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Preface

The Probabilistic Method has recently been developed intensively and became one
of the most powerful and widely used tools applied in Combinatorics. One of
the major reasons for this rapid development is the important role of randomness in
Theoretical Computer Science, a field which is recently the source of many intriguing
combinatorial problems.

The interplay between Discrete Mathematics and Computer Science suggests an
algorithmic point of view in the study of the Probabilistic Method in Combinatorics
and this is the approach we tried to adopt in this book. The manuscript thus includes a
discussion of algorithmic techniques together with a study of the classical method as
well as the modern tools applied in it. The first part of the book contains a description
of the tools applied in probabilistic arguments, including the basic techniques that
use expectation and variance, as well as the more recent applications of Martingales
and Correlation Inequalities. The second part includes a study of various topics in
which probabilistic techniques have been successful. This part contains chapters on
discrepancy and random graphs, as well as on several areas in Theoretical Computer
Science; Circuit Complexity , Computational Geometry, and Derandomization of
randomized algorithms. Scattered between the chapters are gems described under
the heading "The Probabilistic Lens". These are elegant proofs that are not necessarily
related to the chapters after which they appear and can be usually read separately.

The basic Probabilistic Method can be described as follows: in order to prove
the existence of a combinatorial structure with certain properties, we construct an
appropriate probability space and show that a randomly chosen element in this space
has the desired properties with positive probability. This method has been initiated
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viii PREFACE

by Paul Erdds, who contributed so much to its development over the last fifty years,
that it seems appropriate to call it "The Erdés Method". His contribution cannot be
measured only by his numerous deep results in the subject, but also by his many
intriguing problems and conjectures that stimulated a big portion of the research in
the area.

It seems impossible to write an encyclopedic book on the Probabilistic Method;
too many recent interesting results apply probabilistic arguments, and we do not even
try to mention all of them. Our emphasis is on methodology, and we thus try to
describe the ideas, and not always to give the best possible results if these are too
technical to allow a clear presentation. Many of the results are asymptotic, and we
use the standard asymptotic notation: for two functions f and g, we write f = O(g)
if f < ¢g for all sufficiently large values of the variables of the two functions, where
¢ is an absolute positive constant. We write f = Q(g) if g = O(f) and f = ©(g) if
f=0(g) and f = Q(g). If the limit of the ratio f/g tends to zero as the variables
of the functions tend to infinity we write f = o(g). Finally, f ~ g denotes that
f=(1+0(l))g, i.e., that f/g tends to 1 when the variables tend to infinity. Each
chapter ends with a list of exercises. The more difficult ones are marked by a ().
The exercises, which have been added to this new edition of the book, enable the
reader to check his/her understanding of the material, and also provide the possibility
of using the manuscript as a textbook.

Besides these exercises, the second edition contains several improved results
and covers various topics that have not been discussed in the first edition. The
additions include a continuous approach to discrete probabilistic problems described
in Chapter 3, various novel concentration inequalities introduced in Chapter 7, a
discussion of the relation between discrepancy and VVC-dimension in Chapter 13 and
several combinatorial applications of the entropy function and its properties described
in Chapter 14. Further additions are the final two probabilistic lenses and the new
extensive appendix on Paul Erdés, his papers, conjectures and personality.

It is a special pleasure to thank our wives, Nurit and Mary Ann. Their patience,
understanding and encouragment have been a key-ingredient in the success of this
enterprise.

NoOGA ALON, JOEL H. SPENCER
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The Basic Method

What you need is that your brain is open.
— Paul Erd6s

1.1 THE PROBABILISTIC METHOD

The probabilistic method is a powerful tool in tackling many problems in discrete
mathematics. Roughly speaking, the method works as follows: Trying to prove thata
structure with certain desired properties exists, one defines an appropriate probability
space of structures and then shows that the desired properties hold in this space with
positive probability. The method is best illustrated by examples. Here isa simple one.
The Ramsey-number R(k, £) is the smallest integer » such that in any two-coloring
of the edges of a complete graph on n vertices K,, by red and blue, either there is a
red Ky, (i.e., acomplete subgraph on k& vertices all of whose edges are colored red) or
there is a blue K,. Ramsey (1929) showed that R(k, £) is finite for any two integers
k and £. Let us obtain a lower bound for the diagonal Ramsey numbers R(k, k).

Proposition 1.1.1 If (%) .91=(3) < 1then R(k, k) > n. Thus R(k, k) > 2/2] for
all k> 3.

Proof. Consider a random two-coloring of the edges of K,, obtained by coloring
each edge independently either red or blue, where each color is equally likely. For
any fixed set R of k vertices, let Ar be the event that the induced subgraph of K ,, on
R is monochromatic (i.e., that either all its edges are red or they are all blue). Clearly,

1



2 THE BASIC METHOD

Pr(Ag) = 91-(3), Since there are (%) possible choices for R, the probability

that at least one of the events Ar occurs is at most (2)21‘(2) < 1. Thus, with
positive probability, no event A g occurs and there is a two-coloring of K,, withouta

monochromatic Ky, i.e., R(k, k) > n. Note that if & > 3 and we take n = |2%/2]
k
then (:)21—('5) < zlkﬁ . ;Tk/z < 1and hence R(k, k) > |2%/2] forallk > 3. B

This simple example demonstrates the essence of the probabilistic method. To
prove the existence of a good coloring we do not present one explicitly, but rather
show, in a non-constructive way, that it exists. This example appeared in a paper
of P. Erd6s from 1947. Although Szele applied the probabilistic method to another
combinatorial problem, mentioned in Chapter 2, already in 1943, Erd 8s was certainly
the first one who understood the full power of this method and has been applying it
successfully over the years to numerous problems. One can, of course, claim that the
probability is not essential in the proof given above. An equally simple proof can be
described by counting; we just check that the total number of two-colorings of K ,, is
bigger than the number of those containing a monochromatic K.

Moreover, since the vast majority of the probability spaces considered in the
study of combinatorial problems are finite spaces, this claim applies to most of
the applications of the probabilistic method in discrete mathematics. Theoretically,
this is, indeed, the case. However, in practice, the probability is essential. It
would be hopeless to replace the applications of many of the tools appearing in this
book, including, e.g., the second moment method, the Lovasz Local Lemma and the
concentration via martingales by counting arguments, even when these are applied
to finite probability spaces.

The probabilistic method has an interesting algorithmic aspect. Consider, for
example, the proof of Proposition 1.1.1 that shows that there is an edge two-coloring
of K,, without a monochromatic K;1,g,». Can we actually find such a coloring?
This question, as asked, may sound ridiculous; the total number of possible colorings
is finite, so we can try them all until we find the desired one. However, such a

procedure may require 2(%) steps; an amount of time which is exponential in the size
(= (Z)) of the problem. Algorithms whose running time is more than polynomial
in the size of the problem are usually considered unpractical. The class of problems
that can be solved in polynomial time, usually denoted by P (see, e.g., Aho, Hopcroft
and Ullman (1974) ), is, in a sense, the class of all solvable problems. In this
sense, the exhaustive search approach suggested above for finding a good coloring
of K, is not acceptable, and this is the reason for our remark that the proof of
Proposition 1.1.1 is non-constructive; it does not suply a constructive, efficient and
deterministic way of producing a coloring with the desired properties. However, a
closer look at the proof shows that, in fact, it can be used to produce, effectively, a
coloring which is very likely to be good. This is because for large k, if n = |2%/2]

1+k 1+k .
then (%) - 21-() < 222 (2 )F < 222 « 1. Hence, a random coloring of
K, is very likely not to contain a monochromatic Kz10g,. This means that if,
for some reason, we must present a two coloring of the edges of K924 Without a

monochromatic Kz we can simply produce a random two-coloring by flipping a
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fair coin (*9?*) times. We can then hand the resulting coloring safely; the probability

that it contains a monochromatic Ko is less than g—;j; probably much smaller than
our chances of making a mistake in any rigorous proof that a certain coloring is good!
Therefore, in some cases the probabilistic, non-constructive method, does supply
effective probabilistic algorithms. Moreover, these algorithms can sometimes be
converted into deterministic ones. This topic is discussed in some detail in Chapter
15.

The probabilistic method is a powerful tool in Combinatorics and in Graph Theory.
It is also extremely useful in Number Theory and in Combinatorial Geometry. More
recently it has been applied in the development of efficient algorithmic techniques and
in the study of various computational problems. In the rest of this chapter we present
several simple examples that demonstrate some of the broad spectrum of topics in
which this method is helpful. More complicated examples, involving various more
delicate probabilistic arguments, appear in the rest of the book.

1.2 GRAPH THEORY

Atournamenton a set V of n players is an orientation T' = (V, E) of the edges of the
complete graph on the set of vertices V. Thus, for every two distinctelements z and y
of V either (z, y) or (y, ) isin E, but notboth. The name tournament is natural, since
one can think of the set V' as a set of players in which each pair participates in a single
match, where (z, y) is in the tournament iff z beats y. We say that T" has the property
Sy, if for every set of & players there is one who beats them all. For example, a directed
triangle T3 = (V, E), where V = {1,2,3}and E = {(1,2),(2,3),(3,1)}, has Si.
Is it true that for every finite &k there is a tournament 7' (on more than & vertices)
with the property S3? As shown by Erdés (1963b) , this problem, raised by Schiitte,
can be solved almost trivially by applying probabilistic arguments. Moreover, these
arguments even supply a rather sharp estimate for the minimum possible humber of
vertices in such a tournament. The basic (and natural) idea is that if » is sufficiently
large as a function of k&, then a random tournamenton the set V- = {1,...,n} of n
players is very likely to have property Si. By a random tournament we mean here a
tournament 7" on V' obtained by choosing, for each 1 < ¢ < j < n, independently,
either the edge (¢, j) or the edge (j, 2), where each of these two choices is equally

likely. Observe that in this manner, all the 2 (3) possible tournaments on V" are equally
likely, i.e., the probability space considered is symmetric. It is worth noting that we
often use in applications symmetric probability spaces. In these cases, we shall
sometimes refer to an element of the space as a random element, without describing
explicitly the probability distribution. Thus, for example, in the proof of Proposition
1.1.1 random 2-edge-colorings of K, were considered, i.e., all possible colorings
were equally likely. Similarly, in the proof of the next simple result we study random
tournamentson V.
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Theorem 1.2.1 If (?)(1 — 27%)»~* < 1 then there is a tournament on n vertices
that has the property Sy.

Proof. Consider a random tournament on the set V' = {1,...,n}. For every fixed
subset K of size k of V, let Ax be the event that there is no vertex which beats all
the members of K. Clearly Pr(Ax) = (1 — 27%)"=*. This is because for each
fixed vertex v € V — K, the probability that v does not beat all the members of K is
1 — 2% and all these n — k events corresponding to the various possible choices of
v are independent. It follows that

Pr( \/ AK) < ¥ Pr(4x) = (Z)(l—Tk)"_k <1.

KCV KCV
K=k K=k

Therefore, with positive probability no event A g occurs, i.e., there is a tournament
on n vertices that has the property S;. B
Let f(k) denote the minimum possible number of vertices of a tournament that

has the property S. Since (}) < (%)k and (1 —2-%)n—* < ¢=(n=k)/2" Theorem
1.2.1implies that f(k) < k?-2%- (In2)(1+o(1)). Itis not too difficult to check that
f(1) = 3and f(2) = 7. As proved by Szekeres (cf. Moon (1968)), f(k) > c1-k-2F.
Can one find an explicit construction of tournaments with at most c% vertices
having property Sx? Such a construction is known, but is not trivial; it is described
in Chapter 9.
A dominating set of an undirected graph G = (V, E) isa set U C V such that

every vertex v € V — U has at least one neighbor in U.

Theorem 1.2.2 Let G = (V, E) be a graph on n vertices, with minimum degree

é > 1. Then G has a dominating set of at most » % vertices.

Proof. Let p € [0,1] be, for the moment, arbitrary. Let us pick, randomly and
independently, each vertex of V' with probability p. Let X be the (random) set of all
vertices picked and let Y = Yx be the random set of all vertices in V' — X that do
not have any neighbor in X. The expected value of | X | is clearly np. For each fixed
vertex v € V, Pr(v € Y) = Pr(v and its neighbors are not in X) < (1 — p)?+t.
Since the expected value of a sum of random variables is the sum of their expectations
(even if they are not independent) and since the random variable |Y| can be written
as a sum of n indicator random variables x, (v € V), where x, = 1 ifv € ¥
and x, = 0 otherwise, we conclude that the expected value of | X| + |Y| is at most
np + n(1 — p)’*T1. Consequently, there is at least one choice of X C V such that
|X| + [Yx| < np+n(l —p)’+!. ThesetU = X U Yx is clearly a dominating set
of G whose cardinality is at most this size.

The above argument works for any p € [0,1]. To optimize the result we use
elementary calculus. For convenience we bound 1 — p < e~P (this holds for all
nonnegative p and is a fairly close bound when p is small) to give the simpler bound

|U| < np+ ne P0O+1),
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Take the derivitive of the right hand side with respect to p and set it equal to zero.
The right hand side is minimized at

_In(5+1)
Tos+1

Formally, we set p equal to this value in the first line of the proof. We now have
U| < n220EL a5 claimed. W

Three simple but important ideas are incorporated in the last proof. The first is
the linearity of expectation; many applications of this simple, yet powerful principle
appear in Chapter 2. The second is, maybe, more subtle, and is an example of the
“alteration" principle which is discussed in Chapter 3. The random choice did not
supply the required dominating set U immediately; it only supplied the set X, which
has to be altered a little (by adding to it the set Y x ) to provide the required dominating
set. The third involves the optimal choice of p. One often wants to make a random
choice but is not certain what probability p should be used. The idea is to carry out
the proof with p as a parameter giving a result which is a function of p. Atthe end that
p is selected which gives the optimal result. There is here yet a fourth idea that might
be called asymptotic calculus. We wanted the asymptotics of min np + n(1 — p)?+*
where p ranges over [0, 1]. The actual minimum p = 1 — (6 + 1)~%/? is difficult
to deal with and in many similar cases precise minima are impossible to find in
closed form. Rather, we give away a little bit, bounding 1 — p < e~P, yielding
a clean bound. A good part of the art of the probabilistic method lies in finding
suboptimal but clean bounds. Did we give away too much in this case? The answer
depends on the emphasis for the original question. For § = 3 our rough bound gives
|U| < 0.596n while the more precise calculation gives |U| < 0.496n, perhaps a
substantial difference. For § large both methods give asymptotically » %

It can be easily deduced from the results in Alon (1990b) that the bound in
Theorem 1.2.2 is nearly optimal. A non-probabilistic, algorithmic, proof of this
theorem can be obtained by choosing the vertices for the dominating set one by
one, when in each step a vertex that covers the maximum number of yet uncovered
vertices is picked. Indeed, for each vertex v denote by C(v) the set consisting of v
together with all its neighbours. Suppose that during the process of picking vertices
the number of vertices u that do not lie in the union of the sets C'(v) of the vertices
chosen so far is ». By the assumption, the sum of the cardinalities of the sets C(u)
over all such uncovered vertices u is at least »(6 + 1), and hence, by averaging,
there is a vertex v that belongs to at least (5 + 1)/n such sets C(u). Adding this
v to the set of chosen vertices we observe that the number of uncovered vertices is
now at most #(1 — 21 It follows that in each iteration of the above procedure the
number of uncovered vertices decreases by a factor of 1 — (§ + 1)/n and hence after
737 In(d + 1) steps there will be at most n/(é + 1) yet uncovered vertices which can
now be added to the set of chosen vertices to form a dominating set of size at most
the one in the conclusion of Theorem 1.2.2.

Combining this with some ideas of Podderyugin and Matula, we can obtaina very
efficient algorithm to decide if a given undirected graph on n vertices is, say, % -edge
connected. A cutina graph G = (V, E) is a partition of the set of vertices V' into
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two nonempty disjointsets V. = V3 U V,. If v; € V; and w2 € V3 we say that the
cut separates v; and vz. The size of the cut is the number of edges of G having one
end in V1 and another end in V5. In fact, we sometimes identify the cut with the set
of these edges. The edge-connectivity of G is the minimum size of a cut of G. The
following lemma is due to Podderyugin and Matula (independently).

Lemma1.2.3 LetG = (V, E) be agraph with minimum degree d and let V = V, UV,
be a cut of size smaller than é in G. Then every dominating set U of G has vertices
inV; and in V5.

Proof. Suppose this is false and U C V3. Choose, arbitrarily, a vertex v € V; and
let vy, va, ..., vs be & of its neighbors. For each 4, 1 < ¢ < §, define an edge e; of
the given cut as follows; if v; € V; then e; = {v, v;}, otherwise, v; € V2 and since
U is dominating there is at least one vertex v € U such that {u, v;} is an edge; take
such a u and put e; = {u,v;}. The é edges ey, ..., e; are all distinct and all lie in
the given cut, contradicting the assumption that its size is less than §. This completes
the proof. B

Let G = (V, E) be a graph on n vertices, and suppose we wish to decide if G is
n/2 edge-connected, i.e., if its edge connectivity is at least n/2. Matula showed, by
applying Lemma 1.2.3, that this can be done in time O(n3). By the remark following
the proof of Theorem 1.2.2, we can slightly improve it and get an O(n®/3logn)
algorithm as follows. We first check if the minimum degree é of G is at least n/2. If
not, G is not n/2-edge connected, and the algorithm ends. Otherwise, by Theorem
1.2.2 there is a dominating set U = {u1,...,ux} of G, where k = O(logn), and it
can in fact be found in O(n?)-time. We now find, for each , 2 < 4 < k, the minimum
size s; of a cut that separates u»; from u;. Each of these problems can be solved by
solving a standard network flow problem in time O(n®/3), (see, e.g., Tarjan (1983) .)
By Lemma 1.2.3 the edge connectivity of G is simply the minimum between § and

Iéliélk s;. The total time of the algorithm is O(n®/3logn), as claimed.
2<4<

1.3 COMBINATORICS

A hypergraph is a pair H = (V, E), where V is a finite set whose elements are called
vertices and E is a family of subsets of V', called edges. It is n-uniform if each of
its edges contains precisely » vertices. We say that H has property B, or that it is
2-colorable if there is a 2-coloring of V' such that no edge is monochromatic. Let
m(n) denote the minimum possible number of edges of an n-uniform hypergraph
that does not have property B.

Proposition 1.3.1 [Erdds (1963a) ] Every n-uniform hypergraph with less than 2™ ~*
edges has property B. Therefore m(n) > 271,

Proof. Let H = (V, E) be an n-uniform hypergraph with less than 27~ edges.
Color V randomly by 2 colors. For each edge e € E, let A, be the event that e is
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monochromatic. Clearly Pr(4.) = 2'=™. Therefore

Pr ( V Ae) <> Pr(4,) <1

ecE ecE

and there is a 2-coloring without monochromatic edges. B

In Chapter 3, Section 3.5 we present a more delicate argument, due to Rad-
hakrishnan and Srinivasan, and based on an idea of Beck, that shows that m(n) >
()2 2").

The best known upper bound to m(n) is found by turning the probabilistic argu-
ment “on its head”. Basically, the sets become random and each coloring defines an
event. Fix V with v points, where we shall later optimize v. Let x be a coloring of V'
with e points in one color, 5 = v — a points in the other. Let S C V" be a uniformly
selected n-set. Then

Pr(S is monochromatic under x) = ~%——""~
()

Let us assume v is even for convenience. As (¥) is convex, this expression is

minimized when a = b. Thus

Pr(S is monochromatic under x) > p

where we set

for notational convenience. Now let Sy, ..., S,, be uniformly and independently
chosen n-sets, m to be determined. For each coloring x let A, be the event that none
of the S; are monochromatic. By the independence of the S;

Pr(Ay) <(1-p™
There are 2* colorings so
Pr(VyAy) <2°(1—p)™

When this quantity is less than 1 there exist S1,..., Sy so that no A, holds, i.e.,
S1,...,Sm IS not 2-colorable - and hence m(n) < m.

The asymptotics provide a fairly typical example of those encountered when
employing the probabilistic method. We first use the inequality 1 — p < e ~P. This
is valid for all positive p and the terms are quite close when p is small. When

vin2
p

m=[—-]

then 27(1 — p)™ < 2%e™P™ < 150 m(n) < m. Now we need find v to minimize
v/p. We may interpret p as twice the probability of picking » white balls from
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an urn with »/2 white and v/2 black balls, sampling without replacement. It is
tempting to estimate p by 2="+1, the probability for sampling with replacement.
This approximation would yield m ~ v2™~1(In2). As v gets smaller, however, the
approximation becomes less accurate and, as we wish to minimize m, the tradeoff
becomes essential. We use a second order approximation
2(7’£2) 1—nn_1 v—2i 1-n_—n?/2v
=21 ] —— ~ 2"

(ﬂ) 1=0
as long as v > n®/2, estimating =2 = 1 — £ 4+ O(i3) = ¢~ ++°(2). Elementary
calculus gives v = n?/2 for the optimal value. The evenness of v may require a

change of at most 2 which turns out to be asymptotically negligible. This yields the
following result of Erd6s (1964) :

Theorem 1.3.2

p:

eln2

m(n) < (1+ o(1)) n?om.

Let F = {(Ai, Bi)}:.;1 be a family of pairs of subsets of an arbitrary set. We
call F a (k, £)-system if |A;| = k and |B;| = £forall 1 < i < h, A; N B; = 0 and
A; N B; # ( for all distinct 7, j with 1 < 7,7 < h. Bollobas (1965) proved the
following result, which has many interesting extensions and applications.

Theorem 1.3.3 If F = {(Ai, Bi)}._, isa (k, £)-system then & < (¥14).

h
Proof. Put X = J(A4; U B;) and consider a random order = of X. For each i,

=1
1 <1<k, let X; be the event that all the elements of A; precede all those of B; in
this order. Clearly Pr(X;) = 1/(*1*). Itis also easy to check that the events X; are
pairwise disjoint. Indeed, assume this is false and let 7 be an order in which all the
elements of A; precede those of B; and all the elements of A; precede those of B;.
Without loss of generality we may assume that the last element of A; does not appear
after the last element of A;. But in this case, all elements of A; precede all those of
B;, contradicting the fact that A; N B, # 0. Therefore, all the events X; are pairwise

h h
disjoint, as claimed. It followsthat 1 > Pr ( \/ X;) = 3 Pr(X;) = h- 1/(*}9),
i=1 i=1

completing the proof. B
Theorem 1.3.3 is sharp, as shown by the family F = {(4, X \A): AC X, |A| =
k}, where X = {1,2,...,k + £}.

1.4 COMBINATORIAL NUMBER THEORY

A subset A of an abelian group G is called sum-free if (A + A)N A = 0, i.e., if there
are no a1, az,as € Asuchthata; + a2 = as.
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Theorem 1.4.1 [Erd6s (1965a) ] Every set B = {b4, ..., b, } of n nonzero integers
contains a sum-free subset A of size |[A| > in.

Proof. Let p = 3%k + 2 be a prime, which satisfies p > 2113;?( |b;| and put C =

{k+1,k+2,...,2k +1}. Observe that C is a sum-free subset of the cyclic group
Zy and that Il%ll = Skk—-:—ll > 1. Let us choose at random an integer z, 1 < z < p,
according to a uniform distribution on {1,2,...,p — 1}, and define d4, ..., d, by
d; = zb;(mod p), 0 < d; < p. Trivially, for every fixed ¢, 1 < ¢ < n, as z ranges
over all numbers 1,2,...,p — 1, d; ranges over all nonzero elements of Z, and

hence Pr(d; € C) = I% > 1. Therefore, the expected number of elements &;
such that d; € C is more than n/3. Consequently, there isan z, 1 < z < p and
a subsequence A of B of cardinality |A| > %, such that za(modp) € C for all
a € A. This A is clearly sum-free, since if a; + a2 = a3 for some a1,az,a3 € A
then za, + za2 = zas(mod p), contradicting the fact that C is a sum-free subset of
Zy. This completes the proof. B

In Alon and Kleitman (1990) it is shown that every set of n nonzero elements of
an arbitrary abelian group contains a sum-free subset of more than 2»/7 elements,
and that the constant 2/7 is best possible. The best possible constant in Theorem
1.4.1 is not known.

1.5 DISJOINT PAIRS

The probabilistic method is most striking when it is applied to prove theorems whose
statement does not seem to suggest at all the need for probability. Most of the
examples given in the previous sections are simple instances of such statements. In
this section we describe a (slightly) more complicated result, due to Alon and Frankl
(1985) , which solves a conjecture of Daykin and Erd&s.

Let F be a family of m distinct subsets of X = {1,2,...,n}. Let d(F) denote
the number of disjoint pairs in F, i.e.,

d(F)=|{(F,F): F,F' € F, FNF =0}|.

Daykin and Erdds conjectured that if m = 2(%”)", then, for every fixed 6 > 0,
d(F) = o(m?), as n tends to infinity. This result follows from the following theorem,
which is a special case of a more general result.

Theorem 1.5.1 Let F be a family of m = 2(3+9)" subsets of X = {1,2,...,n},
where § > 0. Then
dF)<m? 7. (1.1)

Proof. Suppose (1.1) is false and pick independently ¢ members A, Ao, ..., A; of
F with repetitions at random, where % is a large positive integer, to be chosen later.
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We will show that with positive probability |[A1 U Az U...U A¢| > n/2 and still
this union is disjoint to more than 2™/2 distinct subsets of X. This contradiction will
establish (1.1).

In fact

Pr(|AiUAU...U4| <n/2) < Yscxsicnyz Pr(Ai C Si=1,...,1)
< 2n(2n/2/2((1/2)+5)n)t — 2n(1—5t) . (12)

Define
v(B)={A€F:BnA=10}.
Clearly
3" o(B) = 2d(F) > 2m?~/2.
BeF
Let Y be a random variable whose value is the number of members B € F which

are disjointto all the 4; (1 < 7 < t). By the convexity of z* the expected value of ¥
satisfies

m m
BeF
1 2d ‘ >
>—-m (ﬂ) > om0 /2 (1.3)
o ™ z
Since Y < m we conclude that
Pr(Y > ml=17/2) > pt97/2 (1.4)

One can check that for ¢ = [1 + 1/8], m'~*"/2 > 27/2 and the right-hand side
of (1.4) is greater than the right-hand side of (1.2). Thus, with positive probability,
|A; UA2U...UA¢| > n/2and still this union is disjoint to more than 2 /2 members
of F. This contradiction implies inequality (1.1). B

1.6 EXERCISES

1. Prove that if there isareal p, 0 < p < 1 such that

(Z)p(z) N (’;)(1 B <1,

then the Ramsey number r(%, ¢) satisfies »(k,t) > n. Using this, show that
r(4,1) > Q(t*/2/(ln1)/?),
2. Suppose n > 4 and let H be an n-uniform hypergraph with at most 4;—;1

edges. Prove that there is a coloring of the vertices of H by 4 colors so that in
every edge all 4 colors are represented.
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(*) Prove that for every two independent, identically distributed real random
variables X and Y,

Prob(|X —Y| <2)<3Prob(|X — Y| <1).

(*) Let G = (V, E) be a graph with n vertices and minimum degree ¢ > 10.
Prove that there is a partition of V' into two disjoint subsets A and B so that
|A| < O(2124) and each vertex of B has at least one neighbor in A and at
least one neighbor in B.

(*) Let G = (V, E) be a graph on » > 10 vertices and suppose that if we add
to G any edge not in G then the number of copies of a complete graph on 10
vertices in it increases. Show that the number of edges of G is at least 8n — 36.

(*) Theorem 1.2.1 asserts that for every integer & > 0 there is a tournament
T = (V, E) with |V| > k such that for every set U of at most k vertices of
Ty, there is a vertex v so that all directed arcs {(v,u): uve U}l arein E.

Show that each such tournament contains at least Q(k2*) vertices.

Let {(4;,B;),1 < i < h} be a family of pairs of subsets of the set of

integers such that |A;| = & for all s and |B;| = I for all ¢, 4; N B; = { and

(AiNB;)U(A; N B;) # B forall i # j. Prove that < ik—;’,ﬂ):i

(Prefix-free codes; Kraft Inequality). Let F be a finite collection of binary
strings of finite lengths and assume no member of F' is a prefix of another one.
Let V; denote the number of strings of length ¢ in . Prove that

2%51.

%

(*) (Uniquely decipherable codes; Kraft-McMillan Inequality). Let F' be a
finite collection of binary strings of finite lengths and assume that no two
distinct concatenations of two finite sequences of codewords result in the same
binary sequence. Let N; denote the number of strings of length ¢ in . Prove

that N
> 2—Z <1

%

Prove that there is an absolute constant ¢ > 0 with the following property.
Let A be an n by n matrix with pairwise distinct entries. Then there is
a permutation of the rows of A so that no column in the permuted matrix
contains an increasing subsequence of length at least c+/n.
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The Erdds-Ko-Rado
Theorem

A family F of sets is called intersecting if A, B € F implies AN B # @. Suppose
n > 2k and let F be an intersecting family of k-element subsets of an n-set, for
definiteness {0, . .., n — 1}. The Erdds-Ko-Rado Theorem is that |F| < (}~1). This
is achievable by taking the family of k-sets containing a particular point. We give a
short proof due to Katona (1972) .

Lemmal For0 < s<mn-—1setA; = {s,s+1,...,s+ k — 1} where addition is
modulo . Then F can contain at most k of the sets A .

Proof. Fix some A, € F. All other sets A, that intersect A, can be partitioned into
k—1pairs{As;_i, As1x—i}, (1 <1i < k—1), and the members of each such pair are
disjoint. The result follows, since F can contain at most one member of each pair. &

Now we prove the Erdés-Ko-Rado Theorem. Leta permutation o of {0, ...,n—1}
and ¢ € {0,...,n — 1} be chosen randomly, uniformly and independently and set
A={o(3),0(:+1),...,0(i+ k — 1)}, addition again modulo ». Conditioning on
any choice of o the Lemma gives Pr[A € F] < k/n. Hence Pr[A € F] < k/n. But
A is uniformly chosen from all k-sets so

ﬁZPr[AEf]zuﬂ
n (k)
and . .
n n —
n<2()- (1)
|

12



Linearity of Expectation

The search for truth is more precious than its possession.
— Albert Einstein

2.1 BASICS

Let X;,...,X, be random variables, X = ¢;X; + ... + ¢, X,,. Linearity of
Expectation states that

E[X] = 1E[X1] + ...+ cn E[Xn]

The power of this principle comes from there being no restrictions on the dependence
or independence of the X;. In many instances E[X] can be easily calculated by a
judicious decomposition into simple (often indicator) random variables X ;.

Let o be a random permutation on {1, ..., n}, uniformly chosen. Let X (o) be
the number of fixed points of o. To find E[X] we decompose X = X1+ ...+ X,
where X; is the indicator random variable of the event o(¢) = 1. Then

E[X;] = Pr[o(3) = 1] = %
so that

1 1
E[X]:;—i—...—l—;:l.

In applications we often use that there is a point in the probability space for which
X > E[X] and a point for which X < E[X]. We have selected results with a

13
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purpose of describing this basic methodology. The following result of Szele (1943) ,
is oftimes considered the first use of the probabilistic method.

Theorem 2.1.1 There is a tournament T' with n players and at least n!2~(»~1)
Hamiltonian Paths.

Proof. Inthe random tournament let X' be the number of Hamiltonian paths. For each
permutation ¢ let X, be the indicator random variable for ¢ giving a Hamiltonian
path - i.e., satisfying (o(i),c(i + 1)) € Tfor1 <i < n. Then X = 3 X, and

B[X] =) E[X,] =nl2""1)

Thus some tournament has at least £[X] Hamiltonian paths. B

Szele conjectured that the maximum possible number of Hamiltonian paths in a
tournament on  players is at most —2<~. This was proved in Alon (1990a) and
is presented in the Probabilistic Lens: Hamiltonian Paths, (following Chapter 4).

2.2 SPLITTING GRAPHS

Theorem 2.2.1 Let G = (V, E) be a graph with = vertices and e edges. Then G
contains a bipartite subgraph with at least e/2 edges.

Proof. Let T C V be a random subset given by Pr[z € T] = 1/2, these choices
mutually independent. Set B = V' — T'. Call an edge {z, y} crossing if exactly one
of z,yare in T. Let X be the number of crossing edges. We decompose

X= Y Xy
{z,y}cE
where X, is the indicator random variable for {z, y} being crossing. Then
E[Xgzy] =1/2
as two fair coin flips have probability 1/2 of being different. Then
€
BlX]= Y BlXyl=3
{z,y}cE

Thus X > e/2 for some choice of T" and the set of those crossing edges form a
bipartite graph. &
A more subtle probability space gives a small improvement.

Theorem 2.2.2 If G has 2n vertices and e edges then it contains a bipartite subgraph

with at least 52+ edges. If G has 2n 4 1 vertices and e edges then it contains a

R . - e(n+1
bipartite subgraph with at least én—ﬂl edges.
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Proof. When G has 2n vertices let T be chosen uniformly from among all n-element
subsets of V. Any edge {z, y} now has probability ;-2 of being crossing and the
proof concludes as before. When G has 2n + 1 vertices choose T uniformly from
among all n-element subsets of V' and the proof is similar. B

Here is a more complicated example in which the choice of distribution requires
apreliminary lemma. Let V- = V; U...U V, where the V; are disjoint sets of size n.
Leth : [V]F — {—1, 41} be a two-coloring of the k-sets. A k-set E is crossing if it
contains precisely one point from each V;. For S C V set A(S) = > h(E), the sum
overall k-sets E C S.

Theorem 2.2.3 Suppose h(E) = +1 for all crossing k-sets E. Then there is an
S C V for which
|B(S)| > cxn

Here ¢, is a positive constant, independent of .

Lemma 2.2.4 Let P, denote the set of all homogeneous polynomials f(p1, ..., px)
of degree & with all coefficients having absolute value at most one and p 1p2 - - - px
having coefficient one. Then for all f € Py, there exist py, ..., px. € [0, 1] with

|f(P1a---,Pk)| Z Cg

Here ¢, is positive and independent of f.

Proof. Set

M(f): max |f(p1a"'apk)|-
Plv---kaE[O,l]

For f € Py, M(f) > 0 as f is not the zero polynomial. As Py is compact and
M : P, — Ris continuous, M must assume its minimum c;. B

Proof.[Theorem 2.2.3] Define a random S C V by setting
PI‘[:L‘.ES]:pi, z eV,
these choices mutually independent, p; to be determined. Set X = h(S). For each

k-set E set B it
WME) fECS
Ap = { 0 otherwise

Say E has type (a1, . ..,ax) if [ENVi| = a;, 1 <3 < k. For these E
E[Xg) = h(E)Pr[E C S] = h(E)p}* - - - pi*

Combining terms by type

EX]= Y ppeepp > h(E).

ait...tax=k E of type (ay,...,ax)
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Whena, =...=a; = 1all A(E) = 1 by assumption so

> h(E) = n*.

£ of type (1,...,1)

For any other type there are fewer than n* terms, each +1, so

| Z h(E)| < n*.

E of type (ay,...,ax)

Thus
E[X] = ’I’ka(p]_, . 'apk)

where f € Py, as defined by Lemma 2.2.4.
Now select pq, ..., px € [0, 1] with | f(p1,...,p%)| > cx. Then

B[IX[) > E[X] > cpnt.

Some particular value of | X | must exceed or equal its expectation. Hence there is a
particular set S C V with
|1 X| = |h(S)| > cxn*

|

Theorem 2.2.3 has an interesting application to Ramsey Theory. It is known (see
Erdds (1965b) ) that given any coloring with 2 colors of the k-sets of an n-set there
exist k disjoint m-sets, m = ©((Inn)'/(-1)), so that all crossing k-sets are the
same color. From Theorem 2.2.3 there then exists a set of size ©((In n)*/(#~1)), at
least 2 + €, of whose k-sets are the same color. This is somewhat surprising since it
is known that there are colorings in which the largest monochromatic set has size at
most the k& — 2-fold logarithm of =.

2.3 TWO QUICKIES

Linearity of Expectation sometimes gives very quick results.

Theorem 2.3.1 There is a two-coloring of K,, with at most

(Z)zl—(:)

monochromatic K.

Proof.[outline] Take a random coloring . Let X be the number of monochromatic
K, and find E[X]. For some coloring the value of X is at most this expectation. l

In Chapter 15 it is shown how such a coloring can be found deterministically and
efficiently.
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Theorem 2.3.2 There is a two-coloring of K, , with at most

WINES

monochromatic K, s.

Proof.[outline] Take a random coloring . Let X be the number of monochromatic
K, and find E[X]. For some coloring the value of X is at most this expectation. ll

2.4 BALANCING VECTORS

The next result has an elegant nonprobabilistic proof, which we defer to the end of
this chapter. Here |v] is the usual Euclidean norm.

Theorem 2.4.1 Letvy,...,v, € R™, all |v;] = 1. Then there exist ey, ..., e, = +1
so that
lervs + ...+ envn| < v/,

and also there exist €1, . . ., €, = £1 so that

lervi + ...+ €nvn| > /1.

Proof. Letey,..., €, be selected uniformly and independently from {—1, +1%}. Set

X = |evs + ...+ €nvy|?

Then n
X = ZZQ’E]'W vj
=1 j5=1
Thus n n
EX]= ZZW vj Eleie; ]
=1 j5=1

When i # j, Eleic;] = Ele;)Ele;] = 0. Wheni = j, €2 = 150 E[eZ] = 1. Thus

i =

E[X] :Zvi-vi =n

=1

Hence there exist specific €1, ...,e, = +1 with X > n and with X < n. Taking
square roots gives the theorem. l

The next result includes part of Theorem 2.4.1 as a linear translate of the p; =
... =pp = 1/2 case.
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Theorem 2.4.2 Let vy,...,v, € R™, all |v;] < 1. Let py,..
arbitrary and set w = p1v1 + ... + ppv,. Then there exist ey, ..

that, setting v = e1v1 + ... + €n vy,

Nz

|lw—v| < *—.
- 2

Proof. Pick ¢; independently with

P € [0,1] be
. €&n € {0,1} s0

Prle; = 1] = pi, Prle; =0l =1—1p;

The random choice of ¢; gives a random v and a random variable
X =|w—v|?

We expand

so that

El(pi—e)’l=pi(pi — 1)* + (1 —pi)p} = pi(1 — i) <

NN

(E[(pi — €i)?] = Var[e], the variance to be discussed in Chapter 4.) Thus

n

n 1 n
BIX] =Y m(l-p)lul < 7Y [l < G
i=1

=1

and the proof concludes as in that of Theorem 2.4.1. B

2.5 UNBALANCING LIGHTS

Theorem 2.5.1 Let a;; = £1 for 1 < 4,5 < n. Then there exist z;,y; = +£1,

1< 1,7 < nsothat

YD aiziy; > (\/ng o(1))n3/2.

=1 j5=1
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This result has an amusing interpretation. Let an n x n array of lights be given,
each either on (a;; = +1) or off (a;; = —1). Suppose for each row and each column
there is a switch so that if the switch is pulled (z; = —1 for row ¢ and y; = —1 for
column 3) all of the lights in that line are “switched”: on to off or off to on. Then
for any initial configuration it is possible to perform switches so that the number of

lights on minus the number of lights off is at least ( \/§+ o(1))n/2,

Proof.[Theorem 2.5.1] Forget the =’s. Let y1,...,y, = %1 be selected indepen-
dently and uniformly and set
R; = Z QijYj
j=1

R=) |Ri
=1

Fix <. Regardless of a;;, aijy; is +1 or —1 with probability 1/2 and their values (over
4) are independent. (l.e., whatever the i-th row is initially after random switching
it becomes a uniformly distributed row, all 2™ possibilities equally likely.) Thus R;
has distribution Sy, - the distribution of the sum of n independent uniform {—1,1}
random variables - and so

E[|Ri|] = E[|Sa]] = (\/g+ o(1))v/n.

These asymptotics may be found by estimating S,, by «/nN where N is standard
normal and using elementary calculus. Alternatively, a closed form

B[|Su[] = n2"™" (L(nn—_li/%)

may be derived combinatorially (a problem in the 1974 Putnam competition!) and
the asymptotics follows from Stirling’s formula.
Now apply Linearity of Expectation to R:

IR =) ElR = (@ + o(1)n2.

=1

There exist y1, ...,y = x1 with R at least this value. Finally, pick z; with the
same sign as R; so that

Another result on unbalancing lights appears in the Probabilistic Lens: Unbalanc-
ing Lights, (following Chapter 12.)
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2.6 WITHOUT COIN FLIPS

A nonprobabilistic proof of Theorem 2.2.1 may be given by placing each vertex in
either T" or B sequentially. At each stage place z in either T" or B so that at least half
of the edges from & to previous vertices are crossing. With this effective algorithm
at least half the edges will be crossing.

There is also a simple sequential algorithm for choosing signs in Theorem 2.4.1
When the sign for v; is to be chosen a partial sum w = e€3v3 + ...+ €_1v;_1 has
been calculated. Now if it is desired that the sum be small select ¢; = +1 so that
€;v; makes an acute (or right) angle with w. If the sum need be big make the angle
obtuse or right. In the extreme case when all angles are right angles Pythagoras and
induction give that the final w has norm 4/n, otherwise it is either less than +/n or
greater than 4/n as desired.

For Theorem 2.4.2 a greedy algorithm produces the desired ¢;. Givenwvy, ..., v, €
R™ p1,...,pn € [0, 1] suppose ey, ...,es—1 € {0, 1} have already been chosen. Set
wy_1 = 3071 (pi — €)vi, the partial sum. Select e, so that

Ws = We—1 + (ps - 65)’!)5 = Z(pz - fi)vi
=1

has minimal norm. A random ¢, € {0, 1} chosen with Pr[e, = 1] = p, gives

E[|ws|2] = |'ws—1|2 + 2ws—1 . USE[ps - fs] + |Us|2E(ps - 65)2
== |ws—1|2+ps(]—_ps)|vs|2 (21)

so for some choice of ¢, € {0, 1},
|ws|2 S |'w.&s—1|2 + ps(]- - ps)|vs|2-
As this holds for all 1 < s < n (taking wo = 0), the final

n
wal® <D pi(1— pi)luil*.

=1
While the proofs appear similar, a direct implementation of the proof of Theorem 2.4.2
tofind e, .. ., e, might take an exhaustive search with exponential time. Inapplying

the greedy algorithm at the s-th stage one makes two calculations of |w |2, depending
on whether e, = 0 or 1, and picks that e, giving the smaller value. Hence there are
only a linear number of calculations of norms to be made and the entire algorithm
takes only quadratic time. In Chapter 15 we discuss several similar examples in a
more general setting.

2.7 EXERCISES

1. Suppose n > 2 and let H = (V, E) be an n-uniform hypergraph with | E| =
4»—1 edges. Show that there is a coloring of V' by 4 colors so that no edge is
monochromatic.
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. Prove that there is a positive constant ¢ so that every set A of n nonzero reals
containsa subset B C A of size |B| > cn so thatthere are no b1, b, b3, bs € B
satisfying

by + 2by = 2b3 + 2b,.

. Prove that every set of n non-zero real numbers contains a subset A of strictly
more than n/3 numbers such that there are no a1, a2,a3 € A satisfying
a1 + az — as.

. Suppose p > n > 10m?, with p prime, and let 0 < a1 < a2, < ... < @m < P
be integers. Prove that there is an integer z, 0 < z < p for which the m
numbers

((za;) (mod p)) mod n, (1<i<m)

are pairwise distinct.

. Let H be a graph, and let » > |V(H)| be an integer. Suppose there is a
graph on n vertices and ¢ edges containing no copy of H, and suppose that
tk > n?log,n. Show that there is a coloring of the edges of the complete
graph on n vertices by & colors with no monochromatic copy of H.

. (*) Prove, using the technique in the probabilistic lens on Hamiltonian paths,
that there is a constant ¢ > 0 such that for every even n > 4 the following
holds: For every undirected complete graph K on n vertices whose edges are
colored red and blue, the number of alternating Hamilton cycles in K (that is,
properly edge-colored cycles of length ) is at most

!
ncl.
2n

. Let F be a family of subsets of N = {1, 2,...,n}, and suppose there are no
A,B € F satisfying A C B. Let o € S, be a random permutation of the
elements of N and consider the random variable

X = [{i: {o(1),0(2),...0(0)} € F }I.
By considering the expectation of X prove that |F| < (Ln72J)‘

. (*) Let X bea collection of pairwise orthogonal unit vectors in R™ and suppose
the projection of each of these vectors on the first & coordinates is of Euclidean
norm at least e. Show that | X| < k/e?, and this is tight for all e = k/27 < 1.

. Let G = (V, E) be a bipartite graph with n vertices and a list S(v) of more
than log, n colors associated with each vertex v € V. Prove that there is a
proper coloring of G assigning to each vertex v a color from its list S(v).



THE PROBABILISTIC LENS:
Bregman’s Theorem

Let A = [ai;] be an n x n matrix with all a;; € {0, 1}. Letr; = 37, ., aij be
the number of ones in the i-th row. Let S be the set of permutations ¢ €S, with
a;,0; = 1 for 1 <4 < n. Then the permanent per(A) is simply |S|. The following
result was conjectured by Minc and proved by Brégman (1973) . The proof presented
here is similar to that of Schrijver (1978) .

Theorem 1 [Brégman’s Theorem]

per(A) < (ri)M7e
1<i<n

Pick ¢ € S and 7 € S,, independently and uniformly. Set A = A. Let R
be the number of ones in row 71 in A!. Delete row 71 and column o71 from A?!
to give A%. In general, let A* denote A with rows 71,...,7(: — 1) and columns
ol,...,o7(i— 1) deleted and let R,; denote the number of ones of row i in A®.
(This is nonzero as the o7i-th column has a one.) Set

L=1L(o,7)= H R,

1<i<n

We think, roughly, of L as Lazyman’s permanent calculation. There are R,
choices for a one in row 71, each of which leads to a diferent subpermanent calcu-
lation. Instead, Lazyman takes the factor R,;, takes the one from permutation o,
and examines A2. As o € S is chosen uniformly Lazyman tends toward the high
subpermanents and so it should not be surprising that he tends to overestimate the
permanent. To make this precise we define the geometric mean G[Y]. If Y > 0 takes
values a1, ..., a, with probabilities p1,...,p, respectively then G[Y] = []a¥".
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Equivalently, G[Y] = eFI" Y1, Linearity of Expectation translates into the geometric
mean of a product being the product of the geometric means.

Claim1 per(A) < G[L]

Proof.

We show this for any fixed 7. Set 71 = 1 for convenience of notation. We use
induction on the size of the matrix. Reorder, for convenience, so that the first row has
ones in the first » columns where » = ;. For 1 < j < = let ¢; be the permanent of
A with the first row and j-th column removed or, equwalently, the number of o € S
withol = j. Set
ti+...+1t

T

so that per(A) = r¢. Conditioningonol = j, Rz --- R, is Lazyman’s calculation
of per(A?), where A? is A with the first row and j-th column removed. By induction

t=

G[Ran|0'1:]] Zt]'

and so

T

G[L] > [ (rt;)ts/7em® = rHtt ilTt,

j:l
Lemma 2

1/r

T

t; t
M| e
j=1

Proof. Taking logarithms this is equivalent to

1 T
;Zt]- Int; >tInt
j=1

which follows from the convexity of the function f(z) = zlnz. B
Applying the Lemma

G[L>r l_It;-j/mt > p(t)1/t = 1t = per(A).
j=1

|

Now we calculate G[L] conditional on a fixed ¢. For convenience of notation
reorder so that o4 = 4, all <, and assume that the first row has ones in precisely the
first »; columns. With 7 selected uniformly the columns 1,...,r; are deleted in
order uniform over all »,! possibilities. R, is the number of those columns remaining
when the first column is to be deleted. As the first column is equally likely to be in



24 THE PROBABILISTIC LENS: BREGMAN'S THEOREM

any position among those r; columns R; is uniformly distributed from 1 to »; and
G[R1) = (r1!)Y/7+. “Linearity” then gives

n n n

LIty /.

i=1 i=1 i=1

Q
S
I
«Q
—
=
I
—
Q
S
I

The overall G[L] is the geometric mean of the conditional G[L] and hence has the
same value. That is,

n

per(4) < GIL] = [ (r:))*/".

=1



Alterations

Beauty is the first test: there is no premanent place in the world for ugly
mathematics.
— G.H. Hardy

The basic probabilistic method was described in Chapter 1 as follows: Trying to
prove that a structure with certain desired properties exists, one defines an appropriate
probability space of structures and then shows that the desired properties hold in this
space with positive probability. In this chapter we consider situations where the
“random” structure does not have all the desired properties but may have a few
“blemishes”. With a small alteration we remove the blemishes giving the desired
structure.

3.1 RAMSEY NUMBERS

Recall from Section 1.1 in Chapter 1 that R(k,!) > n means there exists a two-
coloring of the edges of K,, by red and blue so that there is neither a red Ky nor a
blue K;.

Theorem 3.1.1 For any integer n

R(k k) > n— (Z)zl—(z)

Proof. Consider a random two-coloring of the edges of K,, obtained by coloring
each edge independently either red or blue, where each color is equally likely. For

25
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any set R of k vertices let X g be the indicator random variable for the event that the
induced subgraph of K,, on R is monochromatic. Set X = " Xg, the sum over all
such R. From Linearity of Expectation

. n 1— ’;
E[X] =) E[Xg] = mwithm = (k)z (2).

Thus there exists a two-coloring for which X < m. Fix such a coloring. Remove
from K,, one vertex from each monochromatic k-set. At most m vertices have been
removed (we may have “removed” the same vertex more than once but this only
helps) so s vertices remain with s > n — m. This coloring on these s points has no
monochromatic k-set. B

We are left with the “calculus” problem of finding that » which will optimize the
inequality. Some analysis shows that we should take n ~ e ~1k2%/2(1 —o(1)) giving

1
R(k, k) > =(1 4 o(1))k2"%/2.
€
A careful examination of Proposition 1.1.1 gives the lower bound

R(k, k) > ﬁ(l + o(1))k2%/2.

The more powerful Lovasz Local Lemma - see Chapter 5 - gives

R(k,k) > g(l + o(1))k2F/2.

The distinctions between these bounds may be considered inconsequential since the
best known upper bound for R(k, k) is (4 +o(1))*. The upper bounds do not involve
probabilistic methods and may be found, for example, in Graham, Rothschild and
Spencer (1990) . We give all three lower bounds in following our philosophy of
emphasizing methodologies rather than results.

In dealing with the off-diagonal Ramsey Numbers the distinction between the
basic method and the alteration is given in the following two results.

Theorem 3.1.2 If there exists p € [0, 1] with
) 4 (M) <1
k l

Theorem 3.1.3 For all integers n and p € [0, 1]

&) > (1)) - (7)a -0,

Proof. Inboth cases we consider a random two-coloring of KX, obtained by coloring
each edge independently either red or blue, where each edge is red with probability

then R(k, 1) > n.
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p. Let X be the number of red k-sets plus the number of blue I-sets. Linearity of

Expectation gives
5x1 =)o) + (7)a-n).

For Theorem 3.1.2, E[X] < 1 so there exists a two-coloring with X = 0. For
Theorem 3.1.3 there exists a two-coloring with s “bad” sets (either red k-sets or blue
I-sets), s < E[X]. Removing one point from each bad set gives a coloring of at least
n — s points with no bad sets. B

The asymptotics of Theorems 3.1.2, 3.1.3 can get fairly complex. Oftentimes
Theorem 3.1.3 gives a substantial improvement on Theorem 3.1.2. Even further
improvements may be found using the Lovasz Local Lemma. These bounds have
been analyzed in Spencer (1977) .

3.2 INDEPENDENT SETS

Here is a short and sweet argument that gives roughly half of the celebrated Turan’s
Theorem. «(G) is the independence number of a graph G, «(G) > t means there
exist ¢ vertices with no edges between them.

Theorem 3.2.1 Let G = (V, E) have n vertices and nd/2 edges, d > 1. Then
a(G) > n/2d.

Proof. Let S C V be a random subset defined by
Prv € S] = p,

p to be determined, the events v € S being mutually independent. Let X = |S| and
let Y be the number of edges in G|s. For eache = {¢, 5} € E let Y, be the indicator
random variable for the event i, j € SsothatY =}, Y.. Forany suche

E[Y.] =Pr[i,j € 8] = P2,
so by Linearity of Expectation
nd
E[Y]=) E[Y,]= 7192.
ecE
Clearly E[X] = np, S0, again by Linearity of Expectation

nd
EX-Y]=np— 71)2.

We set p = 1/d (here using d > 1) to maximize this quantity, giving

n
E[X ~Y]= .
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Thus there exists a specific S for whom the number of vertices of 5 minus the number
of edges in S is at least n/2d. Select one vertex from each edge of S and delete it.
This leaves a set S* with at least n/2d vertices. All edges having been destroyed, S*
is an independent set. B

The full result of Turén is given in The Probabilistic Lens: Turan’s Theorem, (fol-
lowing Chapter 6).

3.3 COMBINATORIAL GEOMETRY

For a set S of n points in the unit square U, let T(S) be the minimum area of a
triangle whose vertices are three distinct points of S. Put T'(n) = max T'(.S), where
S ranges over all sets of » points in U. Heilbronn conjectured that T'(r) = O(1/n?).
This conjecture was disproved by Komlos, Pintz and Szemerédi (1982) who showed,
by a rather involved probabilistic construction, that there is a set S of n points in U
such that T(S) = Q(logn/n?). As this argument is rather complicated, we only
present here a simpler one showing that T'(n) = Q(1/n?).

Theorem 3.3.1 There is a set S of » points in the unit square U such that T'(S) >
1/(100n2).

Proof.

We first make a calculation. Let P, @, R be independently and uniformly selected
from U and let 4 = p(PQR) denote the area of the triangle PQR. We bound
Pr{p < € as follows. Let z be the distance from P to @ so that Pr[b < z <
b+ Ab] < m(b + Ab)? — 7b? and in the limit Pr[b < z < b+ db] < 27bdb. Given
P, Q at distance b, the altitude from R to the line PQ must have height A < 2¢/b
and so R must lie in a strip of width 4¢/b and length at most +/2. This occurs with
probability at most 44/2¢/b. As 0 < b < /2 the total probability is bounded by

/ ﬁ(znb)(zh/ie/b)db = 16me.

Now let Py, ..., Py, be selected uniformly and independently in U and let X
denote the number of triangles P; P; Py with area less than 1/(100n2). For each
particular 1, §, k the probability of this occuring is less than 0.6n —% and so

E[X] < (23") (0.6n72) < n.

Thus there exists a specific set of 2n vertices with fewer than = triangles of area less
than 1/(100n?). Delete one vertex from the set from each such triangle. This leaves
at least n vertices and now no triangle has area less than 1/(100n2). B

We note the following construction of Erd 8s showing T'(n) > 1/(2(n — 1)?) with
n prime. On [0, n — 1] x [0, n— 1] consider the n points (z, z%) where z? is reduced
modn. (More formally, (z,y) where y = 22 mod n and 0 < y < n.) If some three
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points of this set were collinear they would line on a line y = ma + b and m would be
a rational number with denominator less than ». But then in Z2 the parabolay = z?
would intersect the line y = mz + b in three points, so that the quadratic z 2 — maz — b
would have three distinct roots, an impossibility. Triangles between lattice points in
the plane have as their areas either halfintegers or integers, hence the areas must be
at least 1/2. Contracting the plane by an » — 1 factor in both coordinates gives the
desired set. While this gem does better than Theorem 3.3.1 it does not lead to the
improvements of Komlés, Pintz and Szemerédi.

3.4 PACKING

Let C be a bounded measurable subset of R¢ and let B(z) denote the cube [0, z]¢ of
side z. A packing of C into B(z) is a family of mutually disjoint copies of C, all
lying inside B(z). Let f(z) denote the largest size of such a family. The packing
constant 6 = 6(C) is defined by

§(C) = u(C) lim f(z)z™?,

where p(C) is the measure of C. This is the maximal proportion of space that may
be packed by copies of C. (This limit can be proven always to exist but even without
that result the following result holds with lim replaced by lim inf.)

Theorem 3.4.1 Let C be bounded, convex, and centrally symmetric around the
origin. Then
§(C) > 2791,

Proof. Let P, @ be selected independently and uniformly from B(z) and consider the
event (C + P)N (C + Q) # 0. For this to occur we must have, for some c1,c2 € C

C1 —C2

P—Q:Cl—02:2 €20

by central symmetry and convexity. The event P € @ + 2C has probability at most
p(2C)z~2 for each given @ hence

Pr[(C+ P)N(C +Q) # 0] < p(20)z~% = 2%2~%u(C).
Now let Py, ..., P, be selected independently and uniformly from B(z) and let X
be the number of ¢ < j with (C + P;) N (C + P;) # 0. From linearity of expectation
1’1,2
E[X] < 72%‘"’,;(()).

Hence there exists a specific choice of n points with fewer than that many intersecting
copies of C. For each P;, P; with (C + P;) N (C + P;) #  remove either P; or P;
from the set. This leaves at least n — %2%—‘1#(0) nonintersecting copies of C. Set
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n = 24274/ u(C) to maximize this quantity, so that there are at least z22-4-1/u(C)
nonintersecting copies of C. These do not all lie inside B(z) but, letting w denote
an upper bound on the absolute values of the coordinates of the points of C, they do
all lie inside a cube of side z + 2w. Hence

£ +2w) > 242741 /()

and so
5(C) > lim p(C)f(z + 2w)(z + 2w)~¢ > 2741,
r—> 00
|
A simple greedy algorithm does somewhat better. Let Py, ..., P, be any maximal

subset of [0, z]¢ with the property that the sets C + P; are disjoint. We have seen
that C + P; overlaps C + P if and only if P € 2C + P;. Hence the sets 2C + P;
must cover [0, z]%. As each such set has measure u(2C) = 2¢u(C) we must have
m > z%27¢/u(C). As before, all sets C + P; lie in a cube of side z + 2w, w a
constant, so that

f(z +2w) > m > 227%/u(C)

and so
§(C)>27%

A still further improvement appears in the Probabilistic Lens: Efficient Packing ,
(following Chapter 13).

3.5 RECOLORING

Suppose that a random coloring leaves a set of blemishes. Here we apply a random
recoloring to the blemishes to remove them. If the recoloring is too weak then not
all the blemishes are removed. If the recoloring is too strong then new blemishes
are created. The recoloring is given a parameter p and these too possibilities are
decreasing and increasing functions of p. Calculus then points us to the optimal p.

We use the notation of §1.3 on Property B: m(n) > m means that given any
n-uniform hypergraph H = (V, E) with m edges there exists a 2-coloring of V
so that no edge is monochromatic. Beck (1978) improved Erdés’ 1963 bound to
m(n) = Q(2"n'/3). Building on his methods Radhakrishnan and Srinivasan (2000)
proved m(n) = Q(2"(n/Inn)*/?) and it is that proof we shall give. While this
proof is neither long nor technically complex it has a number of subtle and beautiful
steps and it is not surprising that it took more than thirty five years to find it. That
said, the upper and lower bounds on m(rn) remain quite far apart!

Theorem 3.5.1 If there exists p € [0, 1] with
E1-p)"+kp<1

then m(n) > 27~ k.
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Corollary 3.5.2 m(n) = Q(2"(n/Inn)*/?)

Proof. Bound 1 — p < e~P. The function ke=?™ + k?p is minimized at p =
In(n/k)/n. Substituting back in, if

’:L_z [1+ In(n/k)] < 1

then the condition of Theorem 3.5.1 holds. This inequality is true when k& =
¢(n/Inn)/2 for any ¢ < +/2 with n sufficiently large. B

The condition of Theorem 3.5.1 is somewhat typical, one wants the total failure
probability to be less than one and there are two types of failure. Oftentimes one
finds reasonable bounds by requiring the stronger condition that each failure type
has probability less than one half. Here k%p < I gives p < 1k~2. Plugging the
maximal possible p into the second inequality k(1 — p)™ < 1 gives 2k? In(2k) < n.
This again holds when & = ¢(n/ Inn)*/2 though now we have the weaker condition
¢ < 1. We recommend this rougher approach as a first attempt at a problem, when
the approximate range of the parameters is still in doubt. The refinements of calculus
can be placed in the published work!

Proof.[Theorem 3.5.1] Fix H = (V, E) withm = 2"~k edges and p satisfying the
condition. We describe a randomized algorithm that yields a coloring of V. It is best
to preprocess the randomness: Each v € V flips a first coin, which comes up heads
with probability % and a second coin, which comes up heads (representing potential
recoloration) with probability p. In addition (and importantly), the vertices of V" are
ordered randomly.

Step 1. Color each v € V red if its first coin was heads, otherwise blue. Call this
the first coloring. Let D (for dangerous) denote the set of v € V' that lie in some
(possibly many) monochromatic e € E.

Step 2. Consider the elements of D sequentially in the (random) order of V. When
d is being considered call it still dangerous if there is some (possibly many) e € H
containing & that was monochromatic in the first coloring and for which no vertices
have yet changed color. If d is not still dangerous then do nothing. But if it is
still dangerous then check its second coin. If it is heads then change the color of
d, otherwise do nothing. We call the coloring at the time of termination the final
coloring.

We say the algorithm fails if some e € H is monochromatic in the final coloring.
We shall bound the failure probability by k(1 — p)™ + k?p. The assumption of
Theorem 3.5.1 then assures us that with positive probability the algorithm succeeds.
This, by our usual magic, means that there is some running of the algorithm which
yields a final coloring with no monochromatic e, that is, there exists a 2-coloring
of V' with no monochromatic edge. For convenience, we bound the probability that
some e € H is red in the final coloring, the failure probability for the algorithm is at
most twice that.

Ane € E can be red in the final coloring in two ways. Either e was red in the first
coloring and remained red through to the final coloring or e was not red in the first
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coloring but was red in the final coloring. [The structure of the algorithm assures us
that points cannot change color more than once.] Let A, be the first event and C, the
second. Then

Pr[4.] =27"(1-p)".

The first factor is the probability e is red in the first coloring, that all first coins of e
came up heads. The second factor is the probability that all second coins came up
tails. If they all did then no v € e would be recolored in Step 2. Inversely, if any
second coins of v € e came up heads there would be a first v (in the ordering) that
came up heads. When it did v was still dangerous as e was still monochromatic and
so v does look at its second coin and change its color. We have

23 Pr[A] = k(1 - p)"

ecH

giving the first addend of our failure probability.

In Beck’s 1978 proof, given in our first edition, there was no notion of still
dangerous - every d € D changed its color if and only if its second coin was heads.
The values Pr[A4.] = 27"(1 — p)™ are the same in both arguments. Beck’s had
bounded Pr[C,] < kZpeP™. The new argument avoids excessive recoloration and
leads to a better bound on Pr[C.]. We turn to the ingenious bounding of Pr[C.].

For distincte, f € E we say e blames f if
e ¢, f overlap in precisely one element. Call it ».

o In the first coloring f was blue and in the final coloring e was red.
¢ In Step 2 v was the last vertex of e that changed color from blue to red.
e When v changed its color f was still entirely blue.

Suppose C, holds. Some points of e changed color from blue to red so there is a
last point » that did so. But why did v flip its coin? It must have been still dangerous.
That is, v must be in some (perhaps many) set f that was blue in the first coloring
and was still blue when v was considered. Can e, f overlap in another vertex v’ ?
No! For such a v" would necessarily have been blue in the first coloring (as v’ € f)
and red in the final coloring (as v’ € e), but then »' changed color before v. Hence
f was no longer entirely blue when v was considered and so e could not blame f.
Therefore, when C, holds e blames some f. Let B.s be the event that e blames f.
Then 3°, Pr[Ce] < 3°; Pr[Bes]. As there are less than (2"~ 'k)? pairse # f it
now suffices to bound Pr[B.;] < 21=2"p.

Let e, f withe N f = {v} (otherwise B,; cannot occur) be fixed. The random
ordering of V' induces a random ordering o of e U f. Let ¢ = i(o") denote the number
of v € e coming before v in the ordering and let j = j(o) denote the number of
v’ € f coming before v in the ordering. Fixing o we claim

. /1 g
Pr[B,s|o] < §2‘"+1(1 — p)igTnHit (—; p)

Lets take the factors one at a time. Firstly, v itself must start blue and turn red.
Secondly, all other v' € f must start blue. Thirdly, all v € f coming before v must



CONTINUOUS TIME 33

have second coin tails. Fourthly, all v € e coming after v must start red (since v
is the last point of e to change color). Finally, all v/ € e coming before v must
either start red or start blue and turn red. [The final factor may well be a substantial
overestimate. Those v' € e coming before v which start blue must not only have
second coin heads but must themselves lie in an e’ € H monochromatic under the
first coloring. Attempts to further improve bounds on m(n) have often centered on
this overestimate but (thus far!) to no avail.]
We can then write

Pr[B.s] < 2" 2"pE [(1+ p)'(1 — p)/]

where the expectation is over the uniform choice of . The following gem therefore
completes the argument.

Lemma3.5.3 E[(1+p)i(1-p)] <1

Proof. Fix a matching between e — {v} and f — {v}, think of Mr. & Mrs. Jones; Mr.
& Mrs. Smith, etc. Condition on how many of each pair (two Joneses, one Smith, no
Taylors,...) come before v. The conditional expectation of (1 + p)*(1 — p)’ splits
into factors for each pair. When there is no Taylor there is no factor. When there are
two Joneses there is a factor (1 + p)(1 — p) < 1. When there is one Smith the factor
is equally likely to be 1 4+ p or 1 — p and so the conditional expectation gets a factor
of one. All factors are at most one so their product is at most one. B

The desired result follows. B

3.6 CONTINUOUS TIME

Discrete random processes can sometimes be analyzed by placing them in a con-
tinuous time framework. This allows the powerful methods of analysis (such as
integration!) to be applied. The approach seems most effective when dealing with
random orderings. We give two examples.

Property B We modify the proof thatm(n) = Q(2"n!/2In~*/2 n) of the previous
section. We assign to each vertex v € V' a “birth time" z,,. The z, are independent
real variables, each uniform in [0, 1]. The ordering of V" is then the ordering (under
<) of the z,. We now claim

n—1 1
-1
Pr[Bgs] < E (nl )21_2"/0 2'p! (1 — zp)" .
=0

For T C e — {v} let Besr be the event that By and in the first coloring e had
precisely T' U {v} Blue. There are (*}*) choices for an I-set T, with [ ranging from
0ton — 1. The first coloring on e U f is then determined and has probability 2 =2
of occuring. Suppose v has birth time z, = z. Allw € T U {v} must have second
coin flip heads - probability p'**. All w € T must be born before v - z,, < 2 which
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has probability z!. No w € f — {v} can be born before v and have coin flip heads.
Each such w has probability zp of doing that so there is probability (1 — zp) »~* that
no w does. As z, = = was uniformin [0, 1] we integrate over z. Recombining terms

1
Pr[Bgs] < 21_2"p/ (14 zp)" (1 — zp)*~ de.
0

The integrand is always at most one so Pr[B.;] < 2'=2"p. The remainder of the
proof is unchanged.

