separate component densities. We can use this estimated posterior
probability to obtain a weighted update of the parameters for each compo-
nent. This yields the iterative EM update equations for the mixing coeffi-
cients, the means and the covariance matrices. These are

(8.36)

(8.37)

. (8.38)

Note that if then the update equation for the variance is

. (8.39)

The steps for the EM algorithm to estimate the parameters for a finite mixture
with multivariate normal components are given here and are illustrated in
Example 8.11.

FINITE MIXTURES - EM PROCEDURE

1. Determine the number of terms or component densities c in the
mixture.

τ̂ij xj

φ xj µ̂i Σ̂i,;()
xj

f̂ xj() pk
ˆ φ xj µ̂k Σ̂k,;()

k 1=

c

∑=

xj

p̂i
1
n
--- τ̂ij

j 1=

n

∑=

µ̂ i
1
n
--- τ̂ijxj

p̂i

j 1=

n

∑=

Σ
ˆ

i
1
n
--- τ̂i j x j µ̂ i–() x j µ̂i–()T

p̂i

--

j 1=

n

∑=

d 1,=

σ̂ i
2 1

n
--- τ̂ij xj µ̂ i–()

2

p̂i

j 1=

n

∑=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 299

2. Determine an initial guess at the component parameters. These are
the mixing coefficients, means and covariance matrices for each
normal density.

3. For each data point , calculate the posterior probability using
Equation 8.34.

4. Update the mixing coefficients, the means and the covariance ma-
trices for the individual components using Equations 8.36 through
8.38.

5. Repeat steps 3 through 4 until the estimates converge.

Typically, step 5 is implemented by continuing the iteration until the changes
in the estimates at each iteration are less than some pre-set tolerance. Note
that with the iterative EM algorithm, we need to use the entire data set to
simultaneously update the parameter estimates. This imposes a high compu-
tational load when dealing with massive data sets.

Example 8.11
In this example, we provide the MATLAB code that implements the multi-
variate EM algorithm for estimating the parameters of a finite mixture prob-
ability density model. To illustrate this, we will generate a data set that is a
mixture of two terms with equal mixing coefficients. One term is centered at
the point and the other is centered at . The covariance of each
component density is given by the identity matrix. Our first step is to gener-
ate 200 data points from this distribution.

% Create some artificial two-term mixture data.
n = 200;
data = zeros(n,2);
% Now generate 200 random variables. First find
% the number that come from each component.
r = rand(1,n);
% Find the number generated from component 1.
ind = length(find(r <= 0.5));
% Create some mixture data. Note that the
% component densities are multivariate normals.
% Generate the first term.
data(1:ind,1) = randn(ind,1) - 2;
data(1:ind,2) = randn(ind,1) + 2;
% Generate the second term.
data(ind+1:n,1) = randn(n-ind,1) + 2;
data(ind+1:n,2) = randn(n-ind,1);

We must then specify various parameters for the EM algorithm, such as the
number of terms.

c = 2; % number of terms

x j

2– 2,() 2 0,()

© 2002 by Chapman & Hall/CRC

300 Computational Statistics Handbook with MATLAB

[n,d] = size(data); % n=# pts, d=# dims
tol = 0.00001; % set up criterion for stopping EM
max_it = 100;
totprob = zeros(n,1);

We also need an initial guess at the component density parameters.

% Get the initial parameters for the model to start EM
mu(:,1) = [-1 -1]'; % each column represents a mean
mu(:,2) = [1 1]';
mix_cof = [0.3 0.7];
var_mat(:,:,1) = eye(d);
var_mat(:,:,2) = eye(d);
varup = zeros(size(var_mat));
muup = zeros(size(mu));
% Just to get started.
num_it = 1;
deltol = tol+1;% to get started

The following steps implement the EM update formulas found in
Equations 8.34 through 8.38.

while num_it <= max_it & deltol > tol
 % get the posterior probabilities
 totprob = zeros(n,1);

for i=1:c
posterior(:,i) = mix_cof(i)*...

 csevalnorm(data,mu(:,i)',var_mat(:,:,i));
 totprob = totprob+posterior(:,i);
 end
 den = totprob*ones(1,c);
 posterior = posterior./den;
 % Update the mixing coefficients.
 mix_cofup = sum(posterior)/n;
 % Update the means.
 mut = data'*posterior;
 MIX = ones(d,1)*mix_cof;
 muup = mut./(MIX*n);
 % Update the means and the variances.
 for i=1:c
 cen_data = data-ones(n,1)*mu(:,i)';
 mat = cen_data'*...
 diag(posterior(:,i))*cen_data;
 varup(:,:,i)=mat./(mix_cof(i)*n);
 end
 % Get the tolerances.

