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Preface 


In the preface to Volume 1, I expressed my trepidation at starting to write a book on 
non-linear finite elements and the associated mechanics. These doubts grew as 
I worked on Volume 2, which attempts to cover ‘advanced topics’. These topics include 
many areas which are still the subject of considerable controversy. None the less, I have 
finally completed this second volume, although in so doing, I have almost certainly 
made mistakes. In persevering, I have received much encouragement from a number of 
readers of Volume 1 who have urged me not to abandon the second volume and who 
have made me believe that there is some need for a book of this kind. 

As with the subject-matter of the first book, there are many specialist texts which 
cover the background mechanics. My aim has not been to replace such books and, 
indeed, I have attempted to reference these books with a view to encouraging wider 
reading. Instead, my aim has been to emphasise the numerical implementation. As with 
the earlier volume, an engineering approach is adopted in contrast to a strict math- 
ematical development. 

At theend of the Preface of Volume 1, I indicated the subjects that I intended to cover 
in this second volume. These topics have all been included, but so have a number of 
other topics that I did not originally envisage including. In particular Chapter 23 
covers ‘Contact and friction’ and Chapter 24 covers ‘Nonlinear dynamics’ (both 
‘implicit’ and ‘explicit’). These important subjects are included because I have now 
conducted some research in these areas. This is true of most of the topics in the book. 
However, while I have often given the background to some of my own research, I have 
also attempted to cover important developments by others. Often, in so doing, I have 
reinterpreted these works in relation to my own ‘viewpoint’. Often, this will not coin- 
cide with that of the originator. The reader should, of course, read the originals as well! 

The previous paragraph gives the impression that the book is related to research. 
This is only partially true in that any book, attempting to cover advanced topics, must 
be concerned with the recent research in the field. However, in addition to these 
research-related topics, there are many other topics in which the ground work is fairly 
well established. In these areas, the book is closer to a traditional ‘textbook’. 

I referred earlier to ‘my own research’. Of course, I should have referred to ‘the work 
of my research group’. In particular, I must thank the following (in alphabetical order) 
for their important contributions: Mohammed Asghar, Michael Dracopoulos, 
Zhiliang Fan, Ugo Galvanetto, Hans-Bernd Hellweg, Gordan Jelenic, Ahad Kolahi, 
Yaoming Mi, Gray Moita, Xiaohong Peng, Jun Shi and Hai-Guang Zhong. 



xiv PREFACE 

Indeed, I wrote Chapter 22 on ‘Examples from an up-dated non-linear finite element 
computer program using truss elements’ in conjunction with Dr Shi. This chapter 
describes a finite element computer program that can be considered as the extension of 
the simple computer programs described in Volume 1. As with the latter programs, the 
new program is available via anonymous FTP (ftp: // ftp.cc.ic.ac.uk/’pub/depts/aero1 

nonlin2). The aim of the new program is purely didactic and it is intended to illustrate 
some of the ‘path-following’ and ‘branch-switching techniques’ described in Chapter 
21. 



10 More continuum 
mechanics 

This chapter can be considered as an extension of Chapter 4 in Volume 1.  As in the 
latter chapter, the aim is not to provide a fundamental text on continuum mechanics 
(for that the reader should consult the references quoted in the Introduction to 
Chapter 4 and the additional references [HI, M1, 01,Tl-T3]). Instead the aim is to 
pave the way for subsequent work on finite element analysis. For much of this work, 
Sections 10.1-10.5 will suffice. Section 10.6, which closely follows the work of Hill 
[HI] (see also Atluri [AI], Ogden [OI] and Nemat-Nasser [NI], gives a more detailed 
examination of a range of strees and strain measures. This section is not easy and 
could be skipped (along with Sections 10.7-10.8) at a first reading. 

10.1 RELATIONSHIPS BETWEEN SOME STRAIN 
MEASURES AND THE STRUCTURES 

In Section 4.9, we related the Green and Almansi strain measures to the principal 
stretches, which were introduced in Section 4.8 via the polar decomposition theorem. 
We will now extend these relationships to some other strain measures. 

Our starting-point is the right stretch U or URand the left stretch ULor V (see 4.126) 
which can be expressed in terms of the principal stretches, XI - A3 via (see 4.139) and 
(4.145)) 

U = Q(N)Diag(A)Q(N)T= AjNlNT + X?N?NT+ A3N3N[: (10.la) 

V = Q(n)Diag(A)Q(n)T= AlnlnT + AInlnF + X3n3nT (10.lb) 

with Q(N) = “ 1 ,  N?, N3] and Q ( n )  = [nl,n2,n3]. In Section 4.2, we showed how the 
principal direction NI and nl could be found from an eigenvalue analysis of C = FTFor 
of b = FFT. It was assumed that the principal directions were distinct. I f  two of the 
principal stretches coincide (say XI and A?), the directions NI and N2 (or nl and n?) are 
not unique and can only be determined to within an arbitrary rotation about N3 (or n3). 

In the following, it will generally be assumed that the stretches and principal directions 
are distinct. Detail in relation to the case of coinciding stretches will be given in Section 
13.8. In the meantime, we note that if all of the stretches coincide, in place of (10.1 a) and 



2 MORE CONTINUUM MECHANICS 

( 10.1b), we have 

U = V x i , I  (1O.lc) 

Following the forms of (10. la)  and ( 10.1b), some general strain measures, E ,  may be 
expressed, in the Lagrangian frame, as 

E = Q(N)Diag(&)Q(N)T (10.2a) 

while others may be expressed in the Eulerian frame as 

E = Q(n)Diag(&)Q(n)” (10.2b) 

where the principal strains, E ,  (from Diag(&)) can be related to the principal stretches 
E , , - ,  (from Diag(E.)). For any one of the principal directions, we can write 

c = .f’(i) (10.3) 

where we require that: 

1.  f (  1 ) = 0 so that there is no strain when 1 1  dx / I  = / /  dX / /  (see (4.1 3 1 )and the stretch, i.,is 
unity.  

2. Having expressed I :  via a Taylor series, 

( 10.44 

in order to coincide with the usual engineering theory strains. I: = i-1, for small 
stretches, i t  follows from (10.4a) that 

(10.4b) 

3. I :  should increase strictly monotonically with A. 
The strain measures may either be related to (10.2a) or to (10.2b). We will address this 
issue later, but will firstly consider some common strain measures in terms of (10.3). 

Biot strain (or co-rotated engineering strain): 

c = r. - 1 (10.5) 

Green strain: 

1: =$(;.Z - 1) ( 10.6) 

Almansi strain: 

(10.7) 

Log strain: 

t; = log, 2 (10.8) 

These measures have already been introduced for truss elements in Chapter 3. 
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Combining the polar decomposition, F = RU (see (4.127)) with (10.la) and noting 
that U is symmetric: 

= U'* ( 10.9)C = FTF= UTU= Q(N)Diag(22)Q(N)r 

and hence, from (4.73) and (10.9), 

E = +(FTF- I )  = Q(N)Diag Q(N) '  - i Q ( N ) Q ( N ) '  

= Q(N)Diag( y ) Q ( N ) '  

= +[C - I )  =+[U2 - I) (10.10) 

where we have used the relationship 
3 

Q(N)Q(N)T= I = 1 N,N,' 
i =  1 

Equation (10.10) has been derived previously in Section 4.9 (see (4.1 5 3 ) ) .  From the 
derivation of (10.10). we can identify the Green strain, E, as stemming from the 
combination of (10.6)and (10.2a). 

Using the polar decomposition, F = VR of (4.126)and the relationship in (10.I b) for 
V, the Almansi strain of (4.91) can, in a similar fashion be re-expressed as 

- 7  

A(n)=+(I- F - T F p l ) = $ ( I- V - T V - l ) = Q ( n ) D i a p ( E ) Q ( n ) T  (10.11)2 i 2  

The latter can also be derived by combining (10.2b) with ( 10.7).Combining (10.2a) with 
(10.8), the log strain can be written as: 

log,U = Q(N)Diag(log,(l.))Q(N)T= logc(C1') = +logCC (10.12) 

In contrast to the strain measures of (10.10) and (10.1I ) ,  the log strain can only be 
computed after a polar decomposition has obtained the principal directions, N, and 
principal stretches, i,. 

Alternatively(togive a diferent strain measure), using (10%) and (10.8). we can write 

logJ = Q(n)Diag(log,G))Q(nIr (10.13) 

I t  was shown in Section 4.9 that the Green strain of (10.10) is invariant to a rigid 
rotation while the Almansi strain of (10.11)  is not. In a similar fashion, log,U is 
invariant to a rigid rotation while log,V is not. 

The Blot strain can be found by combining (10.5)and ( 10.2a) to give 

E,  = Q(N)Diag(i,- l)Q(N)T= U - I (10.14) 

A comparison of (10.10) and (10.12) with (10.14) shows that, if the stretches E, are small, 
E 2 log,U 2 E,. 

Alternative strain measures can be derived. For example, (10.5) could be combined 
with (10.2b) and Hill [H 1J combines (10.7) with (10.2a) to produce an Almansi strain 
*In this chapter and in Chapter 13, we will use C for the (right) Cauchq Green tensor (as in  (10.9)1 and. ;is 
a consequence. will now use D (previously CJfor the constitutibe niatriv (or tensor). 
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(A(N))that differs from the more usual definition of (4.91) and (10.1 1) in that, in the 
former, one would have Q(N)’srather than Q(n)’s. 

The Almansi strain, A(N),the Green strain E of (10.1 l), the Biot strain, E, of (10.14) 
and the log, U strain of (10.12) can be considered as belonging to a family of strain 
measures given by Hill [Hl J (see also [A l ,  N1, Pl]) which all relate to (10.2a) and for 
which 

E = +Iog,C if m = O ( 10.15b) 

With m = - 2. one obtains A(N),with 172 = 1 ,  Eh in (10.14) and with nz = 2, the Green 
strain of (10.10). 

We have already considered the second Piola- Kirchhoff stress which is work 
conjugate to the Green strain of (10.10).In Sections 10.5 and 10.6, we will consider 
stresses that are work conjugate to some of the other strain measures that have been 
discussed here. 

10.2 LARGE STRAINS AND THE JAUMANN RATE 

For some large-strain analysis, it is useful to work in the current configuration using the 
Cauchy stress. Many formulations have then used the Jaumann rate of Cauchy stress. 
In  particular, i t  has other been used in large-strain elasto-plastic analyses (see Chapters 
12 and 19). In addition it is relevant to hyper-elastic relationships including rubber 
analyses (Chapter 13).We now give a basic introduction in order to allow the ‘Eulerian 
finite element formulation’ to be described in Chapter 12. However, finer points 
including the integration of the rate equations, plasticity and hyperelasticity follow in 
later chapters. 

Much finite element work on large-strain elaso-plastic analysis has adopted a hypo- 
elastic approach (see Section 4.12) in relation to the Cauchy stress. A nai‘ve solution 
might then involve simply updating the Cauchy stress via 

O, = O, + D,:& (10.16) 

where subscript o means ‘old’ and subscript n means ‘new’ and D, is some tangential 
modular matrix (see the footnote to page 3 for an explanation of the change of notation 
for the constitutive tensor) which may allow for plasticity (Chapters 6, 14 and 15). The 
update in (10.16) would imply that, for a rigid-body motion for which 68 =0, the 
stresses update via O, =0,. However, we know (Figure 4.10), that the Cauchy stress 
components (related to a fixed unrotated coordinate system) d o  change under a rigid-
body rotation. Hence a more sensible updating scheme would directly incorporate the 
rotation of (4.63)so that 

O, = Ro,RT + D,:&= Ra,RT + AfDt:j: (10.17) 

where the first term rotates the stresses (Section 4.3.2) and the second is caused by the 
material constitutive law. In this second term, we have introduced a small time change, 
Ar, and the strain rate, E (see also (4.108)).Under a rigid-body rotation, equation (10.17) 
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(with BE = i: = 0) would have resulted from a small displacement change, 6u, whereby 

6x, = RSx, = dx, + 6u = x, + v Ar (10.18) 

where the subscript n means ‘new’ while the subscript o means ‘old’ and v is the velocity. 
From (10.18), 

(10.19) 

Now (see also (4.93) for SE), we can write 

= d E + 6 a  ( 10.20) 

or 
(7V 1 2 v  8VT 1 c:v- = ~ ( 4 . 1 0 9 ) = - -+- +-
i lX z[ax i,] 2 [ i l  

?vT 
z,] (10.21) 

so that 

6V 
-=+[L + LT] ++[L LT] =& + f2 10.22)
8X 

- ( 

The matrices 652 and f2 in (10.21) and (10.22) are skew-symmetric (or antisymmetric) 
with zeros on the leading diagonal. Such matrices (say S) satisfy the relationship: 

ST= - s  ( 10.23) 

At this stage it is worth emphasising some issues related to the adopted notation. 
Following the procedure introduced in Chapter 4, we are using & as the velocity strain 
tensor (or rate of deformation tensor) although i: is not the rate of a strain measure E. In  
a similar fashion, the spin h is not the rate of some tensor 52. We should also note that 
some authors use W instead of the current h (Bathe [B I ]  uses a)and reserve 52 for RRT 
which will be introduced later (as W in (10.70)). In  addition, Dienes [DI] refers to the 
current f2 as the vorticity and not as the spin. 

We require (10.17) to give the correct solution of Ra,RT (see Section 4.3.2) for 
a rigid-body motion in which i: =0 and so, from (10.21) and (10.22). in these circutn- 
stances: 

( 10.24) 

Hence, from (10.19): 

R = [I + Ar a] ( 10.25) 

and, from (10.17): 

Q” = [I + Atf2]a0[I +Ar&j’r + ArD,:& ( 10.26a) 
or 

6, = Q, + Ark = Q, + At[ha, +o,aT]+ ArD,:i: (10.26b) 

where, in moving from (l0.26a) to (10.26b), we have ignored terms of order A t 2 .  
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A stricter version of (10.26b) involves 

a,=a,+ s cidt ( 10.27) 

where 

ir = ha + ohT+ D1jC:j:= ha + aaT+ ir, = a a  -oh+ ci, (10.28a) 

and irJ is the Jaumann rate of Cauchy stress. (I t  is also sometimes known as the 
‘co-rotational rate’.) In (10.28a), the subscripts JC means ‘Jaumann rate of Cauchy 
stress’ and they have been added because, as indicated earlier in Chapter 3, we should 
indicate the type of stress and strain (and now strain rate) measure when specifying 
a tangential relationship. If a tangential modular matrix is appropriate for one 
measure, i t  may need modifying or transforming if it is used with another measure. In 
relation to hyperelasticity, the issue of transforming constitutive tensors will be 
discussed further in Section 12.4 and in Chapter 13. 

I n  two dimensions, (10.28a) can be rewritten, using vector notation for ci and Iwith 
a matrix for Dtj<‘,so that 

(10.28b) 

where (o is the spin given by 

In both (10.28a) and (10.28b) we have related the Jaumann rate of Cauchy stress, cij, to 
the strain rate, I,using a rate type (or incremental) constitutive law (see Section 4.12 
and Chapter 6) so that 

bJ= D,,,(a, F):& ( 10.29) 

In  equation (10.29) the (a) following D l j C  indicates that for an elasto-plastic or 
hypoelastic stress-strain relationship, the tangential modular matrix may be a function 
of the current stresses, a.Also, the (F) term indicates that (for a hyperelastic material) 
D1jCmay also be a function of the deformation gradient. For a hypoelastic relationship. 
we need to consider the issue of integrating the rate relationships in (10.28a). This will 
be discussed, in relation to elasto-plasticity, in Section 19.5. 

The Jaumann rate, irJ of (10.28a), is one of a number of ‘objective rates’ which 
correctly transforms as a result of a rotation, R (see Section 4.3.2) for which 

dx‘= Rdx (10.30) 

so that not only do we have 

U’= RaRT (10.31) 

but also 

irbbj = RirObjRT (10.32) 
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In the case of the Jaumann rate, using (10,28a), we require (see Section 10.8): 

&; =&’ -&a’ +a’& = R[&‘ -b’a’+ a’h’J R T  ( 10.33) 

An alternative way of looking at the objectivity of &, is that, with no real strain- 
induced stress change, &J is zero from (10.29) and from (10.28a): 

& = h - a h  ( 10.34) 

and hence with i: =0: 

a, =6, + At&= U, + At(&, -a&) 2: (I +Ata)a,(I +Ath)’ 2 Ra,R’ (10.35) 

as it  should as a result of a rigid rotation. In the last step in (10.39, we have used ( 10.25). 
In some circumstances (see Section 12.4), it is useful to work with the Jaumann rate of 

Kirchhoff stress (t= det(F)a-see (4.122))-rather than the Jaumann rate of Cauchy 
stress. In these circumstances, in place of (10.28a), we have 

t = t ,+hz +tdT= D ~ , ~ : E+hr +thT (10.36) 

where D,jK is the tangential modular tensor appropriate to the Jaumann rate of 
Kirchoff stress and, generally, differs from the D,jC in (10.28a) (see Section 12.4). 

10.3 HYPERELASTICITY 

Hyperelasticity will be considered in detail in Chapter 13. However, with a view to the 
following Section (10.4) on the ‘Truesdell rate’, we will here amplify the very basic 
introduction of Section 4.12. In the first instance, we will consider small strains which 
are linearly related to the displacements. 

Following on from the introduction of Section 4.12, the simplest strain energy 
function, 4, can be expressed as 

-

4 = 4 ( ~ )2pi2 +-2 
i 

I ;  (10.37)= 

where I ,  and r2are strain invariants given by 

I ,  = tr(E)= cii = c l 1  + + (10.38) 

and 

(10.39) 

and p and xare the Lame constants (see Section 4.2.3). In two dimensions (plane strain), 
equation (10.39) degenerates to 

-
1 - 1 2

2 - 2 E l l  +2c12c21 + 4 2  ( 10.40) 

From (4.165), it follows that 

(10.41a) 
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or: 

(10.41b) 

These are the simple linear Hookean stress-strain relationships of (4.27) and (4.28) 
which can be rewritten (see (4.29)-(4.3 1)) as 

with 

D i j k r  = / f ( a i k d j [  + b i l b j k )  J d i j R k l ;  D = 2pI4 ;(I @ 1) ( 10.43) 

where, in (10.44) I, is the fourth-order unit tensor and 1 the second-order unit tensor. 
The relationships in (10.43) satisfy the symmetry conditions, Cijkl= C j i k 1  = C i j k l .  

From (10.41a), we also have 

=-:&& = 2pi: + l t r (&)I= Dt:k= Dt:& 
?2(b 

( 10.44)
(7€& 

In  this case. the tangential tensor D, equals the secant tensor D in (10.42). 
When the strains are non-linearly related to the displacements, we might adopt 

a strain measure such as the Green strain (E) so that, in place of (10.37), we would have 

4 = +(E) ( 10.45) 

and in place of (10.41), 

( 10.46) 

Also. in place of (10.44), we would have 

( 10.47) 

where the fourth-order constitutive tensor DtK2(with K2  for the second Piola -

Kirchhoff) is now generally not constant but depends on thecurrent strains. A detailed 
discussion on hyperelasticitly is given in Chapter 13. 

10.4 THE TRUESDELL RATE 

We will rewrite (10.47) as 

= DlK2:k or s u b  = D i t : d E c d  (10.48) 

(where the movement from a subscript to a superscript is introduced purely according 
to space). From (10.47), the tangent tensor, DIK2can be written as 

( 10.49) 
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We now require the equivalent relationship between the Cauchy strees derivatives, 6, 
and the velocity strain tensor, i: (see (4.108)). However. it is more convenient to start 
with the Kirchhoff or nominal stress, r = Ja (with J = det(F)) which is related to the 
second Piola-Kirchhoff stresses, S, via (4.122) which is reproduced here as 

i = JG = F S F ~  (10.50) 

Differentiation of (10.50) leads to 

i = F S F ~+ F S F ~+ F S F ~  (10.51) 

Substituting in (10.51) for S in terms of r from (10.50) leads to 

(10.52) 

From the non-virtual form of the relationship in (4.1 12), (10.52) can be re-
expressed as 

i = F S F ~  =+ LT + T L ~  +,- + L~ + r ~ T  (10.53) 

where L is the velocity gradient a v / a x  and i~is the Truesdell rate of Kirchhoff 
stress. Like i ~ . i ~is an objective stress rate (see also Section 10.8).+ 

In order to explore further the relationship between (10.48) and (10.53), i t  is necessary 
to adopt indicial notation coupled with the relationship (4.1 13) between A$ and i 
whereby: 

E = F ~ Z F ;  iced = F ~ ~ E ~ , F , ~  (10.54) 

Substituting from (10.48) and (10.54) into (10.53) leads to 

i = ;.r + L T +  T L ~D ~ D K ~ .= + L T +  T L ~  (10.55) 

where 

(10.56) 

Equation (10.56) gives the relationship between the terms in the tangent tensor (D,TK) 
relating the Truesdell rate of Kirchhoff stress, i~to the velocity strain tensor (2) with 
the terms in the tangent tensor (Dt~2)relating the rates of the second Piola-Kirchhoff 
stress and Green strain (see (10.48)). By using the relationship L = i- + fi (see (10.22)), 
we can easily transfer (10.55) into the form of (10.36) which involves the Jaumann rate. 
Hence, we can find a relationship between the constitutive tensor D,TKand D,JK. This 
issue will be discussed further in Section 12.4. 

In order to find equivalent relationships to (10.55) for the Cauchy stresses, it is 
necessary to differentiate r = Ja with J = det(F). This leads to 

i = ~ i r+ Ja = ~ ( i r+ tr( i)n) (10.57) 

iTruesdell rate, f~ = FSFT can also be considered as the Lie derivative of the Kirchhoff strees [Ml]. 
With such a notation, the Kirchhoff strees, T would firstly be 'pulled back' from the 'spatial' to the 
'material configuration' to give S = F - ' T F - ~and then differentiated (to obtain S) before being 'pushed 
forward' to the real configuration. 
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In  deriving the final relationship in (10.57), we used the expression 

j = J t r ( i )  (10.58) 
This relationship can be obtained by writing J = det(F)in terms of principal stretches 
(see Sections 4.8 and 10.1) so that, with F = RU and R being an orthogonal rotation 
matrix, via (10.1a). we have: 

J = det(F) = det(RU) = det(U )  = iL ( 10.59) 
so that 

The last relationship in (10.60) follows directly from equation (10.109) which will be 
derived in Section 10.6.5. For the present. we may simply note that. in the principal 
directions, the stretches are (see 4.131) i = lni lo  with 1, as the new length of an element 
and 1 ,  the original length of an element. Hence: 

. . 
1 i. 

/.: =-; t="=- (10.61)InI* I ,' ;. 


The relationship in (10.61) for the Eulerian strain rate corresponds with the relationship 
given in (3.14)for truss elements and discussed further in Sections 3.2.1 and 4.6. 

Substituting from (10.57) into (10.55)gives 

1 1 
J J

6 = - + - a t r ( i ) = - D , , , : i +  L a + a L ' - a t r ( i )  ( 10.62) 

or: 
ir = bI+ La + aLT- tr(i)o ( 10.63) 

with 
1 .  1

ir,, = D t T C : E = - ~ r = - D c I K : i  10.64)
J J 

( 

Again, i t  can be shown (see Section 10.8) that irT is objective in the sense of (10.30) 
(10.32). This applies even if the Truesdell rate in (10.64) is related to E via a tangent 
constitutive tensor, DtTC,that does not follow that in (10.64)and (10.56); in other words, 
if a hypoelastic relationship is adopted. However (assuming an elastic material), unless 
the constitutive tensor is derived from some hyperelastic relationship, stresses may be 
generated as a result of a closed strain cycle [Kl]. Also one may obtain bizarre 
oscillatory stresses when the strains are large (see Section 10.8). 

There are a range of objective stress rates other than the Jaumann and Truesdell 
rates. Two such alternatives will be discussed in Section 10.8. 

10.5 CONJUGATE STRESS AND STRAIN MEASURES 
WITH EMPHASIS ON ISOTROPIC CONDITIONS 

In Section 10.1, we introduced a number of strain measures. The current section will 
lead to the definition of the equivalent work-conjugate stress measures. We will often 
simplify the analysis by considering isotropic conditions. The derivation of some of the 
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relationships can be found in Section 10.6 which is fairly complex and may be skipped 
at a first reading. 

From the work of Sections 4.6 and 4.7, the power per unit  initial volume can be 
expressed as 

. - -
V = J a : & = t : & = S : E = P : F = B : E , = O : ( l o g , u ) = s : A  ( 10.65) 

where the last three sets of stress measures, B, 0 and S, have not yet been defined. 
However, their corresponding strains are the Biot strain of (10.14), the log strain of 
(10.12)and the Almansi strain defined by Hill [H 11and discussed at the end of Section 
10.1 (where it was referred to as A(N)).The latter is given by a combination of (10.2a) 
and (10.7) so that 

A 2  - 1A=Q(N)Diag(,,)Q(N)'=$(I- F - ' F - T )  
( 10.66) 

(Note the more usual Almansi strain of (4.91) and (10.1 l ) ,  has Q(n)'s instead of Q(N)'s. 
i.e. (10.11)  is related to the Eulerian triad while (10.66) is related to the Lagrangian 
triad-see also Section 4.7). 

The fundamental measures can be considered as the Cauchy stress, 6. and the 
velocity strain tensor, &. However, because we are relating everything to the initial 
volume, we begin with the Kirchhoff stresses, t instead of the Cauchy stresses, a. 

As a starting-point in the definition of a particular conjugate-stress measure it is 
necessary to find the relationship between the equivalent strain-rate terms in (10.65) 
and the velocity strain tensor, i.This procedure was adopted in Section 4.6 in order to 
obtain the relationship between the second Piola-Kirchhoff stress, S and the Cauchy 
stress (see (4.105)). I t  will now be extended to the other strain measures in (10.65). 

We will start with the Biot stress which is work conjugate to the Biot strain measure 
which was introduced in Section 10.1 (see 10.14) as 

E , = U - I  ( 10.67) 

Clearly, in conjunctions with (10.69, the Biot stress, B, is defined by 

I / = B : E , = B : U = t : &  ( 10.68) 

Hence we require a relationship between i: and U. From (4.108), i: is a function of 
L which in turn, from (4.109) is a function of F.Therefore, we start by differentiating the 
polar decomposition, F = RU (see 4.126) to give 

F = R U  + RU ( 10.69) 

Hence, from (4.109) and (10.22), 

where W = RRT is antisymmetric (see also Section 16.1 I (and particularly equation 
(16.81~))of Chapter 16 on large rotations). Substituting from (10.70) into (4.108) gives 

(10.71) 
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Substitution into (10.68) gives 

Rtv =  t:i: = : 
2 

( u ~ -+ u - W ) R ~ =R'%R:UU- = R ~ ~ R u - W= B : U  (10.72) 

Hence, 
B = R T ~ R U  - T = R T ~ F - ? ~= ~~p= R ~ F S= us (10.73) 

In general B, like P (see 4.1 19), is non-symmetric. However, for isotropicconditions, the 
principal directions of stress ad strain coincide (see Section 5.4.2). As a consequence 
both E (see (lO.lO)), U (see (10.la)) and S can be written in the form: 

X = u,N,N: + a,N,NT + u3N3NJ ( 10.74) 

with different values, in each case, for a1-u3.Hence, in these circumstances, U and S are 
coaxial and from the last term in (10.73), B is symmetric. 

In  relation to (10.74), the strains, E, Es, log,U and A in (10.65)can all be written in the 
form: 

E =E N N: + E ,  N2N: +E3N 3NT =f(%l)N N: +f'(jV2)N2NT+f(jL3)N3N: ( 10.75) 

where(see Section 4.8) NI-N3 are the eigenvectors of U, E1-E3 are the principal strains 
and i.,-i3the principal stretches. From (10.5) to (10.8), f ( j v ) in (10.75) are given by 

(i.l- 1)/2 Green strain (E); stress = S (a)
'( 1 - p  )/2 Almansi's strain (A); stress=S (b) 

( 10.76). f (4= 1(;L - 1 )  Blot strain (Eb);stress = B (4 
log, r" log strain ('log,U'); stress = 0 (d) 

In order to derive appropriate conjugate stress measures to the strains in (10.75), we 
must find the relationship between a general strain rate k and 1. This task will be 
tackled in Section 10.6. However, for the remainder of this section, we will concentrate 
on isotropic conditions. In these circumstances, because the principal directions of 
stress and strain coincide, corresponding to the strains of (10.75)and (10.76), we can 
write a general stress as 

K = K ~ N , N :+ K , N , N ~+ K ~ N , N ~= Q(N)Diag(k-i)Q(N)T ( 10.77) 

To obtain the relationship between the particular stress measures corresponding to the 
strain measures of (10.76), we merely need to ensure that 

?f(Ai)
K , S E ,= K~I6Ai = constant ( 10.78)

?Ai 


I t  follows from (10.76) and (10.78) that 

( 10.79) 

Clearly, for small strains, when the strains are small so that iVi2 1, the stress measures S, 
0 and B coincide. 

Combining (10.79) and (10.77) and using (10.la) for U, we can write 

0= Q(N)Dia&A)Q(N)T= BU = Q(N)Diag(;J;)Q(N)' (10.80) 
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If we wish to find the Kirchhoff stress, which relates to the Eulerian triad, in terms of 
one of the stress measures of (10.77) relating to the Lagrangian triad, we can use 
t = FSFT.The latter must be combined with the polar decomposition F = RU (see 
(4.126)),R= Q(n)Q(N)T(see(4.147))and(10.77)withS's insteadofK'sand( l0.la)for U. 
This leads to 

=t = RUQ(N)Diag(Si)Q(N)TURT Q(n)Diag(i2Si)Q(n)r= Q(n)Diag(r,)Q(n)T (10.81 ) 

where ri are the principal Kirchhoff stresses. Combining (10.81)with (10.79). we can 
write 

oi= zi = i.;si ( 10.82) 

where it  must be emphasised that Oi and Sirelate to Q(N) while ri relates to Q(n).Using 
R = Q(n)Q(N)T (see (4.147)), we can write 

and hence, from (10.80): 

BU = RTtR ( 10.84) 

It will be shown in Sections 10.7 and 10.8that, for isotropic conditions. we can add to 
the power expressions of (10.65), the relationships: 

I/ = 2:(log,V)* ( 10.85a) 

where logCV was given in ( 10.13) and 

v=B:V=;(tv-' + v - ~ T ) : V = R B R ~ : V  (10.85b) 

where B is the Biot stress of (10.73) which is work conjugate to 0. 
For much of the future work in this book, the remaining sections of this chapter can 

be omitted, certainly at  a first reading. 

10.6 FURTHER WORK ON CONJUGATE STRESS AND 
STRAIN MEASURES 

In this section, we will give a more detailed analysis of the relationship between the 
various stress and strain measures. The work will not be restricted to isotropic 
materials but will lead to proofs of some of the relationships given in the previous 
section for isotropic materials. It will also lead to some developments to follow in later 
chapters. The work is closely related to previous work by Hill [H 13 and Atluri [A 11.As 
previouslydiscussed, in Section 10.1,unless stated otherwise, it will be assumed that the 
principal stretches are distinct. The case with non-distinct stretches has been consider- 
ed by Hoger [H2, H3] and Ogden [Ol] and will also be discussed here in Section 13.8. 

The aim of the present section will be to establish relationships between the stress 
measures (which are conjugate to the strains of (10.75) and (10.76)) and the Kirchhoff 
stress, t (and hence the Cauchy stress, 0 = z / J ) . In order to establish these relationships, 
we will require the relationships between the rates of the strain measures in (10.75) and 
(10.76)and the velocity strain tensor, k. This is easiest to achieve for the Biot strain E,  
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which, from (10.15)is equal to U - I so that Eh= U and we only need to find the 
relationship between i: and 0.This exercise has already been completed in (10.71)but 
we will now work in principal directions in order to obtain an alternative expression. 

As a starting-point, we follow Hill [H 13 and introduce notations of the form: 

( 10.87) 

where T is any tensor and the subscript L relates to the Lagrangian (material) triad and 
the subscript E to the Eulerian triad (see Section 4.8).Hence, (T)Lis the tensor, T, with 
components related to the Lagrangian frame while, (T), is the same tensor related to the 
Eulerian frame (see Section 4.3.1and (4.35)and (4.36)).We will then apply (10.65)in the 
form: 

I/ = 7 E : i : E  = KL:EL ( 10.88) 

where bare  the rates of the strains E of (10.75)and (10.76)and K are the corresponding 
stress measures. Only for isotropic materials can we assume that the latter take the form 
of ( 10.77). 

10.6.1 Relationship between i: and U 

Using (1O.la) and its inverse: 

U - '  = Q(N)Diag(I) Q(N)T (10.89) 

with the aid of (10.86)and (10.87)and the relationship R = Q(n)Q(N)*(see (4.147)). 
( 10.71 ) can be re-expressed as 

(E)E=i (UU- l+ U-'U)L=~(ULDiag(~v- ' )+Diag( lu - l )UL)  ( 10.90) 

In  the two-dimensional case, (10.90)can be expanded as 

J["" q12]-

2 U21 U22 L 

(10.91) 

Equation (10.91)can be generalised to three-dimensional case as 

( 10.92) 
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10.6.2 Relationship between the Biot stress, 
B and the Kirchhoff stress, T 

For the Biot stress and strain, (10.88)becomes 

V = tE: = BL :(Eb)L = BI-: U, ( 10.93) 

Combining (10.92) and (10.93) leads to 

' L r ( B r r ) L  ( r = s )  (a) 
( 5 r s ) E  = I-2 i s i r  ( 10.94) 

ir+ i,, ( B r s ) L  ( r # s )  (b) 

This equation is equivalent to (10.73). For isotropic materials, (10.77) applies and we 
can write 

B = Q(N)Diag( B,)Q( N)'r ( 10.95) 

so that, from (10.86), 

B12= Diag(Bi) ( 10.96) 

and hence with r # s, (BrJL= 0 and, from (10.94), we have 

tE = Diag(RiBi)= Q(N)TBUQ(N) ( 10.97) 

where for the last relationship in (10.97) we have used ( 10.1a)  and (10.95). Using (10.87) 
for rEand the relationship R = Q(n)Q(N)'r (see (4.147)), i t  follows that 

BU = RTtR ( 10.98) 

This relationship was previously established in (10.84). 

10.6.3 Relationship between U, the i ' s  and the spin of the 
Lagrangian triad, W, 

To establish the relationship between t and the other stress measures conjugate to the 
strain, E of (10.75) and (10.76), we require firstly the relationship between the strain 
rates, k and i.By studying (10.75), we can see that, as a first step, we will require the 
relationship between k and the principal stretch rates, j".We will find that we also 
involve the spin of the Lagrangian triad which we will write as W, (in contrast to 
W = RRT of (10.70) which defines the spin of the Eulerian triad relative to the 
Lagrangian triad). In the next section (Section 10.6.4), we will obtain the equivalent 
relationships for k and finally, in Section 10.6.5, we derive the relationships between 
E and i. 

As a starting-point, equation (10.la)can be differentiated to give 

U = QDiag(/L)QT+ QDiag(i)QT+ QDiag(X)QT ( 10.99) 

where we have written Q as short for Q(N). Combining (10.99) with (10.86). 

(U),-= Diag(X)+ QTQDiag(E.)+ Diag(L)Q'Q (10.100) 
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Now. just as the matrix W = RRT in (10.70) is antisymmetric, so is the matrix: 

WN= Q(N)Q(N)' (10.101) 

The latter is the spin of the Lagrangian triad and can itself be related to the Lagrangian 
triad to give 

(WNh = Q'CQQ ')Q = QTQ (10.102) 

and hence, from ( 10.IOO) ,  

( U)lA= Diag(j.)+ (WN)l,Diag(i)-Diag(R)(W,),, (10.103) 

Expanding the above for the two-dimensional case, gives 

(10.104) 

where kt?;: and wy:  are components from (W&. Because the latter is antisymmetric. 
p.-, - - wy) .  Equation (10.104) can be rewritten as 

(10.105) 
_1 

Expanding the previous expression to three dimensions and introducing a suffix 
notation: 

(10.106) 

10.6.4 Relationship between €, the i ' s  and the spin, W, 

Equation (10.106) relates (U)l,to i and Because (10.73, for a general strain, E,  of the 
same form as U in (10.la). we can derive a similar relationship to (10.105), for In  
particular, differentiation of (10.75) leads to 

k = QDiag(f'(i))Q' + QDiag(f(i))Q' + QDiag(j'(i))Q' (10.107) 

and eventually, in place of (10.106) we obtain: 

( r= s) 
(10.108) 

We can make (10.108) specific to the particular strain measures of (10.75) and ( 10.76)by 
adopting (10.76) for the specific f ( n ) ' s .  This exercise will be undertaken in Section 
10.6.6.1.For the present, we note that with f ( A )= i - 1, and with U = k, we recover 
(10.106). 

I t  remains to relate the A's and spin components, wzL to i. 
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10.6.5 Relationship between i,the X’s and the spin, W, 

Equation (10.92) relates 6, to U, while (10.106) relates U, to the x’s and the spin (WN),,. 
From these two equations, for r = s, i t  follows that 

(crr)E= L r / E b r ;  r = s (10.109) 

which shows that the diagonal components of the velocity strain tensor, k, when related 
to the Eulerian triad are equal to the rates of the logarithms of the principal stretches. 
Provided 2, # A,, we can use (10.106) to obtain the components of the spin (WN)l*in 
terms of the stretches and components of U, while, from (10.92), we can further relate 
the latter to the components of iEso that 

(10.110) 

10.6.6 Relationship between €and i: 

We can now substitute from (10.109) and (10.1 10) into (10.108) to obtain: 

( I ’  = s )  

(10.11 1 )  
( I ’  # 7 )  

10.6.6.1 Specific strain measures 

(10.11 2 4  

(10.1 1%) 

( I ’ =  s )  (a) 
(10.11 2 4  

( I ’  #s) (b) 

as well as 

(10.112d) 

Equation (10.1 12c) applies only if 2, # As. 
In conjuction with U = k(Biot). the last relationship coincides with (10.92). For the 

log strain, by using series expansions, i t  can be shown [H 1) that {I(;.) from (10.11 2c) can 
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be expressed as 

(10.113) 

and hence, from ( 10.1 12c), if E,, 2 A s ,  

(irs(Iog))L 2 (t:r.q)E (10.114) 

Using R = Q(n)Q(N)T(see (4.147)) in conjunction with (10.86) and (10.87), (10.1 14) can 
be re-expressed as 

&log) = (iog,u)*2: R ~ & R= R%R + O ( E ~ )  (10.115) 
and hence 

i: 1: R(log, U)'RT (10.116) 

10.6.7 Conjugate stress measures 

The conjugate stress measures can be obtained by applying (10.93) in conjunction with 
( 10.11 I )  or (10.112). Considering, first, the second Piola-Kirchhoff stresses and Green 
strains, from (10.93) and (10.112a), 

(7r5)F = AbriJsrs) ld  (10.1 17) 

which can be rewritten as: 

(T ) ~= Diag(R)(S),Diag(A) (10.118) 

Using (10.86) and (10.87). the latter becomes 

7 = Q(n)Q(N)'Q(N)Diag(r.)Q(N)'SQ(N)Dia&(;~)Q(N)TQ(N)Q(n)r (10.119) 

With the aid of the polar decomposition F =  RU (see (4.126)), the relationship 
R = Q(n)Q(N)T(see (4.147)), and the relationship in (10.la) for the symmetric. U, 
( 10.1 19) gives the standard relationship t = FSFT. 

Considering, now, the Almansi strain, A of (10.66) or (10.75) with (10.76b), from 
(10.93)and (10.1 12b), 

(10.120) 

where s,,are components of the stress tensor, S, that is conjugate to the Almansi strain 
A. Equation ( 10.120)can be developed to give 

t = F -  'SF- (10.121) 

The Biot stress, B, has already been considered in Section 10.6.2. Equations (10.93) 
and (10.112d)can be used to re-establish (10.94) with subsequent developments leading 
to (10.95)-( 10.98). 

Considering the log strain of (10.12) or (10.75) with (10.76d), by combining (10.93 
wi th  (10.112c),the conjugate stress, 0,is found to be related to T by 

[(or.$),- ( r =  s )  (a)  
(10.122 
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Equations ( 10.122),which were derived by Hill [H 13, apply only if none of the principal 
stretches coincide. 

A good approximation to (10.122) can be obtained by combining (10.93) with 
(10.115) to give 

0 2 RTtR (10.123) 

Indeed, as established in (10.83),this relationship is exact for an isotropic response. 

10.7 USING logJ WITH ISOTROPY 

I t  can be shown [Ol,H2,H3] that for a general material, there is no equivalent to 
(10.122) when we use logCVrather than log,U. In other words we cannot find a stress 
measure that is work conjugate to log,V. However, as indicated at the end of 
Section 10.5, for isotropic conditions we can write the poweriunit initial volume as 
I/ = t : ( log,V)' .This follows if we can show that 

v = t : ( log,V)'= r :& (10.124) 

In (10.69), was differentiated F = R U  to obtain the expression (10.71)for i; which 
involves U and U. Instead we now differentiate F = VR to obtain: 

L = FF- = [VR + VR]R'rV- * = VV - + V W V - (10.125) 

where W = RR' (see (10.170)). It follows that 

L + L'&=--I 
2 

- 2 [ V v - 1  + v - ' V  + vwv- 1 -v - 'WV] (10.126) 

and hence: 

t:& = t : i [VV - + v- 'V] + [ V t V -
W 

- v 'rV) :- (10.127)
2 

If the material is isotropic V (see (10.1 b)),V - and t (see (10.8 1 ) )  are coaxial and hence 
the second term in brackets in (10.127) vanishes and we are left with 

t :E =z :4[VV - 1 + v - 1 V] (10.128) 

To proceed further, we differentiate [10.1 b) to obtain: 

V = Q(n)Diag(XRQ(n)T+ Q(n)Diag(i)Q(n)T+ Q(n)Diag(i)Q(n)' (10.129) 

so that 

V V - ' = Q(n)Diag($)Q(n). + Q(n)Q(n)' 

+ Q(n)Diag(E,)Q(n)TQ(n)@n)TQ(n)Diag 
or 

V V - ' = Q(n)Diag(:) Q(n)T+ W,, -VW,V- (10.130) 
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( 10.131 ) 

is the antisymmetric spin of the Eulerian triad (see (10.101) for the spin of the 
Lagrangian triad). 

Substituting from (10.130) and a similar expression for V - ' V  into (10.128) gives 

Q(n)T+ [V - ITV-V t V - I]:>
W 

( 10.1 32) 
2 

Once again, assuming isotropic conditions, the square-bracketed term vanishes and we 
are left with 

r:i: = r:Q(n)Diag(f) Q(n)T (10.133) 

We will now apply a similar exercise with I/ = t:(log, V)'  and differentiate (10.1b) to 
obtain 

- log,VW, (10.134) 

so that 
/ ; \  

r:(log,V)'=r:Q(n)Diag Q(n)T+ [zlog,V - log,VzJ:W, ( 10.135) 

which again, for isotropic conditions degenerates to (10.133) and the relationship 
( 10.124) is established. Hence, for isotropic conditions z is work-conjugate to the strain 
measure log,V. 

10.8 OTHER STRESS RATES AND OBJECTIVITY 

In Section 10.4, we derived the Truesdell rate of Kirchhoff stress by differentiating 
t = FSFr. If we apply a similar procedure to z = RORTas obtained from (10.83) (with 
0 as the stress that is work-conjugate to log,U), in place of (10.53), we obtain: 

i = R O R ~+ WT+ 2wT= z~~ + W T+ z w r  (10.136) 

where W = RRT.The use of tGNwas proposed by Dienes [Dl]. I t  is often called the 
Green-Nagdhi [G 1J rate of Kirchhoff stress. For a hyperelastic material i t  stems from 
the relationship for 0.However, when used with a hypoelastic material it provides 
another objective stress rate and it  was in this context that its use was advocated by 
Dienes [Dl]. He suggested its use in preference to the Jaumann rate because of the 
oscillatory stresses that resulted with the latter rate when analysing a body subject to 
shear (see Section 13.10.3). However, the oscillations were associated with large elastic 
strains, and for such large elastic strains it  can be argued that one should use 
a hyperelastic constitutive relationship (Chapters 13 and 19). 

In order to compare the Green-Naghdi rate with the Jaumann rate, we need to 
establish a relationship between W = RRTand 6= +( L - LT).To this end, from (10.70). 



21 OTHER STRESS RATES AND OBJECTIVITY 

we can obtain: 

* L - L T  Ra=----, = W + 7 ( U U - ' - U - ' U ) R T  ( 10.137) 

so that using (10.86) and (10.87) in conjunction with the relationship R = Q(n)Q(N)Twe 
obtain: 

[a-WIE= [ U u - -U- 'UIL (10.138) 

and following a similar procedure to that adopted in Section 10.6.1, we arrive at the 
relationship: 

so that with the aid of (10.92), we have 

(10.140) 

Clearly, when the stretches are nearly of the same magnitude, (or, "c wr, and there will be 
very little difference between the Green-Naghdi rate and the Jaumann rate. These 
issued have been explored in more detail by Peric [Pl]. 

Among the Lagrangian strain measures discussed in Sections 10.1 and 10.5, was the 
Almansi strain, A (in the form used by Hill [H 11)as defined in (10.66).If we defined the 
stress tensor that is work conjugate to A as S where (see (10.121)), T = F-TSF- ', 
differentiation (following a very similar procedure to that adopted in Section 10.4 for 
the Truesdell rate) would lead to the relationship: 

+ = F - T S F - ~- t ~ - ~ ~ t = + O - t ~ - ~ ~ t  ( 10.141) 

where 2, is sometimes known [Pl] as the Oldroyd CO21 rate of Kirchhoff stress. I t  is 
also sometimes known as the Cotter-Rivlin rate or as the 'convected rate'. The stress 
rate that we have called the Truesdell rate, Lubliner cL4.141 also calls the 'Oldroyd 
rate' although, in relation to the rate of Cauchy stress, with the Oldroyd rate, Lubliner 
would omit the tr(i) that is included in (10.62). 

We have derived all of the rates except the Jaumann rate by taking time derivatives of 
stresses that were defined in the Lagrangian frame. It was implied that these rates might 
then relate to a hyperlastic relationship. However, as pointed out in Section 10.4, even if 
these rates are used in conjunction with a hypoelastic relationship, they are still 
'objective' (issues regarding the integration of the rates are discussed in Section 19.5). 
The issue of objectivity was discussed in Section 10.2 (see equations (10.30)-( 10.33)), 
although the proof that the Jaumann rate was objective was not completed. We will 
complete it now. 

As in Section 10.2, we will consider a rigid body rotation superimposed on top of the 
current state so that (repeating (10.30)): 

dx' = Rdx (10.142) 

where, in the above and for the rest of this chapter, R is a general rotation matrix and is 
not the rotation matrix associated with a polar decomposition. From (10.142), it 
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follows that 

(10.143) 

Time differentiation of (10.143) leads to the relationship: 

F =  RF + R F  = RF + R R ~ R F= R F +  WRF (10.144) 

I t  follows that 

L f= $“F’-1 -- ( R F +  W R F ) F - ’ R T = R L R T +  W (10.145) 

and hence: 

L + LT W + W TL’ + LIT (7)2i:’ = ____ = R (  ~ > R T  + = RiRT (10.146) 

(so that i: is objective) and 

(which is not objective). We now differentiate t’= RzR1 (where we are using the 
Kirchhoff stress although we could have used the Cauchy stress) to obtain 

+’= RtR’ + RtRT+ RtRT= t f+ Wt’ + t f W T  (10.148) 

We are now in a position to express the Jaumann rate of Kirchhoff stress (see ( 10.36))in 
the rotated configuration as 

2.’J -- i’- iZ’t’+ t’SY = t’+ Wt’ + z’W’ - (RiZRT+ W)t’  + t’(RiZRT+ W) (10.149) 

so that in conjunction with the relationship, z’ = RtRT, we can write 

t;= R ( t  -ht + r h ) R T= Ri,RT (10.150) 

which demonstrates the objectivity of the Jaumann rate, 2,. Very similar procedures can 
be used to demonstrate the objectivity of the other stress rates that have been discussed. 

10.9 SPECIAL NOTATION 

Scalars 

B ,  - B ,  = principal values of B 
J = det(F) 

S, -S, = principal values of S 
V = power/initial unit volume 

T ,  - 7,  = principal values of z 
E,  -E, = principal values of E 
E ,  - E ,  = principal values of E 

p = shear modulus 
4 = strain energy 



23 SPECIAL NOTATION 

i = stretch 
3. = Lame constant 

Vectors 

E = Green strains 
n = unit principal vector in current (Eulerian or spatial) configuration 

N = unit principal vector in original (Lagrangian) configuration 
U =displacements 
v = velocities 
X = position vector in original configuration 
x = position vector in current configuration 

Matrices or tensors 

1 = second-order unit  tensor 
A = Almansi strain (related to Eulerian triad) 
A = alternative Almansi strain related to Lagrangian triad 
b = FF’r= left Cauchy Green tensor 
B = Biot stresses (conjugate to Biot strains, Eb) 
B = RBR” (see 10.85b) 
C = FTF= (right) Cauchy Green tensor 
D = constitutive (stress-strain moduli) matrices or tensors 
E = Green strains 
E = 

E ,  = 
F = 
I = 

I, = 
L = 
0 = 
P = 
Q = 

Q(N)= 
Q(n)= 
R = 
S = 
S = 
U = 
V = 

W = 

W, = 

General strain measure related to Lagrangian triad 
Biot strain (related to Lagrangian triad) 
deformation gradient 
identity matrix 
fourth order unit tensor 
velocity gradient, a‘v/dx 
stress conjugate to ‘log,U’ 
first Piola-Kirchhoff stress (or ‘nominal stress’) 
orthogonal matrix containing principal directions (N‘s or n’s) 
contains the Lagrangian triad 
contains the Eulerian or spatial triad 
rotation matrix 
second Piola-Kirchhoff stresses 
stresses conjugate to A 
right-stretch 
left-stretch 
RRT (antisymmetric) = spin of the Eulerian triad relative to the 
Lagrangian trial 
(antisymmetric) spin of the Eulerian triad = Q(n)Q(n)T 

W, = (antisymmetric) spin of the Lagrangian triad = Q(N)Q(N)T 
bi j= Kronecker delta ( = 1, i = j ;  =0, i # j )  
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t? = velocity strain tensor (also, loosely, 6 ~ )(note ;i: Is not the rate of E) 
CF = Cauchy stress 
K = General stress conjugate to general strain, E 
t = Kirchhoff or nominal stress ( = Ja)
fi = spin = i ( L  - LT)(also, loosely, 60)  (note a is not the rate of a) 

Subscripts 

E = Eulerian, signifies a tensor rotated into the Eulerian triad (see (10.87)) 
G N  = Green-Naghdi rate 

J = Jaumann rate 
L = Lagrangian, signifies a tensor rotated into the Lagrangian triad (see 

(10.86)) 
0 = Oldroyd rate 
T = Truesdell rate 

Superscripts 

= time derivative 
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1 1 Non-orthogonal 
coordinates and co- 
and contravariant 
tensor components 

In  all of the previous chapters we have, at the stress strain level, worked in rectangular 
orthogonal coordinates. I n  Chapter 8, on shells, when we need to apply the plane stress 
hypothesis (Section 82.1). we set up a local (Gauss-point level) orthogonal system, 
before transforming the material properties to the global orthogonal system via (4.55). 
However, for most finite element work, the shape functions are written with respect to 
a set of non-orthogonal curvilinear coordinates and we use the inverse Jacobian, to 
transform differentials with respect to these coordinates to differentials with respect to 
the global cartesian system (see (5.7)or (5.8)). 

A n  alternative is to work directly with stress and strain components related to the 
non-orthogonal curvilinear system which is used, in any case, for the shape functions. 
To do  this we can use CO- and contravariant components of the stresses and strains 
which relate to the non-orthogonal curvilinear coordinates. With a view to such 
analyses, we will initially describe non-orthogonal coordinates and the transfor- 
mations that use these co-ordinates and will introduce concepts such as the ‘reciprocal 
basis’ and the ‘metric’. We will also develop expressions for the Green strain and second 
Piola -Kirchhoff stresses in relation to such coordinates. 

For a more thorough grounding, the reader should refer to [Sl,Yl]. Before 
commencing, it  should be emphasised that, while some of the later work in this book is 
based on the concepts developed in this chapter, this is not generally the case. 
Consequently, with a view to subsequent chapters, the present chapter can initially be 
skipped if the reader is not particularly interested in the topic. 

11.1 NON-ORTHOGONAL COORDINATES 

Figures 1 1.1 and 1 1.2 introduce four sets of coordinates and three sets of base vectors. 
In Figure 11.1, we can see two of the latter; the rectangular (global) base system with 
vectors i l - i 3  and a non-orthogonal system with vectors e,--e, that are tangential at 
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a3curve 

curve 

Figure 11.1 Local base vectors. 