Random Greedy Packing Let H be a (k + 1)-uniform hypergraph on a vertex set
V of size N. The e € H, which we call edges, are simply subsets of V' of size & + 1.
We assume
Degree Condition: Every v € V is in precisely D edges.

Codegree Condition: Every distinct pair v, v’ € V have only o( D) edges in common.
We think of & fixed (k = 2 being an illustrative example) and the asymptotics as
N, D — oo, with no set relationship between N and D.

A packing is a family P of vertex disjointedgese € H. Clearly |P| < N/(k+1).
We define a randomized algorithm to produce a (not necessarily optimal) packing.
Assign to each e € H uniformly and independently a birth time z. € [0, D). (The
choice of [0, D) rather than [0, 1] proves to be a technical convenience. Note that as
the z., are real variables with probability one there are no ties.) At time zero P < @.
As time progresses from 0 to D when an edge e is born it is added to P if possible -
that is, unless there is already some ¢’ € P which overlaps e. Let P, denote the value
of P just before time ¢ - when all e with birthtimes . < ¢ have been examined. Set
PFINAL — pn, . Note that by time D all edges have been born and their births were
in random order. Thus PFINAL js jdentical to the discrete process - often called the
random greedy algorithm - in which H is first randomly ordered and thenthe e € H
are considered sequentially.

Theorem 3.6.1 [Spencer (1995) ] The expected value of | PFINAL| js asymptotic to
N/(k +1).

We say v € V survives at time ¢ if no e € P, contains v and we let S, denote
the set of v € V so surviving. Rather than looking at P IV AL we shall examine P,
where c is an arbitrary fixed nonnegative real. Let

fle) = lim Prv € 5]

where, formally, we mean here that for all ¢ > 0 there exist Dy, Ng and § > 0 so that
if H is (k+1)-uniformon N > N vertices with each v in D > Dg edges and every
distinct pair v, v' € V has less than § D common edges then |f(c) — Pr[v € S;]| < €
forallv e V.

The heart of the argument lies in showing that f(c) exists by defining a continuous
time birth process yielding that value. We now describe the birth process, omitting
some of the epsilondeltamanship needed to formally show the limit.

Our birth process starts at time ¢ and time goes backwards to 0. It begins with root
Eve, our anthropomorphized v. Eve has births in time interval [0, ¢). The number
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of births is given by a Poisson distribution with mean ¢ and given their number
their times are uniformly and independently distributed. [This is a standard Poisson
process with intensity one. Equivalently, on any infinitesmal time interval [z, z + dz)
Eve has probability dz of giving birth and these events are independent over disjoint
intervals.] Our fertile Eve always gives birth to k-tuplets. Each child is born fertile
under the same rules, so if Alice in born at time z she [in our unisexual model] has a
Poisson distribution with mean z of births, uniformly distributed in [0, ).

The resulting random tree T = T can be shown to be finite [note the time interval
is finite] with probability one. Given a finite 7" we say for each vertex Alice that
Alice survives or dies according to the following scheme.

Menendez Rule: If Alice has given birth to a (possibly several) set of &-tuplets all of
whom survived then she dies, otherwise she survives.

In particular, if Alice is childless she survives. We can then work our way up the tree
to determine of each vertex whether she survives or dies.

Example. ¢ = 10,k = 2. Eve gives hirth to Alice,Barbara at time 8.3 and then to
Rachel,Sienna at time 4.3. Alice gives birth to Nancy,Olive at time 5.7 and Rachel
gives birth to Linda,Mayavati at time 0.4. There are no other births. Leaves Nancy,
Olive, Linda , Mayavati, Barbara and Sienna then survive. Working up the tree Alice
and Rachel die. In neither of Eve’s births did both children survive and therefore Eve
survives.

We define f(c) to be the probability that the root Eve survives in the random
birthtree T = T...

We outline the equivalence by defininga tree T' = T, (v) for v € H. For each edge
e containing v with birthtime¢ = ¢. < ¢ we say that e — {v} is a set of k-tuplets born
to v at time ¢. We work recursively, if w is born at time ¢ then for each e’ containing
w with birthtime ¢’ = ¢, < ¢ we say that e’ — {w} is a set of k-tuplets born to w at
time ¢'. Possibly this process does not give a tree since the same vertex w may be
reached in more than one way - the simplest example is if v € e, e’ where both have
birthtimes less than ¢ and e, e’ share another common vertex w. Then the process is
stilloorn and T(v) is not defined. We’ll argue that for any particular tree T

lim Pr[T,(v) = T) = Pt[T, = T) 3.1)

As > . Pr[T, = T] = 1 this gives a rather roundabout argument that the process
defining T¢(v) is almost never stillborn.

We find T, (v) in stages. First consider the D edges e containing v. The number of
them with birthtime ¢, < ¢ has Binomial Distribution BIN[D, £]which approaches
(critically) the Poisson Distribution with mean ¢. Given that there are I such e their
birthtimes ¢, are uniformly distributed. There are [by the codegree condition] o(D?)
pairs e, ¢’ containing v and also some other vertex so there is probability o(1) that
two such e, e’ have birthtime less than c. Now suppose T.(v) has been built out
to a certain level and a vertex w has been born at time ¢. There are only o(D)
common edges between w and any of the finite number of w’ already born so there
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are still ~ D edges e containing w and no other such w’. \We now examine their
birthtimes, the number with ¢, < z has Binomial Distribution BIN[D — o(D), §]
which approaches the Poisson Distribution with mean z. As above, almost surely no
two such e, e’ will have a common vertex other than w itself. For any fixed T' the
calculation of Pr[T.(v) = T involves a finite number of these limits, which allows
us to conclude (3.1).

With ¢ < d the random tree T includes T, as a subtree by considering only those
births of Eve occuring in [0, ¢). If Eve survives in Ty she must survive in T. Hence
f(d) < f(c). We now claim

Jim f(e) =
If not, the nondecreasing f would have a limit L > 0 and all f(z) > L. Suppose
in T, Eve had i births. In each birth there would be probability at least L* that all k
children survived. The probability that Eve survived would then be at most (1 — L *)¢.
Since the number of Eve’s births is Poisson with mean ¢

ie ' (1 L*) e~ Lre

=0

but then lim,—, o f(c) = 0, a contradiction.
By linearity of expectation E[|S.|]] — f(c)n. As (k + 1)|Pe| + |Sc] = n,
E[|P.] = (1 — f(c))n/(k + 1). But E[|PFINAL|] > E[|P.|]. We make f(c) arbi-
trarily small by taking c appropriately big, so that E[| P FINAL[] > (1—o(1))n/(k+
1). As |PFINAL| < /(k + 1) always, the theorem follows.
Remark. We can actually say more about f(c). For Acsmall, f(c+ Ac) — f(c) ~
—(Ac)f(c)k*1 as, roughly, an Eve starting at time ¢ + Ac might have a birth in
time interval [c,c + Ac) all of whose children survive while Eve has no births
n [0,¢) all of whose children survive. Letting Ac — 0 yields the differential
equation f'(c) = —f(c)¥*t. The initial value f(0) = 1 gives a unique solution
f(c) = (1 4 ck)~Y*. ltis intriguing to plug in ¢ = D. This is not justified as
our limit arguments were for ¢ fixed and N, D — oco. Nonetheless, that would yield
E[|Sp|] = O(ND~1/¥), that the random greedy algorithm would leave O(N D ~1/)
vertices uncovered. Suppose we replace the codegree condition by the stronger
condition that every distinct pair v, v’ € V have at most one edge in common. There
is computer simulation data that in those cases the random greedy algorithm does
leave O(N D~1/%) vertices uncovered. This remains an open question, though it is
shown in Alon, Kim and Spencer (1997) that this is the case for a modified version
of the greedy algorithm.

Corollary 3.6.2 Under the assumptions of the theorem there exists a packing P of
size ~ N/(k +1).

Proof. We have defined a random process which gives a packing with expected size
~ N/(k + 1) and our usual magic implies such a P must exist. H
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In particular, this gives an alternate proof to the Erd8s-Hanani conjecture, first
proven by Rodl as given in §4.7. We use the notation of that section and define the
packing number m(n, k, ) as the maximal size of a family F' of k-element subsets
of [n] = {1,...,n} such that no I-set is contained in more than one k-set. Define a
hypergraph H = H(n, k, 1) as follows: The vertices of H are the [-element subsets
of [n]. For each k-element A C [n] we define an edge e4 as the set of I-element
subsets of A. A family F satisfying the above conditions then corresponds to a
packing P = {e4 : A € F}in H. H has N = (7) vertices. Each edge e4 has size
K +1=(¥). Each vertex is in D = (7~}) edges. The number of edges containing
two vertices v, v’ depends on their intersection. It is largest (given v # v’) when
v, v (considered as I-sets) overlap in I — 1 points and then it is (Z:f:i) We assume
(as in §4.7) that &, { are fixed and n — oo so this number of common edges is o( D).

The assumptions of §4.7 give K + 1 fixed, N, D — oo so that there exists P with

m(n, k,1) =|P|~ N/(K +1) ~ ()

()
3.7 EXERCISES

1. Prove that the Ramsey number »(k, k) satisfies, for every integer =,

Pk k) > 1 (Z)zl—(z),

and conclude that .
r(k, k) > (1 — o(1))=2%/2,
€

2. Prove that the Ramsey number (4, k) satisfies

r(4, k) > Q((k/ Ink)2).

3. Prove that every 3-uniform hypergraph with » vertices and m > n/3 edges

. . . 2n3/2
contains an independent set of size at least NN

4. (*) Show that there is a finite no such that any directed graph on n > ng
vertices in which each outdegree is at least log, n — - log, log, n contains an
even simple directed cycle.



THE PROBABILISTIC LENS:

High Girth and
High Chromatic Number

Many consider this one of the most pleasing uses of the probabilistic method, as
the result is surprising and does not appear to call for nonconstructive techniques.
The girth of a graph G is the size of its shortest cycle, «(G) is the size of the largest
independent set in G and x(G) denotes its chromatic number.

Theorem 1 [Erdds (1959) ] For all &, ! there exists a graph G with girth(G) > |
and x(G) > k.

Proof. Fix8 < 1/l and let G ~ G(n,p) with p = n®~1. (lLe., G is a random
graph on n vertices chosen by picking each pair of vertices as an edge randomly and
independently with probability p). Let X be the number of cycles of size at most I.

Then
01

Bix1 =30 By < 32— ofm)

4 4
1=3 1=3

as 6l < 1. In particular
Pr[X > n/2] = o(1).

Setz = [>Inn] so that

Pr[a(G) > z] < (;‘) 1-p)3) < [ne—m—l)/zr = o).

Let n be sufficiently large so that both these events have probability less than .5.
Then there is a specific G with less than /2 cycles of length at most { and with

38
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a(G) < 3n'~%Inn. Remove from G a vertex from each cycle of length at most /.
This gives a graph G* with at least n/2 vertices. G* has girth greater than ! and
a(G*) < a(@G). Thus

. |G*| n/2 nf
> =
x(G7) 2 a(G*) = 3n'flnn  6lnn

To complete the proof, let » be sufficiently large so that this is greater than k. B






The Second Moment

You don’t have to believe in God but you should believe in The Book.
— Paul Erd6s

4.1 BASICS

After the expectation the most vital statistic for a random variable X is the variance.
We denote it Var[X]. Itis defined by

Var[X] = E[(X — E[X])?]

and measures how spread out X is from its expectation. We shall generally, following
standard practice, let » denote expectation and o% denote variance. The positive
square root o of the variance is called the standard deviation. With this notation here
is our basic tool.

Theorem 4.1.1 [Chebyschev’s Inequality] For any positive A

1
Pr[IX — 4l > 0] < 57

Proof.
0? =Var[X] = E[(X — p)?] > 2202 Pr[|X — u| > Ad].

|
The use of Chebyschev’s Inequality is called the Second Moment Method.

41
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Chebyschev’s Inequality is best possible when no additional restrictions are placed
on X as X may be u+ Ao and g — Ao with probability 1/2X2 and otherwise x. Note,
however, that when X is a normal distribution with mean p and standard deviation o
then

* 1 2
Pr[| X —pu| > Ao =2 ——e"t /24t
X -zl =2 [ —=

and for A large this quantity is asymptotically + /2/7re_)‘2/2/)\ which is significantly
smaller than 1/X2. In Chapters 7,8 we shall see examples where X is the sum of
“nearly independent” random variables and these better bounds can apply.

Suppose we have a decomposition

X=X1+4+...+X,,

Then Var[X] may be computed by the formula

Var[X] = Z Var(X;] + Z Cov[X;, X;].
i=1 i)

Here the second sum is over ordered pairs and the covariance Cou[Y, Z] is defined
by
CovlY, Z] = E[Y Z] — E[Y]E[Z].
In general, if Y, Z are independent then Cov[Y, Z] = 0. This often simplifies
considerably variance calculations. Now suppose further, as will generally be the
case in our applications, that the X; are indicator random variables - i.e., that X; = 1
if a certain event A; holds and otherwise X; = 0. If X; is one with probability
v = PI‘[Ai] then
Var[X;] = pi(1 — pi) < pi = E[X}],

and so
Var[X] < B[X]+ ) Cov[X;, X;].
i

4.2 NUMBER THEORY

The second moment method is an effective tool in number theory. Let v(n) denote
the number of primes p dividing n. (We do not count multiplicity though it would
make little difference.) The folllowing result says, roughly, that “almost all” » have
“very close to” In In n prime factors. This was first shown by Hardy and Ramanujan
in 1920 by a quite complicated argument. We give a remarkably simple proof of
Turén (1934) , a proof that played a key role in the development of probabilistic
methods in number theory.

Theorem 4.2.1 Let w(n) — oo arbitrarily slowly. Then the number of z in
{1,...,n} such that

|v(z) —Inlnn| > w(n)Vinlnn
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is o(n).
Proof. Let z be randomly chosen from {1, ...,n}. For p prime set
|1 ifplz
Xp = { 0 otherwise.

Set M = n'/1% and set X = 3 X,,, the summation over all primes p < M. As no
z < n can have more than ten prime factors larger than M we have v(z) — 10 <
X(z) < v(z) so that large deviation bounds on X will translate into asymptotically
similar bounds for v. (Here 10 could be any (large) constant.) Now

E[Xp] = M

n
Asy-1<|y] <y
E[Xp]=1/p+ O(1/n)
By linearity of expectation

BX]= Y (5 +0(2)) =Inln + (1),

p<M P

where here we used the well known fact that >, ;—) = Inlnz + O(1), which can
be proved by combining Stirling’s formula with Abel summation.
Now we find an asymptotic expression for

Var(X] = Z Var[X,] + Z Cov[X,, X,].
p<M P#£q

AsVar[X,] = (1 - 1)+ O(2),

Z Var[X,] = ( )+ O0(1)=Inlnn+ O(1).

p<M p<M

W=

With p, ¢ distinct primes, X, X, = 1 if and only if p|= and ¢|2= which occurs if and
only if pg|z. Hence

Cov[X,, Xq| = E[XpXy] — E[Xp|E[X,]
— In/pql _ [n/p] [n/q]

Thus
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Thus
ZCOU 1< 0(n 9/mlnlnn) =o(1),
p#q

and similarly

Z Cov[Xp, Xg] > —o(1).

P#£q

That is, the covariances do not affect the variance, Var[X] = Inlnn + O(1) and
Chebyschev’s Inequality actually gives

Pr[|X — Inlnn| > AVInlnn] < 272 4+ o(1)

for any constant A > 0. As | X — v| < 10 the same holds for v. &
In a classic paper Erdds and Kac (1940) showed, essentially, that v does behave
like a normal distribution with mean and variance In In n. Here is their precise result.

Theorem 4.2.2 Let X be fixed, positive, negative or zero. Then

1 2
lim —{z:1<z<n,v(z)>lnlnn+ AVinlnn}| = e~ /24;

> 1
n—oo N U= -7 - _/)‘ /2

Proof. We outline the argument, emphasizing the similarities to Turan’s proof. Fix
a function s(n) with s(n) — oo and s(n) = o((Inlnn)*/?) -e. g. s(n) = InlnInn.
Set M = n'/¢(®) Set X = Y X,, the summation over all primes p < M.
As no z < n can have more than s(n) prime factors greater than M we have
v(z) — s(n) < X(z) < v(z) so that it suffices to show Theorem 4.2.2 with v
replaced by X. Let Y, be independent random variables with Pr[Y, = 1] = p~ 1,
Pr[Y, =0 =1—p tandsetY = > Y,, the summation over all primes p < M.
This Y represents an idealized version of X. Set

= Z p l=Inlnn+ o((lnlnn)l/z)
p<M

and
o =VarlY Zp (1—-p~")~Inlnn
p<M

and define the normalized ¥ = (Y — p)/o. From the Central Limit Theorem ¥
approaches the standard normal N and E[Y’“] — E[N¥] for every positive integer
k. Set X = (X — p)/o. We compare X, Y.

For any distinct primes p1, ..., ps < M

E[Xp, - Xp,] — E[Yp, -+ Yp,] = PI'T'L'PS o O(n™1).

We let & be an arbitrary fixed positive integer and compare E[X*] and E[Y*].
Expanding, X* is a polynomial in X with coefficients n°(1). Further expanding



MORE BASICS 45

each X7 = (37 X, )’ - always reducing X to X,, when a > 2 - gives the sum of

O(M*) = n°() terms of the form X, - - - X,,. The same expansion applies to V.
As the corresponding terms have expectations within O(n 1) the total difference

E[X*) — E[Y*] = n~ 1) = o(1).

Hence each moment of X approach that of the standard normal N'. A standard, though
nontrivial, theorem in probability theory gives that X must therefore approach N in
distribution. H

We recall the famous quotation of G. H. Hardy:

317 is a prime, not because we think so, or because our minds are shaped in
one way rather than another, but because it is so, because mathematical reality
is built that way.

How ironic - though not contradictory - that the methods of probability theory can
lead to a greater understanding of the prime factorization of integers.

4.3 MORE BASICS

Let X be a nonnegative integral valued random variable and suppose we want to
bound Pr[X = 0] given the value 4 = E[X]. If x < 1 we may use the inequality

Pr[X > 0] < E[X]

so that if E[X] — 0 then X = 0 almost always. (Here we are imagining an infinite
sequence of X dependent on some parameter » going to infinity.) But now suppose
E[X] — oo. It does not necessarily follow that X > 0 almost always. For example,
let X be the number of deaths due to nuclear war in the twelve months after reading
this paragraph. Calculation of EF[X] can make for lively debate but few would deny
that it is quite large. Yet we may believe - or hope - that Pr[X # 0] is very close to
zero. We can sometimes deduce X > 0 almost always if we have further information
about Var[X].

Theorem 4.3.1

B Var[X]
PrX = 0] < "

Proof. Set A = p/o in Chebyschev’s Inequality. Then

0.2

p?

1
Pr[X = 0] < Prf|X — | > Ao] < 57 =
|

We generally apply this result in asymptotic terms.
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Corollary 4.3.2 If Var[X] = o( E[X]?) then X > 0 a.a.
The proof of Theorem 4.3.1 actually gives that forany e > 0

Var[X]
Pr[|X — E[X]| > eE[X]] < 2EX]

and thus in asymptotic terms we actually have the following stronger assertion:
Corollary 4.3.3 If Var[X] = o( E[X]?) then X ~ E[X] a.a.

Suppose again X = X; + ...+ X,, where X; is the indicator random variable
for event A;. For indices 4, j write 2 ~ j if ¢ # j and the events A;, A; are not
independent. We set (the sum over ordered pairs)

A = Pr[A; A 4.
g
Note that when 7 ~ j
Cov[X;, X,] = E[XiX,] — E[X:]E[X;] < E[X:X;] = Pr[A; A A;]
and that when ¢ # j and not s ~ j then Cov[X;, X;] = 0. Thus
Var[X] < E[X] + A.

Corollary 4.3.4 If E[X] — oo and A = o(E[X]?) then X > 0 almost always.
Furthermore X ~ E[X] almost always.

Letussay X3, ..., Xm are symmetric if for every ¢ # j there is an automorphism
of the underlying probability space that sends event A; to event A;. Examples will
appear in the next section. In this instance we write

A = Z PI‘[Ai A A]] = Z PI'[Ai] ZPI[A]|A1]

invg jrvi

and note that the inner summation is independent of z. We set
A" = Pr[4;]4]]
L)
where 7 is any fixed index. Then

A=Y PrlA]AT = A7) Pr[A] = A"B[X].

Corollary 4.35 If E[X] — oo and A* = o(E[X]) then X > 0 almost always.
Furthermore X ~ E[X] almost always.

The condition of Corollary 4.3.5 has the intuitive sense that conditioning on any
specific A; holding does not substantially increase the expected number E[X] of
events holding.
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4.4 RANDOM GRAPHS

The definition of the random graph G(n, p) and of “threshold function” are given
in Chapter 10, Section 10.1. The results of this section are generally surpassed by
those of Chapter 10 but they were historically the first results and provide a good
illustration of the second moment. We begin with a particular example. By w(G) we
denote here and in the rest of the book the number of vertices in the maximum clique
of the graph G.

Theorem 4.4.1 The property w(G) > 4 has threshold function n—2/3,

Proof. For every 4-set S of vertices in G(n, p) let Ag be the event “S is a clique”
and X its indicator random variable. Then

E[Xs] = Pr[As] = p°
as six different edges must all lie in G(n, p). Set
X=) Xs
|S|=4

so that X is the number of 4-cliques in G and w(G) > 4 if and only if X > 0.
Linearity of Expectation gives

pix]= Y mixsl= ()~ OF

|S|=4

When p(n) << n=2/3, E[X] = o(1) and so X = 0 almost surely.

Now suppose p(n) >> n~2/3 so that E[X] — oo and consider the A* of
Corollary 4.3.5. (All 4-sets “look the same” so that the X g are symmetric.) Here
S ~ T if and only if S # T and S,T have common edges - i.e., if and only if
|SNT|=2or3. Fix S. There are O(n?) sets T with |S N T| = 2 and for each of
these Pr[Ar|As] = p®. There are O(n) sets T with |[S N T| = 3 and for each of
these Pr[A7|As] = p®. Thus

A* = 0(n?p°) + O(np®) = o(np®) = o E[X])

since p >> n~2/3. Corollary 4.3.5 therefore applies and X > 0, i.e., there does
exist a clique of size 4, almost always. B

The proof of Theorem 4.4.1 appears to require a fortuitous calculation of A*. The
following definitions will allow for a description of when these calculations work
out.

Definition 1 Let H be a graph with v vertices and e edges. We call p(H) = e/v the
density of H. We call H balanced if every subgraph H' has p(H") < p(H). We call
H strictly balanced if every proper subgraph H’ has p(H') < p(H).
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Examples. K4 and, in general, K, are strictly balanced. The graph

is not balanced as it has density 7/5 while the subgraph K4 has density 3/2. The
graph

is balanced but not strictly balanced as it and its subgraph K 4 have density 3/2.

Theorem 4.4.2 Let H be a balanced graph with v vertices and e edges. Let A(G)
be the event that H is a subgraph (not necessarily induced) of G. Then p = n=?/¢
is the threshold function for A.

Proof. We follow the argument of Theorem 4.4.1. For each v-set S let Ag be the
event that G|s contains H as a subgraph. Then

p® < Pr[4s] <wlp°

(Any particular placement of H has probability p¢ of occuring and there are at most
v! possible placements. The precise calculation of Pr[Ag] is, in general, complicated
due to the overlapping of potential copies of H.) Let X s be the indicator random
variable for Ag and

X=)Y Xs

|S|=v
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so that A holds if and only if X > 0. Linearity of Expectation gives

BIX) = 3 Blxs] = (1) Prlds] = 0(n5).

|S|=v

If p << n=/¢then E[X] = o(1), so X = 0 almost always.

Now assume p >> n~"/¢ so that E[X] — oo and consider the A* of Corollary
4.3.5(All v-sets look the same so the X g are symmetric.) Here S ~ T if and only
if S # T and S, T have common edges - i.e., if and only if |S N T| = 7 with
2 <i<wv—1. Let S be fixed. We split

A" =" Pr[Ar|As] = 2_: > Pr{Ar|As].

T~S i=2 |TnS|=i

For each i there are O(n?~*) choices of T'. Fix S, T and consider Pr[Ar|As]. There
are O(1) possible copies of H on T'. Each has - since, critically, H is balanced - at
most %2 edges with both vertices in S and thus at least e — % other edges. Hence

Pr[Ar|As] = O(p°" V)

and ) L
AT =350

= Y5, O((n"p°)' %)
= 3125 o(n"p°)
= o(B[X])

since n”p® — oo. Hence Corollary 4.3.5 applies. B

Theorem 4.4.3 Inthe notation of Theorem 4.4.2 if H is not balanced then p = n —?/¢
is not the threshold function for A.

Proof. Let H; be a subgraph of H with vy vertices, e; edges and e; /v; > e/v. Let
a satisfy v/e < a < v1/e; and set p = n= <. The expected number of copies of H;
is then o(1) so almost always G(n, p) contains no copy of H;. But if it contains no
copy of H; then it surely can contain no copy of H. B

The threshold function for the property of containing a copy of H, for general H,
was examined in the original papers of Erd6s and Rényi. (Erdés and Rényi (1960)
still provides an excellent introduction to the theory of Random Graphs.) Let H ; be
that subgraph with maximal density p(H1) = e1/v1. (When H is balanced we may
take H; = H.) They showed that p = n—"*/¢1 is the threshold function. We do not
show this here though it follows fairly straightforwardly from these methods.

We finish this section with two strengthenings of Theorem 4.4.2.
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Theorem 4.4.4 Let H be strictly balanced with v vertices, e edges and a automor-
phisms. Let X be the number of copies of H in G(n, p). Assume p >> n=?/¢. Then
almost always

X N nvpe
a
Proof. Label the verticesof H by 1,...,v. Foreach ordered z1, ..., z, let Ay, . 4,
be the eventthat z4, . . ., z, provides a copy of H in that order. Specifically we define

Az,,..w, {45} € B(H) = {zi,2;} € B(G).

We let I, .. ., be the corresponding indicator random variable. We define an
equivalence class on v-tuples by setting (z1,...,24) = (y1,-..,¥%) if there is an
automorphism o of V/(H) so that y,(;) = 2; for 1 <i < wv.Then

X = Z Izl,...,zu

gives the number of copies of H in G where the sum is taken over one entry from
each equivalence class. As there are (n), /a terms
Bix)= Mg, o (e nt
a a a
Our assumption p >> n~?/¢ implies E[X] — oo. It suffices therefore to show
A* = o(E[X]). Fixing z1, . . ., &4,

AT = Z Pr[A(ylv"'vyu)|A(I1,...,Iu)]'

W1y Yo)~(E1, e Ty)

There are v!/a = O(1) terms with {y1,...,¥,} = {z1,...,2,} and for each the
conditional probability is at most one (actually, at most p), thus contributing O(1) =
o( E[X])to A*. When {y1, ...,y }N{z1,..., 2, } hasielements, 2 < i < v—1the
argument of Theorem 4.4.2 gives that the contributionto A* is o( E[X]). Altogether
A* = o(E[X]) and we apply Corollary 4.3.5 1

Theorem 4.4.5 Let H be any fixed graph. For every subgraph H' of H (including
H itself) let X g+ denote the number of copies of H' in G(n, p). Assume p is such
that E[X g+] — oo forevery H'. Then

Xy ~ E[Xg]
almost always.

Proof. Let H have v vertices and e edges. As in Theorem 4.4.4 it suffices to
show A* = o(E[X]). We split A* into a finite number of terms. For each H’

with w vertices and f edges we have those (yi, ..., ¥, ) that overlap with the fixed
(z1,...,2,) inacopy of H'. These terms contribute, up to constants,
—w e E[Xg]
v—w, e—f — — EIX
wvp s = 0 (P ) = ofBlXa))

to A*. Hence Corollary 4.3.5 does apply. B
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4.5 CLIQUE NUMBER

Now we fix edge probability p = 1 and consider the clique number w(G). We set

the expected number of k-cliques. The function f(k) dropsunderoneatk ~ 2log, n.
(Very roughly, f(k) is like n2-%"/2)

Theorem 4.5.1 Let k = k(n) satisfy & ~ 2log, n and f(k) — oo. Then almost
always w(G) > k.

Proof. For each k-set S let Ag be the event “S isa clique” and X ¢ the corresponding
indicator random variable. We set

X=)Y Xs
|S|=k

sothatw(G) > k ifand only if X > 0. Then E[X] = f(k) — oo and we examine
the A* of Corollary 4.3.5. Fix S and note that 7' ~ S ifand only if [T N S| = ¢
where 2 <7 < k — 1. Hence

k-1

k n—k i k
* = (2)_(2)
=3 ()62
and so
A~ k-1 '
BX] — ;g(z)
where we set o n
N [

Observe that g(¢) may be thought of as the probability that a randomly chosen T
will intersect a fixed S in 7 points times the factor increase in Pr[A 7] when it does.

Setting z = 2,
5) G235 &

() n? =

9(2) =2
At the other extreme i = k — 1
k(n — k)2-(-1)  2kn2—k

G FX

glk—1)=

As k ~ 2log, n the numerator is n~1t°(1) The denominator approaches infinity
and so g(k — 1) < o(n~1). Some detailed calculation (which we omit) gives that the
remaining g(z) and their sum are also negligible so that Corollary 4.3.5 applies. B



52 THE SECOND MOMENT

Theorem 4.5.1 leads to a strong concentration result for w(G). For k ~ 2log, n

flk+1) n_k2_k = n~1HoD) = o(1).

flk)  k+1

Let ko = ko(n) be that value with f(ko) > 1 > f(ko + 1). For “most” n the
function f(k) will jump from a large f(ko) to a small f(ko + 1). The probability
that G contains a clique of size ko + 1 is at most f(ko + 1) which will be very small.
When f(ko) is large Theorem 4.5.1 implies that G contains a clique of size ko with
probability nearly one. Together, with very high probability w(G) = k. For some
n one of the values f(ko), f(ko + 1) may be of moderate size so this argument does
not apply. Still one may show a strong concentration result found independently by
Bollobés and Erdds (1976) and Matula (1976) .

Corollary 4.5.2 There exists k£ = k(n) so that
Prw(G) =kork+1] > 1L

We give yet stronger results on the distribution of w(G) in Section 10.2.

4.6 DISTINCT SUMS

Aset zy, ...,z of positive integers is said to have distinct sums if all sums
e, Sl k)
i€S

are distinct. Let f(n) denote the maximal & for which there exists a set

{(El,...,:ﬂk}C{l,...,n}

with distinct sums. The simplest example of a set with distinct sums is {2% : i <
log, n}. This example shows

f(n) > 1+ [logyn].
Erd6s has offered $300 for a proof or disproof that
f(n) <logyn+C
for some constant C. From above, as all 27(™) sums are distinct and less than nk
27" < nk = nf(n),

and so
f(n) < logyn + log, logy n + O(1).
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Examination of the second moment gives amodest improvement. Fix{zy,...,zx} C
{1,...,n} with distinct sums. Letey, ..., e be independent with

1
Prle; = 1] = Pr[e; = 0] = 3
and set
X =€ez1+...+ ez
(We may think of X as a random sum.) Set

and o2 = Var[X]. We bound

2 2 2k
0% — i+ ...+ 2} SnT

4

so that o < n+/k/2. By Chebyschev’s Inequality for any A > 1
Pr[|X — p| > Anvk/2] <272

Reversing,

1
1— 53 SPrllX —pl < Anvk/2]

But X has any particular value with probability either zero or 2 =% since, critically, a
sum can be achieved in at most one way. Thus
Pr[|X — u| < Anvk/2] < 27 F(AnvE + 1)

and

2F(1—A"%H) -1
- VX '
While X = +/3 gives optimal results any choice of A > 1 gives
Theorem 4.6.1

n

1
f(n) <logyn+ 3 log, logy n + O(1).

4.7 THE RODL NIBBLE

Radl

For2 <l < k < nlet M(n, k, 1), the covering number, denote the minimal size of
afamily K of k-element subsets of {1, . . ., n} having the property that every I-element
setis contained inat least one A € K. Clearly M(n, k,1) > (%) /(¥) since each k-set

covers (¥) I-sets and every I-set must be covered. Equality holds if and only if the
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family K has the property that every [-set is contained in exactly one A € K. This
is called an (n, k, {) tactical configuration (or block design). For example, (n, 3, 2)
tactical configurations are better known as Steiner Triple Systems. The question of
the existence of tactical configurations is a central one for combinatorics but one for
which probabilistic methods (at least so far!) play little role. In 1963 Paul Erd 6s and
Haim Hanani conjectured that for and fixed 2 <1 < k

lim M(n, kk, D)

ne (1)/(0)
Their conjecture was, roughly, that one can get asymptotically close to a tactical
configuration. While this conjecture seemed ideal for a probabilistic analysis it was
a full generation before Radl (1985) found the proof, which we describe in this
section. (One may similarly define the packing number m(n, k, 1) as the maximal
size of a family KC of k-element subsets of {1, ..., n} having the property that every

l-element set is contained in at most one A € K. Erd8&s and Hanani noticed from
elementary arguments that

. M(n, k1) . m(n, k1)
hIIl —_— s = ]. hIIl —_—
e (M/E T e 1)/

While Rddl result may be formulated in terms of either packing or covering here we
deal only with the covering problem.)
Several researchers realized that Rodl method applies in a much more general setting,
dealing with covers in uniform hypergraphs. This has first been observed by Frankl
and Rodl , and has been simplified and extended by Pippenger and Spencer (1989)
as well as by Kahn (1996) . Our treatment here follows the one in Pippenger and
Spencer (1989) , and is based on the description of Fliredi (1988) , where the main
tool is the second moment method.
For an »-uniform hypergraph H = (V, E') and fora vertex z € V, we letdg(z) (or
simply d(z), when there is no danger of confusion) denote the degree of z in H, that
is, the number of edges containing z. Similarly, for z,y € V, d(z,y) = du(z,y) is
the number of edges of H containing both z and y. A covering of H is a set of edges
whose union contains all vertices. In what follows, whenever we write 6 we mean
a quantity between —§ and 4. The following theorem is due to Pippenger, following
Frankl and Radl.

=1

Theorem 4.7.1 For every integer » > 2 and reals & > 1 and @ > 0, there are
v = y(r,k,a) > 0 and do = do(r, k,a) such that for every n > D > do the
following holds.

Every r-uniform hypergraph H = (V, E) onasetV of n vertices in which all vertices
have positive degrees and which satisfies the following conditions:

(1) For all vertices € V but at most yn of them, d(z) = (1 + ) D,

(2 Forallz € V, d(z) < kD,

(3) For any two distinctz,y € V, d(z,y) < yvD

contains a cover of at most (1 + a) % edges.
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The basic idea in the proofis simple. Fixingasmall e >> 0 one shows thata random
set of roughly en/r edges has, with high probability, only some O(e?n) vertices
covered more than once, and hence covers at least en — O(e?n) vertices. Moreover,
after deleting the vertices covered, the induced hypergraph on the remaining vertices
still satisfies the properties described in (1),(2) and (3) above (for some other values
of n,~, k and D). Therefore, one can choose again a random set of edges of this
hypergraph, covering roughly an e-fraction of its vertices with nearly no overlaps.
Proceeding in this way for a large number of times we are finally left with at most en.
uncovered vertices, and we then cover them trivially, by taking for each of them an
arbitrarily chosen edge containing it. Since e is sufficiently small, although this last
step is very inefficient, it can be tolerated.

The technical details require a careful application of the second moment method,
used several times in the proof of the following lemma.

Lemma4.7.2 For every integer » > 2 and reals K > 1 and ¢ > 0, and for every
real §' > 0, there are § = §(r, K,¢,6’) > 0 and Dy = Do(r, K, €, 4’) such that for
every n > D > Dy the following holds.

Every r-uniform hypergraph H = (V, E) on a set V' of n vertices which satisfies the
following conditions:

(i) For all vertices z € V' but at most én of them, d(z) = (1 + 6) D,

(iyPorallz € V,d(z) < KD,

(iii) For any two distinctz,y € V, d(z,y) < §D

contains a set E’ of edges with the following properties:

(V) |E'| = (1% 4"),

(V) The set V! = V — U, pre is of cardinality |V'| = ne (1 £+ 4"),

(vi) For all vertices z € V’ but at most §’|V’| of them, the degree d'(z) of z in the
induced hypergraph of H on V' satisfies d’(z) = De=¢("=1) (1 + §').

Proof. Throughout the proof we assume, whenever this is needed, that D (and hence
n) are sufficiently large. We denote by é1, é2, - - - positive constants (that can be
explicitly estimated) that tend to 0 when ¢ tends to 0 and D tends to infinity (for fixed
r, K, €). Therefore, by choosing § and Dy appropriately we can ensure that each of
those will be smaller than §’.
Let E’ be a random subset of F obtained by picking, randomly and independently,
each edge in E to be a member of E’ with probability p = . We have to show that
with positive probability, the properties (iv), (v) and (vi) hold.
The proof that (iv) holds is easy. Note that by the assumptions H has at least (1 —d)n
vertices of degree at least (1 — §)D, showing that its number of edges is at least
(=0nD - gimilarly, the number of edges of H does not exceed (1+2)2n+0nKD
Therefore, |E| = (1 + 6;)22. It follows that the expected value of the size of E’
satisfies E(|E'|) = |E|p = (1£4:) < anditsvariance is Var(|E'|) = |E|p(1-p) <
(14 61)<2. Therefore, by Chebyschev’s Inequality, for an appropriately chosen
d2 > 0,
en
Pr(|E'|=(1% 52)7) > 0.99,



56 THE SECOND MOMENT

say, giving (iv).

To prove (v), define, for each vertex z € V an indicator random variable I, where
I, = 1ifz ¢ Ueerre and I, = 0 otherwise. Note that [V'| = > ., I,. Calla
vertex ¢ € V good if d(z) = (1 £ &) D, otherwise call it bad. If 2 is good, then

€

E(I,)=Pr(Il, =1) = (1-p)*®) = (1 - 5

)(1:I:5)D — e—s(l :|:53)
If z is bad then, clearly, 0 < E(I;) < 1. Since there are at most dn bad vertices it
follows, by linearity of expectation, that the expected value of |V’/| is ne™¢(1 + d4).

To compute the variance of [V’'| = >, I, note that

Var([V/) =) _ Var(lL)+ >, Couv(ls, 1)

zeV z,yeV,z 2y
<E(V)+ Y. Cou(l ). (4.2)
z,yeV,xZy

However,

Cov(I, I,) = B(I,1,)—E(I,)E(I,) = (1 _p)d(Z)+d(y)—d(z,y) —(1 _p)d(z)+d(y)

It follows that
Var([V']) < E([V']) + 8sn® < d6(E(IV'))?,
which, by Chebyschev, implies that with probability at least 0.99
V' = (1£67)E(JV']) = (1 £ dg)ne™,

as claimed in (v).

It remains to prove (vi). To do so note, first, that all but at most § gn vertices z satisfy
the following two conditions:

(A)d(z)=(1x4)D, and

(B) all but at most 810D edges e € E with z € e satisfy

{feEE :a¢fifne# P} = (1+du)(r-1)D. (4.2)

Indeed, (A) holds for all but §n < don/2 vertices, by assumption. Moreover, the
total number of edges containing vertices whose degrees are not (1 + §).D is at most
énK D and hence the number of vertices contained in more than §;0 D such edges is
at most énK Dr/(é10D) < dgn/2 for an appropriate choice of dg, d10. Note, next,
that if z € e and e contains no vertex of degree which is not (1 + 4)D then, since
d(y, z) < 4D forall y, z, the number of edges f not containing z that intersect e is at
most (r — 1)(1+46)D and at least (r — 1)(1 £ 6)D — ("3 *)é D, and hence e satisfies
4.2).
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It thus suffices to show that for most of the vertices z satisfying (A) and (B), d'(z)
satisfies (vi). Fix such a vertex . Call an edge e with =z € e good if it satisfies (4.2).
Conditioning on z € V', the probability that a good edge containing z stays in the
hypergraph on V' is (1 — p)(*+9::)("=1)D_Therefore, the expected value of d'(z) is

E(d'(2)) = (1 £ 610 £ 6)D(1 — p)1E0)=DD 4 60D = e <"V D(1 £ 632).

For each edge e containing z, let I. denote the indicator random variable whose
value is 1 iff e is contained in V. Then, the degree d'(z) is simply the sum of these
indicator random variables, conditioned on z € V'. It follows that

Var(d'(z)) <E(d'(z))+ »_ Cov(I.,Iy)
z€e,z€f
< E(d'(z)) + 2610D*(1 £ 6) + > Cov(I,, I}). (4.3)
z€e,x€f,x,fgood

It remains to bound the sum »_ . .+ <0 50q Cov(le, Iy). For each fixed good e
this sum isa sum of the form >° . - .4 Cov(l, If). There are at most (r — 1)6 D
edges f inthe last sum for which |[en f| > 1, and their contribution to the sum cannot
exceed (r—1)§D. Ifenf = {z} thenlett(e, f) denote the number of edges of H that
intersect both e and f and do not contain z. Clearly, in this case, t(e, f) < (r—1)28D.
It follows that for such e and f, Cov(I.,I;) < (1 — p)~H&F) — 1 < &3, implying
that for each fixed good edge e

> Cov(le,If) < (r —1)5D + D(1 + 6)815 < 814 D.
z€f,fgood

As the sum >°. . oct.e fgooa COV(Ie, Iy) is the sum of at most D(1 + &) such

quantities, we conclude that
Var(d (z)) < E(d(z)) + 615 D* < d16(B(d'(x))*.

It thus follows, by Chebyschev, that with probability at most 4 17, d’(z) is not (1 +
618)De=¢("=1) and therefore, by Markov, that with probability at least, say, 0.99,
for all but at most &197 Vvertices, d'(z) = (1 = d15)De~5"~1). This completes the
proof of the lemma. B

Proof.[Theorem 4.7.1:] Fix e > 0 such that

+re< 1+a,
1—e—¢

and fix 1/10 > § > 0 such that

€
1l—e¢

(14 49) +re<l+a.

Fix an integer ¢ so that e =¥t < ¢. The theorem is proved by applying the lemma ¢
times. Put § = 4, and then define, by reverse induction d; > d;_1 > - -+ > &0 such
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that §; < &;y1e~ =1 [It_,(1 +6) < 1+ 26, and for n > D > R; one can
apply the lemma with », K = ke®("=1) ¢, §' = §;,1 and § = &;. This will give the
assertion of the theorem with vy = 4, do = maz R;. Indeed, by applying the lemma
repeatedly we obtain a decreasing sequence of sets of vertices V- = Vg, V1,---, V¢,
each contained in the previous one, and a sequence of sets of edges Eq, E2, ..., Fy,
where E; is the set of edges E’ obtained in the application of the lemma to the
hypergraph induced on V;_;. Here

Vil = [Vicale (1 £6) ( = [Vole™*(1 £ 26), )

€|V 1]

|Ei| = ——=(1+6) < (1+45) (i-1)e

and
Di — Di_le_E(T_l) — DC_Ei(T_l).

By covering each vertex of V; separately by an edge containing it we conclude that
the total number of edges in the cover obtained is at most

1
— + (1 + 2d)ne
—e

t—1

en en

(1+46)) — . —”+|Vt|§(1+45)71
1=0

< 21 +49)(;

This completes the proof. B
We conclude the section by showing how the theorem quickly implies Rddl solu-
tion of the Erd&s-Hanani problem mentioned in the beginning of the section.

Theorem 4.7.3 (Rodl) For k&, fixed,

— +rl < (1+a)=

M(n, k1) < (1 +o(1))@

()

where the o(1) term tends to zero as n tends to infinity.

Proof. Putr = (%) and let H be the r-uniform hypergraph whose vertices are all
I-subsets of {1, 2, ..., n}, and whose edges are all collections of (’,“) I-tuples that lie
inak-set. H has () vertices, each of its vertices has degree D = (1), and every

two distinct vertices lie in at most (}~/_1) = o(D) common edges. Therefore, by

Theorem 4.7.1, H has a cover of size at most (1 + 0(1))%, as needed. W
i

4.8 EXERCISES

1. Let X be a random variable taking integral nonnegative values, let E(X %)
denote the expectation of its square, and let Var(X) denote its variance.
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Prove that Var(X)
ar
Prob(X =0) < ———.
rob( 0) < E(X?)
. (*) Show that there is a positive constant ¢ such that the following holds. For
anynrealsas, a, ..., a, satisfying Y7, a? = 1,if (e1,..., ) isa{-1,1}-

random vector obtained by choosing each e; randomly and independently with
uniform distribution to be either —1 or 1, then

Prob(] Zeiai| <1l)>e

=1

. (*) Show that there is a positive constant ¢ such that the following holds. For any
n Vectors ag, az, . . ., an € R? satisfying >, ||ai||? = 1 and ||a;|| < 1/10,
where || - || denotes the usual Euclidean norm, if (e1,...,€,) isa {—1,1}-
random vector obtained by choosing each e; randomly and independently with
uniform distribution to be either —1 or 1, then

Prob(||> " eiail| <1/3) > c.
=1

. Let X be a random variable with expectation E(X) = 0 and variance
VAR(X) = o2. Prove that for all X > 0,

2

g
Prob[X > A < —.
rob[X > A] < Y
. Letvs = (z1,¥1),--.,%n = (Zn,yn) be n two dimensional vectors, where

. . n/2
each z; and each y; is an integer whose absolute value does not exceed 130—\/5.

Show that there are two disjointsets I, J C {1,2,...,n} such that

Zvi :Zvj.

icl jeJ

. (*) Prove that for every set X of at least 4k? distinct residue classes modulo a
prime p, there is an integer @ such that the set {az (mod p) : # € X} intersects
every interval in {0, 1,...,p — 1} of length at least p/&.



THE PROBABILISTIC LENS:
Hamiltonian Paths

What is the maximum possible number of directed Hamilton paths in a tournament
on n vertices? Denote this number by P(n). The first application of the probabilistic
method in Combinatorics is the result of Szele (1943) described in Chapter 2 which
states that P(n) > n!/27~1. This bound follows immediately from the observation
that the right hand side is the expected number of such paths in a random tournament
on n vertices. In the same paper Szele shows that

1
1/n
) S 23/4’

P(n)

n!

< limy o0 (

proves that this limit does exist, and conjectures that its correct value is 1/2.

This conjecture is proved in Alon (1990a) . The proof is given below. The main
tool is Brégman proof of Minc Conjecture for the permanent of a (0, 1)-matrix,
described in the Probabilistic Lens; Brégman Theorem, (following Chapter 2).

Theorem 1 There exists a positive constant ¢ such that for every n

n!
P(’I’L) S C’I’LS/ZF.

Proof. For a tournament 7', denote by P(T') the number of directed Hamilton paths
of T'. Similarly, C(T) denotes the number of directed Hamilton cycles of T, and
F(T) denotes the number of spanning subgraphs of 7" in which the indegree and the
outdegree of every vertex is exactly 1. Clearly

C(T) < F(T). (4.4)
60
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If T = (V,E) is a tournament on a set V. = {1,2,...,n} of n vertices, the
adjacency matrix of T' is the n by n (0, 1)-matrix Az = (a;;) defined by a;; = 1 if
(3,7) € E and a;; = 0 otherwise. Let »; denote the number of ones in row z. Clearly,

zn:ri - (Z) (4.5)

By interpreting combinatorially the terms in the expansion of the permanent

Per(Ar), it follows that
Per(Ar) = F(T). (4.6)

We need the following technical lemma.

Lemma2 For every two integers a, b satisfying & > a + 2 > a > 1 the inequality
()2 (B < ((@+ 1NH @D - (b — 1))/ =D

holds.

Proof. The assertion is simply that f(a) < f(b — 1), for the function f defined by
f(a) = (a)*/((a + 1))/ (a+1), Thus, it suffices to show that for every integer
z > 2, f(x — 1) < f(z). Substituting the expression for f and raising both sides to
the power z(z — 1)(z + 1) it follows that it suffices to show that for all z > 2:

((z — 1)!)z(z+1) ((z + 1)!)1(1—1) < (m!)Z(zz—l),

ﬁ 2 z+1 z(z—1)
(502> (=),
This is certainly true for z = 2. For z > 3 it follows from the facts that 4* > e®+1,

that z! < (2£1)® and that e~ > (2tl)=(z-1) W

Corollary 3 Define g(z) = (2!)*/*. For every integer § > n the maximum of the
function []}—, g(z;) subjectto the constraints Y., z; = S and z; > 1 are integers,
is obtained iff the variables z; are as equal as possible (i.e., iffeach z; iseither | S/n|

or[S/n].)

Proof. If there are two indices 4 and j such that z; > z; 4 2 then, by Lemma 2, the
value of the product would increase once we add one to z; and subtract one from ;.
|

Returning to our tournament 7" we observe that the numbers r; defined above are
precisely the outdegrees of the vertices of T'. If at least one of these is 0, then clearly
C(T) = F(T) = 0. Otherwise, by Brégman’s Theorem, by Corollary 3 and by (4.5)
and (4.6), F(T') is at most the value of the function [ i, (r:!)*/"¢ , where the integral
variables r; satisfy (4.5) and are as equal as possible. By a straightforward (though
somewhat tedious) derivation of the asymptotics using Stirling’s formula this gives;
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Proposition 4 For every tournament 7' on n vertices

ﬁns/z (n—1)!
V2e P

To complete the proof of the theorem, we have to derive a bound for the number
of Hamilton paths in a tournament from the above result. Given a tournament S
on n vertices, let T' be the random tournament obtained from S by adding to it a
new vertex y and by orienting each edge connecting y with one of the vertices of
S, randomly and independently. For every fixed Hamilton path in S, the probability
that it can be extended to a Hamilton cycle in T is precisely 1/4. Thus, the expected
number of Hamilton cycles in T'is  P(S) and hence there is a specific T' for which

C(T) > 3 P(S). However, by Proposition4, C(T) < (1—1—o(1))%(n—|—1)3/2 S
and thus P(S) < O(n®/252L), completing the proof of Theorem 1. W

C(T) < F(T) < (1+0(1))




The Local Lemma

It’s a thing that non-mathematicians don’t realize. Mathematics is actually an
esthetic subject almost entirely.
—John Conway

5.1 THE LEMMA

In a typical probabilistic proof of a combinatorial result, one usually has to show
that the probability of a certain event is positive. However, many of these proofs
actually give more and show that the probability of the event considered is not only
positive but is large. In fact, most probabilistic proofs deal with events that hold with
high probability, i.e., a probability that tends to 1 as the dimensions of the problem
grow. For example, consider the proof given in Chapter 1 that for each k& > 1 there
are tournaments in which for every set of & players there is one who beats them
all. The proof actually shows that for every fixed & if the number n of players is
sufficiently large then almost all tournaments with n players satisfy this property,
i.e., the probability that a random tournament with » players has the desired property
tends to 1 as n tends to infinity.

On the other hand, there is a trivial case in which one can show that a certain event
holds with positive, though very small, probability. Indeed, if we have n mutually
independent events and each of them holds with probability at least p > 0, then
the probability that all events hold simultaneously is at least p™, which is positive,
although it may be exponentially small in 7.

It is natural to expect that the case of mutual independence can be generalized to
that of rare dependencies, and provide a more general way of proving that certain

63
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events hold with positive, though small, proability. Such a generalization is, indeed,
possible, and is stated in the following lemma, known as the Lovéasz Local Lemma.
Thissimple lemma, first proved in Erdés and Lovasz (1975) is an extremely powerful
tool, as it supplies a way for dealing with rare events.

Lemmab5.1.1 [The Local Lemma; General Case]

Let Ay, As, ..., A, beevents in an arbitrary probability space. A directed graph
D = (V, E) on the set of vertices V = {1, 2, ..., n} is called a dependency digraph
for the events Ag,..., A, if for each ¢, 1 < i < n, the event A; is mutually
independent of all the events {4, : (¢,7) ¢ E}. Suppose that D = (V, E) is
a dependency digraph for the above events and suppose there are real numbers
z1,...,2, SUCh that 0 < z; < 1 and Pr(4;) < miH(i,j)eE(l — z;) for all
1 <4< n Then Pr(A;A) > TI(1 — ;). In particular, with positive

=1

probability no event A; holds.

Proof. We first prove, by induction on s, that forany S C {1,...,n}, [S|=s<n
andany: ¢ S

JES

This is certainly true for s = 0. Assuming it holds for all s’ < s, we prove it for S.
PutS: = {j € S;(4,4) € E}, S2 = S\S1. Then

Pr(A; A . A; A
" (Az-| A Zf) Pl s Dlves )
jes r (/\j€51 Aj|/\l652 Al)

To bound the numerator observe that since A; is mutually independent of the events
{A;:£€ 5}

Pr (Ai/\( /\ Z])| /\ ZL) < Pr (A1| /\ ZL)

LeS> LeS>

=Pr(d) <z [[ (1-=). (5.3)

(3.5)€E

(5.2)

The denominator, on the other hand, can be bounded by the induction hypothesis.
Indeed, suppose S1 = {j1, 72, - -, jr}- If » = 0 then the denominatoris 1, and ( 5.1)
follows. Otherwise

Pr (Zh /\_Z]'2 /\”'/\er|/\L_ESZZL) = _
(1 - PT(A]'1| /\LESz Al))_(]‘ — Pr (11]2 |Aj1 A /\LESAAL)) Teee
(1 — Pr (A]'T|A]'1 /\.../\A]'r_1 AALESZAL))
> (-5 )(1—25,) .- (L—25.) > [ jyes(l — 24)- (5.4)
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Substituting (5.3) and ( 5.4) into ( 5.2) we conclude that Pr (Ai| /\jeS ZJ-) < &,
completing the proof of the induction.
The assertion of Lemma 5.1.1 now follows easily, as

Pr(ANr_ Ai) = (1 — Pr(4y)) - (1 — Pr(Az|4y)) ..o (1 — Pr(4a| NP5 AD)
> [T, (1 —2), (5.5)

completing the proof. B

Corollary 5.1.2 [The Local Lemma; Symmetric Case] Let A4, Az,..., A, be
events in an arbitrary probability space. Suppose that each event A; is mutually
independent of a set of all the other events A ; but at most d, and that Pr(A;) < p
foralll <i<mn. If

ep(d+1) <1 (5.6)

then Pr (A7, 4i) > 0.

Proof. If d = 0 the result is trivial. Otherwise, by the assumption there is a
dependency digraph D = (V, E) for the events A4, ..., 4, inwhich for each ¢, |{j :
(4,7) € E}| < d. The result now follows from Lemma 5.1.1 by taking z; =

d
1/(d+1)(< 1) forall ¢ and using the fact that forany d > 1, (1 - dJ%l) >1/e. W

It is worth noting that as shown by Shearer in 1985, the constant “e” is the
best possible constant in inequality (5.6). Note also that the proof of Lemma
5.1.1 indicates that the conclusion remains true even when we replace the two
assumptions that each A; is mutually independent of {4, : (3,5) ¢ E} and that
Pr(A;) <z [ (1-=;) by the weaker assumption that for each i and each

(ij)eE
So C AL, n\ s (59) € BY, Pr(4i|Ajes, ) < w (1= )
1,7 )€
This turns out to be useful in certain applications.

In the next few sections we present various applications of the Local Lemma for
obtaining combinatorial results. There is no known proof of any of these results,
which does not use the Local Lemma.

5.2 PROPERTY B AND MULTICOLORED SETS OF REAL NUMBERS

Recall that a hypergraph H = (V, E) has property B, (i.e. is 2-colorable), if there is
a coloring of V' by two colors so that no edge f € E is monochromatic.

Theorem 5.2.1 Let H = (V, E) be a hypergraph in which every edge has at least
k elements, and suppose that each edge of H intersects at most d other edges. If
e(d+ 1) < 2¥~1 then H has property B.

Proof. Coloreach vertex v of H, randomly and independently, either blue or red (with
equal probability). Foreachedge f € E, let A; be the event that f is monochromatic.
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Clearly Pr(Af) = 2/2l/l < 1/2%=1. Moreover, each event A; is clearly mutually
independent of all the other events A ;. for all edges f’ that do not intersect f. The
result now follows from Corollary 5.1.2. B

A special case of Theorem 5.2.1 is that for any & > 9, any k-uniform k-regular
hypergraph H has property B. Indeed, since any edge f of such an H contains
k vertices, each of which is incident with & edges (including f), it follows that
f intersects at most d = k(k — 1) other edges. The desired result follows, since
e(k(k — 1)+ 1) < 28~ foreach k > 9.

The next result we consider, which appeared in the original paper of Erdés and
Lovasz, deals with k-colorings of the real numbers. For a k-coloring ¢ : R —
{1,2,..., k}of the real numbers by the k colors 1, 2, .. ., k, and fora subset T' C IR,
we say that T' is multicolored (with respect to ¢) if ¢(T) = {1,2,...,k}, ie, if T
contains elements of all colors.

Theorem 5.2.2 Let m and & be two positive integers satisfying

e(m(m—l)—I—l)k(l—%)mgl. (5.7)

Then, for any set S of m real numbers there is a k-coloring so that each translation
z + S (for z € IR) is multicolored.

Notice that (5.7) holds whenever m > (3 + o(1))k log k.

Proof. We first fix a finite subset X C IR and show the existence of a k-coloring so
that each translation z + S (for z € X) is multicolored. This is an easy consequence
of the Local Lemma. Indeed, putY = J,cx(z+S)andletc: Y —{1,2,...,k}
be a random k-coloring of Y obtained by choosing, for each y € Y, randomly
and independently, c(y) € {1,2,...,k} according to a uniform distribution on
{1,2,...,k}. Foreachz € X, let A, be the eventthat z+.5 is not multicolored (with
respect to c). Clearly Pr(A;) < k(1 — £)™. Moreover, each event A, is mutually
independent of all the other events A, but those for which (z + S) N (z’ 4+ S5) # 0.
As there are at most m(m — 1) such events the desired result follows from Corollary
5.1.2.

We can now prove the existence of a coloring of the set of all reals with the desired
properties, by a standard compactness argument. Since the discrete space with &
points is (trivially) compact, Tikhonov’s Theorem (which is equivalent to the axiom
of choice) implies that an arbitrary product of such spaces is compact. In particular,
the space of all functions from IR to {1, 2, ..., k}, with the usual product topology,
is compact. In this space for every fixed = € IR, the set C, of all colorings ¢, such
that = + S is multicolored is closed. (In fact, it is both open and closed, since a
basis to the open sets is the set of all colorings whose values are prescribed in a finite
number of places). As we proved above, the intersection of any finite number of sets
C, is nonempty. It thus follows, by compactness, that the intersection of all sets C,,
is nonempty. Any coloring in this intersection has the properties in the conclusion of
Theorem 5.2.2. B
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Note that it is impossible, in general, to apply the Local Lemma to an infinite
number of events and conclude that in some point of the probability space none
of them holds. In fact, there are trivial examples of countably many mutually
independent events A4;, satisfying Pr(4;) = 1/2 and /\i>1E- = @. Thus the
compactness argument is essential in the above proof. -

5.3 LOWER BOUNDS FOR RAMSEY NUMBERS

The deriviation of lower bounds for Ramsey numbers byErd 6s in 1947 was one of the
first applications of the probabilistic method. The Local Lemma provides a simple
way of improving these bounds. Let us obtain, first, a lower bound for the diagonal
Ramsey number R(k, k). Consider a random 2-coloring of the edges of K,,. For
each set S of &k vertices of K,,, let Ag be the event that the complete graph on S

is monochromatic. Clearly Pr(Ag) = 91-(2). 1t is obvious that each event A, is
mutually independent of all the events A, but those which satisfy |SNT| > 2, since
this is the only case in which the corresponding complete graphs share an edge. We

can therefore apply Corollary 5.1.2 with p = 2'~() and d = (¥) (,™) to conclude;
Proposition 5.3.1 Ife ((’;) (") + 1) .91-(3) < 1 then R(k, k) > n.

A short computation shows that this gives R(k, k) > @ (1+0(1)) k2%/2, only
a factor 2 improvement on the bound obtained by the straightforward probabilistic
method. Although this minor improvement is somewhat disappointing it is certainly
not surprising; the Local Lemma is most powerful when the dependencies between
events are rare, and this is not the case here. Indeed, there is a total number of

K = (Z) events considered, and the maximum outdegree d in the dependency

n

digraph is roughly (£)(,™,). For large k and much larger n (which is the case of

interest for us) we have d > K1~9(1/¥) je. quite a lot of dependencies. On the
other hand, if we consider small sets S, e.g., sets of size 3, we observe that out
of the total K = (%) of them each shares an edge with only 3(n — 3) ~ K/3.
This suggests that the Local Lemma may be much more significant in improving
the off-diagonal Ramsey numbers R(k, £), especially if one of the parameters, say
£, is small. Let us consider, for example, following Spencer (1977) , the Ramsey
number R(k,3). Here, of course, we have to apply the nonsymmetric form of the
Local Lemma. Let us 2-color the edges of K,, randomly and independently, where
each edge is colored blue with probability p. For each set of 3 vertices T', let Ap
be the event that the triangle on T is blue. Similarly, for each set of k vertices S,
let Bs be the event that the complete graph on S is red. Clearly Pr(Az) = p3 and
Pr(Bs) = (1 - p)(z). Construct a dependency digraph for the events Ar and Bg
by joining two vertices by edges (in both directions) iff the corresponding complete
graphs share an edge. Clearly, each Ar-node of the dependency graph is adjacent to
3(n — 3) < 3n Ar/-nodes and to at most (;) Bs:-nodes. Similarly, each Bs-node

is adjacent to ()(n — k) < k?n/2 Ar nodes and to at most (}) Bs/-nodes. It
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follows from the general case of the Local Lemma (Lemma 5.1.1) that if we can find
a0 < p < 1landtwo real numbers 0 < z < 1and 0 < y < 1 such that

P <a(l—a)(1-y))

and .
(1-p)) <y - 2)F" /21— y)()
then R(k, 3) > n.
Our objective is to find the largest possible & = &(n) for which there is such a
choice of p, z and y. An elementary (but tedious) computation shows that the best
choice is when p = ¢1n" 12, k = ¢an'/?logn,z = 03/n3/2 and y = L4

8"1/2 log2m '
This gives that R(k, 3) > csk?/log® k. A similar argument gives that R(k,4) >
k5/2+°(1) " In both cases the amount of computation required is considerable. How-
ever, the hard work does pay; the bound R(k,3) > csk?/log® k matches a lower
bound of Erdds proved in 1961 by a highly complicated probabilistic argument. This
was improved to R(k,3) > cck?/logk by Kim (1995) . The bound above for
R(k, 4) is better than any bound for R(k, 4) known to be proven without the Local
Lemma.

5.4 A GEOMETRIC RESULT

A family of open unit balls F in the 3-dimensional Euclidean space IR> is called a
k-fold covering of IR® if any point z € IR> belongs to at least kballs. In particular, a 1-
fold covering is simply called a covering. A k-fold covering Fis called decomposable
if there is a partition of F into two pairwise disjoint families F; and F2, each being a
covering of JR®. Mani-Levitska and Pach (1988) constructed, for any integer k > 1,
a non-decomposable k-fold covering of R® by open unit balls. On the other hand
they proved that any k-fold covering of IR® in which no point is covered by more
than ¢2*/3 balls is decomposable. This reveals a somewhat surprising phenomenon
that it is more difficult to decompose coverings that cover some of the points of IR >
too often, than to decompose coverings that cover every point about the same number
of times. The exact statement of the Mani-Pach Theorem is the following.

Theorem 5.4.1 Let F = {B;}ics be a k-fold covering of the 3 dimensional Eu-
clidean space by open unit balls. Suppose, further, than no point of IR is contained
in more than ¢ members of F. If

e- t3218/2k_1 S 1
then F is decomposable.
Proof. Define an infinite hypergraph H = (V(H), E(H)) as follows. The set of

vertices of H, V(H), is simply F = {B;}ics. For each z € IR® let E, be the set of
balls B; € F which contain z. The set of edges of H, E(H), is simply the set of £,
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with the understanding that when E, = E, the edge is taken only once. We claim
each edge E; intersects less than ¢2218 other edges E,, of H. If z € B; the center of
B; is withindistance 1 of z. If now B, N B; # 0 the center of B, is within distance
three of z and so B; lies entirely inside the ball of radius four centered at z. Such a
B; covers precisely 473 = 27° of the volume of that ball. As no vertex is covered
more than ¢ times there can be at most 26¢ such balls. It is not too difficult to check
that m balls in IR> cut IR® into less than m> connected components so that there are
at most (2°¢)? distinct E,, overlaping E,.

Consider, now, any finite subhypergraph L of H. Each edge of L has at least &
vertices, and it intersects at most d < #3218 other edges of L. Since, by assumption,
e(d + 1) < 2%-1, Theorem 5.2.1 (which is a simple corollary of the local lemma),
implies that L is 2-colorable. This means that one can color the vertices of L blue
and red so that no edge of L is monochromatic. Since this holds for any finite L,
a compactness argument, analogous to the one used in the proof of Theorem 5.2.2,
shows that H is 2-colorable. Given a 2-coloring of H with no monochromatic edges,
we simply let F; be the set of all blue balls, and F5 be the set of all red ones. Clearly,
each F; is a covering of IR*, completing the proof of the theorem. W

It is worth noting that Theorem 5.4.1 can be easily generalized to higher dimen-
sions. We omit the detailed statement of this generalization.

5.5 THE LINEAR ARBORICITY OF GRAPHS

A linear forest is a forest (i.e., an acyclic simple graph) in which every connected
component is a path. The linear arboricity la(G) of a graph G is the minimum
number of linear forests in G, whose union is the set of all edges of G. This notion
was introduced by Harary as one of the covering invariants of graphs. The following
conjecture, known as the linear arboricity conjecture, was raised in Akiyama, Exoo
and Harary (1981) :

Conjecture 5.5.1 [The linear arboricity conjecture] The linear arboricity of every
d-regular graph is [(d + 1)/2].

Notice that since every d-regular graph G on n vertices has nd/2 edges, and every
linear forest in it has at most n — 1 edges, the inequality

nd d

la(G) > 3 > 5

(n—1)
isimmediate. Since la(G) isan integer this gives la(G) > [(d+1)/2]. The difficulty
in Conjecture 5.5.1 lies in proving the converse inequality: la(G) < [(d + 1)/2].
Note also that since every graph G with maximum degree A is a subgraph of a
A-regular graph (which may have more vertices, as well as more edges than G), the
linear arboricity conjecture is equivalent to the statement that the linear arboricity of
every graph G with maximum degree A is at most [(A + 1)/2].

Although this conjecture received a considerable amount of attention, the best
general result concerning it, proved without any probabilistic arguments, is that
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la(G) < [3A/5] for even A and that la(G) < [(3A + 2)/5] for odd A. In this
section we prove that for every ¢ > 0 there isa Ay = Ag(e) such that for every
A > Ay, the linear arboricity of every graph with maximum degree A is less than
(3 +¢) A. This result (with a somewhat more complicated proof) appears in Alon
(1988) and its proof relies heavily on the local lemma. We note that this proof is
more complicated than the other proofs given in this chapter, and requires certain
preparations, some of which are of independent interest.