delvar = max(max(max(abs(varup-var_mat))));
delmu = max(max(abs(muup-mu)));

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 301

delpi = max(abs(mix_cof-mix_cofup));
deltol = max([delvar,delmu,delpi]);
% Reset parameters.
num_it = num_it+1;
mix_cof = mix_cofup;
mu = muup;

 var_mat = varup;
end % while loop

For our data set, it took 37 iterations to converge to an answer. The conver-
gence of the EM algorithm to a solution and the number of iterations depends
on the tolerance, the initial parameters, the data set, etc. The estimated model
returned by the EM algorithm is

,

.

For brevity, we omit the estimated covariances, but we can see from these
results that the model does match the data that we generated.
�

AdaptivAdaptivAdaptivAdaptiveeee MixtuMixtuMixtuMixturrrreeeessss

The adaptive mixtures [Priebe, 1994] method for density estimation uses a
data-driven approach for estimating the number of component densities in a
mixture model. This technique uses the recursive EM update equations that
are provided below. The basic idea behind adaptive mixtures is to take one
point at a time and determine the distance from the observation to each com-
ponent density in the model. If the distance to each component is larger than
some threshold, then a new term is created. If the distance is less than the
threshold for all terms, then the parameter estimates are updated based on
the recursive EM equations.

We start our explanation of the adaptive mixtures approach with a descrip-
tion of the recursive EM algorithm for mixtures of multivariate normal den-
sities. This method recursively updates the parameter estimates based on a
new observation. As before, the first step is to determine the posterior prob-
ability that the new observation belongs to each term:

, (8.40)

p̂1 0.498= p̂2 0.502=

µ̂1
2.08–

2.03
= µ̂2

1.83

0.03–
=

τ̂i
n 1+() p̂i

n()φ x n 1+() µ̂i
n() Σ

ˆ
i

n()
,;()

f̂
n()

x n 1+()()
---;= i 1 … c, ,=

© 2002 by Chapman & Hall/CRC

302 Computational Statistics Handbook with MATLAB

where represents the estimated posterior probability that the new
observation belongs to the i-th term, and the superscript denotes
the estimated parameter values based on the previous n observations. The
denominator is the finite mixture density estimate

for the new observation using the mixture from the previous n points.
The remainder of the recursive EM update equations are given by Equa-

tions 8.41 through 8.43. Note that recursive equations are typically in the
form of the old value for an estimate plus an update term using the new
observation. The recursive update equations for mixtures of multivariate
normals are:

(8.41)

(8.42)

 . (8.43)

This reduces to the 1-D case in a straightforward manner, as was the case with
the iterative EM update equations.

The adaptive mixtures approach updates our probability density estimate
 and also provides the opportunity to expand the parameter space (i.e.,

the model) if the data indicate that should be done. To accomplish this, we
need a way to determine when a new component density should be added.
This could be done in several ways, but the one we present here is based on
the Mahalanobis distance. If this distance is too large for all of the terms (or
alternatively if the minimum distance is larger than some threshold), then we
can consider the new point too far away from the existing terms to update the
current model. Therefore, we create a new term.

The squared Mahalanobis distance between the new observation
and the i-th term is given by

 . (8.44)

We create a new term if

τ̂i
n 1+()

x n 1+() n()

f̂
n()

x n 1+()() p̂iφ x n 1+(); µ̂i
n() Σ̂ i

n(),()
i 1=

c

∑=

p̂i
n 1+() p̂i

n() 1
n
--- τ̂i

n 1+()
p̂i

n()–()+=

µ̂ i
n 1+() µ̂i

n() τ̂i
n 1+()

np̂i
n()

------------- x n 1+() µ̂i
n()

–()+=

Σ
ˆ

i

n 1+()
Σ
ˆ

i

n() τ̂i
n 1+()

np̂i
n()

------------- x n 1+() µ̂ i
n()

–() x n 1+() µ̂i
n()

–()
T

Σ̂ i
n()

–+=

f̂ x()

x n 1+()