Figure 11.2 Local reciprocal basis. 

point P to the curvilinear coordinates, a’. These could be the standard finite element 
‘natural coordinates’ so that 

(The reason for the use of superscripts rather than subscripts will be explained later.)To 
obtain the base vectors, e,-e,, we have 

Sr 
e.= -: i =  1,3 ( 1  1.2)‘ ?E” 



28 NON-ORTHOGONAL TENSOR COMPONENTS 

Given these (co-variant or natural) base vectors (which may not be of unit length), it is 
useful to obtain the 'reciprocal basis' composed of a set of (contravariant) vectors el-e3 
(Figure 1 1.2). These vectors are such that e' is orthogonal to e2and e,; e2 is orthogonal 
to e, and e,; e3 is orthogonal to e, and e2.In addition, we require that e'-e3 forms 
a right-handed system (as does el-e3) and that e:el = eTe2= e:e3 = 1. Clearly, if the 
original system ei-e3 is orthonormal (orthogonal and with each vector of unit length), 
then the reciprocal basis e'-e3 will coincide with the original basis. The previous 
conditions can be expressed as 

. .eTej=e:eJ=6J= 1 (i = j ) = 0 ( i  # j )  ( 1  1.3) 

In  equation ( I  1.3) we have introduced the notation that will be used throughout this 
chapter whereby a dot is used for the 'dot product' rather than using the transpose 
symbol, 'T'. (This procedure is used to avoid cluttering, as we are now adopting 
superscripts as well as subscripts.) Using the cyclic (1,2,3) system, we can, from the 
above, obtain the vectors, e' via 

(11.4) 

where 1 1  is the volume of the parallelepiped with edges along the base vectors ei.This 
positive scalar (with a right-handed system) is given by 

I - = e,  .(e, x e,) = e,.(e, x e , )= e3*(e,x e2) (1 1.5) 

A n y  vector, can now be expressed either in terms of the (global) orthonormal base 
vectors i , - i 3  or the base vectors e ,  -e3 or the reciprocal base vectors, e'-e3. In 
particular, we can write 

x = s ' e ,  + x2e2+ x2e3= xiei ( 1  1.6a) 

or as 

x = x le l  + x2e2+ x3e3= xiei ( 1  1.6b) 

The components xi in ( 1  1.6a) are known as the contravariant components of x, while 
the components xi in (11.6b) are known as the covariant components of x. By 
multiplying (1 1.6a) by eiand using (1 1.3), we can obtain the contravariant components 
of x as 

x' = xae' (1 1.7a) 

while a similar multiplication of (1 1.6b) by ei leads to 

xi = x.ei ( 1  1.7b) 

11.2 TRANSFORMING THE COMPONENTS 
OF A VECTOR (FIRST-ORDER TENSOR) TO A NEW SET 
OF BASE VECTORS 

In  Section 4.3.1, we considered the issue of transforming both vectors and tensors to 
a new set of orthonormal axes. In the present section, we will consider the similar 
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transformation for the components of a first-order tensor (or vector) using non- 
orthogonal bases. To this end, the vector x of (1 1.6a) and (1 1.6b) is re-expressed in 
relation to a new set of non-orthogonal basis vectors el - e 3  and e '  - e 3 so that 

x = XI@]+ x2e2 + x 3 e 3  = xie1 (11.8a) 

x = XlGl  +X2@2 + Z 3 e 3  = X i e '  (1 1.8b) 

Consequently, referring to this new system, in place of (1 1.7), we have: 
_ .  - .xi  = x .  ei (1  I .9a) 

Z i = x * e l  ( I  1.9b) 

Substitution from (1 1.6a) into (1 1.9a) gives 

% /  = ( d e j ) * e; = ( e / .e j )x j  = ( e / .e l ) x r +  (e i  - ez)x2 + ( e i  * e3)x3 (1 1.10a) 

while substitution from (1 I .6b) into (1 1.9a) gives 

xi = ( e i  . e j ) - x j  ( 1 1.1Ob) 

with substitution from ( I  1.6a) into (1 1.9b) giving 

Xj = ( e i  * ej)xj  (11.1Oc) 

and substitution from (1 1.6b) into (1 1.9b) giving 

Xi = (er * e j )x j  (11.10d) 

In terms of the components, we can adopt a matrix notation so that, for example from 
(1 1.lOa), we have 

[xi]= [ei- e j ] [x j ]  (1  1.1 1 )  

where the vector ( x i }is the vector containing the three contravariant components with 
respect to the barred base vectors, and the vector { x j } contains the three contravariant 
components with respect to the unbarred base vectors while the matrix [ e ' a e , ]  
contains, for example, the scalar 2' - e3 in the position (1, 3). 

If we consider orthonormal bases, there is no distinction between CO- and con- 
travariant components so that we can use subscripts throughout and (1 1.10a) would 
become 

(11.12) 

In Section 4.3.1, equation (4.41) transformed an 'old' vector, ro to a ' new' vector rn 
using (see (4.41)): 

rn = Tro = TnT;fro (11.13) 

where, strictly, we were working with components so that, in relation to the new 
terminology: 

ro = {xi}; r n  = (xi) (11.14) 

following for this switch of notation, (1 1.13)(or (4.41)) with (4.49) coincides with (1 I .  12). 
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11.3 SECOND-ORDER TENSORS IN 
NON-ORTHOGONAL COORDINATES 

In ( 1  1.6a) we expressed a vector (or first-order tensor) in terms of its contravariant 
components using the covariant, non-orthogonal base vectors, e, -e3 while in ( 1  1.6b) 
we used the covariant components and the reciprocal, contravariant, base vectors 
e'-e2. The same procedure will now be applied to a second-order tensor, A (such as 
stress or strain). This process leads to 

A = AiJe,ej= A' 'e1e,+ A"e,e, + A13e,e3+ A2'e2e1+ ( 1  1.15a) 

A = A,jeieJ= Alle'el+ Al2e'e2+ A13e1e3+ A12e2e1+ ... ( 1  1.15b) 

(Note that A # [ A i j ] and that, in this chapter, we are changing our normal notation 
whereby the matrix abT or a @ b is the outer product of the vectors a and b so that, 
instead, the matrix is given by ab). 

Equation ( 1  1.15a) involves the nine contravariant components of A, namely A'Jwhile 
equation (1 1.15b) involves the nine covariant components, namely Ai j .  In  order to 
obtain an expression for A,', we can multiply both sides of (1 1.15a) by ej and use (1 1.3) 
so that 

[A:&] = A'Je, + A2je,  + A3je, = Aijei ( 1  1.16) 

This operation is followed by the premultiplication of both sides of (1 1.16) by ei7'to 
obtain: 

In a similar fashion we can obtain 

A,,  = ei.(A:ej) ( 1  1.17b) 

11.4 TRANSFORMING THE COMPONENTS 
OF A SECOND-ORDER TENSOR TO A NEW SET 
OF BASE VECTORS 

For a different set of base vectors, e l-e3 and e' -e3, (1 1.15a) and ( 1 1.15b) can be replaced 
with 

while in place of (1 1.17a) and ( 1 l.l7b), we have 
xij=ei.(A:ej) (11.19a) 

and 
Aij= ei*(A:ej) (11.19b) 

Substituting from ( 1  1.15a) into (1 1.19a) gives 
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or 

In a similar fashion, by substituting from (1 1.15b) into (1 1.19b), we obtain: 

AaAij= (ei.eu)(e-eb)A,, ( 1  1.20c) 

We could also substitute from (11.15a) into (11.19b) to get a similar relationship 
between a term Aijand the nine components A"' or from ( 1  1.15b) into (1 1.19a) to get 
a relationship between a term A" and the nine components 

A matrix expression that is equivalent to, say, ( 1  1 .20~)can easily be obtained as 

CA1 = CTI [ A I  c TIT ( 1  1.21) 

where [A] is a 3 x 3 matrix containing the nine components Aij and [ A ]  an equi- 
valent-matrix containing the nine components Ai j  while the transformation matrix 
[T ] contains the nine components of ei.eJ,i.e. 

[ A ]  = [ A i j ] ;  [ A ]  = [ A ~ ~ ] ;  [ T ]= [e i .e j ]  ( 1  1.22) 

If we consider orthogonal axes so that subscripts can be used everywhere, equations 
(11.20a) and (1 1.20b) are equivalent to the transformations of (4.5 1)and (4.50)derived in 
Section 4.3.1. In addition, the matrix form in (1 1.21) and ( 1  1.22) is equivalent to the 
combination of (4.42) with (4.49). 

11.5 THE METRIC TENSOR 

Substituting from (1  1.7) into (1 1.6) gives: 

x = (x.ej)eJ ( 1  1.23a) 

x = (x-ej)ej  (1  1.23b) 

If, in 11.23a), we set .Y = ei,we obtain 

ei = (ei-ej)eJ= eijeJ ( 1  1.24a) 

while if we set x = e' in ( 1  1.23b), we obtain 

e' = (e'-ej)e.= eijej ( 1  1.24b) 

The nine scalar coefficients eij  (often written with the letter g )  are known as the 
covariant components of the metric tensor while the nine scalar coefficients f?"' are 
known as the contravariant components of the metric tensor. The former are given by 

e . .=e:e ( 1  1.25a)IJ 1 J 

while the latter are given by 
,ij =et. eJ ( 1 1.25b) 

By taking the dot product of both sides of (1 1.24a) with ekand making use o ( 1  1.3), it 
can be shown that 

e:ek = 6k = e ..&+ek= e ..eJk ( 1  1.26)11 
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Consequently the matrix [e,,) containing the nine components eijis the inverse of the 
matrix, [Ie'J] containing the nine components of eiJ,i.e.: 

[e'j] = [ e ..)- (1  1.27) 

Equations (1 1.24a) and (1 1.24b) allow the components of the metric tensor to be used 
to transform from the original basis, (e,-e,) to the reciprocal basis, (e'-e3).These 
components can also be used to transform between CO- and contravariant components 
of a tensor (such as stress and strain). To this end, if we substitute from (1 1.24b) into 
( 1 1.15b) and compare the result with (1 l.l5a), we obtain 

A'' = eikeJ1Akl ( 11.28a) 

A similar manipulation can be used to obtain 

A i j= eikejlAk' (1 1.28b) 

11.6 WORK TERMS AND THE TRACE OPERATION 

In  all of the previous chapters, we have used work expressions in relation to an 
orthonormal cartesian system so that the work per unit volume is given by (see (4.76)) 

w= ad& = aij6Eij= cT1 1 + a,,6&,, + . * - (1 1.29) 

where o are some stresses and BE the equivalent work-conjugate strain changes. 
Equation (11.29) involves the tensors G and SE. We will now generalise the operation in 
relation to general tensors A and B which may be related to non-orthogonal bases. We 
then have 

)+' = A : B  = B:A = AT:BT= A ..Bij AijBij= AijBij (1 1.30) 

Clearly, with a rectangular, cartesian system, using subscripts throughout, (1 1.30)will 
be consistent with (1 1.29). 

In order to demonstrate the validity of (11.30), it is useful to note that, while in 
cartesian coordinates, the identity matrix, I, can be written as 

I = eiei=elel  + e,e, + e3e3 (1  1.31) 

with non-orthonormal bases, we have 

I = eiei=eiei ( 1  1.32) 

To show that Ai,Bij = A'jB,,, we can use (1 1.3), (11.25), (1 1.28) and (11.32)so that 

A ,,B~J= (ei- e,) (e,* eb)Aub(eiec)(ej.ed)Bcd 

= (e,- eieiec)(eb.ejeJed)AabBcd 

=(e;eC)(eb.ed)AabB,,AabB,b = A"B,, (1 1.33)= 
- -..

To show that any set of bases can be used and, for example, that AijB" = AijB",we can 
use (11.3),(1 1.20) and (11.32)so that: 

- -..
A ,B'J= (ei.e') (e,*eb)Aab(ei-ec)(S* e d ) B c d  

= (eae,e'e,)(eb.e,iiJed)AabBcd 

= (e".e,)(eb-ed)AabBcd= AabBab= AijBij= AijBi' (1 1.34) 
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11.7 COVARIANT COMPONENTS, NATURAL 
COORDINATES AND THE JACOBIAN 

In most finite element analyses, to obtain the strains, we initially use the shape function 
to express the displacements in terms of natural (curvilinear coordinates). We later use 
the Jacobian matrix to express the derivatives with respect to the natural coordinates in 
terms of derivatives with respect to the base orthonormal system. With a view to later 
work (Section 18.1 1) on 'enhanced' or 'assumed' strains, it turns out to be very useful to 
consider the strains in terms of these 'natural coordinates'. 

In the following, to reduce the number of terms, we will often work in two 
dimensions, although the concepts are easily extended to three dimensions and indeed 
some of the equations will be given in the full three-dimensional form. Following on 
from (1 I .  I ) ,  in two dimensions, the natural coordinates will be written as 

The 'natural strains' can be considered as the covariant strain components, C,,, 
where 

. . 
I/ +E = E-G'GJ= E ~ ~ G ~ G ~+ . . . ( I  1.36) 

With G'- G3 as the contravariant base vectors (previously e1-e3)while the covariant base 
vectors are (see (1 1.12)) 

dX
G . - - ( 1  1.37)' - da' 

(Capital X is being used because this will relate to the initial configuration, while in the 
next section we will also consider the current configuration for which a small .x will be 
adopted). In a two-dimensional setting, the conventional Jacobian matrix is 

i "I ( I  1.38) 

where i"= i,y are the unit normal vectors defining the rectangular orthogonal base 
system. (Note: some authors define J as the transpose of the current J . )  

Rather than starting with the strains, we will firstly consider the displacement 
derivatives (see (4.72)) and will write: 

D D,G'G" = i r i s  ( 1  1.39) 

where are the covariant components and D,,are the conventional cartesian Dr.7 

components. With the aid of (1 1.21) and ( I  1.22), it follows that 

[ D r s ]  [Gr * i"][Dr,y][Gri"IT ( 1 1.40) 

or, using (1 1.38), 
D = J D J ~  (11.41) 

where D is the matrix containing the covariant components 6 and D is the matrix 
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containing the cartesian components D.Using a vector notation, ( 1  1.41) can be 
re-expressed as 

In relation to strains. the equivalent of ( I  1.41) is 

E =J ~ J T  ( 1  1.43) 

In component from (see ( 1  I .2Oc)), ( 1  1.43) is written as 

E , , /  = (G,  . ik)(G,,. i')i,,, ( 1  1.45) 

Using the previous, notation, we can write: 

( 1  1.46) 

and if we define 

D,t= 3< 871 = 3ddd = 3d ddI [--I [--I

3%)all 35 87) da '  3 d  ( 1 1.47) 
_ -
a<37 

then the conventional procedure for obtaining the cartesian derivatives would involve 

D T  = j-1~; ( 1 1.48) 

so that substitution into ( 1  I .41) gives the equivalent matrix ofcovariant components as 

D = J D ~  ( 1 1.49) 

Directly in terms of these components, ( I  1.49) can be written as 

( 1 1.50) 

I t  is worth noting that while the Jacobian matrix is given by ( 1  1.38), the inverse 
Jacobian can be written as 

J - I = [GlG'] = (11.51) 
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11.8 GREEN'S STRAIN AND THE 
DEFORMATION GRADIENT 

We will adopt convected curvilinear coordinates (Figure 1 1 . 1 )  so that the equivalent 
point in the original and final configurations is still referred to by the same convected 
coordinates, (1'. For an element in the initial configuration, we then obtain 

dX
d X = I d a r = G , d n /  ( 1  1 S2a)

d a  
where G I - G ~are the covariant (or natural) base vectors (in Sections 1 1 . 1 - 1  1.6, the 
latter were written as eI-e3). In the current configuration: 

( 1  1.52b) 

The conventional relationship dx = FdX is recovered from ( 1  1.52a) and ( 1  1.52b) with 
F = g,G' = g;G' + g,G' + g,G-3 ( 1  1.53) 

With the aid of ( 1  1.32), we can also write 

Following the approach of Section 4.4 (but now in non-orthogonal coordinates), we 
can use (1 1.52) to write 

E,, d CL' d Q 1 = i (dx * dx - dX . dX) = i [gig, - G/ * GJ]d(\. 'd CI ' 
= 4 [g,, - G,,]da'da ( 1  1.56) 

where Eij are the covariant components of the Green strain tensor, E. with respect to 
the base-vectors G' - G'. In addition: 

E = E,G'G ' = El 1 GIG' + E12GIG' + * * = 5 [gl/- G,,]G'G' ( 1  1S7a)  

which could be obtained more directly from (4.74) (1 1.24a),( 1  1.32) and ( 1 1.36)so that 

E = { [FTF- I] = [(G'g,) - (g,G ') - G, G'] = [gl/- G,,]G'G' ( 1 1.57b) 

11.8.1 Recovering the standard cartesian expressions 

Before proceeding further, it is useful to show how a similar procedure to that of 
Section 11.8 may be used with the Cartesian base vectors to recover the standard 
expression for the Green strain: 

( 1  1.58) 

to this end, we use the cartesian base vector i1-i' so that the initial vector to a point 
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P is 
X = X;i; = X2il + X2i2 + X3i3 (1 1.59) 

Also, the coordinates crl in (1 1.52a) would simply be X ,  so that: 

(1 1.60) 

Still using the cartesian base vectors, the position vector of the final point P’, would 
be 

x = x;i; = xi il  + . q i 2  + .x3 i 3  (1  1.61) 

so that using (1  1.52b): 

(1 1.62) 

and, using (1 1.25a) (but with g’s instead of e’s): 

while. using (1 1.25a) with G’s instead of e’s: 

Hence, substituting from (1 1.63) and (1 1.64) into (1 1.56) gives as expression for E0 
that coincides with the component form in (1 1.58). 

If, following the approach of Section 11.7, we use hats to represent the 
components with respect to the cartesian system and bars to represent the covariant 
components, we can use (1 1.21) and (1 1.22) (see also (1 1.43)) so that: 

E = J E J ~  (1  1.65) 

or, in component form (see ( 1 1.20~)): 

11.9 THE SECOND PlOLA-KIRCHHOFF STRESSES 
AND THE VARIATION OF THE GREEN‘S STRAIN 

The second Piola-Kirchhoff stresses are work-conjugate to the Green strain so that 
(see 4.1 18)’ with an orthonormal cartesian system, (1 1.29) would give: 

W = S : 6E = S Q ~ E Q  (1 1.67) 

(As in Sections 11.7 and 11.8, the hats are introduced for components related to the 
cartesian base vectors). It has already been shown in Section 1 1.8 that it is convenient to 
work with the covariant components of the Green strain. In these circumstances, from 
( 1 1.30)’ we should adopt the contravariant components of the second Piola-Kirchhoff 
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stress so that: 
- .  -

W = S:6E= SiJdEij= S”6Eij (1  1.68) 

where the bars indicate covariant components for strains (or strain variations) and 
contravariant components for stresses. Consequently to complement the Green strain 
in the form of (11.38), we require to express the second Piola-Kirchhoff stresses via: 

= PG,G,s = PG,G, + $ 1 2 ~ , ~ ,+ ... (1 1.69) 

To complete the work definition (see (1 1.68)), we require the variations of the Green 
strain, 6E. From (1 1.57), the variations of the covariant components are given by 

SEij= ;sgi j  =;6(gi*gj)=+(gi.6gj+ 6 g , * g j )  (1 1.70) 

Using (11.52b) for gi, we have: 

( 1  1.71) 

where 6d are the changes in displacements (with x = X (initial) + d). 

11. I 0  TRANSFORMING THE COMPONENTS OF THE 
CONSTITUTIVE TENSOR 

Suppose we have a constitutive tensor, C, related to the orthonormal, cartesian system 
(with base vectors i 1 - i 3 )  so that: 

= eabcdEcd (11.72) 

(Similar developments can apply to the tangent form of (1  1.72)with &,b instead of go,, 
and 6ECdinstead of E c d . )  The tensor, S can be expressed as 

s= gijiijj= ~ J G , G ,  ( 1  1.73) 

while, for work conjugacy (i.e. with the work being expressed via (11.68)), the Green 
strain E should be expressed as 

E = E.‘ I. i . i .= E , , G ~ G ~  (1  1.74)I I 

We now wish to modify t a b c d  so as to relate Pj to Eij .TOthis end, we can use (1 1.20a) to 
provide: 

- .sLJ(G”i,) (G’.i b ) g , b  (1 1.75)= 

where we have used the fact that in relation to the base vectors, i1 - i3 ,  there are no 
differences between CO- and contravariant vectors or components so that subscripts 
can always be used. Applying a similar process to ( 1  1.20~)leads to 

E c d  = (i, ’Gk)( i d  ‘G’)Ek, ( 1  1.76) 

In matrix form, the latter involves: 
E = J - 1 E j - T  (1 1.77) 
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Substitution from ( 1  1.66) into ( 1  1.69) is followed by the substitution of ( 1  1.76) into the 
result and gives: 

(GJ-i,) (Gk.i,) (G'-id)cobcdEklFJ= ( Gi*iu) = CiJkrEkl ( 1 1.78) 

where 

Cijk'= (G i,) (GJ-i,,)(Gk* i,) (G * id)cabcd ( 1  1.79) 

Suppose the system G,-G, was, in fact orthonormal so that G, = G', then equation 
( 1  1.79) represents the transformation of the components of a constitutive tensor from 
one orthonormal system to another. Such transformations were considered in Sec- 
tion 4.3.1, where the components of the transformation matrix were written in (4.50) as 

Tij= (e,;ej,) = (Gi*ij) (1  1.80) 

where the first relationship uses the notation of Section 4.3.1and the last relationship uses 
the present notation. It follows that, in these circumstances, ( 1  1.57) coincides with (4.55). 

In  the special case of a linear isotropic material, in relation to the system i ,  - i 3 ,  we 
have (see (4.30)) 

A

Cubed = ;csabs,d + p(dacdbd + ( 1  1.81) 

hence, in relation to CO- and contra-variant components, we can, via (1  1.57), write: 

+ j l ( ( ~ i . ~ k ) ( ~ j . ~ I )C i J k I  = ~ ( G ~ . G J ) @ . G J )  + ( G ~ . G I ) ( G J . G ~ ) )  ( 1  1.82a) 
or 

= i(cij)(ckI) + (ciI)(cjk)) ( 1  1.82b)+ j l ( ( ~ ~ ~ ) ( ~ j ' )  

11.11 A SIMPLE TWO-DIMENSIONAL EXAMPLE 
INVOLVING SKEW COORDINATES 

The objective of this example is to work through the various stress, strain and work 
expressions using both conventional orthogonal base vectors and non-orthogonal base 
vectors and to highlight the equivalence of the two systems. The objective is not to use 
the most efficient formulation. 

The developments can be assumed to relate to a parallelogram element as shown in 
Figure 11.3. In relation to this figure, any point in the initial configuration can be 
represented using the orthogonal unit  base vectors, i , ,  i ,  via 

,=(:)=xi,+ Yi, (1  1.83) 

Here X and Y can also be mapped using the standard isoparametric shape functions in 
terms of the non-dimensional coordinates, < and q which, in the present context, are 
special forms of 'convected curvilinear coordinates', xi (i = 1,2). Hence, from ( 1  1.52a) 
and Figure 11.3, the covariant base vectors Cican be found as 

( 1  1.84a) 

( 1  1.84b) 
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f V V )  
I 

f 17 =a2I 

Unit vectors CO-and contravariant 
base vectors 

Figure 11.3 Skew coordinate system. 

(If equations (1 1.84a) and (1 1.84b) cannot be accepted by inspection, one may simply 
obtain them by expressing the initial coordinates X and Y in terms of a, b and 0 using 
the usual bilinear isoparametric shape functions.) Hence. from (1 1.25) (but with G's 
instead of 4's): 

G11 = G l *G l  = u2 ,  G 2 , = G,. G, = b2,  G, ,  = G , .  G, = abcos0 (1  1.85) 

so that the matrix containing the four covariant components of the metric tensor is 

(1 1.86) 

and the determinant is 

det[Gij] = a2b2sin20 ( 1  1.87) 

Hence, using (1 1.27) (again with G's instead of e's): 

[Gij] = [Gij]- = ]-ub COS 0 
(11.88) 

so that, using ( 1  1.24b): 

(1 1.89a) 

(11.89b) 

For the Green strains, we require the base vectors, gi,which are given by 

( 1  1.90) 
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where d are the displacements with dT= (U,v)'. For the current example: 

(1 1.91a) 

( 1 1.91b) 

where U; = Su/St, etc. and, from (11.91) and (11.25a): 

g l l= g , . g l  (1  1.92a) 

g2, =g2*g2=(bc + U,,), + (bs+ v , , ) ~  ( 1  1.92b) 

g1,= g, *g, = (a + u < ) ( b ~+ U,,)+ vr(bs+ U,,)  ( 1  1.92~) 

where we are adopting the shorthand, 

s = sin 8, c = COS 8 (1 1.93) 

The covariant components of the Green strain, E,,, can be found using (11.56),(1 1.88) 
and ( 11.92).Also, from ( 11.64),( 11.65) and ( 11.9 1): 

&El = g*Sg, = (U + uc)6u<+ u ~ ~ u ,  (1 1.94a) 

6 E 2 ,  =g, *6g2 = (bc+ u , , ) ~ u ,+ (bs+ u , ) ~ u , ,  (11.94b) 

2SEl2= 26E,, = g,*6g2+ g2*6g1 

= ( a+ ur)bu,,+ ccfiu,, + (bc + u,)Sur + (bs + v,,)Sv5 ( 1 1.94c) 

I f  we wish to relate the covariant strain components to a set of 'hatted' strains relating 
to a rectangular system, with base vectors, i , ,  i ,  (see Figure 11.3), we note that from the 
first relationship in (1 1.68): 

E = E,,ili, + E12i1i2+ l?21i2il+ l?,,e2e2 ( 1 1.95) 

while from the second relationship in (1 1.68): 

E = El lGIG'+ E12G'G2+ E2,G2G1+ E2,G2G2 (1 1.96) 

and using (11.70): 

(1 1.97) 

where we have used the matrix form of (1 1.21). From (1 1.84): 

1 
a'

G'.j, = _ *  * 

1 
b sin 8'

G2.i2= 
-cot e 

~ 1 . i- ;
a2 - G2*i l= O  (11.98) 

and hence, from (1 1.97): 

* EllE l l  =--
U 2  

( 11.99a) 

(1 1.99b) 
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(1  1.99c) 

We could obtain these relationships using the Jacobian matrix by noting (see also 
(1 1.77)) that (1 1.97) can be written as E = J-'FJ-T where 

(11.100) 

while the inverse Jacobian is 

J - ' = - [1 6s 0 ] ( 1  1.101)
abs -bc a 

which could be obtained using the contravariant base vectors of (1 1.89) in conjunction 
with (11.51). 

The previous relationships (1 1.99) also apply to the 6Eu's so that, from (1 1.99) and 
(1 1.94): 

6211= -
1 

( ( a  + U < ) S U ~+ V ~ S W ~ )  (11.102a)
a2 

1 
~SE22 = ( (b2c2q - abcu,)Su, + (b2c2vc - ab2sc - absv,)Sv<a2b2s2 
+ (-abcue + a2u,)Su, + (a2bs - abcvt + a2v7,)Sv,) (1 1.102b) 

26E12 = -1 
( ( ( -a& - 2bcuc + au,)Suc + (abs - sbcuc + av,)Svt

a2bs 
+ (a2 + aut)Su, + avp5v,)) (1 1.102c) 

The latter strain variations can, of course, be obtained in a more conventional 
manner using (4.79) (2SE = FTSD+ SDFT) in conjunction with terms such as 

dSu 1

J 
- z:)= J - l ( $ ) ;  = J- ' (  (11.103) 

or using (1 1.48): 

(11.104) 

In conjunction with F = I + D or with (1 1.53) whereby F = g,G' + g2G2.The reader 
can easily demonstrate that this route also leads to the strain variation terms in 
(11.102). 

The stresses can be expressed via: 

s = Sllilil + 312ili2 + 321i2il + 322i2i2 ( 1  1.105) 
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or alternatively. from ( 1 1.69), we can write: 

s= P G , G ,  + S 1 2 C , G ,+ S 2 1 G 2 c l+ S22G2G2 ( 1  1.106) 

so that, from ( 1  1.20a)or the matrix equivalent: 

( 1  1.107) 

( 1  1.108a) 

( 1  1.108b) 

( 1  1.108~) 

( 1  1.109) 

11.12 SPECIAL NOTATION 

Scalars and components of vectors and tensors 

U, h = scalar dimensions (Figure 1 1.3) 
A,,  = covariant components of A (also A,,’s of A) 
A” = contravariant components of A (also 2‘”s of A 

c‘ = cos 0 (Section 11.1 1) 
Cab‘‘,= components of fourth-order constitutive tensor, C, with respect 

cJk’
to ort honormal base vectors, i ,4, 

= contravariant components of fourth-order constitutive tensor, C 
e,, = 
erj  = 

E,,(sometimes E,,)= 

= 

y,, = 

G,, = 

5,q = 
s = 

S,, (sometimes s,,)= 

g,,= 

S‘J= 
U,L‘ = 

covariant components of metric tensor 
contravariant components of metric tensor 
covariant components of Green strain, E 
components of Green strain, E, with respect to orthonormal base 
vectors, i ,4, 
covariant components of metric tensor in final configuration 
(from Section 1 1.8 onwards) 
covariant components of metric tensor in initial configuration 
(from Section 11.7 onwards) 
natural co-ordinates (Section 11.1 1) 
sin 0 (Section 1 1.10) 
covariant components of second Piola-Kirchhoff stress. S 
components of second Piola-Kirchhoff stress, S with respect to 
orthonormal base vectors, i ,  4, 
contravariant components of second Piola Kirchhoff stress, S 
displacement components (Section 1 1 . 1  1 )  
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ug= differential of u with respect to (similar for us)(Section 1 1.1 1) 
2': = differential of c with respect to (similar for r V )(Section 11 .1  1) 
r = volume of parallelepiped (Section 1 1.1) 

si= covariant components of x (also .fi's of X) 
.xi = contravariant components of x (also S"S of x) 
p = shear modulus 

x ' -ax3= convected curvilinear coordinates (natural coordinates) 
<,q, i:= natural coordinates 

3, = Lame constant 
0 = angle (Figure 1 1.3) 

Vectors 

d = displacement vector 
e,-e3 = covariant base vectors (also e,'s) 
el-e3 = contravariant base vectors (also e"s) 

G , - G ,  = covariant base vectors of initial configuration 
g,-g, = covariant base vectors of final configuration 

il-i3 = orthonormal base vectors 
r = position vector 
x = position vector (from Section 11.7 in final configuration) 
X = position vector in initial configuration 

Matrices and tensors 

A = second-order tensor (also A)
C = fourth-order constitutive tensor 
D = displacement derivatives 
D = [fiij]-rnatrix of displacement derivatives with respect to 

orthonormal cartesian base vectors 
D = [Dij]-matrix of covariant components of the displacement 

derivatives. 
D; = matrix derivatives with respect to natural co-ordinates (see 

( 11.47)) 
[eiJ = matrix of covariant components of metric tensor 
[e'j] = matrix of contravariant components of metric tensor 

E = Green strain 
F = deformation gradient 

[G,,] = matrix of covariant components of metric tensor in initial 
configuration 

[G'j] = matrix of contravariant components of metric tensor in initial 
configuration 

I = unit matrix (second-order tensor) 
J = Jacobian matrix (see Section 11.7) 
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S = second Piola-Kirchhoff stresses 
T = transformation matrix 
S i  = Kronector delta (see ( 1  1.3)) 
ct = general stress tensor 
ik = general strain variation tensor 

11.13 REFERENCES 

[Sl] Sokolnikov, I .  S., Trrtsor AnccIjtsis, Wiley, New York, London, Sydney (1964). 
[Y 13 Young, E. C., C'ecfor l i d  Trrrsor Anulj~sis.Marcel Dekker. New York 1978). 



12 More finite element 

analysis of continua 


In this chapter, we will apply some of the theory of Chapters 10 and 11 to the finite 
element analysis of continua. The developments of Chapter 5 were all based on the 
Green strain and the second Piola-Kirchhoff stresses. To this end, they used the total 
Lagrangian system in which the stress and strain measures are related to the ‘initial’ 
configuration. An updated Lagrangian system was also discussed in which these 
measures were related to some (temporarily fixed) new updated ‘initial’ configuration 
(Sections 5.3 and 5.4). 

An alternative that is often adopted in large-strain analysis is to relate all measures to 
the current configuration. A finite element formulation using this approach was 
initially given by McMeeking and Rice [M 13 and used the Jaumann rate introduced in 
Section 10.2. McMeeking and Rice called this approach ‘Eulerian’ and used it for 
large-strain elasto-plastic analysis. The details of the elasto-plastic side of the analysis 
will be discussed in Chapter 19 (with the related topic of hyperelasticity being 
considered at an earlier stage in Chapter 13). For the present we will concentrate on the 
development of the finite element equations-in particular the internal force vector 
and the tangent stiffness matrix. 

We will follow McMeeking and Rice in calling this formulation ‘Eulerian’, but will 
include the parentheses because the terminology has a debatable origin. Indeed the 
method is not Eulerian in the sense that the latter is often used in relation to 
computational fluid dynamics in which the material moves through a mesh. In the 
current ‘Eulerian procedure’ the progress of a specific material particle is traced and in 
that sense the method is Lagrangian. Indeed it could be termed as a form of updated 
Lagrangian technique whereby the referenceconfiguration is the current configuration. 
However, in this book we will continue to consider the updated Lagrangian technique 
as being a total Lagrangian technique in which the reference configuration is period- 
ically updated but is held fixed while the equilibrium iterations are performed (Sections 
5.3 and 5.4). In contrast in our Eulerian formulation, the reference configuration is 
continuously changing and we must account for this change. 

It will be shown in Chapter 13, that in conjunction with a hyperelastic material 
behaviour (Section 10.3 and Chapter 13), the Eulerian formulation can be exactly 
equivalent to one based on the Green strain and second Piola-Kirchhoff stresses using 
the total Lagrangian approach. In describing the tangent stiffness matrix for the 
Eulerian formulation, we will use various rate forms (particularly the Truesdell rate 



46 MORE FINITE ELEMENT ANALYSIS OF CONTINUA 

(Section 10.4) and Jaumann rate(Section 10.2). I t  should again beemphasised that with 
a hyperelastic material i t  makes no difference which rate form is used. 

The total Lagrangian formulations of Chapter 5 ,  were all based on a rectangular 
cartesian coordinate system. In Section 12.6, we will reformulate some of these 
developments using the convected coordinates and CO- and contravariant base vectors 
discussed in Chapter 11. 

Because of the limited objectives within this chapter, there will be little discussion of 
other finite element work in the wide area of non-linear analysis of continua. Instead, 
such discussion will be postponed to the later related Chapter 13 (on hyperelasticity), 
Chapter 18 (on continua and shell elements) and Chapter 19 (on large-strain elasto- 
plastic analysis). 

12.1 A SUMMARY OF THE KEY EQUATIONS FOR 
THE TOTAL LAGRANGIAN FORMULATION 
Some of the equations for the Eulerian formulation take a very similar form to those 
derived in Chapter 5 for the total Lagrangian formulation. Consequently, we will start 
by summarising the latter. To save space, throughout this chapter, we will concentrate 
on the two-dimensional formulation. As shown in Section 5.1.3, for the total Lagran- 
gian formulation, the three-dimensional procedure takes a very similar form. 

12.1.1 The internal force vector 

The internal force vector (5.19) is given by 

G(X)-"[H+ A(B)]SdV,, (12.1) 

1where S is the vector of second Piola-Kirchhoff stresses while 

H = E  ( 12.2)8 I]

and the displacement derivatives, 6 (vector equivalent of D - (4.71)) are obtained from 

J- l ( l . l )h[+  J-l(1,2)h; O r  
J - '(2,l)h: + J - *(2,2)hT O1' e =  

OT J - l (  1, l )h r  + J - '( 1,2)h: 
Or J- ' (2 ,1)hT + J - ' (2 ,2)h i  

where h; and h, are derivatives of the shape functions with respect to the non- 
dimensional coordinates while J is the 2 x 2 Jacobian matrix (see (5.6))which is here 
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a function of the initial coordinates, X. (With a different ordering for the nodal 
variables, the matrix G(X)would take a different from but the concepts would be the 
same.) In contrast to the work in Chapter 5,  we will here keep rigorously to the 
convention whereby capital X’s and Y’s relate to the initial coordinates while small s’s 
and y’s relate to the current coordinates. The matrix A(8)in (12.1) is given (see (5.10))by 1;
 0 -(7c 0 1  

(7X 

(12.4) 

while the variation of Green strain is given by (see (5.15)and (5.19)) 

6E = [H + A(O)]Sp = B,,(p)Gp ( 12.5) 

The three-dimensional forms of H and A(8) are given in (5.33)and (5.34). 

12.1.2 The tangent stiffness matrix 

The tangent stiffness matrix takes the form (see (5.26)): 

K, = K, + K,, 
f 

= B;,C,,,B,,dJ 
P 

V,  + G( X)%G(X)d VoJ ( 12.6) 

with: 

s2s122 I 
( 12.7) 

0O I  s2s’.ji2 

The three-dimensional form of is given in (5.36). 
In (12.6), we have included the subscript tK2 on the tangential constitutive modular 

matrix to indicate that the latter relates to the second Piola-Kirchhoff stresses. As 
originally indicated in Sections 3.1 and 3.2, once large strains are introduced i t  is 
important to specify the types of stress and strain measure when considering the 
constitutive relationships. 

12.2 THE INTERNAL FORCE VECTOR FOR THE 
‘EULERIAN FORMULATION’ 

We will take as a starting-point, the last form of the internal virtual power in (4.1 18) 
whereby: 

( 12.8) 
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with a as the Cauchy stresses and T as the Kirchhoff stresses (see 4.122) given by 
r = Ja = det(F)a. The final integral in (1 2.8) relates to the initial volume while the first 
integral relates to the current volume. In ( 1  2.8), 6, are the virtual strains following from 
the virtual velocities (or, effectively-see Section 4.6-virtual displacement changes). 
From (4.108)and (4.109)(see also (10.21)and (10.22)),we can write: 

( 1  2.9) 

where we have, rather loosely, mixed tensor and matrix and vector notation. The 
matrix H was defined in (12.2)while G(x) takes precisely the same form as G(X) in (12.3), 
although now the included terms from the Jacobian matrix J relate to J(x)rather than 
J(X).Using a pure matrix and vector notation, we can write: 

?U -
" & =  (y = He = HG(x)p= B(x)p (12.10) 

0 1 1 0  

where 

J - ' ( l ,  l)hT+ J-'(1,2)h; OT U 

J - '(2,l)h: + J -  '(2,2)h; OT 
e(x, = 

OT J - I (  1,l)hr+ J - I (  I ,  2)h: 
Or J - -'(2,l)h; + J - *(2,2)h: + 

= G(x)j, (12.11 )  

and p contains the vector of nodal displacement changes (or velocities). (Note, the 
three-dimensional ordering of e(x) follows the form given in (5.29).) 

Substitution from (12.9)into (12.8)gives: 

r r 
(12.12) 

Knowing the stresses a (or T), the internal force vector, qjis easily computed from ( 12.19) 
aS 

B(X)'GdV, = B(X)TTdVo= G(X)IHTrdVo (12.13)f f 
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12.3 THE TANGENT STIFFNESS MATRIX IN RELATION 
TO THE TRUESDELL RATE OF KIRCHHOFF STRESS 

We have chosen to start with the Truesdell rate of Kirchhoff stress because this choice 
gives the simplest form of the tangent stiffness equations. We will start by writing down 
the solution (which is remarkably simple) and will later give the derivation (which is not 
so simple). 

In  place of (12.6) for the total Lagrangian formulation, we obtain: 
P 

K, = K , ,  + K,, = J B(X)rc,TKB(X)d~o+ J
r 
G(x)’?G(x)d Vo (12.14) 

where 3 takes precisely the same form as in (12.7), i.e. 

( 12.7) 

In three dimensions, 9 takes the same form as S in (5.36), i.e. 

1 0 0  1; ‘12 ‘13:::‘223 = 0  1 0 % = [  7231  ( 12.15b)[
o o i  7 1 3  ‘23 ‘33 

The subscript tTK on the tangential constitutive modular matrix in (12.14) indicates 
that the latter relates to the Truesdell rate of Kirchhoff stress. The transformation 
between the coefficients of c , T 2  for use in (12.6) and the coefficients of CtTK for use in 
(12.14)has been given in (10.56).I t  is worth restressing that if such transformations are 
made and if a consistent hyperelastic formulation is used (more in the next chapter), the 
current ‘Eulerian formulation’ should give identical results (including an identical 
tangent stiffness matrix) to the previous ‘total Lagrangian formulation’. Because of the 
relationship between B(x) and G(x) in (12.10), (12.14) can be expressed in the more 
efficiently programmable form: 

J
r 

K, = G(x)~[H~C,,,H+ ?]G(x)dVo ( 12.16) 

12.3.1 Continuum derivation of the tangent stiffness matrix 

The variation of (12.8) leads to 

8P=bqTpV= t:6i,,dVo+ sf : E , d K = I l  + I ,  ( 12.17)s 
To compute I ,  from (12.17), we need the variation of (12.9) which is given by 

(12.18) 
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and hence require 

(12.19) 

Also because X is fixed, 

( 12.20) 

In the previous equation and throughout this chapter we will loosely switch between CS'S 
and rates (.'s) as it appears convenient to do so. A stricter formulation would involve the 
introduction of certain 6t's  see Section 4.6. 

From ( 12.20) we can write: 

( 12.21 ) 

where the last relationship follows from the non-v rtual equivalent of 4. I 12). Substitu- 
ting from ( 12.21) into ( 12.18) gives: 

- [L, L + L.~L;] ( 12.22) 

Using (12.22) and the fact that z is symmetric, the I ,  term in (12.17) is found to be 
given by 

( 12.23) 

In order to compute the I ,  term from ( 12.17), we adopt the Truesdell rate of Kirchhoff 
stress so that from (10.53): 

i = i , + L r + r L T = C t r l c : i : + L r f r L '  ( 12.24) 

Substituting from (12.9) and (12.24) into I ?  from (12.17) leads to 

I ?  = ii:k,dV(,= ( ( C t , K : & ) : i ,+ i ( L t  + t L 1 ) :(L, + L,'))dVc, (12.25)i 
Using the relationship 

AB:C'=CA:B'  = BC:A' ( 12.26) 

and noting that z is symmetric, we obtain: 

I 2  = s( (CtIKi) : i ,+ L,'L:z + L,L:t)dV, ( 12.27) 

Substituting for I ,  from ( 12.23) and for I from ( 12.27) into ( 12.17) gives the expression 

hi.= s( (CtrKi) :&+ LIL:t)dV,,  ( 12.28) 

Substituting for i: as  B(x)p(see (12.9)) and using a similar expression for the virtual 
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equivalent leads to the first term on the right-hand side of (12.28) being expressed as 

[(c,,,:&):&,,dV,, = pTKl1p= p: [B(x)’C,,,B(x)dV,,P ( 12.29) 
J J 

which established the matrix K , ,  defined in (12.14). 
The second term in (12.28) can be expressed as 

dV,, (12.30) 

where K,, is the ‘geometric’or ‘initial stress’contribution to the tangent stiffness matrix. 
Using ( 12.11), equation (12.30) can be re-expressed as 

I::: :::I [: :]
0 0  

[o 01 [::: :::I 
(12.31) 

which establishes the ‘initial stress’ matrix K,, defined in (12.14). (A very similar 
derivation will lead to the three-dimensional form o f t  given in (12.15b)). 

12.3.2 Discretised derivation of the tangent stiffness matrix 

In the previous section, we derived the tangent stiffness equations by starting with the 
continuum expressions and only substituted in for the discretised (finite element) 
relationships at  the final stage. In Section 5.1.2, i t  was shown that, for the total 
Lagrangian formulation, we could alternatively start with the discretised form for the 
internal force vector. We will now follow this route for the ‘Eulerian formulation’ and 
will differentiate ( 12.13)so that 

HTzd Vo+ sG(x ) ~6qi =s6G ( x ) ~  HT&d Vo = I ,  + I,, ( 12.32) 

To obtain the integral I,, a relationship must first be found between &X)and 6(x) which 
is given by - -

?U 

e(x) = 
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from which, knowing that 6(X) = G(X)p and 6(x) = G(x)p, we can write: 

G(X)= F'G(x) ( 12.34) 

This equation can be differentiated to give: 

0 = FTdG(x)+ F'G(x) (12.35) 

so that: 

6G(x)1= - = -G(x)"L ( 12.36) 

Consequently, the integral I ,  in (12.32) can be expressed as 

J G(x)'Lr,d v~, 

( 12.37) 

Further manipulations lead to 

Substitution from (12.24) into I ,  in (12.32) gives: 

where r( ) indicates the vector equivalent. From (12.39), 

I ,  , = B(X)~C,,,B( x)d Vo6p = K, ,6p ( 12.401s 
which gives K , ,  from (12.14) while 

= G(x)Ti6(x)dVo+ sG(x)'?&x)d Vo ( 12.41 1I 
with ? from (12.15) and i from (12.38). Substitution from (12.1 1 )  into (12.41) leads to 

I b 2  = G(x)'iG(x)dV,p + J G(x)'?G(x)dV,p ( 12.42)J 




53 JAUMANN RATE OF CAUCHY STRESS 

Substitution from (1 2.38),(12.40) and (12.42) into (12.32) leads to the tangential stiffness 
equations: 

6qi = Qi = KJp = KIP ( 12.43) 

with K, from (12.14). 

12.4 THE TANGENT STIFFNESS MATRIX USING 
THE JAUMANN RATE OF KIRCHHOFF STRESS 

Following the work in Section 12.3, we will first write down the solution and then give 
the derivation which stems from the use of the Jaumann rate form (see 10.36): 

c~TK:~:+fit + zaT ( 12.44)t = tj + + faT= 
and leads to a tangent stiffness matrix given by 

Kl = Kll + Km2 + K I O  1 

= ~B(x)TC,,,B(x)dvo-sB(x)TiB(x)dVo+ G(x)T?G(x)dVos 
= / B ( x ) ~ ( C , , ~- i)B(x)dVo+ sG(x)T?G(x)dI/, ( 12.45) 

with ? as given previously in (12.15) and, in two dimensions, Z being given by 

( 12.46) 
T I  1 + 7 2 2  

2 I
while, in three dimensions, it is given by 

* 
T =  ( 12.47) 

where 

iij= +(7i i  + T ~ ~ ) (12.48) 

For the same hyperelastic material, the tangent stiffness matrix in (12.45) should be 
identical to that given earlier for the Truesdell rate in (12.14) (or (12.16)). To show this 
relationship, we have to take account of the differences in the tangent C, tensors. In 
particular, comparing (12.24) with (12.44) leads to the relationship 

t ,  + LT+ T L ~t, +& + zhT (12.49)= 
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or allowing for the fact that L = i: + a (see (10.22)) and noting the symmetry of i:, 

t, = crTK :&=i- & t - t & = CtJK & - E f - f &  ( 12.50) 

Using suffix notation, from (12.50), the two modular matrices are related by 

ci;: = - 4 [ 7 i l d j k  + 7 j l d i k  + 7 , k b j l  + T j k b j l ]  (12.5 1) 

Hence, writing CrrKfrom (12.51) in terms of CtJK and substituting into (12.14) leads 
directly to (12.45) and indeed, .? from (12.48) and (12.49) is the matrix equivalent of the 
second fourth-order tensor term in (12.5 1). 

12.4.1 Alternative derivation of the tangent stiffness matrix 

Because of the relationships that were established at the end of the last section, 
a derivation of the tangent stiffness matrix in (12.45) has already been given. In  this 
section, we will give an alternative derivation following the lines of Section 12.3.1 for the 
Truesdell rate. 

The I ,  term in (12.17) remains unaltered in the form given in (12.23) while, using 
( I2.44), the I ,  term in (12.17) now becomes 

I 2  t:i:,d V, = s( (Ct,Ki:):i:,+ (fir + rar)i:,)d Vo= ( (CljKi:):iV+ 2hrE,)d V,s s 
( 12.52) 

In deriving the last term in (12.52), we have used the fact that a is skew-symmetric while 
t and i:\ are symmetric. We can now use the relationship (see (10.22)), h + i: = L, t o  
obtain: 

( 12.53) 

Using ( 12.26),( 12.53) reduces to 
r 

( 12.54) 

and substituting from (12.18) for 1, in the second term on the right-hand-side of 
(12.54), we arrive at 

1 2  = s((CIjK:1):kv+ LTL:T+ L,L:T - 28,i::t)dVo ( 12.55) 

Substitution for I ,  from (12.23) and I ,  from (12.55) into (12.17) leads to the relation- 
ship 

6 i /=  bqTpV= p;K,p = p; [K, + Kta2 + K,, ,]i, ( 1  2.56) 

with K , , ,  Klo l  and K,,, as given in (12.45) and, in particular with 
r 

p;Kte2p = - 2 J ~:,E:z dVo= - i:;% dVo= - by'' 
r 
B(x)T?B(x)dVoj, ( 12.57)J 
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12.5 THE TANGENT STIFFNESS MATRIX USING 
THE JAUMANN RATE OF CAUCHY STRESS 

In first deriving, the tangent stiffness equations for the 'Eulerian formulation', 
McMeeking and Rice [Ml] used the Jaumann rate of Cauchy stress. Following the 
work in the previous sections, we will first write down the solution and then give the 
derivation which stems from the use of the Jaumann rate form (see 10.36): 

6 =bj + h + aiZT=ct jc : i  + + afiT (1  2.58) 

and leads to a tangent stiffness matrix given by 

Kt = Kt 1 + K t a 2  + K t a l +  Ktns 

= /B(x)TC,JcB(x)dVn-sB(x)T6B(x)dV,, 

+ sG(x)T6G(x)dVn + B(x)T&B(x)dVns 
= jB(x)T(c[J,-6 +6)B(x)dVn+ G(x)T&G(x)dVn (12.59)I 


with 6 taking precisely the same form as given previously in (12.15) for .Z (although of 
course now involving components of the Cauchy stress tensor) while, in a similar 
fashion, 6 is given by equations of the same form as (12.46) in two dimensions or (1 2.47) 
in three dimensions. In two dimensions, for plane strain, the non-symmetric matrix 6 is 
given by 

( 1  2.60) 
0 1 2  0 1 2  

while, in three dimensions the equivalent term is 

0 2 2  0 2 2  0 2 2  0 0 06-/ '1I 
 (12.61) 
0 1 2  0 1 2  0 1 2  0 0 00 3 3  033 0 3 3  O O O 

1'23 O 2 3  '23 

O31 031 '31 

The simplest way of deriving equation (12.59) is to initially find the relationship 
between CtJC and CtjK. To this end, we can substitute from (12.44) and (12.58) into 
(10.57)to obtain 

i = CtjK:i +at+ zCtT= J ( 6 + 0 tr(i))= JCtJc:I+ fit + raT+ z tr(i) ( 12.62) 

so that: 

C,JK:i= J(CtJc:i+ o tr(i)) ( 12.63) 

Adopting suffix notation and moving the subscripts in (12.63) to superscripts (purely 
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for printing convenience), it follows that: 

( 12.64) 

Substitution from (12.64) into (12.45) along with the relationships z = Ja and 
d V,  = J d Voleads directly to (12.59) and indeed, 6 from (12.61) is the matrix equivalent 
of the second fourth-order tensor term in (12.64). 

In  (12.59), we have labelled the term in K, associated with 6 as K,,, (with ns for 
non-symmetric) leaving the implication that the other terms are symmetric. However, 
this does not necessarily follow. For example when using a hyperelastic formulation the 
natural starting-point is the symmetric CtTK (more details in the next chapter). Using 
( 12.51 )  this would, in turn, lead to a symmetric CIJKwhile, from (12.64), we would obtain 
a non-symmetric CtJc.If, for some reason, one wished to use a formulation involving the 
Jaumann rate of Cauchy stress, the resulting tangent stiffness matrix via (12.59) would 
be symmetric, and indeed i t  would be identical to that obtained more directly from 
( 12.14) (or ( 12.16)). However, if one were to postulate a symmetric (possibly hypoelastic) 
C,,(., then from (12.59). the total tangent stiffness matrix would be non-symmetric. 

12.5.1 Alternative derivation of the tangent stiffness matrix 

Following on from (12.64), we have already effectively given one derivation of the 
tangent stiffness matrix of (12.59).As an alternative, we can consider the variation of the 
first expression in (12.8) which leads to 

hi.= fiqTp\ = t:bs,dVo + sb:i,dV, + a:i,6(dVn)= I ,  + I ;  + I ,  ( 12.65)s - .  s 
The I ,  term in the above is identical to that previously derived in Section 12 3.1 (see 
(12.23)) while substitution from (12.58) into I ;  in (12.65), followed by somc mani- 
pulation following the lines of that in Section 12.4.1, eventually leads to the rclation- 
ship 

1; = s((ctJC:&):ivdV,, Lp.,:T + L,L:z - 28,E:t)dV0 ( 12.66)+ s 
so that, using (12.23) for I , :  

V ,  + (L:L:a - 28,i:a)db', ( 12.67)I , 4- 1; = ( (ctJC:&):ivds s 
Following the work in Section 12.4.1, these three terms provide the tangent stiffness 
contributions K,, ,  Ktol and Kto2 of (12.59) so that we are left with I ,  in (12.65). To 
evaluate this term, we will use (10.88) whereby J = tr(8) so that: 

6 (dV, , )=f i ( JdVo)=~dVo=Jt r ( i )d l / ,=tr(i)dV, ( 12.68) 

Substitution into I ,  from (12.65) gives: 

I ,  = sa:i,6(d V,) = i , : ~tr(h)dV,, ( 12.69)s 
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Considering the two-dimensional plane-strain case, we can write: 

[[%: f 1  ] :[
0 1 2  

O 1'1(6 + i2Jd VnI ,  = pvKtnsp= {iV:atr(6)dVn = 1 O 1' ( 12.70) 
E22 v 0 2 2  

or 

A very similar development can be shown to lead to the equivalent three-dimensiona 
form with 6 from (12.61). 