Itis convenient to deduce the result for undirected graphs from its directed version.
A d-regular digraph is a directed graph in which the indegree and the outdegree of
every vertex is precisely d. A linear directed forest is a directed graph in which every
connected component is a directed path. The di-linear arboricity dla(G) of a directed
graph G is the minimum number of linear directed forests in G whose union covers
all edges of G. The directed version of the Linear Arboricity Conjecture, first stated
in Nakayama and Peroche (1987) is;

Conjecture 5.5.2 For every d-regular digraph D,
dla(D)=d+1.

Note that since the edges of any (connected) undirected 2d-regular graph G can
be oriented along an Euler cycle, so that the resulting oriented digraph is d-regular,
the validity of Conjecture 5.5.2 for d implies that of Conjecture 5.5.1 for 2d.

It is easy to prove that any graph with n vertices and maximum degree d contains
an independent set of size at least n/(d + 1). The following proposition shows that
at the price of decreasing the size of such a set by a constant factor we can guarantee
that it has a certain structure.

Proposition 5.5.3 Let H = (V, E) be a graph with maximum degree d, and let
V =V1 UV, U---UV, be apartition of V into » pairwise disjoint sets. Suppose
each set V; is of cardinality |V;| > 2ed, where e is the basis of the natural logarithm.
Then there is an independent set of vertices W C V, that contains a vertex from each
Vi.

Proof. Clearly we may assume that each set V; is of cardinality precisely g = [2ed]
(otherwise, simply replace each V; by a subset of cardinality g of it, and replace H
by its induced subgraph on the union of these » new sets). Let us pick from each set
V; randomly and independently a single vertex according to a uniform distribution.
Let W be the random set of the vertices picked. To complete the proof we show that
with positive probability W is an independent set of vertices in H.

For each edge f of H, let A; be the event that W contains both ends of f. Clearly,
Pr(As) < 1/¢°. Moreover, if the endpoints of f are in V; and in V;, then the event
Ay is mutually independent of all the events corresponding to edges whose endpoints
do not lie in V; U V;. Therefore, there is a dependency digraph for the events in
which the maximum degree is less than 2gd, and since e - 2gd - 1/g? = 2ed/g < 1
we conclude, by Corollary 5.1.2, that with positive probability none of the events A ¢
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holds. But this means that T is an independent set containing a vertex from each V;,
completing the proof. B

Proposition 5.5.3 suffices to prove Conjecture 5.5.2 for digraphs with no short
directed cycle. Recall that the directed girth of a digraph is the minimum length of a
directed cycle in it.

Theorem 5.5.4 Let G = (U, F) be a d-regular digraph with directed girth g > 8ed.
Then

dla(G) =d +1.

Proof. As is well known, F' can be partitioned into d pairwise disjoint 1-regular
spanning subgraphs F4, ..., Fz of G. (This is an easy consequence of the Hall-
Konig Theorem; let H be the bipartite graph whose two classes of vertices A and
B are copies of U, in which u € 4 is joined to v € B iff (u,v) € F. Since H is
d-regular its edges can be decomposed into d perfect matchings, which correspond to
d 1-regular spanning subgraphs of G.) Each F; is a union of vertex disjoint directed
cycles Ci1, Ciz, ..., Cir,. Let V4, Va,...,V, be the sets of edges of all the cycles
{Cij :1<i<d,1<j<r} Clearly V1, Va,..., V; is a partition of the set F of
all edges of G, and by the girth condition, |V;| > g > 8ed forall 1 < i < r. Let H
be the line graph of G, i.e., the graph whose set of vertices is the set F' of edges of G
in which two edges are adjacent iff they share a common vertex in G. Clearly H is
4d — 2 regular. As the cardinality of each V; is at least 8ed > 2e(4d — 2), there is,
by Proposition 5.5.3 , an independent set of H containing a member from each V;.
But this means that there is a matching M in G, containing at least one edge from
each cycle C;; of the 1-factors Fy, ..., Fg. Therefore M, 1\M, Fo\M, ..., Fi\M
are d + 1-directed forests in G (one of which is a matching) that cover all its edges.
Hence

dla(G) <d+1.

As G has |U | - d edges and each directed linear forest can have at most |U | — 1 edges,
dla(G) > |U|d/(JU|-1) > d.

Thus dla(G) = d + 1, completing the proof. B

The last theorem shows that the assertion of Conjecture 5.5.2 holds for digraphs
with sufficiently large (directed) girth. In order to deal with digraphs with small girth,
we show that most of the edges of each regular digraph can be decomposed into a
relatively small number of almost regular digraphs with high girth. To do this, we
need the following statement, which is proved using the local lemma.

Lemma5.5.5 Let G = (V, E) be a d-regular directed graph, where d is sufficiently
large, and let p be an integer satisfying 10v/d < p < 20v/d. Then, there is a p-
coloring of the vertices of G by the colors 0, 1, 2, . . ., p—1 with the following property;
for each vertexv € ¥ and each color 4, the numbers N+ (v, 1) = |[{u € V; (v,u) € E



72 THE LOCAL LEMMA

and w is colored :}| and N~ (v,%) = |[{u € V : (u,v) € E and u is colored 3}
satisfy:

|N+(v,i) — %| < 34/d/pvlogd,

|N‘(v,1}) - %| < 3+/d/p/logd .

(5.8)

Proof. Let f : V — {0,1,...,p— 1} be a random vertex coloring of V by p colors,
where for each v € V, f(v) € {0,1,...,p — 1} is chosen according to a uniform
distribution. For every vertex v € V and every color 4,0 < i < p, let A;ji be the
event that the number N * (v, 1) of neighbors of v in G whose color is < does not satisfy
inequality ( 5.8). Clearly, N*(v,1) is a Binomial random variable with expectation

% and standard deviation, /%(1 - ;—)) < \/g. Hence, by the standard estimates for
Binomial distribution given in Appendix A, foreveryv € Vand 0 <i < p

Pr(A},) < 1/d*.
Similarly, if A, ; is the event that the number N ~ (v, 1) violates ( 5.8) then
Pr(A; ;) < 1/d*.

Clearly, each of the events A;ji or A, ; is mutually independent of all the events A;j].
or A, for all vertices u € V that do not have a common neighbor with v in G.
Therefore, there is a dependency digraph for all our events with maximum degree
< (2d)? - p. Since e - 3x((2d)?p + 1) < 1, Corollary 5.1.2, (i.e., the symmetric
form of the Local Lemma), implies that with positive probability no event A;ji or
A, occurs. Hence, there is a coloring f which satisfies ( 5.8) for all v € V and
0 g 1 < p, completing the proof. &

We are now ready to deal with general regular digraphs. Let G = (V, E) be an
arbitrary d-regular digraph. Throughout the argument we assume, whenever it is
needed, that d is sufficiently large. Let p be a prime satisfying 10d/2 < p < 20d'/2
(it is well known that for every n there is a prime between n and 2n). By Lemma
5.5.5 there is a vertex coloring f : V. — {0,1,...,p — 1} satisfying ( 5.8). For
each i, 0 < ¢ < p, let G; = (V, E;) be the spanning subdigraph of G defined by
E; = {(u,v) € E: f(v) = (f(u) + %) mod p}. By inequality (5.8) the maximum
indegree A} and the maximum outdegree A} in each G; is at most f—,+ 3\/%/10g d.
Moreover, for each 7 > 0, the length of every directed cycle in G; is divisible by p.
Thus, the directed girth g; of G; is at least p. Since each G; can be completed, by
adding vertices and edges, to a A;-regular digraph with the same girth g; and with
A; =max (Af, A7), and since g; > 8eA; (for all sufficiently large d), we conclude,

by Theorem 5.5.4, that dla(G;) < A;+1 < % + 3ﬁ\/10gd+ l1foralll <7< p.
For Go, we only apply the trivial inequality

d d
dla(Go) < 240 < 2= + 6\/j\/logd
P P
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obtained by, e.g., embedding Gy as a subgraph of a Ao-regular graph, splitting the
edges of this graph into Ao 1-regular spanning subgraphs, and breaking each of
these 1-regular spanning subgraphs into two linear directed forests. The last two
inequalities, together with the fact that 10+/d < p < 20v/d imply

d d
dla(G) < d+ 2=+ 31/pd+/logd + 3\/j\/logd—|—p— 1<d+c-d**(logd)'/2.
P P

We have thus proved:

Theorem 5.5.6 There is an absolute constant ¢ > 0 such that for every d-regular
digrapn G
dla(@) < d + ed**(log d)*/? .

We note that by being a little more careful, we can improve the error term to
c'd?/3(log d)*/3. Since the edges of any undirected d = 2f-regular graph can be
oriented so that the resulting digraph is f-regular, and since any (2f — 1)-regular
undirected graph is a subgraph of a 2 f-regular graph the last theorem implies;

Theorem 5.5.7 There is an absolute constant ¢ > 0 such that for every undirected
d-regular graph G

d
la(G) < 5 + cd®/*(log d)'/?.

5.6 LATIN TRANSVERSALS

Following the proof of the local lemma we noted that the mutual independency
assumption in this lemma can be replaced by the weaker assumption that the condi-
tional probability of each event, given the mutual non-occurance of an arbitrary set of
events, each nonadjacent to it in the dependency digraph, is sufficiently small. In this
section we describe an application, from Erdds and Spencer (1991), of this modified
version of the lemma. Let A = (a,;) be an n of n matrix with, say, integer entries.
A permutation 7 is called a Latin transversal (of A) if the entries ar(;) (1 <4 < n)
are all distinct.

Theorem 5.6.1 Suppose & < (n — 1)/(4e) and suppose that no integer appears in
more than & entries of A. Then A has a Latin Transversal.

Proof. Let w be a random permutation of {1,2,...,n}, chosen according to a
uniform distribution among all possible n! permutations. Denote by T the set of
all ordered fourtuples (4, j,¢', j') satisfying ¢ < 4',5 # j' and a;; = a;j». For
each (¢,7,7,7') € T, let A;;i;» denote the event that 7(z) = j and =(z') = j'.
The existence of a Latin transversal is equivalent to the statement that with positive
probability none of these events hold. Let us define a symmetric digraph, (i.e., a
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graph) G on the vertex set T by making (%, 5, ¢', j/) adjacent to (p, ¢, 9, ¢’) if and
only if {s,3'} N {p,p'} # 0 or {4,5'} N{q,q'} # 0. Thus, these two fourtuples are
not adjacent iff the four cells (s, 7), (¢/, '), (p, ¢) and (¢, ¢’) occupy four distinct
rows and columns of A. The maximum degree of G is less than 4nk; indeed, for a
given (3, j, ', 7') € T there are at most 4n choices of (s, t) with either s € {3,4'} or
t € {j,7'}, and for each of these choices of (s, ) there are less than & choices for
(s',t) # (s,t) with a,y = asy. Each such fourtuple (s, t, s',t") can be uniquely
represented as (p, ¢,7’,q’) withp < p’. Since e - 4nk - #_1) < 1, the desired
result follows from the above mentioned strengthening of the symmetric version of
the Local Lemma, if we can show that

PT(Ai]'iljl /\qup:q:) S 1/1’1,(1’1, - 1) (59)
S

forany (4, j, %', 7/) € T and any set S of members of T' which are nonadjacent in G to
(,7,7,7'). By symmetry, we may assume thati = j = 1,7 = 57 = 2 and that hence
none of the p’s nor ¢’s are either 1 or 2. Let us call a permutation 7 good if it satisfies
/\ Apgpq, and let S;; denote the set of all good permutations  satisfying 7(1) = 4
S

and 7(2) = j. We claim that |Siz| < |Si;| forall i # j. Indeed, suppose first
that ¢, 7 > 2. For each good m € S1, define a permutation =* as follows. Suppose
m(z) = %, m(y) = 7. Then define 7*(1) = ¢, 7*(2) = 5,7 (z) = 1, 7*(y) = 2 and
m*(t) = w(¢) forallt # 1,2, z, y. One caneasily check that 7* is good, since the cells
(1,4),(2, ), (=,1), (y, 2) are not part of any (p,q,»’,¢") € S. Thus =* € S;;, and
since the mapping = — «* is injective | S12| < |Si;|, as claimed. Similarly one can
define injective mappings showing that |S1z| < |S;;| even when {3, 5} N {1,2} # 0.
It follows that Pr(A1122 A \ Apgprg) < Pr(Avizj A [\ Apgprq) foralli # j and

S S

hence that Pr(A1122| /\qup,ql) < 1/n(n — 1). By symmetry, this implies ( 5.9)

S
and completes the proof. B

5.7 THE ALGORITHMIC ASPECT

When the probabilistic method is applied to prove that a certain event holds with
high probability, it often supplies an efficient deterministic, or at least randomized,
algorithm for the corresponding problem.

By applying the Local Lemma we often manage to prove that a given event holds
with positive probability, although this probability may be exponentially small in
the dimensions of the problem. Consequently, it is not clear if any of these proofs
can provide a polynomial algorithms for the corresponding algorithmic problems.
For many years there was no known method of converting the proofs of any of
the examples discussed in this chapter into an efficient algorithm. In 1991 J. Beck
found such a method that works for some of these examples, with a little loss in the
constants.
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He demonstrated in Beck (1991) his method by considering the problem of
hypergraph 2-coloring. For simplicity we only describe here the case of fixed edge-
size in which each edge intersects a fixed number of other edges.

Let n, d be fixed positive integers. By the (n, d)-problem we mean the following:
Given sets A4y,..., Ay C Q with all |4;| = n, such that no set 4; intersects more
than d other sets A, find a two coloring of €2 so that no A; is monochromatic. When
e(d + 1) < 21, Theorem 5.2.1 assures us that this problem always does have a
solution. Can we find the coloring in polynomial (in N for fixed n, d) time? J. Beck
has given an affirmative answer under somewhat more restrictive assumptions. We
assume € is of the form Q@ = {1,...,m}, m < Nrn and the initial data structure
consists of a list of the elements of the sets A; and a list giving for each element j
those 4 for which j € A;. We let G denote the dependency graph with vertices the
sets A; and A;, A, adjacent if they overlap.

Theorem 5.7.1 Let n,d be such that, setting D = d(d — 1) there exists a decom-
positionn = ny + na + nz with

16D(1 + d) < 2™

16D(1 + d) < 2"
2e(1 +d) < 2",

Then there is a randomized algorithm with expected running time O(N (In N) ¢) for
the (n, d) problem, where ¢ is a constant (depending only on » and d).

For e < 1/11, fixed, we note that the above conditions are satisfied, for n suf-
ficiently large, when d < 2™¢ by taking n; = n2 ~ 5n/11 and ng ~ n/11. We
emphasize again that the algorithmic analysis here is for fixed n, d and N approaching
infinity, although the argument can be extended to the non-fixed case as well.

Beck has given a deterministic algorithm for the (n, d) problem. The randomized
algorithm we give may be derandomized using the techniques of Chapter 15. The
running time remains polynomial but seemingly no longer N **+°(1),  Moreover,
the algorithm can even be parallelized using some of the techniques in Chapter 15
together with a certain modification in the algorithm.

Proof. The First Pass. During this pass points will be either Red, Blue, uncolored or
saved. We move through the points j € Q sequentially, coloring them Red or Blue at
random, flipping a fair coin. After each j is colored we check all 4; > j. If A; now
has n; points in one color and no points in the other color we call A ; dangerous. All
uncolored k& € A; are now considered saved. When saved points k are reached in the
sequential coloring they are not colored but simply skipped over. At the conclusion
of the First Pass points are Red, Blue or saved. We say a set A; survives if it does not
have both Red and Blue points. Let S C G denote the (random) set of surviving sets.
Claim Almost surely all components C of G| s have size O(ln N).

Proof. An A; € S may be dangerous or, possibly, many of its points were saved
because neighboring (in G) sets were dangerous. The probability of a particular A;
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becoming dangerous is at most 21~ since for this to occur the first n; coin flips
determining colors of j € A; must come up the same. (We only have inequality
since in addition »; points of A; must be reached before being saved.) Let V be an
independent set in G, i.e., the A; € V are mutually disjoint. Then the probability
that all A; € V become dangerous is at most (21=™:)IVI as the coin flips involve
disjoint sets. Now let V' C G be such that all distances between the A; € V are at
least 4, distance being the length of the shortest path in G. We claim that

Pr[V C 8] < (d + 1)IVI(2t=m)VI,

This is because for each A; € V there are at most & + 1 choices for a dangerous
neighbor A;:, giving (d + 1)!V! choices for the A;:. As the A; are at least four apart
the A;: cannot be adjacent and so the probability that they are all dangerous is at most
(21-"1)IV1 as claimed.

Call T C G a 4-tree if the A; € T are such that all their mutual distances in G
are at least four and so that, drawing an arc between A;, A; € T if their distance is
precisely four, the resulting graph is connected. We first bound the number of 4-trees
of size u. The “distance-four” graph defined on 7' must contain a tree. There are
less than 47 trees (up to isomorphism) on j vertices, now fix one. We can label the
tree 1,...,usothateach j > 1isadjacent to some i < j. Now consider the number
of (A%,..., A*) whose distance-four graph corresponds to this tree. There are N
choices for A'. Having chosen A® for all i < j the set A7 must be at distance four
from A* in G and there are at most D such points. Hence the number of 4-trees of
size uisat most4* ND*~1 < N(4D)*. For any particular 4-tree T' we have already
that Pr[T C ] < [(d+ 1)21~™]*. Hence the expected number of 4-trees T C S is
at most

N [8D(d+ 1)27™]".

As the bracketed term is less than 1/2 by assumption, for w = ¢; In N this term is
o(1). Thus almost surely G|s will contain no 4-tree of size bigger than ¢1 In N. We
actually want to bound the size of the components C of G|s. A maximal 4-tree T
in a component C must have the property that every A; € C lies within three of an
Aj € T. There are less than d> (a constant) 4; within three of any given 4 so that
c1In N > |T| > |C|d=3 and so (since d is a constant):

|C| <eczlnN

proving the Claim. B

If the First Pass leaves components of size larger than ¢ In N we simply repeat
the entire procedure. In expected linear time the First Pass is successful. The points
that are Red or Blue are now fixed. The sets A; with both Red and Blue points can
now be ignored. For each surviving A; fix a subset B; of n — n; saved points. It now
suffices to color the saved points so that no B; is monochromatic. The B; split into
components of size O(In N) and it suffices to color each component separately. On
the Second Pass we apply the method of the First Pass to each component of the B;.
Now we call a set B; dangerous if it receives ns points of one color and none of the
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other. The Second Pass takes expected time O(M ) to color a component of size M,
hence an expected time O(N) to color all the components. (For success we require
that a component of size M is broken into components of size at most ¢z ln M. To
avoid trivialities, if M < Inln N we skip the Second Pass for the corresponding
component.) At the end of the Second Pass (still in linear time!) there is a family of
twice surviving sets C; C B; C A; of size ng, the largest component of which has
size O(lnln N).

We still need to color these O(N') components of sets of size n3, each component
of size O(Inln N). By the Local Lemma (or directly by Theorem 5.2.1), each of
these components can be two-colored. We now find the two-coloring by brute force!
Examining all two-colorings of a component of size M takes time O(M2™M) which
is O((In N)°) in our case. Doing this for all components takes time O(N(ln N)¢).
This completes the coloring. B

We note that with slightly more restrictions on n, d a Third Pass could be made and
then the total time would be O(N(Inln N)¢). We note also that a similar technique
can be applied for converting several other applications of the Local Lemma into
efficient algorithms.

5.8 EXERCISES

1. (*) Prove that for every integer d > 1 there is a finite ¢(d) such that the edges
of any bipartite graph with maximum degree d in which every cycle has at least
c(d) edges can be colored by d + 1 colors so that there are no two adjacent
edges with the same color and there is no two-colored cycle.

2. (*) Prove that for every ¢ > 0 there is a finite lo = lo(€) and an infinite
sequence of bits a1, as,as,... a; € {0,1}, such that for every I > [, and
every ¢ > 1 the two binary vectors v = (ai, @it1,--.,@i4i—1) and v =
(@itl, Gigit1, - - -, @ipai—1) differin at least (3 — €)l coordinates.

3. Let G = (V, E) be a simple graph and suppose each v € V' is associated with
a set S(v) of colors of size at least 10d, where d > 1. Suppose, in addition,
that for each v € V and ¢ € S(v) there are at most d neighbors « of v such
that ¢ lies in S(u). Prove that there is a proper coloring of G assigning to each
vertex v a color from its class S(v).

4. Let G = (V,E) beacycleof length4n and let V =V, UV>... UV, bea
partition of its 4n vertices into » pairwise disjoint subsets, each of cardinality
4. ls it true that there must be an independent set of G containing precisely
one vertex from each V; ? (Prove, or supply a counter-example).

5. (*) Prove that there is an absolute constant ¢ > 0 such that for every k& there is
a set S of at least ck In k integers, such that for every coloring of the integers
by & colors there is an integer z for which the set z + S does not intersect all
color classes.



THE PROBABILISTIC LENS:
Directed Cycles

Let D = (V, E) be a simple directed graph with minimum outdegree ¢ and
maximum indegree A.

Theorem 1 [Alon and Linial (1989) ] If e(Ad + 1) (1 — %)5 < 1then D contains
a (directed, simple) cycle of length 0(mod &).

Proof. Clearly we may assume that every outdegree is precisely 4, since otherwise
we can consider a subgraph of D with this property.

Letf:V — {0,1,...,k— 1} bearandom coloring of V, obtained by choosing,
for each v € V, f(v) € {0,...,k — 1} independently, according to a uniform
distribution. For each v € V, let A, denote the event that there isno v € V, with
(v,u) € E and f(u) = (f(v) + 1)(modk). Clearly Pr(4,) = (1—1)°. One
can easily check that each event A, is mutually independent of all the events A, but
those satisfying

N* ()N (uUN"’(u)) £0,

where here N*(v) = {w € V : (v,w) € E}. The number of such u’s is at
most Aé and hence, by our assumption and by the Local Lemma, (Corollary 5.1.2),
Pr (A,ev Av) > 0. Therefore, thereisan f : V — {0, 1,..., &k — 1} such that for
every v € V thereisau € V with

(mu) € E and  f(u) = (f(v) + 1) (mod k). (5.10)

Starting at an arbitrary v = vo € V and applying (5.10) repeatedly we obtain
a sequence v, v1, v2, ... Of vertices of D so that (vi,viy1) € E and f(vit1) =

78
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(f(vi) + 1) (mod k) for all 2 > 0. Let j be the minimum integer so that there is an
£ < j with v, = vj. The cycle vevey1ve42 -+ - v; = ve is a directed simple cycle of
D whose length is divisible by k. B






Correlation Inequalities

You just keep right on thinking there, Butch, that’s what you’re good at.
Robert Redford to Paul Newman in Butch Cassidy and the Sundance Kid

Let G = (V, E) be a random graph on the set of vertices V. = {1,2,...,n}
generated by choosing, for each 3,5 € V,7 # j independently, the pair {3, j} to
be an edge with probability p, where 0 < p < 1. Let H be the event that G is
Hamiltonian and let P be the event that G is planar. Suppose one wants to compare
the two quantities Pr(P A H) and Pr(P) - Pr(H). Intuitively, knowing that G is
Hamiltonian suggests that it has many edges and hence seems to indicate that G is
less likely to be planar. Therefore it seems natural to expect that Pr(P|H) < Pr(P)
implying

Pr(PAH)< Pr(H)-Pr(P).

This inequality, which is, indeed, correct, is a special case of the F K G-Inequality
of Fortuin, Kasteleyn and Ginibre (1971) . In this chapter we present the proof of
this inequality and several related results, which deal with the correlation between
certain events in probability spaces. The proofs of all these results are rather simple,
and still they supply many interesting consequences. The first inequality of this type
is due to Harris (1960) . A result closer to the ones considered here is a lemma of
Kleitman (1966b) , stating that if .A and B are two monotone decreasing families of
subsets of {1,2,...,n} (ie; A€ Aand A’ C A= A’ € Aand, similarly B € B
and B' C B = B' € B) then

[ANB[-2" > |Al-[B] .

This lemma was followed by many extensions and generalizations until Ahlswede
and Daykin (1978) obtained a very general result, which implies all these extensions.

81
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In the next section we present this result and its proof. Some of its many applications
are discussed in the rest of the chapter.

6.1 THE FOUR FUNCTIONS THEOREM OF AHLSWEDE AND DAYKIN

Suppose n > land put N = {1,2,...,n}. Let P(NN) denote the set of all subsets
of N, and let R* denote the set of nonnegative real numbers. For a function
@ : P(N) — IR" and for a family A of subsets of N denote o(A) = Y- ,. 4 #(A).
For two families .A and B of subsets of N define AUB = {AUB: A€ A, B € B}
andANB={ANB: Ac A, Bc B}

Theorem 6.1.1 [The Four Functions Theorem] Let @, 3,7,6 : P(N) — IR* be
four functions from the set of all subsets of IV to the nonnegative reals. If, for every
two subsets A, B C N the inequality

a(A)B(B) < ¥(AUB)§(AN B) (6.1)
holds, then, for every two families of subsets A, B C P(N)

a(A)B(B) < v(AUB)S(AN B). 6.2)

Proof. Observe, first, that we may modify the four functions e, 3, v, § by defining
a(d)=0forallA¢ A, B(B)=0forall B¢ B,vy(C)=0forallC ¢ AUB, and
§(D) = 0forall D ¢ AN B. Clearly, (6.1) still holds for the modified functions and
in inequality ( 6.2) we may assume nowthat A =B = AUB=ANB = P(N).

To prove this inequality we apply induction on n. The only step that requires
some computation is » = 1. In this case P(N) = {¢, N}. For each function
o € {a,B,7,d} define po = p(¢) and p1 = p(N). By (6.1) we have

aoBo < Yodo
aoB1 < 11do
a1 < m1do
a1 <mdr
(6.3)

By the above paragraph we only have to prove inequality ( 6.2), where A = B =
P(N), i.e., to prove that

(@0 + @1)(Bo + B1) < (Yo +71)(do + 1) - (6.4)

If either y; = 0 or o = 0 this follows immediately from ( 6.3). Otherwise, by (6.3),
Yo > %980 and 6, > B Jtthus suffices to show that (“g—f” + 71) (50 + ";—‘fl) >

(a0 + @1)(Bo + B1), or, equivalently, that (c:oBo + Y160)(dov1 + @181) > (a0 +
a1)(Bo + B1)d0y1. The last inequality is equivalent to

(7160 — @0f1)(7160 — @160) > 0,



THE FOUR FUNCTIONS THEOREM OF AHLSWEDE AND DAYKIN 83

which follows from (6.3), as both factors in the left hand side are nonnegative. This
completes the proof forn = 1.

Suppose, now, that the theorem holds for n — 1 and let us prove it for n, (n > 2).
Put N’ = N\{n} and define for each ¢ € {e,3,v,d} andeach A C N’, ¢'(4) =
©(A) + (A U {n}). Clearly, for each function ¢ € {a,8,7,6} ¢'(P(N')) =
@(P(N)). Therefore, the desired inequality ( 6.3) would follow from applying the
induction hypothesis to the functions o', 8’,7',6' : P(N') — IR™T. However, in
order to apply this hypothesis we have to check that these new functions satisfy the
assumption of Theorem 6.1.1 on N”, i.e., that for every A’, B’ C N':

o (ANB'(B') < v/ (A UB')§'(A'NB'). (6.5)

Not surprisingly, this last inequality follows easily from the case » = 1 whichwe have
already proved. Indeed, let T be a 1-element set and define @(¢) = «(4"), a(T) =
a(4' U{n}), B(¢) = B(B'), B(T) = B(B' U{n}), 7(¢) = 7(4' UB'), 5(T) =
y(4' U B' U {n}) and é(¢) = §(A4' N B"), §(T) = §((4’' n B’) U {n}). By
the assumption ( 6.1) &(S)B(R) < (S U R)§(S N R) for all S,R C T and
hence, by the case n = 1 already proven o'(A’)B'(B') = a(P(T))B(P(T)) <
F(P(T))§(P(T)) = v'(A" U B")§'(A’ N B'), which is the desired inequality ( 6.5).
Therefore inequality ( 6.2) holds, completing the proof.

|

The Ahlswede-Daykin Theorem can be extended to arbitrary finite distributive
lattices. A lattice in a partially ordered set in which every two elements z and y, have
a unique minimal upper bound, denoted by Vv y and called the join of z and y and
a unique maximal lower bound, denoted by = A y and called the meet of z and y. A

lattice L is distributive if forall z,y,z € L
eA(yVz)=(zAy)V(zAz)
or, equivalently if forall z,y,z € L
cV(yAz)=(eVy)A(zVz).
For two sets X,Y C L define
XvVY={zVvy:zeX,yeY}.
and
XANY={zANy:zeX,yeY}.

Any subset L of P(N), where N = {1,2,...,n}, ordered by inclusion, which is
closed under the union and intersection operations is a distributive lattice. Here, the
join of two members A, B € L, is simply their union A U B and their meet is the
intersection A N B. It is somewhat more surprising (but easy to check) that every
finite distributive lattice L is isomorphic to a sublattice of P({1, 2, ..., n}) for some
n. (To see this, call an element z € L join-irreducible if whenever z = y Vv z then
eitherz = yorz = 2. Letzy, z,, . . ., &, be the set of all join-irreducible elements in
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L and associate each element z € L with the set A = A(z) C N, where ¢ = v, i
1€

and {z; : ¢ € A} are all the join-irreducibles y satisfying y < z. The mapping
&z — A(z) is the desired isomorphism.) This fact enables us to generalize Theorem
6.1.1 to arbitrary finite distributive lattices as follows.

Corollary 6.1.2 Let L be a finite distributive lattice and let a, 8, and é be four
functions from Lto R*. If

a(z)B(y) <v(z Vy)d(z Ay)
forall z,y € L thenforevery X, Y C L
a(X)B(Y) < 1(X VY)S(X AY).

The simplest case in the last Corollary is the case where all the four functions
o, B, and § are identically 1, stated below.

Corollary 6.1.3 Let L be a finite distributive lattice and suppose X,Y C L. Then
X|- Y| <X VY| X AY].

We close this section by presenting a very simple consequence of the last Corollary,
first proved by Marica and Schonheim (1969) .

Corollary 6.1.4 Let X be a family of subsets of a finite set N and define
X\X ={F\F': F, F' ¢ X}.

Then |X\X| > |X].

Proof.

Let L be the distributive lattice of all subsets of N. By applying Corollary 6.1.3
toX andY = {N\F: F € X} we obtain:

1X|?=|X|- Y| < |XUY[- X NY]=[X\X].

The desired result follows. H

6.2 THE FKG INEQUALITY

A function p : L — IR, where L is a finite distributive lattice, is called log-
supermodular if

p(z)pu(y) < plzVy)u(z Ay)

forall z,y € L. A function f : L — R" is increasing if f(z) < f(y) whenever
z < yand is decreasing if f(z) > f(y) whenever z < y.
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Motivated by a problem from statistical mechanics, Fortuin et al. (1971) proved
the following useful inequality which has become known as the F K G-inequality.

Theorem 6.2.1 [The FKG inequality]
Let L be a finite distributive lattice and let » : L — IR™ be a log-supermodular
function. Then, for any two increasing functions f, g : L — IR+ we have

(Z u(m)f(m)) - (Z u(m)g(m)) < (Z u(m)f(m)g(m)) - (Z u(m)) :

zcL zcL zcL zcL
(6.6)
Proof.
Define four functions o, 8,7, 6 : L — IR™ as follows. For each z € L
a(z) =p()f(z), Blz)= p(@)g(z)
V(z) =mp(z)f(z)g(z),  d(z) = pu(z)

We claim that these functions satisfy the hypothesis of the Ahlswede-Daykin Theo-
rem, stated in Corollary 6.1.2. Indeed, if z,y € L then, by the supermodularity of &
and since f and g are increasing:

a(z)B(y) #z)f(

= u@)g(y) < p(zVy)flz)g(y)u(z Ay)
< p(zVy)f(

zVy)g(eVyuEAy) =v(zVy)(zAy).

Therefore, by Corollary 6.1.2 (with X =Y = L),
a(L)B(L) <~(L)é(L) ,

which is the desired result. B

Note that the conclusion of Theorem 6.2.1 holds also if both f and g are decreasing
(simply interchange « and ¢ in the proof). In case f is increasing and g is decreasing
(or vice versa) the opposite inequality holds;

(Z u(m)f(m)) (Z u(m)g(m)) > (Z u(m)f(m)g(m)) (Z u(m)) :

zcL zcL zcL zcL

To prove it, simply apply Theorem 6.2.1 to the two increasing functions f(z) and
k—g(z), where k is the constant max, ¢ 1, g(z). (This constant is needed to guarantee
that k — g(z) > 0 forall z € L).

It is helpful to view p as a measure on L. Assuming g is not identically zero we
can define, for any function f : L — IR™, its expectation

>eer f(z)p(z)
Yieer M(@)

< f>=
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With this notation, the F K G-inequality asserts that if x is log-supermodular and
f,g : L — IR* are both increasing or both decreasing then

<fg>><f>-<g>.
Similarly, if f is increasing and g is decreasing (or vice versa), then
<fg><<f><g>.

This formulation demonstrates clearly the probabilistic nature of the inequality,
some of whose many interesting consequences are presented in the rest of this chapter.

6.3 MONOTONE PROPERTIES

Recall that a family A of subsets of N = {1,2,...,n} is monotone decreasing if
Ae Aand A" C A = A’ € A. Similarly, it is monotone increasing if A € A and
A C A" = A' € A. By considering the power set P(N) as a symmetric probability
space, one naturally defines the probability of A by

_ Al

Pr(A) = on -

Thus, Pr(.A) is simply the probability that a randomly chosen subset of NV liesin A.
Kleitman’s lemma, which was the starting point of all the correlation inequalities
considered in this chapter, is the following.

Proposition 6.3.1 Let A and B be two monotone increasing families of subsets of
N =1{1,2,...,n} and let C and D be two monotone decreasing families of subsets
of N. Then

Pr(ANB) > Pr(A)- Pr(B)

Pr(CND) > Pr(C)- Pr(D)

Pr(ANC) < Pr(A)- Pr(C)
In terms of cardinalities, this can be read as follows:
2"|ANB| > |A|-|B]

2*cND|>|C|-|D|
MANCI<|A]-[C],

where here and in what follows, AN B, C N D and .A N C denote usual intersections
of families.

Proof. Let f : P(N) — IR* be the characteristic function of A4, i.e., f(4) = 0 if
A¢ Aand f(A) =1if A € A Similarly, let g be the characteristic function of
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B. By the assumptions, f and g are both increasing. Applying the F K G-inequality
with the trivial measure 4 = 1 we get:

Pr(ANB) =< fg>>< f>-<g>=Pr(A)- Pr(B).

The other two inequalities follow similarly from Theorem 6.2.1 and the paragraph
following it.

Itis worth noting that the Proposition can be also derived easily from the Ahlswede-
Daykin Theorem or from Corollary 6.1.3.

|

The last proposition has several interesting combinatorial consequences, some of
which appear already in Kleitman original paper. Since those are direct combinatorial
consequences, and do not contain any additional probabilistic ideas we omit their
exact statement and turn to a version of Proposition 6.3.1 in a more general probability
space.

For a real vector p = (p1,,-.-.,,pn), Where 0 < p; < 1, consider the probability
space whose elements are all members of the power set P(N), where, for each
A C N, Pr(A) = [Licapill;za(1 — pj). Clearly, this probability distribution
is obtained if we choose a random A C N by choosing each element : € N,
independently, with probability p;. Let us denote, foreach A C P(N), its probability
in this space by Pr,(.A). In particular, if all the probabilities p; are 1/2 then Pr,(.A)
is the quantity denoted as Pr(A) in Proposition6.3.1. Definey = up : P(N) — R*
by w(A) = [lica Pi 144 (1 — p5).

It is easy to check that u is log-supermodular. This is because for A, B C N,
w(A)p(B) = u(AU B)u(A N B), as can be checked by comparing the contribution
arising from each ¢ € N to the left hand side and to the right hand side of the
last equality. Hence, one can apply the F K G-inequality and obtain the following
generalization of Proposition 6.3.1.

Theorem 6.3.2 Let .A and B be two monotone increasing families of subsets of N
and let C and D be two monotone decreasing families of subsets of N. Then, for any
real vector p = (p1,,.--,,Pn), 0 <p; <1

Prp(ANB) > Pry(A) - Pry(B)
Pr,(CND) > Prp(C) - Prp(D)
Pry(ANC) < Prp(A) - Pry(C) .

This theorem can be applied in many cases and will be used in Chapter 8 to derive
the Janson Inequalities . As a simple illustration suppose that A4, As, ..., Ay are
arbitrary subsets of N and one chooses a random subset A of N by choosing each
1 € N, independently, with probability p. Then, Theorem 6.3.2 easily implies that

k
Pr(A intersects each 4;) > H Pr(Aintersects 4;) .
=1
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Notice that this is false, in general, for other similar probabilistic models. For
example, if A is a randomly chosen £-element subset of N then the last inequality
may fail.

By viewing the members of NV as the n. = (7}) edges of the complete graph on the
set of vertices V' = {1, 2, ..., m} we can derive a correlation inequality for random
graphs. Let G = (V, E) be a random graph on the set of vertices V' generated by
choosing, foreach ¢, 7 € V, 4 # j, independently, the pair {z, 7} to be an edge with
probability p. (This model of random graphs is discussed in detail in Chapter 10). A
property of graphs is a subset of the set of all graphs on V', closed under isomorphism.
Thus, for example, connectivity is a property (corresponding to all connected graphs
on V) and planarity is another property. A property @ is monotone increasing if
whenever G has @ and H is obtained from G by adding edges then H has @, too.
A monotone decreasing property is defined in a similar manner. By interpretting the
members of N in Theorem 6.3.2 as the (") pairs {3, j} withé,j € V, i # j we
obtain:

Theorem 6.3.3 Let @Q1,Q2, Q@3 and Q4 be graph properties, where @1, Q2 are
monotone increasing and @ s, @4 are monotone decreasing. Let G = (V, E) be a
random graph on V' obtained by picking every edge, independently, with probability
p. Then

Pr(Ge€Q1NQz)> Pr(G € Q1) Pr(G € Qs)
Pr(G € QsNQ4)> Pr(G €Qs) - Pr(G € Q)
Pr(Ge@Q1NQs) < Pr(GEQ1) Pr(GeEQs).

Thus, for example, the probability that G is both Hamiltonian and planar does not
exceed the product of the probability that it is Hamiltonian by that it is planar. It
seems hopeless to try and prove such a statement directly, without using one of the
correlation inequalities.

6.4 LINEAR EXTENSIONS OF PARTIALLY ORDERED SETS

Let (P, <) be a partially ordered set with n elements. A linear eztension of P
is a one to one mapping o : P — {1,2,...,n}, which is order preserving, i.e., if
z,y € Pand z < y then o(z) < o(y). Intuitively, o is a ranking of the elements of
P which preserves the partial order of P. Consider the probability space of all linear
extensions of P, where each possible extension is equally likely. In this space we
can consider events of the form, e.g., z < yor (z < y) A(z < z) (forz,y,z € P)
and compute their probabilities. It turns out that the F K G-inequality is a very useful
tool for studying the correlation between such events. The best known result of this
form was conjectured by Rival and Sands and proved by Shepp (1982) . (See also
Fishburn (1992) for a strengthening.) It asserts that for any partially ordered set P
and any three elements z,y,z € P: Pr(z <y Az < z) > Pr(z < y)Pr(z < 2).
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This result became known as the XY Z-theorem. Although it looks intuitively ob-
vious, its proof is nontrivial and contains a clever application of the F K G-inequality.
In this section we present this result and its elegant proof.

Theorem 6.4.1 Let P beapartiallyordered setwithn elementsei, as, . .., a,. Then

Pr(a; < az Aag < ag) > Pr(a1 < az)Pr(a1 < as).

Proof.

Let m be a large integer (which will later tend to infinity) and let L be the
set of all ordered n-tuples x = (z1,...,2,), Where z; € M = {1,2,...,m}.
(Note that we do not assume that the numbers z; are distinct). Define an order
relation < on L as follows. Fory = (y1,...,yn) € L and x as above x < y
iffzq > ypand z;, — 21 <y, —y; forall 2 < 7 < n. Itis not too difficult to
check that (L, <) is a lattice in which the i-th component of the meet x A y is
(x Ay)i = min(z; — z1, ¥ — y1) + max(z1, y1) and the -th component of the join
xVyis(xVy); = max(z; — z1, ¥ — y1) + min(z1, y1).

Moreover, the lattice L is distributive. This follows by an easy computation from
the fact that the trivial lattice of integers (with respect to the usual order) is distributive
and hence for any three integers a, band ¢

min(a, max(b, ¢)) = max(min(a, b), min(a, c)) . (6.7)
and
max(a, min(b, ¢)) = min(max(a, b), max(a, c)) . (6.8)
Let us show how this implies that L is distributive. Letx = (z1,...,24), ¥ =
(y1,-..,Yn) @and z = (21, .. ., 2z, ) be three elements of L. We must show that

xA(yVez)=(xAy)V(xAz).
The i-th component of x A (y V z) is:

(x A(y V2)); =min(z; —2z1,(yVa2)— (yVz))+max(z, (yVz)) =
= min(z; — 21, max(y; — Y1,z — z1)) + max(z1, min(ys, 21)) .

Similarly, the -th component of (x A y) V (x A z) is:

(xAy)V(xAz))=
max((x Ay)i — (xA¥Y)1, (xAz); — (xAz)1)+min((x Ay, (xAz)1) =
max(min(z; — 21, ¥ — y1), min(z; — 21, 2 — 21))+
min(max(z1, y1), max(z1,21)) .

These two quantities are equal, as follows by applying ( 6.7) withae = z; — z4,
b=vy; —y1, c= 2z —zrand (6.8) witha = z1, b=y, c = 2;.

Thus L is distributive. To apply the FKG-inequality we need the measure
function x and the two functions f and g. Let u be the characteristic function of P,
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ie, forx = (21,...,2,) € L, p(x) = 1if z; < =z; whenever a; < a; in P, and
w(x) = 0 otherwise. To show that g is log-supermodular it suffices to check that if
p(x) = p(y) = Lthen pu(x Vy) = u(x Ay) = 1. However, if u(x) = u(y) =1
and a; < a; in P then z; < z; and y; < y; and hence

(zVy) = max(z; — ¢1, ¥ — y1) + min(z1,y1)
< max(z; — 21, yj —y1) + min(z1, 1) = (2 Vy); ,

i.e, u(x Vy) =1 Similarly, u(x) = p(y) = 1 implies u(x A y) = 1, too.

Not surprisingly, we define the functions f and g as the characteristic functions
of the two events z; < z, and z1 < z3, respectively, i.e., f(x) = 1ifz; < 22 and
f(x) = Ootherwise, and g(x) = 1ifz, < zzandg(x) = 0otherwise. Trivially, both
fand g are increasing. Indeed, ifx <y and f(x) = 1then0 < zz —z1 <y2 —y1
and hence f(y) = 1, and similarly for g.

We therefore have all the necessary ingredients for applying the F K G-inequality
(Theorem 6.2.1). This gives that in L the probability that an n-tuple (z 1, ..., zs)
that satisfies the inequalities in P, satisfies both z; < 2 and z; < z3 is at least
as bhig as the product of the probability that it satisfies 1 < x5 by that it satisfies
z1 < z3. Notice that this is not yet what we wanted to prove; the n-tuples in L are
not n-tuples of distinct integers and thus do not correspond to linear extensions of
P. However, as m — oo, the probability that z; = x; for some % # j in a member
x = (#1,...,2,) of L tends to 0 and the assertion of the theorem follows. W

6.5 EXERCISES

1. Let G be a graph and let P denote the probability that a random subgraph of
G obtained by picking each edge of G with probability 1/2, independently,
is connected (and spanning). Let @ denote the probability that in a random
2-coloring of G, where each edge is chosen, randomly and independently, to
be either red or blue, the red graph and the blue graph are both connected (and
spanning). Is @ < P??

2. Afamily of subsets G is called intersecting if G1 NGy # @ forall G1, G5 € G.
Let Fy, Fa, ..., Fi be kintersecting families of subsets of {1, 2, ..., n}. Prove
that

Uk, Fil < om —onk,

3. Show that the probability that in the random graph G(2k, 1/2) the maximum
degree is at most k — 1 is at least 1/4%.



THE PROBABILISTIC LENS:
Turan’s Theorem

Inagraph G = (V, E) let d, denote the degree of a vertex v and let (G) be the
maximal size of an independent set of vertices. The following result was proved by
Caro and Wei.

Theorem 1

1
a(G)> ) i1
veV

Proof. Let < be a uniformly chosen total ordering of V. Define
I={veV:{v,u}c E=v<uw}

Let X, be the indicator random variable forv € Iand X = > .y X, = |I|. For
each v

1
E[Xv] = PI'['U € I] = d—_i_]_’

since v € I if and only if v is the least element among v and its neighbors. Hence

E[X]:Zdvil

and so there exists a specific ordering < with

1
|I|sz +1°
veV v
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Butifz,y € I and {z,y} € F then z < y and y < =, a contradiction. Thus I is
independentand o(G) > |I|. B

Forany m < n let g,r satisfy n = mg +r,0 < r < m, and lete = r(q‘lz'l) +
(m —r)(%). Define a graph G = G, on n vertices and e edges by splitting the
vertex set into m classes as evenly as possible and joining two vertices if and only if

they lie in the same class. Clearly o(Gp,c) = m.

Theorem 2 [Turan (1941) ]Turan’s Theorem Let H have n vertices and e edges.
Thena(H) > manda(H) =m < H = Gy ..

Proof. Gy has ¥,y (dy + 1)~! = m since each clique contributes 1 to the sum.
Fixinge = Y, cy dv/2, >, v (dv + 1)~ ! is minimized with the d, as close together
as possible. Thus for any H

1
o(H)>) g >m
vEV
For a(H) = m we must have equality on both sides above. The second equality
implies the d,, must be as close together as possible. Letting X = |I| as in the
previous theorem, assume a(H) = E[X]. But o(H) > X for all values of < so X
must be a constant. Suppose H is nota union of cliques. Then, there existz,y,z € V
with {z, y},{z, 2} € F,{y,2} ¢ E. Let < be an ordering that begins z, y, z and
<’ the same ordering except that it begins y, z, z, and let I, I’ be the corresponding
sets of vertices all of whose neighbors are “greater”. Then I, I’ are identical except
thatz € I,y,2 ¢ I whereas z ¢ I',y,z € I'. Thus X is not constant. That is,
a(H) = E[X] implies that H is the union of cliques and so H = G, .. &



~ Martingales and
Tight Concentration

Mathematics seems much more real to me than business - in the sense that, well,
what’s the reality in a McDonald’s stand? It’s here today and gone tomorrow.
Now, the integers - that’s reality. When you prove a theorem, you’ve really done
something that has substance to it, to which no business venture can compare
for reality.

—Jim Simons

7.1 DEFINITIONS
A martingale is a sequence Xo, . . ., Xy, 0f random variables so that for 0 < ¢ < m,
E[Xip|Xs, Xiz1, ..., Xo] = X;.

Imagine a gambler walking into a casino with X dollars. The casino contains a
variety of games of chance. All games are “fair” in that their expectations are zero.
The gambler may allow previous history to determine his choice of game and bet.
He might employ the gambler’s definition of martingale - double the bet until you
win. He might play roulette until he wins three times and then switch to keno. Let
X be the gambler’s fortune at time 7. Given that X; = a the conditional expectation
of X,4+1 must be a and so this is a martingale.

A simple but instructive martingale occurs when the gambler plays “flip a coin”
for stakes of one dollar each time. Let Y7, ..., Y,, be independent coin flips, each +1
or —1 with probability one half. Normalize so that X, = 0 is the gambler’s initial
stake, though he has unlimited credit. Then X; = Y7 + ...+ Y; has distribution S;.

93
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Our martingales will look quite different, at least from the outside.
The Edge Exposure Martingale Let the random graph G(n,p) be the underlying
probability space. Label the potential edges {z,7} C [n] by ey, ..., en, setting
m = (%) for convenience, in any specific manner. Let f be any graph theoretic
function. We define a martingale Xo, . . ., X, by giving the values X;(H). X, (H)
is simply f(H). Xo(H) is the expected value of f(G) with G ~ G(n, p). Note that
X is a constant. In general (including the cases z = 0 and ¢ = m)

Xi(H) = E[f(G)lej € G« ej € H 1< ;<1

In words, to find X ; (H) we first expose the first 7 pairs e, . . ., e; and see if they are
in H. The remaining edges are not seen and considered to be random. X;(H) is
then the conditional expectation of f(G) with this partial information. When ¢ = 0
nothing is exposed and X is a constant. When ¢ = m all is exposed and X, is the
function f. The martingale moves from no information to full information in small
steps.

The edge exposure martingale with n = m = 3, f the chromatic number, and
the edges exposed in the order “bottom,left,right”. The values X;(H) are given by
tracing from the central node to the leaf labelled H.
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The figure shows why this is a martingale. The conditional expectation of f(H)
knowing the first ¢ — 1 edges is the weighted average of the conditional expectations
of f(H) where the i-th edge has been exposed. More generally - in what is sometimes
referred to as a Doob martingale processDoob - X; may be the conditional expectation
of f(H) after certain information is revealed as long as the information known at
time 4 includes the information known at time ¢ — 1.

The Vertex Exposure Martingale. Again let G(n, p) be the underlying probability
space and f any graph theoretic function. Define X4, ..., X, by

Xi(H) = B[f(G)lfor 2,y < i, {z,y} € G +— {=,y} € H].

In words, to find X;(H) we expose the first ¢ vertices and all their internal edges
and take the conditional expectation of f(G) with that partial information. By
ordering the edges appropriately the vertex exposure martingale may be considered
a subsequence of the edge exposure martingale. Note that X1(H) = E[f(G)] is
constant as no edges have been exposed and X,,(H) = f(H) as all edges have been
exposed.

7.2 LARGE DEVIATIONS

Maurey (1979) applied a large deviation inequality for martingales to prove an
isoperimetric inequality for the symmetric group S,,. This inequality was useful in
the study of normed spaces; see Milman and Schechtman (1986) for many related
results. The applications of martingales in Graph Theory also all involve the same
underlying martingale result used by Maurey, which is the following.

Theorem 7.2.1 [Azuma’s Ineqality] Let 0 = X, ..., X,, be a martingale with
| Xip1 — Xi| <1
forall 0 < ¢ < m. Let A > 0 be arbitrary. Then
Pr[Xpm > AWm)] < e /2,

In the “flip a coin” martingale X, has distribution S,, and this result is Theorem
A.1.1. Indeed, the general proof is quite similar.

Proof. Set, with foresight, @« = A/+/m. SetY; = X; — X;_1 so that |¥;| < 1 and
E[Y;|Xi-1,Xi—2,...,X0] = 0. Then, as in A.1.16,

2

E[an" Xi—1,Xi—2,...,X0] < cosh(a) < e /2,

Hence
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m—1
= B[([] e*)E(e™ ™| Xm-1, Xm—2,- -+, X0)]
i=1

m—1

S E[ H ani]eaz/Z S eazm/Z‘
=1

Therefore
Pr[X,, > A/m] = Pr[e®Xm > ¢2AvVm™]
< E[eaXm]e—a)\\/ﬁ
< eazm/Z—a)\\/ﬁ
— e—A%/2
as needed. W

Corollary 7.2.2 Letc = X, ..., X,, be a martingale with
| Xiy1 — X[ <1
forall0 << < m. Then
Pr[|Xm — ¢| > Ay/m] < 2¢*7/2,

A graph theoretic function f is said to satisfy the edge Lipschitz condition if

whenever H and H' differ in only one edge then |f(H) — f(H')| < 1. It satisfies
the vertex Lipschitz condition if whenever H and H' differ at only one vertex,
|f(H) - f(H')| < 1.
Theorem 7.2.3 When f satisfies the edge Lipschitz condition, the corresponding
edge exposure martingale satisfies | X;4+1 — X;| < 1. When f satisfies the vertex
Lipschitz condition the corresponding vertex exposure martingale satisfies | X ;11 —
Xi| <1

We prove these results in a more general context later. They have the intuitive
sense that if knowledge of a particular vertex or edge cannot change f by more than
one then exposing a vertex or edge should not change the expectation of f by more
than one. Now we give a simple application of these results.

Theorem 7.2.4 [Shamir and Spencer (1987) ] Let n, p be arbitrary and let ¢ =
E[x(G)] where G ~ G(n,p). Then

Pr[|x(G) — c| > A/n— 1] < 2¢ /2,

Proof. Consider the vertex exposure martingale X1, ..., X, on G(n, p) with f(G) =
x(G). A single vertex can always be given a new color so the vertex Lipschitz
condition applies. Now apply Azuma’s Inequality in the form of Corollary 7.2.2 . B

Letting A — oo arbitrarily slowly this result shows that the distribution of x(G)
is “tightly concentrated” around its mean. The proof gives no clue as to where the
mean is.
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7.3 CHROMATIC NUMBER

In Theorem 10.3.1 we prove that x(G) ~ n/2log, n almost surely, where G ~
G(n,1/2). Here we give the original proof of Béla Bollobas using martingales. We
follow the notations of Chapter 10, Section 10.3, setting f(k) = (:)2‘(’5), ko so that
flko —1) > 1> f(ko), k = ko — 4 so that k ~ 2log, n and f(k) > n3+t°(), Our
goal is to show
Prlw(G) < k] = e,

where w(G) is the size of the maximum clique of G. We shall actually show in
Theorem 7.3.2 a more precise bound. The remainder of the argument is given in
Chapter 10, Section 10.3.

LetY = Y (H) be the maximal size of a family of edge disjoint cliques, of size &
in H. This ingenious and unusual choice of function is key to the martingale proof.

Lemma7.3.1 E[Y]> 22(1+ o(1)).

Proof. Let K denote the family of k-cliques of G so that f(k) = p = E[|K|]. Let W
denote the number of unordered pairs { 4, B} of k-cliques of G with2 < |[ANB| < k.
Then E[W] = A/2, with A as described in Chapter 10, Section 10.3, (see also
Chapter 4, Section 4.5), A ~ u?k*n=2. Let C be a random subfamily of X defined
by setting, for each A € K,

Pr[A € C] =g,

g to be determined. Let W' be the number of unordered pairs {A, B}, A, B € C with
2<|ANB| < k. Then

EW'| = ElW]¢® = Ag®/2.

Delete from C one set from each such pair {4, B}. This yields a set C* of edge
disjoint k-cliques of G and

BIY] > BlIC*|) > BICl] - BIW'] = ug — Ag®/2 = 42 /25 ~ n?/2k*,

where we choose ¢ = p/ A (noting that itis less than one!) to minimize the quadratic.
|

We conjecture that Lemma 7.3.1 may be improved to E[Y] > cn?/k%. That is,
with positive probability there is a family of &-cliques which are edge disjoint and
cover a positive proportion of the edges.

Theorem 7.3.2

n2

Prlw(G) < k] < e (TS

with ¢ a positive constant.

Proof. LetYy, ..., Ym, m = (3), be the edge exposure martingale on G(n, 1/2) with

the function Y just defined. The function Y satisfies the edge Lipschitz condition
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as adding a single edge can only add at most one clique to a family of edge disjoint
cliques. (Note that the Lipschitz condition would not be satisfied for the number
of k-cliques as a single edge might yield many new cliques.) G has no k-clique
if and only if Y = 0. Apply Azuma’s Inequality with m = (}) ~ n?/2 and

E[Y]> 25(1 4 o(1)). Then

Prjw(G) < k] =Pr[Y =0] < Pr[Y — E[Y] < —E[Y]]

— e—(c+o(1))n2/ In®n

as desired. H
Here is another example where the martingale approach requires an inventive
choice of graph theoretic function.

Theorem 7.3.3 Letp = n~* where aisfixed, @ > 3. Let G = G(n, p). Then there
exists u = u(n, p) so that almost always

u<x(G)<u+3
That is, x(G) is concentrated in four values.

We first require a technical lemma that had been well known.

Lemma7.3.4 Let o, c be fixed o > %. Let p = n~%. Then almost always every
cy/n vertices of G = G(n, p) may be 3-colored.

Proof. If not, let T be a minimal set which is not 3-colorable. As T — {z} is
3-colorable, z must have internal degree at least 3 in T forall z € T'. Thus if T" has
t vertices it must have at least % edges. The probability of this occuring for some T
with at most c+/n vertices is bounded from above by

£0@)

t=4 2

(7) < eyeana () < o

We bound

2
so each term is at most

13/2¢3/2 ¢ . " . "
[%33%”—&1/2] < {clnl—%tl/z} < {cznl_%nl/‘*} _ [czn_e]t

withe = 3¢ — 2 > 0 and the sum is therefore o(1). W
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Proof.[Theorem 7.3.3] Let € > 0 be arbitrarily small and let v = u(n, p, €) be the
least integer so that
Pr[x(G) < u] > €.

Now define Y (G) to be the minimal size of a set of vertices S for which G — S may
be u-colored. This Y satisfies the vertex Lipschitz condition since at worst one could
add a vertex to S. Apply the vertex exposure martingale on G(n,p) to Y. Letting
w= E[Y]

PrlY <pu—-XMn-1]< e~ A'/2

PrlY > p+Av/n—1]< e /2,

Let X satisfy e~*"/2 = ¢ s0 that these tail events each have probability less than e.
We defined u so that with probability at least e, G would be u-colorable and hence
Y = 0. Thatis, Pr[Y = 0] > e. The first inequality therefore forces pp < Ay/n — 1.
Now employing the second inequality

Pr[Y > 22v/n— 1] <Pr[Y >p+dvn—1]<e.

With probability at least 1 — e there is a u-coloring of all but at most ¢ ’+/n vertices.
By the Lemma almost always, and so with probability at least 1 — ¢, these points may
be colored with 3 further colors, giving a » + 3-coloring of G. The minimality of
u guarantees that with probability at least 1 — ¢ at least  colors are needed for G.
Altogether

Prlu < x(G) < u+3]>1- 3

and e was arbitrarily small. &

Using the same technique similar results can be achieved for other values of a.
Together with some related ideas it can be shown that for any fixed o > 1, x(G) is
concentrated on at most two values. See tuczak (1991) and Alon and Krivelevich
(1997) for the detailed proofs.

7.4 TWO GENERAL SETTINGS

The martingales useful in studying Random Graphs generally can be placed in the
following general setting which is essentially the one considered in Maurey (1979)
and in Milman and Schechtman (1986) . Let Q@ = A denote the set of functions
g : B — A. (With B the set of pairs of vertices on n vertices and A = {0, 1} we
may identify g € A® with a graph on n vertices.) We define a measure by giving
values p,p and setting

PI‘[g(b) = (1,] = Pab,

with the values g(b) assumed mutually independent. (In G(n, p) all p1s = p, Pos =
1 — p.) Now fix a gradation

¢=ByCcB,C...CB, =B.
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Let L : A2 — R be a functional, (e.g., clique number.) We define a martingale
Xo, X1, ..., Xm by setting
Xi(h) = E[L(g)|g(b) = h(b) forall b € B;]

X isa constant, the expected value of L of the random g. X, is L itself. The values
X,(g) approach L(g) as the values of g(b) are “exposed”. We say the functional L
satisfies the Lipschitz condition relative to the gradation if forall 0 < ¢ < m

h, b’ differonly on B;y1 — B;= |L(R') — L(h)| < 1.
Theorem 7.4.1 Let L satisfy the Lipschitz condition. Then the corresponding mar-
tingale satisfies
| Xipa(h) - Xi(h)| < 1
forall0 <i<m, he AB.

Proof. Let H be the family of A’ which agree with A on B;11. Then
Xipa(h) = Y L(h)wn
h'eH

where wy, is the conditional probability that ¢ = k' given that g = h on B;,,. For
each ' € H let H[R'] denote the family of A* which agree with A’ on all points
except (possibly) B;y1 — B;. The H[A'] partition the family of h* agreeing with A
on B;. Thus we may express

=Y > [k )gnJuww

h'€H h*€H[R']
where g+ is the conditional probability that g agrees with A= on B;,1 given that it
agrees with h on B;. (This is because for k* € H[h'], wy is also the conditional
probability that g = h* given that ¢ = A* on B;1.) Thus

Xesa ) = Xeh)| = [Suresr wmlE(K) = S oy B )]
<Xhen Wh Zh*eH h'] lgn+ [L(R") — L(h™)]|.
The Lipschitz condition gives |L(h") — L(h*)| < 1 s0
| Xi1(h) — Xi(h)| < Z Whe Z g+ = Z wp = 1.
h'eH h*€H[R'] h'eH

[ |
Now we can express Azuma’s Inequality in a general form.

Theorem 7.4.2 Let L satisfy the Lipschitz condition relative to a gradation of length
m and let u = E[L(g)]. Thenforall X > 0

Pr[L(g) > p+ Av/m] < e /2,
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Pr[L(g) < p— Av/m] < e™¥/2,

The second general setting is taken from Alon et al. (1997) . We assume our
underlying probability space is generated by a finite set of mutually independent
Yes/No choices, indexed by 7 € I. We are given a random variable Y on this space .
Let p; denote the probability that choice 4 is Yes. Let ¢; be such that changing choice
1 (keeping all else the same) can change Y by at most ¢;. We call ¢; the effect of s.
Let C be an upper bound on all ¢;. We call p;(1 — p;)c? the variance of choice 4.

Now consider a solitaire game in which Paul finds the value of ¥ by making
queries of an always truthful oracle Carole. The queries are always of a choice 7 € I.
Paul’s choice of query can depend on Carole’s previous responses. A strategy for
Paul can then naturally be represented in a decision tree form. A “line of questioning”
is a path from the root to a leaf of this tree, a sequence of questions and responses that
determine Y. The total variance of a line of questioning is the sum of the variances
of the queries in it.

Theorem 7.4.3 For all e > 0 there exists § > 0 so that the following holds. Suppose
Paul has a strategy for finding Y such that every line of questioning has total variance
at most 2. Then

Pr[|Y — E[Y]| > ac] < 2¢” %i+a (7.1)
for all positive e with aC < o (1 + €)4.

Applications: For a specific suboptimal bound we may takee = § = 1. If C = O(1),
a — oo and a = ofc) the upper bound of (7.1) is exp[—Q(a?)]. In many cases
Paul queries all i € I. Then we may take ¢ with o? = >, pi(1 — pi)c?. For
example, consider an edge Lipschitz Y on G(n, p) with p = p(n) — 0. I is the set

of m = (}) potential edges, all p; = p, C = 1 so that o = ©(1/n?p). If & — oo
with & = o(4/n?p) the upper bound of (7.1) is again exp[—Q(a?)].

Proof. For simplicity we replace Y by Y — E[Y] so that we shall henceforth assume
E[Y] = 0. By symmetry we shall bound only the upper tail of Y. We set, with
foresight, A = a/[o(1 + €)]. Our side assumption gives that CA < §. We will show

E[CAY] S 6(1+E))‘202/2. (72)
The Martingale Inequality then follows by the Markov bound
Pr[Y > ac] < e ** E[e*Y] < e /2(14e)

We first claim that for all € > 0 there exists § > 0 so that for 0 < p < 1 and
la| <&

pe17P)% 4 (1 —p)e™?* < e(lte)p(1-p)a®/2 (7.3)

Take the Taylor Series in a of the left hand side. The constant term is 1, the linear

term 0, the coefficient of a? is %p(l —p)and for j > 3 the coefficient of a7 is at most
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%p(l —p)pP 14+ (1-py Y < %p(l — p). Pick § so that |a| < & implies

P |
Z a,._ < ea2/2
‘s 41
j=3
[In particular this holds fore = § = 1.] Then

2
pe(l—p)a + (1 _ p)e—Pa <1 _|_p(1 — p)%(l + 6)

and (7.3) follows from the inequality 1 + = < e®.

Using this & we show (7.2) by induction on the depth M of the decision tree. For
M = 0,7 is constant and (7.2) is immediate. Otherwise, let p,c,v = p(1 — p)c?
denote the probability, effect and variance respectively of Paul’s first query. Let
iy, 4 denote the conditional expectations of Y if Carole’s response is Yes or No
respectively. Then 0 = E[Y] can be split into

0=puy + (1 —p)ptn-
The difference p, — s is the expected change in Y when all other choices are made

independent with their respective probabilities and the root choice is changed from
Yes to No. As this always changes Y by at most ¢

|y — pn| < c.
Thus we may parametrize

py = (1 —p)band pn = —pb
with |b] < ¢. From (7.3)
pe)\uy + (1 _p)e)\un S e(1+5)p(1—p)b2)\2/2 S e(1+5)1})\2/2

Let A, denote the expectation of e*(¥ ~#+) conditional on Carole’s first response
being Yes and let A, denote the analogous quantity for No. Given Carole’s first
response Paul has a decision tree (one of the two main subtrees) that determines Y
with total variation at most o2 — v and the tree has depth at most M — 1. So by
induction A,, A, < A~ where we set

A = e(1+5))\2(0'2—1))/2
Now we split

E[e*] = pe*'v Ay + (1 — p)e*» Ay
< [peAuy +(1 - p)e)‘”"]A_
< e(1H6)A% (04 (0% —v))/2 (7.4)

completing the proof of (7.2) and hence of Theorem 7.4.3. B

We remark that this formal inductive proof somewhat masks the martingale. A
martingale E[Y] = Yo,..., Yy = Y can be defined with ¥; the conditional expec-
tation of Y after the first ¢ queries and responses. Theorem 7.4.3 can be thought of as
bounding the tail of ¥ by that of a normal distribution of greater or equal variance.
For very large distances from the mean, large «, this bound fails.
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7.5 FOUR ILLUSTRATIONS

Let g be the random function from {1,...,n} to itself, all n™ possible functions
equally likely. Let L(g) be the number of values not hit, i.e., the number of y for
which g(z) = y has no solution. By Linearity of Expectation

B =n(1-2) ~

n
n €

Set B; = {1,...,i}. L satisfies the Lipschitz condition relative to this gradation
since changing the value of g(z) can change L(g) by at most one. Thus

Theorem 7.5.1
Pr[|L(g) — = > AW/n+1] < 2e7*7/2.
€

Deriving these asymptotic bounds from first principles is quite cumbersome.

As a second illustration let B be any normed space and let vy, ..., v, € B with
all |v;| < 1. Letey,..., €, be independent with
1
Prle; = +1] = Pr[e; = —1] = 2

and set
X =|evi + ...+ €nvnl-

Theorem 7.5.2
Pr[X — E[X] > M\/n] < e /2,

Pr[X — E[X] < —M\/n] < e /2,

Proof. Consider {—1, +1}" as the underlying probability space with all (1, .. ., €5)
equally likely. Then X isarandom variable and we define a martingale Xo, ..., X, =
X by exposing one ¢; at a time. The value of ¢; can only change X by two so direct
application of Theorem 7.4.1 gives | X;11 — X;| < 2. But let ¢, ¢’ be two n-tuples
differing only in the 4-th coordinate.