MDi
2 x n 1+()() x n 1+() µ̂i

n()
–()

T
Σ̂i

n()

 
 

1–

x n 1+() µ̂i
n()

–()=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 303

, (8.45)

where is a threshold to create a new term. The rule in Equation 8.45 states
that if the smallest squared Mahalanobis distance is greater than the thresh-
old, then we create a new term. In the univariate case, if is used, then
a new term is created if a new observation is more than one standard devia-
tion away from the mean of each term. For , a new term would be cre-
ated for an observation that is at least two standard deviations away from the
existing terms. For multivariate data, we would like to keep the same term
creation rate as in the 1-D case. Solka [1995] provides thresholds based on
the squared Mahalanobis distance for the univariate, bivariate, and trivariate
cases. These are shown in Table 8.3.

When we create a new term, we initialize the parameters using
Equations 8.46 through 8.48. We denote the current number of terms in the
model by N.

, (8.46)

, (8.47)

, (8.48)

where is a weighted average using the posterior probabilities. In prac-
tice, some other estimate or initial covariance can be used for the new term.
To ensure that the mixing coefficients sum to one when a new term is added,
the must be rescaled using

.

TTTTAAAABBBBLLLLEEEE 8888.3.3.3.3

Recommended Thresholds for Adaptive Mixtures

Dimensionality Create Threshold

1 1

2 2.34

3 3.54

min i MDi
2 x n 1+()(){ } tC>

tC

tC 1=

tC 4=

tC

µ̂N 1+
n 1+()

x n 1+()=

p̂N 1+
n 1+() 1

n 1+
------------=

Σ̂N 1+
n 1+() ℑ Σ̂i()=

ℑ Σ̂i()

p̂i
n 1+()

p̂i
n 1+() np̂i

n()

n 1+
------------ ;= i 1 … N, ,=

© 2002 by Chapman & Hall/CRC

304 Computational Statistics Handbook with MATLAB

We continue through the data set, one point at a time, adding new terms as
necessary. Our density estimate is then given by

. (8.49)

This allows for a variable number of terms N, where usually . The
adaptive mixtures technique is captured in the procedure given here, and a
function called csadpmix is provided with the Computational Statistics
Toolbox. Its use in the univariate case is illustrated in Example 8.12.

ADAPTIVE MIXTURES PROCEDURE:

1. Initialize the adaptive mixtures procedure using the first data point
:

, , and ,

where I denotes the identity matrix. In the univariate case, the
variance of the initial term is one.

2. For a new data point , calculate the squared Mahalanobis
distance as in Equation 8.44.

3. If the minimum squared distance is greater than , then create a
new term using Equations 8.46 through 8.48. Increase the number
of terms N by one.

4. If the minimum squared distance is less than the create threshold
, then update the existing terms using Equations 8.41

through 8.43.
5. Continue steps 2 through 4 using all data points.

In practice, the adaptive mixtures method is used to get initial values for
the parameters, as well as an estimate of the number of terms needed to
model the density. One would then use these as a starting point and apply the
iterative EM algorithm to refine the estimates.

Example 8.12
In this example, we illustrate the MATLAB code that implements the univari-
ate adaptive mixtures density estimation procedure. The source code for
these functions are given in Appendix D. We generate random variables
using the same three term mixture model that was discussed in Example
8.9.Recall that the model is given by

f̂AM x() p̂iφ x;µ̂ i Σ
ˆ

i,()
i 1=

N

∑=

N << n

x 1()

µ̂1
1() x 1()= p̂1

1() 1= Σ̂1
1()

I=

x n 1+()

tC

tC

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 305

.

% Get the true model to generate data.
pi_tru = [0.3 0.3 0.4];
n = 100;
x = zeros(n,1);
% Now generate 100 random variables. First find
% the number that fall in each one.
r = rand(1,100);
% Find the number generated from each component.
ind1 = length(find(r <= 0.3));
ind2 = length(find(r > 0.3 & r <= 0.6));
ind3 = length(find(r > 0.6));
% create some artificial 3 term mixture data
x(1:ind1) = randn(ind1,1) - 3;
x(ind1+1:ind2+ind1)=randn(ind2,1);
x(ind1+ind2+1:n) = randn(ind3,1)*sqrt(0.5)+2;

We now call the adaptive mixtures function csadpmix to estimate the
model.