12.6 CONVECTED COORDINATES AND THE TOTAL 
LAGRANGIAN FORMULATION 

In Section 11.8, we used convected curvilinear coordinates to obtain the covariant 
components of the Green strain and in Section 11.9, we considered the work-conjugate 
contravariant components of the second Piola-Kirchhoff stress tensor. In  Section 5.1, 
the governing finite element equations were derived for a total Lagrangian formulation 
using orthonormal cartesian coordinates. In the present section, we will work directly 
with the convected curvilinear coordinates in order to obtain equivalent expressions. 

12.6.1 Element formulation 

Following the work of Section 5.1.1, a two-dimensional formulation will initially be 
considered using the convected coordinates, 

E ' = { ;  a 2 = q  ( 1  2.72) 

corresponding to the non-dimensional coordinates { , q  of Section 5.1. In place of (5.8) 
or (12.3), we now have 

e =  (12.73) 

where p contains the full vector of nodal displacements which relate to the usual fixed 
orthogonal coordinates. (In this section, the usual G matrix (as in (5.8))will be written 
as G to avoid confusion with the initial contravariant base vectors, Gi that will be 
defined shortly). A similar equation to (12.73) relates 68 (vector equivalent to 6D- see 
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Chapter 5 ) to 6p so that: 
68 = G 6 p  ( 12.74) 

From ( I  1.56), we can write the covariant components of the Green strain as 

Ei j= i(g'gi -GYGj) ( 12.75) 

where Gi and gi are the initial and final covariant base vectors. From ( 1  1.52a) and 
( I I .52b),the latter are given by 

( 12.76) 

3 ) ~where the vector d contains the displacements (i.e. (d' = ( U ,  ~ -in standard cartesian 
coordinates). Using ( I  2.76). ( 1  2.75) can be rewritten as 

(12.77) 

which involves linear and non-linear terms as in (5.10). Noting that, with x 1  = <.zZ = 1 1 ,  
the terms from Cd;?d are the components of the vector 8 in (12.73), using vector and 
matrix notation, we can now replace (5.1 1 )  and (5.12) by 

where 

0 G2(1) 0 G2(2) ( 12.79) 
G A l )  G,(1)  G,P) G,(2)  

F'ollowing a very similar procedure to that of (5.13)-(5.16), the change in the covariant 
components of the Green strain can be expressed as 

OE = (B, + A(0)C)iip= B,,bp = (H + A ( 8 ) ) G  6p  ( 12.80) 

where all higher-order terms have been considered as negligible. 
Using virtual work (see ( 1  1.62))with the contravariant components of the second 

Piola Kirchhoff stresses: 

CSvi= 6pfq. = S"& .dVo= 6pJ B:,(p)S d l/(, (12.81)
\ I " I Jj s 


from which the internal force vector is given by 
I-

( 1  2.82) 
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where S contains the contravariant components of the second Piola-Kirchhoff stresses 
so that 

ST= (S' 1, SZ2,S'2) (12.83) 

For constant thickness, t ,  the element of volume d V, in ( 1  2.82) is given by 

d Vo= t (G ,  x G2)d(dtl ( 12.84) 

12.6.2 The tangent stiffness matrix 

Apart from the new definition of B,, in (12.80) which includes the new G (now G )  in 
(12.73), the new A(O) in (12.78)and the new H in (12.79),the working of Section 5.1.2 
remains virtually unchanged so that (see (5.26) or(12.6))the tangent stiffness matrix is 

- 4 -

K, K, ,  + K,, = (Bi,(p)C,Bn,(p)+ GTsG)dVo ( 12.85)1 

However, the S matrix now involves the contravariant components of the second 
Piola-Kirchhoff stresses so that (see (5.24)or (12.7)): 

( 12.86) 

12.6.3 Extension to three dimensions 

The extension to three dimensions is straightforward and follows very closely the 
developments of Section 5.1.3. In particular, in (5.29)for 8 and (5.34)for A(@, we need 
simply replace x, 1'and z with 5 ,  q and irespectively. Also the H matrix is such that the 
linear strain vector, E, is given by 

E2 2 1 
E,  = 

- 2 E 2 3  12E13i 

--
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with the element of volume, d V, being given by 
dVo= G:(G, x G,)dtdqd( (1  2.88) 

For a linear isotropic material, the tangent and secant modular tensors are the same 
and, from ( 1 1.82a), are given by: 

CIJk'= i,(G'* G') (Gk* + (G'. G')(G'- G")) ( 12.89)G')+ p( (G'* Gk)(G'*G') 

where to avoid clashes with the superscripts, we have temporarily reverted to the 
notation of Section 11 in using a dot to represent the inner product. 

12.7 SPECIAL NOTATION 

Scalars 

J = det(F) 
Vo= initial volume 
c', = final volume 
Pi = internal virtual power 
/ i  = shear modulus 
i,= Lame constant 
r' = convected coordinate components 

Vectors 

d = displacements 
h:, h,, = vectors containing derivatives with respect to 5 and q of shape-function vector, h. 

G, = covariant base vectors for initial configuration (Section 12.6) 
gi = covariant base vectors for final configuration (Section 12.6) 
p = nodal displacements (p = nodal velocities (or changes in dispalcement-dp) 

ordering for two-dimensional elements, p' =(U', v') 
ordering for three-dimensional elements pT =(U', v', w') 

U = .u-direction nodal displacements 
v = !*-direction nodal displacements 

w = :-direction nodal displacements 
x = current coordinates 
X = initial coordinates 
v = velocities 
i: = Eulerian strain rate (note i is not the rate of E) 

8 = vector of displacement derivatives (see (12.73)) 
8 = velocity derivatives in vector form (see (12.1 1) )  

Matrices and tensors 

A(8) = matrix containing displacement derivatives (see (12.78)) 
B(x) = in Section 12.2- 12.3, matrix (function of current co-ordinates, x) connecting 

& to p 
C = constitutive tensor 

Administrator
ferret
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E = Green strain 
F = deformation gradient 
G = in Sections 12.2-12.3, matrix connecting 8 to p (see (12.1 1)) 
G = in Section 12.6, matrix connecting 8 to p or 68 ti 6p 
H = in Sections 12.2-12.3, Boolean matrix (see (12.10)) 
H = in Section 12.6, matrix involving components of G (see (12.79)) 
J = Jacobian matrix (with respect to  current configuration) 
L = velocity gradient 
S = second Piola-Kirchhoff stresses 
S = matrix containing contravariant components of s 
o = Cauchy stresses 
5= matrix of Cauchy stresses (see (12.60) and (12.61)) 
i: = Eulerian strain-rate (note i: is not the rate of E )  

z = Kirchhoff stresses 
€ = matrix of Kirchhoff stresses (see (12.13)) 
fi = spin (note, fi is not the rate of a) 

Subscripts 

J = Jaumann 
t = 

T = 
tJC = 

tTK = 
tJK = 

v = 

12.8 

tangent 
Truesdell 
tangent for Jaumann rate of Cauchy stress 
tangent for Truesdell rate of Kirchhoff stress 
tangent for Jaumann rate of Kirchhoff stress 
virtual 
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13 Large strains, 

hyperelasticity and 

rubber 

13.1 INTRODUCTION TO HYPERELASTICITY 

The theoretical analysis of hyperelastic or rubberlike materials has been investigated 
by many authors since the first half of the century (see Treloar [Tl] and Mullins and 
Thomas [M3] for an overview of pioneering work in the field and [G2,F1] and for 
reviews). Important early work was due to Mooney [M2] and Rivlin [Rl]. Another 
important development was due to Valanis and Landel [Vl]  who separated the strain 
energy function into a separable form relating to the principal directions. This 
approach led to the Ogden model [01.10,04, OS] which is much used today. Early 
finite element applications were due to Oden [02,03]  who emphasised the difficulties 
associated with modelling ‘incompressibility’. Other work in this area was due to 
Malkus and Hughes [Ml] (see also Hughes [H3] and Zienkiewciz and Taylor [Zl]. 
Further work involving finite elements can be found in [Dl, D3, D4, G1, H1, 0 1 ,  P1, 
Sl-S6,Wl]. 

Hyperelasticity has already been briefly introduced in Section 4.12 and discussed in 
a little more detail in Section 10.3. In the present chapter, we will concentrate on 
materials for which the stresses are derivable from a scalar elastic potential. (There is 
a wider class of materials not necessarily restricted in this manner called ‘Cauchy elastic 
materials’ [D2].) 

In Section 10.3, we introduced the simplest isotropic, linear, strain-energy function as 
(see (10.37)) 

~p = 2pi2 + -x 1; (13.1)
2 

where 
I ,  = tr(E)= cii= c1 + c 2 ,  + c~~ ( 13.2a) 

( 13.2b) 

For a more general approach, with a view to invariance, we first note that the principal 
values of strain, F ~ ,satisfy the eigenvalue relationship: 

€2 = cpz ( I  3.3) 
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where z are the directions of principal strain or eigenvectors of E .  Non-trivial solutions 
to (13.3) only exist if 

det(z - cpI)=0 (13.4) 

The latter equation can be re-expressed as 

E; -Il&,2+ 12cp- I ,  = 0 ( 1  3.5) 

where I has been given in (13.2a) and 

I ,  = c1 1 ~ 2 2+ E 2 2 1 3 3  + c 1  - c f 2-,522, - = +(tr(c)2- tr(E2)) 
= ' 1 22 1  -i2 ( 13.6a) 

I ,  = det(s) (13.6b) 

Using these invariants, it is possible to construct a range of higher-order material 
models [D2]. However, if we wish to consider materials for which the strains are large 
(i.e. rubber) we know, from the work of Chapter 2, that we must define the type of stress 
and strain measure that we are using. Indeed, this observation applies even if the 
rotations are large and the strains are small. We have shown at the end of the 
Section 4.4 that, if the standard linear, engineering strain measures are adopted, strains 
are produced as a result of a rigid-body rotation. In these circumstances, the strain 
invariants would also be non-zero and hence if the energy function, cp, was related to 
these invariants we would incorrectly accumulate strain energy as a result of a rigid- 
body rotation. 

For the remainder of this chapter, we will assume that we are working with an 
isotropic material. In these circumstances, from the work of Section 10.1,it is best to 
start with the principal stretch ratios. 

13.2 USING THE PRINCIPAL STRETCH RATIOS 

The principal stretch ratios ( A - 2 3 )  are clearly invariant with respect to both the 
coordinate system and the strain measure. Hence, we can produce strain energy 
functions for isotropic materials by using the principal stretch ratios ( L l - i 3 )  and by 
ensuring that: 

1. The energy function, cp is zero for the 'ground state', %,= R ,  = %,= 1; 
2. The energy function is symmetric in AI-&; 
3. The energy function is always 20. ( 13.7) 

However, from the discussions of Section 4.8, i t  is easier to compute the right 
Cauchy-Green tensor C: 

C = FTF (13.8) 

or the left Cauchy-Green tensor, b: 

b = FFT (13.9) 

which have eigenvalues of i;-J.:,rather than the stretches U or V. Hence, work in 
hyperelasticity has often involved the principal invariants of C and b. (Note, that in this 
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chapter, having used C for the right Cauchy-Green tensor, we will use D for the 
constitutive tensor.) 

Following a similar procedure to that in the previous section, we note that non- 
trivial solutions to (4.136) and (4.144) only exist if 

det[C -LiI ]  = det[b - J u 3 ]  = 0 (13.10) 

which can be re-expressed as 

A; -zlg+ /q2- I ,  = 0 (13.11) 

where the invariants of C and b are given by 

I ,  = + >.: + A: = C, + C2, + C 3 , = tr(C)= I: C = tr(b)= I : b  (13.12a) 

I 2  = ;.;i;+ i;;.;+ ]*;A; 
= c l  1 ‘22 + ‘22‘33 + ‘33‘1 1 - ‘12‘21 - ‘23‘32 - ‘13‘31 

= $ ( I ;  - tr(C2))= $(If- tr(b2)) (1  3.12b) 
I -ppp

3 - - 1  - 2  3 

= ‘1 1‘22‘33 + 2c12c23c13 - ‘11‘23‘32 - ‘22‘13‘31 - ‘33‘12‘21 

= J 2  = det(C)= +(tr(C3)- I , tr(C2)- 12tr C) = det(b) (13.12c) 

where, from (4.96): 

J = det(F)= I:/2 ( 1  3.12d) 

The invariants used here and for the remainder of the chapter are given by (1 3.12) and 
differ from those used in the previous section. It can be seen from the final forms in 
(13.12)that Z1-Z3  can be computed without the direct computation of L i - j - 3 .  

When the body is unloaded, A1-A3 are each unity and hence the initial values of the 
invariants 1 1 - 1 3  are 3,3 and 1 respectively. Hence a strain energy function that satisfies 
(13.7) is 

X 

cp = 1 Cpqr(I,- 3)p(12- 3)9(13- with Coo, = 0 (13.13) 
p.4.r = 0 

For incompressible materials, J = det(F)= A1J,2iw3= 1 (see (10.59)) and hence, from 
( 13.l k ) , I ,  = 1. Consequently, (13.13) becomes 

x. 

q = Cpq(l- 3)p(12- 3)9: with Coo= 0 (13.14) 
p.q = 0 

Special truncated forms of( 13.13), which are much used in the analysis of rubber are the 
Mooney-Rivlin function (valid for strains up to about 100%): 

cp = ‘&- 3) + CO,(I, - 3) = C1(Il- 3) + C2(12- 3) (13.15) 

and the simpler ‘neo-Hookean’ function (valid for strains up to about 30%): 

cp = ClO(I1- 3) = CI(I l-3) ( I  3.16) 

Unfortunately, pure incompressibility leads to severe numerical difficulties (except for 
conditions of plane stress-see Section 13.4.2). In any event, rubber is to some extent 
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compressible and it can be important to consider this compressibility. Hence, in the 
following, we will generally work with the compressible form and introduce a strain 
energy contribution involving the bulk modulus, K .  The incompressible form can be 
recovered by letting K tend to infinity. 

The mean value theorem can be used to show [F2] that functions of the form: 

F(a, b,c) = a  + b + c - 3 ( ~ b c ) ” ~  ( 13.17) 

are positive unless a = b = c. Hence with a = A:, b = 2;, etc., we can devise functions of 
the form: 

)b;q,/c = + 1; + jv\- 3(1v1)v2).3)r (13.18) 

so that with Y = 2, we obtain: 

(P/c = + + - 3(/?1)”2)*3)~ = 1 1  - 31: (13.19) 

which is the compressible form of the neo-Hookean form of (1 3.16).By combining I’ = 2 
with Y = -2, we can obtain: 

= c l ( I1- 31i’3) + c2(12- 3Z5#<3) ( 13.20) 

which can be considered as a compressible form of the Mooney-Rivlin relationship of 
(1  3.15). Both ( I  3.19) and ( I  3.20) have the drawback of being zero at 2, = 2, = i3.To 
overcome this difficulty, we may add a compressible term, (Pb, involving the bulk 
modulus, K (see Section 4.2.2) so that 

qb= K[l0g , (R , / i~ / i , ) ]~ /2= K[l0g,J]~/2 (13.21a) 

or 

(Pb = K(J - 1)2/2 ( 13.21b) 

which are each zero for the initial conditions when J = 1. In most of the following we 
will adopt (13.21b), but (13.21a) will sometimes be used instead. 

13.3 SPLITTING THE VOLUMETRIC AND 
DEVlATORlC TERMS 

A convenient way to split the volumetric and deviatoric terms is to define modified 
stretches: 

2 = ~ - 1 1 3 1  ( 13.22) 

which are such that 

J =  R 1 R 2 / i 3  = I ( 13.23) 

Hence these modified stretches are ‘volume preserving’. In  Section 13.8 and 13.10, we 
will work directly with the stretches, while in the present section we will work with the 
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invariants. From the work of Sections 4.8 and 10.1, it follows that: 

F = J  1 3 F = l j 1 h F  ( I3.24a) 

C = F T F =  J-23C=13-1 3C ( 13.24b) 
b = F F r =  J - Z 3 b = [ ; 1  3b ( 13.24c) 

while. from ( 13.12), 

( I  3.25a) 

( 1  3.25b) 

Hence, using these modified invariants, with (Pb from (13.21b) and adapting (Pd 

(deviatoric) from ( 13.20),the modified Mooney-Rivlin function might involve 

(P = vd+ (Pb = c,(i,- 3) + c,(&- 3) + +K(J- ( 13.26) 

For a pure uniform pressure(with i ,= i,, = i3),1 ,  and 1, are each equal to 3 so that 
(I, = Ob. 

In  Sections 13.5 and 13.7, we will develop finite element formulations based on 
(13.26). The neo-Hookean law can be considered as a special case with C, = 0. 

13.4 DEVELOPMENT USING SECOND 
PIOLA-KIRCHHOFF STRESSES AND 
GREEN'S STRAINS 

Because (see (4.74)). the Green strain, E, is given by $(C- I), using equation ( 13.26). the 
stress- strain relationship can easily be computed using: 

( 13.27) 

where 

A ,  =c,ii13 

A ,  = C21j 

( 13.28) 

and we can obtain (71,/(7C, c?l,/cW and ?13/?C from (13.12) via: 

?1,
(51, =-:SC = I:SC = tr((iC)

c?C 

(7 1
(51, =2:SC=(111-C):6C

(7C 

(713
(51 = c):6C = 13C- :6C = J2C- :6C ( 13.29)

cic 
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= i2= i3Under pure uniform pressure, with i1 = 2, we have 

and, it follows from (1 3.27) to ( 13.29) that, in these circumstances: 

S = K J ( J  - 1)C-’ = K ( J  - 1);LI (13.31) 

Transforming to a Cauchy stress, via (4.1 21) (or (10.50)) gives: 

1 dV--dV0 
o = - F(KJ(J  - 1)C- ‘)FT= K ( J  - 1)I = K I =  -pI ( 13.32)

J d V* 

where p is the pressure (positive for compression). I t  follows that 

p = - K ( J  - 1)  ( 13.33) 

Substituting from ( 13.29) and (1 3.33) into (13.28) and ( 1  3.27) gives: 

‘%d (‘437S = (B,I + B2C+ B3C- ’) -pl:”C- = -+ - (13.34)
?E ?E 

where 

( 1 3.34a) 

Given the strain energy function, cp (via the three material constants, C,, C2 and 
K-which would be obtained from experimental results), we can now, via (13.34), 
obtain the second Piola-Kirchhoff stresses, S from the Green strains E = i ( C  - I). For 
the neo-Hookean model, with C, = 0 and 2C, = p, (1  3.34a) becomes 

S = p J - ’13[1 -41 ,C- ‘1-pJC- = p dev(C)C- -pJC- ( 13.35) 

with from (13.24b). 
If we were to work with a genuinely incompressible material (with J = I ,  = l), we 

could use the simpler energy function of ( 13.15) to obtain S = 2?q/C:Cand then add the 
pressure contribution - p C - ’  (see (13.35)). The latter can only be obtained by 
considering the kinematics. In the following, it can be obtained by treating ’nodal’ p’s as 
Lagrangian multipliers or, effectively, letting K tend to infinity in the following 
compressible formulation. In this approach, we will often keep the pressure as 
a separate variable and in Section 13.5, we will describe the resulting finite element 
procedure. However, in some circumstances (see Sections 18.12 and 18.13), it is possible 
to work directly with a pure displacement-based formulation. It is a simple matter to 
modify the following ‘split equations’ to avoid the separate treatment of the pressure. 

In a conventional total Lagrangian finite element formulation, we could now obtain 
the internal force vector. However, to find the tangent stiffness matrix, we require the 
differentiation of (13.35) whereby, using (13.29), we obtain: 

b s = D , I + D , C + D , c - ’  + D , 6 C + D S ( C - 1 ~ C C - T ) - l ~2 c - 1 6 p  ( 13.36) 
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with 

D,= -$ll;"3(c-':6C)+ 2C21,2"11(I:6C) - ; c 2 1 ; 2 ' 3 z l ( c - ':6C) 
- 3  - 2 ' 3 ( c - - l : g c )

2 - 3'2'3 

D, = - $ , I ;  'I3(1:6c) %c)+$c$;1 ' 3 ~ 1 ( C -
+$c21;2"12(c-':6C)- ; c 2 z ; 2 ' 3 ( l l ( r : 6 c )  -(c-':6C)) 
- ; P I ;  2(c-':6C) 

D, = - 2C21y2  
3'1'3 - 1 / 3 1 '  + 4C2 3D 5 -- 2 3 1 - 2 / 3 1 2  + pI;/2 ( 13.37) 

I t  will be shown that (13.36)can be re-expressed as 

SS = D , K 2 : 6 E  + GtK,6p ( 13.38) 
where DtK2is a fourth-order constitutive tensor and GtK2is a second-order constitutive 
tensor. The subscript K2 shows that the tensors relate to the second Piola-Kirchhoff 
stresses (and Green strains). To devise expressions for the constitutive tensor, i t  is best 
to apply suffix notation to (13.36)-( 13.37) and obtain: 

6Sij= DfjKk:dEkl+ G:Y26p ( 13.39) 

where the use of superscripts for the tK2 in (13.39)in place of the subscripts in ( 13.38)is 
purely for space considerations. The tensor components in ( 1  3.39) are given by 

DijK; = F1 C, 'C, ' F2(6i,C, CiJ '6k1) 

F 3 ( C G  'C,; + C, 'C,i ') + F46;jSkl + F~(Sik6jl 6;lSjk) 
+ F6(c;,c,' + c; 'CkI) ( 13.40) 

where a term such as C,' is the 0 th  component of C-'  not l/Cij, but is written as 
C,; ' to save space. The coefficients in (13.40)are given by 

F ,  = + c l p l ,+ y c2 31 - 2 / 3 1  2 - p l : / 2  

F - -4c 1-113--8c1 - 2 / 3 1 1
2 - 9 1 3  3 2 3  

F3 =fCl l ;1 /311  + s C  2 33 1-2'312+ p 1 : l 2  
F4 = 4c21 ,  2 J 3  

F , =  - 2 c  2 31 - 2 1 3  

F, = ! C 2 I y 2 l 3  (13.41) 

while (see ( 1  3.38) and ( 1  3.39) the pressure connection term is 

( 1  3.42) 

Equation (13.39) has been aimed at a finite element formulation in which the 
displacements and pressure variables are separate. Without such a separation, we can 
modify (13.39) to directly relate SSijto 6Eij by first obtaining 6p from (13.33)as 

6p = -K J C - ( 1  3.43) 

where use has been made of (13.29). Substitution of (13.43) into (13.38) and (13.42) 
shows that the tangent coefficients (Djjkl) of (13.40) would, in these circumstances be 
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enhanced by the terms 

KJ2C, j 'C, 

13.4.1 Plane strain 

Many of the previous formulae simplify considerably for the special case of plane strain. 
In these circumstances, we have: 

c,, = A 3  = 1; C13 = C3, = C23 = C32 = O  ( 1  3.44a) 

so that: 

C =  ( 1  3.44b) 

and 

I ,  = 1 + A; +A; = 1 + c,,+ c,, 
I ,  = n: + A; + = c,1C22+ c;,+ c;2-c:,
I - 2 2 ' 2  -c:, ( 13.45)3 - 1/12 = ~ 1 1 ~ 2 ,  

while 

( 1  3.46) 

13.4.2 Plane stress with incompressibility 

For states of plane stress, the incompressibility condition does not impose any 
significant difficulties and we can set: 

J = AijL213 = I 3  = A;A;A< = 1 ( 13.47) 

We can now use ( 1  3.47) to eliminate R ,  and directly use the deviatoric energy function, 
qd.However, this is not obvious and so we will first keep all three stretches as well as the 
pressure term, p. Because of (13.47), F, = I , ,  1,= I ,  and from (13.26),we can write the 
deviatoric Mooney-Rivlin function as 

( 1  3.48) 

From (13.47) and (13.34), 

( 1  3.49) 

Working in the principal directions so that F = Diag(A),C = Diag(i2) and using the 
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relationship: 
Ei =+(A? - 1)  ( 1  3.50) 

we can use ( I3.48)--( 13.50) to obtain: 

With a view to eliminating p via the plane stress hypothesis, we can use CJ = FSFr(with 
J = 1)  to change (13.51) to give: 

0.= j , .  3%J - p = 4 ( 2 C 1 4-2C2i3)- p ( 13.52)' ' ( 7 i i  

from which, via o3=0, we can obtain: 

( 13.53) 

where, for the last relationship in (13.53), we have used the incompressibility condition 
of (13.47). We can now substitute from this last expression in (13.53) into (13.52) for 
i = 1,2 and can also use ( 13.47) to obtain: 

s, = 2C1(1- l L 4 A P 2 )  + 2C,( -;1"+ 1;) ( 13.544 

s, = 2C1(1- n ; " A F 2 )  + 2C,( -Ay4 + if) ( 13.54b) 

I f  we directly incorporated the incompressibility condition of ( 13.47) into ( 13.48), we 
would obtain: 

) (13.55) 

If we now use (13.50) and (13.55) to obtain: 

( 13.56) 

we recover (13.54) without directly considering the pressure term. 
From (13.54), the tangential constitutive relationships can be obtained as 

( 1  3.57) 

where 

( 13.58) 

with a similar relationship to D,, for D,,. 
Equations (13.57) suffice if the principal directions d o  not change. Such a situation 

occurs for an axisymmetric membrane for which a total Lagrangian finite element 
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formulation was discussed in Section 5.1.4. An instructive computer exercise involves 
modifying that formulation to allow for a Mooney-Rivlin material by incorporating 
(1 3.54) for the second Piola-Kirchhoff stresses and (1 3.57) and ( 13.58)for the tangential 
modular matrix. The procedure can also be easily extended [W 13 to account for the 
Ogden material model that will be discussed in Section 13.10.2. 

If the principal directions do  change (as with a general plane-stress membrane [G3]), 
one can adopt a method that will be discussed in Section 13.8. Alternatively, one could 
use (13.35) for S with p from (13.53) with the differential giving the tangential modular 
matrix. In this case. we also have: 

while in (13.12): 

I ,  = A; + i;+ J.; 2 R ; 2  = D,1 + D Z 2+ (Dl -q2)- ( 13.60a) 

13.5 TOTAL LAGRANGIAN FINITE 
ELEMENT FORMULATION 

We have now established both total ((13.34) and (13.35)) and tangential ((13.38)-- 
(13.42)) stress/strain laws using the second Piola-Kirchhoff stress and the Green strain. 
Hence, with one reservation, we can simply insert these into a total Lagrangian 
formulation using the procedure described in Section 5.1 of Chapter 5. The reservation 
relates to the pressure and the difficulty of satisfying (1 3.33) as the bulk modulus, K ,  
becomes large. The linear form of (1 3.33) is 

(13.61) 

from which one can conclude that the pressure p should take a lower variation than the 
displacements U, t‘ and U’ (see also [H3,Z1]). For this reason, in the previous 
developments, we have kept the pressure term separate so that we can introduce 
separate pressure variables into the finite element formulation. This leads naturally to 
two of the methods that are advocated for dealing with the ‘incompressibility problem’. 
Both ‘near incompressibility’ and ‘effective incompressibility’ need to be considered. 
For the latter, we can simply give the bulk modulus, K , a high number so that we obtain 
a form of penalty procedure to enforce the incompressibility condition. Alternatively, 
the pressure variables can be considered to act as a Lagrange multipliers to enforce the 
incompressibility condition. In some circumstances (Section 18.12 and 18.13), i t  is 
possible to work directly with a displacement formulation. The following develop- 
ments can easily be modified to relate to this simpler formulation. 



72 LARGE STRAINS, HYPERELASTICITY AND RUBBER 

13.5.1 A mixed formulation 

We will first consider a mixed formulation with displacements and pressures as 
variables at the structural level. To this end, we adopt different shape functions for the 
displacement and pressure variables with the latter taking a lower order variation. The 
precise form of the shape functions will be discussed later, but with h, # h, we can write 

where collectively p i become the nodal pressure variables,p and ui,tiiand w ibecome the 
nodal displacement variables, p. The first equation of (13.62) can be rewritten as 

p = h;p; S p  = hz6p ( 1  3.63) 

where the second form (for 6 p and 6p) follows the first (total form) because the pressure 
shape functions, h,, are functions of the initial geometry. 

Using identical procedures to those of Chapter 5, the virtual Green strains can be 
expressed as 

SE, = BnI@)SPv ( 1  3.64) 

where we are now adopting vector and matrix notation (see Chapter 5) so that SEv is 
a vector and B,, is a matrix. Again using the procedures of Chapter 5, virtual work can 
be used to find the out-of-balance force vector, g where 

r 

( 13.65) 

with S as the second Piola-Kirchhoff stresses, qi the internal forces and q, the external 
forces (In this chapter, these will be considered to be of a non-follower type although for 
many hyperelastic problems we require follower forces. The latter are considered in 
Section 17.5 of Chapter 17.) 

Assuming exact equilibrium from a previous increment, g = 0 and differentiation of 
(13.65)leads to 

Sq, = Sqi = BTISSd Vo+ SB:$ d Vo (13.66)! ! 

To proceed further, we require the matrix and vector equivalent of( 13.38) which we can 
write as 

6s = D,K,SE -tg[K,6p ( 13.67) 

where DtK2is a matrix and grK2 a (column) vector. Substitution from (13.67) for 6s into 
( 13.66) (and the application of the techniques of Section 5.1.2 for the second term in 
( 13.66) which gives the 'geometric' stiffness matrix, Kt,), then leads to 

dqi6q, = -Sp = K,Sp + a ( 13.68)
8P 

where 

(1  3.69) 
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with (5.26) for Kto.The load/pressure variable coupling vector, a in (1 3.68) is given by 

a = s Bi,gtK26pd v, = Pbp (1 3.70) 

where the derivation of the matrix P will follow. 
Substituting from (1 3.63) for the pressure change 6 p  in terms of its nodal variables, 

6p, gives: 
,-

a = P6p = B~,gtK2h~dV06pJ (13.71) 

from which: 

(1 3.72) 

We have yet to apply the pressure-displacement relationship of (13.33). This can be 
achieved using a Galerkin-type procedure to obtain a ‘weak form’ [Zl] of (13.33) by 
multiplying it by 6 p  (with the latter obtained from (13.63)) and integrating over the 
element; i.e. 

dVo=6pTf=0 (13.73) 

This relationship should hold for any Sp so that with f representing the lack of pressure 
compatibility: 

f = - Sh, ( ( J - l ) + - p:) dVo=O (1 3.74) 

Equations (1 3.65) and (13.74) represent the governing equations for the ‘nodal’ 
displacement (p) and pressure ( p )variables. For full incompressibility, the p / K  term in 
(13.74) would vanish and this equation could be used to provide a weak form of the 
incompressibility constraint. 

Assuming continued satisfaction of (13.74) from an ‘equilibrium state’, 

(13.75) 

where 

(13.76) 

and P has already been given in (13.72). It is not obvious that i?f/dp in (1 3.75) is equal to 
PTwith P from (13.72). However, from (13.74) we have: 

(13.77) 

where we have used (13.64) and, with J = the relationship: 
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with ? I 3 ,  ?cfrom ( 1  3.29) and GlKZfrom (13.42) (g,K2is simply the vector equivalen of 
G t K 2  )-

With cif = 0, the combination of equations (13.68), (13.70) and ( 1  3.75) gives he 
tangential governing equations as 

( 13.79) 

which can be solved in a combined manner for 6p and 6p. Alternatively, the second set 
of equations can be solved first and then substituted into the first set to give: 

6q, = [K, - P H  P']6p = K,dp ( 13.80) 

where K, is the effective tangent stiffness matrix. For full incompressibility, the 
H matrices in  (13.76) and (13.79) would be zero, and hence one could not apply the 
two-stage solution implied in ( 13.80). Instead, one would have to solve ( 1  3.79) directly 
by using, say, Gaussian elimination, starting from the top (assuming K, was non- 
singular). 

To form the basis of a Newton-Raphson iteration, we expand (13.65) and (13.74) 
using truncated Taylor series. Hence, with subscript n meaning 'new' and subscript 
o meaning 'old', we have, from ( 13.65): 

(:g ?g ~ 

g, = 0 = go+ -6p + -bp (13.81)
c?p (7p 

while from (13.74), we have: 

c:f . ?f
fn= 0 = f"+ -bp +-

(7p 
6p ( 13.82)

?p 

Droping the subscript o, equations ( 13.81 ) and ( 13.82) can be combined to give: 

K, p(;) = [PT- H I 
(;;)
 ( 13.83) 

Using a mixed formulation, equations (13.83) can be solved directly as part of 
a Newton Raphson loop. Alternatively, the second set of equations can be solved first 
and then substituted into the first set to give: 

-g = - (g- P H - ' f )= [K, - P H -  'PT]6p= KT6p ( 13.84) 

In  a plane strain environment, an appropriate form of element [Zl]  might involve 
nine nodes for the displacements and four for the pressure (see Figure 13.1 ). 

13.5.2 A hybrid formulation 

Because the governing equations (13.74) involving the pressure and not its derivative, 
there is no need for the pressure to be continuous between elements. Hence, if the 
pressure variables,p, are internal (see Fig. 13.2), they can be eliminated at the element 
level. For such elements, equations of the form of ( 13.79) and ( 1  3.83), can be formed at 
the element level prior to the merging process to form the structural matrix, K,,and 
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Figure 13.1 Possible configurations for mixed elements. (c) Displacement node; (A) 
pressure node. 

Figure 13.2 Possible configurations for hybrid elements. (0)Displacement node (A) 
pressure point. 

out-of-balance force vector, g. We will refer to the resulting element as a ‘hybrid 
element’ although it is really a different form of ‘mixed element’. Figure 13.2, gives some 
possible configurations for the displacement and pressure variables appropriate to 
a hybrid formulation. In fact, the configurations in Figures 13.la, 13.2a and 13.2b do 
not pass the ‘incompressible patch test’ or LBB (Babuska-Brezzi) condition [H3, S7, 
Zl,Z2] but, none the less, often give very reasonable results. More detail on this topic 
can be found in [H3], [S7] and [Zl]. 

Incompressibility is also an important issue for plasticity and, in relation to 
small-strain elasto-plasticity, for a plane-strain environment, Zienkiewicz et al. [Z3] 
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have reported good results using the element configurations shown in Figures 13. lc, 
13.2a and 13.2d. In contrast, when certain mesh orientations were adopted, completely 
unreliable results were obtained with the equivalent displacement models (without the 
pressure variables). 

In some circumstances, instead of using the formulation of( 13.79), (13.83) and ( 1  3.84), 
i t  is possible to introduce a modified B (here BnJmatrix which allows the final stiffness 
matrix to be formed more simply using the form of( 13.69) but with modified B's instead 
of B's. Details of this 'B-bar method' are given in [H3, Zl]. A non-linear implementa- 
tion has been described by Simo et crl. [SS]. 

13.6 DEVELOPMENTS USING THE KIRCHHOFFSTRESS 

The previous developments have used the second Piola-Kirchhoff stress and Green 
strain and have led to a total Lagrangian finite element formulation. We can, instead, 
adopt the Kirchhoff stress and a 'Eulerian' finite element formulation (similar to that 
described in Chapter 12). In order to ease the arithmetic, we will start by adopting the 
simpler modified neo-Hookean energy function rather than the modified Mooney 
Riclin function in ( 1  3.26). This can be simply achieved by setting C, in the latter to zero 
and. for convenience, then equating 2C, to the shear modulus, p. We will later show 
that i t  is very easy, using the methods of Section 10.4, to simply transform the 
relationships of Section 13.4 which adopted the second Piola-Kirchhoff stresses and 
Green strains. However, we will firstly apply a more direct (but lengthier) approach 
with the 'neo-Hookean' model, for which, from (13.35), we have: 

3.85 

With the aid of (10.50) or (4.122), this can be converted to a Kirchhoff stress so hat: 

( 13.86) 

where b = FF' (see (13.9)). By noting from ( 1  3 .24~)that b = 13 3b and, using ( I  3.12a) 
for I ,  so that t r (b)= 1, ' 3 1 1 ,we can re-express (13.86) as 

t = 11 dev(b)-pJI = p dev(b)+ K J ( J  - 1)1 (13.87) 

where we have used ( 13.33)for the pressure, p. For a genuinely incompressible material, 
we would obtain (13.86) with I ,  = 1. 

In order to differentiate ( 1  3.87), we require: 

Sb = F6Fr + SFFT= FFTF-T6FT+ bFF- 'FFT = bL1 + Lb ( 13.88) 

where, from (4.1 12) and (10.20): 

L = 6 F F - ' = d ~ + b i 2  ( 13.89) 

Using the second relationship in ( 13.89),(1  3.88) can be re-expressed as 

6b = b(6E + 6Q)* + ( 6 ~+ 6Q)b ( 13.90) 

where (SE is symmetric and 6Q is antisymmetric (so that bO' = -SO). 
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As well as needing 6b, to differentiate (13.87), we require 61, and 61 in terms of &E. 

From (13.29) and (13-90), we have: 

61, = 2(I:b&) = 2tr(b6~)= 2(b:6~)  (13.91) 

where we have used the symmetries of BE and b and the antisymmetry of SR. (The last 
step in (1 3.91) can easily be confirmed using a simple two-dimensional example). Also 
from (1 3.29), we can obtain 61, as 

6 1 ~= 2iI3,fR56i, + 2>-:A2R;6i2 + 2i;if3-36A3 

(13.92) 

which is equivalent to (10.60). We can now differentiate ( 1  3.87) to obtain: 

S t  = p l y  1 '3(b6~+ BEb) + plj -b6R + 6Rb) 

- : p l y  'I3(b:6&)I-2 I -
3P 3 

f 3 ( I : 6 ~ )b -2I( :> 
-PI, "2(1:B&)I- I:'2BpI ( 13.93a) 

From which, with the aid of indicial notation, we can write: 

6Tij = D:j,K,6&kl+ ' I 3 (  - hik6Qkj + 6Qikhkj) + Gi*Ybp ( 13.93b) 

where we have added superscripts 'tJK' for 'tangential Jaumann rate of Kirchhoff 
stress' (see Section 10.2 and equation (10.36)) to the constitutive terms Dijkrand 'tK' for 
'tangential Kirchhoff' to the Gi, terms. The reasoning behind the superscripts will be 
amplified later. The components of the constitutive tensors are given by 

and 

G:; = - I:I2dij ( 13.95) 

Using (13.87) for t and noting the symmetry of b, we can rewrite ( I3.93b) as 

&i j  = D:::,K,6Ek,+ Gi.YBp -TikdQkj + bRiktkj ( 13.96a) 

which can be written, without suffix notation, as 

6 t  = DIJK:&+ G,,6p - tdR + 6 f 2 ~  ( 13.96b) 

Apart from the pressure term, equation (1 3.96b) is identical to (10.36) of Section 10.2, 
derived in relation to the 'Jaumann rate of Kirchhoff stress' hence, the sub- or 
superscripts tJK in (13.89). From the work of Sections 10.4and 12.4, we would expect to 
be able to transform (1 3.96) to involve the Truesdell rate of Kirchhoff stress (see ( 12.51)). 
Indeed by using (1 3.89) to write 6R as 6~ - L, we can change (1 3.96) to give: 

6t = D,,,:~E+ G,,6p + Lt + 7LT ( 13.97) 
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where, in place of (13.94). we have 

From the work of Section 10.4, we would expect that the above relationship could be 
derived more simply by transforming it directly from the equivalent relationships 
inkoolving the second Piola-Kirchhoff stresses and Green strains or, in the present case, 
from (13.39)- ( 1  3.41) with 2C1 = p and C? = 0. To this end, we can simply apply 
( 10.56) or 

D :;y = Fl,l F,h Fk,.Fl,,D :;;(, ( 13.99) 

t o  ( 13.40) and (13.41). With b = FFT and C = FTF. it is not difficult to show that this 
int,oli ing changing ( 1  3.40) and (1  3.41) so that: 

C;' * 6, * h, ( 1  3.100) 

(Note that in ( 1  3.40)and ( I3.41), C;' is the 0th component of C-I ). Application of this 
process to (13.40) and (13.41), can be shown (with 2Cl = p , C2 = 0) to lead directly to 
(13.98). (More details on the application of (13.99) are given in Section 13.8.3.) I t  
fo1lou.s that this same process could be very simply applied to (13.40) and (13.41) to 
obtain the C$: terms for the Mooney-Rivlin energy function (with C? # 0).  Using 
(12.51), we could (if wished) find the equivalent terms in relation to the Jaumann 
rate of Kirchhoff stress. 

13.7 A 'EULERIAN' FINITE ELEMENT FORMULATION 

'Eulerian' finite element formulations have been considered in the previous chapter 
where we used either the Jaumann rate of Kirchhoff stress (Section 12.4) or the 
Truesdell rate (Section 12.3). We have just shown how to obtain, for our hyperelastic 
materials, the constitutive laws in relation to the latter. Hence we could use either of 
these formulations although we now have to consider the pressure terms separately. 
To this end, we can adopt a similar approach to that of Section 13.5. We will now briefly 
outline the procedure. 

Our starting-point will as usual be the principal of virtual work so that we can 
obtain the internal force vector via: 

(13.101) 

which leads to 

q 1 =  / B ( x ) ~ T ~ Y ,  ( 1  3.102) 

u.here B(x)is the linear strain-displacement matrix which is a function of the current 
coordinates, x,as detailed in Section 12.2. Following the approach of Section 13.5, from 
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(13.74), the other 'equilibrium equation' will be 

f = - h, ( J - l ) + - p:>dVo=O (13.103)I(

where h, contains the shape function for the pressure. To obtain the tangent stiffness 
relationships, from ( 1  3. lOl), we have: 

r r 

(13.104) 

If we use (13.97) for 6 t  and adopt the techniques of Section 12.3, we obtain: 

q'dp, = s(DITK:6&+ GI,6p):dq + LTL:r)d Vo (13.105) 

which, apart form the pressure term +G,,6p, is identical to (12.28). Combining the 
techniques of Section 12.3 with those of Section 13.5, we can obtain the 'tangent 
stiffness' equation of (13.79), i.e. 

(13.106) 

with K, being given by (12.45) if the Jaumann rate of Kirchhoff stress is adopted or by 
(12.16) if the Truesdell rate of Kirchhoff stress is used (as emphasised in Chapter 12, 
provided the appropriate tangent constitutive terms are adopted, both formulations 
lead to the same stiffness matrix). The pressure connection matrix P. is given by 

(13.107) 

while the H matrix in ( 1  3.106) is given by (13.76). The solution procedure would closely 
follow that outlined in Section 13.5 for the total Lagrangian formulation. 

13.8 WORKING DIRECTLY WITH THE PRINCIPAL 
STRETCH RATIOS 

Although in Section 13.2, we did begin by working in terms of the principal stretches, 
the invariants, I ,  - I ,  of (13.12) were eventually expressed in terms of C = FTF or 
b = FFTand for most developments, we used the latter. However, in Section 13.4.2, 
most of the work related directly to the principal stretches and we indicated there that, 
for later developments, such as the Ogden model (Section 13.10.2), we would return to 
working directly with the principal stretches and principal directions. 

The basis for such formulations is closely related to the work on conjugate stress and 
strain measures previously developed in Section 10.5. We start by considering a general 
potential function cp(Al, &,R 3 ) .  Because, the Biot stresses are conjugate to the stretch 
U (see (10.67) and (10.68)), it is simplest to obtain the principal Biot stresses from cp using: 

B = hlNINr+ h2N2N: + h,N,NI 

c'cp dcp c'cp= -NINT+ -N2NT+ -N,N: (13.108)
2A1 al., 2i, 
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For isotropic conditions, the Kirchhoff (and hence Cauchy) stresses can then be 
obtained from the Biot stresses using (10.84) so that, with B and U coaxial: 

Hence, from (4.147), using the relationship, R = Q(n)Q(N)T: 

( 1 3.110) 

The second Piola-Kirchhoff stresses can be obtained from ( 1  3.27) as 

c:cp ?cp
s=-=2-- (13.11 1 )

?E C:C 

or tnore directly using the principal stretches, from (10.6), we have: 

(13.112) 

and hence with coaxiality of the second Piola-Kirchhoff stresses and the Green strains. 
from (10.75) and (10.77): 

1 (Tcp 1 c:cp 1 &p
7N,N: +-7N,NI + 77N3N3 (13.113)S = ,/., ? A ,  E,, ?/-2 A3 “/“3 

Using a similar approach. the ‘log-stress’, 0,which is conjugate to log,U (see (10.65) 
and ( 10.79)) is given by 

(13.1 14) 

Equations ( 13.log) ,  ( 13.113) and ( 13.114)are special cases of ( 10.77). 

13.8.1 The compressible ‘neo-Hookean model’ 

The previous compressible Mooney-Rivlin and compressible neo-Hookean models 
can be developed directly in terms of principal stretches. Before considering more 
sophisticated models will reconsider the latter. From (13.26) with C, = ,U 2 and C, = 0, 
in terms of principal stretches we have: 

rll 
cp = - ( l , J  - 3) + $ K ( J  - I ) ,

2 

(13.115) 

From the above 

(13.116) 
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From which, with the aid of (13.1 13), 

S = p J P 2 ,Q(N)Diag Q(N)T+ K J ( J  - l)(Q(N)Diag(1:)Q(N)T (13.1 17a) -

or: 

with p from (1 3.33). Equation (1 3.1 17b) coincides with (13.35). Clearly, we could also use 
(13.116) with (13.110) to obtain an equivalent relationship for t which would corre- 
spond with (13.86). 

In  the derivations leading to (13.117), it has been assumed that the stretches are 
distinct. However, if two of the stretches coincide (say i,,and i2),we can still write such 
an expression although the N ,  and N, are only defined to within an arbitrary rotation 
about N,. If all of the stretches coincide, equation (1  3.1 17b) degenerates to 

s= -pi1 = K 4 A 3  - 1 )  (13.118) 

where the last expressions follow from (13.33). 
For a general energy function of the form cp = cp(iL,, 13) ,we can write: i2, 

s.=--1 (%J 
' ;li aLi (13.119) 

where S j  are the principal stress and 

S = Q(N)Diag(S,)Q(N)T ( 13.120) 

We will now consider the issue of obtaining the tangential relationships initially in 
relation to the second Piola-Kirchhoff stresses and Green strains. 

13.8.2 Using the Green strain relationships in the principal directions 

To this end, we note that because of isotropy, the directions of principal stress and 
strain coincide and hence we can complement (13.120) with: 

E = Q(N)Diag( EJQ( N)T (13.121) 

Differentiation of (13.120) and (13.121) leads to 

S = Q(N)Diag(Si)Q(N)' + Q(N)Diag(Si)Q(N)T+ Q(N)Diag(Si)Q(N)T (13.122a) 

E = Q(N)Diag(Ei)Q(N)T+ Q(N)Diag(Ei)Q(N)T+ Q(N)Diag(Ei)Q(N)T (13.122b) 

where E; are the principal Green strains. Relating the above to the Lagrangian frame 
(see also Sections 4.3,4.8 and 10.6), gives 

SL= Q(N)TSQ(N)= Diag(Si)+ Q(N)TQ(N)Diag(Si)+ Diag(Si)Q(N)TQ(N) ( 1  3.123a) 

EL=Q(WTEQ(N)=Diag(Ei)+Q(N)TQ(N)Diag(Ei)+Diag(E,)Q(NlTQ(N) (1  3.123b) 

From (lO,lOl), the spin of the Lagrangian triad is given by the antisymmetric W,, 
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where 
WN= Q(N)Q(NT ( 13.1244 

while in relation to the Lagrangian triad (see also (10.102)). we have: 

( W N ) l A= Q(NITW,Q(N) = Q(N)’Q(N) ( 13.124b) 

and we can write ( 13.123)as 

S, =Q(N)SQ(N) = Diag(S,)+ (W N)LDiag( S,)- Diag(S,)(WN)l ( 13.125a) 

El,=Q(N)EQ(N)’=Diag(E,)+ (WN),Diag(E,)-Diag(E,)(W,),- (13.125b) 

Following closely the developments of Section 10.6, we can, for the two-dimensiona 
case, re-write ( 13.125b) as: 

where = - \t’y:. I t  follows that: 

( 13.127) 

from which (provided E ,  # E,): 

(13.128) 

and, in the general three-dimensional case (provided E, # E,) 

(13.129) 

(The latter equations could be derived directly from ( 10.108).)Equation ( 13.127)was 
derived from ( 13.125b). An equivalent expression can be derived for SIsfrom ( 13.125a). 
Substituting into this expression from (13.128) for the spin component ~ - 7 :gives: 

( 13.130) 

Considering first the diagonal terms in the above and extending to the three-dimen- 
sional case we can write: 

?S1 2s, ?S1 C7s1 c:s, CS1 
? E ,  ? E ,  ? E ,  ? E ,  ? E ,  ?E, 
? S ,  ?S, ?S, ?S2 (7s, ?S,- - - _ _ _ _ _ _  

?El ?E,  ?E,  ? E l  ?E,  ? E ,  
?S3 (7s3 CS, ?S ,  ?S ,  c:s, 
? E l  ?E,  ? E ,

-
? E ,  ? E ,  ?E, 

- 1, 

13.131 )  
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where the terms such as ?Sl/?El come from the differentiation of (13.119)in conjunc-
tion with the relationship Ei =:(E.; - 1). An example with plane stress and the 
Mooney-Rivlin energy function has already been given in Section 13.4.2(see ( 1  3.54) 
and ( 13.56)). 

Extending (1  3.130) to the three-dimensional case for the off diagonal shear compo-
nents, we have: 

The stiffness in ( 13.132) is caused by the change of direction of the principal axes. In the 
case that E ,  and E, coincide, (13.132) cannot be used but a limiting process results in 
terms such as 

( 1  3.133) 

where the latter relates to the case E ,  = E ,  (or I , ,  = i2).Equation (13.133) can be 
derived by noting that with E ,  = E,, i t  follows that S,  = S, and, to ensure isotropy: 

( 1  3.134) 

so that, in these circumstances, the application of Taylor series to S , .  S,, E, and E, 
leads to: 

and hence, as hl, I?, and h3 tend to zero, we obtain the limit in ( 1  3.133). 
Equations (1 3.13 I ) - - (  13.132) allow us to define the tangential constitutive matrix or 

tensor in the Lagrangian frame such that: 

We can then transform back to the 'base frame' using standard matrix transformations 
of (4.55)which here give: 

( 13.137) 

where the Q terms are components from Q(N). 
If all of the principal Green strains coincide, in place of (13.134)' we have: 

?S, FS, ?S3- ---= A  (13.138a)
?E,  ?E,  ;E3 

c's, ?S1 c:s,
-

ss, 
-

?S3 ?S3 
( 13.138b)- - --- - = B

?E,  ?E3 ? E ,  2E3  ?E,  ?E,  
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and ( 13.131 )  becomes: 

( 13.139,) 

( I3.139b) 

kvhere we have dropped the subscript L for 'Lagrangian' because the same tangential 
properties now apply with respect to any orthogonal set ofaxes. Equations( 13.139) can 
bc re-expressed as 

s,, = BikkAi j+ ( A  - B ) i l J  ( 13.140) 

so that. allowing for the symmetry between ilJand E J l :  

D;.Yk;= BbijbkI+ ((Sikhjl+ bildjL)  (13.141) 

In this section, we have not yet considered keeping the pressure term as a separate 
bariable. If  we wish to adopt such an approach, we could still apply the previous 
techniques to obtain the tensor Dtkzin ( 1  3.38) or ( 1  3.39)provided the terms C'S, ?EJ are 
computed (from say (13.1 17b)) with p kept constant. The pressure connection matrix 
( Gthl in ( 13.38)) would follow. as before. from ( 13.42). 

Before moving on to consider, the equivalent relationships with respect to the 
Eulerian triad, we can summarise the previous relationships as follous. Provided all of 
the principal stretch ratios (or principal Green strains) are distinct, the only non-zcro 
components of DtK,,,are (from ( 13.131) and ( 13.132)): 

( 13.142a) 

If E ,  = E, (and Si  = S,), from (13.133), (13.142b) is replaced by 

13.8.3 Transforming the tangent constitutive relationships 
for a 'Eulerian formulation' 

I f  we adopt a 'Eulerian formulation' (Chapter 12 and Section 13.7). we can simply use 
( 13.99)to transform the material constitutive tensor on the left-hand side of ( 13.137)so 
a s  to involve the Truesdell rate of Kirchhoff stress. However, following Chadwick and 
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Ogden [Cl, C21, it is simpler to work from the material tensor in the Lagrangian frame 
(as in (13.136))and initially obtain the equivalent spatial constitutive tensor in relation 
to the Eulerian frame. 