Xi(e) = 5 [Xit1(e) + Xiy1(€')]

so that )
[ Xi(€) = Xiva(e)l = 5 |Xit1(e') — Xipa(e)| < 1

Now apply Azuma’s Inequality. B

For a third illustration let p be the Hamming metric on {0, 1}™. For A C {0, 1}"
let B(A,s) denote the set of y € {0,1}" so that p(z,y) < s for some z € A.
(A C B(A,s) aswe may take z = y.)
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Theorem 7.5.3 Lete, A > 0 satisfy e=**/2 = ¢. Then

|A] > €2™ = |B(A4, 22v/n)| > (1 — €)2™.

Proof. Consider {0, 1}™ as the underlying probability space, all points equally likely.
Fory € {0, 1}™ set
X(y) = minp(z,y).

Let Xo, X1,...,Xn, = X be the martingale given by exposing one coordinate of
{0,1}™ at a time. The Lipschitz condition holds for X: If y,y’ differ in just one
coordinate then | X (y) — X(y')| < 1. Thus, with 4 = E[X]

Pr[X < u—X/n] < e /2 = ¢

Pr[X > u+X/n] < eN/2 =,

But
Pr[X =0] = |A]27" > ¢,

S0 u < Ay/n. Thus
Pr[X > 2X\/n] < €

and
|B(A,2Xy/n)| = 2" Pr[X < 2X4y/n] > 2"(1 —¢).

u
Actually, a much stronger result is known. Let B(s) denote the ball of radius s
about (0, ..., 0). The Isoperimetric Inequality proved by Harper (1966) states that

|A] > |B(r)| = |B(4,5)| > |B(r + 3)|.

One may actually use this inequality as a beginning to give an alternate proof that
x(G) ~ n/2log, n and to prove a number of the other results we have shown using
martingales.

We illustrate Theorem 7.4.3 with a key technical lemma [in simplified form] from
Alon et al. (1997) . Let G = (V, E) be a graph on N vertices, each vertex having
degree D. Asymptotics will be for N, D — oo. Set p = 1/D. Define a random
subgraph H C G by placing each edge e € E in H with independent probability
p. Let M (for matching) be the set of isolated edges of H. Let V* be those v € V
notinany {v,w} € M. Forv € V set deg™(v) equal the number of w € V* with
{v,w} € E. As

Plog V= 3 p(1-p)Pt =2+ 0(DY),
{v,w}€E

linearity of expectation gives

E[deg*(v)] = D(1 — e~ 2) 4+ O(1).
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We want deg™ (v) tightly concentrated about its mean.

In the notation of Theorem 7.4.3 the probability space is determined by the choices
ec Hforalle € E. Allp; = p. Changinge € H toe ¢ H can change deg*(v) by
atmost C' = 4.

Paul needs to find deg*(v) by queries of the form “Is e € H?" For each w with
{v,w} € F he determines if w € V* by the following line of inquiry. First, for all
v with {w,u} € E he queries if {w,u} € H. If no{w,u} € Hthenw € V*. If
two (or more) {w, u1}, {w, uz} € H then w cannot be in an isolated edge of H so
w € V™. Now suppose {w,u} € H for precisely one ». Paul then asks [using his
acquired knowledge!] for each z # w with {u, 2} € E if {u,2} € H. The replies
determine if {w, u} is an isolated edge of H and hence if w € V*. Paul has made at
most D + (D — 1) queries for each w for a total of at most D(2D — 1) = O(D?)
queries. We deduce

P[] deg” (v) — D(1 — ¢~%)] > ADY?] = exp[~Q()?)]

when X — oo and A = o( DY/?).

In application one wishes to iterate this procedure [now applying it to the restriction
of G to V*] in order to find a large matching. This is somewhat akin to the Rodl
nibble of §4.7. There are numerous further complications but the tight concentration
of deg™(v) about its mean plays an indispensable role.

7.6 TALAGRAND'S INEQUALITY

Let @ = [];_, € where each €; is a probability space and € has the product
measure. Let A C Q and let £ = (z1,...,2,) € Q. Talagrand (1996) gives an
unusual, subtle and ultimately powerful notion of the distance - denoted p(A4, ) -
from £ to A. We imagine moving from Z to some ¢ = (y1, ..., y») € A by changing
coordinates. p(A, #) will measure the minimal cost of such a move when a suitably
restricted adversary sets the cost of each change.

Definition 2 p(A, ) is the least value such that for any & = (a4,...,a,) € R™
with |&| = 1 there exists ¥ = (y1,...,Yn) € A with

Z a; < p(4, ).

TiAYi

Note that ¢ can, and generally will, depend on &.
We define for any real ¢ > 0

Ar={Ze€Q:p(AZE) <t}
Note Ag = A aswhen & € A one can select § = Z.
Talagrand’s Inequality:

Pr[A](1 — Pr[4])) < e */%.
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In particular, if Pr[A] > 1 (or any fixed constant) and ¢ is “very large" then all but a
very small proportion of Q is within “distance" ¢ of A.

Example. Take = {0, 1}™ with the uniform distributionand let ~ be the Hamming
(L) metric. Then p(A, ) > minge 4 7(Z, §)n~1/2 as the adversary can choose all
a; = n~ /2, Suppose to move from & to A the values 21, . .., z; (or any particular
1 coordinates) must be changed. Then p(A, &) > 1*/2 as the adversary could choose
a; =172 for 1 < i < I and zero elsewhere.

Define U (A4, &) to be the set of = (51, ..., sn) € {0, 1}™ with the property that
there exists ¢ € A such that

migéyi:>si:1.

We may think of U (4, &) as representing the possible paths from Z to A. Note that
when s; = 1 we, for somewhat technical reasons, do not require z; # y;. With this
notation p( A4, ) is the least real so that for all & with |&| = 1 there exists § € U(A4, Z)
witha - § < p(4, Z).

Now define V(A, Z) to be the convex hull of U(A4,Z). The following result
gives an alternate characterization of p which supplies the concept with much of its
richness.

Theorem 7.6.1

Proof. Let v € V(A4, &) achieve this minimum. The hyperplane through % perpen-
dicular to the line from the origin to ¢ then separates V (A4, ) from the origin so that
alls e V(A,Z) have s- ¥ > - 4. Seta = o/|v]. Thenall § € U(A,Z) C V(A4,Z)
have §- & > ¥ - ¥/|¥| = |v]. Conversely, take any & with |&| = 1. Then& - 7 < |9]].
As v € V(A,Z) we may write v = ) X;5; for some s; € U(A, %), withall A; > 0
and Y~ A; = 1. Then
7> 3 x(@- %)
and hence some & - 5; < |7]. &

The case 2 = {0, 1}" is particularly important and instructive. There p(A4, &) is
simply the Euclidean distance from & to the convex hull of A.

Theorem 7.6.2

[ exelzet(a, adi < e

Talagrand’s Theorem is an immediate corollary of the above result. Indeed, fix A
and consider the random variable X = p(A, &). Then

Pr[4;] = Pr[X > ¢] = Pr[eX /* > ' /%] < E[eX /4?14,
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and the theorem states E[e*X /4] <

Pr[A]"

Proof.[Theorem 7.6.2] We use induction on the dimensionn. Forn =1, p(A,Z) = 1
if £ ¢ A, zero otherwise so that

1, ny 1/4 1
/exp[z,, (A,%)] = Pr[A] + (1 — Pr[A])e"/* < BrAl’

as the inequality u + (1 — u)e/* < w1 for 0 < u < 1 is asimple calculus exercise.

Assume the result for n. Write OLD = [[;_, Q;, NEW = Q,;1 so that
Q = OLD x NEW and any z € Q can be uniquely written z = (z,w) with
z € OLD,we NEW. Set

B={zcOLD:(z,w)c Aforsomew € NEW}
and forany w € NEW set
Ay, ={z € OLD: (z,w) € A}.

Given z = (z,w) € Q we can move to A in two basic ways - either by changing
w, which reduces the problem to moving from  to B, or by not changing w, which
reduces the problem to moving from = to A,,. Thus

§eU(B,z)= (5,1) e U(4,(z,w))

and
t € U(Ay,z) = (£,0) € U(4, (z,w)).

Taking the convex hulls, if 5 € V(B, z) and t € V (A, z) then (5,1) and (t, 0) are
in V(A4, (z,w)) and hence forany A € [0, 1]

(1= X5+ M, 1— 1)) € V(4, (z,w)).
Then, by convexity
(4, (2,0)) < (1= A + (L= )5+ A2 < (1 - X)? + (1 - N[5 + AE]2.
Selecting 5, ¢ with minimal norms yields the critical inequality
(4, (2,0)) < (1= ) + A (Au, z) + (1 - N)*(B, 2).

Quoting from Talagrand, “The main trick of the proof is to resist the temptation
to optimize now over A." Rather, we first fix w and bound

[ el 4, e, < 072 [ (explypf (Auy ) Plexly (B, 2))

T

By Holder’s Inequality this is at most

o[ exp[iﬂAw,m)]]A [ exot.0)]
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which by induction is at most

A 1-X
o(1-2)7/4 1 1 _ 1 aexa-a
Pr[A,] Pr[B] Pr[B] '

where r = Pr[4,]/ Pr[B] < 1. Now we use calculus and minimize e(:=*)*/4p=2 py
choosing A = 14 21Inrfore=/2 < » < 1and X = 0 otherwise. Further (somewhat
tedius but simple) calculation shows e(1=%)?/4r=* < 9 — r for this A = A(r). Thus

[l o (2- ).

We integrate over w giving

[ [z aieo < pm (2- o) = o2 —2)

where z = Pr[A]/ Pr[B] € [0, 1]. But z(2 — z) < 1 completing the induction and
hence the theorem. l

7.7 APPLICATIONS OF TALAGRAND’S INEQUALITY

Let© = [}, Qs where each €; is a probability space and €2 has the product measure.
Let h: Q@ — R. Talagrand’s Inequality enables us, under certain conditions, to show
that the random variable X = h(-) is tightly concentrated. In this sense it can serve
the same function Azuma’s Inequality does for Martingales and there are many cases
in which it gives far stronger results.

We call A : @ — R Lipschitz if |h(z) — h(y)| < 1 whenever &,y differ in at
most one coordinate. Talagrand’s Inequality is most effective on those Lipschitz
functions with the property that when h(z) > s there are a relatively small number
of coordinates that will certify that A(z) > s. We formalize this notion as follows.

Definition 3 Let f : N — N. his f-certifiable if whenever h(z) > s there exists
IC{1,...,n}with|I] < f(s)sothatally € Q thatagree with z on the coordinates
I have h(y) > s.

Example. Consider G(n,p) as the product of (3) coin flips and let A(G) be the
number of triangles in G. Then k is f-certifiable with f(s) = 3s. For if A(G) > s
there exist s triangles which together have at most 3s edges and any other G’ with
those 3s edges has R(G') > s. Note I, here the indices for those 3s edges, very
much depends on G. Also note that we need certify only lower bounds for A.

Theorem 7.7.1 Under the above assumptions and for all b, ¢

Pr[X < b—t/F(b)] Pr[X > b] < e™/%.
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Proof. Set A = {z : h(z) < b —t\/f(b)}. Now suppose k(y) > b. We claim
y & A:. Let I be a set of indices of size at most f(b) that certifies h(y) > b as given
above. Define a; = O wheni ¢ I, a; = |I|~*/?2 wheni € I. If y € A, there exists
a z € A that differs from y in at most ¢|I|1/2 < ¢,/f() coordinates of I though at
arbitrary coordinates outside of I. Let y' agree with y on I and agree with z outside
of I. By the certification h(y’) > b. Now y', z differ in at most ¢4/ f(b) coordinates
and so, by Lipschitz,

h(z) > h(y') =t/ £(b) > b -t/ f(b)

but then z ¢ A, a contradiction. So Pr[X > b] < Pr[4,] so from Talagrand’s
Theorem ,
Pr[X < b—t/f(8)] Pr[X > b < e t/%

As the right hand side is continuous in ¢t we may replace < by < giving the Theorem.
|

A small generalization is sometimes useful. Call ~ : @ — R K-Lipschitz if
|h(z) — h(y)| < K whenever z, y differ in only one coordinate. Applying the above
theorem to A/ K, which is Lipschitz, we find

Pr[X < b— tK+/f(b)] Pr[X > b] < e *'/4

In applications one often takes b to be the median so that for ¢ large the probability
of being t+/f(b) under the median goes sharply to zero. But it works both ways,
by parametrizing so that m = b — t+/f(b) is the median one usually gets b ~
m+t+/f(m) and that the probability of being t 1/ f (b) above the median goes sharply
to zero. Martingales, via Azuma’s Inequality, generally produce a concentration
result around the mean g of X while Talagrand’s Inequality yields a concentration
result about the median m. Means tend to be easy to compute, medians notoriously
difficult, but tight concentration result will generally allow us to show that the mean
and median are not far away.

Letz = (21, ..., z,) where the z; are independently and uniformly chosen from
[0,1]. Set X = h(z) to be the length of the longest increasing subsequence of z.
Elementary methods give thatc;n'/2 < X < ¢;n'/2 almost surely for some positive
constants ¢, ¢z and that the mean g and median m of X are both in that range.
Also X is Lipschitz, as changing one z; can only change X by at most one. How
concentrated is X? We can apply Azuma’s Inequality to deduce that if s >> n'/2
then | X — p| < salmost surely. This is not particularly good since X itself is only of
order n*/2, Now consider Talagrand’s Inequality. X is f-certifiable with f(s) = s
since if z has an increasing subsequence of length s then those s coordinates certify
that X > s. Then Pr[X < m — tm!/?] < e=*"/4/Pr[X > m] < 2e~*/* as m.is
the median value. Butm = ©(n!/?). Thus when s > n'/* we have X > m — s
almost surely. For the other side suppose ¢ — oo slowly and let & be such that
b—1tb'/2 = m. ThenPr[X > b] < e *"/*/Pr[X < m] < 2 *'/%. Then X < b
almost surely. Butb = m + (1 + o(1))tm?!/2 so that X < m 4 tm'/? almost surely.
Combining, if s > n'/* then | X — m| < s almost surely. A much stronger result,
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determining the precise asymptotic distribution of X, has recently been obtained by
Baik, Deift and Johansson (1999) , using deep analytic tools.

Lets reexamine the bound [Theorem 7.3.2] that G(n, 3) has no clique of size &
with k as defined there. We let, as there, Y be the maximal number of edge disjoint
k-cliques. From the work there E[Y] = Q(n?k~*) and Y is tightly concentrated
about E[Y] so that the median m of Y must also have m = Q(n?k~*). As before Y
is Lipschitz. FurtherY is f-certifiable with f(s) = (£)s as the edges of the s cliques
certify that Y’ > s. Hence

B\ /2 )
Pr[YSm—tml/z(z) |Pr[Y > m] < e7t/%,
Sett = ©(m!/2/k) so that m = tm/?(¥)"/*. Then

2
Prjw(G) < k] = Pr[Y < 0] < 2¢~t/% < exp [_Q(lnT)]
nn
which improves the bound of Theorem 7.3.2. Still, we should note that application
of the Extended Janson Inequalityin §10.3 does even better.

7.8 KIM-VU POLYNOMIAL CONCENTRATION

A recent approach of Kim and Vu (to appear) looks highly promising. Let H =
(V(H), E(H)) be a hypergraph and let each edge e € E(H) have a nonnegative
weight w(e). Lett;, ¢ € V(H) be mutually independent indicator random variables
with E[¢;] = p;. Consider the random variable polynomial

Y = Z wthi.

e€E(H) i€e

We allow e = @ in which case []
is concentrated about its mean.

Let S C V(H) be a random set given by Pr[i € S] = p;, these events mutually
independent over ¢ € V(H). Then Y is the weighted number of hyperedges e in the
restriction of H to S. In applications we generally have all weights equal one so that
Y simply counts the hyperedges in the random S. Butwe may also think abstractly of
Y as simply any polynomial over the indicators ¢; having all nonnegative coefficients.

We set n = |V (H)|, the number of vertices of H (number of variables ;). Let &
be an upper bound on the size of all hyperedges (upper bound on the degree of the
polynomial Y).

Let A C V(H) with |A] < k. We truncate Y to Y, as follows: For those terms
[Liceti with A C ewesett; = 1foralli € A, replacing the term by [[;c._ 4 t:. All
other terms (where e does not contain A4) are deleted. For example, with A = {1},
2t1ta + btitsty + Tigts becomes 2t, + bisty. Intriguingly, as polynomials in the ¢,
Y4 is the partial derivative of Y with respect tothe ¢;,7 € A. Set E4 = F[Y4]. That

t; is by convention 1. We want to show that Y’

i€e
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is, E' 4 is the expected number of hyperedges in S that contain A, conditional on all
vertices of A being in S. Set E; equal the maximal E4 over all A C V(H) of size
1. Set u = E[Y] for convenience and set

E' = max E; and E = max[y, E'].
1<i<k

Theorem 7.8.1 [Kim-Vu Polynomial Concentration]: With the above hypotheses
Pr[|Y — u| > ar(EE")Y2)XF] < de *nF~1
forany A > 1.

Here, for definiteness, we may take a;, = 8%&!*/2 and d; = 2¢2.

We omit the proof, which combines Martingale inequalities similar to those of
Theorem 7.4.3 with a subtle induction on the degree k. There may well be room for
improvement in the az, di, and n*~* terms. In applications one generally has & fixed
and A >> In n so that the e~* term dominates the probability bound.

Applications of Kim-VuPolynomial Concentration tend to be straightforward. Let
G ~ G(n,p) withp = n~* and assume 0 < & < 2/3. Fix a vertex z of G and let
Y = Y(z) be the number of triangles containing z. Set u = E[Y] = (*;)p® ~
in?=3e Letd > 0 be fixed. We want to bound Pr[|Y — p| < dp].

The random graph G is defined by the random variables ¢;; , one for each unordered
pair of vertices, which are indicators of the adjacency of the two vertices. In that

context
Y = ) tuitestiy
i,jZT

This is a polynomial of degree ¥ = 3. When A consists of a single edge =z: we
find E4 = (n — 2)p?; when it consists of three edges forming a triangle containing
z we find E4 = 1. When A = @, E4 — u. Other cases give smaller E,.
Basically E' ~ max[np?,1]. Calculation gives E' ~ cun—¢ for some positive ¢
(dependent on &) throughout our range. We apply Kim-VuPolynomial Concentration
with A = ¢'né/®, ¢’ a small positive constant, to bound Pr[|Y — u| < éu] by
exp[—Q(n¢/®)]. Note that the n*~ factor is absorbed by the exponential.

In particular, as this probability is o(n =), we have that almost surely every vertex
z isin ~ p triangles. This result generalizes. Fix a € (0, 1) and suppose (R, H)
is a rooted graph, safe, in the sense of §10.7, with respect to a.. Let G ~ G(n, p)
with p = n~*. For distinct vertices z1,...,z, letY = Y(&4,...,z,) denote the
number of extensions in G to H. Set . = E[Y]. Kim-Vu Polynomial Concentration
gives an exponentially small upper bound on the probability that Y is not near . In
particular, this probability is o(n ~"). Hence almost surely every r vertices have ~ u
extensions to H.

7.9 EXERCISES

1. Let G = (V, E) be the graph whose vertices are all 7 vectors of length n
over Zz, in which two vertices are adjacent iff they differ in precisely one
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coordinate. Let U C V be a set of 7~ vertices of G, and let W be the set of
all vertices of G whose distance from U exceeds (c + 2)+/n, where ¢ > 0 is a
constant. Prove that |[W| < 7% - e=</2,

(*) Let G = (V, E) be a graph with chromatic number x(G) = 1000. Let
U C V be a random subset of V' chosen uniformly among all 2!V! subsets of
V. Let H = G[U] be the induced subgraph of G on U. Prove that

Prob(x(H) < 400) < 1/100.

Prove that there is an absolute constant ¢ such that for every n > 1 there is an
interval I,, of at most c4/r/ log n consecutive integers such that the probability
that the chromatic number of G(n, 0.5) lies in I, is at least 0.99.



THE PROBABILISTIC LENS:

Weierstrass Approximation The-
orem

The well known Weierstrass Approximation Theorem asserts that the set of real
polynomials over [0, 1] is dense in the space of all continuous real functions over
[0, 1]. This is stated in the following theorem.

Theorem 1 [Weierstrass Approximation Theorem] For every continuous real
function f : [0,1] — R and every € > 0, there is a polynomial p(z) such that
lp(z) — f(z)| < eforallz € [0, 1].

Bernstein (1912) gave a charming probabilistic proof of this theorem, based on
the properties of the Binomial distribution. His proof is the following.

Proof. Since a continuous f : [0, 1] — R is uniformly continuous there isa é > 0
such that if z, 2" € [0,1] and |z — 2’| < § then |f(z) — f(2")] < €/2. In addition,
since f must be bounded there isan M > 0 such that | f(z)| < M in [0, 1].

Let B(n, z) denote the Binomial random variable with » independent trials and
probability of success z for each of them. Thus, the probability that B(n,z) = j
is precisely (7)a’(1 — z)"~9. The expectation of B(n,z) is nz and its standard
deviation is \/nz(1l — z) < 4/n. Therefore, by Chebyschev’s Inequality discussed
in Chapter 4, for every integer n, Pr(|B(n,z) — nz| > n?/3) < Lo It follows
that there is an integer n such that

Pr(|B - 23 « —
r(|B(n,z) — nz| > n )<4M

and
1

m<5.

113
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Define "
Pa@) =3 (7)af 2y in( ).
" 1=0 g n
We claim that for every z € [0, 1], |Pn(z) — f(2)| < €. Indeed, since
Yo (Bl —z)»~* =1, we have

1Pa(e) ~ £(2)] < Sigi_napnnrs (D7 (1~ 2 I£(2) ~ (&)l +
Sitinatsners (D)L= 2) 7 H(F(E)] +17(#)]) <

Yiii/nz|<n-13<s (D2 (1= 2" f(%) = f(2)| + Pr(|B(n,z) — na| > n?/3)2M
< % 4+ ﬁ2M — €.

This completes the proof. B



The Poisson Paradigm

One of the things that attracts us most when we apply ourselves to a mathematical
problem is precisely that within us we always hear the call: here is the problem,
search for the solution, you can find it by pure thought, for in mathematics there
is no ignorabimus

— David Hilbert

When X is the sum of many rare indicator “mostly independent” random variables
and p = E[X] we would like to say that X is close to a Poisson distribution with
mean p and, in particular, that Pr[X = 0] is nearly e #. We call this rough statement
the Poisson Paradigm. In this chapter we give a number of situations in which this
Paradigm may be rigorously proven.

8.1 THE JANSON INEQUALITIES

In many instances we would like to bound the probability that none of a set of bad
events B;, i € I occur. If the events are mutually independent then

Pr[AicrBi] = [ Pr[Bil.
i€l
When the B; are “mostly” independent the Janson Inequalitiesallow us, sometimes,
to say that these two quantities are “nearly” equal.
Let Q be a finite universal set and let R be a random subset of €2 given by
Pr[r € R] = pr,
115
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these events mutually independent over » € Q. Let A;,7 € I, be subsets of Q, I a
finite index set. Let B; be the event 4; C R. (That is, each point r € Q “ flips a
coin” to determine if it is in R. B; is the event that the coins for all » € A; came
up “heads”.) Let X; be the indicator random variable for B; and X =}, ; X; the
number of A; C R. The event A;crB; and X = 0 are then identical. For,j € T we
writes ~ j ifi # jand A;NA; # 0. Note thatwhens # j and nots ~ j then B;, B;
are independent events since they involve separate coin flips. Furthermore, and this
plays a crucial role in the proofs, ifi ¢ J C I andnot: ~ j forall j € J then B, is
mutually independent of {B;|j € J}, i.e., independent of any Boolean function of
those B;. This is because the coin flips on A; and on U,¢ 7 A; are independent. We
define
A =) " Pr[B; A B].

invg

Here the sum is over ordered pairs so that A/2 gives the same sum over unordered
pairs. We set
M =[] P:[Bi],
i€l

the value of Pr[A;crB;] if the B; were independent. Finally, we set

p=E[X]=> Pr[Bi].
iel

Theorem 8.1.1 [The Janson Inequality] Let B;,7 € I, A, M, 1 be as above and
assume all Pr[B;] < e. Then

JR— 1A
2

M< Pr[/\ieIBi] < Met-<

and, further,
Pr[/\ieIE] < e Ht 2 .

Foreachze I
Pr[B;] = 1 — Pr[B;] < e~ F¥lB:]

so, multiplying over i € I,
M <eH.

The two upper bounds for Theorem 8.1.1 are generally quite similar, we tend to use
the second for convenience. In many asymptotic instances a simple calculation gives
M ~ e~#. In particular, this is always the case when ¢ = o(1) and ep = o(1).

Perhaps the simplest example of Theorem 8.1.1 is the asymptotic probability that
G(n,c/n) is triangle-free, given in §10.1. There, as is often the case, ¢ = o(1),
A = o(1) and y approaches a constant k. In those instances Pr[A;erB;] — e~ *.
This is no longer the case when A becomes large. Indeed, when A > 2u the upper
bound of Theorem 8.1.1 becomes useless. Even for A slightly less it is improved by
the following result.
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Theorem 8.1.2 [The Extended Janson Inequality] Under the assumptions of The-
orem 8.1.1 and the further assumptionthat A > p

2
Pr[/\ieIBi] <e” 25 .

Theorem 8.1.2 (when it applies) often gives a much stronger result than
Chebyschev’s Inequality as used in Chapter 4. In §4.3 we saw Var[X] < u+ A so

that
= B Var[X]  p+A
Pr[/\’LEIB’L] - PI‘[X - 0] S E[X]z = 'ulz

Suppose p — oo, p << A, and v = "A—z — oo. Chebyschev’s upper bound on
Pr[X = 0] is then roughly v~ while Janson’s upper bound is roughly e =7.

8.2 THE PROOFS

The original proofs of Janson are based on estimates of the Laplace transform of an
appropriate random variable. The proof we present here follows that of Boppana and
Spencer (1989) . We shall use the inequalities

Pr[Bi| Ajes Bj] < Pr[Bi]
valid for all index sets J C I,4 ¢ J and

Pr[B;|Bx A J\ Bj] < Pr[B;i|Bi]
jelJ
valid for all index sets J C 1,4,k & J. The first follows from Theorem 6.3.2. The

second is equivalent to the first since conditioning on By is the same as assuming
pr = Pr[r € R] = 1forall r € Ay.

Proof.[Theorem 8.1.1] The lower bound follows immediately. Order the index set
I={1,...,m} forconvenience. For1 <i <m

Pr[B;| Ai<j<i Bj] < Pr[B;]

SO

Pr(B;| Mgj<i Bj] > Pr(Bi]
and ™ ™
Pr[hicrBil = [[ Pr[Bil M<j<i Bjl > [] Pr(Bil.
=1 =1
Now the first upper bound. For a given ¢ renumber, for convenience, so that
i~jforl <j<dandnotford+1<j < i We use the inequality Pr[A[B A
C] > Pr[A A B|C], valid for any A,B,C. With A = B;, B = B; A... A By,
C:Bd+1/\.../\Bi_1

Pr[B;| Ai<j<i Bj] = Pr[A|B A C] > Pr[AAB|C] = Pr[A|C|Pr[B|ANC].
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From the mutual independence Pr[A|C] = Pr[A]. We bound

IS

d
Pr[B|AAC] > Z r[B;|Bi A C] > Z 7[B;|Bi]

from the Correlation Inequality. Thus

d
PT[Bi| /\1§j<1 > PI‘ Z
Reversing
Pr[Bi| Aigj<i Bl < Pr[Bi]+ Y], Pr[B; A B)]
< PrB (1+ &, Xf_. PrlB; A Bi])

since Pr[B;] > 1 — e. Employing the inequality 1 4+ =z < e?,
Pr[By| Ai<jci Bj] < Pr[Blew Zi= PriBinBd,
For each 1 < ¢ < m we plug this inequality into

Pr [/\’LEIB HPT B | /\1<]<1-B ]
=1

The terms Pr[B;] multiply to M. The exponents add: for each 4,5 € I with j < ¢
and j ~ ¢ the term Pr[B; A B;] appears once so they add to A/2.
For the second upper bound we instead bound

Pr(Bi| Aigj<i Bj] < 1-Pr[Bi]+ 3, Pr[B; A Bj]
< exp (— Pr[B;] + 2?21 Pr[B; A Bi]) .

Now the — Pr[B;] terms add to —u while the Pr[B; A B;] terms again add to A/2.
|

Proof.[Theorem 8.1.2] The second upper bound of Theorem 8.1.1 may be rewritten
— 1
— In[Pr[AserBi]] > Z Pr[B] - o Z Pr[B; A B;].
1€l invj
For any set of indices S C I the same inequality applied only to the B;, i € S gives
1

_1n[Pr[AiesE]]ZZPr[Bi]_§ > Pi[BiA Byl
i€S 1,j€S5,i~]
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Let now S be a random subset of I given by
Prli € §] = p,

with p a constant to be determined, the events mutually independent. (Here we are
using probabilistic methods to prove a probability theorem!) Each term Pr[B;] then
appears with probability p and each term Pr[B; A B,] with probability p? so that

E [— ln[PI‘[/\iesE]]
> B[S Pr[Bi]] - 1B [, jesing PrIBi A By
=pu—p'3.
We set
p=1E
A
so as to maximize this quantity. The added assumption of Theorem 8.1.2 assures us
that the probability p is at most one. Then

E [~ In[Pr[Aies Bi]]] > ;—A.

Therefore there is a specific S C I for which

—ln[PI‘[/\iesBi]] > E
That is,

2
- ©

Pr[/\iesBi] <e 23,
But

Pr[AicrBi] < Pr[AiesBi]
completing the proof. B

8.3 BRUN'S SIEVE

Brun

The more traditional approach to the Poisson Paradigm is called Brun’s SieveBrun,
for its use by the number theorist T. Brun.Brun Let By, ..., B, be events, X; the
indicator random variable for B; and X = X; + ...+ X,, the number of B; that
hold. Let there be a hidden parameter » (so that actually m = m(n), B; = B;(n),
X = X (n)) which will define our o, O notation. Define

ST =3 "Pr[B;, A...AB],

the sum over all sets {41, ..., } C {1,...,m}. The Inclusion-exclusion Principle
gives that

Pr[X =0]=Pr[BiA...ABp]=1-80 4 5@ _ 4 (—1)780) .



120 THE POISSON PARADIGM

Theorem 8.3.1 Suppose there is a constant x so that
EX]=5W 54
and such that for every fixed »
E[X") /p1] = 80) 5 pm /7,

Then
Pr[X =0] 5 e *

and indeed for every ¢

Proof. We do only the case ¢ = 0. Fix ¢ > 0. Choose s so that

2s

Z(_w‘% —eH

=0

<

€

5"

The Bonferroni Inequalities state that, in general, the inclusion-exclusion formula
alternately over and underestimates Pr[X = 0]. In particular,

Select ng (the hidden variable) so that for n > ng

€

Ko €
‘S S 2@+ D)

r!

for 0 < r < 2s. Forsuch n
PrlX =0]<e " +e.

Similarly, taking the sum to 2s 4+ 1 we find ¢ so that for n > ng
PrlX =0]>e " —e.

As e was arbitrary Pr[X = 0] > e #. W

The threshold functions for G ~ G(n,p) to contain a copy of a given graph
H, derived in §10.1 via the Janson Inequality , were originally found using Brun’s
SieveBrun. Here is an example where both methods are used. Let G ~ G(n, p), the
random graph of Chapter 10. Let EPIT represent the statement that every vertex
lies in a triangle.

Theorem 8.3.2 Let ¢ > 0 be fixed and let p = p(n), p = p(n) satisfy

n—1\ 4
(") =w
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eh = ¢
n
Then
lim Pr[G(n,p) = EPIT]| =e".
n— 00

In Spencer (1990a) threshold functions are found for a very wide class of “exten-
sion statements” that every r vertices lie in a copy of some fixed H.

Proof. First fix # € V(G). For each unordered y,z € V(G) — {2} let By,
be the event that {, y, 2} is a triangle of G. Let C, be the event ABg,, and X,
the corresponding indicator random variable. We use Janson’s Inequality to bound
E[X;] = Pr[C;]. Here p = 0(1) so € = o(1). > Pr[Bgy,] = u as defined above.
Dependency zyz ~ zuv occurs if and only if the sets overlap (other than in z).
Hence

A=Y Pr[Byy; A Byya'] = O(n®)p® = o(1)

y7z7z’
since p = n=2/3+o(1) Thus

c

E[X,]~e*=
X~ et =

Now define
X = Xza
z€eV(G)

the number of vertices z not lying in a triangle. Then from Linearity of Expectation

EX]= ) EX)]-c
z€eV(G)

We need show that the Poisson Paradigm applies to X. Fix ». Then
E[X® /el = S0 =3 "Pr[Cp, AL ACL,],

the sum over all sets of vertices {z1, ...,z }. All r-sets look alike so
n n
E[X") /pl] = ( ) Pr[Cey A.. . ACy,] ~ —Pr[Cy, A...ACy,]
r r

where z4, ..., z, are some particular vertices. But
Coy Ao . NCy, = ABgyz,

the conjunction over 1 < 7 < r and all y,z. We apply Janson’s Inequalityto this
conjunction. Again € = p> = o(1). The number of {z;, y, 2} is»(*; ") — O(n), the
overcount coming from those triangles containing two (or three) of the = ;. (Here it
is crucial that » is fixed.) Thus

S pelBail =5 (r(", 1) ~ 0)) = v O,
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As before A is p® times the number of pairs z;yz ~ z;y'2’. There are O(rn®) =
O(n?) terms with ¢ = j and O(r?n?) = O(n?) terms with s # j so again A = o(1).
Therefore

Pr[Cpy Ao ANCy ] ~e™ ™

and ~
B~ 2 C

r! r!

Hence the conditions of Theorem 8.3.1 are met for X. B

8.4 LARGE DEVIATIONS

We return to the formulation of §8.1. Our object is to derive large deviation results
on X similar to those in Appendix A. Given a point in the probability space (i.e., a
selection of R) we call an index set J C I a disjoint family (abbreviated disfam) if

e B forevery j € J.
e Fornoj,j'eJisj~j
If, in addition,
o If j/ ¢ Jand B;: then j ~ j' for some j € J.

then we call J a maximal disjoint family (maxdisfam). We give some general results
on the possible sizes of maxdisfams. The connection to X must then be done on an
ad hoc basis.

Lemma 8.4.1 With the above notation and for any integer s

MS

Pr[there exists a disfam J, |J| = s] < e

Proof. Let 3" denote the sum over all s-sets J C I withno j ~ j'. Let }_° denote

the sum over ordered s-tuples (j1, .. ., 7s) with {71, ..., js } forming such a J. Let
3% denote the sum over all ordered s-tuples (j1,...,7s). Then
Pr[there exists a disfam J, |J| = ] < > Pr[AjesB;]

=3 IIPrBil= J X PelB;] - PrlB; ]

jEJ

< %ZPI[B]-I]...PI[B]-S] < %[Zia Pr[B;]]* =t /sl.
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Lemma 8.4.1 gives an effective upper bound when p* << s! - basically if s > pa
for & > e. For smaller s we look at the further conditon of J being a maxdisfam. To
that end we let s denote the minimum, over all 54, ..., j, € I of >  Pr[B;], the sum
taken over all z € I except those ¢ with ¢ ~ j; for some 1 < I < s. In application s
will be small (otherwise we use Lemma 8.4.1 ) and s will be close to p. For some
applications it is convenient to set

= Pr|B;
v =max) PrlB]

invj
and note that g, > p — sv.

Lemma 8.4.2 With the above notation and for any integer s

Pr[there exists a maxdisfam J, |J| = 5] < £reHee?

8§

S e R
< EBremhetVe®

Proof. As in Lemma 8.4.1 we bound this probability by =" of J = {j1,...,4,}
being a maxdisfam. For this to occur J must first be a disfam and then A* B;, where
A* is the conjunction over all 7 € I except those with z ~ j; forsome 1 <1 <'s. We
apply Janson’s Inequalityto give an upper bound to Pr[A * B;]. The associated values
©*, A* satisfy

B> s

A" <A,
the latter since A* has simply fewer addends. Thus

5 A
2

Pr[A"B;] < e He

and
S Pr[J maxdisfam] < e #re? 3. Pr[AjesB;]
< e Hried pt/s!
|
When A = o(1) and v = o(1) or, more generally, u3, = p+ o(1), then Lemma
8.4.2 gives a close approximation to the Poisson Distribution since

Pr]there exists a maxdisfam J, |J| = s] < (1 + o(1))Ece#
8.

for s < 3 and the probability is quite small for larger s by Lemma 8.4.1 .

8.5 COUNTING EXTENSIONS

We begin with a case that uses the basic large deviation results of Appendix A.
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Theorem 8.5.1 Set p = 2w(n) where w(n) — oo arbitrarily slowly. Then in
G(n, p) almost always
deg(z) ~(n—1)p

for all vertices z.
This is actually a large deviation result. It suffices to show the following.

Theorem 8.5.2 Set p = 224 (n) where w(n) — oo arbitrarily slowly. Letz € G
be fixed. Fix € > 0. Then

Pr[|deg(z) — (n — 1)p| > e(n — 1)p] = o(n™1).

Proof. As deg(z) ~ B(n — 1,p), i.e., it is a Binomial random variable with the
above parameters, we have from A.1.14 that

Pr[|deg(z) — (n — 1)p| > e(n — 1)p] < 2e~%(*~ 1P = g(n71),

ascisfixedand (n — 1)p>> lnn. A

Thisresultillustrates why logarithmic terms appear so often in the study of Random
Graphs. We want every z to have a property, hence we try to get the failure probability
down to o(n~1). When the Poisson Paradigm applies the failure probability is roughly
an exponential, and hence we want the exponent to be logarithmic. This often leads
to a logarithmic term for the edge probability p.

In Section 3 we found the threshold function for every vertex to lie on a triangle.
It basically occured when the expected number of extensions of a given vertex to a
triangle reached In n. Now set N () to be the number of triangles containing =. Set

p=("3")p* = E[N(2)].
Theorem 8.5.3 Let p be such that u >> lnn. Then almost always
N(z)~ p
forallz € G(n,p).
As above, this is actually a large deviation result. We actually show the following.

Theorem 8.5.4 Let p be such that u >> Inn. Let z € G be fixed. Fix e > 0 Then

Pr[|N(z) — p| > ep] = o(n™?).

Proof. We shall prove this under the further assumption p = n=2/3+°(1) (or, equiv-
alently, » = n°() which could be removed by technical methods. We now have,
in the notation of Lemmas 8.4.1, 8.4.2 vu, A = o(1). Let P denote the Poisson
Distribution with mean . Then

Pr[there exists a maxdisfam J, |J| < p(1 — €)] < (14 o(1)) Pr[P < pu(1 —¢€)]
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Pr[there exists a maxdisfam J, u(1 +¢€) < |J| < 3y]
< (1+0(1)) Prlu(l+¢€) < P < 3y

Prthere exists a maxdisfam J, |J| > 3u]
< Prlthere exists a disfam J, |J| > 3u] < 3202, £ = O((1 — c)*)

where ¢ > 0 is an absolute constant. Since p >> Inn the third term is o(n~1).
The first and second terms are o(n~1) by A.1.15. With probability 1 — o(n ~1) every
maxdisfam J has size between (1 — €)p and (1 + €)p.

Fix one such J. (There always is some maximal disfam - even if no B; held we
could take J = @.) The elements of J are triples zyz which form triangles, hence
N(z) > |J| > (1 — e)u. The upper bound is ad hoc. The probability that there exist
five triangles of the form zyz1, zyzs, zyzs, zyz4, zyzs is at most nép!! = o(n=1).
The probability that there exist triangles zy; z;, zyiz}, 1 < ¢ < 4, all vertices distinct
is at most n'2p?® = o(n=1). Consider the graph whose vertices are the triangles
zyz, with ~ giving the edge relation. There are N(z) vertices, the maxdisfam J
are the maximal independent sets. In this graph, with probability 1 — o(n ~1), each
vertex zyz has degree at most 9 and there is no set of 4 disjoint edges. This implies
that forany J, |J| > N(z) — 27 and

NE)<(1+ep+21<(1+€)p

|

For any graph H with “roots” z1, . .., z, we can examine in G(n, p) the number
of extensions N(zy, ..., z,) of a given set of r vertices to a copy of H. In Spencer
(1990b) some general results are given that generalize Theorems 8.5.2, 8.5.4. Under
fairly wide assumptions (see Exercise 5, Chapter 10), when the expected number p
of extensions satisfies x> In n then almost always all N(z1, ..., z,) ~ p.

8.6 COUNTING REPRESENTATIONS

The results of this section shall use the following very basic and very useful result.

Lemma8.6.1 [The Borel Cantelli Lemma] Let A,,n € N be events with

i Pr[A,] < oo
n=1

Then
Pr[A2, v;?';i Ajl=0.

That is, almost always A,, is false for all sufficiently large ». In application we shall
aim for Pr[A,] < n~¢ with ¢ > 1 in order to apply this Lemma.

Again we begin with a case that involves only the Large Deviation results of
Appendix A. Foragivenset S of natural numbers let (foreveryn € N) f(n) = fs(n)
denote the number of representationsn =z + y, z,y € S,z < v.
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Theorem 8.6.2 [Erdds (1956) ] There is a set S for which f(n) = ©(Inn). Thatis,
there is a set S and constants ¢1, ¢z so that for all sufficiently large »

c1lnn < f(n) < czlnn.

Proof. Define S randomly by

Pr[z € S] = p; = min [10“ ln_m, 1] .
z

Fix n. Now f(n) is a random variable with mean

p=E[f(n)] = Y. papy

z+y=n,s2y

Roughly there are » addends with p,p, > p2 = 100222, We have p,p, = ©(22)
except in the regions z = o(n),y = o(n) and care must be taken that those terms
don’t contribute significantly to x. Careful asymptotics (and first year Calculus!)
yield

1
dz
pw~(50lnn / ———— =507lnn.
( ) 0o Ve(l—z)
The negligible effect of the z = o(n), y = o(n) terms reflects the finiteness of the
indefinite integral at poles z = 0 and z = 1. The possible representationsz +y = n
are mutually independent events so that from A.1.14

Pr[|f(n) — p| > ep] < 2¢~
for constants €, § = &(€). To be specific we can take e = .9, = .1 and
Pr|f(n) — | > 9u] < 25717 < L1

for n sufficiently large. Take ¢; < .1(507) and ¢z > 1.9(507).

Let A, be the event that ¢;Inn < f(n) < czlnn does not hold. We have
Pr[4,] < n~1! for n sufficiently large. The Borel Cantelli Lemma applies, almost
always all A,, fail for n sufficiently large. Therefore there exists a specific point in
the probability space, i.e., a specific set S, for which ¢; Inn < f(n) < ¢z Inn forall
sufficiently large ». B

The development of the infinite probability space used here, and below, has been
carefully done in the book Sequences by H. Halberstam and K. F. Roth.

The use of the infinite probability space leaves a number of questions about the
existential nature of the proof that go beyond the algorithmic. For example, does
there exist a recursive set S having the property of Theorem 8.6.2? An affirmative
answer is given in Kolountzakis (1999) .

Now for a given set S of natural numbers let g(n) = g s(n) denote the number of
representationsn = z +y + z, ,y,z € S, £ < y < z. The following result was
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actually proven for representations of n as the sum of & terms for any fixed k. For
simplicity we present here only the proof for & = 3.

Theorem 8.6.3 [Erdds and Tetali (1990) ] There is a set S for which g(n) =
O(lnn). Thatis, there is a set S and constants c1, ¢z so that for all sufficiently large
n

c1lnn <g(n) <eczlnn.

Proof. Define S randomly by
1/3
Pr[z € S] = p; = min [10 (ln_m) ,l] .

Fix . Now g(n) is a random variable and

p=Elgn)= > popyp..
rz4+y+z=n

Careful asymptotics give

1 3 1 1-z d
,UJNLInn/ / zdy = Klnn,
6 2=0Jy

—oJy=0 [zy(l —z —y)]?/3

where K is large. (We may make K arbitrarily large by increasing “10”.) We apply
Lemma 8.4.2. Here

A= papypapypar,

the sum over all five-tuples with z + y + z = z + y' + 2’ = n. Roughly there are
n3 terms, each ~ p¥ = n~19/3+°(1) 50 that the sum is o(1). Again, care must be
taken that those terms with one (or more) small variables don’t contribute much to
the sum. We bound s < 3 = ©(ln n) and consider u,. This is the minimal possible
> popyp, over all those z, y, z with z + y + 2z = n that do not intersect a given s
representations, let us weaken that and say a given set of 3s elements. Again one
needs that the weight of >° . . _. p=pyp, is not on the edges but “spread” in the
center and one shows us; ~ p. Now, as in Section 8.5, let P denote the Poisson
distibution with mean p. The probability that there exists a maxdisfam J of size less
than (1 — €) or between u(1 + €) and 3 is asymptotically the probability that P
lies in that range. For moderate ¢, as K is large, these - as well as the probability of
having a disfam of size bigger than 3x - will be o(n~¢) with ¢ > 1. By the Borel
Cantelli Lemma almost always all sufficiently large » will have all maxdisfam J of
size between ¢; Inn and ¢z Inn. Then g(n) > ¢1 Inn immediately.

The upper bound is again ad hoc. With this p let f(n) be, as before, the number
of representations of n as the sum of two elements of S. We use only that p, =
z~2/3+(1) We calculate

E[f(n)] = Z (zy)~2/3+() = p=1/3+0(1),

r4+y=n
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again watching the “pole” at 0. Here the possible representations are mutually
independent so

Pr(f(n) > 4] < E[f(n)]*/4! = n=*/3+0),

and by the Borel Cantelli Lemma almost always f(n) < 3 for all sufficiently large
n. Butthen almost always there isa C so that f(n) < C forall n. For all sufficiently
large n there is a maxdisfam (with representations as the sum of three terms) of size
lessthan cs Inn. Every triplez, y, z € S withz+y+ 2 = n must contain at least one
of these at most 3¢, In n points. The number of triples z,y, z € Swithz+y+2 =n
for a particular z is simply f(n — z), the number of representationsn —z = y + 2
(possibly one less since y, z # ), and so is at most C. But then there are at most
C(3cz Inn) total representations n = z + y + 2.
|

8.7 FURTHER INEQUALITIES

Here we discuss some further results that allow one, sometimes, to apply the Poisson
Paradigm. Let B;,7 € I be events in an arbitrary probability space. As in the
LovéaszLocal Lemma of Chapter 5 we say that a symmetric binary relation ~ on I
is a dependency digraph if for each i € I the event B; is mutually independent of
{Bj|noti ~ j}. (The digraph of Chapter 5, Section 5.1 has E = {(3, )7 ~ j}.)
Suppose the events B; satisfy the inequalities of §8.2:

Pr[Bi| Ajes Bj] < Pr[Bi]
valid for all index sets J C I,4 ¢ J and

Pr[B;|Bx A J\ Bj] < Pr[B;i|Bi]
jeJ

valid for all index sets J C 1,4,k ¢ J. Then the Janson inequalitiesTheorems 8.1.1
and 8.1.2 and also Lemmas 8.4.1 and 8.4.2 hold as stated. The proofs are identical,
the above are the only properties of the events B; that were used.

Suen (1990) [see also Janson (1998) for significant variations] has given a very
general result that allows the approximation of Pr[Ac;Bi] by M = [],.; Pr[Bi].
Again let B;, i € I be events in an arbitrary probability space. We say that a binary
relation ~ on I is a superdependency digraph if the following holds: Let J1,J2 C I
be disjoint subsets so that j; ~ j» for no j; € Ji, j» € J2. Let B be any Boolean
combination of the events B, j € J; and let BZ be any Boolean combination of the
events By, j € J,. Then B, B? are independent. Note that the ~ of §8.1 is indeed
a superdependency digraph.

Theorem 8.7.1 [Suen] Under the above conditions

|Pr[AierBi] — M| < M {ezi”jy(i’j) -1



EXERCISES 129

where

y(i,7) = (Pr[Bi A B;]+ Pr[Bi| Pr[B;]) [ (1—Pr[B])~"
I~i OF Inj

We shall not prove Theorem 8.7.1. In many instances the above product is not
large. Suppose it is less than two for all ¢ ~ 3. In that instance

D u(,5) < 2[A+ ) Pr[Bi] Pr[B]).

invg invg

In many instances ;. Pr[B;] Pr[B;] is small relative to A (as in many instances
when ¢ ~ j the events B;, B; are positively correlated). When, furthermore, A =
o(1) Suen’s Theorem gives the approximation of Pr[A;¢r B;] by M. Suen has applied
this result to examinations of the number of induced copies of a fixed graph H in the
random G(n, p).

Janson (1990) has given a one-way large deviation result on the X of §8.1 which

is somewhat simpler to apply than Lemmas 8.4.1 and 8.4.2.

Theorem 8.7.2 [Janson] With x = E[X] and v > 0 arbitrary
Pr[X < (11—l < e~V B/ (2+2)

When A = o(y) this bound on the tail approximates that of the normal curve with
mean and standard deviation g. We shall not prove Theorem 8.7.2 here. The proofs
of Theorems 8.7.1 and 8.7.2 as well as the original proofs by Janson of Theorems
8.1.1 and 8.1.2 are based on estimations of the Laplace transform of X, bounding
Ele~t%].

8.8 EXERCISES

1. Prove that for every ¢ > 0 there is some no = no(€) so that for every n > ng
there is a graph on n vertices containing every graph on & < (2 — ¢€)log, n
vertices as an induced subgraph.

2. Find a threshold function for the property: G(n,p) contains at least n/6
pairwise vertex disjoint triangles.



THE PROBABILISTIC LENS:
Local Coloring

This result of Erdds (1962) gives further probabilistic evidence that the chromatic
number x(G) cannot be deduced from local considerations.

Theorem 1 For all & there exists € > 0 so that for all sufficiently large » there exist
graphs G on n vertices with x(G) > k andyet x(G|s) < 3 for every set S of vertices
of size at most en.

Proof. For a given & letc, € > 0 satisfy (with foresight)
c>2k*H(1/k)In2
e<e°33c73,
where H(z) = —zlog, # — (1 — ) log, (1 — &) is the entropy function. Setp = ¢/n
and let G ~ G(n, p). We show that G almost surely satisfies the two conditions of
the Theorem.

If x(G) < k there would be an independent set of size n/ k. The expected number
of such sets is

n _ (") n(H(1/k)+o(1)) ,—en/2k>(1+0(1))
(n/k) (1-p) <2 e

which is o(1) by our condition on ¢. Hence almost surely x(G) > k.

Suppose some set S with ¢ < en vertices required at least 4 colors. Then as in
the proof of lemma 7.3.4 there would be a minimal such set S. For any v € S there
would be a three coloring of S — {v}. If v had two or fewer neighbors in S then this
could be extended to a three coloring of S. Hence every v € S would have degree at

130



131

least three in G|s and so G|s would have at least 3¢/2 edges. The probability that
some t < en vertices have at least 3¢/2 edges is less than

IHICAIONS

We outline the analysis. When ¢ = O(1) the terms are negligible. Otherwise we
bound each term from above by

ne (te\>/? ( c ) 3/2
t 3 n
Now since t < en the bracketed term is at most e%/23=3/2¢3/2¢1/2 which is less than

one by our condition on e. The full sum is o(1), i.e., almost surely no such S exists.
u

t

< {65/23—3/203/2 /_t/nr'

Many tempting conjectures are easily disproved by the Probabilistic Method. If
every n/(lnn) vertices may be three-colored then can a graph G on n vertices be
four-colored? This result shows that the answer is no.






Pseudo-Randomness

‘A knot!”, said Alice, already to make herself useful, and looking anxiously
about her. “‘Oh, do let me help to undo it!’
—from Alice in Wonderland, by Lewis Caroll

As shown in the various chapters of this book, the probabilistic method is a
powerful tool for establishing the existence of combinatorial structures with certain
properties. Itis often the case that such an existence proof is not sufficient; we actually
prefer an explicit construction. This is not only because an explicit construction may
shed more light on the corresponding problem, but also because it often happens that
a random-looking structure is useful for a certain algorithmic procedure; in this case
we would like to have an algorithm and not merely to prove that it exists.

The problem of finding explicit constructions may look trivial; after all, since we
are mainly dealing with finite cases, once we have a probabilistic proof of existence
we can find an explicit example by exhaustive search. Moreover, many of the
probabilistic proofs of existence actually show that most members of a properly
chosen random space have the desired properties. We may thus expect that it would
not be too difficult to find one such member. Although this is true in principle, it is
certainly not practical to check all possibilities; it is thus common to define an explicit
construction of a combinatorial object as one that can be performed efficiently; say,
in time which is polynomial in the parameters of the object.

Let us illustrate this notion by one of the best known open problems in the area of
explicit constructions; the problem of constructing explicit Ramsey graphs. The first
example given in Chapter 1 is the proof of Erd és that for every n there are graphson n
vertices containing neither a clique nor an independent set on 2 log , n vertices. This
proof is an existence proof; can we actually describe explicitly such graphs? Erdés
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offered a prize of $500 for the explicit construction of an infinite family of graphs,
in which there is neither a clique nor an independent set of size more than a constant
times the logarithm of the number of vertices , for some absolute constant. Of course,
we can, in principle, for every fixed n, check all graphs on » vertices until we find a
good one, but this does not give an efficient way of producing the desired graphs and
hence is not explicit. Although the problem mentioned above received a considerable
amount of attention, it is still open. The best known explicit construction is due to
Frankl and Wilson (1981) , who describe explicit graphs on » vertices which contain
neither a clique nor an independent set on more than 2¢v1cgnloglogn vertices, for
some absolute positive constant c.

Although the problem of constructing explicit Ramsey graphs is still open, there
are several other problems, for which explicit constructions are known. Inthis chapter
we present a few examples and discuss briefly some of their algorithmic applications.
We also describe several seemingly unrelated properties of a graph, which all turn out
to be equivalent. All these are properties of the random graph and it is thus common
to call a graph that satisfies these properties quasi-random. The equivalence of all
these properties enables one to show, in several cases, that certain explicit graphs
have many pseudo-random properties by merely showing that they posses one of
them.

9.1 THE QUADRATIC RESIDUE TOURNAMENTS

Recall that a tournament on a set V' of n players is an orientation T' = (V, E)
of the set of edges of the complete graph on the set of vertices V. If (z,y) is a
directed edge we say that = beats y. Given a permutation 7 of the set of players,
a (directed) edge (z,y) of the tournament is consistent with = if = precedes y in
m. If w is viewed as a ranking of the players, then it is reasonable to try and find
rankings with as many consistent arcs as possible. Let ¢(, T") denote the number
of arcs of T which are consistent with «, and define ¢(T") = maz(c(x, T)), where
the maximum is taken over all permutations 7 of the set of vertices of T. For
every tournament 7' on n players, if r = 1,2,...,nandand 7’ = n,n—1,...,1
then ¢(m, T) + ¢(n',T) = (5). Therefore ¢(T) > 1(3). In fact, it can be shown
that for every such T, ¢(T) > 1(3) + Q(n®2). On the other hand, a simple
probabilistic argument shows that there are tournaments 7" on » players for which
e(T) < (1+0(1))%(%). (The best known estimate, which gives the right order of
magpnitude for the largest possible value of the difference of ¢(T) — 1 (%) is more
complicated and was given by de la Vega in 1983, where he showed that there are
tournaments T on n players for which ¢(T) < 1(%) + O(n%/2).)

Can we describe explicitly tournaments T on n vertices in which ¢(T) < (1 +
o(1)) (3)? This problem was mentioned by Erdés and Moon (1965) and by Spencer
(1985b) . It turns out that several such constructions can be given. Let us describe
one.

Let p = 3(mod 4) be a prime and let T = T, be the tournament whose vertices
are all elements of the finite field GF(p) in which (4, ) is a directed edge iff ¢ — j is
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a quadratic residue. (Since p = 3(mod 4), —1 is a quadratic non-residue modulo p
and hence T, is a well defined tournament).

Theorem 9.1.1 For the tournaments T, described above,

1
(1) < 3 () + 0?1085,

In order to prove this theorem we need some preparations. Let x be the quadratic
residue character defined on the elements of the finite field GF(p) by x(y) =
y®=1/2 Equivalently, x(y) is 1 if y is a nonzero square, 0 if y is 0 and —1
otherwise. Let D = (d;;)? 2, be the p by p matrix defined by di; = x( — j).

Fact 1 For every two distinct j and , ZiEGF(p) dijdy = —1.

Proof. 3, dijdi = >, x(i— 3)x (5 — 1) = 32, ;. x(i — 5)x(é = 1)
=2 igax((G=3)/G=1) =3, x(A+ (1 =35)/(E-1)).

As 7 ranges over all elements of GF(p) besides j and [ the quantity (1 + (I —
7)/ (2 = 1)) ranges over all elements of GF(p) besides 0 and 1. Since the sum of
x(r) over all » in GF(p) is 0 this implies that the right hand side of the last equation
is0 — x(0) — x(1) = —1, completing the proof of the fact.

u

For two subsets A and B of GF(p), let e(4, B) denote the number of directed
edges of T, that start in a vertex of A and end in a vertex of B. By the definition of
the matrix D it follows that:

Yica 2jep %ij = €(A, B) — e(B, A).
The following lemma is proved in Alon (1986b) .

Lemma 9.1.2 For any two subsets A and B of GF(p);
| ZieA ZjeB dij| < |A|1/2|B|1/2P1/2-

Proof. By the Cauchy-Schwarz Inequality and by the fact above:
(ZieA Z]’eB dij)z < |A|(ZiGA(Z]’eB dij)z)
< AlIiecerp) (Xjen %i5)?)
= A|(Xicarp) (1Bl + 22 ciep dijdin))
= |A||Blp+ 2|Al X ciep Xicar(p) diidu

= |Al|Blp— [A[|B[(|B| - 1) = |Al|B|(p - [B| + 1) < |A]|Blp

completing the proof of the lemma. B
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Proof.[Theorem 9.1.1] Let » be the smallest integer satisfying 2" > p. Let
T = mi,...,7Tp De an arbitrary permutation of the vertices of T3, and define
T = Tp,...,m. We must show that c(m, T,) < 2(8) + O(p*/2logp), or eqi-
valently, that c(m, Tp) — ¢(n', T,) < O(p*/?logp). Leta; and a, be two integers
satisfying p = a1 + az and a; < 2771, a5 < 2771, Let A; be the set of the first a;
vertices in the permutation 7 and let A, be the set of the last a; vertices in w. By
Lemma 9.1.2

C(Al, Az) — C(Az, Al) S (alazp)l/z S 2T_1p1/2.

Next, let @11, @12, @21, @22 be integers each of which does not exceed 272 such that
a1 = a1 + a12 and a2 = a2;1 + a22. Let A;; be the subset of A; consisting of
those a1; elements of A; that appear first in o, and let A, be the set of the a;2
remaining elements of A;. The partition of A into the two sets A»; and Agz is
defined similarly. By applying Lemma 9.1.2 we obtain:

e(1‘111, Alz) - C(Alz, A11) + C(Azl, Azz) - C(Azz, Azl)

< (01110112117)1/2 + (a,21a,22p)1/2

S 9. 27‘—2p1/2‘

Continuing in the same manner we obtain, in the 4** step, a partition of the set of
vertices into 2¢ blocks, each consisting of at most 27 ~* consecutive elements in the
permutation . This partition is obtained by splitting each block in the partition
corresponding to the previous step into two parts. By applying Lemma 9.1.2 to each
such pair A.1, Ac2, (where here ¢ is a vector of length 7z — 1 with {1, 2}-entries), and
by summing we conclude that the sum over all these 2:~* vectors € of the differences
e(Ae1, Acz) — e(Acz, Acr) does not exceed

21:—12’!‘—1:p1/2 S 2’!‘—1p1/2‘

Observe that the sum of the left hand sides of all these inequalities as ¢ ranges from
1 to r is precisely the difference ¢(w, T,,) — ¢(n’, T,). Therefore, by summing we
obtain:

c(m,Tp) — (', Tp) < 2T 1pl/2p — O(ps/2 log p),

completing the proof. B

We note that any anti-symmetric matrix with {1, —1}-entries in which each two
rows are roughly orthogonal can be used to give a construction of a tournament
as above. Some related results appear in Frankl, Rodl and Wilson (1988) . The
tournaments T3, however, have stronger pseudo-random properties than do some of
these other tournaments. For example, for every & < %log p, and for every set S
of k vertices of T}, the number of vertices of T, that beat all the members of S is
(1+0(1))p/2*. Thiswas proved by Graham and Spencer (1971) by applying Weil’s
famous theorem known as the Riemann hypotheses for curves over finite fields (Weil
(1948) ). Taking a sufficiently large p this supplies an explicit construction for the
Schiitte problem mentioned in Chapter 1.
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9.2 EIGENVALUES AND EXPANDERS

Agraph G = (V, E) is called an (n, d, ¢)-expander if it has n vertices, the maximum
degree of a vertex is d, and for every set of vertices W C V of cardinality [W| < n/2,
the inequality |N(WW)| > ¢|W| holds, where N (W) denotes the set of all vertices in
V' \ W adjacent to some vertex in W. We note that sometimes a slightly different
definition is used, but the difference is not essential. Expanders share many of the
properties of sparse random graphs, and are the subject of an extensive literature.
A family of linear expanders of density d and expansion c is a sequence {G;}32;,
where G; is an (n;, d, ¢)-expander and n; tends to infinity as ¢ tends to infinity.

Such a family is the main component of the parallel sorting network of Ajtai,
Komlb6s and Szemerédi (1983), and can be used for constructing certain fault tolerant
linear arrays. It also forms the basic building block used in the construction of graphs
with special connectivity properties and small number of edges. Some other examples
of the numerous applications of these graphs to various problems in theoretical
computer science can be found in, e.g., Alon (1986b) and its references.

It is not too difficult to prove the existence of a family of linear expanders us-
ing probabilistic arguments. This was first done by Pinsker (1973) . An explicit
construction is much more difficult to find, and was first given by Margulis (1973) .
This construction was later improved by various authors; most known constructions
are Cayley graphs of certain groups of matrices, and their expansion properties are
proved by estimating the eigenvalues of the adjacency matrices of the graphs and
by relying on the close correspondence between the expansion properties of a graph
and its spectral properties. This correspondence was first studied, independently, by
Tanner (1984) and by Alon and Milman (1984) . Since it is somewhat simpler for
the case of regular graphs we restrict our attention here to this case.

Let G = (V, E) be a d-regular graph and let A = Ag = (@us)uwev be its
adjacency matrix given by a,, = 1 if uv € F and a,, = 0 otherwise. Since G
is d-regular the largest eigenvalue of A is d, corresponding to the all 1 eigenvector.
Let A = A(G) denote the second largest eigenvalue of G. For two (not necessarily
disjoint) subsets B and C of V' lete(B, C) denote the number of ordered pairs (u, v),
where v € B, v € C and uv is an edge of G. (Note that if B and C are disjoint this
is simply the number of edges of G that connect a vertex of B with a vertex of C.)

Theorem 9.2.1 For every partition of the set of vertices V' into two disjoint subsets
Band C:
(d— NIBIC|.

n

e(B,C) >

Proof. Put |V| = n,b = |B|,c = |C| = n —b. Let D = dI be the n by n scalar
matrix with the degree of regularity of G on its diagonal. Observe that for any real
vector z of length n (considered as a functionz : V' +— R ) we have:

(D= Az, z) = 3 v (d(2(w)? = Xy en 2(v)2(u))
=dY v (@) =2 cp2(V)2(u) = Xy ep(z(v) — 2(w))”.
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Define, now, a vector z by z(v) = —cifv € Band z(v) = bifv € C. Notice that A
and D— A have the same eigenvectors, and that the eigenvalues of D — A are precisely
d — u, as p ranges over all eigenvalues of A. Note, also, that ), ., z(v) =0, i.e., z
is orthogonal to the eigenvector of the smallest eigenvalue of D — A. Since D — A
is a symmetric matrix its eigenvectors are orthogonal to each other and form a basis
of the n dimensional space. It follows that z is a linear combination of the other
eigenvectors of D — A and hence, by the definition of A and the fact that d — X
is the second smallest eigenvalue of D — A we conclude that (D — A)z,z) >
(d—X)(z,z) = (d — A)(bc? + cb?) = (d — X)ben.

By the second paragraph of the proof the left hand side of the last inequality is
Youvep(@(u) — z(v))2 = e(B,C) - (b+c)? =e(B,C)-n?. Thus

e(B,C) > M,

n

completing the proof. B

Corollary 9.2.2 If X is the second largest eigenvalue of a d-regular graph G with n

. . _d=X
vertices, then G is an (n, d, c)-expander for ¢ = 2.

Proof. Let W be a set of w < n/2 vertices of G. By Theorem 9.2.1 there
are at least (&=2)u(n=w) 5 (@A e4ges from W to its complement. Since no
vertex in the complement is adjacent to more than d of these edges it follows that
N(w)| > e m

The estimate for ¢ in the last corollary can in fact be improved to %, as shown
by Alon and Milman (1984) . Each of these estimates shows that if the second largest
eigenvalue of G is far from the first, then G is a good expander. The converse of this
is also true, although more complicated. This is given in the following result, proved
in Alon (1986a) , which we state without its proof.

Theorem 9.2.3 If G is ad-regular graph which is an (n, d, ¢)-expander then A(G) <
d— 5

The last two results supply an efficient algorithm for approximating the expanding
properties of a d-regular graph; we simply compute (or estimate) its second largest
eigenvalue. The larger the difference between this eigenvalue and d is, the better
expanding properties of G follow. It is thus natural to ask how far from d this second
eigenvalue can be. It is known (see Nilli (1991) ) that the second largest eigenvalue
of any d-regular graph with diameter % is at least 2+/d — 1(1 — O(1/k)). Therefore,
in any infinite family of d-regular graphs, the limsup of the second largest eigenvalue
is at least 24/d — 1. Lubotzky, Phillips and Sarnak (1986) , and independently,
Margulis (1988) , gave, for every d = p + 1 where p is a prime congruent to 1
modulo 4, explicit constructions of infinite families of d-regular graphs G ; with
second largest eigenvalues A(G;) < 2+4/d — 1. These graphs are Cayley graphs of
factor groups of the group of all two by two invertible matrices over a finite field, and
their eigenvalues are estimated by applying results of Eichler and Igusa concerning
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the Ramanujan conjecture. Eichler’s proof relies on Weil’s theorem mentioned in
the previous section. The non-bipartite graphs G constructed in this manner satisfy
a somewhat stronger assertion than A(G) < 2+/d — 1. In fact, besides their largest
eigenvalue d, they do not have eigenvalues whose absolute value exceed 2+4/d — 1.
This fact implies some strong pseudo-random properties, as shown in the next results.