% Now call the adaptive mixtures function.
maxterms = 25;
[pihat,muhat,varhat] = csadpmix(x,maxterms);

The following MATLAB commands provide the plots shown in Figure 8.16.

% Get the plots.
csdfplot(muhat,varhat,pihat,min(x),max(x));
axis equal
nterms = length(pihat);
figure
csplotuni(pihat,muhat,varhat,...
 nterms,min(x)-5,max(x)+5,100)

We reorder the observations and repeat the process to get the plots in
Figure 8.17.

% Now re-order the points and repeat
% the adaptive mixtures process.
ind = randperm(n);
x = x(ind);
[pihat,muhat,varhat] = csadpmix(x,maxterms);

�

Our example above demonstrates some interesting things to consider with
adaptive mixtures. First, the model complexity or the number of terms is
sometimes greater than is needed. For example, in Figure 8.16, we show a dF

f x() 0.3 φ x 3 1,–;() 0.3 φ x 0 1,;()× 0.4 φ x 2 0.5,;()×+ +×=

© 2002 by Chapman & Hall/CRC

306 Computational Statistics Handbook with MATLAB

plot for the three term mixture model in Example 8.12. Note that the adaptive
mixture approach yields more than three terms. This is a problem with mix-
ture models in general. Different models (i.e., number of terms and estimated
component parameters) can produce essentially the same function estimate
or curve for . This is illustrated in Figures 8.16 and 8.17, where we see
that similar curves are obtained from two different models for the same data
set. These results are straight from the adaptive mixtures density estimation
approach. In other words, we did not use this estimate as an initial starting
point for the EM approach. If we had applied the iterative EM to these esti-
mated models, then the curves should be the same.

The other issue that must be considered when using the adaptive mixtures
approach is that the resulting model or estimated probability density func-
tion depends on the order in which the data are presented to the algorithm.
This is also illustrated in Figures 8.16 and 8.17, where the second estimated
model is obtained after re-ordering the data. These issues were addressed by
Solka [1995].

8.5 Generating Random Variables

In the introduction, we discussed several uses of probability density esti-
mates, and it is our hope that the reader will discover many more. One of the
applications of density estimation is in the area of modeling and simulation.
Recall that a key aspect of modeling and simulation is the collection of data
generated according to some underlying random process and the desire to
generate more random variables from the same process for simulation pur-
poses. One option is to use one of the density estimation techniques dis-
cussed in this chapter and randomly sample from that distribution. In this
section, we provide the methodology for generating random variables from
finite or adaptive mixtures density estimates.

We have already seen an example of this procedure in Example 8.11 and
Example 8.12. The procedure is to first choose the class membership of gen-
erated observations based on uniform (0,1) random variables. The number of
random variables generated from each component density is given by the
corresponding proportion of these uniform variables that are in the required
range. The steps are outlined here.

PROCEDURE - GENERATING RANDOM VARIABLES (FINITE MIXTURE)

1. We are given a finite mixture model (,) with c compo-
nents, and we want to generate n random variables from that
distribution.

f̂ x()

pi gi x;θi()

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 307

FFFFIIIIGUGUGUGURE 8.1RE 8.1RE 8.1RE 8.16666

The upper plot shows the dF representation for Example 8.12. Compare this with Figure 8.17
for the same data. Note that the curves are essentially the same, but the number of terms
and associated parameters are different. Thus, we can get different models for the same data.

−5 −4 −3 −2 −1 0 1 2 3

 0

.1

.2

.3

.4

.5

.6

Mean

M
ix

in
g

C
oe

ffi
ci

en
t

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

© 2002 by Chapman & Hall/CRC

308 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 8.1RE 8.1RE 8.1RE 8.17777

This is the second estimated model using adaptive mixtures for the data generated in
Example 8.12. This second model was obtained by re-ordering the data set and then imple-
menting the adaptive mixtures technique. This shows the dependence of the technique on
the order in which the data are presented to the method.

−5 −4 −3 −2 −1 0 1 2 3

 0

.1

.2

.3

.4

.5

.6

Mean

M
ix

in
g

C
oe

ffi
ci

en
t

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 309

2. First determine the component membership of each of the n random
variables. We do this by generating n uniform (0,1) random vari-
ables (). Component membership is determined as follows

If , then is from component density 1.

If , then is from component density 2.

. . .

If , then is from component density c.