To this end, we can write: 

dx = Q(n)dXE; dX = Q(N)dX,> (13.143a) 

so that dx can be expressed in terms of its components dx, with respect to the Eulerian 
frame while dX can be expressed in terms of its components with respect to the 
Lagrangian frame. Substitution from (13.143a) into the relationship dx = F d X  then 
leads to 

dx, = Q(n)TFQ(N)dX,= Diag(i)dX, = F'dX, ( 13.144a) 

F : . = j".(!j..
IJ 1 1J 

(13.144b) 

which gives the expected result that dsi ,  = Ridxi,.. In moving from the second to the 
third expressions in ( 1  3.144a), we have used the relationship (see (4.148)): 

Q(n)TFQ(N)  = Diag(2) ( 13.144~) 

With respect to the Eulerian and Lagrangian coordinate systems, ( 1  3.99) can now be 
directly applied using F' instead of F. This leads to the transformation: 

Di;Zc = iiijikilD:k:'* (13.145) 

In addition, the relationship z = FSF' gives: 

1 
( 13.146) 

so that: 

(13.147) 

Substitution from (13.145)-( 13.147)into(13.142a)-( 13.142c)gives the non-zerocompo- 
nents of D 1 - r K F  as 

( 1 3.148a) 

( 13.148b) 

If i i= i jand ( z i  = r j ) ,we have: 

If all three principal stretch ratios coincide, we can directly compute DtK2 from the 
equivalent of (13.141) whereby: 

(13.149) 
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although, in place o f  ( 13.138)we now have 

( 13.150b) 

In this section, we have not kept the pressure term separate. However, if we wish to 
apply such a technique, we can simply apply the previous procedures to obtain the 
tensor D, I in ( 13.97)provided the terms c'si'?jLjetc. are computed with p kept constant. 
The pressure connection matrix G , ,  would be given by ( 13.95). 

13.9 EXAMPLES 

In this section, we will give some examples relating to specific hyperelastic models. The 
objective is to link earlier work in Sections 13.4 and 13.6with the work o f  Section 13.8 
intol\ring the principal stretches. 

13.9.1 A simple example 

Before rnop-ing on to the compressible neo-Hookean model. to ease the algebra, we \+,ill 
start with an even simpler (conceptual) hyperelastic model for which we ass~ime that: 

(13.151 1 

From ( 13.I 19), we obtain: 

(13.152) 

or. from ( 13.146): 
- 7

ti = &.; - 1)  ( 13.153) 

From ( 13.120) and the expression for S, in ( 13.152) involving E,,, we obtain: 

s = p[I -c '1 ( 13.154) 

and from ( 13.110)and ( 13.153): 

T /i[b - I ]  (13.155) 

with b = FF'.  
Following the approach of Section 13.4 (see ( 13.36)). differentiation of ( 13.154) gikses: 

s = pc- 1CC- 2pc 1Ec- (13.156) 

from which 

( 1  3.157) 
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while using the approach of Section 13.6 (see (13.93b)),from (13.155)we obtain: 

.t = pb = p ( b i  + i b )  -p b b  + pfib = p(bi  + i b )  -& +  LiZt (13.158) 

from which 

(13.159) 

t =pb = 2pi + 2LT+ Lt (13.160) 

which is of the form for a Truesdell rate (see (10.55))so that: 
D i j k rt T K  -- p ( b i k d j l  + b i l d j k )  (13.161) 

The latter could also be obtained from (13.159) via (12.5 1). 
We have not yet applied the procedure of 13.8.2to obtain the tangential constitutive 

relationships. To this end, we can differentiate (13.152) to obtain: 

(13.162) 

and with respect to the Lagrangian triad, non-zero constitutive terms are given by 

1 K 2 L  -Diiii  -2 (13.163)
A" 4  

which could also be obtained from ( 13.142a). 

For the shear terms, via ( 13.132) and ( 13.152),we have: 

( 13.164) 

so that (allowing for the symmetry between E i j and E j i ) .  

(13.165) 

The latter could also be obtained directly from (1 3.142b). 
I f  2,.and i jcoincide, from (13.142~)and differentiation of ( 13.152): 

( 13.166) 

Equations (13.164) and ( 13.165)can be combined to give: 

( 13.167) 

The latter can be transformed back from the Lagrangian triad using ( 1  3.137)(with the 
Q's as the components of Q(N))so that: 

( 13.168) 
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If we note that: 

C - ' = Q(N)Diag(;v-2)Q(N)T (13.169a) 

or 

3.169b) 

we can see that (13.168) is equivalent to ( 13.157). 
If  all the principal stretch ratios coincide (at say R ) ,  from ( 13.138a) and ( 13. 52):  

(13.170) 

while B = 0. Hence, from (13.141): 

(13.171) 

Again, with the stretch ratios coinciding: 

( 13.172) 

If we work with the Kirchhoff stress, z, then from ( 1  3.148a) and ( 1  3.153). we have: 

with D i i j j= 0 while from ( 13.148b) and ( 13.153), we obtain: 

(13.174) 

I f  the stretch ratios A,and iJcoincide, via (13.148c), we obtain the same result. 
Combining ( 13.173) and (1 3.174) gives: 

D:TGr'= ) i ( h i k h j [  + d l l d j k )  (13.175) 

Strictly we should now transform back from the Eulerian triad using the equivalent of 
(13.137)(obtained via (4.55)) with the Q's now relating to Q(n)'a with the 11'sdefining the 
Eulerian triad. However, because of the isotropy, this is not necessary and we can 
simply remove the superscript E in ( 13.175)so as to obtain ( 13.161). We will now labour 
the point by demonstrating this relationship. 

The transformations lead to 

D:;: QlaQJhQkcQ#:E:  = /1Q, ,QJhQk'Qld(dcrri jhd i-d , d h  1 ( 13.176) 

However because QQT= QIQT= I, we can write: 

Q I J j a k Q k c  s ,k  ( 13.177) 

SO that = D::;'. 
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13.9.2 The compressible neo-Hookean model 

In  Section 13.8.1, we showed that the compressible neo-Hookean model could be (but 
need not be) expressed directly in terms of principal stretch ratios. In  this section, we 
will briefly outline the application of the method of Section 13.8.3, so as to directly 
obtain the constitutive tensor in relation to the Truesdell rate of Kirchhoff stress. To 
this end, we start by applying (13.1 10) and (13.1 16) so as to obtain the principal 
Kirchhoff stresses as 

In order to obtain the constitutive tensor, we now require: 

( 13.179a) 

" (72' 2 
I . .+= --!CZ3 -1K J ( 2 J - 1)+2/iJ-23>.fhij  ( 13.179b)

3 

where i n  ( 1  3.179a) we have kept the pressure, p, constant while in ( 13.179b) we giire the 
equivalent combined relationship. 

Application of ( 13.148a) now leads to 

( 13.180b) 

where, again, we have kept p constant in the first relationship. 
From ( 13.178) and ( 13.148b), the 'shear terms' are given by 

( 13.181a) 

i J 1 J  I J J 1  J I i JD!TK" D!?KE= D'rKF= D!?FE= 1'I J J I  3 J - 31, - K J (  J - 1 )  (13.181b) 

Equations ( 13.180) and ( 13.181 )  are directly compatible with ( 13.98). 

12.10 FURTHER WORK WITH PRINCIPAL 
STRETCH RATIOS 

There are a number of energy functions which, unlike the neo-Hookean and Mooney -
Rivlin models. can only be formulated in terms of the principal stretch ratios (and 
therefore require a polar decomposition-see Chapter 4). Such functions are based on 
the 'Valanis-Landel hypothesis'(of separability into principal directions [V 11)and we 
will now consider some examples. 



90 LARGE STRAINS, HYPERELASTICITY AND RUBBER 

13.10.1 An energy function using the principal log strains 
(the Hencky model [H2]) 

Consider the potential function: 
3 

v, = p (log, &)’ + $( K - $11)  (log, J)’ ( 1  3.182) 
i =  1 

where again p is the shear modulus and K the bulk modulus. Differentiation of ( 13.182) 
leads to 

13.183) 

Hence, from (1 3.1lO), the principal Kirchhoff stresses are 

13.184) 

where 

(13.185) 

so that from (13.1 10): 

t = 2p  (log,2, - log,J)n,n’ - pJI ( 13.186a) 
or 

t = 2 p dev(log,V) -pJI ( 13.186b) 

If (13.185) is assumed, (13.186b) can be re-expressed as ‘t = C:log, V, where C is the 
standard linear constitutive tensor. From (13.186a), it is easy to show that when the 
principal stretches coincide, the coefficient of 11 vanishes so that we have complete 
‘separability’. If we wish to work in the ‘material frame’ from ( 1  3.1 14), we can write the 
stress that is conjugate to log,U as 

0 = 211dev(log,U) - p J I  (13.187) 

Alternatively, we could use (13.1 13) to obtain the second Piola-Kirchhoff stresses, S. 
The procedure of Section 13.8.2 could then be used to obtain the tangent constitutive 
tensor. Instead, we will now apply the technique of Section 13.8.3 to obtain the 
constitutive tensor in relation to the Truesdell rate of Kirchhoff stress. To this end. we 
require (see (13.148)): 

( 13.188a) 

(13.188b) 

where, following the approach of Section 13.8.5, we have kept the pressure term 
constant in the first equation. 
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Application of (13.148a) now leads to 

D:CE= -$p-p J  + (211- 2rj)djj ( 13. I89a) 

D:;YE = - :/A + K + (2/1- 2 ~ i ) b i j  ( 1  3.189b) 

where, again, we have kept p constant in the first relationship. 
Provided, # Ibj,the shear terms can be obtained directly from ( 1  3.148b). However, 

if Ai  = i j ,we can use (1 3.148~)to obtain: 

D\?K.E= D'.TKE= D'TKE= D'.TKE= p - T .  (13.190a)
I J I J  I J J l  J l l J  1JJ1 

I t  is instructive to apply (12.51) to these tangential moduli in order to relate them to 
the Jaumann rate rather than the Truesdell rate. In these circumstances, from ( 13.189b). 
we obtain: 

tJKE -Dijjj - -$p + K + 2phi j  ( 13.190b) 

while from ( 13.148b) we have: 
o1JK.E= D!JKE = D'JK~E = D ~ J , K E

[ J l J  l J J 1  J11J IJji 

(13.190~) 

Substitution from (13.1 84) and (13.1 85) into the latter. leads to the relationship: 

Using series expansions, we can obtain the approximation: 

(13.190e) 

Because (13.190b) and (13.190e) give an isotropic relationship, the transformation from 
the Eulerian triad is trivial (see Section 13.8.4) and we can combine these equations to 
obtain the linear isotropic relationship (see also (10.43)): 

D$, 4p(dikd,l + Sirsj,)+ ( K  - $ / l ) d l , h k ,  ( 13.190f) 

It follows that provided the stretches are reasonably close to each other, instead of 
using Hencky's hyperelastic potential we could obtain effectively the same results using 
a hypoelastic formulation with a fixed linear elastic tangential modular tensor in 
conjunction with the Jaumann rate of Kirchhoff stress. (This is not to imply that the 
latter procedure is simpler.) Issues involving the integration of such a hypoelastic 
approach will be discussed in Chapter 19. 

13.10.2 Ogden's energy function [01.14,04,05] 

This function has been found to be effective for very large strains. I t  can be considered 
to follow from (13.18) and can be written as 

( 13.191) 
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where typical values of x p  and lip,for a three-term expansion ( N = 3) are 

p l  = 6.0; ,u2 = 0.01; ,u3 = - 0.1 N,/mm2 ( 13.192a) 

z l  = 1.3; 2 2  = 5.0; 2 3  = - 2.0 ( 13.192b) 

Ifa two-termexpansion is applied with r l  = 2 and ct2 = - 2, (13.19l)coincide.s with the 
Mooney-Rivlin function. Typical values for 1.1, (previously ZC,) and p2 (previously 
- 2C2)might be 

p1= 4.0 Nimm2; p2 = -0.07 Nlmm2 (13.193) 

I t  follows from (13.191) that: 

(13.194) 

and from (13.110)that: 

ti = ppfy (13.195) 

I f we wish to adopt a compressible form, we can apply the approach of Section 13.3and 
replace i,with zi = J - 3i.and, in addition, introduce a term for the volumetric energy 
(say ( 13.121a))so that we have: 

or 

cp = (%(J
p = l  'x, 

3up- 3) + -K (log,J)2
2 

( 13.196b) 

with 

[ iP = A';''+ i y  + 2: (13.197) 

I t  follows from ( 1  3.110)that: 

with the pressure p being given by 

p = -K(log,J)/J (13.199) 

Knowing the principal stresses, z;, the stress tensor z can be simply obtained from 
(13.110). 

To obtain the constitutive tensor, from (13.148a), we require: 

( 13.200a) 

( 13.200b) 

where we have kept the pressure, p ,  fixed in the former equation. Hence the terms 
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~ ~ ED ~ can be obtained directly from (13.148a). Provided E., # L j ,  the terms D:;:' (and 
equivalents-see (13.142b)) can be obtained directly from (13.148b) while if E,, = E b j ,  
from ( 13.148c), we obtain: 

If N is set to 1 in the above, cc, is set to 2 and p p= p = 2C1, the previous equations 
coincide with those given in Section 13.8.5 for the 'neo-Hookean' model (apart from 
differences due to the use of different terms for qb).In particular, equation ( 1  3.200a) 
above coincides with (1 3.179a). 

13.10.3 An example using Hencky's model 

In this section, we will apply Hencky's model (Section 13.10.1) to the shear deformation 
of an initially square block (Fig. 13.3) under plane strain. The imposed displacements 
are given by 

U =  Ye; t l = O  ( 13.202) 

so that the displacement derivative matrix is 

( 1  3.203) 

and the deformation gradient is given by 

1 e  
(13.204) 

X( U )  

Figure 13.3 Shearing a block. 
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while the left Cauchy-Green tensor is given by: 

( 13.205) 

The eigenvalues of (13.205)give the squares of the principal stretches so that: 
-

, e + v : e 2 + 4 *  --e+t / /u2+4~ 

A ,  = ( 13.206)
2 A 2 =  2 

(Because of the plane-strain condition, i., = 1). Using(13.184) and noting that J = 1 and 
p = 0. we obtain: 

5 ,  = 2p log,A,; T 2  = 2/L log,A2 = - 2plog,i., ( 13.207) 

The second expression in ( 1  3.207) can be obtained by noting that iL, I .= ;.; 
We now require the principal directions of the Eulerian frame in order to transform 

the principal Kirchhoff stresses into the base system. To this end, if we define the 
displacement Y in Figure 13.3 as 

e = 2 tan /) ( 13.208) 

we can redefine ( 13.206) with 

( 13.209) 

where 

s = sin 8; c = cos [j (13.210) 

and the principal directions of b from (1  3.205) are 

1 
n.: = ( 1  + s, c.)J-

2( I + s )  

(13.21 I )  

Using ( 1  3.186a), the Kirchhoff stress tensor is now given by 

( 13.2 12) 

while the rotation matrix R is given by 

R = [ 1 ,  :] 
 ( I  3.21 3) 

The normalised components of the Kirchhoff stress are plotted against e in Figure 13.4. 
Dienes CDl.10) considered this example and showed that one obtained oscillatory 
shear stresses when using a hypoelastic formulation with a fixed tangential modular 
matrix in conjunction with a Jaumann rate formulation, but no such oscillatory stresses 
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Figure 13.4 NormalisedKirchhoff stresses. 

when applying a similar procedure using the Green-Nagdhi rate (Section 10.8).Of 
course, no such oscillatory stresses are obtained with the current hyperelastic formula- 
tion. 

13.11 SPECIAL NOTATION 

B , - B ,  = scalars-see ( 1  3.34a) 
b =  FFT(left Cauchy-Green tensor) -
B =  FFT(‘volume preserving’ left Cauchy-Green tensor) 

B”,= matrix connecting c’iEto 6p (Section 13.5.1) 
B(x)= matrix connecting (TE to (Tp(Section 13.7) 

B =  Biot stress (Section 13.8) 
c,,c,= constants for Mooney-Rivlin strain energy function 

C =  F1F (right Cauchy-Green tensor) 
& FTF(‘volume preserving’ right Cauchy-Green tensor) 

c.7’= ijth component from C -
D =  fourth-order constitutive tensor 

D,-D,= scalars-see (1 3.37) 
E =  Green strain 
f =  nodal quantities representing lack of pressure compatibility (see ( 13.74)) 

F, - -F ,  = scalars--see (13.41) 
F = deformation gradient 
F = ‘volume preserving’ deformation gradient (see (1 3.24a) 
G = second-order pressure connection tensor 
g = vector form of G 
h = shape function coefficients (for displacements) 
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h = shape function vector (for displacements) 
h, = shape function coefficients (for pressure) 
h, = shape function vector (for pressure) 
H = pressure term in tangent stiffness matrix-see (13.79) 

1,-Z3 = in Section 13.1, invariants of E 

[ , - I 3  = in other sections, invariants of C and b (see (13.12)) 
i2= modified invariant (see ( 13.3)) in Section 13.1 

1,-1, = second invariants (see ( 13.26))in Sections 13.3- 13.10 
I = identify matrix 

J = det(F)= 1: 
K = bulk modulus 
L = velocity gradient 

N -N,  = unit principal vectors in initial (Lagrangian) configuration 
n 1-n3 = unit principal vectors in current (Eulerian or spatial) configuration 

0= stress conjugate to 'log,U' 
U = right stretch tensor 
p = nodal displacements; changes, 6p 
P= pressure-displacement connectivity part of tangent stiffness matrix (see 

( 13.72)) 
p = pressure (positive for compression) 
p = nodal pressure variables; changes, dp 

Q(N)= orthogonal matrix containing the Lagrangian triad of N's 
Q(n)= orthogonal matrix containing the Eulerian traid of n's 
R = rotation matrix 
S = second Piola-Kirchhoff stresses 

W, = Section 13.8.2 spin of the Lagrangian triad-see (13.1244 
z = eigenvectors of E (Section 13.1) 
E = small-strain tensor (Section 13.1) 
i: = Eulerian strain rate (or b ~ )  
cP = principal values of E (Section 13.1) 
cp = strain energy function; cp,---distortional, cp,-volumetric or 'bulk' 
h = spin (or b ~ )  
z = Kirchhoff stresses 

i. -i,= principal stretches 
. I ?

-n3 = 'volume preserving' principal stretches (see (13.22)) 
11 = shear modulus 

Subscripts or superscripts 

L = (only in Section 13.8.2) implies a tensor related to the Lagrangian triad 
t = tangential 
v = virtual 

tJK = tangential for Jaumann rate of Kirchhoff stress 
tTK = tangential for Truesdell rate of Kirchhoff stress 

tK = tangential for Kirchhoff stress 
tK2 = tangential for second Piola-Kirchhoff stress 
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14 More plasticity and other 

material non-linearity4 

14.1 INTRODUCTION 

In Chapter 6, we introduced plasticity and concentrated on the von Mises (52) yield 
criterion. Although many of the concepts and, indeed, the algorithms in that chapter 
are relevant to other criteria, no details were provided. The present chapter will 
consider a range of other yield criteria. Initially, we will concentrate on those criteria 
which involve a ‘volumetric component’ and can be used for geomechanical materials. 
We will also introduce criteria which involve corners in the yield surface and will 
discuss some special algorithms required for their numerical treatment. Details are 
given for both the Mohr-Coulomb yield criterion and the Ilyushin yield criterion for 
shells, which works directly with the stress resultants. Later in the chapter, we will 
consider criteria than can be used for anisotropic plasticity. As a by-product, methods 
will be introduced for the backward-Euler return that are computationally more 
efficient than some of the methods introduced in Chapter 6. 

Towards the end of the chapter, we will consider softening and fracturing materials, 
with emphasis on concrete. Some of the suggested procedures also fall into the ‘plasticity’ 
category while others do not. Among the latter is ‘damage mechanics’ which is briefly 
discussed in the final section of this chapter. A further chapter on plasticity is Chapter 16 
which concentrates on various forms of hardening and also considers viscoplasticity. 

Both the current and the next chapter will follow Chapter 6 in concentrating on 
‘algorithmic aspects’. References to more general reading were given in Chapter 6. 
More recent books covering plasticity are due to Lemaitre and Chaboche [L3], 
Lubliner [L4] and Simo and Hughes [ S S ] .  Also, in relation to finite elements. the new 
editions of the books by Bathe rB1.4) and Zienkiewicz and Taylor [Zl] give chapters 
devoted to the topic and a report by Waszczyszyn [W 11covers a range of issues. Both 
the current and the following chapters are limited to small strains. Large strains will be 
considered in Chapter 19. 

14.2 OTHER ISOTROPIC YIELD CRITERIA 

The von Mises yield criterion is a function of the second deviatoric stress invariant 
(J,-see (6.26)) and, in principal stress space, can be depicted as a cylinder 
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7t plane 
, 0, + 0* + o3 = 0 

Figure 14.1 Von Mises and Tresca yield functions. 

(Figure 14.1). In order to make the magnitude of the yield surface cross-section change 
with volumetric or mean stress, we must make the yield criterion a function of the first 
invariant, I ,  = J ,  where 

I ,  = (a, + a2 + 0 3 )  = 3 0 ,  (14. I )  

With f = f ( I l , J 2 ) ,  we can produce the Drucker-Prager yield criterion [D6] 
(Figure 14.2) where 

j' = (DZ, + J y )  - 0, ( 14.2) 

Drucker-Prager 

Mohr-Coulomb 

Figure 14.2 Drucker-Prager and Mohr Coulomb yield functions. 
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Figure 14.1 Von Mises and Tresca yield functions. 

(Figure 14.1).In order to make the magnitude of the yield surface cross-section change 
with volumetric or mean stress, we must make the yield criterion a function of the first 
invariant, I, = J ,  where 

I ,= (a,+ a2+ 03)= 3 0 ,  (14.I )  

With f = f ( I l , J 2 ) ,  we can produce the Drucker-Prager yield criterion [D6] 
(Figure 14.2)where 

j' = (DZ,+ J y )-0, ( 14.2) 

/
Drucker-Prager 

I 
Mohr-Coulomb 

0 3  


Figure 14.2 Drucker-Prager and Mohr Coulomb yield functions. 
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Details will be given later, and an alternative form for the Drucker-Prager criterion 
will be given in Section 14.9. 

A well-Known alternative to the von Mises yield criterion is the Tresca yield 
criterion (Figure 14.1). In  terms of principal stresses, this crterion is given by 

.f = (a1-0 3 )-Go = 0 ( 14.3a) 

61 > 62 > 6 3  (14.3b) 

In order to express this yield criterion in terms of stress invariants, we can follow Nayak 
and Zienkiewicz [Nl]  and Owen and Hinton CO21 and use the relationship: 

sin(8+ 2n/3) 
( 14.4) 

sin(0 -2n/3) 

where J ,  was defined in (6.26)and the (Lode) angle 0 (see Figure 14.3) is related to the 
third deviatoric invariant: 

J 3 = det [s] ( 14.5) 

where s are the deviatoric stresses (see Section 4.2.2 and (6.28)) via: 
-

- n/6 ,< 0 = i s in- ( - $ J , ) 4 n t 6  ( 14.6) 

:------- e = 300 

Figure 14.3 The PI-plane. 
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-0 3  

Figure 14.4 T on and Mohr's circle representations o f  Mohr Coulomb yield function. 

For 'two-dimensional' applications, J ,  can be expressed as 

J ,  = sz(ss - J 2 )  (14.7) 

In relation to Figure 14.3, if we impose the restriction of (14.3b) on the ordering of the 
principal stresses, we need only work in the sextent OAB. 

Using (14.4), the Tresca yield criterion of (14.3) can be re written as 
f ' = 2 ( J , ) 1 2  C O S ~ - ( T ~ = ( T , - U ~  ( 14.8) 

The Mohr-Coulomb yield criterion [M4, CI 51 is a generalisation of the cohesive- 
frictional relationship (Figure 14.4): 

j '  = cos cp + (T, sin cp -ccos cp = 0 ( 14.9a) 

where (T, is the normal stress on the 'slip-plane' at which the shear stress is z. The 
constant ( 2  is the cohesion and cp is the angle of friction. Assuming cr1 > cr2 > c r 3 .  (14.9a) 
generalises to 

,#' = $(cl- cr,) + +(U, + o,)sin cp - ccos cp (14.9b) 

and using (14.4). (14.9b) can be rewritten as 

j ' = ($ I sin cp + J :  'A ( O ) )  - c' cos cp = (T, - (T, ( 14.9~)  

with 

(14.10) 

where 0 was defined in ( 14.6). The Mohr-Coulomb criterion is illustrated in principal 
stress space in Figure 14.2. 

The Drucker-Prager criterion of (14.2) (see also Figures 14.2 and 14.3) can be 
considered as a smoothed approximation to the Mohr- Coulomb relationship of 
( 1 4 . 9 ~ )(see Figure 14.5) and can be expressed via (14.2) which is reproduced here for 
convenience as 

,#' = ( D I , + J ;  2 ,  -0, (14.11 )  
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\ Hyperbolic a2> 0 t T  
Parabolic a2= 0 

Elliptic a2< 0 , 

Figure 14.5 do,,,relationships for 'crushable foam' model. 

where 

(14.12a) 

(14.12b) 

with the plus sign being adopted if the yield surface is made to coincide with the inner 
corners of the Mohr-Coulomb surface while the minus sign applies if the surface is 
fitted to the outer corners (as in Figures 14.2 and 14.3). 

Before moving on to the numerical implementation of the various yield criteria, we 
note that they can all be expressed in the form: 

.f = O , ( l l , J 2 , 0 )- 0" = 0 (14.13) 

where the precise forms are given in Table 14.1. 
Before moving on to consider the previous yield criteria in detail, we will very briefly 

discuss some further yield criteria involving a pressure contribution. From Figure 14.2, 

Table 14.1 Yield criteria: f =  oe(l,,J2,0 )- no. 

o e  

Von Mises $J;" 

Tresca 2J:" cos 0 

Drucker-Prager DI, + JY2 (see (14.12a) for 0) O-,(see (14.12b)) 

Mohr-Coulomb ( 5 1 ,  sincp + J:I2A(O))(see (14.10) for A ( ( ) ) )ccosq  
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it can be seen that the previous yield criteria are open at the compressive end. One way 
of closing the yield criterion is to apply a ‘cap’ to the Drucker-Prager model [R2]. An 
alternative is provided by the ‘crushable foam model’ of Key [K2] (see also Duffet et al. 
[D7]). In  describing this criterion, we will use the mean stress a, from (14.1) and 
5 = J :  ‘. The yield criterion is then given by 

~ f = 2 2 - L 1 , + U 1 a , - L 1 2 a ~ = 0  (14.14) 

I f  ( I ,  = u2 = 0 and 3a, = a:, we recover the von Mises yield criterion, while with u2 = 0, 
we obtain the modified von Mises yield criterion of Raghava et d . [RI]. In particular, 
we can then set: 

= -o,aI/3; U ,  = - (a, + a,) (14.15) 

where (T, (a negative number) and (T, (a positive number) are the effective yield stresses in 
tension and compression respectively. 

If u2 # 0, we can obtain an elliptical (U* < 0),parabolic (a2= 0)or hyperbolic (u2> 0) 
shape (see Figure 14.5). The elliptical criterion takes the shape of the modified Cam clay 
model [R3]. A similar shape can be obtained by Tvergaard’s modification [Tl] of 
Gurson‘s model [Gl] for porous materials which takes the form: 

,f = T~ - U, + U ,  cosh(a2am) (14.16) 

Here U ,  and U ,  are related to the void volume fractions. 

14.2.1 The flow rules 

In the following, it will be assumed that an associative flow rule is being adopted. (In 
practice. for many applications with soils, a non-associative flow rule may be used so 
that the flow direction is governed by a plastic potential, Q # f (see Section 6.3.1 where 
the symbol y was used rather than the current symbol Q). To reduce the ‘dilation’ 
effects, a non-pressure-dependent function, such as the von Mises function. may be used 
for Q. 

As a first step in any numerical formulation, we require expressions for the flow 
vectors, a which were written in Chapter 6 as 

( 14.17) 

with c7J’/c?nbeing defined throughout this chapter (as in Chapter6) as a column 
vector. In  order to obtain this vector (a) via differentiation of (14.13), we require from 
( 14.6): 

( 14.18) 

The various yield functions can now be differentiated to give 

a = C l a l  + C2a, + C3a3 (14.19) 
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Table 14.2 Constants C,-C, for different yield functions. 

Yield function Cl c2 c3 

von Mises 0 0 


Tresca 0 COS 0 (1 + tan 8tan 38)Jg 1'2 f i sin 0 
J2cos 38 

Drucker-Prager D (equation (14.14a)) h J; 'I2 0 


Mohr-Coulomb sin q/3 -,i5 dA 

Note: The terms d A  dO in Table 14.2 are simply obtained by differentiation of equation (14.10). 

where 

( 14.20) 

(14.2 1 )  

a;=(..) C:J, ' 

= ( ( s ~ s ,- T;. + J,/3), (s,~, - 7:: + J, /3) ,  (s,~, - 7:y + J, /3) ,  ~ ( T ~ Z ~ X Z- Szrxy),  

-2(7,,7,,? -s,r,J, 2(7.yy7yz sy7,,)) (14.22) 

To fully defined the flow vector, a, we also require the constants, C,-C, in (14.19) which 
are given in Table 14.2. 

14.2.2 The matrix da /da  

The previous definitions are sufficient to enable the forward-Euler method to be 
applied to the different yield criteria so as to produce, the tangent modular matrix via 
(6.9). However, if the backward-Euler method (Section 6.6.6) is to be applied and 
a consistent tangent modular matrix (Section 6.7) is to be used, the matrix aa/?a (see 
Section 6.6.6) must be formed. This matrix has already been derived for the von Mises 
yield criterion in (6.47). More generally, (14.19) must be differentiated so that: 

?a ?a2 
7= C2- + C3-

da, + C,,a,a: + C,,a,a: + C3,a,a: + C,,a,a: (14.23)
C b  ?a ?a 
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where 

2 - 1  - 1  
- 1  2 - 1  

?a, 1 
?a 3 

- - 1  - 1  2 
6 

( I 4.24) 

6 
6 

( 14.25) 

and the constants C,,-C,, are given in Table 14.3. In relation to Table 14.3. A(O) is 
given by ( 14.10) and dAI‘d0 and d2A/d02 are the first and second derivatives of (14.10) 
with respect to 0. Table 14.3 does not give a specific relationship for the Tresca yield 
criterion because this criterion can be considered as a special case of the Mohr- 
Coulomb criterion with the angle of friction, cp, being set to zero. 

For the Tresca and Mohr--Coulomb yield criteria and others that involve corners, 
special procedures are required. These will be discussed in the next section and in 
Section 14.5. However, with this reservation, many of the techniques of Chapter 6 can 
be applied now that we have defined the a vector and ?a/& matrices. ( I f  non-associative 
plasticity is considered (Section 6.3.1),we require b’ = C Q i h  and ?b’,/?a,where Q is the 
plastic potential. The derivation of the backward-Euler return procedure and related 

Table 14.3 Coefficients required for ?a/?a. 

A(8) -tan2 38 C4 -3tan 

3c4 d2A dA 
33 - 4J;/2 c0s2 C4= -+ 3 tan 30-c - d tY dtj 
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consistent tangent matrix for the non-associative case follows a straightforward 
modification of the associative dev‘elopment and hence will not be specifically detailed 
here.) In particular, we can apply the backward-Euler procedures of Section 6.6.6 and 
can derive the consistent tangent modular matrix of (6.1 10).Alternative methods for 
applying the backward-Euler return will be discussed in Section 14.7. 

14.3 YIELD FUNCTIONS WITH CORNERS 

Various attempts have been made to approximate yield functions with corners either 
using a smooth rounding [Z2] or a very local rounding [S7]. However, Koiter [K4] 
has devised a theory that is applicable to yield functions with corners and the author 
has found that this technique is numerically far more effective [C3, C4] than attempts 
at local rounding. Other work on yield criteria with corners has been given by Owen 
et al. [03], Marques [Ml], Pankaj & Bicanic [Pl], de Borst er d.[Dl. D21, Pramono 
& Willam [P4] and Simo or ul. [S3]. 

As a first step, we will, in general terms, extend the backward-Euler technique of 
Section 6.6.6 to cover the case where the return is being made to the corner region at 
which two yield surfaces are active (the procedure can be extended to cover more than 
two yield surfaces). We will then derive an equivalent consistent tangent modular 
matrix by extending the approach of Section 6.7.2. 

For the first practical application, we will consider the Ilyushin yield function [I 11 
which is a stress-resultant approach that can be applied to shells [I 1,12, C5 C9) (see 
Section 14.4). Later, in Section 14.5, we will consider the Mohr-Coulomb yield 
criterion in some detail. 

14.3.1 A backward-Euler return with two active yield surfaces 

It will be assumed that we know that the return will take us to a corner where two yield 
surfaces are active (Figure 14.6). The equivalent yield functions will bef‘ = 0 and g = 0 
with the normal to the first surface being a (as with our conventional use for a single 
yield surface) and b will be the normal to the second surface. Consequently a = c?,f’,ic?o 
and b = ?q/?a.In place of (6.78), the backward-Euler return is given by 

o, =aB -AXa, -AqCb, ( 14.26) 

where the subscripts B and C have the same meaning as they did in Chapter 6 (see 
Figure 6.1 2) with B being the ‘trial’elastic position and C the final return point (now on 
a corner). If we have some initial estimates for oc (and hence a, and b,), AA and AI! (see 
Sections 14.4.4 and 1.5 for details), these will in general not satisfy (14.26) and, following 
the approach of Section 6.6.6, we can set up a residual, r, where 

r =oc - (ae-AXa,  -AqCb,) ( 14.27) 

With a view to a Newton-Raphson iteration, the application of a Taylor series 
expansion leads to (compare (6.8 1 ) )  

( 14.28) 
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Figure 14.6 Backward-Euler return to a corner with two active yield surfaces. 

Setting rn to zero leads (in place of (6.80)) to 

= -Q - 'r, - IQ 'Ca - ijQ 'Cb. ( 14.29) 

For simplicity, we will omit hardening so that, in conjunction with (14.29), the 
application of truncated Taylor series to the two yield functions leads to 

,/in= j&, + a:.& + =/&, -aeQ- 'ro - ia:Q- 'Ca, - Ija:Q 'Cb, = 0 (14.30) 

q,, = gCo + b:ir + = gc0 - b:Q- lr(, - i'.b:Q' 'Ca, - 4b;Q- 'Cb,. = 0 

Equations ( 14.30) provide two simultaneous scalar equations in and I-j and can easily 
be solved so that A;. and Aq can be updated after which the updated stress can be 
obtained by adding ir from (14.29) to the previous values of cc. 

14.3.2 A consistent tangent modular matrix with 
two active yield surfaces 

In  Chapter 6, with one active yield surface, the backward-Euler return of Section 6.6.6 
was followed by an equivalent consistent tangent modular matrix in Section 6.7.2. We 
will now extend these ideas to cover the case where there are two active yield surfaces. 
In  these circumstances, noting that a, in (14.26) is no longer constant, differentiation of 
( 14.26) leads to 

?a c'b
ir = Ci -ELCa- rjCb -A;.CTir -AqC-6 (14.3 1 )  

('d ?a 
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so that we can obtain: 

6 = Q- 'C(i- ;a - tjb) = R(i: - ;a - )jb) ( 14.32) 

where the matrix Q has been defined in (14.29)and the matrix R is the equivalent of that 
in (6.108). In order to remain on both yield surfxes, f and f j  should be zero so that: 

./ina$ = LI;R&- ia:Ra, - rjarRb,. = arRi: - i,ii - rjci = 0 ( 14.33)= 

'hl= b&j = b:Ri - ;b:Ra, - rjbrRbc = b:Ri -h2- i j c i22  = 0 

where (dropping from here on the subscript C): 

~U , ,  = aTRa; ~ 1 =, c i Z 1  = aTRb; i i Z z= b'Rb ( 14.34) 

From (14.33). we can obtain: 

(14.35) 

with 

q = U1 l N 2 2  - ci:1 ( 14.36) 

so that substitution into (14.32) leads to 

Cl Cl ( iRaaTRT+ s R a b T R T+ A R b a ' R '  -11Rbb'R 1i: ( 14.37)
4 Y Y 

14.4 YIELD FUNCTIONS FOR SHELLS THAT USE 
STRESS RESULTANTS 

In  Sections 7.1.2 and 8.1.2, we considered the issue of integrating through the thickness 
of beams, plates and shells. For shells with plasticity, a typical procedure would then 
involve the application within each layer (or at each integration point through the thick- 
ness-see Section 7.1.2) of the plane stress von Mises conditions (see Section 6.8.2)). 
However, more approximate procedures can be used which work directly with the 
stress resultants N and M and thereby avoid the through-thickness integration. 

14.4.1 The one-dimensional case 

So that the reader can understand the limitations of these resultant techniques, i t  is 
worth quickly deriving such a criterion for the 'one-dimensional case' in which there are 
two stress resultants, N and M (Figure 14.7~). In this case the strain which takes the 
form of Figure 14.7a) is assumed to be such that the yield stress has been reached at all 
sections through the depth so that, assuming a perfectly plastic stress-strain relation- 
ship, the stress distribution takes the form of the stress blocks shown in Figure 14.7b). 
In these circumstances resolving horizontally, one can obtain: 

( 14.38) 
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Figure 14.7 Stress and strain profiles for uniaxial case. (a) Strain profile; (b) stress profile; (c) 
stress resultants; (d) reverse strain profile; (e) in-plane dominant strain profile. 

and, taking moments about the centre of the beam: 

M 4MIn = -=-= 4(q - 7 2 )  ( 14.39)
MO g o t 2  

From which one can eliminate the non-dimensional depth, rj  (Figure 14.7a and b) and 
obtain: 

f = i i Z + m - 1 = O  ( 14.40) 

With the reversed strain profile in Figure 14.7d, one obtains: 

f = n Z - m - l  = O  (14.41) 

so that a combined yield surface is given (see Figure 14.8) by 
.j = n 2 + ~ m ~ - l = n 2 + . s m - l = 0  ( 14.42) 

where 

m s=- ( 14.43)
Iml 

Equation (14.42) also covers the 'in-plane dominant' situation which corresponds to 
the situations in which the neutral point lies outside the section (as illustrated in 
Figure 14.7e) for which m = 0 and ii2 = 1.  



111 YIELD FUNCTIONS FOR SHELLS 
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Figure 14.8 Yield functions for uniaxial case. 

With regard to later developments, i t  is useful to consider the approximation to 
(14.42)given by 

S
.f = W I Z  + ---!721? + 171’ - 1 = 0 ( 14.44)a 


The various yield functions are plotted in Figure 14.8. 
Before turning to the two-dimensional case (with six generalised stress resultants), 

one should note that, instead of using the non-dimensional depth, 11, the previous 
derivation of (14.42)can be made by working with the ratio c , , ’ ~where c, is the plastic 
strain at the centre-line and x is the plastic curvature. For bending dominant situations, 
the stress blocks in Figure 14.7b strictly require both infinite plastic curvature and 
a perfectly plastic stress-strain relationship without hardening. We should also point 
out the yield surface represents a state of ‘full-section yield’ and takes no account of the 
earlier fibre yield that occurs (Figure 14.8)when 

f = $ m 2  i-3smn i-n2- I = O ( 14.45) 
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To make some allowance for this 'fibre yield', the author proposed [CS] a procedure 
whereby (14.44) was modified to 

( 14.46) 

with x moving from 2 3 to 1 with increasing plastic curvature. 
However. on reflection, the author now believes that it is best to reserve full-section 

yield criteria for quick approximate analyses with a full through thickness integra- 
tion(Sections 7.1.2 and 8.1.2)being reserved for final detailed analyses. In particular, i t  
is unwise (especially if the basic yield criteria are used without the x's)'to use 
a full-section yield approach for the collapse analysis of structure that is very imperfec- 
tion-sensitive, because in this case, loss of  stability is often associated with the early loss 
of stiffness induced by fibre-yield. 

14.4.2 The two-dimensional case 

Ilyushin [I I ]  described a complex yield function which involves the quadratic 'stress 
in tensities': 

( I4.47a) 

( 14.47b) 

by means of the strain ratios parameters: 

qJ ='. l?. , p = - eio ( 14.48) 
pi 1 "i I 

where ei is the equivalent plastic strain on the top surface, ei2is the equivalent plastic 
strain off the bottom surface and e,"is the minimum value of pi. The stress intensities 
intensities in (14.47) were made functions of these strain ratios, with two relationship 
being given, one for the 'bending dominant case (with eioinside the section) and one for 
the 'in-plane dominant case' (with ei0lying outside the section). For bending dominant 
situations, he suggested the approximation: 

I
f = Q, + Qm + --IQtml - 1 = O  ( 14.494 

t 3  


A more accurate approximation has been given by Ivanov [I21 as 

( 14.49b) 

Both yield surfaces have been used by the author [CS CS],in each case both with and 
without the previous x parameter designed to give some allowance for 'fibre yield'. The 
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latter is simply achieved by replacing M O in (14.47) with x M , ,  where x is a ‘pseudo- 
hardening parameter’ which increases from 2/’3to 1 as the equivalent plastic curvature 
increases from zero to infinity. The relationship was made to give a close fit  to the 
uniaxial moment ‘plastic curvature relationship via 

x = 1 -0.4exp( - 2.6/%)Et%,, 
( 14.504 

with 

( 14.50b) 

However, following the earlier discussions and with a view to the development of 
a backward-Euler procedure with a consistent tangent modular matrix. we will here 
concentrate on the simpler function of (14.49a) without the introduction of the 
x parameter. 

14.4.3 A backward-Euler return with the 
llyushin yield function 

For subsequent developments, we will re-express (14.504 directly in terms of the 
quadratic resultant terms, fi. aand P of (14.47). We will also adopt a square-rooted 
form so that: 

(14.51) 

where 

P 
s=- ( 14.52)

IPI 

Assuming normality, we will write the plastic ‘strains’ as 

where we have adopted the convention whereby, for example, N.Tis the three- 
dimensional vector containing the derivative of N in (14.874 with regard to the three 
stress resultants N , .  N ,  and N,,  . We have added a bar on the ‘strains’ on the left-hand 
side of (14.53), to indicate that they are ‘generalised’ strains which include the 
curvatures. In the following, we will often omit the bar and i t  will be assumed that Lve 
are working with six ‘strains’ and six ‘stress resultants’. 

Considering, first, the situation in which we have a single active yield function, in 
order to apply the backward-Euler procedure of Section 6.6.6, the only additional 
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information we require is the matrix ?a/&. This is given by 

( 14.54) 

where A is the matrix of (6.47) which is reproduced here, for convenience as 

2 - 1  - 1  

- 1  2 - 1  

A =  
- 1  - 1  2 

6 
( 14.55) 

6 
6 

We are now in a position to apply the single surface backward-Euler return of 6.6.6 (and 
predictor from the second method of Section 6.6.2) although, we should note that the 
elastic consitutive matrix, C, is now of dimension 6 x 6 and contains the standard 
in-plane matrix in the upper 3 x 3 quadrant and the standard bending matrix in the 
lower 3 x 3 quadrant. We can also derive the consistent tangent modular matrix by 
following the procedure of Section 6.7.2. 

14.4.4 A backward-Euler return and consistent tangent matrix 
for the llyushin yield criterion when two yield surfaces are active 

We have already indicated that the yield surface of (14.5 1 )  has a ‘corner region’ (because 
of the choice ofs in (14.52)). In this corner region, we can consider there to be two active 
yield surfaces, one with s = + I and with s = - 1 and we can then apply the method of 
Section 14.3.1. However, as a first step, we need to know that we are in the corner 
region. The author and co-worker [C9] have adopted the following procedure. 

We start with the predictor discussed in the second half of Section 6.6.2 whereby 
a first estimate for the stresses at C are given by 

cc = a, -AACa, ( 14.56) 

where aHis the normal at the ‘elastic trial position’, B, and the first estimate for A 2  is 
given by (6.59) so that: 

.f’BA;” =- ( 14.57)
a: Ca, 

withf, as the value of the yield function at B. In computing the latter, we use s, with 
s from (14.52). We now apply a standard single vector return with sg fixed. Having 
returned to the yield surface, we compute sc .  If sc-= s,, the yield function will be 
(effective1y)zero and we will have completed a successful single vector return. However, 
if sc f s,, we have crossed the corner. 
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Let us assume that sH = 1 (and hence sc = - 1). We can now define the two active 
yield surfaces as , f= . f (s=  + I )  and y =. f (s=  - 1). The stresses resulting from the 
previous single vector return can be used as a starting estimate for the iteration of 
Section 14.3.1 with A2 as the valued previously calculated and Aq starting as zero. The 
starting values of the yield functions will then be f =0,g # 0. Throughout the iteration, 
the scalars is maintained at 1 for the yield function .f and at - 1 for the yield function y. 
If s B  = - 1 (and hence sC = + l), we simply reverse the definitions of fand 9. In very 
rare circumstances, the trial position B will also be on a corner so that s in (14.52) is 
undefined. In these circumstances one can simply make an arbitrary choice between 
-+ 1 for s at B and still apply the previous method. 

Having returned to the corner, we can simply compute the consistent tangent 
modular matrix using the procedure of Section 14.3.2. 

14.5 IMPLEMENTINGA FORM OF BACKWARD-EULER 
PROCEDURE FOR THE MOHR-COULOMB YIELD 
CRITERION 

From the work of Section 14.1, we know that the Morh-Coulomb yield criterion has 
corners. (So does the Tresca yield criterion which can be considered as a special case of 
the Mohr-Coulomb function.) For this function, we can again apply the method of 
Section 14.3.1. However, the author used a slightly different technique which will be 
described in this section. 

Earlier work on the Mohr-Coulomb yield criterion has been given by Marques 
[Ml] and Owen et crl. [03] and who have detailed some of the limitations of the 
sub-incremented, forward-Euler procedure (Section 6.6.4) with its associated ‘crossing 
of the yield surface’ (Section 6.6.1). Early work on the Tresca yield criterion has been 
given by Runnesson and Booker [RSJ. Sloan [S7] has advocated a local rounding of 
the corners. The author tried a similar procedure [C3, C41, but found that the adoption 
of the ‘two-vectored return’ and associated consistent tangent was numerically more 
effective. Other work in the latter category can be found in [Dl ,  PI]. The introduction 
of hardening (or softening) has been considered by Simo cc ul. [S3] and Pramono and 
Willam [P4]. The present work will be restricted to perfect plasticity. 

We will assume that, as in the previous section, we start with a predictor as given by 
(14.56) and (14.57). In relation to Figure 14.9a, this return is exact for the Mohr- 
Coulomb yield criterion because aH= a,. However, in relation to Figure 14.9(b), the 
stresses cD lie above the yield surface, g = 0. If we proceeded in the standard manner 
with the single-vector ‘iterative return’ of Section 6.6.3, we would return the stresses to 
point E (Figure 14.9b). In contrast, a tightly sub-incremented forward-Euler technique 
would return the stresses to the corner, C, on the corner. We could obtain this solution 
by means of the two-vector iterative return of Section 14.3.1 using two active yield 
surfaces which eventually involve the flow directions a, and b,. However, for the 
Mohr Coulomb yield surface, we can modify the procedure and use the directions aR 
and b, (Figure 14.9~).  In  either case, we need to know that we are in the ‘corner region‘. 
A number of authors have suggested procedures for identifying this situation. Follow-
ing the predictor of (14.56) and (14.57), the author [C3, C4] computed the normal at the 
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Figure 14.9 Various returns with the Mohr-Coulomb yield surface. (a) Simple return; (b) return 
crossing the corner line; (c) two-vectored return; (d) return to the apex. 

resulting point D (Figure 14.9b) and then the angle, B, between a, and a,, which is given 
by 

cos p = 
I1 a,, I ’  1 1  a, ; I  

(14.58) 

I f  this angle is zero or nearly zero (say, less than one degree), the simple return is valid 
and relates to Figure 14.9a. I f  the angle is greater than 90 , the stresses are being 
returned to a point beyond the apex and, consequently, one should return directly to 
the apex (see Figure 14.9d and Section 14.5.2). If the angle is significant but less than 
90 , a two-vector return is applied (Figure 14 .9~))  with 

6,. = oB-AiCa,, -ArlCb, ( 14.59) 

where b, is the normal to the ‘second yield surface at B’, which following the work of 
Section 14.3. we will designate as g. However, we need to know which of the second 
yield functions is relevant. This information follows if we know which type of corner 
(Figure 14.3 and 14.10). we havecrossed. To ths end, the author [C3, C4] computed the 
first-order estimate for the change in 0 from point B to point D (Figure 14.9b) kvhich can 
be obtained as 

(70I’
At1 = -An = -AkiCa,, ( 14.60)

$6 
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Figure 14.10 Mohr -Coulomb yield surfaces with corner and apex regions 

where the vector c is given by 

with 

- 
-t 3 - tan 3 0  

D, =- 9 D,= 
2 J 2  2J:I2 cos 30 

117 

(14.61) 

( 14.62) 

and a, and a3 being given by ( 14.21 ) and ( 1  4.22) as computed at point B. If A 0  is positive, 
the corner being crossed is at 0 = + 30 (the ‘12’ corner--see Fig. 14.3 because at this 
corner (rl = a2). I f  A 0  is negative, the corner is at 0 = - 30 (the ‘23’ corner- see 
Figure 14.3 because at this corner o2 = 03). 

An alternative approach has been given by Pankaj and Bicanic [PI] (see also [Dl]). 
They also start by applying a single-vector return using ( 15.56) and ( 14.57), but operate 
in principal stress space so that, referring to the yield function of (14.9b), the normal 
vector is given by 

a T = + ( s +  1 ,O, s -  1) ( 14.63) 

with 

s = sin cp ( 14.64) 
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Figure 14.10 Mohr -Coulomb yield surfaces with corner and apex regions. 

where the vector c is given by 

PO 
c = - = D  2a2 + 4% (14.61)

(70 

with 

-

D2=-
- tan 3 0  

’ D - -t 3 ( 14.62)
252 ’-2J;l2 cos 30 

and a, and a3being given by ( 14.21) and (14.22) as computed at point B. If A 0  is positive, 
the corner being crossed is at 0 = + 30 (the ‘12’ corner--see Fig. 14.3 because at this 
corner (rl = a2).  If A 0  is negative, the corner is at 0 = - 30 (the ‘23’ corner- see 
Figure 14.3 because at this corner o2= 03). 

An alternative approach has been given by Pankaj and Bicanic [PI] (see also [Dl]). 
They also start by applying a single-vector return using ( 15.56) and ( 14.57), but operate 
in principal stress space so that, referring to the yield function of (14.9b), the normal 
vector is given by 

a T = + ( s +1,O.s- 1) ( 14.63) 

with 

s = sin cp ( 14.64) 
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Using the upper 3 x 3 submatrix from (4.10) for C, (14.56) and (14.57) then lead to 

( 1 - 211 + s 1“!--- 211s (14.65) 
j2)  - 1 + 2 \ f + S  

where 

EE’ = 
(1  + v ) (  1 - 2v) 

( 14.66) 

In relation to Figures 14.3 and 14.10, if the ‘12’ corner has been crossed, instead of the 
usual o1> o2> 03,we would be in a region where o2> o1> o3and hence (T,(. > olC 
and. from (14.65), we would obtain: 

( 14.674 

or, using (14.4): 

( 14.67b) 

where, in the latter, J ,  and 0 would be computed at the predictor state ‘B’. 
In a similar fashion (Figures 14.3 and 14.9), if the corner ‘23’ has been crossed, 

03(.> 02cand we have: 

( 14.68a) 

or 

, ( 1  - 2\1+ S Z )  
P 2 3  = . / U  - 2 (1  - h ) ( S + 1 )J :  sin (30+ 0)> 0 ( 14.68 b) 

Hence, if both p 1 2and / ( 2 3  are negative, the single-vector return of (14.56) and (14.57) 
will be exact while, if p 1  is positive and p13 is negative, the corner ‘12’has been crossed 
and if p I 2is negative and / i Z 3is positive, the corner ‘23’ has been crossed. 

14.5.1 Implementinga two-vectored return 

If, using either of the two previous indicators, i t  is concluded that a corner has been 
crossed, the two-vectored return of (14.59) can be used. At  this stage, we also need to 
know which type of corner has been crossed. If the ‘12’ corner has been crossed. the 
‘second yield function’ is 

g = +(02-03)+ +(a2+ a,)sin cp - ccos cp = O ( 14.694 

while if the ‘23’ corner has been crossed, the ‘second yield function’ is 

= t ( o l-02)+ t ( o l+ a,)sin cp - ccoscp = 0 ( 14.6%) 

These yield criteria can, using ( 14.4), be re-expressed in the form of ( 14.92) provided the 
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A(0) term of (14.10) is redefined as 

With corner ‘12’ 
sin 0 
2,/3

A(O)= icosO(1 - sin cp )  + -=(3 + sin cp)  (14.704 

With corner ‘23’ 
sin 0

A ( 0 )= icosO(1 + sin cp)  +,(sin
2,/ 3 

cp - 3) (14.70b) 

The second normal vector, b, at the trial position, B, can now be simply computed from 
(14.19)with the coefficients C,-C3 from Table 14.2 although we must use A(0)and its 
derivative dA,/dO from (14.70). 