Theorem 9.2.4 Let G = (V, E) be a d-regular graph on = vertices, and suppose the
absolute value of each of its eigenvalues but the first one is at most A. For a vertex
v € V and a subset B of V' denote by N(v) the set of all neighbours of v in G, and
let Ng(v) = N(v) N B denote the set of all neighbours of v in B. Then, for every
subset B of cardinality bn of V;

> (INs(v)] — bd)® < Xb(1 — b)n.

Observe that in a random d-regular graph each vertex v would tend to have about bd
neighbours in each set of size bn. The above theorem shows that if X is much smaller
than d then for most vertices v, Ng(v) is not too far from bd.

Proof. Let A be the adjacency matrix of G and define a vector f : V' +— R by
f(v)=1-bforve Band f(v) = —bforv ¢ B. Clearly >, f(v) =0,ie, f
is orthogonal to the eigenvector of the largest eigenvalue of A. Therefore

(Af, Af) <X*({, f).

The righthand side of the last inequality is A % (bn(1—b)%+(1—b)nb?) = A%b(1—b)n.
The left hand side is

> (1= 8)INp(v)] = b(d— [Ns(»)]))* = Y (INp(v)| — bd)”.

vEV vEV
The desired result follows. H

Corollary 9.2.5 Let G = (V, E), d,nand X be as in Theorem 9.2.4. Then for every
two sets of vertices B and C of G, where | B| = bn and |C| = ¢n we have:

le(B, C) — cbdn| < AWbc n.

Proof. By Theorem 9.2.4

> (N5 ()] — bd)? < S (IN5(v)] - bd)* < A%b(1 — b)n.
veC vEV
Thus, by the Cauchy Schwarz inequality;

le(B, C) — cbdn| < > |Np(v) — bdl
veC



140 PSEUDO-RANDOMNESS

< ven(Y (1N (v)| — bd)%)M/? < y/endy/b(1 — b)n < AWhe n.
veC
|
The special case B = C gives the following result. A slightly stronger estimate
is proved in a similar way in Alon and Chung (1988) .

Corollary 9.2.6 Let G = (V, E),d,n and X be as in Theorem 9.2.4. Let B be an
arbitrary set of bn vertices of G and let e(B) = 1e(B, B) be the number of edges in
the induced subgraph of G on B. Then

1 1
le(B) — Ebzdn| < E)Jm.

A walk of length | in a graph G is a sequence v, . . ., v; Of vertices of G, where
foreach 1 < ¢ <, v;_yv; is an edge of G. Obviously, the total number of walks of
length [ in a d-regular graph on n vertices is precisely n - d*. Suppose, now , that C
is a subset of, say, n/2 vertices of G. How many of these walks do not contain any
vertex of C? If G is disconnected it may happen that half of these walks avoid C.
However, as shown byAjtai, Komlos and Szemerédi (1987) , there are many fewer
such walks if all the eigenvalues of G but the largest are small. This result and some
of its extensions have several applications in theoretical computer science, as shown
in the above mentioned paper (see also Cohen and Wigderson (1989) ). We conclude
this section by stating and proving the result and one of its applications.

Theorem 9.2.7 Let G = (V, E) be a d-regular graph on n vertices, and suppose
that each of its eigenvalues but the first one is at most A. Let C be a set of en vertices
of G. Then, for every I, the number of walks of length in G that avoid C does not
exceed (1 — ¢)n((1 — c)d + cA)).

Proof. Let A be the adjacency matrix of G and let A’ be the adjacency matrix of its
induced subgraph on the complement of C. We claim that the maximum eigenvalue
of A" is at most (1 — ¢)d + ¢A. To prove this claim we must show that for every
vector f : V — R satisfying f(v) = 0 foreachv € Cand }°, .y f(v)? = 1, the
inequality (Af, f) < (1—c¢)d+cAholds. Let f1, fa, ..., fn be an orthonormal basis
of eigenvectors of A, where f; is the eigenvector of X;, A1 = d and each entry of f;

is1/4/n. Then f =37 cifi, where 3" ¢ = 1and
c1=2ev F(V)/Vn=3ev_c f(¥)/v/n
< (Cvev-c F@)H(1 = )n/n)? = VT ¢,

where here we used the Cauchy-Schwarz Inequality. Therefore 7, ¢? = c and

1=2 i

(Af, ) z": (1—c)d+ e,
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supplying the desired estimate for the largest eigenvalue of A’.

Letys > 2 -+ > v be the eigenvalues of A’, where m = (1 — ¢)n. By the
Perron-Frobenius Theorem it follows that the absolute value of each of them is at
most v1 < (1 — ¢)d + eX. The total number of walks of length I that avoid C is
precisely (A" g, g), where g is the all 1-vector indexed by the vertices in V — C. By
expressing g as a linear combination of the eigenvectors of A’, g = >~ | big; where
gi is the eigenvector of v;, we conclude that this number is precisely

m

DB <A D b =mat <m((1—c)d+ed).

i=1 i=1

Substitutingm = (1 — ¢)n the desired result follows. B

A randomly chosen walk of length{ ina graph G is a walk of length [ in G chosen
according to a uniform distribution among all walks of that length. Notice that if G
is d-regular such a walk can be chosen by choosing randomly its starting point v,
and then by choosing, for each 1 < ¢ < [, v; randomly among the d neighbours of
Vi—1.

Corollary 9.2.8 LetG = (V, E),d, n, A, Candcbe asin Theorem 9.2.7 and suppose

(I—¢c)d+er< %
Then, for every [, the probability that a randomly chosen walk of length { in G avoids
Cisatmost2-4/2,

Proof. The number of walks of length ! in G that avoid C is at most (1 — ¢)n((1 —
c)d + e\ < nd'27Y/2, by Theorem 9.2.7. Since the total number of walks is nd’,
the desired result follows. H

The results above are useful for amplification of probabilities in randomized
algorithms. Although such an amplification can be achieved for any Monte-Carlo
algorithm we prefer, for simplicity, to consider one representative example; the
primality testing algorithm of Rabin (1980) .

For an odd integer ¢, define two integers a and b by ¢ — 1 = 2%b, where b is
odd. Aninteger z, 1 < z < g — 1 is called a witness (for the non-primality of ¢) if
for the sequence zo, . . ., z, defined by zo = mb(mod g)and z; = z2_,(mod q) for
1 <7 < a, either z, # 1 or there is an 7 such that z; # —1,1 and z;4; = 1. One
can show that if ¢ is a prime then there are no such witnesses for g, whereas if ¢ is an
odd non-prime then at least half of the numbers between 1 and ¢ — 1 are witnesses
for g. (In fact, at least 3/4 are witnesses, as shown by Rabin). This suggests the
following randomized algorithm for testing if an odd integer ¢ is a prime, (for even
integers there is a simpler algorithm !).

Choose, randomly, an integer z between 1 and ¢ — 1 and check if it is a witness. If it
is, report that ¢ is not a prime. Otherwise, report that g is a prime.

Observe that if ¢ is a prime, the algorithm certainly reports it is a prime, whereas
if ¢ is not a prime, the probability that the algorithm makes a mistake and reports it
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as a prime is at most 1/2. What if we wish to reduce the probability of making such
a mistake? Clearly, we can simply repeat the algorithm. If we repeat it/ independent
times, then the probability of making an error (i.e., reporting a non-prime as a prime)
decreases to 1/2". However, the number of random bits required for this procedure
isl-log(g—1).

Suppose we wish to use less random bits. By applying the properties of a randomly
chosen walk on an appropriate graph, proved in the last two results, we can obtain
the same estimate for the error probability by using only log(g — 1) + O(Z) random
bits. This is done as follows.

let G be a d-regular graph with ¢ — 1 vertices, labelled by all integers between 1
and ¢ — 1. Suppose G has no eigenvalue, but the first one, that exceeds A and suppose
that

d+tr 4

2 — V2

Now choose randomly a walk of length 2 in the graph G, and check, for each of

the numbers labelling its vertices, if it is a witness. If ¢ is a non-prime, then at least

half of the vertices of G are labelled by witnesses. Hence, by Corollary 9.2.8 and by

(9.1), the probability that no witness is on the walk is at most 2 ~2!/2 = 2~ Thus we

obtain the same reduction in the error-probability as the one obtained by choosing

[ independent witnesses. Let us estimate the number of random bits required for
choosing such a random walk.

The known constructions of expanders given by Lubotzky et al. (1986) or by
Margulis (1988) give explicit families of graphs with degree d and with A < 2+/d — 1,
foreach d = p+ 1, where p is a prime congruent to 1 modulo 4. (We note that these
graphs will not have exactly ¢ — 1 vertices but this does not cause any real problem
as we can take a graph with n vertices, where g — 1 < n < (1 + o(1))(¢g — 1), and
label its i*" vertex by i(mod (g — 1)). In this case the number of vertices labelled
by witnesses would still be at least (1 + o(1))n.) One can easily check that, e.g.,
d = 30 and X = 2+/29 satisfy (9.1), and thus we can use a 30-regular graph. The
number of random bits required for choosing a random walk of length 27 in it is less
than log(g — 1) + 10{ + 1, much less than the [ log(¢ — 1) bits which are needed in
the repetition procedure.

(9.1)

9.3 QUASI-RANDOM GRAPHS

In this section we describe several pseudo-random properties of graphs which, some-
what surprisingly, turn out to be all equivalent. All the properties are ones satisfied,
almost surely, by a random graph in which every edge is chosen, independently, with
probability 1/2. The equivalence between some of these properties were first proved
by several authors, see Thomason (1987) , Frankl et al. (1988) and Alon and Chung
(1988) , but the first paper in which all of them (and some others) appear is the one
by Chung, Graham and Wilson (1989) . Our presentation here follows that paper,
although, in order to simplify the presentation, we consider only the case of regular
graphs.
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We first need some notation. For two graphs G and H, let N (H) be the number of
labelled occurrences of H as an induced subgraph of G (i.e., the number of adjacency
preserving injections f : V(H) — V(G) whose image is the set of vertices of an
induced copy of H in G.) Similarly, Ng(H) denotes the number of labelled copies
of H as a (not necessarily induced) subgraph of G. Notethat Ng(H) = Y~ ; N (L),
where L ranges over all graphs on the set of vertices of H obtained from H by adding
to it a (possibly empty) set of edges.

Throughout this section G always denotes a graph with » vertices. We denote the
eigenvalues of its adjacency matrix (taken with multiplicities) by X 1, ..., Ay, where
[A1] > ... > |An|. (Since we consider in this section only the eigenvalues of G
we simply write A; and not A1 (G).) Recall also the following notation, used in the
previous section; for a vertex v of G, N(v) denotes the set of its neighbours in G. If
S is a set of vertices of G, e(S) denotes the number of edges in the induced subgraph
of Gon S. If B and C are two (not necessarily disjoint) subsets of vertices of G,
e(B, C) denotes the number of ordered pairs (b, c) where b € B, ¢ € C, and beis an
edge of G. Thuse(S) = 1e(S, S).

We can now state the pseudo random properties considered here. All the properties
refer to a graph G = (V, E) with n vertices. Throughout the section, we use the o(-)-
notation, without mentioning the precise behaviour of each o(-). Thus, occurrences
of two o(1), say, need not mean that both are identical and only mean that if we
consider a family of graphs G and let their number of vertices » tend to infinity then
each o(1) tends to 0.

Property P; (s): Foreverygraph H(s)onsverticesNg(H(s)) = (1—1—0(1))71,52_(;).
Property P;: For the cycle C(4) with 4 vertices Ng(C(4)) < (1 + o(1))(n/2)*.
Property Ps: |Az| = o(n).

Property P,: For every set S of vertices of G, e(S) = 1|5|? + o(n?).

Property Ps: For every two sets of vertices B and C; e(B, C) = 1|B||C| + o(n?).
Property Ps: 3, ,cv | IN(w) N N(v)| = 3| = o(n®).

It is easy to check that all the properties above are satisfied, almost surely, by a
random graph on n vertices. In this section we show that all these properties are
equivalent for a regular graph with n vertices and degree of regularity about n/2.
The fact that the innocent looking property P is strong enough to imply for such
graphs P;(s) for every s > 1 is one of the interesting special cases of this result.

Graphs that satisfy any (and thus all) of the properties above are called quasi-
random. As noted above the assumption that G is regular can be dropped (at the
expense of slightly modifying property P and slightly complicating the proofs).

Theorem 9.3.1 Let G be a d-regular graph on n vertices, where d = (3 +o(1))n. If
G satisfies any one of the seven properties Py (4), P1(s) for all s > 1, P2, P3, P4, P5, Ps
then it satisfies all seven.
Proof. We show that

Pi(4) —= P,— P3s— P,— P;

= P = Py(s) foralls > 1 (= Py(4)).
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1. P1(4) — Ps.

Suppose G satisfies P1(4). Then Ng(C(4)) = Y. N&(L), as L ranges over the
four labelled graphs obtained from a labelled C'(4) by adding to it a (possibly empty)
set of edges. Since G satisfies P1(4), N&(L) = (1 + o(1))n*2716 for each of these
graphs L and hence Ng(C(4)) = (1 + o(1))n*27%, showing that G satisfies P;.

2. P, — Ps.

Suppose G satisfies P, and let A be its adjacency matrix. The trace of A* is
precisely 7, A¥. On the other hand it is easy to see that this trace is precisely the
number of (labelled) closed walks of length 4 in G, i.e., the number of sequences
Vo, V1, V2, U3, Y4 = Vo Of vertices of G such that v;v; 4, isan edge foreach 0 < ¢ < 3.
This number is Ng((C(4)) plus the number of such sequences in which vy = vy,
which is nd?, plus the number of such sequences in which vz # vy and vz = vy,

which is nd(d — 1). Thus
Z,\g =d*+ Z,\;*

= (1+ o(1))(n/2)* Z,\‘* (4)) + O(n®)

= (1 +o(1))(n/2)*
It follows that 377, A# = o(n*), and hence that |A2| = o(n), as needed.
3. P — P,.
This is an immediate consequence of Corollary 9.2.6.
4, Py — Ps.
Suppose G satisfies P,. We first claim that it satisfies property Ps for disjoint sets of
vertices B and C. Indeed, if B and C are disjoint then

e(B,C)=e(BUC)—¢(B)—e(C)

= JUBI+[CI? ~ 1B~ ICP + o(n?) = L IBIIC| + o(n?),

proving the claim.
In case B and C are not disjoint we have:

e(B,C)=¢(B\C,C\B) +¢(BNC,C\B)+¢(BNC,B\C)+2(BNC).

Put|B| = b, |C|=¢,|B N C| = . By the above expression for e(B, C) and by the
fact that G satisfies P, and Ps for disjoint B and C we get:

e(B,C) = %(b —z)(c—z)+ %m(c —z)+ %m(b —z)+ Zmz + o(n?)

1 1
= Sbe+o(n?) = 5|BI[C|+ o(n?),

showing that G satisfies Ps.
5. Py — Pg.
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Suppose that G satisfies Ps and recall that G is d-regular, where d = (1 + o(1))n.
Let v be a fixed vertex of G, and let us estimate the sum

> IIN@NN@)| -l

u€eV,utv

Define n
Bi={ueViutv: |[Nu)nN(v)| > Z}’
and similarly
Ba={ueV,utv: |[Nu)nN@)| < %}.

Let C be the set of all neighbours of v in G. Observe that

> 1IN N NE)| - 7|

uw€B;

= > INWNNE)| - Bi]7

= e(B1,C) — |Bl|%.

Since G satisfies Ps and since d = (3 + o(1))n the last difference is Z|Bi|d +
o(n?) — |B1|%2 = o(n?).
A similar argument implies that

> 1IN NN )| - 5| = ofn?).

uw€ By

It follows that for every vertex v of G,

> IN@NNE) - 7] =on?),

u€eV,utv

and by summing over all vertices v we conclude that G satisfies property Pe.

6. Ps = Pi(s) forall s > 1.

Suppose G = (V, E) satisfies Ps. For any two distinct vertices » and v of G let
a(u,v) be 1 if uv € E and 0 otherwise. Also, define s(u,v) = [{w € V : a(u,w) =
a(v,w)}|. Since Gisd = (1 +o(1))n-regular, s(u,v) = 2|N(u)NN(v)|+n—2d =
2|N(uw) N N(v)| + o(n). Therefore, the fact that G satisfies Ps implies that

> Is(u,v) = 2] = o(n®). 9.2)
u,v€EV
Let H = H(s) be an arbitrary fixed graph on s vertices, and put N, = Ng(H(s)).
We must show that .
N, = (14 o(1))n*2- ().
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Denote the vertex set of H(s) by {v1,...,vs}. Foreachl < r < s, putV, =
{v1,...,v}, and let H(r) be the induced subgraph of H on V,. We prove, by
induction on r, that for N, = Ng&(H(r)):

N, = (14 o(1))nm 2”6, 9.3)

where ny =n(n —1)---(n—r41).

This is trivial for » = 1. Assuming it holds for », where 1 < » < s, we prove it
for » 4+ 1. For a vector & = (a4, ..., a,) of distinct vertices of G, and for a vector
€ = (e1,...,&) of (0, 1)-entries, define

frla,e)={veV:iv£ar,...a,anda(v,a;) =¢ forall 1 <j<r}.

Clearly N, is the sum of the N, quantities f,(«, €) in which ¢; = a(vr41,v;) and
« ranges over all N, induced copies of H(r) in G.

Observe that altogether there are precisely n(,)2" quantities fr(c,€). Itis con-
venient to view f, (e, €) as a random variable defined on a sample space of n,)2"
points, each having an equal probability. To complete the proof we compute the
expectation and the variance of this random variable. We show that the variance is
so small that most of the quantities f,(«, ¢) are very close to the expectation, and
thus obtain a sufficiently accurate estimate for N, ., which is the sum of N, such
quantities.

We start with the simple computation of the expectation E(f,) of f.(a,€). We

have:
1

E(fy) = erT(a’e): 1 TZZfT(a,E)
n(r)2" = n(r)2 .

a

1 n—r
- n(r) 2" Z(n_ ") = or !

a

where we used the fact that every vertex v # ay, . . ., o, defines e uniquely.
Next, we estimate the quantity S, defined by

ST = Z fr(aa e)(f?‘(aa 6) - 1)

We claim that

S, = Z 5(u, v)(r)- (9.4)

uAv

To prove this claim, observe that S, can be interpreted as the number of ordered
triples (e, €, (u,v)), where & = (a4, ..., a,) is an ordered set of » distinct vertices
of G, € = (e1,...,¢€ ) is a binary vector of length r, and u, v is an ordered pair of
additional vertices of G so that

a(u,ap) = a(v,ag) =€ foralll <k <r.

For each fixed « and ¢, there are precisely f; (e, €)(fr(a, €) — 1) choices for the pair
(u, v) and hence S, counts the number of these triples.
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Now, let us compute this number by first choosing « and . Once u, v are chosen,
the additional vertices a4, ..., a, must all belong to the set {w € V : a(u,w) =
a(v,w)}. Since the cardinality of this set is s(u, v) it follows that there are s(u, v) ()
choices for a1, ...a,. Once these are chosen the vector ¢ is determined and thus

(9.4) follows.
We next claim that (9.2) implies
3 s(w, )y = (1+0(1))n"+227". (9.5)
uAv

To prove this claim define €u, = s(u,v) — 5. Observe thatby (9.2), 3°,, ., |€us| =
o(n®), and that |e,,| < n/2 < n for each u, v. Hence, for every fixed ¢ > 1,

D lew® <0 leun| = o(n*?).

uAv uAv
This implies that;
n
Z S(’U,, U)(r) = Z(E + fuv)(r)
uAv uAv
-3 Yl '
= ex( 5 Ve ®  (for appropriate constants cy,)
kE=0u#v
n = n
SLLCRPIPILIC G,
kE=0u#v
n r—1
< (E)T“’(Z) + Z Z |Ck|nk|€uv|7_k
k=0 u#v

r—1
<n"t227T ¢ Z nk Z lews|”" ¥ (for an appropriate constant c)
k=0 uAv

r—1
S nr+22—r + can . O(nr—k+2)
k=0

= 72277 (14 of1)),

implying (9.5).
By (9.4) and (9.5)
S, = (1+0o(1))n"*t227".

Therefore,

Y (frlese) = B(f;))

a,e

= fo(a,e) - ZE(fr)z

a,e
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Y (Faye) = frley€) + ) frlay€) = ngny 2 (n— )27

=5+ n(T)zTE(fT) — n(T)zT(n - T)22_ZT
= Sr +n(rg1) — () 2" (0 — 7)?227% = o(n"?).

Recall that N, 1 is the summation of N, quantities of the form f,(a, €). Thus:

INeys = NeE(f)P =1 Y (felee) = E(f)P

N, terms

By Cauchy-Schwarz, the last expression is at most

NT Z (fr(aae)_ E(fT))z

N, terms

<N Y (frlase) = B(f))

a,e
=N, - o(nH'z) = o(n27+2).

It follows that
|Nej1 — N E(f,)] = o(n™ 1),

and hence, by the induction hypothesis,

Nr+1 = N’I‘E(f’l‘) + O(n7‘+1)

= (14 o(1))nm2~G) - (n— 7)27" + o(n"*1)
= (14 o(1))n(pyny2~ (7))
This completes the proof of the induction step and establishes Theorem 9.3.1. B
There are many examples of families of quasi-random graphs. The most widely
used is probably the family of Paley graphs G, defined as follows. For a prime
p congruent to 1 modulo 4, let G, be the graph whose vertices are the integers
0,1,2,...,p— 1 inwhich 7 and j are adjacent if and only if ¢ — 5 is a quadratic
residue modulo p. The graphs G, which are the undirected analogues of the quadratic
residue tournaments discussed in Section 1, are (p—1)/2-regular. Forany two distinct
vertices ¢ and j of G, the number of vertices & which are either adjacent to both
and j or non-adjacent to both is precisely the number of times the quotient ,’j:; isa
quadratic residue. As k ranges over all numbers between 0 and p — 1 but 7 and 7,
this quotient ranges over all numbers but 1 and 0 and hence it is a quadratic residue
precisely %(p — 1) — 1 times. (This is essentially the same assertion as that of the
first fact given in the proof of Theorem 9.1.1.) We have thus shown that for every
two vertices i and j of Gy, s(%,7) = (p — 3)/2, and this, together with the fact that
Gp is (p — 1)/2-regular, easily implies that it satisfies Property Pg. Therefore it is
quasi-random. As is the case with the quadratic residue tournaments , G, satisfies,
in fact, some stronger pseudo-random properties which are not satisfied by every
quasi-random graph, and which can be proved by applying Weil’s Theorem.
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9.4 EXERCISES

1. By considering a random bipartite 3-regular graph on 2n vertices obtained by
picking 3 random permutations between the two color classes, prove that there
isa c > 0 such that for every n there exists a (2n, 3, c)-expander.

2. Let G = (V, E) be an (n,d, A)-graph, suppose n is divisible by k, and let
C:V — {1,2,...,k} be a coloring of V by k colors, so that each color
appears precisely n/k times. Prove that there is a vertex of G which has a
neighbor of each of the & colors, provided kX < d.

3. Let G = (V, E) be a graph in which there is at least one edge between any two
disjointsets of size a+ 1. Prove that for every set Y of ba vertices, there is a set
X of at most a vertices, such that for every set Z satisfying ZN (X UY) =10
and |Z| < a, the inequality |IN(Z) N Y| > 2|Z] holds.

4. Prove that for every e > 0 there exists an ng = no(e€) so that for every
(n,n/2,2+/n)- graph G = (V, E) withn > no, the number of triangles M in
G satisfies | M — n3/48| < en3.



THE PROBABILISTIC LENS:
Random Walks

A vertex-transitive graph is a graph G = (V, E) such that for any two vertices
u,v € V there is an automorphism of G that maps u into ». A random walk of
length [ in G starting at a vertex v is a randomly chosen sequence v = vg, v, - - -, i,
where each v; 41 is chosen, randomly and independently, among the neighbours of »;
(0 <3<l

The following theorem states that for every vertex-transitive graph G, the proba-
bility that a random walk of even length in G ends at its starting point is at least as
big as the probability that it ends at any other vertex. Note that the proof requires
almost no computation. We note also that the result does not hold for general regular
graphs, and the vertex transitivity assumption is necessary.

Theorem 1 Let G = (V, E) be a vertex-transitive graph. For an integer & and for
two (not neccessarily distinct) vertices u, v of G, let P*(u, v) denote the probability
that a random walk of length & starting at » ends at ». Then, for every integer & and
for every two vertices u, v € V':

P (u,u) > P?(u,).

Proof. We need the following simple inequality, sometimes attributed to Chebyschev.

Claim 2 For every sequence (ax, ..., an) Of n reals and for any permutation = of

{1,...,n}:
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Proof. The inequaility follows immediately from the fact that

n n

2 i _
E a; — E Qilr () =
i=1 i=1

N| —

Z(ai - a,.,r(i))z > 0.
=1

|

Consider, now, a random walk of length 2k starting at . By summing over all the
possibilities of the vertex the walk reaches after & steps we conclude that for every
vertex v:

P (y,v) = Z P*(u, w)P*(w,v) = Z P*(u, w)P*(v, w), (9.6)

weV weV

where the last equality follows from the fact that G is an undirected regular graph.

Since G is vertex-transitive, the two vectors (P*(u, w))wev and (P*(v, w))yev
can be obtained from each other by permuting the coordinates. Therefore, by the
claim above, the maximum possible value of the sum in the right hand side of (9.6)
is when u = v, completing the proof of the theorem. B
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Random Graphs

It is six in the morning. The house is asleep. Nice music is playing. | prove and
conjecture.
— Paul Erd@s, in a letter to Vera Sos

Let » be a positive integer, 0 < p < 1. The random graph G(n, p) is a probability
space over the set of graphs on the vertex set {1, ..., n} determined by

Pr[{i,j} € Gl=p

with these events mutually independent. This model is often used in the probabilistic
method for proving the existence of certain graphs. In this chapter we study the
properties of G(n, p) for their own sake.

Random Graphs is an active area of research which combines probability theory
and graph theory. The subject began in 1960 with the monumental paper On the
Evolution of Random Graphs by Paul Erd6s and Alfred Rényi. The book Random
Graphs by Bollobas (1985) is the standard source for the field. In this chapter we
explore only a few of the many topics in this fascinating area.

There is a compelling dynamic model for random graphs. For all pairs ¢, j let
z; ; be selected uniformly from [0, 1], the choices mutually independent. Imagine p
going from 0 to 1. Originally, all potential edges are “off”. The edge from z to j
(which we may imagine as a neon light) is turned on when p reaches z; ; and then
stays on. At p = 1 all edges are “on”. At time p the graph of all “on” edges has
distribution G(n, p). As p increases G(n, p) evolves from empty to full.

In their original paper, Erd&s and Rényi let G(n, €) be the random graph with n
vertices and precisely e edges. Again there is a dynamic model: Begin with no edges
and add edges randomly one by one until the graph becomes full. Generally G(n, €)

155
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will have very similar properties as G(n, p) with p ~ ﬁ We will work on the
probability model exclusively.

10.1 SUBGRAPHS

The term “the random graph” is, strictly speaking, a misnomer. G(n,p) is a prob-
ability space over graphs. Given any graph theoretic property A there will be a
probability that G(n, p) satisfies A, which we write Pr[G(n,p) E A]. When A is
monotone Pr[G(n, p) |= A] is a monotone function of p. As an instructive example,
let A be the event “G is triangle free”. Let X be the number of triangles contained
in G(n, p). Linearity of expectation gives

It turns out that the distribution of X is asymptotically Poisson. In particular

lim Pr[G(n,p) = A] = lim Pr[X =0]= —

n—00 n—>00
Note that .
lime ¢/6 =1
c—0
lim e=¢*/6 = 0
c— 00

When p = 10~¢/n, G(n, p) is very unlikely to have triangles and when p = 10%/n,
G(n, p) is very likely to have triangles. In the dynamic view the first triangles almost
always appear at p = ©(1/n). If we take a function such as p(n) = n=2 with
p(n) >> n~! then G(n,p) will almost always have triangles. Occasionally we
will abuse notation and say, for example, that G(n,n~°) contains a triangle - this
meaning that the probability that it contains a triangle approaches 1 as n approaches
infinity. Similarly, when p(n) << n~1, for example, p(r) = 1/(nlnn), then
G(n, p) will almost always not contain a triangle and we abuse notation and say that
G(n,1/(nlnn)) is triangle free. It was a central observation of Erdés and Rényi
that many natural graph theoretic properties become true in a very narrow range of
p. They made the following key definition.

Definition 4 »(n) is called a threshold function for a graph theoretic property A if
(i) When p(n) << r(n),lim, o Pr[G(n,p) E A] =0

(i) When p(n) >> r(n),lim, o Pr[G(n,p) = Al =1

or visa versa.
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Inour example, 1/n isathreshold function for A. Note that the threshold function,
when one exists, is not unique. We could equally have said that 10/7 is a threshold
function for A.

Let’s approach the problem of G(n, ¢/n) being triangle free once more. For every
set S of three vertices let Bs be the event that S is a triangle. Then Pr[Bs] = p°.
Then “triangle freeness” is precisely the conjunction AB s over all S. If the Bg were
mutually independent then we would have

Pr[ABs] = [[1Bs] = (1 — 23~ e (B)P* y eme?s,

The reality is that the Bg are not mutually independent though when |S N T| < 1,
Bg and Br are mutually independent.

We apply Janson’s Inequality, Theorem 8.1.1. In the notation of §8.1 I = {S C
V(G) : |S| =3}and S ~ T ifand only if [SNT| = 2. Here e = p*> = o(1),
p=(1p® ~ c3/6,and M = e~#(1+o(1)) = ¢=¢*/6+0(1) There are 6(%) = O(n?)
pairs S, T of triples with S ~ T'. For each Pr[Bs A Br] = p®. Thus

A =0(n*p° = n~ttell) = o(1).
When A = o(1) Janson’s Inequalitysandwiches an asymptotic bound:

lim Pr[ABs] = lim M = e <18,
n— oo n— oo
Can we duplicate this success with the property A that G contains no (not neces-
sarily induced) copy of a general given graph H? We use the definitions of balanced
and strictly balanced of §4.4.

Theorem 10.1.1 Let H be a strictly balanced graph with v vertices, e edges and a
automorphisms. Let ¢ > 0 be arbitrary. Let A be the property that G contains no
copy of H. Then with p = en="/¢,

lim Pr[G(n,p) = A] = ezp[—c®/a].

n— 00

Proof. Let Aq,1 < a < (7)v!/a, range over the edge sets of possible copies of H
and let B,, be the event G(n, p) DO A,. We apply Janson’s Inequality. As

lim p= lim (n)v!pe/a: c’/a,
n— 00 n—oo \ U

we find
lim M = ezp[—c®/a].

n— 00

Now we examine (as in Theorem 4.4.2)

A =" Pr[Ba A Bgl.
anf
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We split the sum according to the number of vertices in the intersection of copies &
and B. Suppose they intersect in j vertices. If j = 0orj = 1then A, N Ag =0
so that o ~ 8 cannot occur. For 2 < j < w let f; be the maximal |A, N Ag| where
a ~ fBand a, S intersect in j vertices. Asa # 8, fy <e. When2 < j <wv — 1the
critical observation is that A, N Ag is a subgraph of H and hence, as H is strictly
balanced,

fi e

i v
There are O(n?"~9) choices of @, 8 intersecting in j points, since e, 3 are determined,
except for order, by 2v — j points. For each such a, 8

PI'[BQ /\Bﬂ] — plAaUAﬁl — p28—|AaﬂA/3| S p28—fj‘

Thus Y
A=) 0(n*9)0(n s Cefi)),
j=2

But f
v v
2w —j——(2e—fj)=—2—-7<0
v—j—_(2e—fi) == —i<0,
so each term is o(1) and hence A = o(1). By Janson’s Inequality
lim Pr[AB,] = lim M = ezp[—c®/a],

n— 00 n— 00

completing the proof. B

10.2 CLIQUE NUMBER

In this section we fix p = 1/2, (other values yield similar results) and consider the
clique number w(G(n, p)). For afixed ¢ > 0 let n, &k — oo so that

As a first approximation

k
ne~— 2
ev2

and
2lnn

In2 °

Here 4 — ¢ so M — e ¢. The A term was examined in §4.5. For this k,
A = o(E[X]?)and so A = o(1). Therefore

~

lim Prw(G(n,p)) < k] = exp[—c].

n,k— 00



CLIQUE NUMBER 159

Being more careful, let no(%) be the minimum »n for which

Observe that for this n the left hand side is 1 + o(1). Note that () grows, in n, like
nk. Forany X € (—oo, +00) if

n— no(B)[L —I—ko(l)]
then
(1)@ =+ 2oy op,
and so

Prlw(G(n,p)) < k] =% + o(1).

As X ranges from —oo to +o00, €= ranges from 1 t0 0. As no(k + 1) ~ v/2no(k)
the ranges will not “overlap” for different £&. More precisely, let K be arbitrarily
large and set

I = [no(k)[1 — ), mo(R)[1 4 211

For k > ko(K), Ix—1 NIy = . Suppose n > no(ko(K)). If n lies between the
intervals (which occurs for “most” n), which we denote by I < n < Ij.1, then

Pr[w(G(n,p)) < k] < e~ +o(1),

nearly zero, and

nearly one, so that

Prw(G(n,p)) =kl >e™° —e7° +0(1),

nearly one. When n € I, we still have I, _1 < n < I41 S0 that
Priw(G(n,p)) =kork—1]>e® —e* +o(1),
nearly one. As K may be made arbitrarily large this yields the celebrated two point

concentration theorem on clique number, Corollary 4.5.2 in §4.5. Note, however,
that for most » the concentration of w(G(n, 1/2)) is actually on a single value!



160 RANDOM GRAPHS

10.3 CHROMATIC NUMBER

In this section we fix p = 1/2 (there are similar results for other p) and let G be
the random graph G(n, 1/2). We shall find bounds on the chromatic number x(G).
A different derivation of the main result of this section is presented in Chapter 7,
Section 7.3. Set

Let ko = ko(n) be that value for which

f(ko — 1) > 1> f(ko).
k(1+0(1))

Thenn = /2 so for k ~ ko,
n,- —140
Fk+1)/F(8) = 227414 0(1)) = 7o),
Set
k=k(n)=ko(n)—4
so that

f(k) > n®tolh).
Now we use the Extended Janson Inequality (Theorem 8.1.2) to estimate
Prlw(G) < k]. Here u = f(k). (Note that Janson’s Inequalitygives a lower bound
of 2-F(k) = 2-n""") o this probability but this is way off the mark since with
probability 2 =(3) the random G is empty!) The value A was examined in §4.5 where

k-1
A AY )
— = — = g\z).

Z = =290

There g(2) ~ k*/n? and g(k — 1) ~ 2kn2~* /1 were the dominating terms. In our
instance p > n3t°(1) and 2=% = n—=2+°(1) 50 ¢(2) dominates and

'u’2 k4
n? ’

A~
Hence we bound the clique number probability
Pr[w(G) < k] < e #*/28 = ¢=@*/(nn)*)

as k = O(Inn). (The possibility that G is empty gives a lower bound so that we

may say the probability is e‘"2+°(1), though a o(1) in the hyperexponent leaves lots
of room.)

Theorem 10.3.1 [Bollobés (1988) ] Almost always

x(G))

n

" 2logyn’
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Proof. Leta(G) = w(G) denote, as usual, the independence number of G. The com-
plement of G has the same distribution G(n, 1/2). Hence a(G) < (2 + o(1)) log, n
almost always. Thus

almost always.

The reverse inequality was an open question for a full quarter century! Set
m = |n/In®n|. For any set S of m vertices the restriction G|s has the distribution
of G(m, 1/2). Let k = k(m) = ko(m) — 4 as above. Note

k ~ 2logy,m ~ 2log, n.

Then
_m2+o(1)

Prla[Gls] < k] < e

There are () < 2m = 2 "%

n
m

such sets .S. Hence

Pr[a[G|s] < k for some m-set S] < gm ) gmmte® o(1).
That is, almost always every m vertices contain a k-element independent set.

Now suppose G has this property. We pull out k-element independent sets and
give each a distinct color until there are less than m vertices left. Then we give each

point a distinct color. By this procedure

x(G) <[%™[+m<F+m

210ngzn(1 + 0(1)) + O(lognzn)

= 7hogym (L To(1)),

2log,n

and this occurs for almost all G. B

10.4 BRANCHING PROCESSES

Paul Erdds and Alfred Rényi, in their original 1960 paper, discovered that the random
graph G(n, p) undergoes a remarkable change at p = 1/n. Speaking roughly, let
firstp = ¢/nwithc < 1. Then G(n, p) will consist of small components, the largest
of which is of size ©(lnn). But now suppose p = ¢/n with ¢ > 1. In that short
amount of “time” many of the components will have joined together to form a “giant
component” of size ©(n). The remaining vertices are still in small components,
the largest of which has size ©(Inn). They dubbed this phenomenon the Double
Jump. We prefer the descriptive term Phase Transition because of the connections to
percolation (e.g., freezing) in mathematical physics.

To better understand the Phase Transition we make a lengthy detour into the
subject of Branching Processes. Imagine that we are in a unisexual universe and we
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start with a single organism. Imagine that this organism has a number of children
given by a given random variable Z. (For us, Z will be Poisson with mean ¢.) These
children then themselves have children, the number again being determined by Z.
These grandchildren then have children, etc. As Z = 0 will have nonzero probability
there will be some chance that the line dies out entirely. We want to study the total
number of organisms in this process, with particular eye to whether or not the process
continues forever. (The original application of this model was to a study of the -gasp!-
male line of British peerage.)

Now lets be more precise. Let Z;, Z,, . .. be independent random variables, each
with distribution Z. Define Yo, Y1, . . . by the recursion

Yo=1
Yi=Yi 1+ -1

and let T" be the least ¢ for which Y; = 0. If no such ¢ exists (the line continuing
forever) we say T' = +o00. The ¥; and Z; mirror the Branching Process as follows.
We view all organisms as living or dead. Initially there is one live organism and no
dead ones. At each time unit we select one of the live organisms, it has Z; children,
and then it dies. The number Y; of live organisms at time 4 is then given by the
recursion. The process stops when Y; = 0 (extinction) but it is a convenient fiction
to define the recursion for all ¢. Note that 7" is not affected by this fiction since
once Y; = 0, T has been defined. T" (whether finite or infinite) is the total number
of organisms, including the original, in this process. (A natural approach, found
in many probability texts, is to have all organisms of a given generation have their
children at once and study the number of children of each generation. While we may
think of the organisms giving birth by generation it will not affect our model.)

A major result of Branching Processes is that when E[Z] = ¢ < 1 with probability
one the process dies out (T < oo) but when E[Z] = ¢ > 1 then there is a nonzero
probability that the process goes on forever (T' = oo). Intuitively this makes sense:
the values Y; of the population form a Markov chain. When ¢ < 1 there is drift
“to the left” so eventually Y; = 0 whereas when ¢ > 1 there is drift “to the right”,
Y; — 400, and with finite probability the population never hits zero. If the process
doesn’t die early the population is likely to just keep growing. We give a proof based
on the Large Deviation bounds A.1.15 . Observe that Z; + ...+ Z; has a Poisson
distribution with mean ct. First suppose ¢ < 1. For any ¢

Pr[T > t] < Pr[Y; > 0 =Pr[Z1 + ...+ Z; > 1] < (1-6)

with § > 0. As lim;, oo Pr[T > ¢] = 0, Pr[T = oo] = 0. Now suppose ¢ > 1.
Again using A.1.15

Pr[Y; < 0] = Pr[Z1 +...+ Z: < 1] < (1 - 8),
with a differentd > 0. As 3.2, (1 — 4)* converges there is a o with

Y Py, <0< 1

t=ty



BRANCHING PROCESSES 163

Then
Y PV +to-1<0]<1
t=0

sincefort < to,Y; +t0—1>1—¢t+1%,— 1> 0always. We now condition on the
first organism having ¢, children. The conditional distribution of
Yi=to+(Za—1D+...4+(Z:—1)
is the unconditional distribution of
Yici+@to—1D)=to+(Z1 —1)+...+(Ze-1 - 1),

and so
D Pr[Y; <0121 = 10] < 1.
t=0
With positive probability Z, = ¢, and then with positive probability all Y; > 0 so

that Pr[T = oo] > 0.
Generating functions give a more precise result. Let

p(z) =) pic?
1=0
In our case )
pi = e~cci /i,
so that
p(z) = Ze ciat /il = e=-1),
1=0
Let
gi = Pr[T = 1]
and set

oo
g(z) =) g’
1=0

(the sum not including the 2 = oo case). Conditioning on the first organism having s
children the generating function for the total number of offspring is #(g(z)) ¢. Hence

g(z) = Y _pszq(z)’ = zplg(z)).
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That is, the generating function y = ¢(z)/z satisfies the functional equality y =

p(zy), i.e.,
y= ec(zy—l)‘

The extinction probability
y="Pr[T <oo] =) g =q(l)=q(1)/1
=0

must satisfy
y = e‘®-1) (%)

For ¢ < 1 this has the unique solution y = 1, corresponding to the certain extinction.
(In fact, for ¢ = 1 the only solution is also y = 1, proving extinction in the critical
case as well). For ¢ > 1 there are two solutions, y = 1 and some y € (0,1). For
¢ > 1 we let f(c) denote that y satisfying (**), 0 < y < 1. AsPr[T < oo] < 1 we
know

Pr[T < oo] = f(c).

When a branching process dies, we call H = (Z, ..., Zr) the history of the
process. A sequence (zi, ..., 2:) is a possible history if and only if the sequence y;
givenbyyo = 1,4 = yi—1+ 2 —lhasy; >0for0 <i<tandy, =0. When Z
is Poisson with mean X

e—A)\zi e—A()\e—)\)t—l
Pr[H = (z1,...,2)] = = ,
g_ Zi! H::l Z,,:!

sincezy +...+z =t— 1.
We call d < 1 < ¢ a conjugate pair if

de % =ce

The function f(z) = ze~* increases from 0to e~ in [0,1) and decreases back to 0
in (1, 00) so that each ¢ # 1 has a unique conjugate. Letec > 1 and y = Pr[T < oo]
sothat y = e“®=1), Then (cy)e~¥ = ce¢, s0

d=cy.

Duality Principle. Let d < 1 < ¢ be conjugates. The Branching Process with mean
¢, conditional on extinction, has the same distribution as the Branching Process with
mean d.

Proof. It suffices to show that for every history H = (21, ..., 2)
e—c(ce—c)t—l _ e—d(de—d)t—l
yIliciz!  Ilicya!

This is immediate as ce ¢ =de % and ye % = ye=¥ =e~*. W
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10.5 THE GIANT COMPONENT

Now let’s return to random graphs. We define a procedure to find the component
C(v) containing a given vertex v in a given graph G. We are motivated by Karp
(1990) , in which this approach is applied to random digraphs. In this procedure
vertices will be live, dead or neutral. Originally v is live and all other vertices are
neutral, time ¢ = 0 and Y5 = 1. Each time unit ¢ we take a live vertex w and check
all pairs {w, w'}, w’ neutral, for membership in G. If {w, w'} € G we make w’ live,
otherwise it stays neutral. After searching all neutral w’ we set w dead and let Y;
equal the new number of live vertices. When there are no live vertices the process
terminates and C(v) is the set of dead vertices. Let Z; be the number of w’ with
{w,w'} € G sothat
Yo=1

Yi=Y, 1+ 2% - 1.

With G = G(n, p) each neutral w’ has independent probability p of becoming
live. Here, critically, no pair {w, w'} is ever examined twice, so that the conditional
probability for {w, w’} € G isalways p. Ast — 1 vertices are dead and Y;_1 are live

Zy ~Bn—(t—1)—Y:_1,p].

Let T' be the least ¢ for which Yy = 0. Then T = |C(v)|. As in Section 10.4 we
continue the recursive definition of Y%, this time for 0 < ¢ < n.

Claim3 Forallt
Yi~Bln—1,1-(1—p)]+1—t.

Proof. It is more convenient to deal with
Ny=n—-t-Y;
the number of neutral vertices at time ¢ and show, equivalently,
N; ~ B[n—1,(1—p)"].

This is reasonable since each w # v has independent probability (1 — p)* of staying
neutral ¢ times. Formally, as No = » — 1 and

N =n—-t-Y; =n—¢t—Bn—(t—1)—Yi_1,p] - Yi1+1
=Ny —B[Nt—l,P]
= B[Nt—la]-_p]a

the result follows by induction. B

We set p = ¢/n. When ¢ and Y;_; are small we may approximate Z; by B[n, ¢/n|
which is approximately Poisson with mean ¢. Basically small components will have
size distributionas in the Branching Process of Section 10.4. The analogy must break
down for ¢ > 1 as the Branching Process may have an infinite population whereas
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|C(v)] is surely at most n. Essentially, those v for which the Branching Process for
C(v) does not “die early” all join together to form the giant component.

Fix e. Let Yy, Yy,...,T*, Z1,Z;,...,H" refer to the Branching Process of
§5.4 and Yo, Y1,...,T, Z1, Z,, ..., H refer to the Random Graph process. For any
possible history (z1, .. ., 2¢)

Pr[H* = (21,...,2)] = [ Pr[Z" = 2],
where Z* is Poisson with mean ¢ while
Pr[H = (z1,...,2)] = [[ PrlZi = 2],

where Z; has Binomial Distribution B[n — 1 — z1 — ... — z_1,¢/n]. The Poisson
distribution is the limiting distribution of Binomials. When m = m(n) ~ nand ¢, ¢
are fixed

n— 00 n— 00 z n

lim Pr[B[m,c/n] = z] = lim (m)(f)zu - %)m—z — e~ /2.

Hence
lim Pr[H = (21,...,2¢)] = Pr[H" = (21,...,2)]

n— 00

Assume ¢ < 1. For any fixed ¢, limy, o0 Pr[T = ¢] = Pr[T* = t]. We now
bound the size of the largest component. For any ¢

Pr[T > t] < Pr[Y; > 0] = Pr[B[n— 1,1 — (1 — p)*] > t] < Pr[Bl[n,tc/n] > t],
asl— (1 —p) <tpandn —1 < n. By Large Deviation Result A.1.14
Pr[T >t]<e ™
where a = a(c) > 0. Let 8 = B(c) satisfy a8 > 1. Then
Pr[T > Blnn] < n=% =o(n™1).

There are n choices for initial vertex ». Thus almost always all components have
size O(lnn).

Now assume ¢ > 1. For any fixed ¢, limy,_, o, Pr[T = t] = Pr[T™ = ¢] but what

corresponds to 7™ = oo? For ¢ = o(n) we may estimate 1 — (1 — p)* ~ pt and
n — 1 ~ n so that

Pr[Y; < 0] = Pr[Bln— 1,1 (1 — p)!] < ¢ — 1] ~ Pr[B[n, te/n] < 1]

drops exponentially in ¢ by Large Deviation results. When ¢ = an we estimate
1—(1—p)* by 1—e ¢ Theequation1—e~°* = a has solutiona = 1 —y where
y is the extinction probability of §10.4.



THE GIANT COMPONENT 167

Fora<l—y,1—e * >aand
Pr[Y: < 0] ~ Pr[B[n,1 — e %] < an]

is exponentially small, while fora > 1 —y, 1 — e “* < e and Pr[¥; < 0] ~ 1.
Thus almost always ¥; = 0 for some ¢ ~ (1 — y)n. Basically, T* = oo corresponds
to T ~ (1 — y)n. Lete, § > 0 be arbitrarily small. With somewhat more care to the
bounds we may show that there exists ¢o so that for » sufficiently large

Prito< T <(1—8)n(l—y) or T> (14+8n(l —y)] <e
Pick ¢ sufficiently large so that
y— e < Pr[T" < o] <.
Then as limy, o Pr[T < to] = Pr[T* < 1] for n sufficiently large
y—2<Pr[T<to]<y+e

1—y—2e<Pr[(1-8)n(l-y) <T<(1+8n(l-y)]<1—y+3e

Now we expand our procedure to find graph components. We start with G ~
G(n,p), select v = v; € G and compute C(v;) as before. Then we delete C(v) ,
pick vz € G — C(vy1) and iterate. Ateach stage the remaining graph has distribution
G(m, p) where m is the number of vertices. (Note, critically, that no pairs {w, w’}
in the remaining graph have been examined and so it retains its distribution.) Call
a component C(v) small if |C(v)| < to, giant if (1 — §)n(l —y) < [C(v)] <
(1 + 8)n(1l — y) and otherwise failure. Pick s = s(e) with (y +¢€)* < e. (Fore
small s ~ K Ine~1.) Begin this procedure with the full graph and terminate it when
either a giant component or a failure component is found or when s small components
are found. At each stage, as only small components have thus far been found, the
number of remaining points is m = n— O(1) ~ = so the conditional probabilities of
small, giant and failure remain asymptotically the same. The chance of ever hitting
a failure component is thus < se and the chance of hitting all small components is
< (y + €)* < e so that with probability at least 1 — €’, where ¢ = (s + 1)e may be
made arbitrarily small, we find a series of less than s small components followed by
a giant component. The remaining graph has m ~ yn points and pm ~ cy = d, the
conjugate of ¢ as defined in §10.4. As d < 1 the previous analysis gives the maximal
components. In summary: almost always G(n, ¢/n) has a giant component of size
~ (1 — y)n and all other components of size O(lnn). Furthermore, the Duality
Principle of §10.4 has a discrete analog.
Discrete Duality Principle. Let d < 1 < ¢ be conjugates. The structure of
G(n, ¢/n) with its giant component removed is basically that of G(m, d/m) where
m, the number of vertices not in the giant component, satisfies m ~ ny.

The small components of G(n, ¢/n) can also be examined from a static view. For
a fixed & let X be the number of tree components of size k. Then

k n n

E[X]= (n) kh=2(Syk=1(1 = Sykn—k)+(5) - (k1)
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Here we use the nontrivial fact, due to Cayley, that there are k*~2 possible trees on
a given k-set. For ¢, k fixed

e—ckkk—zck—l
k!
As trees are strictly balanced a second moment method gives X ~ E[X] almost
always. Thus ~ pgn points lie in tree components of size k& where
e—ck (Ck)k_l
k!

It can be shown analytically that py, = Pr[T = k] in the Branching Process with
mean c of §10.4. Let Y; denote the number of cycles of size k£ and Y the total number
of cycles. Then

EX]~n

Pr =

_ (e ey
B =5 (G ~ o

ElY]=) ElYi] > ) %
k=1

has a finite limit, whereas for ¢ > 1, E[Y] — oco. Even for ¢ > 1 for any fixed & the
number of k-cycles has a limiting expectation and so does not asymptotically affect
the number of components of a given size.

for fixed k. Forc < 1

10.6 INSIDE THE PHASE TRANSITION

In the evolution of the random graph G(n, p) a crucial change takes place in the
vicinity of p = ¢/n with ¢ = 1. The small components at that time are rapidly
joining together to form a giant component. This corresponds to the Branching
Process when births are Poisson with mean 1. There the number T' of organisms
will be finite almost always and yet have infinite expectation. No wonder that the
situation for random graphs is extremely delicate. In recent years there has been
much interest in looking “inside” the phase transition at the growth of the largest
components. (See, e.g. uczak (1990) or the monumental Janson, Knuth, tuczak
and Pittel (1993) ). The appropriate parametrization is, perhaps surprisingly,
1 A

When A = A(n) — —oo the phase transition has not yet started. The largest
components are o(n?/3) and there are many components of nearly the largest size.
When A = A(n) — +oo the phase transition is over - a largest component, of size
>> n?/3 has emerged and all other components are of size o(n?/3). Let’s fix ), ¢
and let X be the number of tree components of size k = cn?/3. Then

E[X]= (n) kh=2(Syk=1(1 = Sykn—k)+(5) - (k1)

k n n
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Watch the terms cancel!

kk/ 27k o1
For: < k

7 12 °

—In(l - )= —+ 55+ 0(3),
so that
k-1
7 k2 k3 k2 3
—In(1 - 2)= = —+ — 1

Also

1 A

_ -2\ __ -2
In(1-p)=-p+0(n )——E—W-FO(?’L )
and
k k2 2/3
k(in—k) + 5 —(k—l):kn—7+0(n ),
so that
k= k) + (5) k11— ) = kg B 22
n— — (k— n(l —p)=— — — —=+—+o
2 P 9n  nl/3 2
and T
nt k"
E[X]~ 12 A
[X] kE/2mkn*—1
where
A = :g_n;%tnﬁ';s_A_;—kJr’;—n—%Jr%Jro(l)
—5 = e o),
so that

B[X] ~ n~2/3¢= % = 255458 = 5/2 (9112,
For any particular such k, E[X] — 0 but if we sum k between cn?/3 and (c+dc)n?/3
we multiply by n?/3de. Going to the limit gives an integral: For any fixed a, b, X let
X be the number of tree components of size between an?/3 and bn?/3. Then

n— 00

b 3 20 02
lim E[X] :/ e T 752 (o)~ 2 e,



170 RANDOM GRAPHS

The large components are not all trees. Wright (1977) proved that for fixed [ there
are asymptotically ¢;k*~2+3! connected graphs on k points with k& — 1 + [ edges,
where ¢; was given by a specific recurrence. Asymptotically ini, ¢; = 1=4/2(1+e(1),
The calculation for X (), the number of such components on k vertices, leads to extra
factors of c;k2! and n=! which gives ¢;c3'. For fixed a, b, A, ! the number X of
components of size between an?/3 and bn2/3 with I — 1 more edges than vertices
satisfies

n— 00

b 3 20 C2 s
lim BLXO) = [ e ¥ 2 e e,

and letting X * be the total number of components of size between an 2/ and bn?/3

n— 00

b 3 20 C2
lim F[X*] :/ e~ Tt ¢=%2(27) 1 2g(c)de,

where

o0

g(C) = Z C[C%l,

=0

a sum convergent for all ¢, (here co = 1). A component of size ~ ¢n?/3 will have
probability clc%l/g(c) of having  — 1 more edges than vertices, independent of A.
As lim,_,0 g(c) = 1, most components of size en?/3 , ¢ << 1, are trees but as c gets
bigger the distribution on I moves inexoribly higher.

An Overview. For any fixed X the sizes of the largest components are of the form cn?/3
with a distribution over the constant. For A = —10° there is some positive limiting
probability that the largest component is bigger than 106n2/3 and for A = +10°
there is some positive limiting probability that the largest component is smaller than
10~%12/3, though both these probabilities are miniscule. The functions integrated
have a pole at ¢ = 0, reflecting the notion that for any A there should be many
components of size near en?/3 for € = €()\) appropriately small. When X is large
negative (e.g., —10°) the largest component is likely to be en?/3, e small, and there
will be many components of nearly that size. The nontree components will be a
negligible fraction of the tree components.

Now consider the evolution of G(n, p) in terms of A. Suppose that at a given A
there are components of size ¢;n?/3 and e¢zn2/3. When we move from A to A + d
there is a probability c;cadX that they will merge. Components have a peculiar
gravitation in which the probability of merging is proportional to their sizes. With
probability (¢2 /2)d) there will be a new internal edge in a component of size ¢;n?/3
so that large components rarely remain trees. Simultaneously, big components are
eating up other vertices.

With XA = —108, say, we have feudalism. Many small components (castles) are
each vying to be the largest. As X increases the components increase in size and a
few large components (nations) emerge. An already large France has much better
chances of becoming larger than a smaller Andorra. The largest components tend
strongly to merge and by A = +108 it is very likely that a giant component, Roman
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Empire, has emerged. With high probability this component is nevermore challenged
for supremacy but continues absorbing smaller components until full connectivity -
One World - is achieved.

10.7 ZERO-ONE LAWS

In this section we restrict our attention to graph theoretic properties expressible in
the First Order theory of graphs. The language of this theory consists of variables
(z, v, z, - . .), which always represent vertices of a graph, equality and adjacency (z =
y,z ~ y), the usual Boolean connectives (A, —,...) and universal and existential
quanfication (V,, 3,). Sentences must be finite. As examples, one can express the
property of containing a triangle

LI T(e~yAz~2zAy~2z].

having no isolated point
szly [:I: ~ y]

and having radius at most two
LWy[-ly=2)A-(y~2z) — [z ~yAy~a]].

For any property A and any n, p we consider the probability that the random graph
G(n, p) satisfies A, denoted

Pr[G(n,p) E A].

Our objects in this section will be the theorem of Glebskii, Kogan, Liagonkii and
Talanov (1969) and independently Fagin (1976) (theorem 10.7.1), and that of Shelah
and Spencer (1988) (theorem 10.7.2).

Theorem 10.7.1 For any fixed p, 0 < p < 1 and any First Order A

nli)n;o Pr[G(n,p) E Al =0orl.
Theorem 10.7.2 For any irrational e, 0 < a < 1, setting p = p(n) = n~2, and for
any First Order A,

nli)n;o Pr[G(n,p) E Al =0orl.
Both proofs are only outlined.

We shall say that a function p = p(n) satisfies the Zero-One Law if the above
equality holds for every First Order A.

The Glebskii/Fagin Theorem has a natural interpretation when p = .5 as then
G(n,p) gives equal weight to every (labelled) graph. It then says that any First
Order property A holds for either almost all graphs or for almost no graphs. The
Shelah/Spencer Theorem may be interpreted in terms of threshold functions. The
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general results of Section 10.1 give, as one example, that p = n—2/3 is a threshold
function for containment of a K 4. That is, when p << n=2/3, G(n, p) almost surely
does not contain a K, whereas when p >> n~2/3 it almost surely does contain
a K4. In between, say at p = n~2/3, the probability is between 0 and 1, in this
case 1 — e~1/2¢, The (admittedly rough) notion is that at a threshold function the
Zero-One Law will not hold and so to say that p(n) satisfies the Zero-One Law is
to say that p(n) is not a threshold function - that it is a boring place in the evolution
of the random graph, at least through the spectacles of the First Order language. In
stark terms: What happens in the evolution of G(n,p) atp = n~"/7? The answer:
Nothing!

Our approach to Zero-One Laws will be through a variant of the EhrenfeuchtEhrenfeucht
Game, which we now define. Let G, H be two vertex disjoint graphs and ¢ a positive
integer. We define a perfect information game, denoted EH R[G, H, t], with two
players, denoted Spoiler and Duplicator. The game has ¢ rounds. Each round has
two parts. First the Spoiler selects either a vertex z € V(G) or a vertex y € V(H).
He chooses which graph to select the vertex from. Then the Duplicator must select a
vertex in the other graph. At the end of the ¢ rounds ¢ vertices have been selected from
each graph. Let z4, ..., z; be the vertices selected from V(G) and y1, . . ., y: be the
vertices selected from V(H) where z;, y; are the vertices selected in the ¢-th round.
Then Duplicator wins if and only if the induced graphs on the selected vertices are
order-isomorphic: i.e,, ifforall 1 <7 < j <t

{z;, :I:j} € EG)+— {yi,y]-} € E(H).

As there are no hidden moves and no draws one of the players must have a winning
strategy and we will say that that player wins EH R[G, H, t].

Lemma 10.7.3 For every First Order A there isat = ¢(A) so that if G, H are any
graphs with G = 4 and H |= — A then Spoiler wins EH R[G, H, t].

A detailed proof would require a formal analysis of the First Order language so
we give only an example. Let A be the property V,3,[z ~ y] of not containing an
isolated pointand set ¢ = 2. Spoiler begins by selecting an isolated pointy ; € V(H)
which he can do as H = —A. Duplicator must pick z; € V(G). AsG = A, z;
is not isolated so Spoiler may pick z; € V(G) with z; ~ 2, and now Duplicator
cannot pick a “duplicating” y-.

Theorem 10.7.4 A function p = p(n) satisfies the Zero-One Law if and only if for
every t, letting G(n, p(n)), H(m, p(m)) be independently chosen random graphs on
disjoint vertex sets

lim Pr[ Duplicator winsEH R[G(n, p(n)), H(m, p(m)), t]] = L.

m,n— oo

Remark. Forany given choice of G, H somebody mustwin EH R[G, H, t]. (That s,
there is no random play, the play is perfect.) Given this probability distribution over
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(G, H) there will be a probability that EH R[G, H, t] will be a win for Duplicator,
and this must approach one.

Proof. We prove only the “if” part. Suppose p = p(n) did not satisfy the Zero-One
Law. Let A satisfy
lim Pr[G(n, p(n)) k= 4] =,

with 0 < ¢ < 1. Lett = ¢(A) be as given by the Lemma. With limiting probability
2¢(1—c) > 0exactly one of G(n, p(n)), H(n, p(n))would satisfy A and thus Spoiler
would win, contradicting the assumption. This is not a full proof since when the
Zero-one Law is not satisfied limy,, _, oo Pr[G(n, p(n)) = A] might not exist. If there
is a subsequence n; on which the limitis ¢ € (0, 1) we may use the same argument.
Otherwise there will be two subsequences n;, m; on which the limit is zero and one
respectively. Then letting n, m — oo through n;, m; respectively, Spoiler will win
EHR|G, H,t] with probability approaching one. B

Theorem 10.7.4 provides a bridge from Logic to Random Graphs. To prove that
p = p(n) satisfies the Zero-One Law we now no longer need to know anything about
Logic - we just have to find a good strategy for the Duplicator.

We say that a graph G has the full level s extension property if for every distinct
UL, ..., U, V1,---,0p € GWitha+b < sthereisan z € V(G) with {z,u;} €
E(G),1<i<aand{z,v;} ¢ E(G),1 < j < b Suppose that G, H both have
the full level s — 1 extension property. Then Duplicator wins EH R[G, H, s] by the
following simple strategy. On the i-th round, withz 1, ..., 2;_1,¥1, ..., ¥;—1 already
selected, and Spoiler picking, say, #;, Duplicator simply picks y; having the same
adjacencies to the y;, j < ¢ as ; has to the z;, 7 < 4. The full extension property
says that such a y; will surely exist.

Theorem 10.7.5 For any fixed p, 0 < p < 1, and any s, G(n, p) almost always has
the full level s extension property.

Proof. For every distinct w1, ..., uq,v1,...,%, 2 € G With a + b < s we define
Eu....wawe,...,,0 10 DE the event that {z,u;} € E(G), 1 <i<aand{z,v;} ¢
E(G),1<j <b. Then

Pr[Eulv"-vua77)17"-77)bvz] = pa(l - p)b'

Now define

Eul,...,ua,vl,...,vb — /\zEul,...,ua,vl,...,vb,z

the conjunction over & # w1, .. ., Uq, v1, . - -, Up. TheSe events are mutually indepen-
dent over z since they involve different edges. Thus

PrAgBus,.ocptia,v1,evn,e] = [1— (1 — p)b]"_“_b‘

Set € = min(p, 1 — p)* so that

Pr[/\IEHM---M«:77)17---7%71] S (1 - e)n—s‘
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The key here is that ¢ is a fixed (dependent on p, s) positive number. Set
E = VEul,...,ua,vl,...,vba

the disjunction over all distinct w1, ..., uq, v1,...,v € G Witha + b < s. There
are less than s?n* = O(n*) such choices as we can choose a, b and then the vertices.
Thus

Pr[E] < s*n*(1 — €)™ %,

But
. 2, s n—s
nli)n;osn(l—e) =0
and so E holds almost never. Thus —E, which is precisely the statement that G(n, p)
has the full level s extension property, holds almost always. l

But now we have proven Theorem 10.7.1. For any p € (0, 1) and any fixed s as
m, n — oo with probability approaching one both G(r, p) and H(m, p) will have the
full level s extension property and so Duplicator willwin EH R[G(n, p), H (m, p), .

Why can’t Duplicator use this strategy when p = n=*? We illustrate the difficulty
with a simple example. Let .5 < a < 1 and let Spoiler and Duplicator play a three
move game on G, H. Spoiler thinks of a point z € G but doesn’t tell Duplicator
about it. Instead he picks z1, z; € G, both adjacent to z. Duplicator simply picks
y1,Yy2 € H, either adjacent or not adjacent dependent on whether z; ~ z5. But
now wily Spoiler picks z3 = z. H ~ H(m,m~®) does not have the full level 2
extension property. In particular, most pairs y1, y2 do not have a common neighbor.
Unless Duplicator was lucky, or shrewd, he then cannot find y3 ~ 1, y2 and so he
loses. This example does not say that Duplicator will lose with perfect play - indeed,
we will show that he almost always wins with perfect play - it only indicates that the
strategy used need be more complex.

We begin our proof of the Zero-One Law Theorem 10.7.2. Leta € (0,1), @
irrational, be fixed. A rooted graph is a pair (R, H) where H is a graph on vertex
set, say, V(H) = {X1,..., X, Y1,..., Yo} and R = {X4,..., X, } is a specified
subset of V/(H), called the roots. For example, (R, H) might consist of one vertex
Y; adjacent to the two roots X1, X2. Letv = (R, H) denote the number of vertices
which are not roots and let e = e(R, H) denote the number of edges, excluding
those edges between two roots. We say (R, H) is dense if v — eax < 0 and sparse
if v — ea > 0. The irrationality of « assures us that all (R, H) are in one of these
categories. We call (R, H) rigid if forall S with R C S C V(H), (S, H) is dense.
We call (R, H) safe if for all S with R C S C V(H), (R, H|s) is sparse. Several
elementary properties of these concepts are given as Exercise 4. We sometimes write
(R, S) for (R, H|s) when the graph H is understood.

We think of rooted graphs as on abstract points. In a graph G we say that vertices
Y1, .-, Yy forman (R, H) extension of 4, ..., z, if whenever X; is adjacent to ¥;
in H, z; is adjacent to y; in G and also whenver Y; and Y; are adjacent in H, y; and
y; are adjacent in G. Note that we allow G to have more edges than H and that the
edges between the roots “don’t count”.
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Lemma 10.7.6 [Generic Extension] Let (R, H), as given above, be safe. Lett > 0
be an arbitrary, but fixed, integer. Then in G ~ G(n,n~%) almost surely for all
z1,...,z, there existyy, ..., y, such that

1. y1,...,y, forman (R, H) extension of z4, .. ., z,.

2. z;,y; are adjacent in G if and only if X;, Y; are adjacent in H and y;, y; are
adjacent in G if and only if Yy, Y; are adjacentin H.

3. (Fort > 0) If z1,...,2, withu < t form a rigid (R’, H') extension over
z1,...,Z+,Y1,---, Yy then there are no adjacencies between any z; and any

Ys-

Example. Let o € (3,1), ¢ = 2, and let (R, H) have root X, nonroot ¥; and
edge {X1,Y1}. Note that (R, H') consisting of two roots X 1, X, with a common
neighbor Y7 has v = 1,e = 2 and is rigid. Generic Extension in this instance says
that every z; has a neighbor y; such that 1, y; do not have a common neighbor z;.

Proof. From Exercise 5 almost surely every z, ..., z, has ©@(n"p°) (R, H) exten-
sions y1, - - -, ¥» . Our rough notion will be that the number of these ¥4, ..., y, that
fail to be generic, in any of the bounded number of ways that could occur, would be
bounded by a smaller power of n.