3. Generate the from the corresponding using the compo-
nent membership found in step 2.

Note that with this procedure, one could generate random variables from a
mixture of any component densities. For instance, the model could be a mix-
ture of exponentials, betas, etc.

Example 8.13
Generate a random sample of size n from a finite mixture estimate of the Old
Faithful Geyser data (geyser). First we have to load up the data and build a
finite mixture model.

load geyser
% Expects rows to be observations.
data = geyser';
% Get the finite mixture.
% Use a two term model.
% Set initial model to means at 50 and 80.
muin = [50, 80];
% Set mixing coefficients equal.
piesin = [0.5, 0.5];
% Set initial variances to 1.
varin = [1, 1];
max_it = 100;
tol = 0.001;
% Call the finite mixtures.
[pies,mus,vars]=...
 csfinmix(data,muin,varin,piesin,max_it,tol);

Now generate some random variables according to this estimated model.

% Now generate some random variables from this model.
% Get the true model to generate data from this.
n = 300;
x = zeros(n,1);

Ui

0 U≤ i p1< Xi

p1 U≤ i p1 p2+< Xi

pj U≤ i

j 1=

c 1–

∑ 1≤ Xi

Xi gi x;θ i()

© 2002 by Chapman & Hall/CRC

310 Computational Statistics Handbook with MATLAB

% Now generate 300 random variables. First find
% the number that fall in each one.
r = rand(1,n);
% Find the number generated from component 1.
ind = length(find(r <= pies(1)));
% Create some mixture data. Note that the
% component densities are normals.
x(1:ind) = randn(ind,1)*sqrt(vars(1)) + mus(1);
x(ind+1:n) = randn(n-ind,1)*sqrt(vars(2)) + mus(2);

We can plot density histograms to compare the two data sets. These are
shown in Figure 8.18. Not surprisingly, they look similar, but different. The
user is asked to explore this further in the exercises.
�

FFFFIIIIGUGUGUGURE 8.1RE 8.1RE 8.1RE 8.18888

Histogram density estimates of the Old Faithful geyser data. The one on the right shows
the estimate from the data that was sampled from the finite mixture density estimate of the
original data.

40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Original Geyser Data

40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Data Generated from the Estimate

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 311

8.6 MATLAB Code

The MATLAB Statistics Toolbox does not have any functions for nonparamet-
ric density estimation. The functions it has for estimating distribution param-
eters (e.g., mle , normfit , expfit , betafit, etc.) can be used for
parametric density estimation. The standard MATLAB package has func-
tions for frequency histograms, as explained in Chapter 5.

We provide several functions for nonparametric density estimation with
the Computational Statistics Toolbox. These are listed in Table 8.4.

8.7 Further Reading

The discussion of histograms, frequency polygons and averaged shifted his-
tograms presented in this book follows that of Scott [1992]. Scott’s book is an
excellent resource for univariate and multivariate density estimation, and it
describes many applications of the techniques. It includes a comprehensive
treatment of the underlying theory on selecting smoothing parameters, ana-

TTTTAAAABBBBLLLLEEEE 8.48.48.48.4

List of Functions from Chapter 8 Included in the Computational Statistics
Toolbox

Purpose MATLAB Function

These provide a bivariate histogram. cshist2d
cshistden

This returns a frequency polygon density
estimate.

csfreqpoly

This function returns the Averaged
Shifted Histogram.

csash

These functions perform kernel density
estimation.

cskernnd
cskern2d

Create plots csdfplot
csplotuni

Functions for finite and adaptive
mixtures

csfinmix
csadpmix

© 2002 by Chapman & Hall/CRC

312 Computational Statistics Handbook with MATLAB

lyzing the performance of density estimates in terms of the asymptotic mean
integrated squared error, and also addresses high dimensional data.

The summary book by Silverman [1986] provides a relatively non-theoret-
ical treatment of density estimation. He includes a discussion of histograms,
kernel methods and others. This book is readily accessible to most statisti-
cians, data analysts or engineers. It contains applications and computational
details, making the subject easier to understand.

Other books on density estimation include Tapia and Thompson [1978],
Devroye and Gyorfi [1985], Wand and Jones [1995], and Simonoff [1996]. The
Tapia and Thompson book offers a theoretical foundation for density estima-
tion and includes a discussion of Monte Carlo simulations. The Devroye and
Gyorfi text describes the underlying theory of density estimation using the

 (absolute error) viewpoint instead of (squared error). The books by
Wand and Jones and Simonoff look at using kernel methods for smoothing
and exploratory data analysis.