Using( 14.59), the return is now completely defined apart from the scalars, A i  and A!]. 
To obtain these scalars, we now apply Taylor expansions of the form of (6.15)(but here 
without hardening) to both the yield function f (see 14 .9~)  and (14.10) and the second 
yield function from (14 .9~)  and (14.70). This leads to 

0 = . f H  - (a$a,)AR - (aiCb,)Aq =f,-u1 A2 - U ,  ,Ail (14.71a) 

0 = g R- (biCa,)A;l- (biCb,)Atl= y, - u2 A2 -a,,Arl (14.71 b) 

and hence 

with: 

u1 = aiCa,; U,, = biCb,; a 1 2= a,, = agCb,; 4 = ah -d Z  (14.73) 

14.5.2 A return from a corner or to the apex 

The previous two-vectored return cannot be applied if the trial point B is exactly on 
a corner so that the modulus of 0 is 30- (this will very rarely happen). The return cannot 
be applied because in these circumstances one cannot compute the coefficients C, and 
C, from Table 14.2 because tan 30 and l/cos 30 are each infinite. The solution is simply 
to use the coefficients C1-C3 for the Drucker-Prager return and use i t  in conjunction 
with a single-vector return. The author used such a procedure whnever ( O (> 29.99 
[C3, C41. 

In some circumstances, the trial position will be such that the return will be directly 
to the apex (Figures 14.9d and 14.10). In these circumstances, one might apply 
a multi-vectored return. However, if the return is from the ‘apex region’, one can 
(without hardening) simply return the stresses to the vertex given by 

GT = ccot cp(l,l, 1,0,0,0) ( 14.74) 

Pankaj and Bicanic [Pl]  have given relationships for assessing whether or not an ‘apex 
return’ is required. As discussed in Section 14.3, the author used the angle from (14.58) 
which can be obtained following a trial ‘single-vector return’ [C3, C41. An ‘apex return’ 
is required if is greater than 90 . 
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14.5.3 A consistent tangent modular matrix following 
a single-vector return 

The single-vector return (see Figure 14.9a) can be written in either of the two forms: 

ac = bB-AiCa, (14.75~1) 

or 

ac = a, -AiCa, (14.75b) 

where( 14.75b) is of the form of the 'predictor'of( 14.56) and (14.57). Because a, = a,, we 
can also use (14.751) which is in the conventional form of a 'backward-Euler return'. 
Hence, the conventional method of Section 6.7.3 can be applied to (14.75a) and will 
result in the use of(6.110) for the 'consistent tangent modular matrix' with a (at the final 
position, C) being taken from (14.19) and ?a '?a(again at C) being taken from Section 
14.2.2). 

With a view to the formation of the consistent tangent modular matrix for the 
two-vectored return, i t  is worth considering an alternative form for the modular matrix 
for the single-vectored return that stems from (14.75b) rather than (14.75a). To this end. 
the variation of (14.75b) leads to 

ire = C&- iCa, - (14.76) 

where 

( 14.77) 

Because the consistency condition can be expressed as 

,f = a & .= a: ir, = a' ir = 0 (14.78) 

we can obtain as 

a'CTt 
al'Ca

/. = - ( 14.79) 

from wh ich : 

( 14.80) 

where C, is the standard tangent modular matrix of equation (6.18). The consis- 
tent tangent matrix, C,, of (14.80). will be found to coincide with that obtained from 
(14.75a) (leading to (6.1 10))and can be shown to be symmetric on account of the relation- 
ship: 

(14.81) 
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The form of( 14.80) (involving?a/?a(,) has an advantage for the rare occasions when the 
single-vector return from B exactly reaches the corner at C. In these circumstances, 
there would be difficulties in the computation of 6a3:’6c1(.. 

14.5.4 A consistent tangent matrix following a two-vectored return 

In contrast to the previous situation, when a two-vectored return is adopted. we will 
always return to a corner (Figure 14.9~). Hence, following the work of the previous 
section, i t  is best to derive a consistent tangent modular matrix from the two-vector 
equivalent of (14.45b) and thus avoid the difficulties in computing ?a ’?aat the corner. 
Differentiation of (14.59) then leads to 

bc = CTi  - k a  - tjCb ( 14.82) 

where 

( 14.83) 

The consistency conditions are then obtained from ./= cj = 0 which lead to 

aTb, = bTbc= 0 ( 14.84) 

from which, using (14.82), we can obtain: 

aTCTi: 
( 14.85)(i)= f (- - ::)(bTCTi) 

where u1 N , ~ ,u 2 2and 4 have been given in equation (14.73). Substitution from (14.85) 
into (14.82) gives: 

which with 

( 14.87) 

can be shown to be symmetric. 

14.5.5 A consistent tangent modular matrix following a return 
from a corner or an apex 

We have already indicated, in Section 14.3.2, that a possible way to deal with the 
unusual case of a return from a corner is to use the Drucker Prager version of the flow 
vector a and its derivative ?a/Ca. Using these parameters, one can then use the 
single-vectored consistent tangent modular matrix of Section 14.5.3. 

For the structural ‘predictor solution’, at the beginning of a load step, there is 
normally no issue of a ‘return’ when the first modular matrix is formed. In these 
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circumstances, one might again use the ‘Drucker-Prager’ form for those stress points 
on a corner. There will be many more such points than there will be points returning 
from a corner trial predictor (at the Gauss-point level) once the structural iterations 
have commenced. There would seem to be scope in this area for changing the 
conventional Euler tangent predictor (at the structural level). One simple possibility is 
to use the tangent matrix obtained at the end of the previous load step (assuming full 
Newton- Raphson iterations have been used). 

The issue of a return from the apex is more problematic. One possibility for the 
tangent modular matrix is to use a flow rule based on (14.19) with C, = C3= 0 thus 
implying only volumetric flow. However, following a return to the apex during the 
equilibrium iterations, one could argue that the changes in stress should be zero, since 
the stresses will remain at the apex. This implies a null tangent modular matrix at such 
Gauss point [C3, C4]! The author conducted preliminary investigations using such 
a strategy with encouraging results [C3, C41. However, there are obvious dangers with 
mechanisms. Clearly this is an area requiring further work. 

14.6 YIELD CRITERIA FOR ANISOTROPIC PLASTICITY 

In this section, we will consider two yield criteria that can be used for anisotropic 
plasticity: the Hill criterion [Hl, H2) and the Hoffman criterion [H4]. The former can 
be considered as an anisotropic version of the von Mises yield criterion and will be 
considered first. Numerical applications have been described by de Borst [D3] and 
Schellekens and de Borst [Sl] and some of the following developments relate to work 
in these papers. Other work on anisotropic plasticity is due to Bicanic e fd.[B3] and 
Owen and Figueras [04]. 

14.6.1 Hill’s yield criterion 

Hill expressed his yield criterion in the form: 

f h  = Fb,, - 0 3 3 1 ,  + G(a33 -01J 2  + H(a, 1 - 0 2 J 2  

+ 2 L O i 3  + ZMa;, + 2 N 4 ,  - 1 = o  ( 14.88) 

where the 1-2-3 system relates to the principal axes of anisotropy. For future 
developments, we will sometimes adopt an equivalent form similar to (6.51),whereby 

f2 a2e - o0 2  ( 14.894 

so that, instead of using ( 6 . 2 6 ) ,  the effective stress, ae,can be expressed as 

2af = 412(61 1 - a 2 2 ) 2  + %23(O22 -O 3 3 l 2  

+ % 3 1 ( O 3 3- 0 1 1 ) 2  + 6a44af, + 62550:3 + 6x66a;1 (14.89b) 

where the relationship between the coefficients F ,  G, H, L, M, N in (14.88) and the 
Coefficients slij in (14.89b) is straightforward. To recover the von Mises yield criterion. 
each of the coefficients, zij,(14.89b) is set to unity (see(6.26)).To obtain the coefficients, 
q j ,experiments can be conducted to obtain the yield stresses in the 1- 3 directions, 6, 
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a,, and Oj3  and the three shear yield stresses, a12,6 2 3  and ‘731. I t  then follows from 
(14.88)and (14.89) that: 

6 3 3 ) 2  ( 14.90a)= NO: = (o,/al + ( 0 , / 3 2 ~ ) ~-(o,, 

+ ~ 2 3= Fa,”= ( 0 , / 6 2 2 ) ~  + (0,/’633)~ - ( 0 , / a l 1 ) ~  ( 14.90b) 

i ~ 3 1= GO,”= (0,/61 + (0,/’533)~ - (0,!622)~ ( 14.90~) 

3‘44 = 2 N O 2  = (O,/al 2)2  ( 14.90d) 

3x55 = 2 ~ 0 := (0,/‘023)~ ( 14.90e) 

3x66 = 2M02 = ( 0 , / 6 3 1 ) ~  ( 14.90f) 

If we now let the ‘yield stress’, o,, be one of the uniaixal yield stresses such as 6, 1 ,  we can 
obtain the coefficients, z i j ,from (14.90). 

Equations (14.88) and (14.89) can be re-expressed in the matrix and vector form: 

f2 = 02 - 0,”=+TPa - OS (14.91) 

where 

P =  ( 14.92) 

The von Mises yield criterion is recovered by setting each of the coefficients r i jin (14.92) 
to uni ty  so that: 

- 2 - 1  - 1  
-1 2 -1 

( 14.93)PJ2 = 

For the von Mises yield criterion, equation (14.91) corresponds with equation (6.51) 
with P from (14.93) corresponding to A from (6.47). 

The flow rules for Hill’s yield criterion can be obtained from (14.88) as 
- . 
4 1 

2 2  2 

633 
E, = 

i , l 2  

2 L O 2  3 
i’23 J2Ma31 

j 3 1 -
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or from ( 14.91 ) as 

E, = = &Pa = 

One need not adopt the squared yield form of (14.91) but, instead, could write the 
yield function as 

or. using a notation involving tensor components, 

f = ( f P . .- 1JhlO..O1 J  knr ) l  ? - ( T o  ( 14.96b) 

and the flow rule then follows as 

ri 
:(7.f' 1 

= L- = -Pa = i a
?a 2Cc 

( 14.97) 

The relationship between the plastic strain-rate multipliers in (14.94),( 14.95) and 14.97) 
is given by: 

14.98) 

14.6.2 Hardening with Hill's yield criterion 

The concept of hardening with an anisotropic yield criterion is not straightforward. 
Here we will only discuss the simplest approach in which it is assumed that the yield 
criterion does not change in shape a s  the material hardens. We will start by deriving 
and expression for the equivalent plastic strain rate, i,,,that is the equivalent of that 
given in (6.29) for isotropic hardening of the von Mises isotropic yield criterion. To this 
end, from (14.951, we can obtain relationships of the form: 

( 14.99) 

and in (14.99) and throughout this section, we will omit the subscript p for 'plastic' on 
the strain rates. 

With a view to substitution into the yield function of (14.89). we can obtain from 
(14.99)the relationship: 

(14.101) 
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while for the shear terms, from (14.95), we have 

(14.102) 

Summing terms such as (14.101) and (14.102), leads, in conjunction with (14.89) to 

1
2 a f = - B 2  (14.103)

if 
where 

(14.104) 

Using (14.98) and (14.103), we can now obtain: 
L 


9 . x = cPs= 2a,i2 = ,"2B (14.105) 

where we have anticipated a step to follow where we show that, as with the von Mises 
yield criterion, i,=ip,.An exercise for the reader might be to derive equivalent 
expressions to (14.99)-( 14.105) for the isotropic case when each of x,, is unity.  I n  there 
circumstances, A from (14.100)= 3 and noting that for the isotropic case, 
c1l p  + czZp+ c33p= 0, we recover (6.29). 

Tojustify the step whereby = iPs,we must resort, as in Section 6.4.2 to the concept 
of plastic work which leads to the relationship: 

w = aT&, = oocps (14.106) 

Using (14.91), (14.95) and (14.98), i t  follows that: 

dip= i2aTPtJ= 2 i 2 4  = 0,; (14.107) 

From (14.106) and (14.107, we can see the equality between and ips. 
As with an isotropic yield criterion, we can use a uniaxial test to obtain the 

relationship between a, and cps= [Eps. Suppose such a test is applied in the 1-direction. 
Then, from (14.89), the relationship between c1 and o, is given by 

(14.108) 

It  was mentioned in Section 14.6.1 that the definition of 0,in ( 14.89) was arbitrary. If  we 
had defined a, as the yield stress in the I-direction (i.e. C1, in (14.90)), then in defining 
the coefficients, a i j ,  we would have set: 

(14.109) 

While (14.108) gives the relationship between o,, and o,, we also require the relation- 
ship between c 1  I p  and cps.To this end, we note from (14.95), that the plastic strain i,l p  
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would be accompanied by 

(14.110) 

from which after substitution into ( 14.104) and ( 14.105), tedious algebra leads to 

g#5 . cpq= 
( x i 2  + x 3 1 ) l  2'11p 

(14.11 1 )  

(For the isotropic case, the equivalent of (14.1 10)leads to i:22p= C,,, = -i,l p  '2.) As 
before, if we have set oo= O11, equation (14.109) applies and, as a consequence, the 
relationship between ooand sipsis obtained directly from the relationship between o1 
and S l l ,  l p .  

In order to test the validity of the assumption regarding a yield function that 
maintains its shape, equivalent relationships to those in (14.108)) and (14.1 1 1 )  could be 
derived for tests in the 2- and 3-directions (although with oobeing equivalent to 5 , 1 ,  the 
equivalent to (14.109) would not apply). The resulting relationships between ooand sip, 
could then be compared to that obtained from the test in the 1-direction and strictly 
they should coincide. 

14.6.3 Hill's yield criterion with plane stress 

For rolled sheet, we can write the yield criterion in the plane-stress form as 

~
.lh = ( G  + H)oil + ( F  + H)o f ,- 2Hal , c +~2No: ,~ - 1 = 0 (14.1 12) 

or 

where, traditionally, the 1-direction will be taken to coincide with the direction of 
rolling, the 2-direction will be transverse to the direction of rolling while the 3-direction 
will be the 'through-thickness' direction. 

For this situation, the equivalent plastic strain can be degenerated from (14.104) and 
(14.105) by setting i:33p= - i:, l p  - E Z Z p  to obtain: 

+N12t :11 t122)+ - (14.1 14) +N22i;2 
6x4, 

with 
1 x 1 2 A  + L x ; 3 ( x 1 2  f '31) f 312'23'31 (14.115a) 

N 2 2  = + z i I ( x 1 2  + '31) + 3[12223'31 (14.115b) 

u~~ = 2 x , , A  (14.115~) 

The simplest anisotropic situation then involves out-of-plane anisotropy while the 
in-plane response is isotropic. In this situation, we can write: 

G =  F ;  ~ 2 3 = ~ 3 l  (14.1 16) 
N = F + 2 H ;  3~, ,  = Y~~ + 22,, 
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so that ( 14.11 2) can be re-expressed as 

+ ( F +  H ) ~ T ~ ~ - ~ H C T ~ ~ C T , ~ + ~ ( F + ~ H ) G ~ ~ - - ~f h = ( F +  H ) ( T ~ ,  = O  (14.117) 

while, if we use (14.91) or (14.96), the matrix P is given by 

E 1 2  + '23 - U 1 2  0.=[ 
0 

- Q 1 2  x 1 2 + a 2 3  0 (14.1 18) 
0 2(x23  + '12) 

From a uniaxial test in the 1-direction we can obtain: 

(14.119) 

from which we can define o-, = O 1  and 

('23 + y 1 2 )  = (14.120) 

To obtain separate expressions for F and H , we could, in addition perform a test to 
obtain the through-thickness yield stress, 033,and use ( 14.90a)-( 14.90~). Alternatively, 
we could use the ratio of plastic strains as obtained from the original uniaxial test in the 
1-direction. In particular, from (14.94) and (14.95), we then obtain: 

(14.121) 

which is the Lankford anisotropy coefficient [L2]. From (14.90), (14.120) and (14.121). 
it follows that: 

(14.122) 

while using (14.90d), (14.1 16) and (14.122), 

(14.123) 

Hence,from(14.119),(14.122)and(l4.123),wecan
write the yield functionin the formof 
(14.117) using (T, = O 1  and R. Alternatively, we can use the form of (14.9 1) of (14.96), 
again with o,as the yield stress in the 11-direction. From( 14.1 18),( 14.120),( 14.122)and 
(14.123) we then obtain: 

2 
4(1 + 2R) 

(14.124) 

0 
l + R  

With hardening, we also require an expression for the equivalent plastic strain. 
Substitution from (14.121) to (14.123) into (14.1 14)-(14.115) leads to the relationship: 

which coincides with the isotropic form in (6.12) when R = I .  
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In general, we can supplement data from the yield strength tests as inserted into 
(14.90)with data from plastic strain-rate ratios as obtained from (14.94) or (14.95) in 
order to check the derived coefficients. For a thin sheet with in-plane as well as 
through-thickness anisotropy. we need to obtain the coefficients F ,  G, H and N in 
(14.112)(or theequivalent xtjquantitiesin( 14.1 13)).Thesecould beobtainedfrom three 
uniaxial strength tests in the 1-, 2- and 3-directions (leading to F.G and H )  and one 
shear strength test in the 1 2 plane (leading to N ) .  Instead of conducting a through-
thickness test, we could conduct an “off-axis test’ at 45 to the 1-direction leading to 
a yield strength of 6,. From Mohr’s circle, the other stresses are then: 

(14.126) 

so that, in (14.112), we obtain: 

As an alternative, we could conduct a uniaxial test in the 1-direction to obtain: 

and supplement this with a strain ratio resulting from this test so that using (14.94) or 
( 14.95): 

(14.129) 

From an equivalent test in the 2-direction, we could obtain: 

(14.130) 

Equations (14.128)-(14.130) could provide F ,  G and H (or the equivalent x 2 3 , x 3 1and 
z12) ,while to obtain the coefficient, N ,  we could again conduct an ‘off-axis‘ test at 45 
and either use (14.127) or one of the strain ratios: 

( 14.13 la)  

or 

Equations (4.131) were obtained with the aid of Mohr’s circle for the strains (or kia 
(4.52)) and (14.126) for the stresses. 
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14.7 POSSIBLE RETURN ALGORITHMS AND 
CONSISTENT TANGENT MODULAR MATRICES 

In  this section we will consider some backward-Euler return algorithms for yield 
criteria which can be expressed in the form of (14.96) which is reproduced here as 

f = 6,- 6, = (+aTPa)' - (To ( 14.132) 

If P is taken from (14.92), we have Hill's yield criterion. while if P taken from ( 14.93) we 
have the von Mises yield criterion. The latter was considered in Chapter 6 of Volume 1 ,  
and clearly, the backward-Euler return algorithm of Section 6.6.6 can be applied to 
either of the two previous yield criteria. To apply the return, we merely need to define 
the flow vector, a, and the matrix ?a,'&. From (14.132), we halre: 

c".f 1 
?a 2cr, 

a = -=-Pa ( 14.133) 

with further differentiation leading to: 

( 14.134) 

which, for the von Mises yield criterion with P (see (14.92)) = P,, (see (14.93)) and 
A from (6.47) coincides with (6.47). 

With a and ?a/& defined, we can simply apply the method of Section 6.6.6. However. 
for yield criteria that can be written in the form of (14.96), other return procedures are 
possible. They follow by noting that one can write the stresses following from the 
backward-Euler return as 

where aBare the fixed 'trial stresses', a13.Instead of setting up the residual as in Section 
6.6.6(see (6.79)), we can use (14.1 35) to obtain an expression for the required stresses ac 
with A 2  as the only unknown. In particular, we have: 

Consequently, the yield function of (14.132) can be expressed as 

Hence, in principle we have a non-linear scalar equation in one unknown (A), which is 
hidden within B--see (14.1 36)). Application of a truncated Taylor series to (14.137) 
leads to 

f,=,fo + ci,,  - 6, = f, + ci,, = 0 (14.138)- ' A I ; .  

where A' is the hardening parameter. From (14.137). 

( 14.1 39a) 
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with 

K =aTPB-'CPa,-=a~B-'PB-'CPB-'a,  =c ,B- 'PB-~CP~,  (14.139b) 

Without hardening (with A' = 0),one can simply iterate using (14.138)and (14.139)to 
obtain the A i 2  that is required in (14.136)to define acfully. With hardening, we must 
work directly to obtain A i  and therefore need the relationship between i2and i.From 
the definition of AA2 in ( 14.135), 

2ueCL2= 2. - 2A~,26 ,c  (14.140) 

and hence in ( 14.139a). 

- Ki:
ci,, = 

(40:~- 2KAA2) 
(14.141) 

so that (14.138)provides the iterative change in AA. 
While, in principle, this procedure involves a scalar iteration, in practice, because of 

the definition of K in (14.139),the procedure involves some quite complex matrix and 
vector manipulations and it  is debatable whether it  is more efficient than the method of 
Section 6.6.6.In Section 6.8.2,i t  was shown how a special, economic, form of the return 
algorithm could be developed for conditions of plane stress. These ideas will be 
extended in Section 14.10. 

Before leaving this section, we should note that one could work directly with the 
squared yield criterion, f;.of (14.91)and use the incremental form of the flow rule from 
(14.99,so that the relationship for a, directly involves AA2 in the form given in ( 14.136) 
while, from (14.91),the yield function can be expressed as 

and a truncated Taylor series leads to 

= . f Z 0  = 0.f2" = , f Z 0  + 20,&, - ~ C J ~ C A ' C . : ~ ~+ 20,CbeC - ~ O ~ C O , C A ' > ~ ~  ( 14.145) 

where we have used (14.105).From (14.145),6cccan be obtained in precisely the same 
form as in (14.139).The combination of the latter equation with (14.145)allows the 
computation of the iterative change, 1,. 

De Borst [ID21 argues that there are advantages in using the former, square-rooted 
form of the yield criterion (14.96)rather than (14.91).An example in which there are 
difficulties with the squared formulation will be discussed in Section 14.1 1.4. 

14.7.1 The consistent tangent modular matrix 

If we adopt the yield criterion in the square-rooted form of (14.96),the development of 
the consistent tangent modular matrix directly follows the procedure of Section 6.7.2 
with the flow vector a from (14.133)and the matrix ?a/& from (14.134).Using the 
notation of that section, the iterative change in stresses is given by 

C(k - ;-a) = R(i: - ;.a) ( 14.146) 
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and application of the consistency condition (6.109)then leads to 

(14.147) 

where 

a = aTRa+ A’ (14.148) 

Equation (14.148)is of the same form as (6.110). 
If we work with the yield function in the squared form of (14.91),we again obtain 

(14.147)although we now have: 

a = P a ;  
?a 
?a 

- P  (14.149) 

The consistency condition then gives (see (14.145)): 

.f =aTir- 40$4’i2=o (14.150) 

(with the yield criterion being fully satisfied, there is no difference between the (T, and 
(T,,). Hence, with the new definitions ofa and ?a/& from (14.149),the consistent tangent 
modular matrix is again given by (14.147)although, in place of (14.148).the scalar U is 
given by 

a = aTRa- 4a:A’ (14.151) 

14.8 HOFFMAN’S YIELD CRITERION 

The Hoffman yield criterion [H4] can be written as an extension of the Hill criterion of 
(14.89)with 

+ a11 0 1  1 + x 2 2 0 2 2  + E 3 3 0 3 3  (14.152) 

( I t  should be noted that not all of the CI terms have the same units.) The new terms 
involve x 1  1,  x 2 2 and x 3 3  and relate to the volumetric stresses. 

From (14.152),the von Mises criterion is recovered with 

CC 1 2 = C C ~  1 = C C ~ = 3 6 6  = 1 (14.15343 = ( ~ 3= ~ ~ 4 4  5 

X I  1 = a 2 2  = cc33 = 0 ( 14.153b) 

while the Drucker-Prager relationship is another degenerate case which will be 
explored further in Section 14.9. 

For the general case, the nine coefficients, x i j , can be obtained from nine experiments 
relating to the principal axes of anisotropy (see also Section 14.6.2).These tests involve 
three unixial compressive tests (leading to 6 ,  622and % 3 3 ) ,  three uniaxial tensile tests 
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(leading to 6, ,,8,, and b3Jas well as three shear tests (leading to magnitudes a,,, 5 ,  
and 623).From the uniaxial tests in the '1'-direction, one can obtain from (14.152) the 
relationship: 

( 2 '13 ) e l + ' l 1 6 1 1=a:'12 + (14.154a) 

and 

( I4.154b) 

Four similar relationships follows from the tests in the '2'- and '3'-directions and in 
addition, the shear tests yield (14.90d)-( 14.90f).From these equations, we can obtain 
the coefficients zijfrom equations such as 

x , ,  =d(0 1 1  - )- 4 1 (14.1554
61 1 5 11 

(14.155b) 

r44 =!( "->'3 512 ( 14.1552) 

(The relationships for the remaining coefficients can be very easily deduced from those 
given above.) Alternatively (or additionally), one can use plastic strain ratios as 
discussed for the Hill criterion in Section 14.6.1. 

For the purposes of finite element analysis, it is best to rewrite (14.1 52) in a form that 
is similar to (14.91) so that: 

12 = ;arpa + pTa-0;= 0 (14.156) 

where the matrix P is taken from (14.92) and the vector p is given by 

PT = ( a1 1 ,  '2 29'3 3,0,0,0) (14.157) 

I t  should be noted that the vector p has units of stress. 
The Hill criterion can be recovered from (14.1 56) by setting p = 0. In order the derive 

an effective 'return procedure', we can now follow closely the approach of Section 14.7 
and write the flow rule as 

. i y - 2  * 
E, = ;L -= i.,(Pa + p) (14.158)

?a 


The backward-Euler return follows as 

oC os -AE,2C[PaC+ p] (14.159) 

so that, in place of (14.136), we have: 

ac= [I+A/.,CP)-'(a,-AE,Cp) = B(A;L2)-'{aB-AA2b)= B(AR,)-'a, (14.160) 

As a consequence, the yield criterion of (14.156) can be written as 

.fi = -&.= $~;B- 'PB- 16B+ p T ~ - -& (14.161) 
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Equation (14.161) provides a scalar equation in AIL2,for which a truncated Taylor series 
leads to 

f Z n  =.f2,, + 20,C6',c - 400C0c~A'1w2=.fZ0 + KE.2 -4CT,C(TcCA1;~2 0 ( 14.162) 

with 

K = - f  (p  + PB- 'aBjT{B- 'b + B- ,CP6 n jI (14.163) 

which allows us to obtain the iterative change, to A).,. In deriving (14.162). i t  has 
been assumed that an equation of the form of(14.105)can again be obtained for the rate 
ofequivalent plastic strain. In contrast to the work of Section 14.6.2 we have not. in this 
section, defined the latter. As previously discussed, in relation to a complicated 
anisotropic yield criterion such as that of Hoffman, the issue of hardening is complex. 
Schellekens and de Borst [Sl] recommend a sublayer approach (see Section 15.10). 

14.8.1 The consistent tangent modular matrix 

The derivation of the consistent tangent modular matrix follows closely the develop- 
ments of Section 14.7.1-in particular, those relating to the squared form of the yield 
criterion. I t  is easy to show that we again arrive at a consistent tangent modular matrix 
in the form of (14.147) and (14.151) although now the vector a and matrix :a i o  are 
given by 

?a
a = P a + p ;  -= P  (14.164)

?a 


However, with hardening, there can be difficulties in using the yield criterion in the form 
of.f, from (14.156). This issue will be discussed further in Section 14.1 1.4. 

14.9 THE DRUCKER-PRAGER YIELD CRITERION 

It has already been indicated that the Drucker-Prager yield criterion can be obtained 
as a special (isotropic) case of the Hoffman yield criterion. We will now explore the two 
alternative forms of the former criterion. In particular, we will consider the relationship 
between the form of (14.2) from which we can obtain: 

J ,  = 0,'- 2DI,a0 + DI: (14.165) 

and the form of (14.156). To this end we note (see (6.51)) that we can write: 

J -1 TPJ20 (14.166)2 - 2 0  

with P,, from (14.93) and, using (14.1): 

I ,  = p;,a = (1, 1, 1,0,0.0)a (14.167) 

so that, from ( 14.165), we have: 
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which allows P to be expressed in terms of D and PJ,and p in terms of D (see Section 
14.2).o,, and pJz.  

14.10 USING AN EIGENVECTOR EXPANSION FOR 
THE STRESSES 

Matthies [M2] has proposed a method for the solution of the backward-Euler return of 
Section 14.7 which involves making use of an eigenvector expansion. I t  will be shown in 
Section 14.10.1 that this method has close links with the procedure used in Section 6.8.2 
for plane-stress plasticity with the von Mises yield criterion. 

The process can be applied to any yield criterion which can be expressed in the form 
of (14.156). In  relation to the previous developments, a starting-point for Matthies' 
procedure can be found by multiplying through (14.160) by A = C - so as to obtain: 

[A + AiP)a, AV, -A i p  = c -A2.p (14.169) 

where, in (14.169) and for the remainder of this section, we are using A;. instead of the 
previous (Section 14.6. I )  A;.2. Now nCcan be expressed in terms of the eigenvectors of cp, 
with eigenvalues p iwhich satisfy the relationship: 

Pqi = piAqi  (14.170) 

and are normalised such that 
cpTAcp.

1 J 
b. .  

I J  
(14.171) 

For a given set of material parameters which are defined by C (or A )  and P. this 
eigenvalue problem need only be solved once. 

Matthies shows [M2] that the solution to (14.169) can be expressed as 

(14.172) 

so that substitution into (14.169) leads to 

[A + AiP] ",.'pi= c -AjLp (14.173 

Pre-multiplying( 14.173) by qj and making use of (14.170) and (14.171) leads to 

(14.174 

Substitution from ( 14.172) into ( 14.156) and making use of ( 14.170) and ( 14.171)  gives: 

f ,= ; p i x f  + c Xi(P'cpi )  -0: = 0 (14.175) 

so that, assuming perfect plasticity. a truncated Taylor series leads to a relationship of 
the form: 

(14.176) 

where. from ( 14. I74), we have: 

( 14.177) 
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Equations (14.176)and (14.177) provide a relationship for the iterative change, i.in A;. 
and allows a scalar Newton-Raphson iteration to obtain AL. 

14.10.1 An example involving plane-stressplasticity and the von 
Mises yield criterion 

Matthies has shown [M2] that, for the von Mises yield criterion, the previous method 
can be used to recover the radial return method of Section 6.6.6. Simo cJt (11. hakre 
applied a similar procedure to plane-stress plasticity [S4]. We will now investigate the 
latter case with reference to the von Mises yield criterion which, using the form of 
( 14.91 ), can be expressed as 

f 2  = +aTPa-0: (14.178) 
where 

(14.179) 

1; ] 
(14.180) 

\ I  1,.C = L [ v  1 1 00 A = C - ’ = L [  - \ I  1 00 (14.181) 

( 1 - 0 0 ( 1  - Y)/2 E 0 0 2 ( 1 + r )  

and the solution to the eigenvalue problem of (14.170)and (14.171) is 

E 3 E  
/ 1 1  =-* 112 = 113 = ~

(1 - v)’ ( 1 + \q 
(14.181) 

Given these relationships one can simply apply the method of the previous section to 
produce a backward-Euler return that coincides with that of Section 6.8.2. 

14.11 CRACKING, FRACTURING AND SOFTENING 
MATERIAL 

In  concept, the previous plasticity procedures can be applied to ‘softening materials’, by 
simply introducing a softening rather than a hardening equivalent stress-equivalent 
plastic strain relationship. In practice, there are many difficulties a number of which are 
still unresolved. Some of these problems will now be briefly discussed. 

14.11 .I Mesh dependency and alternativeequilibrium states 

We will begin by discussing the difficulties with a ‘stress-based’ failure criterion for 
a ‘purely brittle material’ such as concrete. ( In  fact, carefully controlled experiments 
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Figure 14.11 Uniaxial uniform tension and mesh dependency. 

element A) would be reduced. 
This problem does not simply apply to the first cracking, i t  also applies to the crack 

propagation. With a refined mesh, the load for the next cracking (after A) in the current 
most highly stressed element (say element B) will also be reduced. As pointed out by 
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Figure 14.12 Benign stress concentration with plane sections remaining plane. (a) Strain; (b) 
stress. 

Bazant [Bl], and Bazant and Cedolin [B2], by continually refining the mesh, we can 
make the crack propagate through the plate at lower and lower loads. The concept does 
not only apply to constant stress elements but would also relate to Gauss point 
cracking in higher-order elements. 

I t  is worth noting that there is one class of problem that does not suffer very severely 
from these difficulties. In  some analyses of beams or plates, we may have integration 
points through the depth (see Sections 7.1.2 and 8.1.2). In  these circumstances, we can 
degrade the properties to zero and, while there would be a stress concentration in a full 
three-dimensional or even two-dimensional analysis, no such concentration occurs 
in relation to the adopted strain assumption that ‘plane sections remain plane’ 
(Figure 14.12). 

Having recognised the serious limitation of stress-based failure criteria, we could 
move to methods directly involving ‘fracture mechanics’ [R4]. An alternative pro- 
cedure, pioneered by Hilleborg et d.[H3], is to introduce a softening stress-strain 
relationship (possibly within a plasticity setting), with the latter being related to the 
‘fracture energy’. In  this way, fracture mechanics is indirectly introduced. We will 
discuss this method later but will first point out the mesh dependency and alternative 
equilibrium states associated with a softening stress-strain relationship. 

The author [ClO] used the simple model of Figure 14.13 to illustrate these effects. I t  
will be assumed that each constant stress (and strain) element in Figure 14.13b is given 
the softening stress-strain relationship of Figure 14.13a. A ‘displacement-controlled’ 
solution will be considered which is controlled by the displacement A in Figure 14.13b. 
At the maximum load, P,  the stress in the elements would each have reached the point 
B in Figure 14.13a so that each stress is at 0,.Following this stage, a possible 
equilibrium path in the load,/deflection space is given by the falling curve 1 in 
Figure 14.13~. For this path, i t  is assumed that each of the elements follows the 
softening stress-strain line BC. On the other hand, the falling line 2 in Figure 14.13~ 
could be obtained if three of the elements softened down BC in Figure 14.13a, while one 
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Figure 14.13 Strain localisation and alternative equilibrium states for a simple model. (a) Uniaxial 
strain-softening model; (b) simple tie-bar; (c) structural response. 

of them unloaded elastically down BA. In relation to the adopted model, the only 
‘stable path’ would be path 4, for which only one element softened while the others all 
unloaded elastically. I f  the mesh were refined, this ‘stable path’ would be a linedoubling 
back directly on the elastic loading line. 

We consider the latter path as ‘stable’, because, if the strength of each element was 
fractionally perturbed, the model structure would reach its maximum load when the 
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weakest of theelements first reached its 0,value and, beyond this level. only the weakest 
element would soften. Clearly, the situation in Figure 14 .13~ involves a form of 
‘material bifurcation’. For the situation in Figure 14.13c, the ’curve‘. 4, would be 
associated with one negative pivot in the tangent stiffness matrix (associated with the 
snap-back) while in moving from ‘curves’ 3 to 2 to 1 we would one each occasion add 
a further negative pivot for having passed ’material bifurcation points’. 

While, with a ‘material imperfection’, there would strictly be only one attainable 
equilibrium curve, with finite steps, a finite element solution procedure can easily 
converge on to a ‘higher unstable state’ (see Section 2.6.4 for an equivalent situation 
with ‘geometric imperfections’). I t  is true that these problems are at their most severe for 
‘constant stress states’ such as depicted in Figure 14.13. None the less, equivalent 
problems can plague finite element solutions even in other circumstances with a vary- 
ing stress gradient [Cl 13. 

We will now turn to the technique of relating the stress-strain curve to the fracture 
energy. (For concrete, the latter is G, 5 l00N/mm [Bl,B2].) In relation to Fig- 
ure 14.13a, we set the area under the stress,istrain curve to G, so that: 

G, =O . ~ C ‘ X O , E ,  (14.183) 

where c is the ‘effective length’ of the element and, for the simple constant stress strain 
elements of Figure 14.13, would be the actual length of the element. In  these circum- 
stances, if a material perturbation was provided so that only the ’materially stable‘ 
solution was obtained (with one softening element), the adopted load deflection curve 
would be independent of the mesh. In a two-dimensional plane-stress environment, the 
author extended this concept by defining the effective length, c, using the interaction of 
the principle tensile strength direction with a skewed ellipse derived from the Jacobian 
at the Gauss point [Cl 13. 

Before leaving Figure 13, i t  is worth noting that the unloading line DE might relate 
to a ‘plastic model’, while if point F coincided with the orgin at point A, we would have 
an ‘elastic damage model’ [L3]. In this case, we could write: 

0= (1 - d)E,c (14.184) 

where E, is the initial elastic stiffness (slope of AB) and d is the scalar damage parameter 
given by 

d = 0, I: < c, 

d=-- &,a, - E ,  
YE, > I:  > c, (14.185) 

x - 1 Emax 
d =  1 E > c, 

Equation (14.184) applies with loading ( E  = E ~ , , ) , where cmaxis the maximum strain so 
far experienced, or unloading ( E  < zmax).If point F is distinct from point A (as in the 
figure), the unloading line DF would define an ‘elastic-plastic damage model’. ‘Damage 
mechanics’ is discussed further is Section 14.12. 

It is worth mentioning that the previous ‘softening stress strain’ approach can also 
be applied to delamination in composites using ‘interface elements’s0 that the fracture 
energy is now the area under the traction (loadi’unit area)- ‘relative opening (assuming 
mode 1) displacement’ relationship [S2, C13,Cl 4). In these circumstances there is no 
need to introduce the length parameter c. 
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Returning to continuum rather than interface modelling, the difficulties that have 
been described have led a number of workers to turn to various forms ‘of non-local 
continuum approach’ [B2, P3. D5). These formulations, which often lead to non-
standard finite element procedures, fall outside the scope of this book. Before consider- 
ing the detail of some ‘concrete models’, i t  is worth mentioning an analytical ‘trick’ that 
can be quite helpful with a softening or fracturing material such as concrete. The trick 
involves superimposing on the model of the structure another linear elastic structure 
(with the same nodes and elements) with a very small elastic stiffness. The latter is meant 
to stop the model structure falling ‘totally apart’. 

14.11.2 ‘Fixed’ and ‘rotating’ crack models in concrete 

While the earliest finite element involved ‘discrete cracks’. the ‘smeared cracking’ 
procedure soon became more popular [A 13. Interestingly, there is now some interest in 
methods that merge the two procedures by embedding localised discontinuities within 
the element [K3 ,01 ,  L5). In the ‘fixed crack model’, the direction of the crack would be 
related to the first occurrence of a principle tensile stress of magnitude equal to the 
‘crackingstress’, a,.In relation to the resulting fixed directions ( I  and 2 in Figure 14.14). 
tangential stiffnesses would be provided involving some softening stress- strain curve i n  
the fixed principal tensile direction (al and c,  ) while for shear stresses ( t l1), the shear 
modulus would be reduced by the ‘shear retention factor’. A major disadvantage of this 
method was that it allowed new principal tensile stresses to arise at some oblique angle 
which exceeded 0,.Generally, these were not monitored and no new reduction in 
stiffness was applied. As a result, the method tended to give solutions that were 
over-stiff (and unsafe) [Cl2]. De Borst and Nauta [D4] proposed a solution ivhich 
allowed a set of cracks at a Gauss point. However, the models were very complex and 
severe difficulties were often encountered with the ‘threshold angle’. Earlier, Cope e t  111. 
[Cl41 had introduced the ‘rotating’ or ‘swinging’ crack method, in which the crack 
direction relates to the current direction of the principal tensile strain and hence rotates 
or swings. Objections to this model related to its ‘unphysical aspects’ -cracks cannot 
move. However. these objections are reduced if one thinks of the ‘swinging crack 
direction’ as representing the ‘current most active crack’ (remembering that a Gauss 
point represents an area (or volume)). 

Figure 14.14 1-2 and x-ydirections. 
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Variants of the 'rotating crack model' are still being developed and, as wil l  be shown, 
are closely related to 'plasticity models'. I n  describing the method (and the subsequent 
plasticity methods) we will concentrate on the two-dimensional plane-stress situation. 

I n  relation to Figure 14.14, it will be assumed that tl defines the directions of the 
current principal tensile strain direction so that: 

(14.186) 

and we can write: 

b =  

where [ *  = cos 0 and s = sin 0. Having computed the principal strains c 1  and t i 2 .  the 
analyst can simply look up a, and a2 on the input uniaxial stress strain curi'e (which 
will probably involve softening in the tensile regime) and then compute the stress \rector 
with respect to the fixed cartesian axes from (14.187). 

To obtain the tangential constitutive relationship, differentiation of ( 14.187) leads to 

( 14.188) 

which can be further manipulated [Cl?] to give: 

(14.189) 

where 

z7'= (sin 20, - sin 20, - cos 2 0 )  (14.190) 

Resolving ( 14.189) into the 12 directions gives: 

Ob,, = ()cl (14.191) 

(0,
- 0 2 )  

2(c1- t : J  

The shear stiffness term is closely related to that given in ( 13.142b) of Section 13.8.2for 
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a hyperelastic material and the procedure discussed in that section can be used to find 
a solution when c1 = c2.  

In  the simplest implementation, the stress a l  would only be related to c l  so that terms 
such as Sal/&zin (14.189) would be zero. However other implementations are possible 
[C12] although they may lead to a non-symmetric tangent stiffness matrix. 

14.11.3 Relationship between the ‘rotating crack model’ and a 
‘deformation theory’ plasticity approach using the ‘square yield 
criterion’ 

Figure 14.15 shows the ‘square yield criterion’ that is often used in ‘limit analysis’ “21. 
(The tensile part of the yield criterion is also referred to as the Rankine yield criterion.) 
The yield criterion can be expressed as 

.1;= (a*- -0,)= (01 - a 0 . Z  -uc)= 0 (14.192) 

where at is the tensile yield stress and acis the compressive yield stress. In limit analysis, 
the former would usually be set to zero so that we would have a ‘no-tension material’. 
A conservative value would usually be provided for the compressive yield stress to 
make an allowance for the limited ductility in compression. 

By expressing the principal stresses (T, and a2in terms of the cartesian components, 
( 14.192) can be re-expressed as 

x.vj ,  = (a, - a,M, - 0,)- t:,, = (a,-a,)((T, -0,)- t 2  =0 (14.193) 

For future developments, it  will be useful to express (14.193) in a similar form to ( 14.168) 

‘32 

- B  

* = 1  

* tL -‘3,-0,
4 

- A  

Figure 14.1 5 The ‘square yield criterion’ in principal stress space. 
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so that: 

f -"":I"'0 10 

2 - 2  

?%, 0 0 -

In (14.194), o, is either o, or o, depending on which part of the yield function is active 
(both should be checked). 

Suppose we apply a 'deformation theory' form of plasticity to (14.194) with an 
associated flow rule. In these circumstances, the plastic strains can be expressed as 

so that, for simplicity, considering the case with 1' =0, we have: 

0, = E(&,-)"(a,,-G o ) )  

(7, = E(Ey- i(a, -a,)) (14.196) 
E 

f,, -(;),, -I-22Ts,)2 
Equations (14.196) can be used to Show that: 

llx, - L,tan 20 =--- -____ (14.197) 
E x  -E, ,  0,-U, 

and hence, as with the rotating crack model of the previous section, the directions of 
principal stress and strain coincide. Indeed, if elastic/perfectly-plastic stress-strain 
curves of the form of Figure 14.16 are used, the deformation theory plasticity model 
and the rotating crack models are equivalent [C13]. 

Figure 14.16 Idealised uniaxial stress-strain relationship. 
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14.11.4 A flow theory approach for the 'square yield criterion' 

We will now consider the application of a flow-theory form of plasticity. The work is 
closely related to that described earlier by Feenstra et d.[Fl). We will initially 
consider a simple elastic perfectly-plastic model with no hardening or softening. In 
these circumstances, if we wished to introduce a 'no tension model', we would set 
0,)
= CT, = 0. In  addition, we may or may not wish to constrain the compressive 
behaviour. In either case, we can use the yield criterion of (14.194) with CT,, being 
assumed fixed. 

To apply a backward-Euler return, we could use the general method of Section 6.6.6 
which would involve an iteration with three stress variables and the incremental plastic 
strain rate multiplier, A;.. Alternatively, we could apply the method of Section 14.10, 
wherewith thecurrent form ofthe matrix P(see( 14.194)). theeigenvalues 11,  of( 14.170) 
turn out to be given by 

(14.198) 

while the eigenvectors, qiare given by 

(14.199) 

Hence we can express the required stresses, q,using (14.172) with the coefficients zi 
being related to the single unknown, A& via (14.174). In  place of (14.175), the current 
yield function is expressed in the form: 

( 14.200) 

where there is now a plus sign in front of the 0; term. With the x i  coefficients being given 
by (14.174), equation (14.200) provides a non-linear scalar equation in A;. and we can 
directly use the method of Section 14.10 to use the Newton Raphson method to solve 
the scalar equation in A;.. 

We will now consider the inclusion of hardening or softening. Before considering the 
detail oft he particular hardening or softening rule, we will consider an alternative form 
for the yield criterion of (14.194) and will also point out some possible pitfalls in using 
the former. 

We will continue to concentrate on the tensile regime and, instead of starting from 
(14.192),we will consider the yield criterion as 

j ' ,  = (31 - CT, = 0 (14.201) 

where o1is the principal tensile stress. Using Mohr's circle, we can re-express the above 
in terms of the cartesian stress components so that: 

( 14.202) 
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with 

1 - 1  0 
1 ( 14.203 
0 4  

( 14.204 

Using these terms, the earlier yield criterion of (14.194) can be expressed as 

,fz 1 T=3b Pb - ( I ,RTb + Of = 0 ( 14.205) 

where 

1 - 1  0 
=;r~n:'-P (14.206) 

For future developments, i t  is worth noting that (14.205) can also be expressed in the 
form: 

. f 2  =.f;- 2a,,.f, = 0 ( 14.207) 

where we have added the bar to f 2  because we will now distinguish between the results 
obtained by using 1; from (14.205) and ,T2from (14.207). 

In the following we will concentrate on the consistent tangent modular matrix 
having assumed that we have obtained A i  and a".Using the approach of Section 6.7.2. 
we obtain the solution as 

arRa + A' 
( 14.208) 

with 

( 14.209) 

For C, to be symmetric, we require ?a/& to be symmetric. 
We will now derive the latter matrix starting from various assumptions regarding the 

yield criterion and will initially consider f l  of (14.202) for which we can write: 

?fl -a -- -- + A I t  (14.210)' - ?a 2ae1 2 

and 

(14.21I )  

which is clearly symmetric. 
If  we now start from (14.205), we obtain: 

(14.212) 
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and 

?a, ?a,- - -=p-n-- (14.213)
Qa ?a 


I f  there is no hardening or softening, ?a,,'Ca = P which is symmetric and there are no 
problems with using ,/; from (14.205). However, with hardening or softening. from 
(14.205). we obtain: 

so that substitution into (14.212) gives: 

?a, 1 
xa '- = p - (14.215)

?a (nTa-20,) 

which is non-symmetric. The source of the anomaly can be revealed by starting from 
(14.207) without assuming that ,f'* = 0. In these circumstances, we obtain: 

(14.216) 

I f  we set .fl  = 0, and use (14.206) and (14.210), we recover a, from (14.212). Further 
differential of ( 14.2 16) leads to the relationship: 

(14.127) 

which is symmetric. I t  should be emphasised that in obtaining(14.2 I7),we substitute in 
the relationship j ' ,  = 0 ~!fie.rthe differentiation of a2 .  

The previous workings have indicated that, with hardening (or softening), while i t  
may be possible to use a yield function in the form of (14.205). there are potential 
pitfalls. Consequently, in the following, we will use f 1  from (14.202) although the 
subscript 1 will now be dropped. 

We will concentrate on a simple form of softening with an assumed uniaxial 
stress-strain curve of the form of Figure 14.17. (With a view to minimising the mesh 
dependency, the degree of softening could be related to the fracture energy via the 'size' 
of the element or Gauss point --see Section 14.11.1.) We wil l  therefore consider the 
situation whereby 0"is of,the tensile strength which softens to zero from f i t .  In  relation 
to Figure 14.17, we can write: 

so that 

We now require the relationship between the 'equivalent plastic strain rate'. ip\and the 
'plastic strain rate multiplier', i.To this end we equate the work rate (see Section 6.4.2) 
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Figure 14.17 Simple softening stress-strain relationship. 

so that: 

ri/ = aTi,= i(aTa,= o,ips ( 14.220) 

and using a from (14.210) and ,f =0 from (14.202), it is easy to show that (aTa)= (T, and 
ips= fi  and using the notation of Chapter 6, we now have A' = H ' .  

I t  is possible to use eigenvalue expansions, even when adopting a yield function in the 
form of.(, from (14.202) [Fl, F21. However, the equations get rather complex and, as an 
alternative, we will here outline the use of a similar procedure to that originally 
described in Section 6.6.1. We start by defining the following equations which must be 
satisfied: 

r=a,-(a,-Ai.Ca,)=a,-

+ A i A ; )  = 0s = - f ( ~ ~ ~ ~ ~ ~  ( 14.222) 
1 T- 1 T.f. = ( 2acP0,)l + 2 n bC - o,, = o, 1 ,+ ( T , Z C  - o,(.= o (14.223) 

In (14.222), + AAA;) is the stress obtained from the adopted unixial stress- 
strain relationship (i.e. Figure 14.17). 

With a view to iteratively improving an initial solution to the above we can apply 
truncated Taylor expansions so that: 

.ynew = .sold+ 6,, + ( 14.225) 

f",,=.fold + a:& + 6 ,C  ( 14.226) 
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Figure14.18 Combined yield criteria for concrete. 

Setting r,,* to zero, we obtain: 

& = -Q - lrOld- iQ-'Cat ( 14.227) 

Substitution from (14.227) and (14.225)(with s,,, = 0)into (14.226)(withf;,,, = 0)leads 
to the relationship: 

( 14.228) 

which allows AR to be updated while substitution for 2 into (14.225) (with s,,, = 0) 
allows crOc to be updated. 

So far we have only considered the tensile behaviour. We could also apply the 'square 
yield criterion' to the compressive behaviour (Figures 14.15 and 14.16) and introduce 
a hardeningisoftening relationship. In these circumstances, in place of (14.202), we 
would have: 

I r -
. f ' l  = -(Tb PO)' + +7tTb- (TO = - G e l  + ( T c 2  - (TO = 0 ( 14.229) 

where 0, would now be oc,the compressive yield strength. Special difficulties would 
relate to the 'corner regions', such as A in Figure 14.15. In these regions, one should 
apply a procedure similar to those discussed in Sections 14.3-14.5 which involve 
a 'two-vectored return'. There are, of course, added complexities if both of the separate 
yield criteria are hardeningor softening [F2]. Care must also be taken, in relation to the 
'corners' such as B in Figure 14.15 [F2]. 

One need not be restricted to a square form of yield criterion in the compressive 
regime. Instead one could use a von Mises criterion [FI, F2) or a form of Drucker- 
Prager criterion [Cl 13. The latter (from [Cl I ] )  is depicted in Figure 14.18. 

14.12 DAMAGE MECHANICS 

The concept of damage as a 'load-bearing area reduction' was apparently first 
introduced by Kachanov [K I]. Since then, the terminology 'damage mechanics' has 
been used in many different ways but the main theme is a reduction in the secant 
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Figure 14.19 Simple tensile damaging relationship. 

stiffness, as originally discussed in Section 14. I 1 .1 .  Important work in the area has been 
given in the book by Lemaitre and Chaboche [L3] and in papers by Simo and Ju [SS], 
Mazars and Lemaitre [M3], Ladeveze er d.[Ll] and Carol c’r L I I .  [Cl] among many 
others. In the following. we will give a brief outline and will concentrate on the simplest, 
‘scalar damage’. We will start with the one-dimensional, softening model that was 
introduced in Section 14. I 1.1 in Figure 14.13a which is reproduced here as Figure 14.19 
using slightly different notation. I t  is assumed that the relationships in this figure are 
measured stress-strain relationships with the unloading taking the simple form which 
returns through the origin. (The link with fracture mechanics will be discussed later.) 

We will start with the relationships defined in (14.184) and (14.185) so that we can 
write: 

0 = ( 1  - d ) E , ~ = ( l  - d ) 6  ( 14.230) 
where 

(14.231) 

and we have introduced an auxiliary parameter, 7, which will now be related to the 
energy of the undamaged material so that: 

( 14.232) 

In fact, for the present simple model, there is no need to introduce this energy term, 
although it will be useful for later extension 

We will also introduce a ‘damage function’: 

.f = 7 -max ( T o l d ,  zo) < 0 ( 14.233a) 

.f = E -max (&,ld, c , )  < 0 ( 14.233 b) 
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where in (14.233b) we have introduced the straightforward form without the auxiliary 
energy term. With 1; < cV (here, the subscript o does not mean 'old'), there is no damage 
and ,I'< 0. Once I: > cV, the material damages until at r ;  3q,,i t  is fully damaged and 
d =  1. 

From (14.230) and (14.231). we can write: 

ci = ( 1 - d)E() i- dE,L ( 14.234) 

with 

. dd x CO .'1 = -6 =--,r; = 
tlr: x - 1 I:' 

( 14.235a) 

(14.235b) 

so that 

3 CO Ici = ( 1 - tl)E,i ---E i=-E O i= E,tl (14.236a)
x - l r ;  " 1 - 3  

or 

( 14.236b) 

where E,  is the tangent modulus. Having set T~~~ = cold= dold= 0, an algorithm for 
updating the stresses and damage and producing the tangent modulus, E,,  could then 
be written as 

(T = ( 1 - liold)EoC; E,  = ( 1  - d)E0  

,f' = T -max(Told,T ~ )  (or .f'=I ;  -max(c,ld,r:v)) 

If .1' 3 0, 

Told = r (or cold= I : )  (so that .f' now = 0) 

dVld= d 

(T = ( 1 - d)E,r; 

E , = ( l  - d ) E ( ) - - - r '$Ev (or E,=-- %)
X - I T '  1 - 2  

Algorithm 14.1 One dimensional scalar damage. 