Call y special if y € cly14 (21, - - ., 2-) (as defined below), otherwise nonspecial.
Let K, from the Finite Closure Lemma 10.7.7 below, be an almost sure bound on the
number of special y, uniform over all choices of the z’s. Extend (R, H) to (R*, Ht)
by adding K new roots and no new edges. This is still safe and of the same type
as (R, H) so again by Exercise 5 almost surely every zi,..., &y, 21,...,2x has
O(n"p®) (R*, HT) extensions yi,...,y,. Letting the 2’s include all the special
vertices we have that almost surely every z1, . . ., z, has ©(n”p®) (R, H) extensions
Y1, - - -, Yo With all y; nonspecial. Now we bound from above the number of those
nonspecial (R, H) extensions which fail condition 2 or 3.

Consider those extensions (R, H') with an additional edge y;, y; or z;,y;. This
cannot contain a rigid subextension as that would make some y; special. Hence by
Exercise 4 it must be a safe extension. Applying Exercise 5 there are @(n?p®t!) =
o(n”p®) such extensions..

Consider extensions by yi,...,%, and z1,..., 2, as in condition 3 with some
zj, yx adjacent. We can further assume the z’s form a minimal rigid extension over
the z’s and y’s. Let the 2’s have type (v1, e1) as an extension over the z’s and y’s
so that v — eja is negative. If the y’s and z’s together formed a safe extension
over the z’s there would be ©(n"+t"1p?*e1) = o(n?p?) such extensions and hence
at most that many choices for the y’s. Otherwise, by Exercise 4, there would be a
rigid subextension. It could not overlap the nonspecial y’s. From the minimality it
must be precisely all of the z’s. Given the z’s from the Finite Closure Lemma 10.7.7
there are O(1) choices for the z’s. Then the y’s form a (v, €’) extension over the z’s
and y’s with ¢’ > e. This extension has no rigid subextensions (again as the y’s are
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nonspecial) and hence is safe. Again applying Exercise 5 there are @(n”pe') such
y’s for each choice of the z’s and so O(n?p?’) = o(n”p°) total choices of such ys.

In all cases the number of y’s that fail conditions 2 or 3 is o(n?p¢). Hence there
exist y’s, indeed most choices of nonspecial y’s, which are (R, H) extensions and
satisfy conditions2 and 3. B

A rigid ¢-chain in G is a sequence X = Xo C X1 C ... C Xk with all
(X;_1,X;) rigid and all | X;41 — X;| < t. The t-closure of X, denoted by cl:(X),
is the maximal Y for which there exists a rigid ¢-chain (of arbitrary length) X =
Xo C X1 C ... C Xg =Y. When there are no such rigid ¢-chains we define
cl:(X) = X. To see this is well defined we note [using Exercise 4] that if X =
XoCX1C...C Xg=Zand X =XoCY1 C...C Yy =Y arerigid t-chains
thensois X =Xo C X1 C...C Xgk CZUY1 C...C ZUY, = ZUY.
Alternatively, the ¢-closure cl;(X) is the minimal set containing X which has no
rigid extensions of < ¢ vertices. We say z1,...,2, € G, y1,...,y € H have the
same t-type if their ¢-closures are isomorphic as graphs, the isomorphism sending
each z; to the corresponding y;.

The t-closure is a critical definition, describing the possible special properties of
the roots. Suppose, for example, o € (3, 1) and consider cl; (z1, z2). The only rigid
extension with ¢ = 1 in this range is a honroot adjacent to two (or more) roots. A
sample 1-type would be: =1, z2 have common neighbors y1, y2 and then =y, y; have
common neighbor y3 and there are no further edges amongst these vertices and no
pairs have common neighbors other than those described. A randomly chosen z 1, z
would have type: z, z2 have no common neighbors and are not adjacent.

We can already describe the nature of Duplicator’s strategy. At the end of the
r-th move, withz,,...,z, and yy, .. ., y» having been selected from the two graphs,
Duplicator will assure that these sets have the same a,.-type. We shall call this the
(a1, ...,a:) lookahead strategy. Here a, must depend only on ¢, the total number
of moves in the game and . We shall set a; = 0 so that at the end of the game,
if Duplicator can stick to the (a1,...,a:) lookahead strategy then he has won.
If, however, Spoiler picks, say, #,,1 S0 that there is no corresponding y»41 with
Z1,...,&r41 a0d y1, ..., yr+1 having the same a, 1 -type then the strategy fails and
we say that Spoiler wins. The values a, give the “lookahead” that Duplicator uses
but before defining them we need some preliminary results.

Lemma 10.7.7 [Finite Closure] Let a, » > 0 be fixed. Set £ equal to the minimal
value of #2=* over all integers v,e with 1 < v <tandea — v > 0. Let K be such
thatr» — Ke < 0. Then in G(n, n~*) almost surely

lcle(X)| < K + 7
forall X C G with | X|=r.
Proof. If not there would be a rigid t-chain X = Xo C X3 C ... C X =Y with

K+7r<|Y| < K+r+t. Letting (X;_1, X;) have type (v;, €;) the restriction of
G toY would have r 4+ > v; vertices and at least > e; edges. But

(r—i—Zvi)—a(Zei):r—i—Z(vi—aei)ST—EZW<1‘—K€<0
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and G almost surely has no such subgraph. &

Remark. The bound on |cl,(X )| given by this proof depends strongly on how close
a may be approximated by rationals of denominator at most ¢. This is often the
case. If, for example, 1 + -5 > o > 3 + I then ass. there will be two points
z1, 22 € G(n,n~ %) having s common neighbors so that |cl1(z1, z2)| > s + 2.

Now we define the aq, . . ., a; of the lookahead strategy by reverse induction. We
set a; = 0. If at the end of the game Duplicator can assure that the 0-types of
z1,...,2z; and y, ...,y are the same then they have the same induced subgraphs
and he has won. Suppose, inductively, that 8 = a,1 has been defined. We define
a = a, to be any integer satisfying

lL.a>b

2. Almost surely |cly(W)| — r < a for all sets W of size r + 1.

Now we need show that almost surely this strategy works. Let G1 ~ G(n,n™ %),
G2 ~ G(m, m~ <) and Duplicator tries to play the (a1, ..., a:) lookahead strategy
on EHR(Gl, Gz, t)

Consider the (r + 1)-st move. We have b = a@,4+1, a = a, as above. Points
z1,...,% € G1,y1,.. .,y € Gahavealreadybeenselected. SetX = {z4,...,z,},
Y = {v1,...,y-} for notational convenience. We assume Duplicator has survived
thus far sothat el, (X) = cl,(Y"), the isomorphism sending each z; to the correspond-
ing y;. Spoiler picks, say, z = 2,411 € G;. Set Xt = X U{z}and Yt =Y U {y}
where y is Duplicator’s as yet undetermined countermove. We distinguish two cases.

We say Spoiler has moved Inside if 2 € cl,(X). Thenas b < a,
cly(X) C cla(X). Duplicator looks at the isomorphism ¥ : cl,(X) — cl,(Y) and
selects y = ¥(z).

We say Spoiler has moved Outside if z ¢ ¢l,(X). Let NEW be those vertices
of clp(XT) that do not lie in ¢l,(X). NEW # Qasz € NEW. [INEW| < a as
NEW C clp(X*) — X. Consider NEW as an (R, H) extension of ¢l,(X). This
extension must be safe as otherwise it would have a rigid subextension N EW ~— but
that subextension would then be in ¢l . (X). Duplicator now goes to G and, applying
the Generic Extension Lemma 10.7.6 with¢ = b, findsan (R, H ) extension of ¢l,(Y).
That is, he finds an edge preserving injection ¥ : ¢lo(X) U NEW — H extending
the isomorphism between ¢l (X) and ¢l,(Y"). Duplicator selects y = ¥(z).

Why does this work? Set NEW' = ¥(NEW) and CORE = ¥(cly(X1)). We
can reach ¢l (X 1) by a rigid b-chain from X * and the isomorphism gives the same
chainfromY * to CORE sothat cl(Y ) contains CORE. Butcan it have additional
vertices? We use the genericity to say no. Suppose there was a rigid extension
MORE over CORE with at most & nonroots. We can’t have M ORE entirely
inside ¥[cl,(X) U NEW] as then ¥~ [M ORE] would be in cl;(XT) as well. Let
MORET be the vertices of MORE lyingoutside ¥[cl,(X)UNEW]. MORE™ is
then arigid extension of ¥[cl,(X)UN EW]. By the genericity M ORE* would have
no adjacencies to N EW' and so would be a rigid extension of ¥[cl o (X)] = cla(Y).
Asa > bthe a-closure of a set cannot have rigid extensions with < b vertices. Hence
thereisno MORE.
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The first move follows the same pattern but is somewhat simpler. Set b = a; and
let a satisfy @ > b and a > |clp(z)| for any . Spoiler plays z € G;. [Effectively,
there is no Inside move as X = @ is the set of previous moves and ci,(0) = 0.]
Duplicator calculates the graph H = ¢lp() which has, say, v vertices [including z]
and e edges. Since H is a subgraph of G; the threshold function for the appearance of
H must come before n=<. In particular, for every subgraph H' of H with v’ vertices
and e’ edges we cannot have v' — ae’ < 0 and therefore must have v’ — ae’ > 0. The
conditions of Theorem 4.4.5 then apply and G, almost surely has @(m°®~**) copies
of H. Consider any graph H™* consisting of H together with a rigid extension of H
with at most & vertices. Such H* would have v + vt vertices and e + et edges with
v+ —aet < 0. The expected number of copies of H is then @(me—va+(™—ac™))
which is o(m®~?*). Hence there will be in G, a copy of H which is not part of any
such H+. [Effectively, this is generic extension over the empty set.] Duplicator finds
the edge preserving injection ¥ : cly(z) — G giving such a copy of H and selects
y = ¥(z).

We have shown that the (a1, . .., a;) lookahead strategy almost surely results in
a win for Duplicator. By Theorem 10.7.4 this implies the Zero-One Law Theorem
10.7.2.

10.8 EXERCISES

1. Show that there is a graph on n vertices with minimum degree at least n/2 in
which the size of every dominating set is at least 2(log n).

2. Findathreshold function for the property: G(r, p) contains a copy of the graph
consisting of a complete graph on 4 vertices plus an extra vertex joined to one
of its vertices.

3. Let X be the number of cycles in the random graph G(n, p) withp = =. Give
an exact formula for E[X]. Find the asymptotics of F[X] when ¢ < 1. Find
the asymptotics of E[X] when ¢ = 1.

4. Here we write (R, S) for (R, H|s) where H is some fixed graph.

e Let R C S C T. Show that if (R, S), (S, T) are both dense then so is
(R, T). Show that if (R, S), (S, T') are both sparse then so is (R, T')

e Let R C S. Show that if (R, S) is rigid then (X U R, X U S) is rigid for
any X.

e R C U with(R,U) notsparse. Showthereisa T with R C T C U with
(R, T) dense. Show further there is an S with R C S C T with (R, S)
rigid.

e Show thatany (R, T is either rigid or sparse itself or there exists .S with
R C S C Tsuchthat (R, S) isrigidand (S, T') is sparse.
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5. We call (R, H) hinged if itis safe but there isno .S with R C S C V(H) such
that (S, H) is safe. For z1,...,2, € G let N(z4, ..., z,) denote the number
of (R, H) extensions. Set u = E[N] ~ n"p®.

e Let (R, H) be hinged and fix z1,...,z, € G. Following the model of
§8.8.5, especially Theorem 8.5.4, show that

Pr[|N(z1,...,2,) — p| > ep] = o(n™").

e Deduce that almost surely all N(z1,...,z,) ~ .

e Showthat N(zy,...,z,) ~ pholdsforanysafe (R, H), by decomposing
(R, H) into hinged extensions.



THE PROBABILISTIC LENS:

Counting Subgraphs

A graph G = (V, E) on n vertices has 2™ induced subgraphs but some will surely
be isomorphic. How many different subgraphs can G have? Here we show that there
are graphs G with 2™(1 — o(1)) different subgraphs. The argument we give is fairly
coarse. It is typical of those situations where a probabilistic approach gives fairly
quick answers to questions otherwise difficult to approach.

Let G be a random graph on n vertices with edge probability 1/2. Let S C V,
|S| =t be fixed. Forany onetoonep:S — V, p # id, let A, be the event that
p gives a graph isomorphism - i.e., for z,y € S, {z,y} € E < {pz, py} € E. Set
M,={z€S:pz#az} Wesplitthesetof pby g = g(p) = |M,|.

Consider the g(t — g) + (g) pairs z, y with z,y € S and at least one of z, y in M.
For all but at most g/2 of these pairs {z, y} # {pz, py}. (The exceptions are when
pr =y, py = z.) Let E, be the set of pairs {z, y} with {z, y} # {p=, py}. Definea
graph H, with vertices E, and vertex {z, y} adjacent to {pz, py}. In H, each vertex
has degree at most two ({z,y} may also be adjacent to {p~ 1z, p~1y}) and so it
decomposes into isolated vertices, paths and circuits. On each such component there
is an independent set of size at least one-third the number of elements, the extreme
case being a triangle. Thus there isa set I, C E, with

(t—9)+(3) —9/2
3 )
so that the pairs {z, y}, {p=, py} with {z, y} € I, are all distinct.
For each {z,y} € I, theevent {z,y} € E < {pz, py} € E has probability 1/2.
Moreover these events are mutually independent over {xz, y} € I, since they involve
distinct pairs. Thus we bound

g
[Io| > |Ep| >

Pr[4,] < 9—11,l « 9—(g(t—9)+(§)-9/2)/3
180
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For a given g the function p is determined by {z : pz # z} and the values pz for
those z so that there are less than n29 such p. We bound

t t
Z Pr[4,] = Z Z Pr[4,] < Znzgz—(g(t—g)+(§)—g/2)/3‘
g=1

p#id 9=1g(p)=g
We make the rough bound

ott—)+(§) —or2=gtt—L-1)> o} - 1),

since g <t. Then
YoPra,l <Y [n22<—%+1>/3}”.
pFid g=1

For, again being rough, ¢ > 501nn, 25~% <n~2and Y, Pr[4,] = o(1). That
is, almost surely there is no isomorphic copy of G|s.

Forall § C V with |S| > 501nn let I's be the indicator random variable for there
being no other subgraph isomorphicto G| s. Set X = > Is. Then E[Is] = 1 —o(1)
S0, by linearity of expectation - there being 2™(1 — o(1)) such § -

B[X] = 2(1 - o(1)).

Hence there is a specific G with X > 2™(1 — o(1)).
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Circuit Complexity

It is not knowledge, but the act of learning, not possession but the act of getting
there, which grants the greatest enjoyment. When | have clarified and exhausted
a subject, then I turn away from it, in order to go into darkness again; the
never-satisfied man is so strange - if he has completed a structure then it is not
in order to dwell in it peacefully, but in order to begin another. | imagine the
world conqueror must feel thus, who, after one kingdom is scarely conquered,
stretches out his arms for another.

— Karl Friedrich Gauss

11.1 PRELIMINARIES

A Boolean function f = f(z1,...,z,) Onthe n variables 1, 23, . . ., z, IS simply a
function f : {0,1}™ — {0,1}. Inparticular0, 1,z A---Azp, 21 V- Vg, 21
-+ @ @y, denote, as usual, the two constant functions, the And function (whose value
is 1iff z; = 1 for all %), the Or function (whose value is 0 iff z; = 0 for all %, and the
Parity function (whose value is 0 iff an even number of variables z ; is 1), respectively.
For a function f, we let f = f @ 1 denote its complement Not f. The functions
z; and z; are called atoms. In this section we consider the problem of computing
various Boolean functions efficiently. A circuit is a directed, acyclic graph, with
a special vertex with no outgoing edges called the Output vertex. Every vertex is
labelled by a Boolean function of its immediate parents, and the vertices with no
parents (i.e., those with no ingoing edges) are labelled either by one of the variables
z; or by a constant 0 or 1. For every assignment of binary values to each variable z;
one can compute, recursively, the corresponding value of each vertex of the circuit

183
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L1 L2 I3

Fig. 11.1

by applying the corresponding function labelling it to the already computed values
of its parents. We say that the circuit computes the function f = f(z1,...,2z5)
if for each z; € {0, 1}, the corresponding value of the output vertex of the circuit
equals f(z1,...,zy). For example Figure 11.1 below presents a circuit computing
f((l,‘.l, T2, :llg) = (:L‘.l (&) (:L‘.z A :L‘.3)) A Ly.

If every fanout in a circuit is at most one (i.e., the corresponding graph is a tree)
the circuit is called a formula. If every fanin in a circuit is at most two the circuit
is called a binary circuit . Therefore the circuit in Figure 11.1 is binary, but it is
not a formula. The size of a circuit is the number of vertices in it, and its depth is
the maximum length of a directed path in it. The binary circuit complexity of a
Boolean function, is the size of the smallest binary circuit computing it. An easy
counting argument shows that for large » the binary circuit complexity of almost all
the functions of n variables is at least (1 + o(1))2™/n. This is because the number
of binary circuits of size s can be easily shown to be less than (c1s)®, whereas
the total number of Boolean functions on n variables is 22”. On the other hand,
there is no known non-linear, not to mention exponential (in »), lower bound for
the binary circuit complexity of any “explicit” function. By “explicit” here we
mean an NP-function, that is, one of a family {f,,, }i>1 of Boolean functions, where
fn; has n; variables, n; — oo, and there is a non-deterministic Turing machine
which, given n; and 4, .. ., z,, can decide in (non deterministic) polynomial time
(in ng) if fo,(21,...,20;) = 1. (An example for such a family is the % - clique
function; here n; = (%), the n; variables z1, . . ., z,, represent the edges of a graph
on ¢ vertices and f,(z1, ..., z,,;) = 1 iff the corresponding graph contains a clique
on at least 7/2 vertices). Any non-polynomial lower bound for the binary circuit
complexityof an explicit function would imply (among other things) that P # N P
and thus solve the arguably most important open problem in Theoretical Computer
Science. Unfortunately, at the moment, the best known lower bound for the binary
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circuit complexity of an explicit function of n variables is only 3n, (see Blum
(1984) , Paul (1977) ). However, several non-trivial lower bounds are known when
we impose certain restrictions on the structure of the circuits. Most of the known
proofs of these bounds rely heavily on probabilistic methods. In this chapter we
describe some of these results. We note that there are many additional beautiful
known results about circuit complexity , see, e.g. Wegener (1987) and Karchmer
and Wigderson (1990) , but those included here are not only among the crucial ones,
but also represent the elegant methods used in this field. Since most results in this
chapter are asymptotic we assume, throughout the chapter, whenever it is needed,
that the number of variables we have is sufficiently large.

11.2 RANDOM RESTRICTIONS AND BOUNDED DEPTH CIRCUITS

Let us call a Boolean function G a ¢-And-Or if it can be written as an And of
an arbitrary number of functions, each being an Or of at most ¢ atoms, i.e., G =
Gi A+ A Gy, Where G; = yi1 V -+ V %ia,, a; < tand each y; is an atom.
Similarly, we call a Boolean function an s-Or-And, if it can be written as an Or of
And gates each containing at most s atoms. A minterm of a function is a minimal
assignment of values to some of the variables that forces the function to be 1. Its
size is the number of variables whose values are set. Notice that a function is an
s-0Or-And if and only if each of its minterms is of size at most s. A restriction isamap
p of the set of indices {1, ..., n} to the set {0, 1, x}. The restriction of the function
G = G(z1, ..., z,) by p, denoted by G|p, is the Boolean function obtained from G
by setting the value of each z; for i € p=1{0, 1} to p(z), and leaving each z; for
j € p~1(x) as a variable. Thus, for example, if G(z1, 2, z3) = (z1 A z2) V 23 and
p(1) =0 p(2) = p(3) = « then G|, = 3. For 0 < p < 1, a random p-restriction
is a random restriction p defined by choosing, for each 1 < % < n independently the
value of p(%) according to the following distribution:

Prlp(i) = 1l =p, Prip(i) = 0= Prp(s) = 1] = (1-p)/2.  (11.1)

Improving results of Furst, Saxe and Sipser (1984) , Ajtai (1983) and Yao (1985),
Hastad (1988) proved the following result, which is very useful in establishing lower
bounds for bounded-depth circuits.

Lemma11.2.1 [(The switching lemma)]
LetG = G(z1,...,z,) beat-And-Or,ie., G = Gy AG2 A-- - A Gy, Where each
G; is an Or of at most ¢ atoms. Let p be the random restriction defined by (11.1).
Then
Pr[G|pis not an (s — 1)-Or-And]
= Pr[G|phas a minterm of size > s] < (5pt)® .

Proof. Let E, be the event that G|, has a minterm of size at least s. To bound
Pr(E;), we prove a stronger result; for any Boolean function F,

Pr[B,|F|, = 1] < (5pt)" . (11.2)
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Here we agree that if the condition is unsatisfied then the conditional probability is
0. Lemma 11.2.1 is obtained from (11.2) by taking F = 1. We prove (11.2) by
induction on w. For w = 0, G = 1 and there is nothing to prove. Assuming (11.2)
holds whenever the number of G; is less than w, we prove itforw. PutG = G1 AG*,
where G* = G2 A---AGy, and let E be the event that G* |, has a minterm of size at
least s. By interchanging, if necessary, some of the variables with their complements
we may assume, for convenience, that G, :ié/T z;, where |T| < t. Either G1|, = 1

or Gi|, Z 1. In the former case, E, holds if and only if E holds and hence, by
induction

PrEF|,=1, G|, = 1] = PrE|(FAGL)|, =11 < (5pt)*.  (11.3)

The case G1|, # 1 requires more work. In this case, any minterm of G|, must
assign a value 1 to at least one z;, for ¢ € T. For a nonempty Y C T and for a
functione : Y — {0, 1} whichis not identically 0, let E (Y, o) be the eventthat G|,
has a minterm of size at least s which assigns the value o(%) to z; foreach ¢ € Y and
does not assign any additional values to variables = ; with j € T'. By the preceding
remark

PriEF|, =1, G1|, Z1] < ZPT[ES(Y, o) Fl, =1, G|, £1]. (11.4)
Y,o

Observe that the condition G 1|, #Z 1 means precisely that p(¢) € {0,*} foralli € T
and hence, foreach i € T

p

Prip() = #|G1l, £ 1] = pt(-p)2 2p/(1+p).
Thus, if Y| =y .
Prip(v) = lGils £ 1) < (170"

The further condition F'|, = 1 can only decrease this probability. This can be shown
using the # K G inequality (see Chapter 6). It can also be shown directly as follows.
Forany fixed o' : N - Y — {0, 1, «}, where N = {1, ..., n}, we claim that

2p G

Prlp(Y)=+|F|, =1, Gil, £ 1, plv—v = p1< (3 e

Indeed, the given o’ has a unique extension p with p(Y') = *. If that p does not
satisfy the above conditions, then the conditional probability is zero. If it does, then
so do all extensions p with p(¢) € {0, x} for< € ¥, and so the inequality holds in
this case too. As this holds for all fixed p’ we conclude that indeed

Prip(Y) = 4|Fl, =1, Gl ZU S (T2 < (o). (115)

Let o' : T — {0, «} satisfy p(Y) = « and consider all possible restrictions
p satisfying p|, = p’. Under this condition, p may be considered as a random
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restrictionon N —T'. The event F'|, = 1 reduces to the event F|, ,_, = 1, where F
is the And of all functions obtained from F' by substituting the values of  ; according
to p’ for those 7 € T with p'(¢) = 0, and by taking all possibilities for all the other
variables z; for j € T. If the event E,(Y, ¢) occurs then G*|,, has a minterm of
size at least s — y that does not contain any variable z; with ¢ € T'— Y. But this
happens if and only if G‘|p|N_T has a minterm of size at least s — y, where G is the
function obtained from G* by substituting the values of = ; for j € Y according to
o, the values of z; for: € T — Y and p'(z) = 0 according to ¢’ and by removing all
the variables z; with k € T — Y and p'(k) = . Denoting this event by Es_y we
can apply induction and obtain

PrlEy(Y,0)|F|,=1, Gil, £ 1, plr = p'] < Pr[ s y|F|p =1] < (5pt)* Y.

Since any p with F|, = 1, G1|, = 1, p(Y') = % must have p|r = p’ for some g’
of this form, and since the event E,(Y, o) may occur only if p(Y') = * we conclude
that

Pr[E,(Y, U)|F|p =1, G1|p Z1, p(Y) =+ < (5pt)"7Y,

and, by (11.5),
Pr[E(Y,0)|F|, =1, Gil, £ 1,]
= Prip(Y) = #|F|, = 1, Gu|, # 1)
PrlE,Y,0)|F|, =1, Gi|, 1, p(Y) = %]
< (2p)¥(5pt)""" .
Substituting in (11.4) and using the fact that |T'| < ¢ and that

t

<2 °°4/5 2 45 4
Z V- 12Y/(5vy) < § Z = e/—1—3<1

we obtain,

Pr(E;|F|, =1, Gilp £ 1]
< ELT:ll (liyfl)(2y — 1)(2p)¥(5pt)*~¥ < (5pt)* 2221 ;_1;(21: NENE

= (5pt)* Z (2 = 1)- 51, y, < (5pt)* .
This, together with (11.3) gives
Pr[E,|F|, = 1] < (5pt)°

completing the induction and the proof. B

By taking the complement of the function G in Lemma 11.2.1 and applying De
Morgan’s rules one clearly obtains its dual form; If G is a ¢t-Or-And and p is the
random restriction given by (11.1) then Pr[G|, is notan (s — 1)-And-Or] < (5pt)*.
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We now describe an application of the switching lemmathat supplies a lower bound
to the size of circuits of small depth that compute the parity functionz 1 & - - - & ..
We consider circuits in which the vertices are arranged in levels, those in the first
level are atoms (i.e., variables or their complements), and each other gate is either
an Or or an And of an arbitrary number of vertices from the previous level. We
assume that the gates in each level are either all And gates or all Or gates, and that
the levels alternate between And levels and Or levels. A circuit of this form is called
a C(s,d,d,t)-circuitif it contains at most s gates, at most s’ of which are above the
second level, its depth is at most d and the fanin of each gate in its second level is at
most ¢. Thus, for example, the circuit that computes the parity function by computing
an Or of the 2"~ terms z{* A --- A z&», where (g1, .. .,&5) ranges over all even
binary vectors and z{* = z; @ ¢;, isa C(2"~1 + 1,1, 2, n)-circuit.

Theorem 11.2.2 Let f = f(z1,...,z,) be afunctionand let C be a C(o0, s, d, t)-

circuit computing f, where s - (1)t < 0.5. Then either f or its complement f has a
minterm of size at most n — 2_(10"? +1.

Proof. Let us apply to C, repeatedly, d — 2 times a random 1/(10¢)- restriction.
Each of these random restrictions, when applied to any bottom subcircuit of depth 2,
transforms it by Lemma 11.2.1 with probabilityat least 1 — ( 3)* froma¢-Or-And toa
t-And-Or (or conversely). If all these transformations succeed we can merge the new
And gates with these from the level above them and obtain a circuit with a smaller
depth. As the total size of the circuit is at most s and s( 3)* < 0.5, we conclude that
with probability at least half all transformations succeed and C is transformed into
a C(o0,1,2,t)-circuit. Each variable z;, independently, is still a variable (i.e., has
not been assigned a value) with probability W. Thus, the number of remaining
variables is a binomial random variable with expectation (wt"m and a little smaller
variance . By the standard estimates for binomial distributions (see Appendix A)
the probability that at least Hlo"w variables are still variables is more than a half.

Therefore, with positive probability, at most n — T2 of the variables have been

10t)
fixed and the resulting restriction of f has a C(oc, 1, 2, t)-circuit, i.e., its value can be
fixed by assigning values to at most ¢ additional variables. This completes the proof.

|
Corollary 11.2.3 For any d > 2, there is no

1 p1/(d-1) _— . .
C (00, 1.210" , d, f—onl/(d‘l)) — circuit that computes the parity function
f(mla---amn) =z1D---D zy.

Proof. Assuming there is such a circuit we obtain, by Theorem 11.2.2 , that the value
of f can be fixed by assigning values to at most n — 1nt/(d-1) 4 Lpl/(d-1) < p
variables. This is false, and hence there is no such circuit.

|

The estimate in Corollary 11.2.3 is, in fact, nearly best possible. Since every
C(s, s, d,t)-circuitcan be transformed intoa C(ts, s, d+1, 2) - circuit (by replacing
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each atom by an Or or And of two copies of itself), Corollary 11.2.3 easily implies
that the depth d of any C(s, ', d, t) - circuit of polynomial size that computes the
parity of » bits is at least 2(log n/ log log n). This lower bound is also optimal.

11.3 MORE ON BOUNDED-DEPTH CIRCUITS

In the previous section we saw that the parity function is hard to compute in small
depth using And, Or and Not gates. It turns out that even if we allow the use of
parity gates (in addition to the And, Or and N ot gates) there are still some relatively
simple functions that are hard to compute. Such a result was first proved by Razborov
(1987) . His method was modified and strengthened by Smolensky (1987) . For an
integer k > 2, let Mody(z1, z2, - . ., #,) be the Boolean function whose value is 1 iff
Yz; Z 0(mod k). Smolensky showed that for every two powers p and ¢ of distinct
primes, the function M od,, cannot be computed in a bounded-depth polynomial-size
circuit which uses And, Or, Not and M od, gates. Here we present the special case
of this result in which g = 3 and p = 2.

Let C be an arbitrary circuit of depth d and size s consisting of And, Or, Not
and M ods gates. A crucial fact, due to Razborov, is the assertion that the output of C
can be approximated quite well (depending on d and s) by a polynomial of relatively
small degree over GF(3). This is proved by applying the probabilistic method as
follows. Let us replace each gate of the circuit C by an approximate polynomial
operation, according to the following rules which guarantee that in each vertex in
the new circuit we compute a polynomial over G F(3), whose values are all 0 or 1
(whenever the input is a 0-1 input).

(i) Each Not-gate g is replaced by the polynomial gate (1 — y).

(i) Each Mods gate Mods(y1, .- ., ym) is replaced by the polynomial gate

(y1+yz 4 +ym)

The rule for replacement of Or and And gates is a little more complicated.
Observe that in the two previous cases (z) and (¢2) there was no approximation; the
new gates compute precisely what the old ones did, for all possible Boolean values
of the variables. This can, in principal, be done here too. An And gate y1 A+ - A ym
should simply be replaced by the product 1 - - - ym. AN Or gate y; V - - - V 4y, CaN
then be computed by de-Morgan’s rules. Since y1 V -+ -V ym = (g1 A--- A TY,,) and

g is realized by (1 — y), this would give

1—(I—y)(I—w2) (1 — Um) - (11.6)

The trouble is that this procedure would increase the degree of our polynomials too
much. Hence, we need to be a little more tricky. Let £ be an integer, to be chosen
later. Given a Or gate y; V -« - V ym, We choose £ random subsets Iy,..., I; of
{1,...,m}, where for each 1 < ¢ < £ and for each 1 < j < m independently

2
Pr(j € I,) = 1/2. Observe that for each fixed 7, 1 < ¢ < £, the sum (Z y]-)
jel;
over GF(3) is certainly 0 if y; V - -+ V ym, = 0, and is 1 with probability at least a
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halfifyy Vv ---Vy, = 1. Hence, if we compute the Or function of the £ expressions

2
(Z y]-) (1 <4 < ¥£), this functionis 0 if y1 V -+ V y, = 0 and is 1 with
J€l;

probability at least 1 — (1/2)% ify; V -+ V ym = 1. We thus compute the Or and
write it as a polynomial, in the way explained in equation (11.6). This gives

£

L-TI - w)? | - (11.7)

=1 jEI;

Therefore, in our new circuit we replace each Or gate by an approximation
polynomial gate of the form described in (11.7). Once we have an approximation to
an Or - gate we can obtain the corresponding one for an And - gate by applying De
Morgan rules. Since y1 A -+ Aym = (¥ V - - - V T, ) We replace each And gate of
the form yy A - -+ Ay by

£

IHi-D_a-y07) . (11.8)

i=1 jeI;

Observe that the polynomialsin (11.7) and (11.8) are both of degree at most 2.

Given the original circuit C of depth d and size s, we can now replace all its gates
by our approximative polynomial gates and get a new circuit C P, which depends
on all the random choices made in each replacement of each of the And/Or gates.
The new circuit C P computes a polynomial P(z, . .., z,) of degree at most (2£)2.
Moreover, for each fixed Boolean values of z1, z2, ..., z,, the probability that all
the new gates compute exactly what the corresponding gates in C computed is at
least 1 — s/2¢. Therefore, the expected number of inputs on which P(zy, ..., z,) is
equal to the output of C is at least 2™(1 — s/2%). We have thus proved the following.

Lemma 11.3.1 For any circuit C of depth d and size s on n Boolean variables that
uses Not, Or, And and Mods - gates and for any integer £, there is a polynomial
P = P(zy,...,z,) of degree at most (2£)¢ over GF(3) whose value is equal to the
output of C on at least 2™(1 — s/2¢) inputs.

In order to apply this lemma for obtaining lower bounds for the size of any circuit
of the above type that computes the parity function we need the following additional
combinatorial result.

Lemma 11.3.2 There isno polynomial P(z1, . .., &) over GF(3) of degree at most
+/n which is equal to the parity of z 4, .. ., z,, for a set S of at least 0.9 - 2™ distinct
binary vectors (z1, ..., zp).

Proof. Suppose this is false, and suppose S < {0,1}"*, |S| > 0.9-2™ and
P(zy,...,2n) = 21 ® -+ & 2, forall (zq,...,2,) € S. Define a polynomial
Q=QW1, - yn) bY@ = Qy1,--,Yn) = P(y1 +2,...,9n +2) — 2, and
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T ={(y1,--rYn) € {1,=13" : (y1 + 2,...,yn + 2) € S}, where all additions
are in GF(3). Clearly @ has degree at most +/n and Q(y1,,-.-,9n) = ] w
=1

for all (y1,...,9n) € T. Letnow G = G(y1,..-,¥n) : T — GF(3) be an
arbitrary function. Extend it in an arbitrary way to a function from (GF(3))™ —
GF(3), and write this function as a polynomial in n variables. (Trivially, any
function from (GF(3))® — GF(3) is a polynomial. This follows from the fact

that it is a linear combination of functions of the form [] (v — &:)(yi — & — 1),
i=1

where ¢; € GF(3)). Replace each occurance of 3 in this polynomial by 1 to

obtain a multilinear polynomial G which agrees with G on T. Now replace each

monomial [] u;, where [U| > 5 + 4 by 1] vi - Q(y1,---,yn), and replace this
ieU igU

new polynomial by a multilinear one, G, again by replacing each y2 by 1. Since for

v € {£1}, Mvi-Iyi=1I9, G is equal to G on T and its degree is
igU i=1 i€U

w 3+ .
at most % + Y™, However, the number of possible G is 3% * (%) < 30.88:2"
whereas the number of possible G is 371 > 3%-92"  This is impossible, and hence
the assertion of the lemma holds. B

. - . 1np1/2d .
Corollary 11.3.3 There is no circuit of depth d and size s < -2 2" computing

the parity of 24, s, . . ., &, USiNg Not, And, Or and M ods gates.

Proof. Suppose this is false and let C be such a circuit. Put £ = % - pl/2d,
By Lemma 11.3.1 there is a polynomial P = P(z4,...,z,) over GF(3), whose
degree is at most (2£)¢ = 4/n, which is equal to the parity of 24, ..., z, on at least

2" | 1— 77 | > 0.9- 2" inputs. This contradicts lemma 11.3.2, and hence

completes the proof. B

11.4 MONOTONE CIRCUITS

A Boolean function f = f(z1,...,z,) is monotone if f(z1,...,2,) = 1 and
z; < y; imply f(y1,...,yn) = 1. A binary monotone circuit is a binary circuit
that contains only binary And and Or gates. It is easy to see that a function
is monotone if and only if there is a binary montone circuit that computes it.
The monotone complexity of a monotone function is the smallest size of a binary
monotone circuit that computes it. Until 1985, the largest known lower bound for
the monotone complexity of a monotone NP function of »n variables was 4rn. This
was considerably improved in the fundamental paper of Razborov (1985) , where a
bound of nf41°87) to the Clique,-function (which is 1 iff a given graph contains a
clique of size k) is established. Shortly afterwards, Andreev (1985) used similar
methods to obtain an exponential lower bound to a somewhat unnatural N P-function.
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Alon and Boppana (1987) strengthened the combinatorial arguments of Razborov
and proved an exponential lower bound for the monotone circuit complexity of the
cligue function. In this section we describe a special case of this bound by showing
that there are no linear size monotone circuits that decide if a given graph contains a
triangle. Althoughthis result is much weaker than the ones stated above, it illustrates
nicely all the probabilistic considerations in the more complicated proofs and avoids
some of the combinatorial subtleties, whose detailed proofs can be found in the above
mentioned papers.

Put n = (%), and let ¢, z2,...,z, be n Boolean variables representing the
edges of a graph on the set of vertices {1,2,...,m}. LetT = T(z1,...,z,) be
the monotone Boolean function whose value is 1 if the corresponding graph contains
atriangle. Clearly, there is a binary monotone circuit of size O(m3) computing 7.
Thus, the following theorem is tight, up to a poly-logarithmic factor.

Theorem 11.4.1 The monotone circuit complexity of T is at least Q(m?3/ log* m).

Before we present the proof of this Theorem we introduce some notation and
prove a simple lemma. For any Boolean function f = f(z1,...,z,) define A(f) =
{(z1,...,2n) € {0,1}": f(z1,...,2,) = 1}. Clearly A(f Vv g) = A(f) U A(g)
and A(f A g) = A(f) N A(g). Let C be a monotone circuit of size s computing the
function f = f(z1, ..., z,). Clearly, C supplies amonotone straight-line program of
length s computing f, i.e., asequence of functions 1, zs,..., 2., f1,.--., fs, where
fs = fandeach f;, for 1 < i < s, is either an Or or an And of two of the previous
functions. By applying the operation A we obtain a sequence A(C) of subsets of
(0,1 : A, = Ay, ..., A1 = Az, A1, ..., As Where A, = A(z;), As =
A(f) and each A;, for 1 < i < s is either a union or an intersection of two of the
previous subsets. Let us replace the sequence A(C) by an approximating sequence
M(QC): M_, = My, = Ay,,...,.M_1 = My, = Az,, Mq,..., M, defined
by replacing the union and intersection operations in A(C) by the approximating
operations LI and 1, respectively. The exact definition of these two operations will
be given later, in such a way that for all admissible M and L the inclusions

MULDMUL and MNLCMNL (11.9)

will hold. Thus M, = A, forall 1 < i < n, and if for some 1 < j < s we have
A]' = A, U A then M]' = M, M;,, whereas IfA] = A, N Ay, then M]' = M, M;.
In the former case put &/, = M; — (M, U My) and &% = ¢, and in the latter case put
84 = (My 0 My) — M; and 6, = 4.

Lemma11.4.2 For all members M; of M(C)

A; — ( JJH') CM; C AU U 8. (11.10)
J<i - - J<i

Proof. We apply inductionon 2. Fori < 0 M; = A; and thus (11.10) holds.
Assuming (11.10) holds for all A; with j < ¢ we prove it fors. If A; = A, U Ay,
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then, by the induction hypothesis

M; = M; UM U8, C AU AzU .L<J.5{'| = AU .L<J.5{'|
I35t I35t
and

M; =M, UM D M, UM;D (AL—('ELJ%))U(A];—(U JJH))
J

D Ai— (U &), (11.11)
j<i
as needed. If 4; = A, N A the proof is similar. H
Lemma 11.4.2 holds for any choice of the operations LI and M which satisfies
(11.9). In order to prove Theorem 11.4.1 we define these operations as follows. Put
r = 100 log? m. For any set R of at most » edges on V = {1,2,...,m}, let [R]
denote the set of all graphs on V' containing at least one edge of R. In particular [#]
is the empty set. We also let [«] denote the set of all graphs. The elements of M (C)
will all have the form [ R] or [«]. Note that A, = Mg, is simply the set [ R] where
R is a singleton containing the appropriate single edge. For two sets R; and R, of at
most r edges each, we define [R;] M [Rz] = [R1 N R2], [R1] 1 [*] = [R1]
and [«]M[«] = [«]. Similarly, if|[R{UR3| < rwe define [R;]U[R2] = [R1UR3]
whereas if |R1URz| > rthen [Ry|U[Rz] = [*]. Finally [« ]U[R1] = [*|U[*] =
[+].

Proof.[theorem 11.4.1] We now prove Theorem 11.4.1 by showing that there is no
monotone circuit of size s < (’3")/2r2 computing the function 7. Indeed, suppose
this is false and let C be such a circuit. Let M(C) = M,_,..., My,, M1,..., M,
be an approximating sequence of length s obtained from C as described above. By
Lemma 11.4.2

A(T) - (,u an') C M, CAT)U U & . (11.12)
J<s i<s

We consider two possible cases.
Casel M, =[R], where |R| < r.
Let us choose a random triangle A on {1, 2, ..., m}. Clearly

r-(m—2)

(3)

PI‘(A c Ms) S

N

<

Moreover, for each fixed j, j < s

Pr(A € 6h) < 7 -

(5)
This is because if 67, # ¢, then &% = ([R1] N [Rz]) — [R1 N Rz] for some two sets
of edges Ri, Ry, each of cardinality at most ». The only triangles in this difference
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are those containing an edge from R, and another edge from R (and no edge of

both). Since there are at most »2 such triangles the last inequality follows. Since

s < (73)/2r? the last two inequalities imply that Pr(A ¢ M, and A ¢L<J ) >0
71<s

and thus there issuch a triangle A. Since this triangle belongs to A(T') this contradicts
(11.12), showing that Case 1 is impossible.

Case2 M, = [«].

Let B be a random spanning complete bipartite graph on V' = {1,2,...,m}
obtained by coloring each vertex in V' randomly and independently by 0 or 1 and
taking all edges connecting vertices with distinct colors. Since M is the set of all
graphs, B € M,. Also B ¢ A(T), as it contains no triangle. We claim that for every
fixed 5, j < s,

: 1
Pr(Be &) <2 V2 < — (11.13)

Indeed, if &/, # ¢, then &}, = [*] — ([R1] U[R2]), where |R; U Ry| > ». Consider
the graph whose set of edges is R; U Rs. Let d be its maximum degree. By Vizing’s
theorem the set of its edges can be partitioned into at most & + 1 matchings. Thus
either d > 4 or the size of the maximum matching in this graph is at least /7/2.
It follows that our graph contains a set of & = +/7/2 edges ey, . . ., ez Which form
either a star or a matching. In each of these two cases Pr(e; € B) = 3 and these
events are mutually independent. Hence

Pr(B ¢ [Ri]U[Ry]) <27V7/2,

implying (11.13). Note that a similar estimate can be established without Vizing’s
theorem by observing that B does not belong to ([R1] U [Rz]) if and only if the
vertices in any connected component of the graph whose edges are R; U Rz belong
to the same color class of B.

Since s < (73)/2r* < m5, inequality (11.13) implies that there is a bipartite B
suchthat B € M,, B ¢ A(T)and B ngs &1,. This contradicts ( 11.12), shows that

Case 2 is impossible and hence completes the proof of Theorem 11.4.1
|

11.5 FORMULAE

Recall that a formula is a circuit in which every fanout is at most 1. Unlike in the
case of circuits, there are known superlinear lower bounds for the minimum size of
formulae computing various explicit NP-functions over the full binary basis. For a
Boolean function f = f(z1,...,zx,), let us denote by L(f) the minimum number
of And and Or gates in a formula that uses And, Or and Not gates and computes
f. By De Morgan rules we may assume that all Not gates appear in the first level
of this formula. We conclude this chapter with a simple result of Subbotovskaya
(1961) , which implies that for the parity function f = 21 & --- ® z,, L(f) >
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Q(n/2). This bound has been improved later by Khrapchenko (1971) to L(f) =
n? — 1. However, we present here only the weaker (n3/2) lower bound, not only
because it demonstrates, once more, the power of relatively simple probabilistic
arguments, but also because a modification of this proof enabled Andreev (1987)
to obtain an Q(n5/2/(logn)°(1)) lower bound for L(g) for another NP-function
g =g(z1,...,z,). Hastad (1998), later improved this lower bound to Q(n3-°(1)),
This is at present the largest known lower bound for the formula - complexity of an
NP-function of » variables over a complete basis.

The method of Subbotovskaya is based on random restrictions similar to the ones
used in Section 11.2 . The main lemma is the following.

Lemmal1l5.1 Let f = f(z1,...,z,) be a non-atom Boolean function of n vari-
ables. Then thereisani, 1 < ¢ < mandane € {0,1} such that for the function
g = f(e1,...,2i—1,€,2iy1,...,2,) Of n — 1 variables obtained from f by substi-

tuting z; = &, the following inequality holds;

(Blo) +1) < (1= oo )(E(A) +1) < (L~ D(5(f) +1).

n

Proof. Fix a formula F computing f with! = L(f) And and Or gates. F can be
represented by a binary tree each of whose [ + 1 leaves is labeled by an atom z;
or z;. Let us choose, randomly, a variable z;, 1 < ¢ < n according to a uniform
distribution, and assign to it a random binary value £ € {0, 1}. When we substitute
the values € and 1 — ¢ to z; and z;, respectively, the number of leaves in F' is reduced:;
the expected number of leaves omitted in this manner is (I + 1) /n. However, further
reduction may occur. Indeed, suppose a leaf is labeled z; and it feeds, say, an And
gate z; A H in F'. Observe that we may assume that the variable z; does not appear
in the subformula H, as otherwise F' can be simplified by substituting z; = 1 in
H. If z; = ¢ = 0, then H can be deleted once we substitute the value for z;, thus
further decreasing the number of leaves. Since the behaviour of this effect is similar
for an Or-gate (and also for z; instead of ;), it follows that the expected number
of additional leaves omitted is at least (! + 1)/2n. Hence the expected number of
remaining leaves in the simplified formula is at most (1 4+ 1)[1 — 2], as claimed.

|

By repeatedly applying Lemma 11.5.1 we obtain;

Corollary 11.5.2 If f = f(z1,...,z,) and L(f) < (%)3/2—1, then one can assign
values to n — k variables so that the resulting function g is an atom.
Proof. Repeated application of Lemma 11.5.1 n — k& times yields a g with

5@+ < I[ (= DA+ 1) = /mP(a(n + 1 < 1.
i=k+1

Hence g is either z; or z; for some 7. B
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Corollary 11.5.3 For the parity function f = z1 @ -+ - & zn,

n

2)3/2_1‘

L(f) > (

11.6 EXERCISES

Show that there exists a constant ¢ such that the number of binary Boolean
circuits of size s is at most (es)*.

Let f be a Boolean formula in the n variables =1, z, .. ., z,, where f is an
AND of an arbitrary (finite) number of clauses, each clause is an OR of 10
literals, where each literal is either a variable or its negation, and suppose each
variable appears (negated or un-negated) in at most 10 clauses. Prove that f is
satisfiable.

(*) Prove that there is a bounded-depth, polynomial size, monotone circuit of
n Boolean inputs =, zs, . . ., z,, computing a function f whose value is 1 if
S iz >n/2+n/logn,andis0if > z; <n/2—n/logn.



THE PROBABILISTIC LENS:
Maximal Antichains

A family F of subsets of {1,...,n} is called an antichain if no set of F is
contained in another.

Theorem 1 Let F be an antichain. Then

1
— < 1.

i (a) ~

Proof. Let o be a uniformly chosen permutation of {1, ...,n} and set

Cr={{o(j): 1< <i}:0<i<n}

(The cases ¢ = 0, n give §,{1,...,n} € C respectively.) Define a random variable
X =|FNC,.
We decompose
x= Y Xa,
A€eF

where X 4 is the indicator random variable for A € C. Then

1
E[X4)=PrlA€C] = 7o,
()
since C,, contains precisely one set of size | A|, which is distributed uniformly among
the |A|-sets. By linearity of expectation

197
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Forany o, C, forms a chain - every pair of sets is comparable. Since F isan antichain
wemusthave X = |[FNCy| < 1. Thus E[X] < 1. A

Corollary 2 [Sperner’s Theorem] Let F be an antichain. Then

1< ()

Proof. The function (?) is maximized at z = |n/2] so that

1 F
122, Gy 2y

AcF \|A] [n/2]
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Discrepancy

The mystery, as well as the glory, of mathematics lies not so much in the fact that
abstract theories do turn out to be useful in solving problems but in that wonder
of wonders, the fact that a theory meant for solving one type of problem is often
the only way of solving problems of entirely different kinds, problems for which
the theory was not intended. These coincidences occur so frequently that they
must belong to the essence of mathematics.

— Gian-Carlo Rota

12.1 BASICS

Suppose we are given a finite family of finite sets. Our objectis to color the underlying
points Red and Blue so that all of the sets have nearly the same number of Red and
Blue points. It may be that our cause is hopeless - if the family consists of all subsets
of a given set Q then regardless of the coloring some set, either the Red or the Blue
points, will have size at least half that of Q@ and be monochromatic. In the other
extreme, should the sets of the family be disjoint then it is trivial to color so that all
sets have the same number of Red and Blue points or, at worst if the cardinality is
odd, the number of Red and Blue points differing by only one. The discrepancy will
measure how good a coloring we may find.

To be formal, let a family A of subsets of © be given. Rather than using Red and
Blue we consider colorings as maps

x:Q—{-1,+1}.
199
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Forany A C 2 we set
x(4) = x(a).
acA
Define the discrepancy of A with respect to x by

disc(A, x) = max|x(4)]

and the discrepancy of A by

di = i disc(A, x).
1sc(A) X:Q__Iz1{1£117+1} isc(A, x)

Other equivalent definitions of discrepancy reveal its geometric aspects. Let
A= {5,...,5:} @ = {1,...,n} and let B = [b;;] be the m x n incidence
matrix: b;; = 1if j € S;, otherwise b;; = 0. A coloring x may be associated with
the vector w = (x(1), ..., x(n)) € {—1, +1}™ so that BuT = (x(S51),...,x(Sm))
and

disc(A) = {min ) |BuT |00
ue{—1,+1}"

where |v|o is the L -norm, the maximal absolute value of the coordinates. Similarly,
letting v; denote the j-th column vector of B (the profile of point 7)

disc(A) = min |+ v; + ...+ Up|0o

where the minimum ranges over all 2™ choices of sign.

We will generally be concerned with upper bounds to the discrepancy. Unravelling
the definitions, disc(,A) < K if and only if there exists a coloring x for which
|x(A)| < K forall A € A. Naturally, we try the random coloring.

Theorem 12.1.1 Let A be a family of n subsets of an m-set 2. Then
disc(A) < 4/2mlIn(2n).

Proof. Let x : @ — {—1,+1} be random. For A C Q let X4 be the indicator
random variable for |x(A4)| > « where we set & = /2mIn(2n). If |A| = a then
x(A) has distribution S, so by Theorem A.1.1

E[X 4] = Pr[|x(4)| > a] < 2e=%/%8 < 2e="/2m — 1 /p,
by our propitious choice of a. Let X be the number of A € A with |x(4)| > a so

that
X = Z X4
AcA

and linearity of expectation gives
E[X]= Y E[X4]<|Al(1/n)= 1.
AeA

Thus for some x we must have X = 0. This means disc(.A, x) < « and therefore
disc(A) < a. N
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12.2 SIX STANDARD DEVIATIONS SUFFICE

When A has both » sets and n points Theorem 12.1.1 gives

disc(A) = O(y/nln(n)).

This is improved by the following result. Its proof resembles that of the main result
of Beck (1981) . The approach via entropy was suggested by R. Boppana.

Theorem 12.2.1 [Spencer (1985a) ] Let A be a family of n subsets of an n-element
set Q. Then
disc(A) < 64/n.

With x : @ — {—1,+1} random, A € A, x(A) has zero mean and variance at
most 4/n. If|x(A)| > 6+/nthen x(A) isat least six standard deviations off the mean.
The probability of this occuring is very small but a fixed positive constant and the
number of sets A € A is going to infinity. In fact, a random x almost always will not
work. The specific constant 6 (actually 5.32) was the result of specific calculations
which could certainly be further improved and will not concern us here. Rather, we
show Theorem 12.2.1 with “6”=11. A map

x:Q— {-1,0,+1}

will be called a partial coloring. When x(a) = 0 we say a is uncolored. We define
x(A) as before.

Lemma 12.2.2 Let A be a family of n subsets of an n-set Q. Then there is a partial
coloring x with at most 10 ~°n points uncolored such that

IX(A)] < 104/n
forall A € A.

Here the values 10 and 10~° are not best possible. The significant point is that
they are absolute constants. Label the sets of Aby 4,4, ..., A, for convenience. Let

x:Q—{-1,+1}
be random. For 1 < 7 < n define
b; = nearest integer to x(A4;)/(204/n).

For example, b; = 0 when —10+/n < x(4;) < 104/nand b; = —3 when —70+/n <
x(Ai) < =504/n. From A.1.1 (as in Theorem 12.1.1)

Pr[b; = 0] > 1—2¢°°

Pr[b; = 1] = Pr[b; = —1] < e *°



202 DISCREPANCY

Prb; = 2] = Pr[b; = —2] < e™ %,
and, in general,
Pr[bi — s] — Pr[bi — _s] < 6—50(25—1)2
Now we bound the entropy H|[b;]. This important concept is explored more fully in
Section 14.6. Letting p; = Pr[b; = j],

+oo

> —pjlogy(p;)

j=—oco
< (1205~ logy(1 — 27)
+ 2¢7°%[—log, e %]
+ 2¢ ¥ —log,e ¥ +...

H(b;)

The infinite sum clearly converges and is strongly dominated by the second term.
Calculation gives
H(b)<e=3x10"%.

Now consider the n-tuple (by, ..., b,). Of course, there may be correlation among
the &;. Indeed, if S; and S; are nearly equal then b; and b; will usually be equal. But
by proposition 14.6.2 entropy is subadditive. Hence

H((by,...,by)) < iH(bi) < en.

If a random variable Z assumes no value with probability greater than 2t then
H(Z) > t. In contrapositive form, there is a particular n-tuple (s1, . . ., s») so that

Pr(b1,...,bn) = (51,...,80)] > 27°".

Our probability space was composed of the 2™ possible colorings x, all equally likely.
Thus, shifting to counting, there is a set C’ consisting of at least 2(1=€)™ colorings
x : @ — {—1,+1}, all having the same value (b1, ..., by).

Let us think of the class € of all colorings x : & — {—1,+1} as the Hamming
Cube {—1, +1}™ endowed with the Hamming metric

p(x, x') = {a : x(a) # x'(a)}-
Kleitman (1966a) has proven that if D C C and
n
P> Y (%)
i<r

with » < % then D has diameter at least 2r. That is, the set of a given size with
minimal diameter is the ball. (D has diameter at least r trivially which would suffice
to prove Lemma 12.2.2 and Theorem 12.2.1 with weaker values for the constants.)
Proof. In our case we may take » = an as long as a < % and
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2H(a) < 21—6‘
Calculation gives that we may take o = Z(1 — 10~°) with room to spare. (Taylor
Series gives

for z small.) Thus C’ has diameter at least n(1 — 107°). Let x1,x2 € C’ be at
maximal distance. We set
X1 — X2

X="

x is a partial coloring of 2. x(a) = 0 ifand only if x 1(a) = x2(a) which occurs for
n— p(x1, x2) < 10~°n coordinates a. Finally, and crucially, for each 1 < 7 < n the
colorings x1, x2 Yield the same value b; which means that x1(A4;) and x2(4;) lie on
a common interval of length 20+/n. Thus
= |X1(Ai)

aldi) Zxald) < ovm,

Ix(4:) 9

as desired. H

Theorem 12.2.1 requires a coloring of all points whereas Lemma 12.2.2 leaves
10~%n points uncolored. The idea, now, is to iterate the procedure of Lemma 12.2.2,
coloring all but, say, 10~8n of the uncolored points on the second coloration. We
cannot apply Lemma 12.2.2 directly since we have an asymmetric situation with n
sets and only 10~%n points.

Lemma 12.2.3 Let.A be a family of n subsets of an »-set Q with » < 10 ~%n. Then
there is a partial coloring x of Q with at most 10 ~*°r points uncolored so that

Ix(A)| < 10v/r+/In(n/r)
forall A € A.

Proof.
We outline the argument which leaves room to spare. Let A4, ..., 4, denote the
sets of A. Let x : @ — {—1,+1} be random. For 1 < ¢ < n define

x(4:) ‘
20+/7+/In(n/r)

Now the probability that b; = 1 is less than (r/n)5°. The entropy H (b;) is dominated
by this term and is less than

b; = nearest integer to

r r

3(2)%- logy((%)™)) < 1072~

n n

The entropy of (b1,...,b,) is then less than 10~1%r, one finds nearly antipodal
X1, X2 With the same b’s and takes x = (x1 — xz2)/2 as before. W
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Proof.[Theorem 12.2.1] Apply Lemma 12.2.2 to find a partial coloring x* and then
apply Lemma 12.2.3 repeatedly on the remaining uncolored points giving x 2, x3, . . .
until all points have been colored. Let x denote the final coloring. Forany A € A,

x(A) = x'(4) +x*(4) + ...
so that

x(4)] < 10v/n+ 10v10~%7vIn 109 +
10v/10-#91vIn 1040 4 10v10-897vIn 10%° + ...

Removing the common +/n term gives a clearly convergent infinite series, strongly
dominated by the first term so that

x(A) < 11v/n

with room to spare. B
Suppose that .A consists of n sets on » points and » < n. We can apply Lemma
12.2.3 repeatedly (first applying Lemma 12.2.2 if » > 10~%n) to give a coloring x

with
disc(A, x) < K+/ry/In(n/r)

where K is an absolute constant. As long as r = n'~°(1) this improves the random
coloring result of Theorem 12.1.1.

12.3 LINEAR AND HEREDITARY DISCREPANCY

We now suppose that .4 has more points than sets. We write A = {A44,...,4,}
and @ = {1,...,m} and assume m > n. Note that disc(A) < K is equivalent to
the existence of asetS, namely S = {j : x(j) = +1}, with |S N A| within K /2 of
|A|/2 forall A € A. We define the linear discrepancy lindisc(.A) by

lindisc(A) =  max max | Z

P1,-Pm€[0,1] €1, 757'»6{0 1} AcA

The upper bound lindisc(A) < K means that given any pi,...,pm there is a
“simultaneous roundoff” €4, . . ., e, S0 that, with S = {j : ¢; = 1}, |SN A is within
K of the weighted sum ZjeA p; forall A € A. Takingall p; = % the upper bound
implies disc(A) < 2K. But lindisc(A) < K is much stronger. It implies, taking
all p; = 3, the existence of an . with all |$ N A| within K of |A|/3, and much
more. Linear discrepancy and its companion hereditary discrepancy defined below
have been developed in Lovész, Spencer and Vesztergombi (1986) . For X C € let
A|x denote the restriction of A to X, i.e., the family {A N X : A € A}. The next
result “reduces” the bounding of disc(.A) when there are more points than sets to the
bounding of lindisc(.A) when the points do not outnumber the sets.
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Theorem 12.3.1 Let A be a family of n sets on m points with m > n. Suppose that
lindisc(A|x) < K for every subset X of at most n points. Then lindisc(A) < K.

Proof. Let p1,...,pm € [0, 1] be given. We define a reduction process. Call index
j fixed if p; € {0, 1}, otherwise call it floating, and let F' denote the set of floating
indices. If |F'| < n then halt. Otherwise, lety,,j € F, be a nonzero solution to the
homogeneous system

Z y]'ZO,AE.A

JEANF

Such a solution exists since there are more variables (| F'|) than equations (») and
may be found by standard techniques of linear algebra. Now set

Py =pj+Xy;, JEF

Pi=pj, J¢F
where we let X be the real number of least absolute value so that for some j € F the
value p; becomes zero or one. Critically

dieaPi = 2icaPi Tt A jcanr¥i = 2ojeaPi (%)

forall A € A. Now iterate this process with the new p’. At each iteration at least
one floating 7 becomes fixed and so the process eventually halts at some p3, ..., p},.
Let X be the set of floating j at this point. Then | X| < n. By assumption there exist
€;,7 € X so that

| Y pi-el<K, AcA

jEANX

Forj ¢ X sete; = p;. As (*) holds at each iteration

D=5

JjEA JjEA
and hence
1> mi—e)l =1 _(pi—p)+ >, B —€)I<K
jEA jeEA jEANX
forallAc A R

We now define the hereditary discrepancy herdisc(.A) by
herdisc(A) = maxdisc(Alx).
XCcQ
Example. Let Q@ = {1,...,n} and let A consist of all intervals [z, j] = {3, +

1,...,5}with1l <4 < j < n. Then disc(A) = 1 as we may color  alternately
+1 and —1. But also herdisc(A) = 1. For given any X C €, say with elements
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z1 < T3 < ... < z,, we may color X alternately by x(zx) = (—1)*. For any set
[, 7] € A the elements of [4, j] N X are alternately colored.

Theorem 12.3.2 lindisc(A) < herdisc(A).

Proof. Set K = herdisc(A). Let .A be defined on @ = {1,...,m} and let
p1-..,Pm € [0,1] be given. First let us assume that all p; have finite expansions
when written in base two. Let T be the minimal integer so that all p;27 € Z. Let J
be the set of 7 for which p; has a one in the T'-th digit of its binary expansion, i.e., so
that p;27 1 ¢ Z. As disc(Al;) < K there existe; € {—1,+1}, so that

26]' SK

jeJNA
forall A € A. Write p; = p;-T). Now set
P70 = { ;-T) ift;¢J
I pﬁ-T) +e2° T ifjed
That is, the p(-T_l) are the “roundoffs” of the p(-T) in the T'-th place. Note that all

J

pﬁ-T_l)2_(T_1) €Z. ForanyAc A

STV P = Y 27T | < 277K,

jGA jEJﬂA
Iterate this procedure, finding p{" =), ..., p{"), p{. All p{?2-0 € Z so all p{*) €
{0,1} and
T T
T i-1 i —i

DERRILIES 31) S S B DS SRS

jEA i=1 |j€EA i=1
as desired.

What about general py, . .., pm € [0, 1]? We can be flip and say that, at least to a
computer scientist, all real numbers have finite binary expansions. More rigorously,
the function

min max
€1,--,6m€{0,1} ACA

> (e —mi)

i€EA

f(pla"'apm):

is the finite minimum of finite maxima of continuous functions and thus is continuous.
The set of py,...,pm € [0,1] with all p;2T € Z for some T is a dense subset of
[0,1]. As f < K onthisdense set, f < K forall py,...,pm € [0,1].
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Corollary 12.3.3 Let.A be a family of n sets on m points. Suppose disc(A| x) < K
for every subset X with at most » points. Then disc(A) < 2K.

Proof. Forevery X C Q with |X| < n, herdisc(A|x) < K so by Theorem 12.3.2
lindisc(A|x) < K. By Theorem 12.3.1 lindisc(A) < K. But

disc(A) < 2lindisc(A) < 2K.
|

Corollary 12.3.4 For any family .A of n sets of arbitrary size

disc(A) < 124/n.
Proof. Apply Theorem 12.2.1 and Corollary 12.3.3. B

12.4 LOWER BOUNDS

We now give two quite different proofs that, up to a constant factor, Corollary
12.3.4 is best possible. A Hadamard Matrix is a square matrix H = (h;;) with all
hij € {—1,+1} and with row vectors mutually orthogonal (and hence with column
vectors mutually orthogonal). Let H be a Hadamard matrix of order n and let
v=(v1,...,n), v; € {—1,4+1}. Then

Hv =wvic1 +...v0p
where ¢; denotes the ¢-th column vector of H. Writing Hv = (L4,..., L,) and
letting |c| denote the usual Euclidean norm

L. 4+ L2 =|Hv?=v?|ci* + ... 2P =n+ ...+ n=n2

since the ¢; are mutually orthogonal. Hence some L? > n and thus
|Hv|oo = max(|L1], ..., |Ln]) > v/n.

Now we transfer this result to one on families of sets. Let H be a Hadamard
matrix of order »n with first row and first column all ones. (Any Hadamard matrix
can be so “normalized” by multiplying appropriate rows and columns by —1.) Let J
denote the all ones matrix of order n. Let vy, ..., L1, ... be as above. Then

n n

L1—|——|—Ln = Z ’U]'hi]' :Z'U]th = nv :ina
j=1 i=1

%,j=1
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since the first column sums to » but the other columns, being orthogonal to it, sum
to zero. Set A = w1 + ... 4+ v, Sothat Jv = (X,..., A) and

(H+J)v=(L1+A,...,Ln+ A).

We calculate
(H + J)w]> = (Li+ ) =) (L7 +2XL;i + X%) = n® £ 2n) + n)2.
=1 =1
Assume n is even. (Hadamard matricesHadamard don’t exist for odd n, except
n = 1.) Then X is an even integer. The quadratic (in A) n? & 2nX + n)?% has a
minimum at F1 and so under the restiction of being an even integer its minimum is
atA = 0,F2andso
(H + J)[* > n’.

Again, some coordinate must be at least y/n. Setting H* = £+1
|H o]0 > v/7/2.

Let A = {A;4,..., A} be any family of subsets of @ = {1,...,n} and let M
denote the corresponding m x n incidence matrix. A coloringx : @ — {—1,+1}
corresponds to a vector v = (x(1),...,x(n)) € {—1,+1}". Then

disc(A, x) = |[Mv|s

and
disc(A) = min |Mv|x.
ve{—1,+1}"

In our case H™* has entries 0, 1. Thus we have:

Theorem 12.4.1 If a Hadamard matrix exists of order n» > 1 then there exists a
family .A consisting of n subsets of an n-set with

disc(A) > v/n/2.

Remark. While it is not known precisely for which n a Hadamard matrixHadamard
exists (the HadamardHadamard conjecture is that they exist for »n = 1,2 and all
multiples of 4; see, e.g., Hall (1986) ), it is known that the orders of Hadamard
matricesHadamard are dense in the sense that for all ¢ if n is sufficiently large there
will exist a Hadamard matrix of order between n and n(1 — €). This result suffices
to extend Theorem 12.4.1 to an asymptotic result on all n.

Our second argument for the existence of .A with high discrepancy involves turning
the probabilistic argument “on its head”. Let M be a random 0, 1 matrix of order n.
Letv = (v1,...,%n),v; = £1 be fixed and set Mv = (L4, ..., L,). Suppose half
of the v; = +1 and half are —1. Then

n 1 n
-, =

Li~ B(3 2)_3(5’%)
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which has roughly the Normal Distribution N (0, 4/n/2). Pick A > 0 so that

A
1 1
| e

Y 2

Then

Pr[|Li| < Av/n/2] <

When v is imbalanced the same inequality holds, we omit the details. Now, crucially,
the L; are mutually independent as each entry of M was independently chosen. Thus

1
Pr[|Li| < A/n/2forall 1 < i< n] < (E)n‘

There are “only” 2™ possible v. Thus the expected number of v for which |Mv|s <
Ay/n/2 is less than 2#2~™ = 1. For some M this value must be zero, there are no
such v. The corresponding family .A thus has

disc(A) > A/n/2.