A paper by Izenman [1991] provides a comprehensive review of many
methods in univariate and multivariate density estimation and includes an
extensive bibliography. Besides histograms and kernel methods, he discusses
projection pursuit density estimation [Friedman, Stuetzle, and Schroeder,
1984], maximum penalized likelihood estimators, sieve estimators, and
orthogonal estimators.

For the reader who would like more information on finite mixtures, we rec-
ommend Everitt and Hand [1981] for a general discussion of this topic. The
book provides a summary of the techniques for obtaining mixture models
(estimating the parameters) and illustrates them using applications. That text
also discusses ways to handle the problem of determining the number of
terms in the mixture and other methods for estimating the parameters. It is
appropriate for someone with a general statistics or engineering background.
For readers who would like more information on the theoretical details of
finite mixtures, we refer them to McLachlan and Basford [1988] or Tittering-
ton, Smith and Makov [1985]. A recent book by McLachlan and Peel [2000]
provides many examples of finite mixtures, linking them to machine learn-
ing, data mining, and pattern recognition.

The EM algorithm is described in the text by McLachlan and Krishnan
[1997]. This offers a unified treatment of the subject, and provides numerous
applications of the EM algorithm to regression, factor analysis, medical imag-
ing, experimental design, finite mixtures, and others.

For a theoretical discussion of the adaptive mixtures approach, the reader
is referred to Priebe [1993, 1994]. These examine the error in the adaptive mix-
tures density estimates and its convergence properties. A recent paper by
Priebe and Marchette [2000] describes a data-driven method for obtaining
parsimonious mixture model estimates. This methodology addresses some
of the problems with the adaptive/finite mixtures approach: 1) that adaptive
mixtures is not designed to yield a parsimonious model and 2) how many
terms or component densities should be used in a finite mixture model.

L1 L2

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 313

Solka, Poston, and Wegman [1995] extend the static dF plot to a dynamic
one. References to MATLAB code are provided in this paper describing a
dynamic view of the adaptive mixtures and finite mixtures estimation pro-
cess in time (i.e., iterations of the EM algorithm).

© 2002 by Chapman & Hall/CRC

314 Computational Statistics Handbook with MATLAB

Exercises

8.1. Create a MATLAB function that will return the value of the histogram
estimate for the probability density function. Do this for the 1-D case.

8.2. Generate a random sample of data from a standard normal. Construct
a kernel density estimate of the probability density function and verify
that the area under the curve is approximately 1 using trapz.

8.3. Generate 100 univariate normals and construct a histogram. Calculate
the MSE at a point using Monte Carlo simulation. Do this for
varying bin widths. What is the better bin width? Does the sample
size make a difference? Does it matter whether is in the tails or
closer to the mean? Repeat this experiment using the absolute error.
Are your conclusions similar?

8.4. Generate univariate normal random variables. Using the Normal Ref-
erence Rules for h, construct a histogram, a frequency polygon and a
kernel estimate of the data. Estimate the MSE at a point using
Monte Carlo simulation.

8.5. Generate a random sample from the exponential distribution. Con-
struct a histogram using the Normal Reference Rule. Using Monte
Carlo simulation, estimate the MISE. Use the skewness factor to adjust
h and re-estimate the MISE. Which window width is better?

8.6. Use the snowfall data and create a MATLAB movie that shows
how 1-D histograms change with bin width. See help on movie for
information on how to do this. Also make a movie showing how
changing the bin origin affects the histogram.

8.7. Repeat Example 8.2 for bin widths given by the Freedman-Diaconis
Rule. Is there a difference in the results? What does the histogram
look like if you use Sturge’s Rule?

8.8. Write a MATLAB function that will return the value of a bivariate
histogram at a point, given the bin counts, the sample size, and the
window widths.

8.9. Write a MATLAB function that will evaluate the cumulative distribu-
tion function for a univariate frequency polygon. You can use the
trapz, quad, or quadl functions.