In the above, we have not considered the case where c > rq,, but this is easily included. 



DAMAGE MECHANICS 151 

We will now directly generalise the concepts in the following algorithm. 

(14.237) 

( 14.238) 

do,d= (1 

a = ( l  -d)C,& 

1= ( 1  -d)C,---dd' (14.239)
r dr  r dr  

Algorithm 14.2 Multidimensional scalar damage. 

In  deriving the tangential modular matrix, C,, in (14.239). we have used the relationship: 

( 14.240) 

In Algorithm 14.2, the precise form of the 'damage relationship' between d and r has 
been undefined. Clearly, i t  should be related to experiments. Cervera ut 111. [C2] use: 

(14.241) 

in place of (14.231) for the tensile behaviour of concrete. The constant A is chosen to 
make the area under the stress-strain curve equal to the fracture energy. The concept is 
similar to the approach discussed in Section 14.1 1.1 whereby the parameter r in 
( 14.23I ) is related to the critical fracture energy via (14.183). As discussed earlier, some 
length parameter (related to the element of Gauss point) is also required. 

Clearly, one cannot directly use (14.231) or (14.241) in conjunction with Algorithm 
14.2, because the complete material would then degrade in this 'tensile softening 
manner'. One solution, is to introduce two damage parameters, d' for the tensile 
behaviour (say from (14.231) or (14.241)) and d - for the compressive behaviour (see 
[C2]). I n  fact this is effectively the approach adopted by the author in the 'rotating 
crack model' CC121 (see Section 14.1 1.2) where in relation to the tensile behaviour, 
Algorithm 14.1 was effectively applied in relation to the continuously rotating principal 
tensile strain direction. For the compressive response, a different relationship was used 
for the stress in the direction of the principal compressive strain [C12]. Cervera ut d. 
[C2] (who apply a three-dimensional model), split the 'effective stress', (see (14.237)) 
into 

3 

a += ( a > =  (ei)aiaT ( 14.242a) 
i =  1 
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and 
3 

0 - = ) a (  = )CTi(aiay (14.242b) 
i =  1 

where (ai)  is CTI if the latter is tensile or zero otherwise. Also aidefine the(unit) principal 
directions of 6 (or assuming an isotropic CO,of E). The symbols ) ( in (14.242b) are such 
that (s) + )s( = s.Cervera et al. [C2) then degrade the stresses via: 

b = ( 1  -d+)tT+ + ( 1  -ll-)tT- ( 14.243) 

where 11' was defined in (14.241) and an alternative relationship was used for the 
'compressive damage', d - .  

Clearly. the latter model is closely related to the earlier 'rotating crack model' and, as 
with the latter, account must be taken of the changes in the principal directions in 
defining the tangent modular matrix (as i t  is with hyperelasticity--see Chapter 13). 

14.13 SPECIAL NOTATION 

a = (7f /?a(flow vector) which is defined as a column vector 
a ,  - a3  = vectors from a (see (14.19)) 

2 = pseudo-hardening parameter in Section 14.4 (see (14.50)) 
xl,, 2 2 3 ,  x , ~ ,q4.x 5 5 , x b h  = constants for Hill's yield criterion (Section 14.6.1) or for 

Hoffman yield criterion (see Section 14.8) 
x ,  ,,x2,. x 3 ,  = constants for Hoffman yield criterion (Section 14.8) 

b = ?y,'c7a (flow vector) which is defined as a column vector 
b' = ?Q/& (flow vector) which is defined as a column vector 
A = constant for use with Hill's yield function (see (14.100)) 

A' = hardening parameter 
A(O)= function of 0 (see (14.12)) 

A = special matrix within ?a,'& (see (14.55)) 
A = C - in Section 14.10 
B = constant for use with Hill's yield function (see 14.104)) 
B = special matrix (see (14.136)) 
c = cohesion 

C,,  C,, C, = constants for flow vector (see 14.19)) 
C,,, C,,, C32, C,, = constants for c7a/?o(see (14.23)) 

C = constitutive matrix 
C, = tangential constitutive tensor (or matrix) 

C,, = consistent tangential constitutive tensor (or matrix) 
D = matrial constant for Drucker-Prager yield function 
E' = E/(1 + v ) ( 1 - 2v) 
.f = yield function,f2 = yield function in 'squared form' 

jh = particular form of Hill's yield function (see (14.88)) 
F ,  H ,  H , L, M .  N = constants for Hill's yield criterion (Section 14.6.1) 

61 = second yield function when two functions are active 
I ,  = first stress invariant 
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J ,  = second stress deviator invariant 
J ,  = third stress deviator invariant 
K = constant in Section 14.7 (see ( 14.139b) 
M = bending moment (stress resultant) 
il/r = quadratic stress intensity with ,bf’s 

M O= yield moment M 
) ? I =  non-dimensional bending moment (see (14.39) 
N = axial force (stress resultant) 
N = quadratic stress intensity with N’s  

11 = non-dimensional axial force (see (14.38)) 
N o  = yield value of N 

P = quadratic stress intensity with N’s and M’s 
Ql, Qm, Qlm= non-dimensional quadratic stress intensities (see 14.47) 

P = matrix for yield function in quadratic form (see (14.91)) 
p = vector for pressure contributions with yield function in 

(14.156) 
Q = plastic potential 
Q = special matrix (see (14.29)) 
r = residual vector (see (14.27)) 

R = Lankford anisotropy coefficient in Section 14.6.3 
R = special matrix (see (14.32)) 
s = constant for stress resultant yield criteria ( _+ 1 - see (14.43) 

and (14.52)) 
s = sin cp in Section 14.5 
s = devitoric stresses 
t = thickness 

T = special matrix (see (14.83))
lk, = plastic work rate 
ip= plastic curvature rates 

xp\= equivalent plastic curvature 
ips= equivalent plastic strain rate 

E = vector or tensor of strains 
t = strain rate 
il= total strain rate (the subscript t is often dropped) 
t, = plastic strain rate 

ior AL = plastic strain rate multiplier 
t j  or Aq = plastic strain rate multiplier for second yield function. y 

ib,or AiL2= plastic strain rate multiplier for yield function in squared 
form 

T - ~ ~ ,etc. = shear stress 
,U = shear modulus 
pi = eigenvalue in Section 14.10 
oc= effective stress 
oo= yield stress 
0, = mean stress 

G = stress (as vector or tensor) 
6 = stress rate 
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0 = angle (see (14.6)) 
cp = angle of friction 

(pi  = eigenvector in Section 14.10 
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15 More plasticity and 
other material 
non-Iinearity-I I 

15.1 INTRODUCTION 

In this chapter, we will firstly extend the work of Chapter 6 of Volume 1 to include 
kinematic, mixed and other forms of hardening. Because the work is closely related to 
that of Chapter 6, we will often refer to equations in that chapter. However, for 
convenience, we will sometimes reproduce them here. As a conclusion to the Chapter, 
we will briefly consider viscoplasticity. As in Chapter 6, the present emphasis will be on 
backward-Euler schemes which can be used in conjunction with a consistent tangent 
modular matrix. Much of this work relates to papers that were referenced in Chapter 
6, such as that of Simo and Taylor [Sl]. 

Apart from a very brief introduction in Section 6.4.2, all of the work in Chapter 6 of 
Volume I related to isotropic hardening. However, for seismic problems or low-cycle 
fatigue, the induced cyclic loading may involve relatively small plastic strains. In these 
circumstances, the Bauschinger effect [BI] may be significant. Assuming a linear 
hardening, this effect is illustrated for a one-dimensional problem in Figure 15.1. Here, 
the yielding in tension has lowered the compressive strength so that: 

( a- a )= a c  = fo, (15.1) 
where CY is the ‘kinematic shift’ of the centre of the yield surface. As a result of this shift, 
with uo being fixed (see Figure 15. l), the uniaxial strees cr ‘hardens’. 

The Bauschinger effect cannot be treated by the methods of Section 6.4.1 and 6.4.2 
which involve ‘isotropic hardening’. Consequently, Prager [P5,P6] derived a ‘kin- 
ematic model’ which assumed, for the von Mises yield criterion, a translation of the 
cylindrical yield surface (see Figure 15.2). It follows that the yield function can be 
written by simply replacing the stresses CF in the standard von Mises function by 
6 = o -a where the tensor a defined the origin of the yield surface in its current 
configuration. Consequently: 

- f=a,(a) = Oo(B - a)- 00 = &((s -a’): (s-a’))”’- 00 (15.2) 

The form on the right-hand side of (1  5.2) relates specifically to the von Mises yield 
criterion with sas the deviatoric part of cr and a’the deviatoric part of a(compare (6.26) 
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Figure 15.1 (a) Isotropic, (b) kinematic and (c) mixed hardening. 

without kinematic hardening). The tensor a is known as the back stresses, a (and is 
related to the scalar cy in (15.1)). 

Prager assumed that the yield surface moved in the direction of the plastic strain so 

.af  - 3);
a = Cpip= C,X-- = CpXa = C, -(s - at) ( 1  5.3a) 

aa 2% 
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Figure 15.2 Kinematic hardening with von Mises. (a) Shifted von Mises cylinder; (b) end section. 

where the final relationship applies specifically to the von Mises yield surface. In (1 5.3a), 
we have used the standard flow rule for ipand have followed the convention of Chapter 
6 (see6.4),in writing a = 2f/&. From (1 5.2), a is also equal to -?f/& Because, for the 
von Mises yield function, the plastic strains, iphas no volumetric component, from 
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(15.3a), for the Prager evolution law, a =a'. Consequently, the centre of the yield 
surface, moves from 0 to 0' (Figure 15.2) with no movement in the direction of the 
mean stress. 

The Prager model can lead to inconsistencies when working in a stress subspace such 
as that of plane stress [H2] unless (15.3a) is specifically reformulated for the relevant 
subspace. This will be illustrated in Section 15.3 for plane stress. 

The inconsistencies can be avoided by adopting Ziegler's model [Z 11 whereby: 

a = c , X ( ~  -a)  ( 15.3b) 

For three-dimensional von Mises plasticity, it will be shown later in this section that 
the two formulations lead to the same results. However, using (15.3b) with the von 
Mises criterion, the centre of the yield surface will have a component of movement in 
the direction of the mean stress. None the less, because the yield surface is a cylinder. 
this does not effect the results. For the general, case, the relationship between the two 
formulations will become clearer following the specific application to plane stress in 
Section 15.3. 

From (1  5.l) ,  the consistency condition is 

( 1  5.4) 

For the von Mises yield function, the tensor a = (3f/?a takes the same form as i t  does 
without hardening. For example, in vector form, one would simply replace the 
c components in (6.32) with 0 components (6 = a -a).Using the Prager evolution law 
for a, combining (1  5.3a) and (1  5.4) leads to 

j . = a:&-C,la:a = a:&-+c,: = o ( 1  5.5a) 

The last relationship in (15.5a) applies specifically to the von Mises yield function. 
(Note that, for von Mises, a:a = 3/2-see (6.34)) If we combine the Ziegler evolution 
law of ( 15.3b) with (15.4), we obtain: 

. j  = a:* -C,;La:(a-a)= a:&- ~ , i , a ,  ( 15.5b) 

where again the final expression relates specifically to the von Mises criterion. 
In order to relate the multidimensional state to the uniaxial state, we must degener- 

ate (15.5a) and (15.5b) to the uniaxial case. But  first we must show that, for such 
a uniaxial case, the uniaxial plastic strain rate, say E,,. is equal to A. To this end, we can 
apply an identical procedure to that used for isotropic strain hardening and define the 
equivalent plastic strain rate, E,, via (6.29). We can then show that i,,= j. (see (6.34)) and 
that, for the uniaxial case, E,, = ipx. 

We will now degenerate (15.5a) and (1 5.5b) to the uniaxial (say s-direction) case. 
Considering, first, (15,5a), we have: 

(1 5.6a) 

where H' is the slope of the uniaxial stress/plastic-strain relationship (see (6.13) and 
Figure 6.5). On the other hand, from (15.5b), we have: 

. j  = ex-CJa, = H'E,, -CrfJoipx= 0 ( 15.6b) 
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aA 
ox 

= A  
= U  

Epx = Eps 

Figure 15.3 Uniaxial stress-strain relationships and ‘plastic slopes’ H’ and A’ (for von Mises). (a) 
Uniaxial (x-direction) stress strain relationship; (b) relationshipof stress and equivalent stress with 
equivalent plastic strain. 

I t  follows from (15.6a) that: 
c 

P 
=qf’ ( 15.743 

On the other hand, from ( 15.6b), we obtain: 

H‘
C,=- ( 15.7b) 

0 0  

Substitution from either ( 1  5.3a) (with Prager) or (15.3b) (with Ziegler) into (15.4) leads, 
in conjunction with ( 15.7a) or ( 15.7b) for Prager and Ziegler respectively to 

j = a:ir -A‘;, = 0 ( 15.8) 
where 

( 15.9) 

?a

A: = Cza:(a-a )= Czc ,= H’ =2 ( 1  5.10) 

8 E p x  

The last relationships in (15.9) and (15.10) relate specifically to the von Mises yield 
criterion. I t  follows that for the von Mises yield criterion, no difference results from the 
use of the different hardening rules (provided we work in the full stress and strain 
space- see Section 15.3). 

Equation (15.8) is identical to the relationship (6.16) obtained with linear isotropic 
hardening. I t  follows that with the A’terms beinggiven by(15.9)or(15.10), thestandard 
tangent modular matrix (or tensor) will also be the same and will take the form of(6.18). 
However, in this chapter, we will be more concerned with a ‘consistent tangent modular 
matrix’ (see Section 6.7, 15.8 and 15.9)that follows on from a backward-Euler return 
(see Sections 6.6.6,6.6.7 and 15.4-15.7). 
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In  order to apply non-linear hardening, we can assume that C, or C , are functions of 
the equivalent plastic strain, E,,.Considering, the von Mises yield criterion, we can then 
use the uniaxial initial loading curve (Figure 15.3) of (T, = H = A against cpxto obtain 
A' = H' = i7cr,/i7cPxfor a given value of the equivalent plastic strain, cps.The latter equals 
the one-dimensional, cpr,for the uniaxial initial loading curve (in the s-direction). 

15.2 MIXED HARDENING 

A more general hardening, which was suggested by Hodge [H2] and developed by 
Mroz [Ml-M3] and others [All, involves a combination of kinematic hardening, 
which moves the centre of the yield surface, and isotropic hardening which expands the 
yield surface. To introduce such a hardening, we can introduce a scalar t n  which 
represents the ratio of plastic strain associated with the isotropic response while the 
ratio (1  - r n )  is left for the kinematic response. It follows that: 

€, = &pi + €pk = m&,+ ( 1  - In)&, (15.11) 

with the isotropic equivalent plastic strain rate being given by (see also (6.29) and 
(6.34)): 

iV'' = tn ips  = rn &ip:&p)l ,= t n x  ( 15.12) 

With specific reference to J ,  plasticity, the yield function becomes: 

(15.1 3) 

where now CJ,changes with the isotropicequivalent plastic strain, cpsi.In place of( 15.3a) 
and ( 1  5.3b), the change in a are now given by 

a, = C,( 1 -m)i,  = Cp(1 -ni)ia (1 5.14a) 

and: 

ti, = C,( 1 -m)(a -a)= C,( 1 -~n)a ( 15. I 4b) 

Also, in place of (1 5.8),  the consistency condition becomes 

- .a% =,f =a:&--ipsia:&-a :a  -H'mi, ( 15.15 )  
(?&psi 

where H' is the plastic 'slope' related to isotropic hardening. For Prager and Ziegler 
respectively, we obtain, in place of (15.5a) and ( 15.5b): 

.f = a:&- c,Z(I -171)a:a-H'inX 

= a:& - ~ c , ; Z ( I  - rn) -H'tnX = o ( 1  5.16a) 

and 

./= a:&- c,X( 1 - rn)a:(a-a)-H'rnX 
= a:6 -czgcjh(i- rn) - P t d  =o (15.16b) 

where the last relationships in (1 5.16a) and (15.16b) relate specifically to the von Mises 
yield criterion. 
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For uniaxial condition (and the von Mises criterion), equations (15.16) become (in 
place of ( 15.6a) and (15.6b)): 

m)dpx -H’md,, = H’ipx-+C,( 1 -m)ipx-H’md,, = 0 ( 15.17a) 

.i‘= 6vr-Cpe(1 -m)ipx-H’md,, = H’d,, -Cp,( 1 - rn)C,, -H’md,, = 0 (15.17b) 

These relationships must apply irrespective of m, and consequently we obtain: 

CP =ZH’=?fi’  (15.18a)3 

H’c,=-=-H ’  
(15.18b) 

‘ e  ‘e  

where, even for linear hardening, with oe= 0,varying with c:psi, C, is not a constant. 
Equations (15.16) can be rewritten in the more general form: 

j =a:€ -A;A -A:i,= a:& -A’;. ( 15.19) 

where A’ = AI + A; and 

~b~ = Cp(1 -m)a:a= +Cp= H’( 1 -m) = H‘( 1 -m )= A’( 1 -m) ( 15.20a) 

ALk=Cz(l -m)a:(a-a)=C,(l  --)a,= H’(l - m ) = H ’ ( l  - m ) = A ’ ( l  - m )  (15.20b) 

A; = H’m = H‘m ( 15 .20~)  

where the final relationships in (15.20a) and (15.20b) again relate specifically to the von 
Mises yield criterion. In this case, as with pure kinematic hardening ( r n = O ) ,  the 
hardening parameters, ALk and Abk are the same. Consequently, provided we work in 
the full three-dimensional space (or apply plane strain or axial symmetry), it does not 
matter which evolution law we apply. Also, because (15.19) is in the standard form of 
(15.8) and (6.16), (6.18) again applies for the standard tangent modular matrix (or 
tensor). 

With the von Mises yield criterion, we can (as in Section 15.1), for a given equivalent 
plastic strain, E,,, obtain A’ from the initial uniaxial plastic strain relationship (Figure 
15.3). 

15.3 KINEMATIC HARDENING FOR PLANE STRESS 

By assuming that: 

t~ 1 3  = S I  3 = O! 13 = Y; 3 = 4 2 3  = ~ 2 3  = 0 (15.21)= 4 2 3  = ix;3 = ‘33 = ~ 3 3  

the yield function of (15.2), which we rewrite here as 

j 6= 4 “ s  -a’):(s-a’))-(i, = j 6 ( s-a’)= f6(k>= a,-0, (15.22) 

where 5 is the ‘reduced stress’, becomes (see (6.3)): 

f = 5: + 5-t- a,a, + 3 ~ x 2 ~  == ,f3(a-a)=f3(6)0,-a, ( 15.23) 

where it is now convenient to use matrix and vector notation so that: 
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In the full three dimensional case, the plastic flow rules are 

(1 5.25) 

where the subscript implies six components (having allowed for symmetry). 
For the plane-stress case, using vector notation, (15.25) degenerates to 

(15.26) 

where, for the present, we have kept the izterm so that we have four components. 
However, the aim will be to investigate the possibility of discarding the third, z, 
component in order to arrive at the usual plane stress procedure of using only three 
components (see also Section 6.8.2). In writing (15.26), we have also accounted for the 
fact the engineering strain vxg is twice the tensor strain (see Section 4.1). Considering 
four components, the Prager relationship of (1 5.3a) for a can, in conjunction with (1 5.9) 
for C, be written as [ 26, - ay ].a4=iA’ l .a4=-A ‘ i  - a,31,,-+ 26, 

( I  5.27)
30, -a, - a,. 

On the other hand, for the Ziegler rule of (15.3b) in conjunction with ( 15.10) for Cz,we 
obtain: 

(15.28) 

In this case, it is easy to verify that, for the four-component case (as with the 
six-component case), with the Prager rule of( 15.27), the consistency condition becomes: 

f4, = aT& 4 4  = aT&,-~ A ’ ~ a ~ a 44 4  - aT& = aT&4 4  - A‘j-=0 ( I  5.29a) 

and that with the Ziegler rule of (15.28), we obtain the same result, i.e. 

A’ . 
f42 =aT& 4 4  =aT& 4 4  -a,) = aT&4 4  -aT& 4 4  --AaT(a 4 4  - A’jb= 0 ( 15.29b) 

0 0  

Noting that the third component of b4 and a, (see (15.28)) is zero, we can remove the 
third (z-direction) component with no effect on (15.29b) and obtain: 

j4z - A’X = j j 2= azci, - A ‘ X  = o (15.30)= 

and, for this hardening law, we can therefore avoid considering the z-component terms 
and, instead, work in a three-component space. On the other hand, if we adopt the 
Prager evolution law of (15.27), we cannot apply a similar reduction, because the third 
component in (15.27) is not zero (nor is the corresponding component from a) and we 



166 MORE PLASTICITY AND OTHER MATERIAL NON-LINEARITY-II 

have: 

aia, za:a, ( 1  5.31 )  

I t  follows that, while we can (for von Mises) obtain the same solution for plane stress 
using either Prager or Ziegler, in the former case, we would have to work with (at least) 
four components. 

15.4 RADIAL RETURN WITH MIXED LINEAR 
HARDENING 

We will now extent the radial-return procedure of Section 6.6.7 to include kinematic 
hardening in conjunction with the Prager evolution law. To this end, we will use the 
notation of Chapter 6, whereby point A is on or inside the yield surface and refers to the 
position at the beginning of the increment, point B is the elastic trial position and 
point C is the final position. A backward-Euler procedure then involves (see also 
(6.85)): 

SC = SH - 2/tds,, ( 15.32) 

and using ( 15.14a)and ( 15.20a) for a and applying a backward-Euler incremental form, 
we can write: 

ac= aR+ fA;A+ = aA+ f A L A ~ ; ~ ~  ( 15.33) 

where (see ( 15.25)): 

( 15.34) 

The last relationship in ( 1  5.34)stems from the cylindrical nature of the von Mises yield 
function. In particular, if kc = Ol&, the same relationship applies for the equivalent 
stresses so that oeC= UoCBand 

( 1  5.35) 

From (15.32)to (15.34), 

( 15.36) 

so that 

( 1  5.37) 

The 'stresses', tc,in ( 15.36)should satisfy the yield criterion: 

+ Ai.Ai) ( 1  5.38)f = vG / /  cc j /  -oOc= oec-oOc= - (3,u + A;)A2 - (aOB 

For the last relationship in ( 1  5.38),we have used (15.37) for occ.In equation (15.38),the 
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scalar AI is the isotropic hardening parameter (see ( 1  5.20~)).From ( 1  5.38), 

OeB-OoB - .fBAA = 
(3p + A ;  + A ; )  - ( 3 p  + A ;  + A ; )  

( 15.39) 

From ( 1  5.33), ( 1  5.34) and ( 1  5.39), 

( 1  5.40) 

so that using ( 1  5.36)for tc and the first relationship in ( 1  5.40) for a,, we obtain: 

(15.41a) 

or using (15.39) for AA, 

(15.41b) 

Equations ( 1  5.39)-( 15.41a) (or ( 1  5.40) and ( 1  5.41b)) define the complete return. (Note 
that the scalar 3’ in (15.41) is equivalent to the scalar cc used in (6.67)when we only 
considered isotropic hardening. We are here using 7 rather than a because the latter 
symbol is now used for the ‘back stress’.) 

Readers interested in the derivation of a consistent tangent relationship to follow the 
above ‘return’ might like to move directly to Section 15.8. 

15.5 RADIAL RETURN WITH NON-LINEAR HARDENING 

At the end of Section 6.6.7, we showed how a scalar Newton-Raphson iteration could 
be used to apply the radial return method with non-linear isotropic hardening. Such 
a technique can also be applied with kinematic or mixed hardening. 

To this end, we can replace ( 1  5.40) with 

( 1  5.42) 

where 
A k ( E p s A )  = A K A = (1  - m ) A A  and A k ( E P s c )  = = ( 1 - nj)Ac 

are the ‘kinematic hardening stresses’ respectively at the beginning and end of the 
increment. Knowing the equivalent plastic strains at these positions, A A  and A, can be 
obtained from the uniaxial stress/strain relationship (see (Figure 15.3). In  deriving 
( 1  5.42), we have used the relationship: 

( 1  5.43) 

Hence, replacing A;AA by the right-hand side of (15.43) in (15.38)gives: 

.f, = OeB - 3pAiL- + A k A  - ‘ o C ( ~ ~ S C )  ( I  5.44) 
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which is a non-linear equation in A i  which can be solved using a Newton-Raphson 
iteration based on the truncated Taylor series: 

On setting the new value of the yield function, fCn to zero, (15.45) gives an iterative 
change, x in A i .  

15.6 A GENERAL BACKWARD-EULER RETURN 
WITH MIXED LINEAR HARDENING 

In this section, we will extend the general backward-Euler method of Section 6.6.6 to 
include mixed hardening. We will adopt the Ziegler evolution law. Following the 
procedure of Section 6.6.6, we start by defining a residual between the current stress and 
the correct backward-Euler return, i.e. (see (6.79)): 

ro =ac-(ag-AkCa,) =0 ( 15.46) 

The C matrix in (15.46a) is the elastic constitutive matrix while the symbols A, B and 
C in ( 15.46a) follow those adopted in Section 15.4 and originally introduced in Sections 
6.6.2, 6.6.5 and 6.6.6. In equation (15.46a) and throughout this section, we will work 
with matrices and vectors. Such an approach is directly applicable to plane strain and 
axisymmetric configurations (using four components) or to plane stress using three 
components. However for the full three-dimensional situation, we would either need to 
adopt the device of Section 4.2 and work with nine-component vectors or alternatively 
introduce the L matrix of Section 6.5. 

In conjunction with ( 15.46a), we require a residual between the current back stress 
and the backward-Euler form so that, using (15.14b) and (15.20b) but with A's instead of 
rates: 

r , = a c - a A + - A &  = O  ( 1  5.46b)( 2 )
In addition, we must satisfy the yield function (15.38) which we will re-write here as: 

J' = IT& -ooc=0 (1  5 .46~)  

Equations (1  5.46a)-( 15.46~) define the complete set of equations which must be 
satisfied. 

As a starting-point for the iterative solution of these equations, we can obtain A i  
from (6.59) (see also (15.19)) so that: 

AA = f B  

aiCa, + A ;  
( 1  5.47a) 

where all quantities are computed at the elastic trial position B. The hardening 
parameter A' in (15.47a) would be the sum of the kinematic and isotropic terms (see 
(15.19)) and would equal the hardening parameter at the initial position A (see 
Figure 15.4). The first estimate for ac would then be as-AiCa,, which the first 
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estimate for ac would be obtained as 

(15.47b) 

In  order to solve iteratively (15.46a)-( 15.46c), we apply truncated the Taylor series so 
that: 

?a 
ran = rno+ b + i,Ca + AAC - ( b  -a )  (15.48a)

2b 


A ’  . AA‘ 
rzn= rao+a -213 + A; -aire -ALAi’(6 -a) ( 15.48b) 

Qe Oe 

f ,= f ,+ 6e-6, = f ,+ 6e-A$ (15 .48~)  

where we are following the convention whereby the subscript n means ‘new’ and the 
subscript o means ‘old’. We have also set: 

(15.49) 

and have dropped the subscript C. For the von Mises yield criterion, the matrix ?a/& 
has been given in (6.47) (Note that the a vectors involves a components rather than 
r~ components). 

By setting the left-hand sides of equations ( 1  5.48a- 15.48~) to zero, we can provide the 
basis for a Newton-Raphson iteration. In particular, substituting into (15.48b) from 
( 1  5.48~)for 6e 

a = -Dlrao+ D2a + D 3 k  + D,ir ( 15.50) 
where 

d = ALAi’ (15.51a) 

Substitution from (15.50) into (15.48a) then leads to 

da 
?a 
?a

Q 6  = - rao-DIAAC-rao+ A%D,C ’a 
C O  

)Ca -D,A2C a (15.52) 

with (compare (6.81)): 

( 1  5.53) 

For the von Mises yield criterion, it can be shown (see (6.47) for ?a/&) that: 

da-a=()  (15.54)
acr 

and hence, we can simplify (15.52) to give: 

b =  - Q - ’ r - i Q - ’ C a =  -Q-’r-jLRa ( 1  5.55) 
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where 

i = rao + D , A X- r lo?a 
(70 

( 1  5.56) 

and (see also (6.108)): 

R = Q - ’ C  ( 15.57) 

Substituting from ( 15.50) and ( 15.55) into ( 1  5.48~)allows one to obtain (for von Mises): 

(AI + D,a‘Ra + D,o,); = f v  -DlaTQ-‘i+ DlaTrIv-D p ,  ( I  5.58) 

Having obtained jvfrom ( 1  5.58),we can obtain 6 from (1 5.55) and a from ( 1  5.50). 
In Section 15.9, we derive a consistent tangent modular matrix that is consistent with 

this return. Readers might prefer to move directly to that section. 

15.7 A BACKWARD-EULER PROCEDURE FOR PLANE 
STRESS WITH MIXED LINEAR HARDENING 

We could use the general approach of the last section, which uses Ziegler’s evolution 
law for plane stress. However, a simpler procedure can be derived by modifying the 
procedure of Section 6.8.2 to include mixed hardening. To this end we will adopt the 
equations of Section 15.3. In particular, we will use the mixed version (via the factor 
( 1  -m)-see Section 15.2)) of the three-component form of ( 1  5.28) for a (although here 
using increments instead of rates). The backward-Euler stresses, are then given by 

( 15.59) 

or 

( 1  5.60) 

Following closely the procedure of Section 6.8.1, in place of (6.124)-(6.126), we now 
obtain: 

( 1  5.62) 

( 15.63) 

( 15.64) 

where OxB,Oye and Sxyn are known and (see (15.49)), A;.’ = Ai/aeC. With kinematic 
hardening, in place of (6.128), we can write the equivalent stress as 

O,Z = d((6,+ 6JZ+ 3(6,- C3J2 + 12r3 ( 1  5.65) 
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Substitution from (15.62) to (1 5.64) for (6, + 6v)c,etc. gives the following expression 
for the yield function, .f2 = 01 -0: (see also (6.129)): 

where r is given (see also (6.130)) by 

( 15.67) 

and (compare (6.13 1) )  

c,= (6\+ 6”);; c2= 3(6, -6J; + 12?$, ( 15.68) 

We have introduced a new ‘effective stress’, oat, in ( 15.66) because oaCis itself a function 
of oeC(via A;.’ = AjL/oec.).Hence, we must supplement (15.66) with 

y = o;, -o& = 0 ( 1  5.69) 

Equations (15.66) and ( 1  5.69) provide two non-linear equations in two unknowns, A;+ 
and o,,. To solve these equations, we could use the method of Section 15.6 (i.e. equation 
15.47a) to obtain a starting value for 63, and, in addition, start with ( T , ~  = (T,,~ and 
oeC= oeB.Application of truncated Taylor series to ( 15.66) now leads to 

( 1  5.70) 

where 

while a similar application to (1 5.69) leads to: 

As usual, we can derive an iterative process by setting the left-hand sides of ( 1  5.70) and 
(15.72) to zero.,Substitution from (15.72) into (16.70) then leads to 

(1  5.73) 

from which we can obtain x and hence, via ( 15.72) (with y, = 0) 6c.When the iterative 
process has converged, we know AIband o, and via (1 5.62)-( 15.64) can obtain a,. Also 
(see (15.59)), we can obtain: 

( 15.74) 

and hence G, = 8, + a,. 
In Section 6.8.2.1, we derived, a special form for the consistent tangent modular 

matrix which followed on from the special return of Section 6.8.2. The latter return 
corresponds with the present return when the kinematic hardening term A; is set to 
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zero. However, with kinematic hardening there does not seem to be any major 
advantages stemming from a special derivation of the consistent tangent modular 
matrix and, instead, one may use the general method to be outlined in Section 15.9. 

15.8 A CONSISTENT TANGENT MODULAR TENSOR 
FOLLOWING THE RADIAL RETURN OF SECTION 15.4 

Differentiation of ( 1  5.41a) gives 

S, = i ' cn  + = 2,~;rc!+ ( 15.75) 

where ;Iis given in (15.41a) as 1 - 3/tAEu/0,,so that: 

( 15.76) 

The term ci, ,  can be obtained by differentiating ci,, = ,,q I /  {n  11  to obtain: 

( 1  5.77) 

The consistency condition is obtained by differentiating the yield function: 

f = o,, - o,C = O(T,H - g0c ( 1  5.78) 

where ( I  was given in (15.37)as 

1 - AA(3p+ A;)  
OeH 

so that: 

.f = 06 ,n  + OoeH - 6,c = Ucie, + O c , B  -AI;I = 0 ( 1  5.79) 
where: 

8 =  - ( I  
i,

- o ) - + ( i
AA 

-U)%, 
b e n  

( 1  5.80) 

Consequently, we can obtain jLfrom (15.79)via: 

(15.81) 

where, for the last relationship in ( 1  5.8 I ) ,  we have used (15.77)for kee.Substituting into 
( 15.76)from ( 15.81 )  for and from ( 1  5.77)for ken leads to 

i; = 2/1/35, :ec ( 1  5.82) 

where 

( 15.83) 
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where we have used (15.37) for 0. (Noting that from (15.41a) equals x from (6.87), ;I 

equation (15.83) coincides with (6.101) once AI + A; is replaced by A ' . )  Substituting 
from ( 1  5.82) for into (1  5.75) now leads to 

( 15.84) 

where f l  is given by (15.83) and 1' by (15.41). Knowing, from (15.36), that 5,  = kCiO. 

equation (15.84) can easily be changed to involve kc.Apart from the replacement of s by
5, (15.84) takes an identical form to (6.102) derived in Section 6.7.1 for isotropic 
hardening. The latter chapter indicated how to modify (15.84) to relate to total rather 
than deviatoric terms. 

15.9 GENERAL FORM OF THE CONSISTENT TANGENT 
MODULAR TENSOR 

Following the backward-Euler procedure of Section 15.6, a consistent tangent can be 
derived by differentiating oc in (15.46a) (with ra =0) to give 

( 1  5.85) 

We can now substitute into (15.85) from ( 15.50) for a. In  the following, we will assume 
that we are adopting the von Mises yield criterion so that (15.54) applies and we can 
therefore simplify the resulting expression to give: 

Qt5 = Ci: -XCa (15.86) 

where Q was given in (15.53) (with D,from (15.51)). It follows that: 

6 = Q - 'C&->Q- 'Ca = R&-ARa ( 15.87) 

To obtain 2, we apply the consistency condition: 

. j = ke-0 = a T 6  - aTa -~ ' j .= 0 ( 15.88) 

where t5 from (1 5.87) and & from ( 15.50). Again restricting the solution to the von Mises 
yield criterion (via (15.54) and the relationship aT6= ae).we obtain: 

1,= D,aTRi - aTRi: 
(AI + D30e+ D,aTRa)- (aTRa+ AI + A ; )  

( 15.89) 

In the first relationship in (15.89) D,and D, are from (15.51). The final relationship, 
which is obtained after some algebraic manipulation is of an identical form to that in 
(6.109) once A J+ A; are replaced by A'.Substitution from ( 15.89) into ( 1  5.87) then leads 
to the consistent tangential relationship whereby: 

( 15.90) 

Equation (15.90) takes the same form as (6.1 10) once A: + A; is replaced by A'.  
However, one should note that the Q matrix entering the R matrix via (15.57) (or see 
(15.87)) differs from the Q matrix of (6.109) because of the D, terms (see (15.51)) in 
( 15.53). 
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15.10 OVERLAY AND OTHER HARDENING MODELS 

Instead of using ‘conventional’ kinematic hardening, one may use some form of 
‘overlay’ model [B2, M3, 01, H1, 221 in which each ‘overlay’ has elastic/perfectly 
plastic material properties. The ideas are illustrated in Figures 15.4 and 15.5. The first of 
these figures relates to the simplest two-overlay model which can effectively reproduce 
pure linear kinematic hardening. This is achieved by allowing the first overlay (1) to 
yield at the yield stress 0: (Figure 15.4b) which is also set to the yield stress, o1 of the 
equivalent kinematic model (Figure 15.4~). The second overlay (2)is given linear elastic 
material properties. In  relation to a conventional kinematic model with linear harden- 
ing, the E value E ,  in Figure 15 .4~ is related to the kinematic hardening parameter, 

P 

I0 I 
W E  

i
I 

I 

Figure15.4 Two-layer overlay. (a) Overlay model; (b) stress-strain relationships for constituent 
overlays; (c) stress-strain relationship for ‘overlay model’. 
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Figure 15.5 Four-layer overlay. (a) Overlays; (b) stress-strain relationships for constituent 
overlays; (c) stress-strain relationship for 'overlay model'. 

A; via (see (6.13)): 

(15.91) 

On unloading, the composite will follow the line BC (Figure 1 5 . 4 ~ )until at C (with 
CB = OA), the stress in the yield layer 1 will be zero (Figure 15.4b) and at D (with 
BC = CD) will have again reached the yield surface. The resulting composite stress- 
strain relationship (Figure 15.4~)displays the main features of kinematic hardening. By 
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giving the second layer (2)  a higher yield stress, we can produce a form of piecewise 
linear, non-linear hardening as indicated by the horizontal line X Y  in Figure 15.4~).  To 
produce a more general piecewise linear, non-linear hardening, we can introduce more 
layers (Figure 15.5). 

Returning to the simple. two-overlay model. we have not yet indicated how the layer 
areas can be chosen to ensure the desired composite stress strain relationship. From 
Figure 15.4a, equilibrium ensures that: 

P = Aa = A , o '  + A2a2= A ( W , O '  + ( o ~ o ~ )  ( 1  5.92) 

where A , and A 2  are the 'areas' of overlays 1 and 2 respectively and a' and a2are the 
equivalent stresses while (7 is the 'composite stress'. I n  ( 1  5.92), we have also introduced 
the weighting parameters ( U ,  and oi2 which we will generally use rather than 'areas'. In  
order to ensure that the composite has the desired effective E value, E ,  (Figure 15.4~).  
we need merely ensure that following the yielding of overlay 1: 

P = Acf = AE2i = A2a2= A2E,i  ( 15.93) 

where (see Figures ( 15.4b) and ( 15.4c)),E , is the elastic E value. From ( I5.93),i t  follows 
that: 

( 15.94a) 

( 15.94b) 

Readers might have noted an inconsistency in this model which relates to the effect of 
Poisson's ratio and the multiaxia18:uniaxial relationships. We will address this issue in 
Section 15.10.1. but in the meantime, will consider the extension of the previous model 
to give a more sophisticated hardening relationship (Figure 15.5~).  

We will assume that we have IZ overlays. Then to obtain, the slope E ,  for the 11th 

segment of the composite curve (Figure 15.5~). we obtain, in place of ( 1  5.94a): 

E 
( 0  = -2 ( I  5.95)

El 

while for the segment, I I  - 1 ,  the stress-strain relationships provide: 

from which: 

( 1 5.97a) 

or  

( 15.97b) 

The previous relationships are tabulated (under simple weighting) for a four-layer 
model in Table 15.1. 
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Table 15.1 Table of properties for four-layer model. 

Layer, k Simple weighting, W, Complex weighting, W, Yield stress, C: 

4 

3 or 

2 or 

1 

Figure 15.6 Mroz's overlay model. (a) Uniaxial relationship; (b) initially concentric yield surface 
after reaching point C in Figure 15.6(a). 
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We will now consider the computation of the yield stresses in the layers (G:)for the 
different layers. For the first layer to yield, we clearly have (see Figure 15.61, ad = al.For 
the second layer, we must note that in the model the first layer has already yielded so 
that equilibrium relationships provide: 

P 
-= 0 2  = (1 - ,U1).; ( 15.98)
A 

(The last term in ( 1  5.98) is not a, squared.) We can continue in this manner to computer 
all of the at. These relationships have been tabulated for a four-layer model in 
Table 15.1. 

15.10.1 Sophisticated overlay model 

We can refine the previous model so that the response for (the initial) monotonic, 
uniaxial loading corresponds with that of a conventional model with non-linear 
(piecewise linear) hardening. We will assume that this uniaxial loading occurs in the 
x-direction and that the strains in the y- and z-directions are equal. As a starting-point 
it is useful to compute the tangent stiffnesses following first yielding for such a uniaxial 
loading. These are tabulated in Table 15.2 for linear-elastic materials, elastic, perfectly 
plastic materials and elastic,’hardening-plasticmaterials. These relationships have been 
expressed in terms of the bulk modulus, k and shear modulus ,u (see (4.23)).For the 
elastic materials, the stiffnesses can be obtained from (4.27)(or (4.30) or (4.31)).For 
elasto-plastic materials, all the shear stresses are zero and we are left with 

or= (ox.U, = 0,a, = 0); s’ = ($0,.- fax,- fax)  ( 15.99) 

where a, = ac = IT,. The elasto-plastic stiffnesses in Table 15.2 can then be obtained 
from (6.45)with: 

(15.100) 

Applying the relationships in Table 15.2 to the uniaxial loading and noting that 

Table 15.2 Tangent stiffnesses for uniaxial (x-direction loading) 

Stiffness Elastic Perfectly plastic Plastic with hardening 

k + $11 k +  /icw 

k - $ / l  k - l iC Y Z  
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E, = iz,we can obtain: 

+ ;per (iA6-<= k ( i x  + 24%) - d).) ( 15.10 la)  

6, = k(E.x+ 2E,) -+per( E ,  -i,) (15.101b) 

Equations( 15.101) can be applied to the elastic case by setting per= p. If we assume that 
ciy = 0 and substitute from (15.101b) into (15.101a), we obtain: 

6, = 2per(E ,  - 6,) (15.102) 

while, from (15.101 b), we can obtain (with ci,, = 0) 

d,= - q i  x ( 15.103a)* 

(15.103b) 

In deriving the last relationship in (15.103b), we have used (4.23) for k and p (with 
E = E,),(15.100)forper and(l5.9l)for A’.Substitutionfrom(l5.103)into(l5.102)gives 
the desired relationship 6.K= E,& (see Figure 15%). For perfect plasticity, E, = per= 0 
and 9 in (1 5.103) is 11’2. For elasticity, E ,  = E ,  and per= and y in (14.103) is found to 
equal v. 

We will first consider the two-layer composite of Figure 15.5a) and following the 
yielding oflayer 1 at 0;= ol ,will require that E,. = -yd, with y from ( 1  5.103b).To make 
the following developments easier to follow, we will temporarily refer to layer 1 as the 
‘elastic layer’ (with a subscript e) and layer 2 as the ‘plastic layer’ (with a subscript p). 
With the imposed strain rates, for the tangential relationships for these two layers can 
be obtained from Table 15.2 as 

For the combined composite, we require that: 

ciy = + O P c i Y P  (15.106) 

Substitution from (15.104b)and ( 15.105) into (1 5.106). then leads to 

(1 + 1’)( 1 -29) - 2E,( 1 + 17) A’ 
Q, = w2= -

(1  - 2v)(1 + 9)  - 3E, + E2(1 -211) - 311 + A’ 
( 15.107a 

so that: 

wp= COl = 1 - (0.2 = 3(& -E 2 )  3P 
3E, + E2(1 -2v) - 3p + A’ 

(15.107b 

As a check, we can show that, with we and cop from (15.107), we obtain: 

bTV= webXe+ opciXp= E 2 i ,  (15.108) 

with ci,, from ( 1  5.104a) and 6‘xpfrom (1 5.105). 
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I t  is not difficult to extend the previous concepts to relate to more layers. Consider- 
ing, for example, four layers (as considered in Table 15. l), we can consider the situation 
in which the third layer has just yielded (previously the first layer had just yielded) to 
obtain an equivalent expression to (15.107a),but with the subscript 4 in place of the 
subscript 2 (see Table 15.1). Considering next the situation immediately following the 
yielding of layer two (sothat the combined elastic weighting equals co3 + w4), we obtain 
the relationship given in Table 15.1, for k = 3. The procedure continues until the 
weightings for all the layers have been obtained. 

15.10.2 Relationship with conventional kinematic hardening 

We will now briefly explore the relationship between the conventional linear kinematic 
hardening of Section 15.1 and the present two-layered model. By the very definition of 
the sophisticated weighting parameters, the two formulations coincide for uniaxial 
loading. We will now write down the key equations for the two procedures with the (a) 
equations relating to the standard kinematic approach and the (b) equations relating to 
the layers model. We will concentrate on the deviatoric components since the mean 
stresses are clearly given by the same relationship in each model. 

for the yield criterion, we have 
f = 3 2 li5ll -a,; k = s - a  (15.109a). 

f, = $ I I  spI /  -a,; s, = -
1 

(s- 2pco,,e) (15.109b) 
WP 

For the (basic) tangent relationships, we have 

(15.110a) 

~d = topsp+ 2 p 4 e  = 2p 1 -
3 p  + A' sp:sp 

(15.1lob) 

11
Equation (15.1 10a) can be simply obtained from (15.84) with = 1, while ( 15.1lob) 
involves the standard relationship for S given in (6.43). 

In conjunction with the above, the evolution of the back stress and its equivalent for 
the two-layered model are given by 

(15.1 1 l a )  

2pA'
(2pto,e)' = 2p0,e = 

(3p + A ' ) e  
(15.11 1b) 

15.10.3 Other models 

The previous model involved a set of sublayers in each of which the response was 
assumed to follow that of an elasticlperfectly plastic material. Mroz [M2, M3] has 
introduced a related model in which the response of each sublayer is governed by 
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conventional kinematic hardening. As with the previous sublayer model, a piecewise 
linear uniaxial loading curve can be specified (Figure 15.6a). In the multiaxial space 
(represented, for convenience, via the circles in (Figure 15.6b)). the initially concentric 
surfaces have translated. The inner surface which represents point A in Figure 15.8a, 
has on reaching the next surface (representing point B in Figure 15.6a)). moved in an 
outward direction so that the two surfaces touch each other but do not intersect. 
Related approaches have been applied by Krieg [K 1J and Dafialas and Popov [Dl.  
D2] with their two-surface and bounding-surface models. 

15.11 COMPUTER EXERCISES 

In Section 6.9, we gave a set of numerical examples illustrating the application of the 
various numerical strategies. These examples all involved plane stress with only two 
stress variables (by setting T and y to zero). They also involved no hardening. Once 
hardening, and especially kinematic hardening, is introduced, i t  becomes more difficult 
to obtain the solution ‘by hand’. However, i t  is a simple exercise to write simple 
computer programs, illustrating the methods-particularly if the restriction to two 
stress variables are introduced. This exercise (which has been completed by the author) 
involves the following. 

1 .  Write a computer program whereby the material properties are input as E,  19, A ’  and 
m (the mixed hardening parameter-see Section 15.2); the initial ‘stresses’ are input 
as cA(with aAassumed zero) and the strain increment is input as AE. The program 
should then obtain the plastic strain-rate multiplier, A 2  and the final ‘stresses’a, and 
a, at C. The general method of Section 15.6 should first be used, and second the 
special method of Section 15.7. (Both methods should give (effectively) the same 
answers.) 

2. Following on from these returns, apply the method of Section 15.9 to obtain the 
consistent tangent modular matrix. 

The author has written the above computer programs and has adopted the input 
data of Section 6.9 with (see (6.141)): 

E = 200000 N/mm2; 1’ = 0.0; 0,= 200N/mm2 (15.1 12) 

and (see (6.142)): 

= (120, - 80) (15.113) 

while (see (6.156)): 

AcT= (0.0014,O.OO 14) (15.1 14) 

For the first analyses, no hardening was considered so that A’ =0. In these circumstan- 
ces. we obtained: 

t~: = (226.2, 153.3); AA = 0.001 62 (15.115) 

which corresponds with the solutions given in (6.171) and (6.172). 
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For this case, the consistent tangent matrix was that previously given in (6.177) and 
(6.180). 

To apply hardening, A' was set to 20000 N/mm2. Isotropic hardening was initially 
considered so that rn = 1. The following results were then obtained: 

U: = (249.6, 164.4); A i  =0.000987; oe = c0= 219.7 (15.116) 

The consistent tangent modular matrix was then found to be 

0.290 40e5 -0.105 90e5 
(15.117)

-0.10590e5 -0.950 10e51 
(This matrix could be obtained by the method of Section 15.9 which, corresponds for 
isotropic hardening with that of Section 6.7.2 or by the method of Section 6.8.2.1.) 

With pure kinematic hardening, so that rn = 0, the following results were obtained: 

c: = (249.6, 164.4); a: = (22.43, 15.77); A;. = 0.0009873 ( 15.1 18) 

The resulting consistent tangent modular matrix was 

0.286 8e05 -9353.0 
(15.119)

C1=[ -9353.0 0.9077e5I 

When mixed hardening was considered, with rn =0.5, we obtained: 

arz(249.6,  164.4); ar=(11.21,7.39); Ai=0.000987; 0,=0,=209.9 
(15.120) 

The resulting consistent tangent modular matrix was 

0.288 6e05 -9982.0 
( 1  5.121) 

-9982.0 0.9294e51 
15.12 VISCOPLASTICITY 

Work on viscoplasticity can be found in [Pl-P4,21.14]. Having introduced a time-
dependent response, we can replace the flow rule: 

(15.122) 

with 

(15.123) 

where 1' is a 'viscosity parameter' and 

( 4 ) = 0  if f < O  ( 15.124a) 

( 4 ) = 4  if f > O  (15.124b) 

(If  a non-associated law was adopted we would simply replace a in (15.123) with 
b = ?y/Se, where y is the plastic potential.) In practice, instead of expressing q!~as 
a function of the yield function f;we might use a power law to express it in terms of the 
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effective stress. oc and the yield stress, oo,so that either: 

(15.125a) 

or 
(15.125b) 

where, as usual, oeis a function of the stresses G while oois a function of some hardening 
parameter (here in an ‘isotropic manner’). Equation (1 5.125b) is often known as the 
Perzyna model [P3, P4] while (15.125a) has been used by Pierce et al. [Pl] and Peric 
and Owen [P2]. Using either (1 5.125a) or ( I  5.125b), we could replace (1  5.124) with: 

(15.126a) 
(1 5.126b) 

With time-independent plasticity, in the one-dimensional case, we would have 
oc = oo = o and 

o = fn(&,) (15.127) 

For the equivalent viscoplastic formulation, from (1 5.125a) 

where we have also used (15.123) with a = 1 in the one-dimensional case. From 
(1 5.125b) we would obtain: 

As ivptends to zero or y tends to infinity, both (1 5.128a) and ( 1  5.128b) tend to the ‘static 
solution’ of (1  5.127). Also, as N tends to infinity (1 5.128) tends to the static solution. 
However, as pointed out by Peric and Owen [P2], the latter is not the case for (1 5.128b). 

In order to integrate the flow rules, we can, as with time-independent plasticity, 
introduce a forward-Euller procedure, a backward-Euler procedure or some general- 
ised mid-point rule (see Section 6.6.5 and Z1.14). With viscoplasticity, the forward- 
Euler procedure leads to a particularly simple formulation (see 21.14). However, we 
will here follow the techniques that we have usually used for time-independent plasticity 
and will introduce a backward-Euler procedure which allows the use of relatively large 
time steps. The method turns out to be very similar to that previously described for the 
rate-independant case. Adopting such a backward-Euler procedure and following a 
very similar procedure to that of Section 6.6.6, we would attempt to satisfy the 
equations: 

r = crC- (q- AAac) = 0 ( 15.1 29) 
g = AA -Aty(q), = 0 ( 1  5.130) 

In (1  5.130) we have introduced the time increment At, because we are now dealing with 
a genuinely time-dependent problem. In contrast, for the time-independent problem, 
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time was only conceptual (see comments below (6.4) in Section 6.3) and there was 
therefore no need to directly introduce At although i t  was implicitly contained within 
the previous A i .  To satisfy ( 15.129) and (15.130), we would apply the truncated Taylor 
series to both ( 15.129) and (15.130) so that: 

( 1  5.131 )  

( 15.132) 

(15.133) 

so that, using (1 5.13 l), we could obtain: 

and hence we can update A i  and, via (15.13l), we can update G,. 

15.12.1 The consistent tangent matrix 

Differentiation of ( 1  5.129), with r zero and ognow free, we obtain: 

b Ri: - XRa = Q - 'CI: - X Q - 'Ca ( 15.135) 

while substituting from (15.135) into ( 1  5.132) (with gold = O), we have: 

( 15.136) 

with the scalar U having been defined in (15.134). Substitution into ( 15.135) then leads to 
the relationship: 

(15.137) 

which can be re-expressed as 
r 


1 

+ aTRa --+' A' 
RaaTR i: ( 1  5.138)

1 dJ1 1yAt4; 4 e  

The term l/(yAfdJ;) tends to zero as y -+ x or as At -+ x,while in these circumstances 
4 4 0  so that oe-+croand assumingeither(l5.125a)or (15.125b): 

(15.139) 

so that (15.128) then corresponds with the rate independent form of (6.110). 
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15.12.2 Implementation 

Peric and Owen [P2], who used (15.125a), reported numerical difficulties as N became 
large and the system became stiff. They considered the latter to occur when N > 5. In 
these circumstances, they first applied the backward Euler return to the underlying, 
static or rate-independent problem. To this end the yield function would be defined by 
.f = 4 from ( 15.125a). They then used the one-dimensional relationship of ( 15.128a) to 
scale the resulting ‘static stresses’, G ~ , ~ ~ ~ , ~ ~ ,so that: 

( 15.140) 

These stresses would then provide a starting-point for the previous viscoplastic, 
backward-Euler return (Section 15.12). 