12,5 THE BECK-FIALA THEOREM

For any family .A let deg(.A) denote the maximal number of sets containing any
particular point. The following result due to Beck and Fiala (1981) uses only
methods from linear algebra and thus is technically outside the scope we have set for
this book. We include it both for the sheer beauty of the proof and because the result
itself is very much in the spirit of this chapter.

Theorem 12.5.1 Let A be a finite family of finite sets, no restriction on either the
number of sets nor on the cardinality of the sets, with deg(.A) < t. Then

disc(A) <2t — 1.

Proof. For convenience write A = {A4;1,...,Ap} withall 4; C Q@ = {1,...,n}.
Toeach j € € there is assigned a value z; which will change as the proof progresses.
Initially all z; = 0. Attheend all z; = +1. We will have —1 < z; < +1 atall
times and once =z; = =1 it “sticks” there and that becomes its final value. A set
Si has value 3. . z;. Atany time j is called fixed if z; = £1, otherwise it is
floating. A set S; is safe if it has fewer than ¢ floating points, otherwise it is active.
Note, crucially, that as points are in at most ¢ sets and active sets contain more than ¢
floating points there must be fewer active sets than floating points.

We insist at all times that all active sets have value zero. This holds initially
since all sets have value zero. Suppose this condition holds at some stage. Consider
z; a variable for each floating j and a constant for each fixed j. The condition
that S; has value zero then becomes a linear equation in these variables. This is an
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underdetermined system, there are fewer linear conditions (active sets) than variables
(floating points). Hence we may find a line, parametrized
z; = z; + Ay;, J floating

on which the active sets retain value zero. Let X be the smallest value for which
some z; becomes +1 and replace each z; by z;;. (Geometrically, follow the line
until reaching the boundary of the cube in the space over the floating variables.) This
process has left fixed variables fixed and so safe sets stayed safe sets (though active
sets may have become safe) and so the condition still holds. In addition, at least one
previously floating j has become fixed.

We iterate the above procedure until all j have become fixed. (Towards the end
we may have no active sets at which time we may simply set the floating z; to +1
arbitrarily.) Now consider any set S;. Initially it had value zero and it retained value
zero while it contained at least ¢ floating points. Consider the time when it first
becomes safe, say 1, ..., were its floating points. At this moment its value is zero.
The variables 1, . .., % can now change less than two to their final value since all
values are in [—1, +1]. Thus, in total, they may change less than 2¢. Hence the final
value of S; is less than 2¢ and, as it is an integer, it isat most 2¢ — 1. B

Conjecture 12.5.2 If deg(A) < t thendisc(A) < K+/t, K an absolute constant.

This conjecture seems to call for a melding of probabilistic methods and linear
algebra. The constructions of ¢ sets on ¢ points, described in Section 12.4, show that,
if true, this conjecture would be best possible.

12.6 EXERCISES

1. Let A be a family of n subsets of @ = {1,...,m} with m even. Let x(z),

1 <4 < 7% beindependentand uniformin {—1, +1}andset x(i+3) = —x(%
for1 <4 < 7. Using this notion of random coloring improve Theorem 12.1.1
by showing

disc(A) < % In(2n).

2. Let#,..., 7 € R™. Leta,..., e, € [-1,+1]such that 33¢_, ;% = 0 and
such that z; € {—1, +1} for all but at most » values of 7. Let v, € R™. Use
the linear ideas of §12.5 to find =1, . . .z}, =} ; with the following properties:

o YLl ulni=0
e All :I:: € [—1,—1—1]
e z; € {—1,+1} for all but at most » values of 4

e z! = z; whenever z; € {-1,+1}
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Use the above to prove the following result of Barany and Greenberg: Let |- |
be an arbitrary norm in R™. Let 3, ..., ¥, € R™ withall |v;| < 1. Then there
exist 1, ...,zs € {—1,+1} such that

foralll <t <s.

. Let 4;,..., A, C @ = {1,...,m} withm ~ nlnn. Assume further that
all |4;] < n. Use the methods of Theorem 12.2.1, including Kleitman’s
Theorem, to prove that there exists x : {1,...,m} — {—1,0,+1} such that
all x(4;) = O(vnlnlnn) and x(z) = 0 for at most n vertices z. Use
Theorem 12.2.1 to deduce the existence of x : {1,...,m} — {—1,+1} such

thatall x(4;) = O(v/nInlnn).



THE PROBABILISTIC LENS:
Unbalancing Lights

For any m x n matrix B = (b;;) with coefficients b;; = £1 set

F[B]= max ; ; ziy;bij.
As in §2.5 we may interpret B as an m x n array of lights, each either on (b;; = +1)
or off (b;; = —1). For each row and each column there is a switch which, when
pulled, changes all lights in that line from on to off or from off to on. Then F[B]
gives the maximal achievable number of lights on minus lights off. In §2.5 we found
a lower bound for F[B] when m = n. Here we set n = 2™ and find the precise best
possible lower bound.

With n = 2™ let A be an m x n matrix with coefficients &1 containing every
possible column vector precisely once. We claim F[A] is the minimal value of F[B]
over all m x n matrices B.

For any given B let 1, ...,z, = +1 be independently and uniformly chosen

and set ™
X]' = Zmibi]’
=1
X=|Xa|+...+ | Xml,
so that

n

n
F[B] = yrjnzaicl zI?:afl,z;ijj = zrglzafl'z; |X;| = max X.
j= j=

Regardless of the b;;, X; has distribution Sy, so that E[|X;|] = E[|S[] and, by
linearity of expectation,
E[X] = nE][|Sm]].

212
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With B = A, any choices of z4,...,z,, = =£1 have the effect of permuting the
columns - the matrix (z;a.;) also has every column vector precisely once - so that
X = |X1|+ ...+ | Xm] is a constant. Note that E[X] is independent of B. In
general, fixing E[X] = p, the minimal possible value for max X is achieved when
X isthe constant . Thus F[B] is minimized with B = A.
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Geometry

Few people think more than two or three times a year. | have made an interna-
tional reputation for myself by thinking once or twice a week.
— George Bernard Shaw

Suppose we choose randomly n points Py, ..., P, on the unit circle, according
to a uniform distribution. What is the probability that the origin lies in the convex
hull of these points? There is a surprisingly simple (yet clever) way to compute this
probability. Let us first choose n random pairs of antipodal points @ 1, @n+1 = —Q1,
Q2,Qniz = —Q2,...,Qun, Q2n = —Qx according to a uniform distribution. Notice
that with probability 1 these pairs are all distinct. Next we choose each P; to
be either @; or its antipodal @ ,+: = —@:, where each choice is equally likely.
Clearly this corresponds to a random choice of the points P;. The probability that
the origin does not belong to the convex hull of the points P, given the (distinct)
points @;, is precisely s, where z is the number of subsets of the points @
contained in an open half plane determined by a line through the origin, which
does not pass through any of the points @ ;. It is easy to see that z = 2n. This
is because if we renumber the points @; so that their cyclic order on the circle is
Qi s Qny Qnia, - ., Qan, and Qi = —Q; then the subsets contained in such
half planes are precisely {Q;, - . ., @n+i—1}, Where the indices are reduced modulo
2n. Therefore, the probability that the origin is in the convex hull of n randomly
chosen points on the unit circle is precisely 1 — g—: Observe that the same result
holds if we replace the unit circle by any centrally symmetric bounded planar domain
with center 0 and that the argument can be easily generalized to higher dimensions.

This result, due to Wendel (1962) , shows how in some cases a clever idea can
replace a tedious computation. It also demonstrates the connection between proba-

215
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bility and geometry. The probabilistic method has been recently used extensively for
deriving results in discrete and computational geometry. Some of these results are
described in this chapter.

13.1 THE GREATEST ANGLE AMONG POINTS IN EUCLIDEAN
SPACES

There are several striking examples, in different areas of Combinatorics, where
the probabilistic method supplies very simple counter- examples to long-standing
conjectures. Here is an example, due to Erd6s and Fliredi (1983) .

Theorem 13.1.1 For every d > 1 there is a set of at least | 3(%5)?] points in the

d-dimensional Euclidean space R¢%, such that all angles determined by three points
from the set are strictly less than /2.

This theorem disproves an old conjecture of Danzer and Griinbaum (1962) , that the
maximum cardinality of such a set is at most 2d — 1. We note that as proved by
Danzer and Griinbaum the maximum cardinality of a set of points in R¢ in which all
angles are at most 7/2 is 2¢.

Proof.[Theorem 13.1.1] We select the points of a set X in R? from the vertices
of the d-dimensional cube. As usual, we view the vertices of the cube, which are
0, 1-vectors of length d, as the characteristic vectors of subsets of a d-element set; i.e.,
each 0, 1-vector a of length d is associated withtheset A = {3 : 1 <4 < d,a; = 1}.
A simple consequence of Pythagoras’ Theorem gives that the three vertices a, b and
¢ of the d-cube, corresponding to the sets A, B and C, respectively, determine a right
angle at ¢ if and only if

ANBCCCAUB. (13.1)

As the angles determined by triples of points of the d-cube are always at most =/2,
it suffices to construct a set X of cardinality at least the one stated in the theorem no
three distinct members of which satisfy (13.1).
Definem = | £( %)dj, and choose, randomly and independently, 2m d-dimensional

0, 1-vectors ay, . . ., a2m, Where each coordinate of each of the vectors independently
is chosen to be either 0 or 1 with equal probability. For every fixed triple a, b and ¢ of
the chosen points, the probability that the corresponding sets satisfy equation (13.1)
is precisely (3/4)%. This is because (13.1) simply means that for each i, 1 < i < d,
neither a; = b; = 0,¢; = 1 nora; = b; = 1,¢; = 0 hold. Therefore, the probability
that for three fixed indices ,  and k, our chosen points, a4, a;, ax form a right angle
at ay, is (3/4)%. Since there are (2;")3 possible triples that can produce such angles,

the expected number of right angles is

(%) < m,

where the last inequality follows from the choice of m. Thus there is a choice of a
set X of 2m points in which the number of right angles is at most m. By deleting
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one point from each such angle we obtain a set of at least 2m — m = m points in
which all angles are strictly less than 7/2. Notice that the remaining points are all
distinct since (13.1) is trivially satisfied if A = C. This completes the proof.

|

It is worth noting that, as observed by Erd s and Flredi, the proof above can be
easily modified to give the following;

Theorem 13.1.2 For every € > 0 there isa é > 0 such that for every d > 1 there
is a set of at least (1 + 6)¢ points in R% so that all the angles determined by three
distinct points from the set are at most 7/3 + e.

We omit the detailed proof of this result.

13.2 EMPTY TRIANGLES DETERMINED BY POINTS IN THE PLANE

For a finite set X of points in general position in the plane, let f(X) denote the
number of empty triangles determined by triples of points of X, i.e., the number of
triangles determined by points of X which contain no other point of X. Katchalski
and Meir (1988) studied the minimum possible value of f(X') fora set X of n points.
Define f(n) = min{f(X)}, as X ranges over all planar sets of » points in general
position (i.e., containing no three colinear points). They proved that

("; 1) < f(n) < 200n°.
These bounds were improved by Béarany and Fliredi (1987) , who showed that as n
grows

(1+0(1))n? < f(n) < (1+0(1))2n%.

The construction that establishes the upper bound is probabilistic, and is given in the
following theorem. See also Valtr (1995) for a slightly better result.

Theorem 13.2.1 LetI4, I, ..., I, be parallel unit intervals in the plane, where
L={(z,y):2=i,0<y<1}.

For each 4 let us choose a point p; randomly and independently from I; according to a
uniform distribution. Let X be the set consisting of these » randomly chosen points.
Then the expected number of empty triangles in X is at most 2n? + O(nlogn).

Clearly, with probability 1, X is a set of points in general position and hence the
above theorem shows that f(r) < 2n? + O(nlogn).

Proof. We first estimate the probability that the triangle determined by the points
Di, Pi+e and piyx is empty, for some fixed s,eand k = a+ b > 3. Let A = (3, z),
B =(i+a,y)and C = (i + k, z) be the points p;, pi+4 and p;yx, respectively. Let
m be the distance between B and the intersection point of the segment AC with the
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interval I;1,. Since each of the points p; for ¢ < j < ¢+ k are chosen randomly
according to a uniform distribution on I, it follows that the probability that the
triangle determined by A, B and C is empty is precisely

(1- %)(1 _2%)...(1 —(a- 1)%)(1 — (b 1)%)...(1 - %)
Semp(—%—2%...—(a,— 1)%_(1)_1)%..._ %)
= ean(—(5) 2 - (5) ) = cop(—(k —2)m/2)

For every fixed choice of A and C, when the point p;,., = B is chosen randomly,
the probabilty that its distance m from the intersection of the segment AC with the
interval I; , isatmost d is clearly at most 24, forall & > 0. Therefore, the probability
that the triangle determined by p;, pi1 and p;4x is empty is at most

2/ o exp(—(k —2)m/2)dm = 4/(k — 2).

It follows that the expected value of the total number of empty triangles is at most

n—2+ Y > Y 4/(k-2)

1<i<n-33<k<n-il<a<k-1

=n-2+ Y (n—k)%
3<k<n—1
=n-2+ Y (n-k4/(k-2)+4 Y (n—k)
3<k<n—1 3<k<n—1

= 2n? 4 O(nlogn).

This completes the proof. B

The result above can be extended to higher dimensions by applying a similar
probabilistic construction. A set X of n points in the d- dimensional Euclidean
space is called independent if no d 4 1 of the points lie on a hyperplane. A simplex
determined by d+ 1 of the pointsis called empty if it contains no other point of X. Let
fa(X) denote the number of empty simplices of X, and define fz(n) = minf;(X),
as X ranges over all independent sets of n points in R%. Katchalski and Meir (1988)
showed that fz(n) > (™). The following theorem of Barany and Fredi shows
that here again, a probabilistic construction gives a matching upper bound, up to a
constant factor (which depends on the dimension). We omit the detailed proof.

Theorem 13.2.2 There exists a constant K = K(d), such that for every convex,
bounded set A C R? with nonempty interior, if X is a random set of n points
obtained by » random and independent choices of points of A picked with uniform
distribution, then the expected number of empty simplices of X is at most K (Z)
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13.3 GEOMETRICAL REALIZATIONS OF SIGN MATRICES

Let A = (a; ;) be anm by n matrix with +1, —1-entries. We say that A is realizable
in R® if there are m hyperplanes Hy, . .., H,, in R? passing through the origin and
n points Py, ..., P, in R%, so that for all 5 and 7, P; lies in the positive side of H;
if a;; = +1, and in the negative side if a; ; = —1. Let d(A) denote the minimum
dimension d such that A is realizable in R¢, and define d(m, n) = maz(d(A)), as
A ranges over all m by n matrices with +1, —1-entries. Since d(m,n) = d(n,m)
we can consider only the case m > n.

The problem of determining or estimating d(m, n), and in particular d(n, n), was
raised by Paturi and Simon (1984) . This problem was motivated by an attempt
to estimate the maximum possible "unbounded-error probabilistic communication
complexity" of Boolean functions. Alon, Frankl and Rodl (1985) proved that as n
grows n/32 < d(n,n) < (3 + o(1))n. Both the upper and the lower bounds are
proved by combining probabilistic arguments with certain other ideas. In the next
theorem we prove the upper bound, which is probably closer to the truth.

Theorem 13.3.1 Forall m > n,

n—1

dim,n) <(n+1)/2+ log m.

For the proof, we need a definition and two lemmas. For a vector a = (a1,...,axs)
of +1, —1-entries, the number of sign-changes in a is the number of indices 2,
1 <i<n-—1suchthata; = —a;y1. Fora matrix A of +1, —1-entries, denote by
s(A) the maximum number of sign-changes in a row of A.

Lemma 13.3.2 For any matrix A of +1, —1-entries, d(A) < s(4) + 1.

Proof. Let A = (a; ;) be an m by n matrix of +1, —1 entries and suppose s = s(A).
Lett; < 22 < ... < i, be arbitrary reals, and define » points Py, P, ..., P, in
Rt by: Py = (1,t4,%,...,t%). These points, whose last s coordinates represent
points on the d-dimensional moment-curve, will be the points used in the realization
of A. To complete the proof we have to show that each row of A can be realized by a
suitable hyperplane through the origin. This is proved by applying some of the known
properties of the moment-curve as follows. Consider the sign-vector representing
an arbitrary row of A. Suppose this vector has r sign changes, where, of course,
r < s. Suppose the sign changes in this vector occur between the coordinates 7; and
i; + 1, for 1 < j < r. Choose arbitrary reals yi, ..., y,, where ¢;, < y; <t;41
for 1 < j < ». Consider the polynomial P(t) = H;:l(t — y;). Since its degree
is at most s there are real numbers a; such that P(t) = Y i_,a;t’. Let H be the
hyperplane in R*+* defined by H = {(z0, 21,...,2s) € R°T* : 330_;ajz; = 0}.
Clearly, the point P; = (1,1,...,;) is on the positive side of this hyperplane if
P(t;) > 0,and is on its negative side if P(¢;) < 0. Since the polynomial P changes
sign only in the values y;, it follows that the hyperplane H separates the points
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Py, ..., P, according to the sign pattern of the corresponding row of A. Hence,
by choosing the orientation of H appropriately, we conclude that A is realizable in
R**1, completing the proof of the lemma. W

Lemma 13.3.3 For every m by n matrix A of +1, —1-entries there is a matrix
B obtained from A by multiplying some of the columns of A by —1, such that

s(B) < (n—1)/2+ /25t logm.

Proof. For each column of A, randomly and independently, choose a number
e € {+1,—1}, where each of the two choices is equally likely, and multiply this
column by e. Let B be the random sign-matrix obtained in this way. Consider an
arbitrary fixed row of B. One can easily check that the random variable describing
the number of sign changes in this row is a binomial random variable with parameters
n— 1 and p = 1/2. This is because no matter what the entries of A in this row are,
the row of B is a totally random row of —1, 1 entries. By the standard estimates for
Binomial distributions, described in Appendix A, the probability that this number is

greater than (n — 1)/2 + 4/ 252logm is smaller than 1/m. Therefore, with positive

probability the number of sign changes in each of the m rows is at most that large,
completing the proof. B

Proof.[Theorem 13.3.1] Let A be an arbitrary m by n matrix of +1, —1-entries.
By Lemma 13.3.3 there is a matrix B obtained from A by replacing some of its
columns by their inverses, such that s(B) < (n —1)/2 + 4/%5tlogm. Observe

that d(A) = d(B), since any realization of one of these matrices by points and
hyperplanes through the origin gives a realization of the other one by replacing the
points corresponding to the altered columns by their antipodal points. Therefore, by
Lemma 13.3.2

n—1

d(A)=d(B)<s(B)+1<(n+1)/2+

log m.

This completes the proof. B

It is worth noting that by applying the (general) six standard deviations theorem
stated inthe end of Section 12.2, the estimate in Lemma 13.3.3 (and hence in Theorem
13.3.1) can be improved to n/2 + O(+/nlog(m/n)). It can be also shown that if »
and m grow so that m/n? tends to infinity and (logam)/n tends to 0 then for almost
all m by n matrices A of +1, —1-entries d(4) = (3 + o(1))n.

13.4 e-NETS AND VC-DIMENSIONS OF RANGE SPACES

What is the minimum number f = f(n, €) such that every set X of n points in the
plane contains a subset S of at most f points such that every triangle containing at
least en points of X contains at least one point of S? As we shall see in this section,
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there is an absolute constant c such that f(n, €) < £log(1/¢), and this estimate holds
for every n. This somewhat surprising result is a very special case of a general
theorem of Vapnik and Chervonenkis (1971) , which has been extended by Haussler
and Welzl (1987) , and which has many interesting applications in Computational
Geometry and in Statistics. In order to describe this result we need a few definitions.
A range space S is a pair (X, R), where X is a (finite or infinite) set and R is a
(finite or infinite) family of subsets of X. The members of X are called points and
those of R are called ranges. If A isa subset of X then Pr(A4) ={rNA:r € R}
is the projection of R on A. In case this projection contains all subsets of A we say
that A is shattered. The Vapnik-Chervonenkis dimension (or VC-dimension) of S,
denoted by V'C(S), is the maximum cardinality of a shattered subset of X. If there
are arbitrarily large shattered subsets then VC(S) = oo.

The number of ranges in any finite range space with a given number of points and
a given VC-dimension cannot be too large. For integersn > 0 and & > 0, define a

function g(d, n) by
g(d,n) = Z (r;)

1=0
Observe thatforall n,d > 1, g(d, n) = g(d,n—1)+g(d—1,n—1). The following
combinatorial lemma was proved, independently, by Sauer (1972) , Perles and Shelah
and, in a slightly weaker form by Vapnik and Chervonenkis.

Lemma13.4.1 If (X, R) is a range space of VC-dimension d with | X| = n points
then |R| < g(d, n).

Proof. We apply induction on n + d. The assertion is trivially true for d = 0 and
n = 0. Assuming it holds for n and d — 1 and for n — 1 and d — 1 we prove it
for n and d. Let S = (X, R) be a range space of VC-dimension 4 on n points.
Suppose z € X, and consider the two range-spaces S — z and S \ z defined as
follows. S —z = (X — {z},R—2), where R—z = {r — {2} : » € R}.
S\z=(X —{z},R\z),where R\z ={re R:z ¢ r,rU{z} € R}. Clearly,
the VC-dimension of § — z is at most d. It is also easy to see that the VC-dimension
of S\ z is at most d — 1. Therefore, by the induction hypothesis,

|R[=[R—=[+|R\z|<g(dn—1)+g(d—1,n—1)=g(d,n),

completing the proof. B

It is easy to check that the estimate given in the above lemma is sharp for all
possible values of n and d. If (X, R) is a range space of VC-dimension d and
A C X, then the VC-dimension of (4, Pr(A)) is clearly at most d. Therefore, the
last lemma implies the following.

Corollary 13.4.2 If (X, R) is a range space of VC-dimension d then for every finite
subset A of X, |Pr(A)| < g(d, |4]) .

There are many range spaces with finite VC-dimension that arise naturally in
discrete and computational geometry. One such example is the space S = (R%, H),
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whose pointsare all the points in the d-dimensional Euclidean space, and whose set of
ranges is the set of all (open) half-spaces. Any set of d+ 1 affinely independent points
is shattered in this space, and, by Radon’s Theorem, no set of d + 2 points is shattered.
Therefore VC(S) = d + 1. As shown by Dudley (1978) , if (X, R) has finite VC-
dimension, so does (X, Ry ), where Ry, is the set of all Boolean combinations formed
from at most & ranges in R. In particular, the following statement is a simple
consequence of Corollary 13.4.2.

Corollary 13.4.3 Let (X, R) be a range space of VC-dimension d > 2, and let
(X, Ry) be the range space on X inwhich Ry, = {(r1N...N7y) : 71,...74 € R}.
Then VC(X, Ry) < 2dhlog(dh).

Proof. Let A be an arbitrary subset of cardinality n of X. By Corollary 13.4.2
|Pr(A)| < g(d,n) < n?. Since each member of Pg,(A) is an intersection of
h members of Pgr(A) it follows that | Pg, (4)] < (?4™) < nd. Therefore, if
nh < 2™ then A cannot be shattered. But this inequality holds for n > 2dhlog(dh),
sincedh > 4. 1

As shown above, the range space whose set of points is R%, and whose set of ranges
is the set of all half spaces has VC-dimensiond + 1. This and the last corollary imply
that the range space (R?, Cy,), where Cy, is the set of all convex d-polytopes with &
facets has a VC-dimension which does not exceed 2(d + 1)hlog((d + 1)h).

An interesting property of range spaces with a finite VC-dimension is the fact that
each finite subset of such a set contains relatively small good samples in the sense
described below. Let (X, R) be a range space and let A be a finite subset of X. For
0 <e<1,asubet B C Aisan e-sample for A if for any range » € R the inequality

lAnr|/|Al—[BNr|/|B|| <€

holds. Similarly, a subset N C A is an e-net for A if any range » € R satisfying
|r N A| > €A contains at least one point of N.

Notice that every e-sample for A is also an e-net, and that the converse is not true.
However, both notions define subsets of A that represent approximately some of the
behavior of A with respect to the ranges. Our objective is to show the existence
of small e-nets or e-samples for finite sets in some range spaces. Observe that if
(X, R) is a range space with an infinite VC-dimension then for every n there is a
shattered subset A of X of cardinality n. It is obvious that any e-net (and hence
certainly any e-sample) for such an A must contain at least (1 — €)n points, i.e., it
must contain almost all points of A. Therefore, in infinite VC-dimension there are
no small nets or samples. However, it turns out that in finite VC-dimension, there are
always very small nets and samples. The following theorem was proved by Vapnik
and Chervonenkis (1971) .

Theorem 13.4.4 There isa positive constant ¢ such that if (X, R) is any range-space
of VC-dimension at most d, A C X is a finite subset and ¢, 4 > 0, then a random
subset B of cardinality s of A where s is at least the minimum between | A| and

c d 1
e—z(dlog; + logg)
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is an e-sample for A with probability at least 1 — 4.
Using similar ideas, Haussler and Welzl (1987) proved the following theorem.

Theorem 13.4.5 Let (X, R) be a range space of VC-dimension d, let A be a finite
subset of X and supppose 0 < ¢,6 < 1. Let N be a set obtained by m random
independent draws from A, where

2 8d d
m > mam(élogg, 8—log8—) (13.2)
€ € €

Then N is an e-net for A with probability at least 1 — 4.

Therefore, if A is a finite subset of a range space of finite VC-dimension d, then for
any € > 0, A contains e-nets as well as e-samples whose size is at most some function
of € and d, independent of the cardinality of A ! The result about the triangles
mentioned in the first paragraph of this section thus follows from Theorem 13.4.5,
together with the observation following Corollary 13.4.3 that implies that the range
space whose ranges are all triangles in the plane has a finite VC-dimension. We note
that as shown by Pach and Woeginger (1990) , there are cases in which for fixed §,
the dependence of m in 1/e cannot be linear, but there is no known natural geometric
example demonstrating this phenomenon. See also Komlbés, Pach and Woeginger
(1992) for a tight form of the last theorem.

The proofs of Theorems 13.4.4 and 13.4.5 are very similar. Since the computation
in the proof of Theorem 13.4.5 is simpler, we describe here only the proof of this
theorem, and encourage the reader to try and make the required modifications that
yield a proof for Theorem 13.4.4.

Proof.[Theorem 13.4.5] Let (X, R) be a range space with VC-dimension d, and
let A be a subset of X of cardinality |A| = n. Suppose m satisfies (13.2), and let
N = (z1,...,zn) be obtained by m independent random choices of elements of A.
(The elements in N are not necessarily distinct, of course). Let £ be the following
event:

Ei={3r€R:|rNA|>en,rNN = 0}.

To complete the proof we must show that the probability of E, is at most §. To
this end , we make an additional random choice and define another event as follows.
Independently of our previous choice, we let T = (y1, ..., ym) be obtained by m
independent random choices of elements of A. Let E; be the event defined by:

E;,={3rcR:|rNA|>en,r NN =0,|rNT| > ?}
(Since the elements of T are not neccessarily distinct, the notation |» N T'| means here
{7 :1 < i < m,y €r}. The quantities |r N N|and |» N (N U T)| are similarly
defined).

Claim 4 P’I‘(Ez) Z %P’I‘(El)
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Proof. Itsuffices to prove that the conditional probability Pr(E ;| E¢) is at least 1/2.
Suppose that the event E; occurs. Then there isan » € R such that |[r N 4| > en
and r N N = 0. The conditional probability above is clearly at least the probability
that for this specific », [» N T| > 2. However |» N T'| is a binomial random variable
with expectation em and variance (1 — €)m < em, and hence, by Chebyschev’s

Inequality
em em 4
P nT —) < —=—<1/2
r(lr < 2 )< (em/2)2  em — /2
where the last inequality follows from (13.2). Thus, the assertion of Claim 4 is
correct. W

Claim 5

€

Pr(E;) < g(d,2m)2™ %",

Proof. The random choice of N and T can be described in the following way, which
is equivalent to the previous one. First one chooses N UT = (z1,...,22m) by
making 2m random independent choices of elements of A, and then one chooses
randomly precisely m of the elements z; to be the set IV, (the remaining elements z;
form the set T', of course). For each range r € R satisfying |r N A| > en, let E, be
the event that [r N T'| > €% and r N N = 0. A crucial fact is that if »,7' € R are
tworanges, [rNA| > enand |[r' NA| > enandifr N(NUT) ="' N(NUT),
then the two events E, and E,., when both are conditioned on the choice of N U T,
are identical. This is because the occurence of E, depends only on the intersection
r N (N UT). Therefore, for any fixed choice of N U T, the number of distinct
events E, does not exceed the number of different sets in the projection Pyur(R).
Since the VC-dimension of X is d, Corollary 13.4.2 implies that this number does
not exceed g(d, 2m).

Let us now estimate the probabilty of a fixed event of the form E,, given the
choice of N U T'. This probability is at most

em
|> =

2)'

Define p = |» N (N U T)|. Since the choice of N among the elements of N U T is
independent of the choice of N U T, the last conditional probability is precisely

Pr(rn N ={||rn(NUT)

2m-p)(2m—p—-1)...(m—p+1)
2m(2m —1)...(m+ 1)

_ m(m—1)...(m—p+1) <o <o
2m(2m—1)...2m—p+1) — -
Since there are at most g(d, 2m) potential distinct events E,., it follows that the
probability that at least one of them occurs given the choice of N U T is at most
g(d,2m)2~ %", Since this estimate holds conditioned on every possible choice of
N U T it follows that the probability of the event E » is at most g(d, 2m)2~ %", This
establishes Claim 5. W
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By Claim 4 and Claim 5, Pr(E;) < 2g(d,2m)2~%" . To complete the proof of
the theorem it remains to show that if m satisfies inequality (13.2) then

2g(d, 2m)2= %" < 4.

We describe the proof for & > 2. The computation for d = 1 is easier. Since
g(d, 2m) < (2m)? it suffices to show that

2(2m)% < 62°%°,

i.e., that
2
? > dlog(2m) + logg.

From (13.2) it follows that

em>l 2
4_095’

and hence it suffices to show that
% > dlog(2m).

The validity of the last inequality for some value of m implies its validity for any
bigger m, and hence it suffices to check that it is satisfied for m = %log%, i.e., that

d 16d d
2dlog8— > dlog(ilogs—).
€ € €

The last inequality is equivalent to 22 > log8%, which is certainly true. This
completes the proof of the theorem. B

Theorems 13.4.4 and 13.4.5 have been used for constructing efficient data-
structures for various problems in computational geometry. A trivial example is
just the observation that Theorem 13.4.4 implies the following: for every e > 0 there
is a constant ¢ = ¢(e) such that for every n and every set A of n points in the plane
there is a data structure of size ¢(e) that enables us to estimate , given any triangle
in the plane, the number of points of A in this triangle up to an additive error of
en. This is done simply by storing the coordinates of a set of points that form an
e-sample for A considered as a subset of the range space whose ranges are all planar
triangles. More sophisticated data structures whose construction relies on the above
two theorems can be found in the paper of Haussler and Welzl (1987) .

13.5 DUAL SHATTER FUNCTIONS AND DISCREPANCY

The dual shatter function & of a range space S = (X, R) is the function ~ mapping
integers to integers, defined by letting ~(g) denote the maximum, over all possible
choices of g members of R, of the number of atoms in the Venn diagram of these
members. It is not too difficult to prove that if the VC-dimension of S is d, then
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h(g) < O(g2d+1‘1), but in geometric applications it is usually better to bound this
function directly.

In Matou3ek, Welzl and Wernisch (1993) it is proved that if the dual shatter
function of arange space S = (X, R) satisfies h(g) < O(g*), A isany set of n points
in the range space, and F is the projection Pr(A) of R on A, then, the discrepancy
of F satisfies

disc(F) < O(n3~%/logn). (13.3)
This supplies nontrivial estimates in various geometric situations, improving the
trivial bound that follows from Theorem 12.1.1 of Chapter 12. In most of these
geometric applications it is widely believed that the +/log » factor can be omitted. In
the abstract setting, however, this factor cannot be omitted, as proved in MatouSek
(1997) (fort = 2, 3) and later in Alon, Ronyai and Szab6 (1999) for all ¢.

The proof of (13.3) is based on a beautiful result of Chazelle and Welzl (1989) ,
and its improvement by Haussler (1995) . It is somewhat simpler to prove the result
with an extra logarithmic factor, and this is the proof we present here. See Pach and
Agarwal (1995) , for some additional information.

Let F be a family of subsets of a finite set A. In what follows we consider graphs
whose edges are (unordered) pairs of points of A. For F € F and z,y € A, the
edge zy stabs F' if F contains exactly one of the two points z and y. The following
theorem is proved in Chazelle and Welzl (1989) . An improvement by a logarithmic
factor appears in Haussler (1995) .

Theorem 13.5.1 Let (A4, F) be a finite range space, where |A| = =, and suppose
that its dual shatter function & satisfies h(g) < cg* for some fixed ¢,z > 0. Then,
there isa C = C(c,t) and a Hamilton path on A, such that each member F of F is
stabbed by at most Cn'~1/t1og n edges of the path.

To prove the above theorem, we need the following lemma.

Lemma13.5.2 Let (A4, F),n, h,tand c be as above, let B be a finite subset of p > 1
points of A, and let G be a collection of m (not necessarily distinct) members of F.
Then there are two distinct points z,y in B , such that the edge zy stabs at most

b IOEE members of G, where b = b(c).

Proof. We may and will assume that p is larger than ¢+ 1. Let g be the largest integer
such that cg < p — 1, thatis, g = [(2=1)/*]. Let L be a random collection of g
members of G, each picked, randomly and independently (with possible repetitions),
among all . members of G with uniform distribution. The Venn diagram of all
members of L partition B into at most h(g) < cg* < p atoms, and hence there are
two distinct points z, y of B that lie in the same atom. To complete the proof it
suffices to show that with positive probability, for each pair of points of B that stabs
more than ”mp—}‘,ﬂgﬁ members of G, at least one of these members lies in L (and hence
the pair does not lie in an atom of the corresponding Venn diagram.) There are (g)
such pairs, and for each of them, the probability that L contains no member of G it
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stabs is at most

bl _blogp|p—1\1/t
( _ (;/gtp)gge F/gt_l_( c ) J,
p

which is less than 1/p? for an appropriately chosen constant b = b(c). This completes
the proof. B

Proof.[Theorem 13.5.1] Note, first that if d is the VC-dimension of the given space
then there is a shattered set D of size d. It is not difficult to see that there are
g = [log, d] sets among those shattering D, so that no two points of D lie in
the same atom of their Venn diagram. Therefore, d < ¢([log, d])t, implying that
d < 2¢'t1o8t where ¢ = ¢/(c). By Lemma 13.4.1 this implies that the total number

of ranges in R is at most n2"***"
We next prove that there is a spanning tree of A satisfying the assertion of Theorem
13.5.1, and then show how to replace it by a Hamilton path. By Lemma 13.5.2 with

By = A,po = nand Go = F,mo = |Go| ( < n*”*"*"), we conclude that there
is a pair zgyo of points in A such that the edge zoyo does not stab more than
’%‘i?#mo members of G. Let G, be the collection obtained from G by duplicating
all members of G that are stabbed by z¢yo, and define By = B — zg,p1 = n — 1,
m1 = |G1] < mo(1l + %iﬂ)- Applying Lemma 13.5.2 again, this time to B; and
G1, we obtain another pair z,y;, define B, = By —z1,po = p1 — 1 =n — 2, and
let G2 be the collection obtained from G by duplicating all members of G, stabbed
by @131, ma = |Ga|. By the assertion of the lemma, m; < my(1 4+ 22087 ),

R . . (n—l)l/‘
Proceeding in this manner we get a sequence zoyo, £1Y1, - - -, Zn—1Yn—1 OF edges
of a graph on A, a sequence of subsets By = A, By,...,Bp_1, Where each B;

is obtained from the previous one by omitting the point z;_,, and a sequence of
collections Gy, G, . . ., Gn_1, Where
|Gn—1] < mg Hinz_ol(l + %gyn_/t)
< ’I’ch" log teb logn 370 (n—i)~/* < 2b'n1_1/t logn, (134)
for an appropriate ' = ¥'(c, 1).

Note, now, that the edges z;y; form a spanning tree on the set A. The crucial
observation is the fact that if a member of F is stabbed by s of the edges, then it is
being duplicated s times during the above process that generates G,, 1, implying that
2% < |Gn_1| and hence that s < b'n'~1/tlogn. It remains to replace the spanning
tree by a Hamilton path. To do so, replace each edge of the tree by two parallel edges,
and take an Euler tour in the resulting graph (in which all degrees are even). This is
asequence zg, £1, T2, - . -, Lan_2 = &g Of points of A such that each adjacent pair of
elements of the sequence is an edge of the tree, and each edge appears twice this way.
The subsequence of the above one obtained by keeping only the first appearance of
each point of A is a Hamilton path, and it is easy to check that each member of F is
stabbed by at most 26'n'~ /¢ log = of its edges, completing the proof. W
The following result is a simple consequence of Theorem 13.5.1. As mentioned
above, its assertion can be improved by a factor of 4/log n.
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Theorem 13.5.3 Let (A4, F) be a finite range space, where |A| = =, and suppose
that its dual shatter function & satisfies h(g) < cg* for some fixed ¢,z > 0. Then,
there isa C' = C'(¢, t) such that the discrepancy of F satisfies

disc(F) < C'n3~ % logn.

Proof. Without loss of generality, assume that the number of points of A is even
(otherwise, simply omit a point). By Theorem 13.5.1 there is a Hamilton path
z12Z3...2, ON these points such that each member of F is stabbed by at most
Cn'~'*tlogn edges of the path. Let f : A — {—1,1} be a random coloring of
A where for each 4, 1 < 4 < n/2, randomly and independently, either f(zz;_1) =
1, f(z2i) = —1or f(zai—1) = —1, f(z2;) = 1, the two choices being equally likely.
Fix a member F € F, and note that the contribution of each pair z;_1z2; to the
sum > g f(z;) is zero, if the edge z2;_1z2; does not stab F, and is either +1
or —1 otherwise. It thus follows that this sum has, in the notation of Appendix A,
Theorem A.1, the distribution S, for some r < Cn'~1/*logn. Thus, the probability
it is, in absolute value, at least «, can be bounded by 2e=%"/2r  As shown in the
first paragraph of the proof of Theorem 13.5.1, the total number of members of

F does not exceed n2°****, and thus the probability that there exists a member
F € F forwhichthe sum 3=, f(z;) exceeds C'n3~ 3¢ log n s less than 1 for an
appropriately chosen constant C" = C’(c,t). B

The range space whose set of points is an arbitrary set of points in the plane, and
whose ranges are all discs in the plane, has dual shatter function O(g?). The above
theorem thus shows that it is possible to color any set of » points in the plane red and
blue, such that the absolute value of the difference between the number of red points
and the number of blue points inside any disc would not exceed n1/4+°(1) " Similar
results can be proved for many other geometric range spaces.

13.6 EXERCISES

1. Let A be a set of n points in the plane, and let F be the set of all intersections
of A with an open triangle in the plane. Prove that the discrepancy of F does
not exceed nl/4+o(1),

2. Prove that n distinct points in the plane determine at most O(n*/3) unit dis-
tances.



THE PROBABILISTIC LENS:
Efficient Packing

Let C C R™ be bounded with Riemann measure g = u(C) > 0. Let N(C, z)
denote the maximal number of disjoint translates of C that may be packed in a cube
of side z and define the packing constant

§(C) = p(C) lim N(C,z)z™ ",

T—>o0

the maximal proportion of space that may be packed by copies of C. The following
result improves the one described in Chapter 3, Section 3.4.

Theorem 1 Let C be bounded, convex and centrally symmetric about the origin.
Then
§(C)>2-(-1),

Proof. Fixe > 0. Normalize so 4 = u(C) = 2 — €. For any real z let C, denote the
“slab” of (z1,...,2n-1) € R*~1 such that (z1,...,2n_1,2) € C and let u(C,) be
the usual » — 1-dimensional measure of C,. Riemann measurability implies

lim %:Z #(Crmy )y = 1(C).

Let K be an integer sufficiently large so that

Z lu’(CmK—("—l))K_(n_l) <2
meZ

and further that all points of C have all coordinates less than K /2.
229



230 THE PROBABILISTIC LENS: EFFICIENT PACKING

Forl <i<mn-—1letv; € R™ be that vector with all coordinates zero except K
as the 4-th coordinate. Let

v = (zla .. 'azn—laK_(n_l))a

where zi, ..., z,_1 are chosen uniformly and independently from the real interval
[0, K). Let A, denote the lattice generated by the v’s - i.e.

Ay ={mivi+ ...+ My_1p_1+mv:imy,...,my_1,m€e 7}
={(mz1 + mK,...,mzn_1 + my_1K, mK~(=1) . Mi,yeeoyMy_1,ME Z}.
K K

Let 6(z) denote that unique z’ € (-, 5] sothat z — mK = z’ forsome m € Z.
For m € Z let A,, be the event that some myvi + ...+ mp_1vp_1 + mv € C.
Since all coordinates of all points of C are less than K /2, A,, occurs if and only if

(8(mz1), ..., 8(mza 1), mK~ ("~ € C,

which occurs if and only if (8(mz1),...,0(mzn_1)) € C,,x-=-u The indepen-
dence and uniformity of the z; over [0, K') implies the independence and uniformity
of the 6(z;) over (— £, £1and so

Pr[An] = K~ Du(Crug-tnm)-

Summing over positive m, and employing the central symmetry,

1 e 1
> PrlAn] < 5 3 KO Ip(Crgoion) < 521
m>0 meZ

Hence there exists v with all A,,,, m > 0 not holding. By the central symmetry A,,
and A_,, are the same event so no A,,, m # 0 holds. When m = 0 the points
mivi+...+Mp_19p_1 = K(mq,...,my_1,0)all lie outside C except the origin.
For this v

A, NC = {0}.

Consider the set of translates C + 2w, w € A,. Suppose
z=c1 +2w; =cy + 2ws Withey,cx € C,wy, wy € A,.

Then (e¢1—¢2)/2 = w2 —w;. From convexity and central symmetry (c1—cz)/2 € C.
As wy — wy € A,, itis zero and hence ¢; = ¢z and wy = wy. That is, the translates
form a packing of R™. As det(2A,) = 2™ det(A,) = 2™ this packing has density
27"u = 27"(2 —¢€). Ase > 0 was arbitrary, §(C) > 2~ (1), ®
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Codes, Games and Entropy

Why did you come to Casablanca anyway, Rick?
| came for the waters.

Waters, what waters? Casablancais in the desert.
| was misinformed.

Claude Rains to Humphrey Bogart in Casablanca

141 CODES

Suppose we want to send a message, here considered a string of bits, across a noisy
channel. There is a probability p that any bit sent will be received incorrectly. The
value p is a parameter of the channel and cannot be changed. We assume that p is
both the probability that a sent zero is received as a one and that a sent one is received
as a zero. Sent bits are always received, but perhaps incorrectly. We further assume
that the events that the bits are received incorrectly are mutually independent. The
case p = .1 will provide a typical example.

How can we improve the reliability of the system? One simple way is to send
each bit three times. When the three bits are received we use majority rule to decode.
The probability of incorrect decoding is then 3p% + p3 = .031 in our instance. We
have sacrificed speed - the rate of transmission of this method is 1/3 - and gained
accuracy inreturn. If we send each bit five times and use majority rule to decode, the
probability of incorrect decoding drops to .01051 but the rate of transmission also
drops to 1/5. Clearly we may make the probability of incorrect decoding as low as
needed, but seemingly with the tradeoff that the rate of transmission tends to zero.
It is the fundamental theorem of Information Theory - due to Claude Shannon - that

231
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this tradeoff is not necessary: there are codes with rate of transmission approach-
ing a positive constant (dependent on p) with probability of incorrect transmission
approaching zero.

A Coding Scheme consists of positive integers m, n, a function f : {0,1}™ —
{0, 1}™ called the encoding function and a functiong : {0, 1}™ — {0, 1}™ called the
decoding function. The notion is that a message (or segment of message) = € {0, 1}™
will be encoded and sent as f(z) and a received message y € {0,1}™ will be
decoded as g(y). The rate of transmission of such a scheme is defined as m/n. Let
E = (e, ...,en) bearandom string defined by Prle; = 1] = p, Pr[e; = 0] = 1 —p,
the values e; mutually independent. We define the probability of correct transmission
as Pr[g(f(z)+ E) = z]. Here z isassumed to be uniformly distributed over {0, 1}™
and independent of E, + is mod2 vector addition.

A crucial role is played by the entropy function

H(p) = —plogyp— (1 — p)log,(1 — p)

defined for p € (0, 1). For any fixed p the entropy function appears in the asymptotic
formula

n e
- 1 1)) = 9n(H(p)+o(1))
(pn) (pn)Pﬂe_P"((]_ _ p)n)(l_p)"e—(l—p)n( + O( ))

For p € (0, .5) we further bound

> (5) s () =g,
1)~ n

i<pn

Theorem 14.1.1 [Shannon’s Theorem] Let p € (0,.5) be fixed. For ¢ > 0 arbi-
trarily small there exists a Coding Scheme with rate of transmission greater than
1 — H(p) — € and probability of incorrect transmission less than e.

Proof. Letd > 0 be suchthatp+ 4§ < .5 and H(p + ¢é) < H(p) +€/2. For
n large set m = n(1l — H(p) — €), guaranteeing the rate of transmission. Let f :
{0,1}™ — {0, 1}™ be a random function - each f(z) uniformly and independently
chosen. Given f define the decoding function g : {0,1}™ — {0,1}™ by setting
g(y) = =z if & is the unique vector in {0, 1}™ within n(p + ) of f(z). We measure
distance by the Hamming Metric p: p(y,y’) is the number of coordinates in which
y,y differ. If there is no such z, or more than one such z, then we shall consider
decoding to be incorrect.

There are two ways decoding can be incorrect. Possibly f(z) + E is not within
n(p+6) of f(x). The distance from f(z) + E to f(x) is simply the number of ones
in E which has Binomial Distribution B(n,p) and so this occurs with probability
o(1), in fact, with exponentially small probability. The only other possibility is that
there is some 2" # z with f(2') € S where S is the set of ¥’ within n(p + §) of
f(=). Conditioning on the values f(z), E, f(=') is still uniformly distributed over
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{0, 1}™ and hence this occurs with probability | 5|2 =™ for any particular ' and thus
with total probability at most

9m|8|27™ < 275 Ho(1) = o(1).

The total probability for incorrect decoding from both sources is thus o(1) and, in
fact, exponentially small. For n sufficiently large this is less than e.

The average over all choices of f, z of the probability of incorrect decoding is less
than e. Therefore there exists a specific f (hence a specific Coding Scheme) with
probability of incorrect coding less than e. B

Shannon’s Theorem, dealing with the intensely practical subject of Communica-
tions, puts the shortcomings of the probabilistic approach in sharp contrast. Where is
the Coding Scheme? Supposing that a Coding Scheme may be found how can encod-
ing and decoding be rapidly processed? A Group Code is a Coding Scheme in which
themap £ : {0, 1}™ — {0,1}"islinear, i.e. f/(0) = 0and f(z+=') = f(z)+ f(='),
all calculations modulo 2. (Alternatively, the range of f is a subgroup of {0,1}™.)
Group Codes are of particular interest, in part because of the ease of encoding.

Theorem 14.1.2 Letp € (0,.5) be fixed. For e > 0 arbitrarily small there exists a
Group Code with rate of transmission greater than 1 — H(p) — € and probability of
incorrect transmission less than e.

Proof. For1 < i < m let u; € {0,1}™ be that vector with a one in position i,
all other entries zero. Let f(u1), ..., f(um) be chosen randomly and independently
and then extend f by setting

flerur+ ...+ emum) = e1f(u1) + ... + €miim.

We follow the proof of Shannon’s Theorem until bounding the probability that f(z)+
E lies within n(p + &) of f(z). Setz =z — 2’ = €qu1 + ... + €mum, again all
modulo 2. As z # z’, z # 0. Reorder for convenience so that ¢, = 1. By linearity
f(z) = f(z) — f(z") so we bound Pr[f(z) € S] where S is the set of vectors
withinn(p+ &) of E. Fixing E and the f(u;), i < m, f(2) still has an additive term
f(um) which is uniform and independent. Hence f(z) is distributed uniformly. Thus
Pr[f(z) € S§] = |S|2~™ and the remainder of the proof is as in Shannon’s Theorem.
u

14.2 LIAR GAME

Paul is trying to find a number =z € {1,...,n} from a recalcitrant and mendacious
Carole. He may ask ¢ questions of the form “Is z € 5?," where S can be any subset
of the possibilities. The questions are asked sequentially and Paul’s choice of his i-th
question can depend on previous responses. Carole is allowed to lie - but she can lie
at most & times. For which n, g, k can Paul determine the number?
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When k£ = 0 Paul can win exactly when n < 22. The values n = 100, ¢ = 10,
k = 1 make for an amusing parlor game. Carole is hardly a passive observer, she
may play an adversary strategy. By that we mean that she does not select an z in
advance but answers consistently with at least one z. At the end of the game if her
answers were consistent with more than one z then she has won. The game, called
the (n, g, k)-Liar Game, is now a perfect information game with no hidden move and
no draws. Hence either Paul or Carole has a perfect winning strategy. But who?

We describe an equivalent game, the ChipLiar game. There is a board with
positions0, 1, ..., k. Thereare n chips labeled 1, . .., n which are initially at position
k. There are g rounds. On each round Paul selects a set S of the chips. Carole can
either move every chip not in S one position to the left or move every chip in S
one position to the left. (Here position i — 1 is one position to the left of position s.
Chips moved one position to the left from position 0 are removed from the board.) At
the end of the ¢ rounds Carole wins if there is more than one chip remaining on the
board and Paul wins if there is one or zero chip remaining on the board. Basically,
chip ¢ at position j represents that the answer z = 4 has already received k& — j
lies; Paul selecting S represents his asking if z € S; Carole moving the chips not in
S represents a Yes answer, moving the chips in S represents a No answer. (In the
ChipLiar game Carole can remove all chips from the board while in the Liar game
Carole must play consistently with at least one z. But when Carole removes all chips
from the board she automatically has lost and hence this difference does not affect
the determination of the winner.)

In the ChipLiar game there is no reason to place all chips at position k at the start.
More generally, for zo, ...,z > 0, we define the (zo, ..., zx), g-ChipLiar Game
to be the above ¢ round game with initial position consisting of = ; chips at position
. This, in turn, corresponds to a Liar Game in which there are z; possibilities for
which Carole is constrained to lie at most 2 times.

Let us define B(g, j) as the probability that in ¢ flips of a fair coin there are at
most j heads. Of course, we have the exact formula:

J
. — q
B(g,j)=277) (z)
1=0
Theorem 14.2.1 If
k
ZmiB(q,i) >1
1=0

then Carole wins the (zo, . . ., zx), g-ChipLiar Game.

Corollary 14.2.2 If
29
n > %

2izo (9)

then Carole wins the (=, g, k)-Liar Game.

Proof.[Theorem 14.2.1] Fix a strategy for Paul. Now Carole plays randomly! That
is, at each round, after Paul has selected a set .S of chips Carole flips a coin - if it
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comes up heads she moves every chip not in S one position to the left and if it comes
up tails she moves every chip in S one position to the left. For each chipc let I, be
the indicator random variable for ¢ remaining on the board at the end of the game.
Set X = Y I, the number of chips remaining on the board at the end of the game.
Consider a single chip ¢. Each round Paul may have chosen ¢ € S orec ¢ S but
in either case ¢ is moved to the left with probability one half. Suppose ¢ starts at
position <. It remains on the board at the end of the game if and only if in the ¢ rounds
it has been moved to the left at most ¢ times. Then E[I.], the probability of this
occuring, is precisely B(g, ). By linearity of expectation E[X] = Zf:o z;B(q,1).
The assumption of the theorem gives E[X] > 1. But then X > 1 must occur with
positive probability. That is, Carole must win with positive probability.

No strategy of Paul allows him to always win. But this is a perfect information
game with no draws so someone has a perfect strategy that always wins. That
someone isn’t Paul, so it must be Carole. Bl

The above proof certainly illustrated the magical element of the probabilistic
method. Carole has a winning strategy but what is it? The general notion of
moving from a probabilistic existence proof to an explicit construction is called
derandomization and will be dealt with in detail in the next chapter. Here we can give
an explicit strategy. With I moves remaining in the game and y; chips on position 2
define the weight of the positionas >, v; B(l, 3) — note this is E[Y'] where Y is the
number of chips that would remain on the board should Carole play the rest of the
game randomly. Carole’s explicit strategy is to always move so as to maximize the
weight.

Consider any position with weight W and any move S by Paul. Let W¥, W™ be
the new weights should Carole move all chips notin S or all chips in S respectively.
We claim W = $(W¥ + W™). One argument is that by linearity this identity
reduces to the case of one chip and it then follows from the identity B(l,j) =
1(B(l — 1,7) + B(I — 1,5 — 1)). But we needn’t actually do any calculation.
Carole’s playing randomly can be thought of as first flipping a coin to decide on
her first move and then playing randomly so that E[Y] is the average of the two
conditional expectations.

At the start of the game, by assumption, the weight is bigger than one. Carole’s
explicit strategy assures that the weight does not decrease so at the end of the game
the weight is bigger than one. But at the end of the game the weight is the number of
chips remaining. Being bigger than one Carole has won the game.

The converse of the Theorem, and even the Corollary, is false. Consider the
LiarGame with n = 5, ¢ = 5 questions and & = 1 possible lie. In the ChipLiar
version this is the (0, 5), 5-ChipLiar game. Here B(5,1) = 6/32 and 5(6/32) < 1.
Still, Carole wins with perfect play. The problem is that Paul has no good first move.
Suppose he selects two chips as S (asks “Is z < 27" in the LiarGame). Then Carole
moves the two chips one to the left (responds Yes) leaving the position (2, 3) with
four questions remaining. As 2B(4,0) + 3B(4,1) = 17/16 > 1 Carole will now
win. It is easy to check that all other moves of Paul fail. The difficulty here is that
Paul was in a position with weight W < 1 but was unable to find a move such that
W¥ <land W™ < 1.
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14.3 TENURE GAME

Paul, Chair of Department, is trying to promote one of his faculty to tenure but
standing in his way is a recalcitrant and meanspirited Carole, the Provost. There are
k pre-tenure levels, labeled 1, ..., k&, level 1 the highest, and a level 0, represent-
ing tenure. For our purposes each faculty member is represented by a chip. The
(z1,...,z5)-Tenure Game begins with z; chips at level < for 1 <4 < k and no chips
on level zero. Each year Paul presents a set .S of chips to Carole. Carole may either
e Promote all chips in S and fire the others or

o Promote all chips not in S and fire those in S.

Promote, as used above, means to move from level 4 to level 2 — 1. Fired means
just that, removing the chip from the game. If a chip reaches level 0 then Paul is the
winner. The draconian promotion or perish provision insures that the game will end
within & years with either Paul winning or Carole having successfully eliminated all
chips.

Theorem 14.3.1 If )", z;27% < 1 then Carole wins the (z1, . . ., zx)-Tenure Game.

Proof. Fix a strategy for Paul. Now Carole plays randomly! That is, at each round,
after Paul has selected a set S of chips Carole flips a coin - if it comes up heads
she moves every chip not in S one position to the left and if it comes up tails she
moves every chip in S one position to the left. For each chip ¢ let .. be the indicator
random variable for ¢ reaching level 0. Set X = Y I.., the number of chips reaching
level 0 at the end of the game. Consider a single chip ¢. Each round Paul may have
chosen ¢ € S or ¢ ¢ S but in either case ¢ is moved to the left with probability
one half. Suppose ¢ starts at position 7. It remains on the board at the end of the
game if and only if the first ¢ coinflips of Carole led to promotions for ¢. Then
E[I.], the probability of this occuring, is precisely 2 ~*. By linearity of expectation
E[X] = Zle z;27%. The assumption of the theorem gives E[X] < 1. But then
X < 1 must occur with positive probability. That is, Carole must win with positive
probability.

No strategy of Paul allows him to always win. But this is a perfect information
game with no draws so someone has a perfect strategy that always wins. That
someone isn’t Paul, so it must be Carole. B

As with the LiarGame we may derandomize the above argument to give an explicit
strategy for Carole. With y; chips on position 7 define the weight of the position as
>, %:27% — note this is E[Y] where Y is the number of chips that would reach level
0 should Carole play the rest of the game randomly. Carole’s explicit strategy is to
always move so as to minimize the weight. Consider any position with weight W
and any move S by Paul. Let W¥, W™ be the new weights should Carole move all
chipsnotin S or all chipsin S respectively. As inthe LiarGame W = %(W-‘/ +Wm).
At the start of the game, by assumption, the weight is less than one. Carole’s explicit
strategy assures that the weight does not increase so at all times the weight is smaller
than one. A chip at level 0 would add one to the weight by itself so that this never
occurs and hence Carole wins.
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In the LiarGame the sufficient condition for Carole winning was not neccessary
because Paul did not always have an appropriately splitting move. Here, however,
we have an amusing lemma.

Lemma 14.3.2 If a set of chips has weight at least one it may be split into two parts
each of weight at least one half.

Proof. There must be two chips at some position z, otherwise the weight is less than
one. If there are two chips at position 1 simply split them. If there are two chips at
position ¢ > 1 glue them together, and consider them as one superchip at position
1 — 1. Then the proof follows by induction on the number of chips. B

Theorem 14.3.3 1f Y z;27% > 1 then Paul wins the (zy, . . ., zx)-Tenure Game.

Proof. The initial weight is at least one. Applying the Lemma Paul splits the chips
into two parts each of weight at least one half and sets S equal one of the parts.
Carole moves all chips in one part one position to the left, doubling their weight,
leaving a new position of weight at least one. Thus the weight never goes below one.
Therefore the game cannot end with all chips having been removed (which would
have weight zero) and so it must end with a win for Paul. B

14.4 BALANCING VECTOR GAME

The balancing vector game is a perfect information game with two players, Pusher and
Chooser. There is a parameter n > 1, and we shall be concerned with asymptotics
in n. There are n rounds, each involving vectors in R™. There is a position
vector P € R™, initially set at 0. Each round has two parts. First Pusher picks
v € {—1,+1}". Then Chooser either resets P to P + v or to P — v. At the end
of the n-th round the payoff to Pusher is |P|, the maximal absolute value of the
coordinates of P. Let V.AL(n) denote the value of this game to Pusher, and let .S,
denote, as usual, the sum of n independent uniform {1, —1} random variables.

Theorem 14.4.1 If Pr[|Sp| > a] < n~!then VAL(n) < .

Proof. Consider the game a win for Pusher if the final | P|., > «. Suppose Chooser
announces that she will flip a fair coin each round to determine whether to reset P as
P +vor P—u. Letz; be the i-th coordinate for the final value of the position vector
P. Let W; be the event |z;| > « and W = VW; so that W is the event of Pusher
winning. Regardless of Pusher’s strategy z; has distribution S,, so that

Pr[W] < Y Pr[|Sa| > o] < 1.
=1
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Pusher cannot always win so Chooser always wins. B
Corollary 14.4.2 VAL(n) = O(vnlnn).

To give a lower bound on V AL(n) one wants to find a strategy for Pusher that
wins against any Chooser. It is not sufficient to find a strategy that does well against
a randomly playing Chooser - the Chooser is an adversary. Still, the notion of a
randomly playing Chooser motivates the following result.

Theorem 14.4.3 If Pr[|S,| > a] > en~1/2, canabsolute constant, then V AL(n) >
[s'8

Corollary 14.4.4 VAL(n) = Q(vnlnn) and hence VAL(n) = ©(vnlnn).

Proof.[Theorem 14.4.3] Define, forz € Z,0 < i < n,
wi(z) = Pr|z 4+ Sn—i| > al.

For P = (21,...,zn) Setwi(P) = 30, ., ,, wi(z;). When P is the position vector
at the end of the s-th round, w;(P) may be interpreted as the expected number of
coordinates with absolute value greater than « at the end of the game, assuming
random play by Chooser. At the beginning of the game wo(P) = wo(0) > cy/n by
assumption. Given position P at the end of round ¢ Pusher’s strategy will be to select
v € {—1,+1}" so that w; 11 (P — v) and w;11(P + v) are close together.

The distributionz+ S, —; splitsintoz + 1+ 5, _;_; and z — 1+ .5,,_;_; depending
on the first coin flip so that for any ¢, z

wil®) = sl (e + 1)+ wiga(z — 1)
SetP = (z1,...,2n), v = (v1,...,0,). FOr 1 < j < mnset
Aj = wita(zj + 1) —wiga(z; — 1)
so that

wit1(P +v) —wipa (P —v) = Y _v;A;,
i=1

and, fore = 41

N| —

wit1(P + ev) = w(P) +

EZ U]'A]'.
i=1
Now we bound |A,|. Observe that
Aj =Pr[Sp_i1=y] — Pr[Sp_i_1 = 2],
where y is the unique integer of the same parity as n — % — 1 in the interval (o —

(2j+1),a—(z; —1)]and z the same in[—a — (z; + 1), —a — (z; — 1)). Let us set

g(m) = maxPr[Sy, = s] = (L m J)z—m 2

s m/2 m
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so that |A;] < g(n — 14— 1) forall j.
A simple strategy for Pusher is then to reorder the coordinates so that |A 4] >
. > |Ay,| and then select vy, ...,v, € {—1,+1} sequentially, giving v;A; the
opposite signof v1 Ay + ...+ v;_14A;_1. (When i = 1 or the sum is zero choose v;
arbitrarily.) This assures

[viA1 4 ... F v Ap| < |A1] < g(n —i—1).

Let P? denote the position vector at the end of the i-th round and v Pusher’s choice
for the 7 + 1-st round. Then regardless of Chooser’s choice of e = +1

; ; A 1 ,
wip1 (P7Y) = wiga (P'+ev) > wi(P*) - 5 Y vidjl > wi(P)- g9(n—i—1).
j=1
Thus
Wy (P™) > wo(P°) —

[\Dln—t

n—1
Zg n—1—1).
=0

Simple asymptotics give that the above sum is asymptotic to (8n/7)*/2. Choosing
¢ > (2/m)Y2, wa(P™) > 0. Butw, (P™) is simply the number of coordinates with
absolute value greater than e in the final P = P™. This Pusher strategy assures there
is more than zero, hence at least one, such coordinate and therefore Pusher wins Bl

14.5 NONADAPTIVE ALGORITHMS

Let us modify the balancing game of §14.4 by requiring the vectors selected by Pusher
to have coordinates zero and one rather than plus and minus one. Let VAL*(n)
denote the value of the modified game. One can use the bounds on V AL(n) to show
VAL*(n) = O(vnlon).

In Chapter 12 we showed that any family of » sets S, ..., S, onnpoints1,...,n
has discrepancy O(4/n), i.e., there isa coloring x : {1,...,n} — {—1,+1} so that
all |x(S:)] < c4/n. The proof of this result does not yield an effective algorithm
for finding such a coloring and indeed it is not known if there is a polynomial time
algorithm to do so. Suppose one asks for a nonadaptive or on-line algorithm in the
following sense. Instead of being presented the entire data of S, . . ., S, at once one
is presented with the points sequentially. At the j-th “round” the algorithm looks
at point 5 - more specifically, at which sets S; contain j or, equivalently, at the j-th
column of the incidence matrix. At that stage the algorithm must decide how to
color j and, once colored, the coloring cannot be changed. How small can we assure
max |x(S;)| with such an algorithm. We may think of the points as being presented
by an adversary. Thinking of the points as their associated column vectors, Pusher as
the Worst Case adversary and Chooser as the algorithm, the best such an algorithm
can do is precisely VAL (n).

The requirement that an algorithm be nonadaptive is both stronger and weaker
than the requirement that an algorithm takes polynomial time. Still, this lends support
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to the conjecture that there is no polynomial time algorithm for finding a coloring
with all |x(5:)| < ey/n.

14.6 ENTROPY

Let X be a random variable taking values in some range S, and let P(X = z) denote
the probability that the value of X is z. The binary entropy of X, denoted by H(X)
is defined by

ZP =z logz(ﬁ).

z€ES

If Y is another random variable, taking values in T, and (X,Y") is the random
variable taking values in § x T according to the joint distribution of X and Y, then
the conditional entropy of X given Y is

H(X|Y)=H(X,Y)— H(Y).

In this section we prove some simple properties of the entropy function, and describe
several surprising combinatorial and geometric applications. Intuitively, the entropy
of a random variable measures the amount of information it encodes. This provides
an intuitive explanation to the four parts of the next simple lemma. The formal proof,
given below, uses the properties of the functions log z and z log z, where here, and
in the rest of this section, all logarithms are in base 2.

Lemma14.6.1 Let X,Y and Z be three random variables taking values in S, T'and
U, respectively. Then

1. H(X) < log, |S|.
H(X,Y) > H(X).
H(X,Y) < H(X) + H(Y).
H(X|Y, Z) < H(X|Y).

Proof.

1. Since the function log z is concave it follows, by Jensen’s Inequality, that
H(X) =2lies P(X =79) log(m)
< log(Dies P(X = i) pimyy) = log|S|.

2. By the monotonicity of log z forall z > 0,

H(X,Y) =3 ies Yjer P(X =4,Y = j)log(m)



ENTROPY 241

> Yies Sjer P(X =0,Y = j)log( =)
= Yics P(X =1) log(m) = H(X). (14.1)
3. By definition
H(X)+ H(Y)-H(X,Y)
P(X=i,Y =5)
Yies 2jer P(X =1,Y = j)log(sx—ypv=py)
= ZiES EjeT P(X = )P(Y = j)f(zj), (14.2)

where f(z) = zlogz and z; = %(XZ)’Tyy_L. Since f(z) is convex it
follows, by Jensen’s Inequality, that the last quantity is at least

f(ZZP(X:i)P(Y:j)Zij)Zf(l) =0.

i€S jET
4. Note that
. . P(Y = 7)
1€S €T - =J
Similarly
. . P(Y =j Z=k)
P(X=4,Y=4,Z=k)! .
X|YZ ZZZ =1, s )Og(P(X:i,Y:j,Z:k))
1€S jeT keU
Therefore,

H(X|Y)-H(X|Y,Z)

. . PY=)PX=4Y=4Z=k
:ZZZP(X:”Y:J’Z:k)log(PEX:Ji,)Y(:j)P(Y:;,Z:k;)

1€ES JET keU
X=3,Y=)P(Y=4,Z=kFk
-y yy X LSS EAL )
e P(Y =)
7 JET kKeU

where f(z) = zlog z and

PY=)P(X=4Y=352Z=k)
P(X=4,Y=)PY =3Z=k)

Zijk =

By the convexity of f(z) (and since

X=4,Y=)PY=342Z2=k
Sy ARSI T

1€S jeET k€U

it follows that the above quantity is at least

X=iY=j)P(Y =5, Z=k
ZZZ (if):(j) ! )Zijk):f(l)ZO.