8.10. Load the iris data. Create a matrix by concatenating the
first two columns of each species. Construct and plot a frequency
polygon of these data. Do the same thing for all possible pairs of
columns. You might also look at a contour plot of the frequency
polygons. Is there evidence of groups in the plots?

x0

x0

x0

150 2×

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 315

8.11. In this chapter, we showed how you could construct a kernel density
estimate by placing a weighted kernel at each data point, evaluating
the kernels over the domain, and then averaging the n curves. In that
implementation, we are looping over all of the data points. An alter-
native implementation is to loop over all points in the domain where
you want to get the value of the estimate, evaluate a weighted kernel
at each point, and take the average. The following code shows you
how to do this. Implement this using the Buffalo snowfall data.
Verify that this is a valid density by estimating the area under the
curve.

load snowfall
x = 0:140;
n = length(snowfall);
h = 1.06*sqrt(var(snowfall))*n^(-1/5);
fhat = zeros(size(x));
% Loop over all values of x in the domain
% to get the kernel evaluated at that point.
for i = 1:length(x)
xloc = x(i)*ones(1,n);
% Take each value of x and evaluate it at
% n weighted kernels -
% each one centered at a data point, then add them up.
arg = ((xloc-snowfall)/h).^2;
fhat(i) = (sum(exp(-.5*(arg)))/(n*h*sqrt(2*pi)));

end

8.12. Write a MATLAB function that will construct a kernel density esti-
mate for the multivariate case.

8.13. Write a MATLAB function that will provide the finite mixture den-
sity estimate at a point in d dimensions.

8.14. Implement the univariate adaptive mixtures density estimation pro-
cedure on the Buffalo snowfall data. Once you have your initial
model, use the EM algorithm to refine the estimate.

8.15. In Example 8.13, we generate a random sample from the kernel
estimate of the Old Faithful geyser data. Repeat this example to
obtain a new random sample of geyser data from the estimated
model and construct a new density estimate from the second sample.
Find the integrated squared error between the two density estimates.
Does the error between the curves indicate that the second random
sample generates a similar density curve?

8.16. Say we have a kernel density estimate where the kernel used is a
normal density. If we put this in the context of finite mixtures, then
what are the values for the component parameters () in the
corresponding finite mixture?

pi, µi, σ i
2

© 2002 by Chapman & Hall/CRC

316 Computational Statistics Handbook with MATLAB

8.17. Repeat Example 8.12. Plot the curves from the estimated models.
What is the ISE between the two estimates? Use the iterative EM
algorithm on both models to refine the estimates. What is the ISE after
you do this? What can you say about the two different models? Are
your conclusions different if you use the IAE?

8.18. Write a MATLAB function that will generate random variables
(univariate or multivariate) from a finite mixture of normals.

8.19. Using the method for generating random variables from a finite
mixture that was discussed in this chapter, develop and implement
an algorithm for generating random variables based on a kernel den-
sity estimate.

8.20. Write a function that will estimate the MISE between two functions.
Convert it to also estimate the MIAE between two functions.

8.21. Apply some of the univariate density estimation techniques from
this chapter to the forearm data.

8.22. The elderly data set contains the height measurements (in centi-
meters) of 351 elderly females [Hand, et al., 1994]. Use some of the
univariate density estimation techniques from this chapter to explore
the data. Is there evidence of bumps and modes?

8.23. Apply the multivariate techniques of this chapter to the nfl data
[Csorgo and Welsh, 1989; Hand, et al., 1994]. These data contain bivari-
ate measurements of the game time to the first points scored by
kicking the ball between the end posts (), and the game time to
the first points scored by moving the ball into the end zone ().
The times are in minutes and seconds. Plot your results.

X1

X2

© 2002 by Chapman & Hall/CRC

	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 8: Probability Density Estimation
	8.1 Introduction
	8.2 Histograms
	1-D Histograms
	Example 8.1
	Example 8.2

	Multivariate Histograms
	Frequency Polygons
	Example 8.3
	Example 8.4

	Averaged Shifted Histograms
	Example 8.5

	8.3 Kernel Density Estimation
	Univariate Kernel Estimators
	Example 8.6

	Multivariate Kernel Estimators
	Example 8.7

	8.4 Finite Mixtures
	Univariate Finite Mixtures
	Example 8.8

	Visualizing Finite Mixtures
	Example 8.9

	Multivariate Finite Mixtures
	Example 8.10

	EM Algorithm for Estimating the Parameters
	Example 8.11

	Adaptive Mixtures
	Example 8.12

	8.5 Generating Random Variables
	Example 8.13

	8.6 MATLAB Code
	8.7 Further Reading
	Exercises