15.13 SPECIAL NOTATION 

a = ?.f/?a = -?f/?a which is defined as a column vector 
A’ = hardening parameter, A; = isotropic parameter, A : = isotropic 

parameter 
A ,,A , = scalars for plane-stress analysis (see (6.124) and (6.125)) 
C,, C, = Respectively Prager and Ziegler coefficients for kinematic hardening 
C,, C, = stress parameters for plane-stress analysis (see ( 15.68)) 

C = elastic constitutive matrix (or tensor) 
C, = tangential constitutive tensor (or matrix) 

C,, = consistent tangential constitutive tensor (or matrix) 
C, = constitutive matrix with three stress components; C, = constitutive 

matrix with four stress components (Section 6.8) 
D,-D,= scalar (1 5.5 1 b) in Section 15.6 

e = deviatoric strains 
.f = yield function; .f2 = squared form (see ( I  5.66)) 
.I/ = yield function as given by (1 5.69) 

H‘ = hardening parameter (slope of uniaxial stress/plastic-strain relation-
ship); H’ = H’ for isotropic hardening 

k = bulk modulus 
m = ratio of plastic strain for isotopic response 
Q = special matrix (see (15.53)) 

Y = (1 + v)/( 1 - Y) (Section 15.7) 
r = residual vector; ra for stresses (1 5.46a); rl for back stresses ( I  5.46b) 
R = special matrix (see (1 5.57)) 
s = deviatoric stresses 
a= back stress 
a’ = deviatoric back stress 
p = scalar for consistent tangent (see ( 15.83)) 

c,, = equivalent plastic strain; cpsi= isotropic c,, 
E = vector or tensor of strains 
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& = strain rate 
&, = total strain rate (the subscript t is often dropped) 
iP= plastic strain rate; &,,-kinematic, &,,-isotropic 
e = deviatoric strains 
-! -- scalar for radial return 
i.= plastic strain rate multiplier 

5;-= incremental plastic strain rate multiplier, A;.’ = A;.,/o, 
p = shear modulus 

(T, = effective stress 
(T, = yield stress 
(T = stress 
a = a - a  
0 = scalar for radial return (Section 15.4) 
( = s - a ’  

Subscripts 

e = elastic 
n = new 
0 = old 
p = plastic 

Superscripts 

= rate (or change) 
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I6 Large rotations 


Basic reading on 'large rotations' can be found in [Al, A2, Bl-B3, G1, P1, 
R1, R2, S1, S6]. The main aim of the present Chapter is to pave the way for the work in 
the next chapter on three-dimensional beams and some of the work in Chapter 18 on 
shells. The original intention was to avoid, in the present chapter, any direct mention 
of finite elements and the associated concepts such as 'nodes'. This has largely 
been achieved in Sections 16.1-16.13, but the work in Section 6.14 on curvature is 
fairly closely linked to the developments in Section 17.3 of Chapter 17. Rather 
than attempt to digest the complete chapter in one sitting, the reader might prefer to 
read Sections 16.1-16.10 as a general introduction and then move on to Chapter 17 
before returning to the later sections of the present chapter as and when they are 
required. 

16.1 NON-VECTORIAL LARGE ROTATIONS 

Figure 16.1 shows that the result of a set of large rotations depends on the order in 
which they are applied. Hence, such rotations cannot be treated as vectors. This 
phenomenon has important implications for the finite element analysis of space frames 
and shells. 

16.2 A ROTATION MATRIX FOR SMALL 
(INFINITESIMAL) ROTATIONS 

In Figure 16.2b, a vector r, is rotated in the 1-2 plane through A 0  to become a vector r,. 
We could therefore write: 

r: = r,(cos(O, + AO), sin(0, + AO),O) (16.1) 

Alternatively, an approximation would involve: 

r, = r, + Ar = rot + r,AOn ( 16.2) 

where ro = ' 1 r, 1 1 ,  n is the unit vector orthogonal to both r, and the z-direction (or e,) so 
that t 'n = e5n = 0 and hence: 

n = f - sin O,, cos Oo, 0) ( 16.3) 
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t’ t 4 A 

Z 

(b) 

Figure 16.1 The non-commutativity of vector rotations. (a) 8,, O x ,  8,; (b) O x ,  8,, 8,. 
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Figure 16.2 Axes and two- and three-dimensional rotations. (a) Axes and unit base vectors; (b) 
two-dimensional rotation; (c) small three-dimensional rotation. 

Hence, (16.2) can be rewritten as 

1 0 0  0 -AU 0 
( 16.4) 

or 
r, = Rr, = [l + S(AO)]r, (1  6.5) 

This relationship can be accompanied by 

8, =8, + A8 = floe3+AOe, = (0, +AOk, ( 16.6) 

because in two dimensions rotations are additive. For the effectively two-dimensional 
problem of Figure 16.2b, there is little point in adopting (16.4) rather than the simpler 
exact form of (16.1). However, (16.2) can be generalised (Figure 16.2~)to 

r, = ro + Ar = ro + (A8 x r,) ( 16.7) 
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where the symbol x denotes a cross-product so that (A8 x ro)is orthogonal to both A 8  
and r, and is of magnitude A&, sin fl ,  where (Figure 16 .2~)  [j is the angle between A 0  and 
ro. Equation (16.7) can be recast in the form of (16.5) with 

( 16.8) 
0 

With infinitesimal rotations, A8 represents the ‘spin’ 

16.3 A ROTATION MATRIX FOR LARGE ROTATIONS 
(RODRIGUESFORMULA [R2]) 

In this section we will derive equivalent expressions to (16.5) and (16.8) that apply even 
when the rotations are large. To this end, we will assume that rotation from ro to rn 
involves a ’pseudo-vector’ [A 13, 

8 = 0, = O,el + 0,e, + 0,e, = Oe ( 16.9)[:::I

whre e is a unit vector about which the rotation occurs and (Figure 16.3): 

0 = 1 1  8 1 1  = (0; + n; + 0;)li2 = (8%)’ (16.10) 

From Figure 16.3b, 

Ar = Aa + Ab (16.11 )  

where Ab is orthogonal to Aa. Also from Figure 16.3b, the length of Ab (Ah)is given by 

Ab = R sin 0 (16.12) 

4 

C 


P 

Figure 16.3 Three-dimensional rotation. (a) Rotation about OC; (b) detail. 
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so that: 

(16.13) 

But  (see Figure 16.3a): 

1 1  e x r, 11 = rosina = R (16.14) 

so that (16.13) can be ex-expressed as 

sin 0 
Ab = sin O(e x r,) =-(0 x r,) (16.15)0 

From Figure 16.3, the vector Aa is orthogonal to both e and Ab. Hence: 

Au Au 
Aa=---- II e x ro I1 (e  x (e x r,)) =-R (e x (e x r,)) ( 16.1 6) 

But, from Figure 16.3b, 

A a = R ( l  -COS@ (16.17) 

so that ( 16.16) can be re-expressed as 

(1 -cos@) 
Aa = (1 -cos O)(ex (e x r,)) = (0 x (0 x f,)) ( 16.18)

0 2  

Hence, from (16.1l), ( 16.15) and (16.18): 

sin 0 
rn = r, + Ar = ro + -(0 x r,) + (1 - c o d )  

(0 x (0 x ro) (16.19)
0 B2 

But, from (16.7) and (16.8), we know that: 

0 x ro =S(O)r, ( 16.20) 

and therefore: 

rn= Rr, (16.21) 

where 

= [I + sin OS(e)+ ( 1  - cos O)S(e)S(e)] ( 16.22) 

and e is the unit  vector obtained from the pseudo-vector 0 (see (16.9)). 
An alternative derivation involves the rotation and transformation relationships of 

Sections 4.3.1 and 4.3.2. In particular, we will first define a triad of ‘local’ unit vectors 
(Figure 16.4) with i ,  as the principal axis of rotation, i ,  being equal to the previous e, so 
that: 

0 = Oi, ( 1  6.23) 
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Figure 16.4 Three-dimensional rotation using the auxiliary triad, i,-i3 

Possible solutions for the two vectors i, and i, that make up the triad are: 

( 16.24) 
a 

( 16.25) 

where i1(2), for example, is the second component of i, and 

r 2= i1(1)2+ i1(2)2 ( 1  6.26) 

The unit vectors i, and i 2 4 ,  from (16.24) and (16.25) satisfy the orthogonality 
conditions, i:i2 = i:i, = i:i3 = 0. 

By Euler’s theorem, we can now rotate the vector ro about the principal axis i, so 
that (see (Figure 16.4)): 

0 
( 16.27) 

and the prime indicates that rb and rk are expressed in ‘local’ i1-i3 coordinates. 
However, from (4.36) we can transform R’ from ‘local’ to ‘global’ coordinates so that: 

rn = Rr, = T TR’Tr, ( 16.28) 

where from (4.35): 

T = [i,, i,, i3] ( 16.29) 
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I f (  16.23)-( 16.26)aresubstituted into(16.29)and(l6.29)and(16.27)aresubstituted into 
(16.28), the rotation matrix R in (16.28) will be found to coincide with the expression 
previously obtained in (16.22). 

In the last derivation, we used Euler's theorem which states that 'if a rigid body is 
rotated into a new configuration about a fixed point then there is only one line passing 
through the point which remains invariant during the motion' (the unit vector e in 
Figures 16.3 and 16.4). I t  follows that the rotation matrix, R, rotates e on to itself. 
Consequently, 

R(e,B)e- e = R(8)e-8 = 0 ( 16.30) 

so that e is an eigenvector of R (with positive unit eigenvalue). 

16.4 THE EXPONENTIAL FORM FOR THE 
ROTATION MATRIX 

The rotation matrix of (16.22) can be expressed in an exponential form as 

s(e)z s(e)3 
R = exp(S(0))= I + S(8)+ -+-+ ... ( 16.31 )

2! 3! 

This relationship can be established by expanding the sin 0 and cos 0 terms in ( 16.22) as 

o3 OS
sin 0 = 0 --

3! 
+ -

5! 
( 16.32a) 

U 2  

coso= 1 --+ *. .  ( 16.32b)2! 

16.5 ALTERNATIVE FORMS FOR THE ROTATION 
MATRIX 

Particularly with regard to compound rotations (Section 5.10.3), it can be useful to 
re-express (16.22) in slightly different forms that relate to modified forms of the 
pseudo-vector. As an example, instead of using 8 (16.9), we can use a where: 

= toe = 2 tan(0/2)e = 
2 tan(0/2) e ( 16.34)

0 

and has components which are sometimes known as Rodrigues parameters [R2]. 
Substitution from (16.34) into (16.22) gives: 

R (16.35) 
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where S(U)) is of the same form as S(0) - see (16.8). The reader will note that the 
pseudo-vector, a,in (16.34), becomes infinite at 8 = k180" (and multiples thereof) 
while, simultaneously, R of ( 1  6.35) becomes singular. Equation ( 1  6.35) was used by 
Hughes and Winger [H2] in relation to large-strain analysis (see (19.60) of Section 19.5). 

Rankin and Brogean [Rl] have given a further alternative form for R that does 
not become singular (although, as will be shown in Section 16.7. there are problems 
of uniqueness). To this end, they replace (16.34) with 

2 sin( 8/2) e+ = $e = 2sin(8/2)e = (16.36)
8 

so that substitution into (16.22) leads to 

R =  I +  (1 - ~ J I ' J I ) ' / ' S ( + ) + ~ S ( + ) '  ( 16.37) 

where S(+) is of the same form as S(0)- see (16.8). From (16.34) and (16.36). the 
relationships between the pseudo-vectors, U) and + are 

16.6 APPROXIMATIONS FOR THE ROTATION MATRIX 

The lowest-order approximation to R is [I + S(0)(see ( 1  6.5)). A better approximation 
can be obtained by replacing sin 8 by 8 and cos 8 by 1 - $0' in (16.22). This leads to: 

R N I + s+is2 (16.39) 

From (1  6.34): 

( 1  6.40) 

so that 
W 3 
8 = w - -+ . . .  (16.41)
12 

and w is a close approximation to 0 for angles up to 30" and consequently S(8) is a 
good approximation to S(W) and hence, from (16.35): 

( 16.42) 

is a better approximation to (16.22) than (16.39) and yet. unlike (16.22), does not 
require trignometric functions. 

16.7 COMPOUND ROTATIONS 

In a non-linear beam or shell analysis, we may have: 

( 16.43) 
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for which, 
r ,  = R(0)ro (16.44) 

followed by an incremental rotation, 

AOT= [A(),, AO,, A03! ( 16.45) 
for which: 

rn = AR(A0)r ( 16.46) 
where AR(A8) could be obtained from (16.22) (or (16.35) or (16.37)) and we couldt then 
obtain 

rn= AR(A8)R(8)ro ( 16.47) 
I t  should be emphasised that the A 6  pseudo-vector in ( 16.45) is non-additive to 8 even in 
the limit as ri0 tends to zero. This point will be explored further in Section 16.1 1. 

A more general compound rotation involves: 

r ,  = R(wl)ro; r2 = R(w2)r, ( 16.48) 
so that: 

r2 = R 2 ( w J R 1 ( q ) r 0  ( 16.49) 

where we have used the w rather than 8 form of 'pseudo-vector' (related by a constant 
involving tan(0/2)-see (16.34)) because the latter form will turn out to be more 
convenient. In particular, time and storage can be saved if (16.49) is replaced by an 
equivalent: 

r2 = R 12(CO12)ro ( 16.50) 
where w,, is the 'pseudo-vector' resulting from U), followed by w2. Using (16.35) for 
R(w), one can show [ A l ,  R l ]  that: 

CO, + w2 - ;w, x 0 3 2  
0 1 2  = (16.51)

1 -$CO;w2 

Alternatively, if + (see (16.36)) is used as the 'pseudo-vector', substitution from ( 16.38) 
into (16.5 l), followed by algebraic manipulation gives: 

+ 1 2 =  + ( ( I  - 4 + N 2 I 1  2+1 + ( I  -++;wl2 + 2 - ; + l  x $2) ( 16.52) 

where the sign in (16.52) follows that of: 

( 1  -++;+2)l 2 ( 1  -:$;+I)* +bT+ 1 2 (16.53) 

With a view to subsequent work on 'normalised quanternions' or Euler parameters, 
(Section 16.9), it is interesting to look at the two-dimensional form of (16.49), which 
involves a rotation about a fixed axis. In  this case, from (16.36), 

+ l  = 2 sin(#,/2); J12 = 2 sin(02,i2) ( 16.54) 

'Both here and later in the chapter we are adopting the notation AR (AB) to indicate that AR is the 
rotation matrix obtained from the pseudo-vector, AO, with the A indicating that AB is of an incremental 
form. We need not have introduced the A in front of the R and could instead have written R(A0).  
However, the introduction of the A turns out to be useful for future shorthand. Nonetheless. it  should 
be emphasised that AR(A8) would be computed by inserting A 0  for 8 in the right-hand side of ( 16.22 t. 
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and hence, (16.52) gives: 

$ = 2 sin ___ = 2(c(0,/2)sin(02/2)+ c(02/2)sin(8, 1’2)) (16.55)(“‘;”.> 
with: 

c(8,) = (1 - sin20,)’ ( 16.56) 

and with the sign in (16.55) following that of: 

( 16.57) 

The reader will recognise the sine and cosine addition formulae in (16.55) and (16.57).In 
these equations, the terminology c(0) has been used rather than cos(0) because of the 
issue of the signs associated with the square root in (16.56). The latter has led to the 
introduction of the alternative signs in (16.52) and (16.55). However, at least for the 
two-dimensional case, the reader will be able to verify that the proposed procedure only 
works for l(0, + 0,)l < 180“. However, if we actually stored both sin(0/2) and cos(01/2), 
the formula (16.55) with cos(6/2) instead of c(0/2) and without the would work 
irrespective of the quadrant in which the vectors lay. Such a procedure has close 
relationships with quaternions and Euler parameters which will be discussed in Section 
16.9. 

16.8 OBTAINING THE PSEUDO-VECTOR FROM THE 
ROTATION MATRIX, R 

From (16.22), the antisymmetric part of R is given by 

sin 0
R” = i ( R  -RT)= sin OS(e)= -

0 
S(0) ( 16.58) 

from which, knowing the anti-symmetric form of S (see (16.8)). e or 8 can be obtained 
via: 

( 16.59) 

This equation can be used provided 0 < 101 < n.A more general procedure will be given 
in Section 16.10. 

If we adopt the approximation in (16.39) for R, the skew-symmetrix matrix S(e)can 
be simply obtained as 

s(e)= R” = $(R -R ~ )  ( 16.60) 

which coincides with (16.58) if sin 0 2 0. 
Using the approximation of (16.42), the antisymmetric part of R is given by 

(16.61) 
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By taking the trace of both sides of (16.42), 

4 
1 + Tr(R)

1 + $We= ( 16.62) 

where Tr(R) is the trace of R so that: 

Tr(R)= R I  I + R,, + R,, ( 16.63) 

From ( 16.61) and ( 16.62), a more accurate approximation than ( 16.60) can be obtained 
as 

4R” - 2(R-RT) 
( 16.64)s(e)= 

1 + Tr(R)- 1 + Tr(R) 

16.9 QUATERNIONS AND EULER PARAMETERS 

In Sections 16.5 and 16.7, we pointed out some limitations that stem from the use of 
pseudo-vectors. Of the various pseudo-vector updates, that associated with the sine 
scaling (16.36) has certain advantages but it  is non-unique for angles greater than 180 . 
This issue was discussed in Section 16.7 where it  was shown that for the two- 
dimensional situation, the problem could be overcome by working with both sin(0,’2) 
and cos(O/2). A similar approach can be adopted in three dimensions with the cost that 
we now have to work with four parameters (normalised quaternions or Euler par- 
ameters) rather than, as hitherto, three (pseudo-vector components). Further reading 
on quaternions can be found in [H 1, S5, W 1). 

With such a process in mind, taking a lead from the work of Section 16.7, we can 
re-express ( 16.22) using half-angles so that: 

R = (cos2(N/2)- sin2(0/2))I+ 2cos(0/2)sin(0/2)S(e)+ 2 sin2(0/2)eeT ( 16.65) 

In deriving ( 1  6.65) from ( 16.22), use has not only been made of half-angle formulae, but 
also the relationship (easily verified with the aid of ( 16.8)): 

S(e)S(e)= S(e)’ = ee’r- I (16.66) 

A unit  quaternion will now be defined using four Euler parameters, q,-q3, so that: 

q =cos(O,‘2)+ sin(0,Q)e= 
sin( 0/2)e 

( 16.67) 

where + is the sine-scaled pseudo-vector of (16.36). From (16.67). the ‘length’ of q is 
clearly unity with: 

qTq= 4,” + q: + q; + q: = 1 ( 16.68) 

Referring back to the two-dimensional example of Section 16.7, i t  will be noted that 
(16.67) now contains explicitly the required cos(8/2). Substitution from (16.67) into 
(16.65)leads to the relationship: 

( 16.69) 
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The latter equation can be re-expressed as 

R = (402 -qTqV+ 2qqT+ 24,s(q) ( 16.70) 

In place of (16.51) or ( 1  6.52), the quaternion compound rotation is given by [SS] 

412 =4241 (16.71) 

where q2qlinvolves the quaternion product whereby: 

ba = aobo- aTb+ a,b + boa - a x b ( 16.72) 

which is non-commutative because the inverse product is 

ab = aobo- aTb+ a,b + boa + a x b ( 16.73) 

The reader can explore the close similarity between the relationship (16.71) (using 
(16.67)) and the pseudo-vector updates in (16.52) and (16.53). Unlike the latter, (16.71) 
can be used for any angles. 

16.10 OBTAINING THE NORMALISED QUATERNION 
FROM THE ROTATION MATRIX 

In Section 16.8, we discussed the computation of the pseudo-vector from its rotation 
matrix. A more general approach involves the computation of the Euler parameters, 
qo-q3. This can be achieved via algebraic manipulations on the components of R as 
expressed in (16.69). Spurrier's algorithm [S4] (which can be simply checked by 
working with the components in (1 6.69)) then involves: 

a = max(Tr(R),R,1, R,,, R 3 3 )  ( 16.74) 
and 

if a = tr(R) = R ,  + R,, + R,, ( 16.75) 

( 16.76) applies where: 

4, = $( 1 + a p 2  (16.76a) 

qi = ( R k j-Rjk)/4qO; i = 1,3 (16.76b) 

with i , j ,  k as the cyclic combination of 1,2,3. 

If, U # tr(R) but instead = Rii  ( 16.77) 
(16.78) applies with: 

q i=(fa+ $( 1 - tr(R)))' ', ( 16.78a) 

4, = a ( R k j  - R j k ) / q i  (16.78b) 

41 =$(R,i+ Ril)/qi; 1 = j ,  k (16.78~)  

Allowing for the definition of q0-4, in (16.67), equations (16.76) coincide with the earlier 
relationship for e (or 8) in (16.59). Having obtained q0-q3, for rotations of magnitude 
less than 180°, the tangent-scaled pseudo-vector of (16.34) can then be obtained from 
(16.67) as 

cu=2tan - ( 16.79)(9e - - q-to 
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16.11 ADDITIVE AND NON-ADDITIVE 
ROTATION INCREMENTS 

We have already discussed compound rotations in Section 16.7 and have shown that 
we cannot simply add components of a pseudo-vector. We also implied that this 
restriction also applies when the second rotation involved a very small change. This 
point will now be amplified and the relationship between additive and non-additive 
(spin) changes will be established. 

Suppose that following the rotation rn = Rr, (see (16.21)), rn is rotated further to rnn 
via a new small rotation relating to a small non-additive pseudo-vector (or spin), 66 
(Note that the bar is added to emphasise that 68cannot be added to 8. Also ii8 is not the 
change in 6.)The rotation matrix associated with the new change is (see (16.5) 

R(68) = [I + S(Se)] (16.80) 

From (16.44): 

rnn= R(Se)r, = R(68)R(8)r0= [I + S(68)]R(8)r0 = R(8 + 68,)r, (16.81a) 

where the last term in (16.81a) include the additive pseudo-vector, 68,. From (16.81a). 
we can obtain: 

R(dQR(8) = R(8) + 6R = R(8) + S(GG)R(O) (16.81b) 

so that: 

6R = S(G8)R ( 16.81c) 

This relationship will be required later. 
For some future developments we will need a relationship between the non-additive 

66 (spin) and the additive 68,. With this in mind, we will now apply (16.51), with U), as 
the tangent scaled 6 (16.34),o,as the tangent scaled S e  which, with 66 small is equal to 
68 and ol as w +do,with the subscript a implying additive. This leads to 

(U -&OTs6)o+ so,-+(wTse)so, = (U + se -+w x se (16.82) 

as 68 and So,tend to zero, we can neglect the final term on the left-hand side of (16.82) 
so that: 

Go,= se - $03 x se + &,oTb;e)o ( 16.83) 

The doa terms in (16.82) and (16.83) are obtained by differentiation of the tangent 
scaling in (16.34) whereby: 

(16.84) 

where (see (16.9) and (16.10)) e is the unit vector obtained from 6. 
Equation (16.83) can be re-expressed as 

do,= [I -$S(Co)+ 3.00T]se= C(w)- '66 (16.85) 

Using the relationship: 

S(a)S(b) = baT -(aTb)I (16.86) 
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the inverses of (16.83) and (16.85) can easily be shown to be 

1se = ( 6 0 , + +63 x 6 0 , )  ( 16.87)
1 +$WTW 

and 

( 16.88) 

Substituting from (16.84) into (16.88) leads to the following relationship between the 
non-additive (66)and additive (SO,) pseudo-vector changes: 

se = H(e)6ea ( 16.89) 

where: 

sin 0 sin 8 
( 16.90) 

From (16.90), H(O) is equal to the identity matrix when 0 tends to zero. I n  these 
circumstances, SG is equal to sea. 

In order to obtain the inverse of (16.90), we first find the inverse of (16.84) using the 
relationship: 

(16.91) 

where e is a unit vector. This process leads to 

0 (!)[ I -
( 16.92)

68, =-cot  ( 1  - y ) e e ~ ]6wa 
2 

A direct relationship between 68, and 66 can now be obtained by substituting from 
(1 6.85) into (16.92) so that: 

SO, = H(8)- 'SG ( 16.93) 
where 

H(O)-'= -cot - I - S  - + (1 - -~0t(0/2)  7 ( 16.94)Is (r) (:) s ):'I

For some future developments (in particular, the work in Section 17.4). it is useful to 

obtain the derivative of H(8) in (16.90). This follows via: 

which is dramatically simplified when 0 = 0 to give: 

dH(O)l,= = S(SO,) ( 16.96) 
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16.12 THE DERIVATIVE OF THE ROTATION MATRIX 

To obtain SR = R(bO) which we will write as SR(GO,) to emphasise that the SO term is 
additive to 8, we could directly differentiate (16.22). Alternatively, we can use the 
previous developments to find the relationship between SR(68,) and Se.  Adopting the 
latter approach, (16.81a) can be used to obtain: 

Sr, = rnn- r, = S(S@)r,= [R(O + SO,) -R(O)]r, 

= [R(O + SO,) -R(O)]R:r, ( 16.97a) 

or 

S(Se)r,= [R(O + SO,) -R(e)]R:r, = SR(SO,)R:r, ( 16.97b) 

which shows that SRRTis the skew-symmetric matrix (S(S9)).This can be proved more 
quickly from a straight differentiation of the relationship RR’ = I from which: 

From (16.97b) and making use of (16.87) for Se, 

( 16.99) 

In deriving the last expression in (16.99), use has been made of the relationship: 

S(a x b) = baT - ab’ ( 16.100) 

With the aid of (16.86), equation (16.99) can be re-expressed as 

16.13 ROTATING A TRIAD SO THAT ONE UNIT 
VECTOR MOVES TO A SPECIFIED UNIT VECTOR 
VIA THE ‘SMALLEST ROTATION’ 

For the work in Chapter 17 on three-dimensional beams and Chapter 18 on shells, we 
will need to rotate a unit triad on to another triad in such a manner that one of the 
original unit  vectors is rotated on to another (known) unit vector via the ‘smallest 
rotation’. In relation to Figure 16.3, this rotation would be such that its axis (given by 
the unit vector, e )  is orthogonal to the original vector ro and the final vector, r,. In  
relation to Figure 16.3 and equation (16.22), it follows that, in these circumstances: 

(16.102) 
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where 

cos 0 = r:r, (16.103a) 

sin 0 
6, 

rox rn=-8 ( 16.103b) 

Equations (16.102) and (16.103) can be used in conjunction with (16.22) to give: 

(16.104) 

which, with the aid of (16.86) can be written in the alternative form: 

(16.105) 

Suppose we now have an initial unit triad P = [pl,  p2, p3] which we wish to rotate to 
a new unit triad Q = [ql ,  q,, q3] such that the vector p2 is rotated on to q2 through an 
axis that is orthogonal to both. Using (16.104) with ro= p2 and rn = q2, with the aid of 
the relationship: 

S(a x b) =(a  x b) x c = (aTc)b- (bTc)a ( 16.106) 

we obtained the desired result that q2 = R(p2, q2)p2 while: 

(16.107a) 

43 = p3 - b3 (P2 + 92) (16.107b)~ 

1 + h 2  

where 

b, = p:q2; k = 1,2,3 (16.108) 

In later work (Chapters 17 and 18)we will need the differentials of the expressions in 
(16.107). In the work of Chapter 17 on beams, the rotations between the two triads will 
involve only moderate rotations. In these circumstances, with a view to the subsequent 
differentials, it is useful to approximate equations (16.107) by 

q1 = p1 --bl (P2 + q 2 )  ( 16.109a)
2 

( 16.109b) 

which can also be obtained geometrically from a mid-point rule (Figure 16.5). As 
a result of the approximation, the triad Q = [q, q2, q3] is no longer exactly orthogonal. 
In particular, 

Q h 2  = ;P:q2(1 -P h 2 )  (16.110) 

I f  the triads are reasonably close, this quantity will be very small while, using ( 16.109).i t  
can be shown that q:q3 will be even smaller. In the special situation where p 3 = q 3 ,  
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Figure 16.5 Special case illustration of equation (16.109a). 

equation (16.109a) can be illustrated graphically as in Figure 16.5. With the angle 
between p2 and q2 being 30 ,the lack of orthogonality in (16.1 10) is 1.9 . For angles of 
15 ,this lack of orthogonality is reduced to 0.25". 

16.14 CURVATURE 

In Section 16.14.1, we will discuss some methods for obtaining the curvature that could 
be appropriate for co-rotational three-dimensional beam formulations such as 
those that will be considered in Sections 17.1 and 17.2. In  Section 16.14.2, we will use the 
developments of Section 16.14.2 to introduce some more general expressions for 
curvature. The latter will be used in Section 17.2 for a three-dimensional beam 
formulation that is closely related to that of Simo [S2] and Simo and Vu-Quoc 
~ 3 1 .  

16.14.1 Expressions for curvature that directly use nodal triads 

Figure 16.6 shows a beam element with a nodal triad T at the left-hand node, A and 
a nodal triad U at the right-hand node, B. The figure also shows a triad, E, that 
represents the 'local frame'. (Details on the derivation of the latter will be given in 
Section 17.1.2.) 

In  relation to Figure 16.6, we can use (16.47) and (16.31) to obtain the rotation 
between the left and right-hand triads as 

exp(S(A0,))= UTT (16.11 1 )  
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Figure16.6 Nodal triads U and T and element triad E. 

so that, using the approximation in (16.60): 

S(A0,) v 
(UTT-TU') 

(16.112)
2 

from which the pseudo-vector, AOg, could be obtained. Assuming a constant curvature, 
one could obtain: 

(16.113) 

with 

(16.114) 

so that the 'global' curvature vector is 

(16.115) 

With the E triad in Figure 16.6defining the local frame, the local curvature vector, z r ,is 
then given by 

(16.116) 

For later use, we can directly transform S(1,)  to local coordinates so that, using( 16.112): 

1 ETUTTE- E'TU'E
S(x1)= - E'S(A0,)E 2: (16.117)

1 21 

An alternative procedure, that will be used in Section 17.I involves first obtaining the 
global rotation from U to E as 

(16.118) 
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and then the global rotation from E to T as 

(16.1 19) 

From which the local rotations with respect to the E frame are given by 

(16.120) 

and 
(16.121) 

Having obtained &B and &A from (16.120) and (16.121). assuming a constant 
curvature, the latter would be given by 

1 
1 = - (OIB - QIA)  (16.122) 

In relation to ( 16.122), we also have (using ( 16.120) and ( 16.12 1)): 

As the differences between the triads become small, we could assume that rotation 
from T to U is the sum of the rotation from T to E and that from E to U and write: 

UTT ‘v UET + ETT (16.124) 

Substitution from (16.124) into (16.117) then leads to (16.123). 
Having used (16.120) and ( 16.121) to obtain e / B  and &A, there is no need to assume 

a constant curvature, but rather one can use these local rotations to define, say ;t 
linear curvature for a corotational Kirchhoff element (see Section 17.1). 

The derivations leading to ( 16.120) and (16.12 1) required the approximations in 
( 16,118) and ( 16.119). In particular, (1  6.1 18) was used to obtain the skew-symmetric 
matrix s ( e g B )  from the rotation matrix UET. Instead, we could express UET with 
respect to the local (E) frame as 

eTui eyuz efu3 
RIB = ET(UET)E= ETU = eSul eTu? elu3 (16.125) 

e h  
We could then obtain S(8,B) from RIB.A similar approach could be used to obtain 
S(01~).If we used the approximation in (16.60) to obtain the skew-symmetric matrix 
(and hence the pseudo-vector) from the rotation matrix, this would lead to the previous 
result (i.e. (16.122)). However, we could use the expression in (16.59) so that: 

(16.126) 

(Note that there is a slight conflict of notation here and that the vectgor, e, on the 
left-hand side of (16.126) is quite separate from the vectors e1-e3 appearing on the 
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right-hand side). Equation (16.1 26) can be derived directly [Cl] using the geometry of 
the configuration in Figure 16.6. With sin 8 being approximated by 0, (16.126) becomes 
consistent with (16.120). 

16.14.2 Curvature without nodal triads 

From the work of the previous section, if we have two triads U and T that are a distance 
1 apart, we can write: 

(16.127) 

If 1 is now replaced by an infinitesimal distance of arc, ds (ds is the initial arc length--see 
Section 17.3.6 for details) and U is replaced by T + (dT,’ds)ds, we obtain: 

d T  d s r )  = i(1 dsS ( x J  = 1 ((T +g d s )  TT -T(T + ds dT TT-z) (16.128) 

It has already been shown in (16.98) that GRRT is antisymmetric. In  a similar manner, i t  
can be shown that (?T/?s)TT is antisymmetric and so, for future developments, 
replacing T by R in (16.128), leads to 

dR
S(xJ = RT ( 16.129)~ 

ds 

For the work in Section 17.3 we will use (16.129) to obtain the curvature with R and 
dR/ds being related to a particular Gauss point. However, we will eventually require 
the local curvature, x I rather than the global curvature, xg.  Having obtained xF from 
(16.129), xican be obtained as 

xi = R T x g  ( 16.130) 

(Here R is the equivalent of the previous E-see (16.1 16).) 
For the work in Section 17.3 we first need to know how to update x g  (or x r )and. 

second, how to obtain 6x1for use with the virtual work. We will now deal with the latter. 
Intuitively, one might simply write: 

dS6 sx, = RT- (16.131)
ds 

which, for a two-noded element, gives: 

1
S x l  = -RT(dG2-86,) ( 16.132)

1 

In  the above, the terms Se, ,  etc. are non-additive spins as discussed in Section 16.1 1. 
(The delta symbol on the he’s merely means that the quantities are infinitesimally small. 
The 66’s are not changes in 8.)We will now show that ( 16.131) does indeed follow from 
(16.129) and ( 16.130). 



208 LARGE ROTATIONS 

From ( 16.129). we can obtain: 

~

SS(x,) = S(6x,) = S - RT+ -dR hRT (16.133)(";c) ds 

The bR term in (16.133) can be obtained from (1 6.8lc) so that: 

(5R = S(S8)R; SR' = -RTS(6G) (16.134) 

and, in addition, with a view to the first term on the right-hand side of ( 16.133), one can 
write: 

d - dR dS
8 (z)$(6R)=-(S(68)R)= = S(S0)- + -R = 

ds ds ds 

Combining ( 16.133)--( 16.135) and making use of (1 6.129), leads to 

-S(6&)=s(Y5e)+ s(se)s(x,)-S(x,)S(68) (16.136) 

or 

(16.137) 

where, in moving from (16.136) to (16.137), we have used (16.86) which is reproduced 
here, for convenience as 

S(a)S(b) = baT - (aTb)I 

The pseudo-vector from (16.137) is given by 

dbe dSe
Sx, = -+ S(66)x, =-ds + 66 x x ,  (16.138)ds 

This can be checked by making use of (16.100). 
To obtain 6 x I .we can now differentiate (16.130) to obtain: 

Sx, = RT6x, + SRTx, (16.139) 

With 'sxgfrom (16.138) and 6R' from (16.135)' this procedure leads to the relationship 
in ( 16.131 )  which was originally based on intuition. 

The previous relationships apply for very small (infinitesimal) rotations and are 
therefore relevant to the virtual work. However, we would expect errors if we applied 
them to the finite 'incremental' values obtained from the finite element analysis. In  
particular, errors would result from updating x I using (16.13 1)  so that: 

(16.140) 

where the AWs were obtained from the finite element analysis. (Strictly, we should have 
written AG rather than A0 in the above because the finite element variables that will be 
used in Sections 17.1 -17.4 are non-additive (even in the limit). However, the develop- 
ments that will follow involve differentials with respect to s, and the distinction is not 
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important.) Naively, one might modify (16.140) to give: 

with, say, 

Rmid = AR(Ae/2)Rold (16.142) 

where the footnote on page 196 applies in relation to the A in front of R(A0:2). However, 
following Simo [S2] and Simo and Vu-Quoc [S3] a more accurate update can be 
obtained. In particular, from (16.129),we can write: 

dR dR dSn(xgn)=2R: =2R,TAR(AO)T= -(ARR,)R,TAR(AO)'
ds ds ds 

dAR
R,TART=-ART+ ARS(x,,)ART (16.143)

ds ds 

(In the above and below, the subscript o is being used as short for old, and n as short for 
new.) Equation (16.143)can be rewritten as 

where, knowing AR, the last term is easily computed. Hence, to obtain S,, we require 
S(xgnl)= dARjd.7 (ART). 

In Section 16.12,we obtain the differential of the Rodrigues formula in (16.101).In 
the current context (with differentiation with respect to s which we will denote by 
adding a prime) an equivalent relationship can be obtained as 

dAR 1 
- ;S((U')S((U)] ( 16.145)'(xgn 1) =-ds [S((U')+~S((U)S((U~)

= 1 + SIOTIO 

In the above, (U is the tangent scaled pseudo-vector (here from A0) so that (see ( 1  6.34)): 

2 tan(AO/2) 
I O =  A 0  = 2 tan(A0/2)e (16.146)A0 

and, via differentiation of ( 1  6.146) with respect to s (see also ( 16.84)): 

d o  2 tan(A0/2) [ ( A0 ),,.I -dA0 
U'=-= I - I - - - - - (16.147)

ds A0 sin A0 ds 

Hence, knowing A0 and dA0/ds, (16.145)-(16.147)can be used to obtain S(xpnl)and 
hence xgnl .Indeed the latter is given directly (see also (16.87))as 

(with o from (16.146)and (U' from (16.147)). 
At a particular Gauss point, we would know R, and xgo and, as a result of an 

increment or iteration in the finite element analysis, we could obtain A 0  and dA0 'ds, 
using the nodal 'rotations' and the interpolations (see Section 17.2 for details). The 
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updating procedure at a Gauss point could then involve: 

1. Computer AR(A0) via the Rodrigues formula; 
2. Compute R, = ARR,; 
3. Compute S(xi,) = ARS(xg,)ARr (see (16.144)); 
4. Computex,,, from(16.148)(with (16.146)and (16.147)); 
5. Compute xgn= xUn,+ xgn2(see (16.144)); 
6. Compute x l n from RTxgn(see (16.130)). 

If the objective is simply the computation of x ln  (as in Section 17.3.3), the previous 
algorithm can be simplified. To this end, we first rewrite the last step (6) in the previous 
algorithm as 

X l n  = X l n  + X l n  = RlrXgnl  + RX~gn2 (16.149) 

From the relationships in (16.144). we can write: 

~ g n 2= ARxgo ( 16.150) 

so that 

~ l n 2= R i ~ g n 2= RzARxgo = R z ~ g o= ~ r o  ( 16.151)  

and hence (16.149) reduces to 

X l n  = x l o  + RBXgnl (16.152) 

Hence, the previous algorithm can be simplified to avoid xgn2and to involve: 

1. Computer AR(Ao)via the Rodrigues formula; 
2. Compute R, = ARR,; 
3. Compue xgnl from (16.148) (with (16.146) and (16.147)); 
4. Compute xln= xlo+ RTxgnl. 

I t  will now be shown that, in the limit, (16.152) corresponds with (16.130) as AB (or 
A@-see discussion below (16.140)) tends to 66 which tends to zero. For this to be true. 
we require: 

dS0
f ix l  Iim [R$x,, ,]= RT - (16.153)

ds 

From (16.146) and (16.147) in the limiting case, we have 

(16.154) 

so that in (16.148): 

(16.155) 

Also, in the limit, one can write (see (16.5), (16.80) and (16.8 1)): 

R, = [I + S(SG)]R,; R I  = RE[I -SCSG)] (16.156) 
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and consequently, in ( 16.153): 

( 16.157) 

where the higher-order terms vanish in the limit and ( 16.153) is confirmed. 
We can also justify the approximation intuitively put forward i n  (16.141). For. with 

Rmid2: [I ++S(Ae)]R, ( 16.158) 

and 6’s changed to A’s. (16.141) coincides with (16.157) with the higher-order terms 
included. 

16.15 SPECIAL NOTATION 

C = matrix connection 86 to 60, (see ( 16.88)) 
E = in Section 16.14, triad defining ‘local’ element frame 
e = unit vector in direction of axis of rotation 

exp(S(8))= exponential form of rotation matrix (see ( 16.31 ) )  
H = matrix connecting be to 60, (see (16.90)) 
p = unit  vector 
q = unit  quaternion (see (16.67)) 
q = in Section 16.9. part of q (see (16.67)) 
q = in Section 16.13. uni t  vector 

yo, q , , qz,  q3  = components of q 
r = unit  vector 

R = rotation matrix 
S = skew symmetric matrix (see (1 6.8)) 
s = arc length (Section 16.14.2) 

T = ‘left-hand’ nodal triad with components t,-t, (Section 16.14.1) 
U =‘right-hand’ nodal triad with components U,- U, (Section 16.14.1) 
80 = spin vector 
8 = pseudo-vector = Oe 
0 = magnitude of 8 such that O2 =OT8 

U) = tangent scaled-pseudo-vector (see (1 6.35)) 
tc) = magnitude of cr) such that c o 2  =coTa 
Q = sine scaled pseudo-vector (see ( 16.36)) 
I) = magnitude of JI such that t+b2 = JIT+ 
x = curvature vector (Section (16.14)) 

Subscripts 

a = additive 
g = global 
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/ = local 
n = new 
o = old 
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17 Three-dimensional 
formulations for beams 
and rods 

Finite element methods for three-dimensional beams have been described in [Bl, B3, 
B4,Cl,C3,C5,Cl.16, D1, El ,  H2,52, K1, K2, N l , O l , 0 2 ,  S2.16,S3.16, Wl-W31. In 
the present chapter, we will extend some of the work of Chapter 7, which covered 
two-dimensional beams, to encompass three-dimensional beams. To this end, the main 
difficulty relates to the non-vectorial nature of large rotations which was discussed in 
the previous chapter. We will start by describing a co-rotational formulation related to 
earlier work by the author [C1.16,C3] and Cole [CS] which can be considered as 
a three-dimensional extension of the two-dimensional work in Sections 7.2 and 7.3. We 
will then give an interpretation of a three-dimensional beam element due to Simo and 
Vu-Quoc CS3.16) which can be considered as an extension of the two-dimensional 
work in Section 7.4 and is related to Reissner’s theory [R2]. 

In Section 7.5, we described a degenerate continuum approach for two-dimensional 
beams based on the total Lagrangian approach. In Section 17.3 of the present Chapter, 
we describe a related three-dimensional formulation due to Dvorkin et ul. [Dl]. 
Unconventionally, some of the finite-element formulations lead to non-symmetric 
tangent stiffness matrices, even for conservative loadings. However, symmetry is 
recovered at equilibrium (or almost so-see Section 17.4) and the quadratic conver- 
gence properties are maintained when the stiffness matrices are artificially symmet- 
rised. These issues are discussed in Section 17.4 where it  is shown that the symmetry or 
non-symmetry is related to the choice of rotation variables. 

Finally, in Section 17.5, we consider various forms of conservative and non-
conservative loading, while in Section 17.6, we consider a method for introducing 
joints into non-linear beams. The work on conservative and non-conservative loading 
has relevance to structures other than beams. 

17.1 A CO-ROTATIONAL FRAMEWORK FOR 
THREE-DIMENSIONAL BEAM ELEMENTS 

A brief history of the CO-rotational technique was given in conjunction with a set of 
appropriate references in Section 7.2. These include Argyris’s work on the ‘natural 
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approach' [A31 and the early work of Belytschko et al. [B3, B41. In reference [C 1.161, 
the author developed a three-dimensional co-rotational element based on Kirchhoff 
(or Euler-Bernoulli) theory. In conjunction with Cole, this work was later adapted to 
cover a Timoshenko element (with shear deformation) in reference [C3]. In the present 
section, we will follow the approach of Rankin and Brogan CR1.161 and will take the 
co-rotational procedure outside the algorithm for the linear element computations. In 
this way the concepts should be applicable to any beam element which has two nodes 
and six degrees of freedom at each node. Indeed, one could cover higher-order elements 
with internal nodes provided the internal variables are eliminated at the element level 
(this should be very simple for a beam). The procedure that will be described follows 
Rankin and Brogan [R 1.161in totally divorcing the co-rotational procedure from the 
linear element computations, but differs in other respects; in particular the precise 
definition of the local element frame (but see Section 17.1.6) and the computation oft he 
'initial stress matrix' (not considered by Rankin and Brogan in [R 1.161, but considered 
later by Rankin and co-workers in [ R l ,  N 13). 

Following the two-dimensional work of Section 7.2, we will initially assume that the 
'internal element' is linear and that all of the non-linearity is introduced via the 
co-rotational technique. In Section 7.2, we indicated how this approach could later be 
extended to include higher-order non-linear axial terms. In relation to the present 
formalism, this would mean that one could later embed a 'locally shallow' beam 
element (for example, based on von Karman theory) within the co-rotational frame- 
work. This aspect will be considered in Section 17.5. 

Some of the detail associated with the current co-rotational procedures becomes 
a little cumbersome and an alternative approach will be outlined in Section 18.10.The 
latter work has strong links with the techniques advocated by Nour-Omid and Rankin 
CN 13. 

Figure 17.1 shows the element which has two nodes and six degrees of freedom. The 
'local' degrees of freedom are 

(17.1) 

where 

( 1  7. la) 

and 

( 17.1 b) 

relate respectively to the translations and rotations at node 1 (Figure 17.1). The 
displacements ul,cIand M', relate to the local element axes defined by unit base vector e, ,  
e, and e3 respectively where e,  lies along the element between nodes 1 and 2. I n  the 
current configuration, e,  can be computed from: 

e,  = (x21 + d21)/4 ( 17.2) 

where the subscript '21' takes the same form as in Chapters 3 and 7 so that, for example, 
x21= x2- x1 (with x being the initial vector-see Figure 17.la). The term I ,  in (17.2) is 
the current length between the two nodes (without accounting for any non-straight- 
ness). The precise definition for the vectors e2and e3,which make up the local element 
triad, will be given later. 
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Z 

U 

Figure 17.1 Two-noded, three-dimensional beam element. (a) Geometry; (b) current base vectors 
and local slopes; (c) global rotation variables. 

The ordering and sign convention for the local rotation variables is given in Figure 
17.1b. These variables may be slopes (as with a Kirchhoff or Euler-Bernoulli element) 
or rotations of the normal (as with a Timoshenko element). All that is required, is that 
we have access to the linear stiffness matrix, K ,  which relates the local nodal forces, q1to 
the local nodal displacements, pl of (17.1) so that: 

Ql = KlPl ( 17.3) 

(In practice, because some of the local variables are zero, we do  not need to fill in all the 
terms in K,. Indeed, we can condense some of the following equations to allow for zero 
rows and columns. However, this will be considered as a programming detail and will 
not be directly considered here.) In order to apply the co-rotational approach we first 
need some way of computing the local variables from the global variables (p without 
a subscript) and second we require the equivalent tangential relationship whereby: 

dp, = Fdp (17.4) 

(We have adopted the notation F rather than the T adopted in Chapter 3 or the B in 
Chapter 7 because the latter symbols are now being used for other purposes.) Following 
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the approach of Section 7.2.4, we can now equate the virtual work in the local and 
global systems so that q;icipIv = qicSp, and hence we can obtain the global internal force 
vector as 

qi = F"qli= FTK,p, ( 1  7.5) 

and the tangent stiffness equations as 

Sqi = FThq,,+ 6FTqli= F.'K,Fbp + K,,Sp ( 17.6) 

17.1.1 Computing the local 'displacements' 

Following the work of Section 7.2, we consider the axial deformation as being 
completely defined by the local strain producing extension which is given by 

( 1  7.7) 

Apart from the fact that there are now three rather than two displacement components, 
the procedure is essentially identical to that of Sections 7.2.1 and 7.2.3. Because the local 
co-rotating frame is effectively attached to node 1, and passes through node 2, we now 
have: 

d,, = O  ( 17.821) 

dT2 = (U,,0,O) ( 17.8b) 

For the local rotations, we turn to Figure 1 7 . 1 ~  which shows two 'nodal triads' 
T =  [ t , , t , , t , ]  and U = [u,,u,,u,] as well as the local element base frame 
E = [el,e2,e3].If, for the present, we assume that we know these triads, from the work 
of Section 16.14.1 (and in particular equations (16.126)) we can obtain the 'local 
rotations' as 

2 sin(p,(4))= 2sin O , ,  = - t:e2 + tie, 
2 sin(p,(5))= Zsin 012= - t:e, + eTt, 
2 sin(p,(6))= 2sin U,, = - t:el + e:t, 

2 sin(p,(10)) = 2 sin (Il4 = -u:e2 + ule, 
( 1  7.9) 

~s in(p , ( l1) )=2s in0 , ,=-uTe, +e:u, 
2sin(pI(12))= 2sinO,, = -u:el +e:u, 

(Note the different ordering and sign convention for the local rotations in comparison 
with those considered in Section 16.4.1 .)The complete set of local rotations, 01,-U,, will 
sometimes be collectively referred to via the vector, 8,. 

In equations (17.9), a term such as pi(6) means the scalar that is the sixth component 
of the vector p, (defined in (17.1)). To obtain (17.9) one need not resort to the formal 
approach in Section 16.4.1, but rather can appeal directly to geometry and Figure 17.1 c. 
I t  should be noted that, with only small deformations at the local element level, it may 
not be necessary to include the trigonometric terms and, as a reasonable approxi- 
mation, one could replace the sin 0,'s by 0,'s. 

We have so far assumed that the triads T, U and E are available, but have not 
described how they would be computed. We will first consider the triad, T at node 
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1 (Figure 17.1b). The initial configuration for this triad can be obtained from the initial 
geometry, while subsequently it can be updated using a relationship of the form (see 
( 16.47)) 

T, = AT(Aa)T, = expS(Aa)T, (17.10) 

where To is the old triad (with an associated pseudo-vector, a,) and AT(Aa)could be 
computed from one of the various form sof Rodrigues formula (see (16.22)or (16.31) or 
(16.35)).( In  practice, i t  is better to use unit  quaternions as will be described in Section 
17.1.4.)The vector Aa contains the three components of the pseudo-vector for node 1. 
These are usually the finite element variables for the iteration and, in the current 
formulation, are not additive (even in the limit as A a  tend to ha as discussed in Section 
16.11). The variables Aa are therefore effectively ‘iterative spins’. (We will later, in 
Section 17.4,consider the possibility of using other rotation variables that are additive 
in the limit.) 

A similar formula to (17.10)can be used to update the triad U at node 2 (Figure 
17.1b).To complete the definition of the local slopes in (17.9),we require the local 
element triad E = [e,,e,, e,]. The computation of the unit vector, e ,  (Figure 17.1b) has 
already been described (see (1 7.2))and is straightforward. The following describes the 
procedure for evaluating the e2 and e3 vectors that was adopted by the author in 
cC1.161.An alternative procedure due to Rankin and Brogan CRl.161is described in 
Section 17.1.6. 

In  order to compute the vectors e, and e,, we first compute a triad, R, that is 
intermediate between U and T so that: 

R = dR, (;) T (17.11 )  

where 

A R ( y )= UTT ( 17.12) 

and y is the pseudo-vector associated with the rotation from T to U. Although 
pseudo-vectors are not additive, y will only be moderately large and hence AR,(y 2) 
can be used as a reasonable representation of the rotation from T to the ‘average or 
mean configuration’. (Further details on the precise method for the computation of 
R will be given in Section 17.1.4.) 

The mean rotation matrix, R, must now be ‘rotated’ on to e, to obtain e, and e,. To 
this end, we adopt the ‘mid-point procedure’ of (16.109)which is valid for moderate 
rotations (here between the R and E triads). Using the present notation, this process 
leads to 

( 17.13) 

r:e,e, = r 3  --(el2 +rl) (17.14) 

where R = [r,, r2, r,]. (We could have used the exact procedure of equations (16.107) 
which would involve replacing the 2’swith the expressions ( 1  +eyrl)),but this would 
have led to a more complicated differentiation when we consider the virtual work. 
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None the less. to ensure an exact orthogonal triad we could use the exact form for the 
actual up date and yet maintain the following developments related to the simpler form 
for the virtual work and tangent stiffness matrix. When the strains are small, the 
difference will be negligible.) 

17.1.2 Computation of the matrix connecting the infinitesimal 
local and global variables 

The finitesimal global displacement variables can be expressed as 

6p' = (Sdy, GaT,Sd:, 6s') ( 1  7.15)  

where the rotations aand fl are indicated in Figure 1 7 . 1 ~ .They are the components of 
the pseudo-vector that can be used to define the nodal triads T and U respectively. In 
the present section, we will detail the computation of the transformation matrix F of 
( 17.4) which relates Sp, of ( 1  7.1) to 6p of ( 1  7.15). In  Section 17.1.3we will describe the 
differentiation of F'rq,iwhich leads to the initial stress matrix. The work of both sections 
becomes rather detailed and those readers only interested in an overview could skip 
these two sections and move directly to Section 17.1.4. Indeed, a rather neater 
derivation (including some approximations) of the transformation matrix and initial 
stress matrix will be given later in Section 18.10. However, this work requires an earlier 
reading of the co-rotational formulations for continua in Sections 18.2 and 18.3. 