1€S jET K€U
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|
The following simple but useful fact that the entropy is sub-additive has already
been applied in Chapter 12 , Section 12.2.

Proposition 14.6.2 Let X = (X4, ..., X,) be a random variable taking values in
theset S = §; x Sz x ... x S,, where each of the coordinates X; of X is a random
variable taking values in S;. Then

H(X) < iH(Xi).

Proof. This follows by induction from Lemma 14.6.1, part 3. &

The above proposition is used in Kleitman, Shearer and Sturtevant (1981) to
derive several interesting applications in Extremal Finite Set Theory, including an
upper estimate for the maximum possible cardinality of a family of k-sets in which the
intersection of no two is contained in a third. The basic idea in Kleitman et al. (1981)
can be illustrated by the following very simple corollary of the last proposition.

Corollary 14.6.3 Let F be a family of subsets of {1, 2, ..., n} and let p; denote the
fraction of sets in F that contain . Then

|F| < 25i=: Hp)

where H(y) = —ylogy y — (1 — y)logy(1 — y).

Proof. Associate each set F € F with its characteristic vector »(F'), which is a
binary vector of length »n. Let X = (X1,...,X,) be the random variable taking
values in {0, 1}, where P(X = v(F)) = 1/|F| forall F € F. Clearly H(X) =
|}'|(%log |F|) = log|F|, and since here H(X;) = H(p;) forall 1 < ¢ < n, the
result follows from Proposition 14.6.2. B

The following interesting extension of Proposition 14.6.2 has been proved by
Shearer, see Chung, Frankl, Graham and Shearer (1986) . As in that proposition, let
X = (X1,...,Xy) be arrandom variable taking values in the set § = §1 x Sz x
... X Sy, where each X; is a random variable taking values in S;. For a subset I of
{1,2,...,n}, let X(I) denote the random variable (X;)ic;.

Proposition 14.6.4 Let X = (X1,...,Xn) and S be as above. If G is a family of
subsets of {1,...,n} and each : € {1,...,n} belongs to at least ¥ members of G
then
kH(X) < ) H(X(G)).
Geg

Proof. We apply inductionon k. For k = 1, replace each set G € G by a subset of
it to obtain a family G’ whose members form a partition of {1,...,n}. By Lemma
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14.6.1, part 2, > geg H(X(G)) > > grcgr H(X(G')), and by Lemma 14.6.1, part
3, > qregr H(X(G")) > H(X), supplying the desired result for & = 1.

Assuming the result holds for & — 1, we prove itfor & ( > 2). IfthereisaG € G
with G = {1, ..., n}, the result follows from the induction hypothesis. Otherwise,
let G1, G2 be two members of G. By applying part 4 of Lemma 14.6.1 we conclude
that

H(X(G1\ G2)|X(G1N Gz), X(G2\ G1)) < H(X(G1 \ G2)|X(G1 N Gz)),
implying that
H(X(G1U Gy)) — H(X(G2)) < H(X(G1)) — H(X(G1 N Gy)).

Therefore, H((X(G1 U G2)) + H(X(G1 N Gy)) < H(X(G1)) + H(X(G2)). It
follows that if we modify G by replacing G 1 and G by their union and intersection,
then the sum » . .s H(X(G)) can only decrease. After a finite number of such
modifications we can reach the case in which one of the setsin G is {1, ...,n}, and
as this case has already been proved, this completes the proof. B

Corollary 14.6.5 Let F be a family of vectors in §; x Sz... x S,. Let G =
{G1,Ga,...Gy} be acollection of subsets of N = {1, 2, ..., n}, and suppose that
each element € N belongs to at least £ members of G. Foreach 1 < ¢ < mlet F;
be the set of all projections of the members of F on G;. Then

FIF < TT 1.
i=1
Proof. Let X = (Xi,...,X,) be the random variable taking values in F, where
P(X = F) = 7 forall F € F. By Proposition 14.6.4

BH(X) < 30 H(X(G)).

But H(X) = log, |F|, whereas by Lemma 14.6.1, part 1, H(X(G;)) < log, |Fi,
implying the desired result. B

Since the volume of every d-dimensional measurable set in R™ can be approxi-
mated by the volume of an appropriate approximation of it by standard aligned boxes
in a fine enough grid, the last result has the following geometric application, proved
in Loomis and Whitney (1949) in a different manner.

Corollary 14.6.6 Let B be ameasurable body in the n» dimensional Euclidean space,
let Vol(B) denote its (n-dimensional) volume, and let Vol(B;) denote the (n —
1)-dimensional volume of the projection of B on the hyperplane spanned by all
coordinates besides the i-th one. Then

(Vol(B)" ! < ﬁVol(Bi).
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If S; = {0, 1} for all 7 in Corollary 14.6.5, we get the following statement about
set systems.

Corollary 14.6.7 [Chung et al. (1986) ] Let V be a finite set, and let F be a family
of subsets of N. LetG = {G4, ... G} be a collection of subsets of N, and suppose
that each element of S belongs to at least & members of G. Foreach1 < ¢ < m
define F; = {FNG;: F € F}. Then

1FF< T 17l
=1

We close the section with the following application of the last result, given in
Chung et al. (1986) .

Corollary 14.6.8 Let F be a family of graphs on the labeled set of vertices
{1,2,...1}, and suppose that for any two members of F there is a triangle contained
in both of them. Then

1 /¢
Fl < =20),
<

Proof. Let N be the set of all (£) unordered pairs of vertices in T = {1,2...,t},
and consider F as a family of subsets of N. Let G be the family of all subsets of
N consisting of the edge-sets of unions of two vertex disjoint nearly equal complete

graphsin T'. Let
- (2)+(7)

denote the number of edges of such a union, and let m denote the total number of
members in G. By symmetry, each edge in NV lies in precisely k& = % members of

G. The crucial point is that every two graphs in F must have at Ieasi one common
edge in each G € @G, since their intersection contains a triangle (and there are no
triangles in the complement of G.) Therefore, in the notation of Corollary 14.6.7,
the cardinality of each F; is at most 2°~1. We thus conclude that

sm

1F1G) < (221,

implying that
7| < 26)-G)/s,
and the desired result follows, as s < (1) /2. W

Simonovits and Sbs conjectured that if F satisfies the assumptions of the last
corollary, then, in fact,

1 /¢
F| < =20),
FI< g
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which, if true, is tight. This remains open. It seems plausible to conjecture that there
is some absolute constant e > 0, such that for any fixed graph H which is not a star-
forest (that is, a forest each connected component of which is a star), the following
holds. Let F be a family of graphs on the labeled set of vertices {1,2,...t}, and
suppose that for any two members of JF there is a copy of H contained in both of
them. Then

1l < (3 - 20).

- — €
2
This is also open, though it is not difficult to show that it is true for every H of
chromatic number at least 3, and that the conclusion fails for every star-forest H.

14.7 EXERCISES

1. Suppose that in the (z1, ..., zx) tenure game of §14.3 the object of Paul is to
maximize the number of faculty receiving tenure while the object of Carole
is to minimize that number. Let v be that number with perfect play. Prove

k —
v= |3, 227
2. Let Ay,..., A, C {1,...,m} with 37 2-14: < 1. Paul and Carole
alternately select distinct vertices from {1, . . ., m}, Paul having the first move,
until all vertices have been selected. Carole wins if she has selected all the
vertices of some A;. Paul wins if Carole does not win. Give a winning strategy
for Paul.

3. Let F be a family of graphs on the labeled set of vertices {1,2,...2t}, and
suppose that for any two members of F there is a perfect matching of ¢ edges
contained in both of them. Prove that

7| < 2(5),

4. (Han’s inequality). Let X = (Xi,...,Xm) be a random variable, and let
H(X) denote its entropy. Forasubset I of {1,2, ..., m}, let X(I) denote the
random variable (X;)icr. For 1 < ¢ < m, define

1
H,(X) = @) > H(X(Q)).
g-1 Qc{lv"'m}lel:q

Prove that
Hi(X)> Hy(X)>...> Hp(X) = H(X).

5. Let X; = +1, 1 < 4 < n be uniform and independent and let S, = 3", X;.
Let0 < p < 3. Prove
Pr[S, > (1 — 2p)n] < 2H@Ing-n

by computing precisely the Chernoff bound min x> E[e*5=]e~*(1=2P)_(The
case p = 0 shall require a slight adjustment in the method though the end result
is the same.)



THE PROBABILISTIC LENS:
An Extremal Graph

Let T (top) and B (bottom) be disjointsets of size m and let G be a bipartite graph,
all edges between T' and B. Suppose G contains no 4-cycle. How many edges can
G have? This is a question from Extremal Graph Theory. Surprisingly, for some m
we may give the precise answer.

Suppose m = n? + n 4 1 and that a projective plane P of order n (and hence
containing m points) exists. ldentify 7" with the points of P and B with the lines of
P and define G = Gp by letting ¢t € T be adjacent to & € B if and only if point
tison line b in P. As two points cannot lie on two lines, G p contains no 4-cycle.
We claim that such a Gp has the largest number of edges of any G containing no
4-cycle and further that any G containing no 4-cycle and having that many edges can
be written in the form G = Gp.

Suppose G contains no 4-cycle. Let b1,b2 € B be a uniformly selected pair
of distinct elements. For ¢ € T let D(¢) be the set of b € B adjacent to ¢ and
d(t) = |D(t)|, the degree of t. Let I; be the indicator random variable for ¢ being
adjacent to by, b2. Then

E[L] = Pr[by, b, € D(t)] = (d(;))/(gw)

Now set

X=> 1,

teT

the number of ¢ € T adjacent to b1, b2. Then X < 1, i.e., all b1, by have at most
one common neighbor. (X < 1 is actually equivalent to G containing no 4-cycle.)

246



247

Linearity of expectation gives

BX] =Y B =Y (d(;)) / (’;)

teT teT

Letd = m~1 3", d(t) be the average degree. Convexity of the function (%) gives

= (5 (G)=G) ()

teT

with equality if and only if all ¢ € T" have the same degree. Now

1> max X > E[X] > m(z)/(’:)

When G = Gp all d(z) = d (every line has m + 1 points) and X = 1 always (two
points determine precisely one line) so that the above inequalities are all equalities

() (3) |

Any graph with more edges would have a strictly larger d so that 1 > m (%) /(%)
would fail and the graph would contain a 4-cycle.

Suppose further G has the same number of edges as Gp and contains no 4-cycle.
The inequalities then must be equalities and so X = 1 always. Define a geometry
with points 7" and lines given by the neighbor sets of 6 € B. As X = 1 any two
points determine a unique line. Reversing the roles of T', B one also has that any two
lines must determine a unique point. Thus G is generated from a projective plane.
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Derandomization

Math is natural. Nobody could have invented the mathematical universe. It was
there, waiting to be discovered, and it’s crazy; it’s bizarre.
—John Conway

As mentioned in Chapter 1, the probabilistic method supplies, in many cases,
effective randomized algorithms for various algorithmic problems. In some cases,
these algorithms can be derandomized and converted into deterministic ones. In this
chapter we discuss some examples.

15.1 THE METHOD OF CONDITIONAL PROBABILITIES

An easy application of the basic probabilistic method implies the following statement,
which is a special case of Theorem 2.3.1.

Proposition 15.1.1 For every integer n there exists a coloring of the edges of the
complete graph K,, by two colors so that the total number of monochromatic copies
of K4 is at most (%) - 27°.

Indeed, (%) -2~ is the expected number of monochromatic copies of K4 ina random
2-edge-coloring of K,,, and hence a coloring as above exists.

Can we actually find deterministically such a coloring in time which is polynomial
inn ? Let us describe a procedure that does it, and is a special case of a general
technique called the method of conditional probabilities.

We first need to define a weight function for any partially colored K ,,. Given a
coloring of some of the edges of K,, by red and blue, we define, for each copy K of

249
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K, in K,,, aweight w(K) as follows. If at least one edge of K is colored red and
at least one edge is colored blue then w(K) = 0. If no edge of K is colored, then
w(K) = 275, and if » > 1 edges of K are colored, all with the same color, then
w(K) = 27~%. Also define the total weight W of the partially colored K ,, as the sum
> w(K), as K ranges over all copies of K4 in K,,. Observe that the weight of each
copy K of K4 is precisely the probability that it will be monochromatic, if all the
presently uncolored edges of K,, will be assigned randomly and independently one
of the two colors red and blue. Hence, by linearity of expectation, the total weight
W is simply the expected number of monochromatic copies of K4 in such a random
extension of the partial coloring of K, to a full coloring.

We can now describe the procedure for finding a coloring as in proposition 15.1.1.
Order the (’) edges of K, arbitrarily, and construct the desired 2-coloring by coloring
each edge either red or blue in its turn. Suppose ey, ..., e;—1 have already been
colored, and we now have to color e;. Let W be the weight of K,,, as defined above,
with respect to the given partial coloringc of ey, . .., e;_1. Similarly, let W,..4 be the
weight of K,, with respect to the partial coloring obtained from ¢ by coloring e ; red,
and let Wy, be the weight of K, with respect to the partial coloring obtained from
¢ by coloring e; blue. By the definition of W (and as follows from its interpretation
as an expected value)

Wred + Wblue

5 .

The color of e; is now chosen so as to minimize the resulting weight, i.e., if Wyeq <
Wiiue then we color e; red, otherwise, we color it blue. By the above inequality, the
weight function never increases during the algorithm. Since at the beginning its value
is exactly (Z) 275, its value at the end is at most this quantity. However, at the end all
edges are colored, and the weight is precisely the number of monochromatic copies
of K4. Thus the procedure above produces, deterministically and in polynomial time,
a 2-edge-coloring of K, satisfying the conclusion of Proposition 15.1.1.

Let us describe, now, the method of conditional probabilities in a more general
setting. An instance of this method is due, implicitly, to Erd 8s and Selfridge (1973) ,
and more explicit examples appear in Spencer (1987) and in Raghavan (1988) .
Suppose we have a probability space, and assume, for simplicity, that it is symmetric
and contains 2° points, denoted by the binary vectors of length I. Let A,..., A, be
a collection of events and suppose that 3~;_, Pr(A4;) = k. Thus, k is the expected
value of the number of events A; that hold, and hence there is a point (e, ..., &)
in the space in which at most & events hold. Our objective is to find such a point
deterministically.

For each choice of (1, . . ., €;_1) and for each event A;, the conditional probability

W =

Pr(A;|e€1,...,€-1)

of the event A; given the values of €4, ...,¢;_1 is clearly the average of the two
conditional probabilities corresponding to the two possible choices for ¢ ;. l.e.,

Pr(A;|er,...,€-1,0)+ Pr(Ai|€e1,...,6-1,1)

Pr(A;|e€1,...,6_1) = 5
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Consequently,

Zle Pr(A;| e, ..., €_1)

B S Pr(Ai | €1,0065-1,0)4 30 Pr(Ai | €1,.065-1,1)
- 2

> Min {Z::l PT(Ai |€1""a€j—1a0)a2::1 PT(Ai | €1y 5651, 1)}

Therefore, if the values of ¢; are chosen, each one in its turn, so as to minimize the
value of 3>7_, Pr(A;|e1,...,¢€;), thenthe value of this sum cannot increase. Since
this sum is & at the beginning, it follows that it is at most & at the end. But at the end
each ¢; is fixed, and hence the value of this sum is precisely the number of events A;
that hold at the point (€4, . . ., €), showing that our procedure works.

Note that the assumptions that the probability space is symmetric and that it has 2!
points can be relaxed. The procedure above is efficient provided ! is not too large (as
is usually the case in combinatorial examples), and, more importantly, provided the
conditional probabilities Pr(A; | €1, ..., €;) can be computed efficiently for each of
the events A; and for each possible value of €1, ..., ¢;. This is, indeed, the case in
the example considered in Propostion 15.1.1. However, there are many interesting
examples where this is not the case. A trick that can be useful in such cases is the
introduction of pessimistic estimators, introduced by Raghavan (1988) . Consider,
again, the symmetric probability space with 2¢ points described above, and the events
Ay, ..., As init. Suppose that for each event A;, and for each 0 < j < [, we have a
function f}(el, ..., €5), which can be efficiently computed. Assume, also , that

f;_l(el, ..o €-1) > Min {f;(el, .o €21, 0), f;(el, oa€-o1, 1)}, (15.1)
and that f;f is an upper bound on the conditional probabilities for the event 4 ;, i.e.,

fier, .- 65) > Pr(Ai| e, ... ¢€). (15.2)
(In fact, it suffices to assume such inequalities for the sums over i, but the version
here suffices for our purpose.) In this case, if in the beginning >°;_, f§ < ¢, and we
choose the values of the ¢; so as to minimize the sum Y-7_, f}(e1...,¢;) in each
step, we getinthe end apoint (e, - . ., &) forwhichthesum >0, fi(e1,..., &) <t
The number of events A; that hold in this point is at most ¢. The functions f;f in the
argument above are called pessimistic estimators.

Thisenables us to obtain efficientalgorithms in some cases where there is no known
efficient way of computing the required conditional probabilities. The following
theorem is an example; it is related to some of the results in Chapter 12 and Chapter
14.

Theorem 15.1.2 Let (ai;);' - be an n by n matrix of reals, where —1 < a;; < 1
forall4, j. Then one can find, in polynomial time, €4, ..., &, € {—1, 1} such that for

every 3, 1 < ¢ < mn, the inequality | Z]".ﬂ €;ai;| < +/2n1n(2n) holds.
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Proof. Consider the symmetric probability space on the 2™ points corresponding to
the 2™ possible vectors (e1,...,€,) € {—1,1}™. Define 8 = /2nn(2n) and let
A; be the event | 377, e;ai;| > 8. We next show that the method of conditional
probabilities with appropriate pessimistic estimators enables us to find efficiently a
point of the space in which no event A; holds.

Define a = B/n and let G(z) be the function

G(z) = cosh(az) = %

By comparing the terms of the corresponding Taylor series it is easy to see that for
every real z:

azz'z
G(z) < ™7,

with strict inequality if both z and « are not 0. It is also simple to check that for
every real z and y:

G(z+y)+G(z—y)

G)G() = :

We can now define the functions f;; which will form our pessimistic estimators. For
each 1 < i< mnandforeaches,...,e, € {—1,1} we define

n

f;;(el, coy€p) = 2e_aﬂG(Z €j04j) H G(aij).

=1 J=p+1

Obviously, these functions can be efficiently computed. It remains to check that
they satisfy the conditions described in equations (15.1) and (15.2), and that the sum
S féisless than 1. This is proved in the following claims.

Claim6 Forevery 1 <i<mandeverye,...,ep_1 € {—1,1}:

f;;—l(ela .. 'aep—l) Z Min {f;;(ela ceey€p—1, _1)a f;;(ela ceey€p—1, 1)}

Proof. Putv = ?;i €;aij. By the definition of f;; and by the properties of G:

n

fisier,o oy epo1) = 267 G()G(aiy) [ Glasy)

j=p+1

s Gv—aip) + G(v +aip) +

= 2eF P 5 ? H G(asj)
J=p+1

_ f;;(ela"'aep—la_]-)+f;;(€1a"'a€p—1a1)

B 2

> Min { f;;(ela <o €p—1, _1)a f;;(ela <o €p—1, 1)}a
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completing the proof of the claim. B
Claim7 Forevery1 <i<mandeverye,...,ep_1 € {—1,1}:

f;;_l(el, v €p1) > Pr(Ai|€er, ..., ep-1).

Proof. Define v as in the proof of Claim 6. Then:

Pr(A;|e1,...,6p-1) < Pr(v+ Ze]-aij > fB) + Pr(—v — Ze]-ai]- > f)

izp jzp
= Pr(e®tEis i%i) 5 9P 4 Pr(e= @0+ Ei5p €i%is) 5 )
< eave—aﬂE(ea(Ejzp Ejaij)) + e—ave—aﬂE(e—a(Ejzp Ejaij))
=2e"*?G(v) [[ G(ai;) = fi_1(e1,- - -, €p-1)-
izp
This completes the proof of Claim 7. H
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To establish the theorem it remains to show that >"7_, f§ < 1. Indeed, by the

properties of G and by the choice of « and 3:

Moreover, the first inequality is strict unless a;; = 0 for all 4, j, whereas the second

is strict unless afj = 1 for all ¢, 5. This completes the proof of the theorem. B

15.2 D-WISE INDEPENDENT RANDOM VARIABLES IN SMALL
SAMPLE SPACES

The complexity class NC is, roughly speaking, the class of all problems that can be
solved in time which is poly-logarithmic (in the size of the input) using a polynomial
number of parallel processors. Several models of computation, which are a theoretical
abstraction of the parallel computer, have been used in considering this class. The
most common one is the EREW (=Exclusive Read, Exclusive Write) PRAM, in which
different processors are not allowed to read from or write into the same memory cell

simultanously. See Karp and Ramachandran (1990) for more details.
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Let n denote the size of the input. There are several simple tasks that can be
easily performed in NC. For example, it is possible to copy the content of a cell ¢
into m = n?M) cells in time O(log »), using, say, m processors. To do so, consider
a complete binary tree with m leaves and associate each of its internal vertices with a
processor. At first, the processor corresponding to the root of the tree reads from ¢ and
writes its content in two cells, corresponding to its two children. Next, each of these
two, in parallel, reads from its cell and writes its content in two cells corresponding
to its two children. In general, at the i-th step all the processors whose distance from
the root of the tree is ¢ — 1 ,in parallel, read the content of ¢ previously stored in their
cells and write it twice. The procedure clearly ends in time O(logm), as claimed.
(In fact, it can be shown that O(m/ log m) processors suffice for this task but we do
not try to optimize this number here).

A similar technique can be used for computing the sum of m numbers with m
processors in time O(log m); We consider the numbers as if they lie on the leaves of
a complete binary tree with m leaves, and in the ¢ — th step each one of the processors
whose distance from the leaves is : computes, in parallel, the sum of the two numbers
previously computed by its children. The root will clearly have, in such a way, the
desired sum in time O(logm).

Let us now return to the edge-coloring problem of the complete graph K ,, discussed
in Proposition 15.1.1. By the remarks above, the problem of checking if in a given
edge-coloring there are at most (2)2‘5 monochromatic copies of K4 is in NC, i.e.,
this checking can be done in time (logn)?() -(in fact, in time O(logn))- using
n9(1) processors. Indeed, we can first copy the given coloring (%) times. Then we
assign a processor for each copy of K4 in K,,, and this processor checks if its copy
is monochromatic or not (all these checkings can be done in parallel, since we have
enough copies of the coloring). Finally, we sum the number of processors whose
copies are monochromatic. Clearly we can complete the work in time O(log ») using
n2() parallel processors.

Thus we can check, in NC, if a given coloring of K, satisfies the assertion
of Proposition 15.1.1. Can we find such a coloring deterministically in NC? The
method described in the previous section does not suffice, as the edges have been
colored one by one, so the procedure is sequential and requires time Q(n?). However,
it turns out that in fact we can find , in NC, a coloring with the desired properties
by applying a method which relies on a technique first suggested by Joffe (1974) ,
and later developed by many researchers. This method is a general technique for
converting randomized algorithms whose analysis only depends on d-wise rather
than fully independent random choices (for some constant &) into deterministic (and
in many cases also parallel) ones. Our approach here follows the one of Alon, Babai
and Itai (1986) , but for simplicity we only consider here the case of random variables
that take the two values 0, 1 with equal probability.

The basic idea is to replace an exponentially large sample space by one of poly-
nomial size. If a random variable on such a space takes a certain value with positive
probability, then we can find a point in the sample space in which this happens simply
by deterministically checking all the points. This can be done with no loss of time
by using a polynomial number of parallel processors. Note that for the edge-coloring
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problem considered in Proposition 15.1.1, 6-wise independence of the random vari-
ables corresponding to the colors of the edges suffice- since this already gives a
probability of 25 for each copy of K, to be monochromatic, and hence gives the re-
quired expected value of monochromatic copies. Therefore, for this specific example
it suffices to construct a sample space of size n®(*) and (%) random variables in it,
each taking the values 0 and 1 with probability 1/2, such that each 6 of the random
variables are independent.

Small sample spaces with many d-wise independent 0, 1-random variables in them
can be constructed from any linear error correcting code with appropriate parameters.
The construction we describe here is based on the binary BCH codes (see, e.g.,
MacWilliams and Sloane (1977) ).

Theorem 15.2.1 Suppose n = 2¥ — 1 andd = 2t + 1. Then there exists a symmetric
probability space 2 of size 2(n + 1)* and d-wise independent random variables
Y1, - - -, Yn OVer  each of which takes the values 0 and 1 with probability 1/2.

The space and the variables are explicitly constructed, given a representation of
the field F = GF(2*) as a k-dimensional algebra over GF(2).

Proof. Letz,, ..., z, bethen nonzero elements of F, represented as column-vectors
of length k over GF(2). Let H be the following 1 + k¢ by n matrix over GF(2):

1 1 1
L1 T2 e Lp,
3 3 3
Ty T2 Ty
2t—1 2t—1 2t—1

illl illz e :lln

This is the parity check matrix of the extended binary BCH code of length » and
designed distance 2t + 2. It is well known that any d = 2¢ 4+ 1 columns of H are
linearly independent over GF(2). For completeness, we present the proof in the next
lemma.

Lemma15.2.2 Any set of d = 2¢ + 1 columns of H is linearly independent over
GF(2).

Proof. LetJ C {1,2,...,n} be a subset of cardinality |J| = 2¢ + 1 of the set of
indices of the columns of H. Suppose that } . ; z; H; = 0, where H; denotes the
j-th column of H and z; € GF(2). To complete the proof we must show that z; = 0
for all j € J. By the assumption,

Zz]m; =0 (15.3)
jeJ

fori = 0 and for every odd 4 satisfying 1 < 4 < 2¢ — 1. Suppose, now, thata = 2°-1,
where [ < 2¢ — 1 is an odd number. By squaring the equation (15.3) for: =1 b
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times, using the fact that in characteristic 2, (u + v)? = u? + v2, and the fact that
since each z; is either 0 or 1, the equality z; = 27 holds for all 7, we conclude that
equation (15.3) holds for ¢ = a. Consequently, (15.3) holds for all 7, 0 < ¢ < 2¢.
This is a homogeneous system of 2¢ + 1 linear equations in 2¢ + 1 variables. The
matrix of the coefficients is a Vandermonde matrix, which is nonsingular. Thus, the
only solution is the trivial one z; = 0 for all € J, completing the proof of the
lemma. B

Returning to the proof of the theorem, we define @ = {1,2,...,2(n+ 1)*}, and
let A = (aij),5 € Q,1 < j < nbethe (0, 1)-matrix whose 2(n + 1)t = 2**+1 rows
are all the linear combinations (over G F(2)) of the rows of H. The sample space €
is now endowed with the uniform probability measure, and the random variable y ; is
defined by the formula y; (3) = a4 foralli € Q,1 < j < n.

It remains to show that the variables y; are d-wise independent, and that each
of them takes the values 0 and 1 with equal probability. For this we have to show
that for every set J of up to d columns of A, the rows of the || by |J| submatrix
Ay = (aij),i € Q, 7 € J take on each of the 271 (0, 1)-vectors of length | J| equally
often. However, by Lemma 15.2.2 the columns of the corresponding submatrix H ;
of H are linearly independent. The number of rows of A that are equal to any
given vector is precisely the number of linear combinations of the rows of H ; that
are equal to this vector. This number is the number of solutions of a system of
|J| linearly independent linear equations in k¢ + 1 variables, which is, of course,
2kt+1-171 "independent of the vector of free coefficients. This completes the proof
of the theorem. B

Theorem 15.2.1 supplies an efficient way of constructing, for every fixed d and
every n, asample space of size O(nl%2]) and n d-wise independent random variables
in it, each taking the values 0 and 1 with equal probability. In particular, we can use
such a space of size O((g)s) = O(n®) for finding a coloring as in Proposition 15.1.1
in NC. Several other applications of Theorem 15.2.1 appear in the paper of Alon et
al. (1986) .

It is natural to ask if the size O(nl%/2) can be improved. We next show that this
size is optimal, up to a constant factor (depending on d).

Let us call a random variable almost constant if it attains a single value with
probability 1. Let m(n, d) denote the function defined by:

/2
m(n,d) = Z (n) if d is even,
j=o M
and
(@ 1)/ n n—1 . .
m(n,d) = jz::O (J) + ((d— 1)/2) if d is odd.

Observe that for every fixed d, m(n, d) = Q(nl#/2]).

Proposition 15.2.3 If the random variables y, . . ., y, over the sample space Q are
d-wise independent and none of them is almost constant then |©2| > m(n, d).
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Note that we assume here neither that © is a symmetric space nor that the variables
y; are (0, 1)-variables.

Proof. Clearly we may assume that the expected value of each y; is 0 (since
otherwise we can replace y; by y; — E(y,)). For each subset S of {1, ...,n}, define
as = [[;csyj- Observe that since no y; is almost constant and since the variables
are d-wise independent

B(asas) = [ Var(y;) > 0 (15.4)
jES

for all S satisfying |.S| < d. Similarly, for all S and T satisfying |S U T'| < d and
S #+ T we have

Blayar)= [] Ver(y;) [J[ E@)=0. (15.5)
jesnT JESUT\(SNT)
Let S1,...Sm, Wwhere m = m(n, d), be subsets of {1, ..., n} such that the union of

each two is of size at most d. (Take all subsets of size at most d/2, and if d is odd
add all the subsets of size (d + 1)/2 containing 1.)

To complete the proof, we show that the m functions a5; (considered as real
vectors of length |Q2|) are linearly independent. This impliesthat |?] > m = m(n, d),
as stated in the proposition.

To prove linear independence, suppose Z;"Zl cjas; = 0. Multiplyingby a 5, and
computing expected values we obtain, by (15.5):

0= ZC]'E(asjasi) = CiE(asiasi).
j=1

This implies, by (15.4), that ¢; = 0 for all z. The required linear independence
follows, completing the proof. &

The last proposition shows that the size of a sample space with n d-wise inde-
pendent nontrivial random variables can be polynomial in n only when 4 is fixed.
However, as shown by Naor and Naor (1990), if we only require the random variables
to be almost d-wise independent, the size can be polynomial even when d = Q(logn).
Such sample spaces and random variables, that can be constructed explicitly in several
ways, have various interesting applications in which almost d-wise independence suf-
fices. More details appear in Naor and Naor (1990) and in Alon, Goldreich, Hastad
and Peralta (1990) .

15.3 EXERCISES

1. Let A1,..., A, C {1,...,m} with 337, 2t=14: < 1. Prove there exists
a two coloring x : {1,...,m} — {0, 1} with no A; monochromatic. With
m = n give a deterministic algorithm to find such a x in polynomial time.
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2. Describe a deterministic algorithm which, given n, constructs, in time polyno-
mial in n, a family F of n° subsets of the set N = {1, 2,...,n}, where each
F € Fis of size at most 10 log n and for every family G of n subsets each of
cardinality n/2 of N, there is an F' € F that intersects all members of G.



THE PROBABILISTIC LENS:

Crossing Numbers,
Incidences, Sums and
Products

In this lens we start with a simple result in graph theory, whose proof is prob-
abilistic, and then describe some of its fascinating consequences in Combinatorial
Geometry and Combinatorial Number Theory. Some versions of most of these seem-
ingly unrelated consequences have been proved before, in a far more complicated
manner. Before the discovery of the new proofs shown here, the only clue that there
might be a connection between all of them has been the fact that Endre Szemerédi is
one of the co-authors of each of the papers providing the first proofs.

An embedding of a graph G = (V, E) in the plane is a planar representation of
it, where each vertex is represented by a point in the plane, and each edge uv is
represented by a curve connecting the points corresponding to the vertices  and v.
The crossing number of such an embedding is the number of pairs of intersecting
curves that correspond to pairs of edges with no common endpoints. The crossing
number ¢r(G) of G is the minimum possible crossing number in an embedding of
it in the plane. The following theorem was proved by Ajtai, Chvatal, Newborn and
Szemerédi (1982) and, independently, by Leighton. Here we describe a very short
probabilistic proof.

Theorem 1 The crossing number of any simple graph G = (V, E) with |E| > 4|V|
is at least %.

Proof. By Euler’s formulaany simple planar graph with n vertices has at most 3n — 6
edges, implying that the crossing number of any simple graph with » vertices and m

259
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edgesisatleastm—(3n—6) > m—3n. Let G = (V, E) be agraph with | E| > 4|V|
embedded in the plane with ¢ = ¢r(G) crossings. Let H be the random induced
subgraph of G obtained by picking each vertex of G, randomly and independently,
to be a vertex of H with probability p (where p will be chosen later). The expected
number of vertices of H is p|V|, the expected number of its edges is p?|E|, and
the expected number of crossings in its given embedding is p*t, implying that the
expected value of its crossing number is at most p*t. Therefore, p*t > p?|E|—3p|V|,
implying that
E \4

er(G) =1t > %;—— %g.
Without trying to optimize the constant factor, substitute p = 4|V|/|E| ( < 1), to
get the desired result. B
Székely (1997) noticed that this result can be applied to obtain a surprisingly simple
proof of a result of Szemerédi and TrotterTrotter in Combinatorial Geometry. The
original proof is far more complicated.

Theorem 2 Let P be a set of n distinct points in the plane, and let L be a set of m
distinct lines. Then, the number of incidences between the members of P and those
of L (that is, the number of pairs (p,1) withp € P, I € L and p € [) is at most
c(m?/3n?/3 1 m 4 n), for some absolute constant c.

Proof. Denote the number of incidences by I. Let G = (V, E) be the graph
whose vertices are all members of P, where two are adjacent if and only if they are
consecutive points of P on some linein L. Clearly, |V| = nand |E| = I — m. Note
that G is already given embedded in the plane, where the edges are represented by
segments of the corresponding lines in L. In this embedding, every crossing is an
intersection point of two members of L, implying that cr(G) < () < m?/2. By
Theorem 1, either I — m = |E| < 4|V| = 4n, thatis, I < m + 4n, or

m? (I —m)3
64n2 '

implying that 7 < (32)/3m?/3n%/3 1 m. Inboth cases I < 4(m?/3n?/3 4 m +n),
completing the proof. B

An analogous argument shows that the maximum possible number of incidences
between a set of » points and a set of m unit cycles in the plane does not exceed
O(m?/3n?/3 1 m4-n), and this implies that the number of unit distances determined
by a set of » points in the plane is at most O(n*/3). While the above upper bound
for the number of incidences of points and lines is sharp, up to a constant factor, an
old conjecture of Erdds asserts that the maximum possible number of unit distances
determined by a set of » points in the plane is at most c.n'*¢ for any e > 0. The
O(n*/3) estimate is, however, the best known upper bound, and has first been proved
by Spencer, Szemerédi and Trotter in a far more complicated way.

Elekes (1997) found several applications of Theorem 2 in Additive Number Theory.
Here, too, the proofs are amazingly simple. Here is a representative result.
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Theorem 3 For any three sets A,B and C of s real numbers each,

|A-B+C|=|{ab+c: ac A bec B,cc C} > Q(s*?).

Proof. Put R = A- B + C, |R| = r and define
P={(a,t):a€c AtcR}, L={y=bz+c:beB,ceC}.

Thus P is a set of n = sr points in the plane, L is a set of m = s2 lines in the plane,
and each liney = bz + cin L is incident with s points of P, thatis, with all the points
{a,ab+ c) : a € A}. Therefore, by Theorem 2, s* < 4(s*/3(s7)?/3 + sr 4 5?),
implying that 7 > Q(s3/2), as needed. W

The same method implies that for every set A of n reals, either | A+ A| > Q(n5/4)
or|A-A| > n5/%, greatly improving and simplifyinga result of Erd 6s and Szemerédi.






Appendix A

Bounding of Large
Deviations

A.1 BOUNDING OF LARGE DEVIATIONS

We give here some basic bounds on large deviations that are useful when employing
the probabilistic method. Our treatment is self-contained. Most of the results may be
found in, or immediately derived from, the seminal paper of Chernoff (1952) . While
we are guided by asymptotic considerations the inequalities are proven for all values
of the parameters in the specified region. The first result, while specialized, contains
basic ideas found throughout the Appendix.

Theorem A.1.1 Let X;, 1 <1 < n, be mutually independent random variables with

1
Pr[X; = +1]=Pr[X; = 1] = 2

and set, following the usual convention,

Leta > 0. Then ,
Pr[S, > a] < e ® /%",
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Remark. For large n the Central Limit Theorem implies that S,, is approximately
normal with zero mean and standard deviation 4/z. In particular, for any fixed u

* 1 2
lim Pr[S, > uv/n :/ et /zdt,
Jim Prls, > uyi) = [ ——

which one can show directly is less than e~*’/2. Our proof, we emphasize once
again, is valid for all n.and all a > 0.

We require Markov’s inequality which states: Suppose that Y is an arbitrary
nonnegative random variable, @ > 0. Then

Pr[Y > aE[Y]] < 1/e.

Proof.[A.1.1] Fix n,a and let, for the moment, A > 0 be arbitrary. For1 <i<mn

E[e*i] = (e)‘ + e_)‘)/2 = cosh(A).
We require the inequality
cosh(A) < Xl

valid forall A > 0, the special case @ = 0 of Lemma A.5 below. (The inequality may
be more easily shown by comparing the Taylor series of the two functions termwise.)

Since the X; are mutually independent so are the e**:, expectations multiply and

E[e*S"] = ﬁ E[e*¥] = [cosh(\)]" < X' /2.

=1
We note that S,, > a ifand only if e*» > e*? and apply Markov’s inequality so that

Pr[S, > a] = Pr[e*’ > e*%] < E[e*5r]/er® < A/,

We set A = a/n to optimize the inequality, Pr[S, > a] < e~ /2" as claimed. W
By symmetry we immediately have

Corollary A.1.2 Under the assumptions of Theorem A.1.1
Pr[|Sp| > a] < 2¢~%/%",

Our remaining results will deal with distributions X of the following prescribed
type.
Assumptions A.1.3

D1,---,Pn €[0,1]
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p=(@1+...+pn)/n
X1,...,X, mutually independent with
PrlX;=1—-pi]=p
PrX; = —p]=1-p
X=X1+...+X,.
Remark. Clearly F[X] = E[X;] = 0. When all p; = 1/2, X has distribution

Sn/2. When all p; = p, X has distribution B(n, p) — np where B(n, p) is the usual
Binomial Distribution.

Theorem A.1.4 Under assumptions A.1.3 and witha > 0
Pr[X > a] < e2a%/m,
LemmaA.1.5 For all reals , 8 with |a| < 1
cosh(B) + asinh(B) < e /2+f,
Proof. This is immediate if « = +1 or & = —1 or |3] > 100. If the Lemma were
false the function
f(a, ) = cosh(8) + asinh(8) — e '/2+eP
would assume a positive global maximum in the interior of the rectangle
R={(e,B): la| < 1,|8] < 100}.
Setting partial derivatives equal to zero we find
sinh(8) + a cosh(8) = (a + B)ef /#+eP,

sinh(B) = Igeﬂz/2+aﬂ,

and thus tanh(8) = 8 which implies 8 = 0. But f(a, 0) = 0 for all &, a contradic-
tion. B

LemmaA.1.6 Forallé € [0,1] and all A

ge (1) 4 (1-8e < /8,

Proof. Settingd = (1 + «)/2 and X = 23, Lemma A.1.6 reduces to Lemma A.5. B
Proof.[Theorem A.1.4] Let, for the moment, A > 0 be arbitrary.

E[e)‘X"] — pie)‘(l_pi) + (1 _pi)e—)\Pi < e)\2/8
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by Lemma A.1.6. Then

Applying Markov’s inequality
Pr[X > a] = Pr[e*® > e*?] < E[e*¥]/e* < ern/8=Aa,

We set A = 4a/n to optimize the inequality: Pr[X > a] < e~2%"/™ as claimed. W
Again by symmetry we immediately have

Corollary A.1.7 Under assumptions A.1.3 and witha > 0
Pr[|X| > a] < 2¢72% /™,
Under assumptions A.1.3 with X arbitrary

E[e**] = [[i2, B[] = [[ie[pie* 779 + (1 — py)e™*Pi] =
e [T [pie* + (1 — pi)].

With X fixed the function
flz) = ln[me)‘ +1—=2]=1n[Bz + 1] with B = e* — 1

is concave and hence (Jensen’s Inequality)

n

> f(m:) < nf(p)-

=1
Exponentiating both sides
[Ipe* + (1 = pi)] < [pe* + (1 - )],
=1
so that

Lemma A.1.8 Under the assumptions A.1.3
B[] < e [pe* + (1 - p)|™.
Theorem A.1.9 Under the assumptions A.1.3 and witha > 0
Pr[X > a] < e *"[pe* + (1 — p)|"e **

forall A > 0.

Proof. Pr[X > a] = Pr[e*® > e*?] < E[e**]/e**. Now apply Lemma A.1.8. B
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Remark. For given p, n, a, an optimal assignment of A in Theorem A.1.9 is found
by elementary calculus to be

Lopy_atme )

A =In[( ’ " P

This value is oftentimes too cumbersome to be useful. We employ suboptimal X to
achieve more convenient results.

Setting A = In[1+ a/pn] and using the factthat (1 +a/n)™ < e*, Theorem A.1.9
implies
Corollary A.1.10

Pr[X > a] < e*7P" In(1+a/pn)—aln(l+a/pn)

Theorem A.1.11
Pr[X > a] < e—0’/2pn+ta’/2(pn)?

Proof. With u = a/pn apply the inequality
In(1+u) > u—u?/2,

valid for all » > 0, to Corollary A.1.10. &

When all p; = p, X has variance np(1 — p). With p = o(1) and a = o(pn) this
bound reflects the approximation of X by a Normal Distribution with variance ~ np.
The bound of Theorem A.1.11 hits a minimum at @ = 2pn/3. Fora > 2pn/3 we
have the simple bound

Pr[X > a] < Pr[X > 2pn/3] < e~ 2P%/27,
This is improved by the following.
Theorem A.1.12 Forg > 1
Pr[X > (B — 1)pn] < [ef~15=P]Pm.
Proof. Direct “plug in” to Corollary A.1.10. &

X + pn may be interpreted as the number of successes in » independent trials
when the probability of success in the i-th trial is p;.

Theorem A.1.13 Under assumptions A.1.3 and witha > 0,
Pr[X < —a] < e’ /2pm,

Note that one cannot simply employ “symmetry” as then the rolesof pand 1 — p
are interchanged.
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Proof. Let A > 0 be, for the moment, arbitrary. Then by the argument preceding
A.l8
Ele*] < pe™* + (1 - p)|™.

Thus
Pr[X < —a] = Prle™** > e*] < *"[pe > + (1 — p)]"e 7,
analogous to Theorem A.1.9. We employ the inequality
1+u<e,
valid for all «, so that
pet +(1-p)=1+ (> —1)p< el

and
PI‘[X < _a] S e)\pn+np(e_)‘—1)—)\a — enp(e_)‘—1+)\)—)\a‘

We employ the inequality
e <1—Xx+42%/2,

valid for all X > 0. (Note: The analogous inequality e* < 1 + X + A%/2 is not valid
for A > 0 and so this method, when applied to Pr[X > a], requires an “error” term
as the one found in Theorem A.1.11.) Now

Pr[X < —q] < e’ /2-2a,

We set A = a/np to optimize the inequality: Pr[X < —a] < e=%"/2P™ as claimed.
|
For clarity the following result is often useful.

Corollary A.1.14 LetY be the sum of mutually independent indicator random vari-
ables, . = E[Y]. Foralle > 0

PrY — ul > eu] < 2e°#

where ¢, > 0 depends only on e.

Proof. Apply theorems A.1.12, A.1.13withY = X + pn and
ce = min[— In(ef(1 4 €)= (11€)), €2/2].

|

The asymmetry between Pr[X < a] and Pr[X > a] given by Theorems A.1.12,
A.1.13 is real. The estimation of X by a normal distribution with zero mean and
variance np is roughly valid for estimating Pr[X < a] for any a and for estimating
Pr[X > a] while a = o(np). But when e and np are comparable or when a >> np
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the Poisson behaviour “takes over” and Pr[X > a] cannot be accurately estimated
by using the normal distribution.

We conclude with two large deviation results involving distributions other than
sums of indicator random variables.

Theorem A.1.15 Let P have Poisson distribution with mean p. Fore > 0
Pr[P < p(1—€)] < ™4/,

Pr[P > (1 +€)] < [ef(1+¢)~(+9]".
Proof. For any s

Apply Theorems A.1.12,A.1.13. &

Theorem A.1.16 Let X;, 1 < 7 < n, be mutually indpendent with all E[X;] = 0
andall | X;| <1.Set§=X; +...4+ X,. Then

Pr[S > a] < e/,

Proof. Set, as in the proof of theorem A.1.1, A = a/n. Set

A e r et _e X
h(z) = 5 + 5 z

Forz € [-1,1],€*® < h(z). (y = h(z) is the chord through the points z = +1 of
the convex curve y = e**.) Thus

E[e*] < E[h(X;)] = R(E[X;]) = h(0) = cosh A.
The remainder of the proof followsas in A.1.1. &

Theorem A.1.17 Suppose E[X] = 0 and no two values of X are ever more than
one apart. Then for all A > 0

E[eAX] < e)\z/s‘

Proof. Fix b € [~3, 3] with X € [=4F?, +LEP]. Let y = h(z) be the straight line
intersecting the curve y = e*® at the points (+1+5)/2). Ase** isa convex function,

e*® < h(z) forall z € [=3F2, 1421 Thus
E[e*] < E[M(X)] = h[E(X)] = h(0).

We calculate h(0) = e*/2[cosh(A/2) — bsinh()/2)] which is at most e**/® by
Lemma A151
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Theorem A.1.18 Let X;, 1 < 2 < n be independent random variables with each
E[X;] = 0 and no two values of any X; ever more than one apart. [We allow,
however, values of different X;, X; to be further apart.] Set S = X1+ ...+ X,.
Then

Pr[S > a] < e~2%,

Proof. E[e*S] = [[I., E[e*X¢] < e®*°/8 by Theorem A.1.17 Then for A > 0
)\2
Pr[S > a] = Pr[e*® > €*?] < exp [nT — )\a]

and we set A = 4a/n. B

We have been roughly guided by the notion that if X has mean zero and variance
o2 then Pr[X > ac] should go like e =2°/2. There are times this idea is badly wrong.
Consider Assumptions A.3 with all p; = 1/n so that X = P, — 1 where P, has the
Binomial Distribution B(n, 1/n) which is asymptotically P, the Poisson distribution
with mean one. Then E[X] = 0 and Var[X] ~ 1. For a fixed Pr[X = a] — m
which is far bigger than e=%*/2_ With this cautionary preamble, we give a general
situation for which the notion is asymptotically correct when e is not too large.

Theorem A.1.19 Forevery C > 0ande > 0there exists § > 0 so that the following
holds: Let X;, 1 < ¢ < n, n arbitrary, be independent random variables with
E[X ]_0|X|<CandVar[ =02 SetX =37 X,ando? =37 o7
so that Var[X] = 2. Thenfor 0 < a < éc

Pr[X > ao] < e 5 -e),
Proof. We set A = a/osothat 0 < A < 4. Then
- 22 >
k1 _ k
2_: X =1+ 5ol + Z E[XF].

As | XF| < C¥~2X2 we bound
E[Xf]SE[IXfI] < C*?E[X}] = C* %

For k > 3 we bound 2 < G ), so that

We choose ¢ to satisfy e€? < 1 4+¢. As )

IN
o,

A2 A2
E[e* ]<1+70 (14+¢) <exp [703(1—1—5)].
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This inequality has held for all X; so

E[e*] = HE[e)‘X"] < exp [%20'2(1 + 5)]

=1

and

A.2 EXERCISES

1. The Hajo6s number of a graph G is the maximum number & such that there
are k vertices in G with a path between each pair so that all the (’;) paths are
internally pairwise vertex disjoint (and no vertex is an internal vertex of a path
and an endpoint of another). Is there a graph whose chromatic number exceeds
twice its Hajos number ?

2. Fortwo subsets A and B of the set Z,,, of integers modulom, and forag € Z,,,
denote
s(A,B,g) = [{(a,b):a € A,be B,a+b=g}|.

For a partition of Z,,, into two disjoint sets Z,, = AU B, AN B = {§ denote
¢(A,B) = mazycz, |s(4, A, z)+ s(B,B,z) — 2s(A, B, ).

Prove that for every odd m there is a partition of Z,,, into two disjoint sets A
and B such thatc(A4, B) = O(y/mlogm).

3. Let N be the standard normal random variable, with distribution function
F(t) = (2m)~1/2e=%*/2, Find E[e*V] exactly. For @ > 0 find

minyso E[e*¥]e~* precisely. This gives the indexauthorChernoff Bound on

Pr[N > a]. How does this compare for a large with the actual Pr[N > q]?



THE PROBABILISTIC LENS:

Triangle-free graphs have
large Independence numbers

Let o(G) denote the independence number of a graph G. Itis easy and well known
that for every graph G on n vertices with maximum degree d, o(G) > n/(d + 1).
Ajtai, Komlbs and Szemerédi (1980) showed that in case G is triangle-free, this can
be improved by a logarithmic factor and in fact a(G) > enlogd/d, where ¢ is an
absolute positive constant. Shearer (1983) simplified the proof and improved the
constant factor to its best possible value ¢ = 1 + o(1). Here is a very short proof,
without any attempts to optimize ¢, which is based on a different technique of Shearer
(1995) and its modification in Alon (1996) .

Proposition 1 Let G = (V, E) be a triangle-free graph on » vertices with maximum
degree at most d > 1. Then

nlogd
o(G) > 5,

where the logarithm here and in what follows is in base 2.

Proof. If, say, d < 16 the result follows from the trivial bound «(G) > n/(d + 1)
and hence we may and will assume that d > 16. Let W be a random independent set
of vertices in G, chosen uniformly among all independent sets in G. For each vertex
v € V define a random variable X, = d|{v} N W|+ |[N(v) N W|, where N(v)
denotes the set of all neighbors of v. We claim that the expectation of X, satisfies
E(X,) > 54,

To prove this claim, let H denote the induced subgraph of G on V — (N(v) U {v}),
fix an independent set S in H and let X denote the set of all non-neighbors of S in
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the set N(v), | X| = «. It suffices to show that the conditional expectation

logd

B(X,|WNV(H) = 5) > =2

(1.1)

for each possible S. Conditioning on the intersection W N V(H) = S there are
precisely 2% + 1 possibilities for W: one in which W = § U {v} and 2* in which
v & W and W is the union of S with a subset of X. It follows that the conditional
expectation considered in (1.1) is precisely # +22%-1/(2% 4 1). To check that the
last quantity is at least log d/4 observe that the assumption that this is false implies
thatz > 1and 2%(log d — 2z) > 4d — log d, showing thatlogd > 2z > 2 and hence
4d —logd < v/d(logd — 2), which is false for all d > 16. Therefore,

> logd,

E(X,|WNV(H)=S8)> =%

establishing the claim.

By linearity of expectation we conclude that the expected value of the sum
> wey Xo is at least %g—d. On the other hand, this sum is clearly at most 2d|W|,
since each vertex w € W contributes d to the term X, in this sum, and its degree in
G, which is at most d, to the sum of all other terms X,,. It follows that the expected
size of W is at least "—g‘ilg—d, and hence there is an independent set of size at least this
expectation, completing the proof. B
The Ramsey Number =(3, k) is the minimum number = such that any graph with
at least r vertices contains either a triangle or an independent set of size k. The
asymptotic behaviour of this function has been studied for over fifty years. It turns
out that »(3, k) = ©(k?/logk). The lower bound is a recent result of Kim (1995)
, based on a delicate probabilistic construction together with some thirty pages of
computation. There is no known explicit construction of such a graph, and the largest
known explicit triangle-free graph with no independent set of size &, described in
Alon (1994) , has only ©(k3/2) vertices. The tight upper bound for (3, k), proved
in Ajtai et al. (1980), is a very easy consequence of the above proposition.

Theorem 2 [Ajtai et al. (1980) ] There exists an absolute constant 5 such that
7(3,k) < bk?/logk for every k > 1.

Proof. Let G = (V, E) be a triangle-free graph on 8k%/ log k vertices. If G has a
vertex of degree at least & then its neighborhood contains an independent set of size
k. Otherwise, by proposition 1 above, G contains an independent set of size at least

li’ézk l%gkﬁ = k. Therefore, in any case a(G) > k, completing the proof. B







Appendix B
Paul Erdos

Working with Paul Erd8s was like taking a walk in the hills. Every time when |
thought that we had achieved our goal and deserved a rest, Paul pointed to the
top of another hill and off we would go.

— Fan Chung

B.1 PAPERS

Paul Erdds was the most prolific mathematician of the twentieth century, with over
1500 written papers and more than 490 collaborators. This highly subjective listgives
only some of the papers that created and shaped the subject matter of this volume.

e A Combinatorial problem in geometry, Compositio Math 2 (1935), 463-470
(with George Szekeres) Zbl. 12,270.
Written when Erd6s was still a teenager this gem contains a rediscovery of
Ramsey’s Theorem and the Monotone Subsequence Theorem. Many authors
have written that this paper played a key role in moving Erd s towards a more
combinatorial view of mathematics.

e Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947),
292-294, MR 8,479d; Zbl 32,192.
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PAUL ERDOS

The three page paper that “started" the probabilistic method, giving an expo-
nential lower bound on Ramsey R(k, k) §1.1.

The Gaussian law of errors in the theory of additive number theoretic functions,
Amer. J. Math. 62 (1940), 738-742 (with Mark Kac) MR 2,42c; Zbl. 24,102.
Showing that the number of prime factors of z chosen uniformly from 1 to n
has an asymptotically normal distribution. A connection between probability
and number theory that was extraordinary for its time. §4.2.

Problems and results in additive number theory, Collogue sur la Th éorie des
Nombres, Bruxelles, 1955, pp. 127-137, George Thone, Liége; Masson and
Cie, Paris, 1956; MR 18,18a; Zbl. 73,31.

Using random subsets to prove the existence of a set of integers such that every
n is represented » = = + y at least once but at most ¢Inn times. Resolving
a problem Sidon posed to Erdds in the 1930s. This problem continued to
fascinate Erdds, see, e.g., Erdds and Tetali (1990) , §8.6.

On a combinatorial problem, Nordisk. Mat. Tidskr. 11 (1963), 220-223 MR
28#4068; Zbl. 122,248.

On a combinatorial problem Il., Acta. Math. Acad. Sci. Hungar. 15 (1964),
445-447; MR 29# 4700; Zbl. 201,337.

Property B. Probabilistic proofs that any m < 2™~ n-sets can be two colored
with no set monochromatic yet there exist cn?2™ n-sets that cannot be so
colored. §1.3.

On the evolution of random graphs, Magyar. Tud. Akad. Mat. Kutat6 Int.
Kozl. 5(1960), 17-61 (with Alfred Rényi); MR 23# A2338; Zbl. 103,163.
Rarely in mathematics can an entire subject be traced to one paper. For Random
Graphs this is the paper. Chapter 10.

Graph theory and probability, Canad. J. Math. 11 (1959), 34-38; MR 21#
876; Zbl. 84,396.

Proving by probabilistic methods the existence of graphs with arbitrarily high
girth and chromatic number. This paper convinced many of the power of the
methodology as the problem had received much attention but no construction
had been found. Lens, following Chapter 3.

Graph theory and probability Il., Canad. J. Math. 13 (1961), 346-352 MR
22#10925; Zbl. 97,391.

Showing the existence of a triangle free graph on n vertices with no inde-
pendent set of size cn'/? Inn vertices, and hence that the Ramsey R(3, k) =
Q(k?1n"2 k). A technical tour de force that uses probabilistic methods in a
very subtle way, particularly considering the early date of publication.

On circuits and subgraphs of chromatic graphs, Mathematika 9 (1962), 170-
175; MR 25 # 3035; Zbl. 109,165.
Destroying the notion that chromatic number is necessarily a local property,
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Erdds proves the existence of a graph on n vertices that cannot be k-colored
but for which every en vertices can be three colored. Lens, following Chapter
8.

e Ona combinatorial game, J. Combinatorial Theory Ser. A 14 (1973), 298-301
(with John Selfridge) MR 48# 5655; Zbl. 293,05004.
Players alternate turns selecting vertices and the second player tries to stop
the first from getting a winning set. The weight function method used was
basically probabilistic and was an early use of derandomization. §15.1.

B.2 CONJECTURES

Conjectures were always an essential part of the mathematical life of Paul Erdds.
Here are some of our favorites.

e Do sets of integers of positive density necessarily contain arithmetic progres-
sions of arbitrary length? In finite form, is there for all £ and all € > 0, an
ng SO that if n > no and S is a subset of the first n integers of size at least
en then S necessarily contains an arithmetic progression of length £? This
conjecture was first made by Paul Erdés and Paul Turan in the 1930s. It was
solved (positively) by Szemerédi in the 1970s. Let F(k, €) denote the minimal
ng that suffices above. The growth rate of ' remains an intriguing question
with very recent results due to Gowers.

e Calldistinct S, T, U a A-systemif SNT = SNU =TNU. Let F(n) be the
minimal m such that given any m n-sets some three form a A-system. Erdds
and Rado showed that F'(n) exists and gave the upper bound F(n) < 2™nl.
Erdés conjectured that F'(n) < C™ for some constant C.

e What are the asymptotics of the Ramsey function R(k, k)? In particular, what
is the value c (if it exists) of limy, R(k, k)*/*? The classic 1947 paper of Erdés
gives ¢ > /2 and ¢ < 4 follows from the proof of Ramsey’s Theorem but a
half century has seen no further improvements in ¢, though there have been
some results on lower order terms.

o Write rg(n) for the number of solutions to the equation n = z + y with
z,y € S. Does there exist a set S of positive integers such that »s(n) > 0 for
all but finitely many n yet »¢(n) is bounded by some constant K? The 1955
paper of Erd8s referenced above gives S with rs(n) = ©(ln n).

e Let m(n), as defined in §1.3, denote the minimal size of a family of n-sets
that cannot be two colored without forming a monochromatic set. What are
the asymptotics of m(n)? In 1963 and 1964 Erd8s found the bounds ©(2") <
m(n) = O(2"n?) and the lower bound of Radhakrishnan and Srinivasan
shown in §3.5, is now Q(2"(n/ lnn)'/2).
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e Given 2"~2 + 1 points in the plane, no three on a line, must some = of them
form a convex set? This conjecture dates back to the 1935 paper of Erdés and
Szekeres referenced above.

e Letm(n, k, 1) denote the size of the largest family of k-element subsets of an
n-set such that no {-set is contained in more than one of them. Simple counting
gives m(n, k,1) < (7)/(%). Erd6s and Haim Hanani conjectured in 1963 that
for fixed I < & this bound is asymptotically correct - that is, that the ratio of
m(n, k,1) to (7)/(5) goes to one as n — oco. Erd6s had a remarkable ability
to select problems that were very difficult but not impossible. This conjecture
was settled affirmatively by Vojtech Rodl in 1985, as discussed in §4.7. The

asymptotics of the difference (7)/(}) — m(n, k, 1) remains open.

B.3 ON ERDOS
There have been numerous books and papers written about the life and mathematics
of Paul Erdds. Three deserving particular mention are

e The Mathematics of Paul Erd8s(Ron Graham and Jarik NeSetfil, eds.), Berlin:
Springer-Verlag, 1996. (Mols 1. and I1.)

e Combinatorics, Paul Erdds is Eighty (D. Mikl6s, V.T. S6és, T. Szonyi, eds.),
Bolyai Soc. Math. Studies, Vol I (1990) and Vol 11 (1993).

e Erdds on Graphs - His Legacy of Unsolved Problems, Fan Chung and Ron
Graham, A.K. Peters, 1998.

Of the many papers by mathematicians we note

e LA&szI6 Babai, In and out of Hungary: Paul Erd8s, his friends, and times. In
Combinatorics, Paul Erdds is Eighty (listed above), Vol I, 7-93.

o Béla Bollobas, Paul Erdds- Life and work, in The Mathematics of Paul
Erdds(listed above), Vol. 11, 1-42.

e A. Hajnal, Paul Erdds’ Set theory, in: The mathematics of Paul Erdds(listed
above), Vol. 11, 352-393.

e Paul Erdds, Math Intelligencer, Vol. 19 (1997), no. 2, 38-48.
Two popular biographies of Erdds have appeared
e The man who loved only numbers, Paul Hoffman, Hyperion (New York), 1998.

e My brain is open - The mathematical journies of Paul Erdds, Bruce Schechter,
Simon & Schuster (New York), 1998.

Finally, George Csicsery has made a documentary film N is a Number, A Portrait
of Paul Erdds, available from the publishers A. K. Peters, which allows one to see
and hear Erdds in lecture and amongst friends, proving and conjecturing.
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B.4 UNCLE PAUL

Paul Erdds died in September 1996 at the age of 83. His theorems and conjectures
permeate this volume. This tribute!, given by Joel Spencer at the National Meeting
of the American Mathematical Society in January 1997, attempts to convey some of
the special spirit that we and countless others took from this extraordinary man.

Paul Erdds was a searcher, a searcher for mathematical truth.

Paul’s place in the mathematical pantheon will be a matter of strong debate for in
that rarefied atmosphere he had a unique style. The late Ernst Straus said it best, in a
commemoration of Erdés’ 70-th birthday.

In our century, in which mathematics is so strongly dominated by “theory
constructors™ he has remained the prince of problem solvers and the absolute
monarch of problem posers. One of my friends - a great mathematician in his
own right - complained to me that “Erdds only gives us corollaries of the great
metatheorems which remain unformulated in the back of his mind." | think there
is much truth to that observation but | don’t agree that it would have been either
feasible or desirable for Erd8s to stop producing corollaries and concentrate on
the formulation of his metatheorems. In many ways Paul Erd s is the Euler of
our times. Just as the “special” problems that Euler solved pointed the way to
analytic and algebraic number theory, topology, combinatorics, function spaces,
etc.; so the methods and results of Erd&s’ work already let us see the outline
of great new disciplines, such as combinatorial and probabilistic number theory,
combinatorial geometry, probabilistic and transfinite combinatorics and graph
theory, as well as many more yet to arise from his ideas.

Straus, who worked as an assistant to Albert Einstein, noted that Einstein chose
physics over mathematics because he feared that one would waste one’s powers in
persuing the many beautiful and attractive questions of mathematics without finding
the central questions. Straus goes on,

Erd8s has consistently and successfully violated every one of Einstein’s pre-
scriptions. He has succumbed to the seduction of every beautiful problem he
has encountered - and a great many have succumbed to him. This just proves
to me that in the search for truth there is room for Don Juans like Erd&s and Sir
Galahads like Einstein.

I believe, and I’m certainly most prejudiced on this score, that Paul’s legacy will
be strongest in Discrete Math. Paul’s interest in this area dates back to a marvelous
paper with George Szekeres in 1935 but it was after World War 1l that it really
flourished. The rise of the Discrete over the past half century has, | feel, two main
causes. The first was The Computer, how wonderful that this physical object has led

1Reprinted with permission from the Bulletin of the American Mathematical Society.
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to such intriguing mathematical questions. The second, with due respect to the many
others, was the constant attention of Paul Erd&s with his famous admonition “Prove
and Conjecture!” Ramsey Theory, Extremal Graph Theory, Random Graphs, how
many turrets in our mathematical castle were built one brick at a time with Paul’s
theorems and, equally important, his frequent and always penetrating conjectures.

My own research specialty, The Probabilistic Method, could surely be called
The Erdds Method. It was begun in 1947 with a 3 page paper in the Bulletin of
the American Math Society. Paul proved the existence of a graph having certain
Ramsey property without actually constructing it. In modern language he showed
that an appropriately defined random graph would have the property with positive
probability and hence there must exist a graph with the property. For the next twenty
years Paul was a “voice in the wilderness", his colleagues admired his amazing
results but adaption of the methodology was slow. But Paul persevered - he was
always driven by his personal sense of mathematical aesthetics in which he had
supreme confidence - and today the method is widely used in both Discrete Math and
in Theoretical Computer Science.

There is no dispute over Paul’s contribution to the spirit of mathematics. Paul
Erd6s was the most inspirational man | have every met. | began working with Paul
in the late 1960-s, a tumultuous time when “do your own thing" was the admonition
that resonated so powerfully. But while others spoke of it, this was Paul’s modus
operandi. He had no job; he worked constantly. He had no home; the world was
his home. Possessions were a nuisance, money a bore. He lived on a web of trust,
travelling ceaselessly from Center to Center, spreading his mathematical pollen.

What drew so many of us into his circle. What explains the joy we have in speaking
of this gentle man. Why do we love to tell Erdés stories. 1’ve thought a great deal
about thisand | think it comes down to a matter of belief, or faith. We mathematicians
know the beauties of our subject and we hold a belief in its transcendent quality. God
created the integers, the rest is the work of Man. Mathematical truth is immutable,
it lies outside physical reality. When we show, for example, that two n-th powers
never add to an n-th power for » > 3 we have discovered a Truth. This is our
belief, this is our core motivating force. Yet our attempts to describe this belief
to our nonmathematical friends are akin to describing the Almighty to an atheist.
Paul embodied this belief in mathematical truth. His enormous talents and energies
were given entirely to the Temple of Mathematics. He harbored no doubts about the
importance, the absoluteness, of his quest. To see his faith was to be given faith. The
religious world might better have understood Paul’s special personal qualities. We
knew him as Uncle Paul.

| do hope that one cornerstone of Paul’s, if you will, theology will long survive.
| refer to The Book. The Book consists of all the theorems of mathematics. For
each theorem there is in The Book just one proof. It is the most aesthetic proof, the
most insightful proof, what Paul called The Book Proof. And when one of Paul’s
myriad conjectures was resolved in an “ugly” way Paul would be very happy in
congratulating the prover but would add, “Now, let’s look for The Book Proof." This
platonic ideal spoke strongly to those of us in his circle. The mathematics was there,
we had only to discover it.
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The intensity and the selflessness of the search for truth were described by the
writer Jorge Luis Borges in his story The Library of Babel. The narrator is a worker in
this library which contains on its infinite shelves all wisdom. He wanders its infinite
corridors in search of what Paul Erd&s might have called The Book. He cries out,

To me, it does not seem unlikely that on some shelf of the universe there lies a
total book. | pray the unknown gods that some man - even if only one man, and
though it have been thousands of years ago! - may have examined and read it.
If honor and wisdom and happiness are not for me, let them be for others. May
heaven exist though my place be in hell. Let me be outraged and annihilated but
may Thy enormous Library be justified, for one instant, in one being.

In the summer of 1985 | drove Paul to what many of us fondly remember as Yellow
Pig Camp - a mathematics camp for talented high school students at Hampshire
College. It was a beautiful day - the students loved Uncle Paul and Paul enjoyed
nothing more than the company of eager young minds. In my introduction to his
lecture | discussed The Book but I made the mistake of discribing it as being “held
by God". Paul began his lecture with a gentle correction that | shall never forget.
“You don’t have to believe in God," he said, “but you should believe in The Book."
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