The matrix F of ( 1  7.4)will be written as 

(17.16)

1fiJ 

where f: is the third row of F. Because of the definitions in (17.1)and (17.8),we can 
write: 

f ,  = f2 = f, = f8= f9= 0 ( 17.17) 

The seventh row of F involves the connection between du, and the global nodal 
displacement changes and can be obtained via differentiation of (17.7), while the 
remaining rows of F are obtained via differentiation of (17.9).Details will now be given, 
but those readers interested in the concepts, without the detail, could jump straight to 
the text which follows equation ( 1  7.38). 

Either via differentiation of ( 1  7.7) or via geometric arguments (see Section 7.2.3)one 
obtains: 

6u,= 6p,(7)= e:6d, ,= f:Sp ( 1  7.18) 
where 

fT=(-e:,OJ,e;,OT) ( 1 7.19) 

In  order to compute the other non-zero rows of F, we need to obtain expressions for 
the 60,'s stemming from the variation of the terms in ( 1  7.9).To this end we require terms 
such as 6t ,. These are obtained using (see ( 1  6.7) and ( 1  6.8)): 

6ti = da x t i  = S(iia)t,= -S(ti)da ( 17.20) 
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with a similar expression relating dui to the nodal variables dp at node 2 (Figure 17.1). 
The matrices S in ( 17.20) are skew symmetric (see ( 1  6.8)). 

We also require he,, be, and de, which are the variations of the local element frame. 
From the definition of e ,  in ( I  7.2) and of 24, and In in ( 1  7.7), 

( I  7.21) 

1
A = - [I - e,ef] ( 1  7.22)

1, 

(Note that A is symmetric.) In  order to obtain Se2and de,, we must differentiate ( 17.13) 
and (17.14). This will require the variation of the unit vectors r l ,  r2 and r, which make 
up the ‘average triad’, R which is computed from (17.1 I ) .  Intuitively. the latter can be 
related to the nodal variables by 

( 17.23) 

Thefollowingset ofequations((17.24)-( 17.3l))attempt to justify the intuitive stepin 
(17.23). They may be ignored by those readers who are not too concerned with rigour. 

More strictly. the variation of the vectors ri ( i  = 2 and 3) involve: 

dr, = S(Sq)r, ( 17.24) 

where, using ( 1  6.97b) and (17.11): 

s(Cjq)= G R R ~= ~(AR,T)(AR,T)’ ( 17.25) 

Equation ( I  7.25) can be expanded as 

S(6q)= fiAR,RL + AR,GTTT6RL = 6AR,RL + AR,S(Ga)ARL ( I  7.26) 

Assuming that the pseudo-vector of ARm is reasonably small, there is no difference 
between the tangent scaled and unscaled forms (see (16.34)) and hence, for the first 
terms on the right-hand sides of (17.26), we can use (16.101) (assuming also that 
y‘y/4 << 1) to obtain: 

( 17.27) 

with pseudo-vector: 

Sq’ = $6y + ;y x by ( 17.28) 

(The latter can be confirmed using (16.86) and (16.100).)The axial vector from the 
second term in (17.25) can be written as 

( 17.29) 

where, in the limit, i t  is reasonable to neglect the higher-order term so that we can write 
the axial vector, hq, as 

6q = 6q’ + dq” = i 6 y  + 6a + $y x ciy 2 i S y  + ha ( 17.30) 
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The neglecting of the higher-order term in (17.30) is justified by noting that not only is 
y small (a local difference after the removal of the rigid body rotation) but so, of course 
is 6y. In addition. the two terms are often nearly parallel, thus making the cross-product 
even smaller. 

Because y is the pseudo-vector associated with the rotation between the triads, 
6y = 6s  -da and hence we obtain: 

6q *+(&a+ 6s) (17.31) 

which when combined with (17.24) leads to the original equation (17.23) which was 
intuitively derived. 

Using ( 17.21)for del and ( I  7.23) for 6ri as well as (17.20) for 6ti(and the equivalent for 
bu,), we can find the variations of (17.13) and (17.14) as 

be, = L(r,)Tdp; he, = L(r,)'Sp ( 17.32) 
where 

L' = [LT, L;, -L:, L;] ( 17.33) 

r.'e
L,(ri)=AA + iAri(e, + rl)T ( 17.34)

2 

S(r.) rTe,
L2(ri)=2- 4 S(r,)-$(r,)e,(e, + rlIT ( I  7.35)

2 

The variations of the local rotations in (17.9) can now be obtained so that a typical term 
will take the form: 

( I  7.36) 

where the f4 vector is the fourth row of the transformation matrix F of (17.4) (see also 
( 17.16)). In (17.36) and, for future work, we have introduced a set of scaled vectors f for 
the local rotation terms. The f vectors associated with these local rotations are given by 

f4 = 2cos(p,(4))f4= 2cosO,, f, = L(r,)t, - L(r,)t, + h ,  
-
f, = 2cos(p,(5))fS= ~ C O S O , ,f, = L(r,)t, + h, 
-

f, = 2cos(p,(6))f, = ~ c o s O , ,  f, = L(r,)t, + h, 
-
f,, = 2cos(p,(10))f1,= 2cosO,, f , ,  = L(r,)u, -L(r,)u, + h, 

( 17.37) 
-
f ,  ,= 2cos(p,(1 1 ) )f4 = 2cosQ,, f ,  ,= L(r,)u, - h, 
f12= 2cos(p,(12))f1,= 2cos0,,f,, = L(r,)u, - h, 

and 
h T - f,- \O T.( -S(t,)e, + S(t,)e,)',OT, OT) 

h: = f(At,)l, (-S(t,)e, + S(t,)e,)T, - (At,)T,O T i  

hT = -S(t,)e, + S(tl)e3)', -(At3)T,0T) ( 17.38)h i  = {Or, OT, OT, ( -S(u,)e, + S(u,)eJT) 
h: = f(Au2)',0T, - (A~, )~ , ( - s (u , )e ,  + S(u,)e,)T) 
h: = {(Au,)',OT, - ( A u , ) ~ ,(-S(u,)e, + S ( U , ) ~ , ) ~ ;  
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Having computed the transformation matrix F, the global internal force vector can be 
simply computed from (17.5) (i.e. qi = FTqlj= FTK,p,). 

17.1.3 The tangent stiffness matrix 

Differentiation of the expression for the internal force vector (in (17.5)) leads to the 
tangent stiffness equations of (17.6) so that: 

dqj= K,6p = (Kll  + K,,)dp ( 17.39) 

where 

K,, = FTK,F ( 1  7.40) 
and 

(17.41) 

Because of (17.17), we only have to consider the variations of the vectors f4, f,, fb, f,, f, o, 
f, and f12. 

At  this stage we will detail the computation of K,, via the computation of the 
variations of the f vectors. Those readers not concerned with this detail would be 
advised to jump to the text immediately following equation (17.55b). 

In forming the geometric stiffness matrix, K,,, it is useful to define a set of scaled 
internal forces relating to the rotational variables as 

1 
4lio') =mjq J j )  forj=4,5,6,10,11,12 ( 1  7.42) 

In describing the various matrices, it is useful to work with submatrices, so that: 

K = (  K 2 1  K 2 2  K 2 3  K 2 4  ( 1  7.44) 
K31 K 3 2  K33 K34 

L K 4 1  K42 K43 K 4 4 J  

and to adopt the convention that, if a submatrix is unmentioned, it is zero. 
The matrix K,, in (17.43) comes from the differentiation of f, (see (17.19)) and 

involves: 

where A has been defined in (1 7.22). The Ka2(ri, z) terms come from the variation of the 
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L(r& terms in (17.37)with z being fixed. Ko2(ri,2) involves the submatrices: 

rreK , ,  = - K 1 3 =  -K , ,  = K , , = X f X T + ~ ( 2 ( e : z ) + z T r l ) A  ( 17.46)
21, 

where 

(17.47) 

4K 1 2 = 4K 1 4  = - 4K32 = -4K3, 
= -Aze:S(ri) -ArizTS(rl)- zT(el+ r,)AS(ri) ( 17.48) 

K21 =K,I = - K 2 3  = -K,3 = KT2 ( 17.49) 

Note that the sub-matrices K,,, etc. are non-symmetric. We will return to this issue 
later in Section 17.4. 

The  KO, terms in (17.43) come from (17.37) via terms such as  L(r2)6t,and involve: 

K,, = CO, K2,0,K,1 ( 17.51) 

with 

K 2  = - L(r,)[qli(lO)S(t,)] + q,i(5)S(t,)] + L(r3)[qli(10)S(t2)-qli(6)s(t,)] (17'52) 

K, = L(r2)[qli(l0)S(uJ)-qli(l l)s(u,)]-L(r3)[qli(10)s(u2) + qli(12)s(u,)l (17*53) 

The matrix KT5, comes from the terms such as S(ti)de, from dh, in ( 17.38). 
The matrix KO, comes from terms such as S(St,)e, which stem from dh, (see (17.38)) 

and, in relation to (17.44),has only non-zero K2, and K,, (non-symmetric) submatrices 
where 

The  matrix K,, in (17.43)has 

Rows 1and 3 come from terms as A at, from 6h2(see (17.38))while rows 2 and 4 come 
from terms such -S(t,)Se, in 6h, (see (17.38)). 
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Other sub-matrices in the matrix KO, in (1 7.43) come from terms such as At2 in h2 (see 
(17.38)) and involve: 

It will be noted that the ‘geometric stiffness matrix’, K,, is non-symmetric. This 
observation is consistent with that of Simo and Vu-Quoc [12,13] who adopted 
a different formulation which will be discussed in Section 17.2. The issue will be 
discussed further in Section 17.4. In the meantime, we note that numerical experiments 
have shown that, for conservative problems, the tangent stiffness matrix becomes 
almost symmetric as the iterative procedure reaches equilibrium (see Section 17.4.3 and 
the observation by Simo and Vu-Quoc cS3.161). The numerical results cC1.161 show 
that the excellent (quadratic) convergence characteristics exhibited by the method 
(when used in conjunction with the full Newton-Raphson procedure) are not impaired 
if the tangent stiffness matrix is artificially symmetrised. 

17.1.4 Numerical implementation of the rotational updates 

Equation ( 1  7.10) described the conceptual manner in which the nodal triad T could be 
updated. Instead, one could update the pseudo-vector, a,using one of the ‘compound 
updates’ such as (16.51) or (16.52) with (16.53). However, following the arguments in 
Section 16.9, i t  is better to use (and store) unit quaternions and then use the quaternion 
product of (1 6.71). 

For the computation of the ‘mean nodal triad’, R of (1  7.1 l) ,  the following algorithm 
was adopted in cC1.16). 

1. Obtain AR(y) = UTT(see (1 7.12)) 
2. Use the method of Section 16.10 (equations (16.74)-(16.79)) to obtain the tangent- 

scaled y from AR. 
3. Obtain the unscaled y using (1 6.34). 
4. Compute y/2. 
5. Compute AR,(y/2) from (16.34) and (16.35). 
6. Compute R from (17.1 1). 

17.1.5 Overall solution strategy with a non-linear 
‘local element’ formulation 

The previous formulation can be very simply modified to account for both geometric 
and material non-linearity within an existing beam element in which the geometric 
non-linearities are only valid for ‘moderated rotations’. In these circumstances, the 
existing element should give both the internal force vector, qli , and the local tangent 
stiffness matrix, Kt,.Given an iterative change of the global displacement variables, Csp, 
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the following procedure would be applied in order to compute the global internal force 
vector, qi and the global tangent stiffness matrix, K,. 

1 .  Update the translational displacements via d = d + 6d. 
2. Update the nodal triads T and U (or their pseudo-vectors aand p) using a and Sp 

and the procedure discussed in Section 17.1.4. 
3. Compute the R triad using the procedure discussed in Section 17.1.4. 
4. Compute the e,  vector using (17.2). 
5. Compute the e2 and e3 vectors using ( 1  7.13) and ( 1  7.14). 
6. Compute the local rotations 9, comprising (0,1-+ 01,) or (p,(4), p,(5), p,(6), 

Pl( 1 O), pl( 1 1 ), Pl( 12)) using ( 17.9). 
7. Compute the local axial displacement ul = p,(7) via (17.7). 
8. Enter the existing element routines with the local ‘displacements’ from (6)and (7) 

(with the other terms zero) and 

(a) compute or update the local stresses (or stress resultants); 
(b) compute the local internal force vector, qli. 
(c) compute the local tangent stiffness matrix, Ktl .  

9. Compute the transformation matrix F (where 6pl = F6p). 
10. Compute the global internal force vector, qi = FTq,,. 
1 1 .  Compute the global tangent stiffness matrix K, = FTK,,F+ K,, with K,, from 

( 1  7.43). 

I t  is not essential for the co-rotational procedure that the local element computations 
of step (8) above should account for ‘local non-linearity’. However, more accurate 
solutions would be expected with coarse meshes if such local non-linearity were to be 
included. 

An appropriate two-dimensional shallow arch formulation was discussed in Sec-
tion 7.1 and the idea of including the ‘higher-order terms’ in the co-rotational formula- 
tion was considered in Section 7.2.7. In three dimensions, we might follow these 
approaches and modify an existing linear beam element to account for local non- 
linearity by adopting the axial strain term: 

where 

0 0 0 0  0 
0 4 0 0 - 1  0O l1 1 
0 0 4 0x =  ( 17.56b)

00 0 0 0 O0 -lI 
0 - 1  0 0  4 
0 0 - 1 0  0 4L “1 

with the second term in (17.56a) containing the ‘higher-order terms’ and being the 
three-dimensional equivalent of the term in (7.90). It can be obtained by assuming 
cubics for cIand wland integrating over the length of the element (see Section 7.2.7).The 
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modification of the linear local element formulation to account for the these ‘higher- 
order’ terms would then follow conventional lines. Equation (17.56a) assumes that the 
beam element is initially straight. It is a relatively simple matter to modify the theory to 
allow for initial curvature by including terms involving the ‘initial local rotations’. To 
this end, (17.56a) would be replaced by 

( I  7 .56~)  

where 8,, contains the initial local rotations and 8, contains the current total rotations, 
so that initially 8, =O,,. 

17.1.6 Possible simplifications 

There is considerable scope for simplifying the expressions used with the previous 
co-rotational formulation. The full formulation has been given because it has been 
coded by the author (and in relation to a Timoshenko beam formulation by Cole [ C 5 ) )  
and excellent results have been obtained. None the less, we will now outline a few 
possibilities for simplification that are based on the assumption that, at the local 
element, we have small strains and moderate deformations. 

It has already been noted that, in these circumstances, i t  would be reasonable to 
replace the sin 0,’s by 0,’s in ( 1  7.9).As a further simplification, one might replace ( 17.13) 
by the lower-order approximation: 

e2= r, - (rle,)e, ( 1  7.57) 

However, in these circumstance, it would be sensible to define e3in a different manner 
and force i t  to given by e, =e,  x e2= e, x r2. 

The procedure would then have strong similarities with the approach of Rankin and 
Brogan [R 1.161 which leads to an alternative simpler formulation. Using their 
approach, one defines an intermediate nodal triad at node 1, T, which is obtained from 
the triad at node 1, T, via rotation with a .fixed rotation matrix (E,Tz)so that: 

T = (E,T:)T ( 1  7.58) 

The rotation matrices E, and To in (17.58) are simply the initial values of the matrices 
E = [e,,e,,e,] and T = [ t l ,  t,, tJ .  Using this approach, in the initial configuration, 

coincides with E,. In the current configuration, e ,  is defined as in ( 17.2) while having 
computed the T matrix, e3 is computed via 

e3= e, x f ,  ( 1  7.59a) 

and e2 is computed so as to make up an orthogonal element triad, i.e. via 

e, = - e, x e3= f ,  - (iTe,)e, ( 17.59b) 

(The latter can be compared with (17.57).) As noted by Rankin and Brogan, this 
procedure will ensure that rotations about the axis of the beam will remain of the same 
order as those which produce torsion [Rl, R6J. Having adopted this alternative 
definition for the E frame, one could proceed by following closely the previous 
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developments. In  particular the variations of ( 1  7.59a) and ( 1  7.59b) turn  out to be 

he, = - ((t:e,)A+ e,fhA)hd,,- [I - e,e:]S(f,)ha ( 17.604 

he, = -S(t,)Add, , -S(e,)S(t,)ba (17.60b) 

While under the topic ofsimplification, it is worth noting, that in relation to a computer 
implementation, i t  can be convenient to re-express the key equation ( 1  7.4) whereby 
dp, = F d p  in the form: 

sp ,  = Fl6p+ F, [:E:] = F,cip + F,oe ( 1  7.61) 
he, 

in conjunction with an extra equation which, with the earlier formulation would be 
obtained from ( 17.21 ) and ( 1  7.32).so that: 

( 1  7.62) 

Using Rankin and Brogan’s approach, the last two blocks in ( 17.62)would be obtained 
from ( 17.60). In relation to the earlier formulation, the split in (17.61) is most easily 
achieved in conjunction with the approximation whereby the sin 0,’s are replaced by 
0;s. 

Terms from the matrix F, turn out to be very useful in relation to various forms of 
follower loading (see Section 17.5). 

17.2 AN INTERPRETATION OF AN ELEMENT 
DUE TO SlMO AND VU-QUOC 

Simo and Vu-Quoc have described a finite element formulation for a three-dimensional 
beam with finite strains [S3.16]. The present section will describe the author’s 
interpretation of this formulation. Readers should note the emphasis of the word 
‘interpretation‘because the description will take a rather different form to that given in 
the original paper. None the less, in conjunction with Cole [CS],  the author has 
programmed the formulation and the numerical results seem to be identical to those 
given in the original papers. 

In the present description, the formulation will be quite closely related to the 
previous co-rotational techniques although now, instead of updating nodal triads, the 
configuration of the Gauss points is updated. The conventional co-rotational approach 
is often thought of as involving and F = VR split (see Section 4.8), with the straining 
being induced by the stretch V. In  order to understand the links with the approach of 
Simo and Vu-Quoc CS3.161, it is better to think of the co-rotational approach as 
involving an F = RU split with the stress inducing stretches relating to the material 
frame and preceding the rotation. More on this topic will be given in Chapter 18. 

In the first place, we will describe a two-noded element and will effectively use 
a ‘one-point integration scheme’ which does not introduce shape functions. However. 
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later in Section 17.2.6, we will consider the extension to a general isoparametric 
formulation. The current three-dimensional procedure can be considered as an exten- 
sion of the two-dimensional formulation of Section 7.4. 

17.2.1 The finite element variables 

The element has precisely the same variables as those for the previous elements so that 
the vector of nodal ‘displacement changes’ is given by (17,15). The displacement 
variables, d, at the nodes are simply updated as with the previous elements using: 

d, = do+ 6d (17.63) 

(with ‘n’ meaning ‘new’ and ‘0’ mean ‘old’). However, having obtained ‘spin variables’, 
6a,at node 1 and Sfl at node 2, these are not now used to update nodal triads. Instead 
they are interpolated to the Gauss point (here the centre of the element) so that: 

;Sac=$(ha+ 6s) ( 1  7.64) 

Following this, the triad at the centre, which we will now call T, is conceptually updated 
using the equivalent of ( 17.10)so that: 

T, = AT(6ac)To ( 17.65) 

As discussed in Section 17.1.4, in practice, i t  is best to perform the update using 
quaternions. Hence, at the end of an increment or iteration, both the current coordi- 
nates of the nodes (x l + d ,  and x2 + d2)are available as is the current configuration of 
the central triad (T= [ t l ,  t,, t J ) .  

17.2.2 Axial and shear strains 

The axial and shear strains can be directly computed using the three-dimensional 
equivalent of the strain measures discussed in Section 7.4 and can be related to Figure 
7.9. As an extension of the work in Section 7.4 (based on Reissner’s theory [R2]), we 
have: 

( 17.66a) 

1 
J l 1 2  =- tTX‘  ( 17.66b)2 14 2 

1Y I 3  =- p X ’  (17.66~)3 2 1  
I0 

The superscript, ’, indicates that the values are current so that x‘= x + d (see 17.66a)). 
Equations (1 7.66a)--( 17.66~) can be combined to give: 

E,= 7, = - T T x i l  -[i] ( 1  7.67) 
1/3 I 1, 
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With a view to the virtual work, we will require the variations of these strains which 
can be obtained as 

( 17.68) 

The matrix 6T in ( 1  7.68) can be obtained by combining equations of the type given in 
( 1  7.20) so that: 

S (F)6T = S(Ga,)T= T ( 17.69) 

where we should note that ha, are 'non-additive spin variables' (see Section 16.1 1 )  and 
that the interpolation of (17.64) has been used for dac. Using (1  7.69), we can re-express 
d q b  in (17.68) as 

1 1
bclb= -TTS(6ac)Tx;,= --TTS(ba,)x;,4 4 

1 1 
= -TrS(x;,)6a, = -TTS(x;,)(6a + Sp) ( 1  7.70) 

10 
 210 

Equations ( 1  7.68) and (17.70) allow the strain variations, b q to be directly related to the 
nodal changes, ad,, ad,, 6a and 6s. 

17.2.3 Curvature 

A detailed discussion relating to the curvature of the current element has been given in 
Section 16.4.2. Here, we will simply restate the main findings. 

For the purposes of the virtual work, we can express the local curvature changes (see 
( 16.132)) as 

(17.71) 

Without nodal triads, we do not have a direct expression for the full curvature, but 
only expressions for updating the curvature (Section 16.14.2). An approximate mid- 
point relationship for such an update could be taken (see (16.141)) as 

( 1  7.72) 

where (see (16.158)) we might write: 

( 17.73) 

A n  exact procedure for updating the curvature, based on the procedure of Simo and 
Vu-Quoc CS3.161 has been given in Section 16.14.2. 
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17.2.4 Virtual work and the internal force vector 

From (17.68), (17.70) and (17.71), we can write the combined 'strain' variations at the 
Gauss point (centre) as 

where the ordering of the nodal variables, 6p has been given in (1 7.15). 
With a view to the principle of virtual work, the internal virtual work can be written 

as 
= q'6pV ( 17.75)Vi = I,(NT&,,+ MTG~lv) 

where the subscript 'v' means virtual and the local (or material) stress resultants, N and 
M are obtained from the local (or material) strains and curvatures via: 

(;) 

EA 

CA2 1 
= c ( ; ) l  = CEl= 

G'43 
GJ 

E12 

= [cm cb]G ( 1  7.76) 

Equation (17.76) assumes a linear constitutive relationship. Other material characteris- 
tics could be considered. 

Using the relationships for and S X ,  in (17.74) (although now virtual so that 
a subscript v is added) equation (1 7.75) can be re-expressed as 

Vi = nT(Gd2 + iS(x; ,)(6a+ 6s))+ mT(@- 6a)= q'dp, (1 7.77) 

where 
n = T N ;  m = T M  (17.78) 

From (17.77), the internal force vector, qi,  is obtained as 

XT (E)qi = = x( ;)
 (17.79) 

where the matrix X has been given in (17.74). 

17.2.5 The tangent stiffness matrix 

From (17.76) and (1 7.74): 

(17.80) 



230 THREE-DIMENSIONAL FORMULATIONS FOR BEAMS AND RODS 

so that differentiation of (17.79) leads to 

where the last two terms will contribute to the initial stress matrix. 
Consider the term 6TN. From (1 7.69): 

-
6TN = S(6aJTN = S(Ga,)n= -S(n)Sa,= ___S(n)(6a + SS) ( 17.82)

2 

and a similar expression can be obtained for 6T M. Hence, the second term in (17.81) 
gives: 

( 17.83) 

For the last term in ( 1  7.8 l) ,  we require: 

6(S(x;,)T)N= SS(x, ,)n + S(x; ,)6TN ( 17.84) 

Using 17.69),it follows that: 

Using 16.86), the above equation can be re-expressed as 

S(S(x; ,)T)N = -S(n)Gd,,- i(nx;', -n'x; I)(Ga+ 6s) ( 17.86) 

and hence from (17.81) 

0 0 0 0 
-S(n) Y S(n) Y 

( 17.87) 

-S(n) Y S(n) Y 

where: 

Y = :S(x; ,)S(n)= (+(nx;', -n'x; ,I )  ( 17.88) 

Combining (17.81) with (17.83) and (1 7.86) gives the complete tangent stiffness matrix 
as 

1 - - .
K, = -XTCT'X' + K,, + K,, ( 17.89) 

10 

where K,, and KO, have been given in (17.83) and (1 7.87) respectively. 
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It will be noted that there is a non-symmetric component of the tangent stiffness 
matrix given by 

r o  0 0 O 1 
1 0 Z+S(m) 

K tns = - /2 0 0 
LO z 

0 
0 
0 
o z - s ( ~ ) J  

( 17.90) 

where 

Z =4[Y -YT] = +[nx;T, - x i  = $(xi x n)  ( 1  7.91) 

with (16.100) being used for the last relationship in (17.91). 
It is argued in rS3.16) that this term vanishes (for conservative loadings) as the 

iterations reach equilibrium, and in [S3] that an alternative formulation leads to 
exactly the same symmetric stiffness matrix as would be obtained by artificially 
symmetrising the stiffness matrix. These issues will be discussed further in Section 17.4. 
Numerical experiments by the author and co-worker [CS] have indeed shown that, for 
the current element and the elements of Section 17.1 and 17.2, the excellent numerical 
(quadratic) convergence is maintained when such as artificial symmetrising process is 
adopted. 

17.2.6 An isoparametric formulation 

The previous formulation need not be restricted to a ‘linear’ two-noded element but can 
be extended to take a general isoparametric form using shape functions CS3.161. In 
these circumstances, the coordinates, x,and displacements, d, can each be expressed in 
terms of nodal values using a non-dimensional coordinate, iso that: 

( 17.92) 

where hiis the standard isoparametric shape function. The ’rotation changes’ can be 
expanded in a similar manner so that: 

68 = chi(i)sei ( 1  7.93) 

where 68, are the nodal values. (In relation to the work in Sections 17.2.1-17.2.5, 
68, = 6a,68, = Sp.) 

Instead of using the length 1,. we now work with the element of length, ds, where 

ds = ctdi (1  7.94) 
and 

( 1  7.95) 

with 

(1 7.96) 

where h;i is the derivative with respect to ( of the ith shape function term. 
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Using this approach, equation (17.67) would be replaced by 

( 1  7.97) 

where x‘ = x + d has the current position vector, while, for the change, S E [ ,in place of 
(17.68) and (17.70), we would have: 

1i)= --yT(i)T6d;+ y 
1 

T(<)TS(
I d 4  1 r(4) 

x;)SO(() (1 7.98) 

Also, in place of (17.71), the variation in the curvature would be written as 

(17.99) 

so that, in place of (17.74), the relationsh for the combined ‘strain change’ would be 

h,,I h,S(x;) h;,I h,S(xt) 
0 hrlI  0 h;,I 

(17.100) 

where 

6pT= ( S I T , be:, Sd:, SO:, ...) (17.101) 

Virtual work then leads to 

(17.102) 

which replaces (17.79) for the two-noded element. 
The tangent stiffness equations are found by differentiating (17.102) sot that: 

-
h,,6T 0 

s 0 h,,ST 
h,,6T 0 

0 hc2.6T 

(17.103) 
with 

h;,STN = - h,,S(n) hi& (17.104) 

where, for brevity, we have omitted the (<)’S. From (17.103), the tangent stiffness matrix 
follows as 

K, = -XTCTTXTdc+ KIol + Klo2 (1  7.1OS)j: 




233 AN ISOPARAMETRIC TIMOSHENKO BEAM 

where 
0 - S(n)h& 0 -S(n)h;,h, 
0 -S(m)hilhl 0 -S(m)h,,h, ... d(
0 - S(n)h;,h, 0 - S(n)h;,h, 

(17.106). 1
I I 

0 0 0 
S(n)h,h;, Yhlh l  S(n)h,h;, Y h , h ,  

0 0 ( 17.107a) 
S(n)h,h;, Yh,h, S(n)h,h;, Y h J i ,  

where 

Y = S(xt)S(n) (17.107b) 

The present results only coincide with those of Sections 17.2.4 and 17.2.5 if a two-noded 
element is evaluated using ‘one-point integration’ and the integrals are evaluated 
numerically at (= 0. 

17.3 AN ISOPARAMETRIC TIMOSHENKO BEAM 
APPROACH USING THE TOTAL LAGRANGIAN 
FORMULATION 

A degenerate continuum approach for two-dimensional beams has been given in 
Section 7.5 and for shells in Section 8.2. In this section we will describe a Timoshenko 
beam approach for three-dimensional beams that has much in common with these 
earlier formulations. The method is largely based on the work of Dvorkin et al. [Dl], 
but also uses some of the procedures developed in the earlier sections of this chapter. As 
a consequence, in contrast to the work in [Dl], in the first instance, the present 
formulation leads to a non-symmetric stiffness matrix. This issue will be discussed 
further in Sections 17.4.2 and 17.5 with the links with and differences from the 
formulation of Dvorkin et al. [Dl] being explored in the former section. 

In common with the work in [Dl], we will use convected coordinates with CO- and 
contravariant stress and strain components (although an equivalent formulation could 
be devised without using this approach). The formulation therefore has close links with 
the continuum formulation of Section 12.4. 

As a starting-point, the geometry is expressed using the standard isoparametric form 
(see also (8.32) and Figure 17.2) as 

S t x = X + Ar = h(r),xi +-2 h(r),a,v,, +-2 1h(r)J+wi, (17.108) 

where X i  contains the coordinates of node i while vio, wioare the initial pseudo-normal 
vectors (see Figure 17.2) and ui and biare the nodal thicknesses (fixed) in the directions 
of the pseudo-normals. The shape functions h (with components h)are only functions of 
the non-dimensional centre-line coordinate, r .  Hence, in future, the ( r ) on h will be 
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Figure 17.2 lsoparametric degenerate-continuum beam element. 

omitted. The terms s and t in ( 17.108) are the non-dimensional coordinates of width and 
height. 

From ( 17.108), the displacements d can be expressed as 

S t
d =d + Ad = hidi + -E hpi(vi- via) + -1Izihi(wi-wi0) ( 17.109)

2 2 

where vi  and wi are the current pseudo-normal vectors which are forced to remain of 
unit length. Since v i  and vio have the same origin and are of the same length, their 
motion can be described as a pure rotation, which from Chapter 16 involves: 

v = R(a)vo (17.110) 

Hence, ( 17.109) can be re-expressed as 

d =chidi+ hi(R(ai)- I)uivio+ -t hi(R(ai)- I)hiwio (17.111)
2 2 

For the fundamental expression of virtual work, we need the variation of (17.1 11) .  To 
this end, from ( 16.97b) and (17.1 1 1) we have: 

6Rv, = S(6ai)Rvio= S(8ai)vj= -S(vi)Gaj (17.112) 

where bai are nodal ‘spin variables’ that are not additive to ujeven in the limit as cSa 
tends to zero (see Section 16.1 1). (In Section 16.1 1, we adopted the notation, 66. to 
emphasise this point but, here, will omit the bar.) 



235 AN ISOPARAMETRIC TIMOSHENKO BEAM 

Using ( I  7.1 12), the variation of d in (17.111)  can be expressed as 

(17.113) 

At this stage, we introduce the covariant components of the Green strain (see 11.56) 
and ( 12.75)) as 

(17.114) 

where Gr-G, are the covariant base vectors in the initial configuration and gr-g, are the 
equivalent vectors in the current configuration. Consequently (see Section 1 1.7): 

The variations of the covariant components in (17.1 14) are given (see (1  1.70) and 
(11.71))by 

?6d 
ticrr = g,' -(7r = $ad, = dd, = (G, + dr)(5d, 

(17.115) 

where the subscripts r and s and t or d represent partial differentiation. I t  is worth 
emphasising that the equivalent subscripts on G and g do not indicate partial 
differentiation on G or g but rather on x or (x+d)-see (17.1 14a). From (17.1 13) and 
(1  7.1 15), we can produce the standard matrix expression (see also Section 5. I .  1 and 
(12.80)) for the changes in Green strain, whereby 

SE = [by,, = [H(G)+ ~ ( e ) l s e=H(g)de (17.1 16) 

where we are now writing: 

doT = (Sd;, Sd;, 6d:) ( I 7.117) 

so that a different ordering has been introduced for the components of (58 to the 
orderings adopted in Chapter 5 (see (5.29)),Chapter 7 (see (7.160)), Chapter 8, (see 
(8.44)) and Chapter 12 (see ( 12.78)). The matrices H(G)and A(8)in ( 17.116)are given by 

( 1  7.1 18) 

and :::;IA(8)= dJ d,T OT (17.1 19) [; 
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We will now order the nodal variables as 

6pT=(ad:, Sal,bd:, da;, . . .)  ( 17.120) 

This ordering differs from the orderings in Chapters 5 (see(5.8)),Chapter 7 (see(7.160)), 
Chapter 8, (see(8.43))and Chapter 12 (see(12.73)).Using this ordering and with the aid 
of ( 17.1 I3), the components of the (56 vector of ( 17.1 17) are given by 

bd, = Brbp; lid, = B,bp; 6d, = B,bp (17.121) 

where 

Br = C A r d l  A r r l  A r d l A r z Z  * * . A r d i A r z i.* . I  ( 17.122) 
and 

Ardi= hr(i)I (17.123) 

t
uiS(vi)+-

2 
hiS(wi) (17.124) 

where hr(i)is the ith component of the vector obtained via partial differentiation of the 
shape function h with respect to r. 

The matrices B, and B, take an identical form to (17.122)although now: 

Asdi= Aldi=0 ( 17.125) 

while 

(17.126) 

h(i)

AtJi = --hiS(wi) (17.127)

2 

Equations ( 17.121 )  can now be combined to give an expression of the form: 

(17.128) 

Application of the principle of virtual work leads to the standard form (see ( 12.80 
and (12.82)): 

qi = sC'[H(G) + A(0)lTSdV= GTIH(g)]'SdVo (17.129s 
where the vector s contains the contravariant components of the second Piola 
Kirchhoff stress with: 

=(p,S T  ps,pr) ( 1  7.1 30) 

The bar has been put on top of these stresses to avoid confusion with the S used for 
the skew-symmetric matrix. The element of initial volume dV, is given (see ( 1  1.5))  
by 

dVo= G:(Gs x G,) (17.131) 
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17.3.1 The tangent stiffness matrix 

The variation of (1  7.129) leads to the tangent stiffness equations so that: 

dqi = (K, , + K,, + K,,)6p = K, 6 p  

+ s GTd(A(6))TSd Vo+ s GGTH(g)"Sd Vo ( 17.132) 

where K , ,  is the standard tangent stiffness matrix, given by 

K,,  = s GTH(g)'CH(g)Gd I/, (17.133) 

The C matrix in ( 1  7.133) relates the changes in the contravariant components of the 
second Piola-Kirchhoff stress (17.130) to the covariant components of Green strain 
increment (17.1 16)or  in terms of tensor components (see ( 1 1.78)): 

If we know the components of the constitutive tensor in an  orthonormal system with 
unit base vectors, i l - i 3  as cijkl,then from (1 1.79), we have: 

CiJk'= (Gi.i,)(Gj.i,)(Gk.i,)(G'.id~dahcd (17.135) 

According to [Dl], with constant nodal thickness, an  orthonormal system can be 
defined from the initial covariant base vectors, Gr,G,, G,  via: 

4 = Gi/ / I  GiI / ,  i = r,  s, t ( 17.136) 

with the constitutive matrix in the orthonormal system being defined by 

( 17.137) 

with E as Young's modulus, G as the shear modulus and k as the shear correction factor. 
The second term in (17.132) leads to the conventional geometric stiffness matrix: 

K,, = (PBTB, + sr"(BTB, + B,IB,) + Sr'(B;"B, + BTB,))d V,, ( 17.138)s 
while the last term in (17.132) gives rise to 

P g ,K,,6p = s [6BT6B,IbB:] 
P g ,+ S", + P g ,  

( 17.139) 
P g ,  

Consider, first, the terms involving s". From ( 17.122) to ( 17.1 24), these involve 3 x 3 
submatrices, PJi) on the diagonal of the tangent stiffness matrix associated with the dx 
terms for the ith node, i.e.: 

P,,(i)Gar,= s S"GATRig,dI/, ( 1  7.140) 
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and. using ( 17.124): 

(17.141) 

For the following two equations, i t  is more convenient to drop the nodal subscript, 
i and we can note that: 

W(v)g, = -6S(v)gr= S(g,)6(v) (17.142) 

while: 

6 v  = - v x ha = -S(v)Ga (17.143) 

Equivalent expressions to ( 17.142)-( 17.143) can be obtained involving w. Substituting 
from these expressions and from ( 1  7.141)to ( 1  7.143)into (17.140)an reintroducing the 
subscript i leads to the relationship: 

Prr(i)Sai= sS”6ArZig,dV, 

Using (16.86),we can rewrite the 3 x 3 diagonal submatrix for the ith node as 

(17.145) 

For the OB, term in ( 17.139).we also require: 

Prs(i)bai= J S’shA,,igSd V,: Prl(i)Sai= !S”6A,,igld V,  ( I  7.146) 

which leads to 

(17.1474 

(17.147b) 

For the 6B, and 6B, terms in (17.139),we require: 

( 1  7.148) 

which leads to 

( 17.149a) 

( 17.149b) 
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Finally, from ( 1  7.139), the geometric tangent stiffness matrix, KO,. involves 3 x 3 
submatrices on the ba, terms of the diagonal associated with the ith node where: 

with Prr(i) from ( 17.143, Prs(i) and PJi) from ( 17.147) and Q,,(i) and Qrr (  i) from ( 17.149). 
From an inspection of the latter equations, it can be observed that K,, is non- 
symmetric. If we artificially introduce symmetry, i t  is not difficult to show that: 

Ksa2 =;C K U ,  + K,T,I ( 17.151) 

corresponds with the expression derived by Dvorkin et 01. [DI]. 

17.3.2 Outline of the relationship with the formulation 
of Dvorkin etal. [Dl] 

The previous formulation has introduced an initial stress (or geometric stiffness) 
matrix, K,,, that is non-symmetric. In contrast, the formulation of Dvorkin et U / .  

[Dl] led to a symmetric stiffness matrix. The latter was based on an ‘incremental 
formulation’ which only differs from the formulation of Sections 17.3. I and 17.3.2 in 
relation to the rotation terms and hence we will now only consider the latter. In  
addition, we will only consider the key elements and so will let the thicknesses, and hi 
be unity with the work being concentrated on a typical term involving the unit 
pseudo-normal, v. 

The basis of the incremental formulation is to write the incremental displacement 
due to a rotation as 

Ad; = R(aj)vi- vi (17.152) 

so that, adopting the approximation in (16.39), we can write: 

Ad; = Ad;, + Ad;, = [S(Aa;) + $3(Aai)z]vi  
= Aai x vi + ;Aai x (Aa; x v;) (17.153) 

Using similar approximations, in place of the variation in the Green strain with hc,, 
from (17.1 15), we could write the incremental change as 

Acrr= ALE,,+ ALE,,,+ = gFAd ,+ gTAd2, + 4 Ad:,Ad , ( 17.154) 

where the non-linear incremental terms are given by AE,,, and Acrr3and A’s of third and 
fourth order have been neglected. The terms Acrr2 and Ac, ,~  in (17.154) lead to 
contributions to theinitial stressmatricesK,, (17.150)and K,, (17.138)respectively. I n  
the latter case, the result is the same as before and so we will concentrate on the former 
and will consider only terms involving s’*for which the initial stress matrix, K,,, is now 
given by [Dl] 

6AaTK,,hAa = sSr6Ac,,, d Vo ( 17.155) 

If we consider the term SrrAcrr2with Acrr2 from (17.154) and Ad2 from (17.153). we 
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obtain: 
-
S ' A C , , ~= :s'*g; A a  x ( A a  x v) ). ( 17.156) 

and using the relationship: 

a x (b x c) = (aTc)b- (a'rb)c ( 17.157) 

we arrive at 
-
SrrA~:r,.2= i p r ( ( A a r g r ) v T A a- (g:v)AaTAa) = &!?Aar(grvT - [g~v) I ]Aa  ( 17.158) 

For ( 17.156). we require S " ~ A C , . , ~ .Using ( 17.I%) ,  and substituting into ( 17.155) leads to 

iiAaTK,,Aa = OAa'[~S*"[g,v' + vg,'] - s"(g,"v)l]Aa ( 17.159) 

which contains the symmetric form (via (17.151)) of the KO, term in (17.150) and 
( 17.145). 

17.4 SYMMETRY AND THE USE OF DIFFERENT 
'ROTATION VARIABLES' 

The main reason for the non-symmetric terms in the earlier tangent stiffness matrices 
relates to the use of spin variables, (see Section 16.1 1 )  that are non-additive even in 
the limit as S e  tends to zero.* 

For an 'additive system' one can write: 

x,,, = X,,d + csx ( 17.160) 

Using such variables, standard arguments relating to a potential can be used to show 
that K, must symmetric because: 

(17.161) 

However, with 'spin variables',(17.160)does not apply and hence neitherdoes( 17.161). 
We will show in Sections 17.4.2 and 17.4.3 that we can change the parametrisation of 
the rotations so as to ensure symmetry. We will also show that, at least in some cases, 
the resulting stiffness matrix is identical to that obtained by artificially symmetrising 
the stiffness matrix derived using 'spin variables'. 

I t  was argued by Simo and Vu-Quoc [S3.16] that their stiffness matrix (see Section 
17.2) became symmetric at equilibrium. The author and co-worker [CS] used numeri- 
cal experiments to show that this also occurred for the co-rotational beam elements 
[C 1.16, C3, C5] using the theory of Section 17.1. More recently, detailed numerical 
studies have shown that i t  is more correct to say that this symmetry is 'almost achieved' 
at equilibrium. This finding fits in with the theoretical arguments that will be given in 
Section 17.4.3. 

* However, i t  is worth noting that the co-rotational three-dimensional continuum formultion o f  
Section 18.3 (without rotational variables) also leads to a non-symmetric stiffness matrix although 
symmetry is recovered at equilibrium. 
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17.4.1 A simple model showing symmetry and non-symmetry 

Suppose that a potential, q,depends on a unit position vector, r, that is a function of 
8 and is free to rotate so that: 

From ( 1  6.97b). we can write: 

where 66 is the (non-additive) 'spin vector'. 
From ( 17.162) and ( 17.163): 

so that for equilibrium: 

?<p&rg = r x - = O  (17.165) 

The latter could also be obtained using virtual work. 
To obtain the tangent stiffness matrix, we have: 

6'q= cse9g = seTK,se= 6eT(K,,+ K , # e  

( 17.166) 

whereuse has beenmadeof(17.165). With theaid of(17.163), thesecond termin thelast 
expression in (1  7.166) is 

(17.167) 

where K t z  is symmetric. The first term gives: 

(17.168a) 

Using ( 17.157).( 17.168a) can be re-expressed as 

(17.168b) 

where the second term in (17.168b) is non-symmetric. 
However, at equilibrium, from (1 7.165), it follows that r and ?q,c'r will be co-linear 

so that this term will become symmetric. It will be shown in Section 17.4.3 that, in 
contrast to this simple 'model', for a finite element formulation, the result is less 
clear. 
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17.4.2 Using additive rotation components 

For the elements of Sections 17.1-17.3, we have adopted 'spin variables' whereby given 
rn = R(6"jr0, the finite element variables are A 6  (not additive to 0) for which. using the 
notation of Section 16.1 i (see (16.81a)): 

r,, = R(Ae)R(B,)r,= exp(S(Ae))R(O,)r,= R(O)r, ( i 7.169) 

with 0 # 0, + Aeand 

Or = 60 x r = S(i%)r ( 17.1701 

An alternative procedure would involve always working with the total relation- 
ship: 

r, = R(O0)r0; r,, = R(8,)r0 = R(0, + A0)r, (17.171) 

where the finite element variables would be A0  which can be added to 0,. I n  these 
circumstances, we must apply: 

6r = SR( (ZO)RTr = S(6e)r ( !7.172) 

where 6R is the variation of the Rodrigiies formula (see (16.101)) and the relationship 
between the spin, 60, and the additive (50is given in ( 16.89). Such an approach has been 
adopted by Parisch [Pl]  for shells and (apart from approximations induced by the 
interpolation) should lead to a symmetric stiffness matrix. 

We will new investigate a procedure whereby we introduce transformations between 
the non-additive S6 (spin) variables and the additive (58variables. From (16.89) we can 
relate the former to the latter via: 

S G= H(e)de (17.173) 

where (see ( 16.90)): 

( 17.174) 

Applying (17.173) to ( 17.164) gives: 

&p = de'rH(e)Tg= 6eTg= o ( 17.175) 

so that with these modified variables, the equilibrium equations are 

g = H(8)'g = 0 i17.176) 

with g as iii (17.165).I t  follows that: 

6g = K,60 = H(0)T6g+ 8H(0)Tg= H(8)TK,i%+ SH(6)lg 
+ sH(e)Tg ( 17.177)= h-ie)rir,H(e)se 

The term SH(8) involves a complicated expressioi; that is given in (16.95).Subsequent 
deve!opments are considerably simplified by setting 8 = 0. ( I t  will be shown later in 
Section 17.4.4 how this can be applied.) In  these circumstances, from (16.96): 

d H ( Q= ,,= S ( W  ( 17.178) 
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while, from (17.174): 

H(e),=, = I ( 17.179) 

Substitution from (17.178) and (17.179) into (17.177) leads to: 

K,de = K,ae + K,,,6e = K,ae- is(6e)g= [K,+ $(g) jse (17.180) 

with g from (17.165). I t  follows that: 

K,,,dO = +S(g)68= -+fie x (r x -2) (17.18la) 

and using ( 17.157): 

( 17.181b) 

From ( 1  7.1SO), K, is obtained by adding K,,, from ( I  7.181b) to K,in ( 17.166). The latter 
is the sum of K,,from ( 17.1 68b) and K,,from ( 17.167). The addition process leads to 

1 C q T  lc7q 
rT-

( 7 q T  
r I = 

K,+ KT
K, = - S(r)-

“2ql 
S(r)T+ - r -+-- ( 17.182)~

?r?r 2 ?r 2 ?r (’r 2 

Consequently, the stiffness matrix is symmetric and corresponds exactly with the 
artificially symmetrised K,which was obtained using ‘spin variables’. In  Section 17.4.4, 
a similar procedure will be applied to a finite element formulation. 

17.4.3 CONSIDERING SYMMETRY AT EQUILIBRIUM 
FOR THE ELEMENT OF SECTION 17.2 

While, in Section 17.4.1, we indicated that a ‘spin-based’ formulation would become 
symmetric at equilibrium, the arguments were applied to a simple model that does not 
account for all the features of a finite element formulation. In order to consider the 
latter, we must consider the contributions to a single node from two adjacent element 
(Figure 17.3). We will also concentrate on the rotation terms since the non-symmetry 
lies in the 3 x 3 submatrices associated with these terms. 

Nodej+ 1 

Element 2 

Node j - 1 

Figure 17.3 Two elements meeting at a common node. 
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We will concentrate here on the element of Simo and Vu-Quoc CS3.16) which was 
considered in Section 17.2 and, in particular, on the linear version, which uses reduced 
integration, of Sections 17.2.1 17.2.5. Using the expression for qi in ( 17.79), we can write 
down the equilibrium equations corresponding to the rotation variables at the centre 
node in Figure 17.3 as 

g = qi = - iS (x i  ) n + m' -+S(xt',) n2 -m2= O (17.183) 

In (17.183), the superscripts relate to the element number. Also, it has been assumed 
that there are no applied external moments at the common node (The issue of applied 
external moments will be considered in Section 17.5.2.) 

Using ( 17.90) and ( 17.9I ) ,  the submatrices that contribute to the non-symmetric 
stiffness matrix associated with this variable are 

and 

( 17.184b) 

and 

K , n q ( j , j- 1) = :[Z'] = AS(x:', x n')  ( 1  7.184~) 

I t  will be noted that theequilibriumequation of( 17.183)cannot be used todemonstrate 
the vanishing of these submatrices. Indeed it can be inferred that non-diagonal 
contributions (as in ( 17.184b) and ( 1  7.184~))can never be made to vanish as a result of 
the achievement of symmetry. This argument applies to any element and is valid 
because both the residual force(which we seek to vanish) and the stiffness are assembled 
in the same way only for those contributions belonging to the same node' [R3]. 
Interestingly, however, from ( 1  7.183)-( 17.184), at equilibrium we have: 

K t n q U j- 1) + K , , , \ ( j , j )  + K , n \ ( j , j  + 1 )  = 0 ( 17.185) 

None the less, numerical experiments have indicated that the individual non-symmet- 
ric contributions do almost vanish at equilibrium. 

Consider an off-diagonal block such as Ktn,(j , j  - 1 )  in (17.184~).This term will 
vanish as xi becomes coaxial with n'.  From (17.78): 

n = N l t l  + N2t2+ N3t3 ( 17.186) 

where N ,  is the local axial force and N, and N, are the local shear forces. In  general, at 
equilibrium, the shear forces will be small in comparison with the axial forces so that 
n 2 N l t l  and because t ,  2k x ; , ,  coaxiality of x; and n will be nearly achieved at 
equilibrium and hence Kt,,(j, j - 1)  and K,,,( j , j  + 1)  will nearly vanish at equilibrium. 
If they do, from ( 17.183) and ( 1  7.184a), the diagonal block Kt,,( j , j )will also vanish. The 
latter will also occur if the n terms in ( 17.183) and ( 17.184) are small in comparison with 
the m terms. 

While the discussions have been related to the linear version of the element, with 
reduced integration, similar arguments can be related to the general isoparametric 
form (Section 17.2.6), although the algebra is a little more complex and integration 
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by parts is required. I t  would seem that Simo and Vu-Quoc’s argument rS3.161 for 
symmetry at equilibrium was based on the equations prior to discretisation. 

It should perhaps be re-emphasised that these discussions are somewhat academic 
because, in practice, the excellent quadratic performance of the element is maintained 
when the tangent stiffness matrix is symmetrised (with conservative loadings). A more 
theoretical justification will now be given (see also [N 13). 

17.4.4 Using additive (in the limit) rotation components with the 
element of Section 17.2 

We will now apply the method of Section 17.4.2 to the element of Section 17.2. In the 
first instance we will attempt a naive approach in which we merely change the rotation 
changes from barred spin variables to non-barred additive (in the limit) variables 
without considering the associated interpolations. Using the transformation of 
(17.173), we can rewrite the internal virtual work for a rotation component as: 

( 17.1 87) 

qi = H(e)Tiji (17.188) 

and the barred terms would be those previously derived (although without bars) in 
Section 17.2. Equation (1 7.188) is the equivalent of (1 7.176). 

The variation of (17.188) now leads to 

6qi = H(8)Tdij+ 6H(8)Tiji= K,60 ( 17.189) 

where with spin variables, we would have obtained: 

sqi= K,s6 ( 17.190) 

Assuming 8 = 0 and using (16.96), we now obtain as a parallel with (17.177)’ the 
relationship. 

6qi = K,68 = [K,+ K,,,JSO = [K,+ iS(qi)]68 ( 17.191) 

In Section 17.2, we used the symbols 6a and 6s for the rotation changes at the two 
nodes. The latter should now be considered as barred and the equivalents of ( 1  7.173) 
would be 

6a= H(a)Ga; Sg = H(P)@ ( 1  7.192) 

Hence after adopting (17.191), the ‘extra’ stiffness contribution is given by 

0 0  0 0  

(17.193) 

0 0 0 K,, 

where 

( 1  7.194) 
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From ( 17.74) and ( 1  7.79), 

2 2q = -11,', , xn-mm;  qs -- -Lx' 2 l X n + m  (17.195) 

Using (16.100)whereby S(a x b) = ba' - abT, it follows from (17.194)that: 

K ,  ,= iS(m) -&xiT, + $ x i  InT ( 1 7.196) 

K, = -is(m) - anx?, + $x; ,nT (17.197) 

With our assumption that 8 = 0 and H(0)= I(see ( 1  7.174)and ( 1  7.179), to obtain the 
new tangent stiffness matrix, from (17.191) and (17.193), we simply add Ktex from 
(17.193) to the K, in (17.89)(with the latter now considered as barred). Although this 
process removes the non-symmetric S(m) terms in (17.90), it does not remove the 
non-symmetric Z terms in the same equation. 

The reason relates to the averaging process involved in ( 1  7.64)whereby: 

bar, =+(da+ 6s) (17.198) 

with da, as the rotation change at the central 'Gauss point'. In  relation to an 
isoparametric formulation (Section 17.2.6)the latter equation involves the interpola- 
tion of ( 1  7.93). 

In  order to obtain a fully symmetric matrix we must be more rigorous and rewrite 
(17.71)as 

Tr T T
6x, = -(@ -6a)=-( H(fl)'SP -H(a)Tlia) (17.199)

1" 10 

and (17.68)combined with (17.70)as 

( 17.200)
2 

The virtual work can now be written (see also ( 1  7.75))as 

where, to avoid cluttering we have omitted the subscript v for virtual. The combination 
of (17.199)-( 17.201) leads to 

H(aJT'"q, = -H(a)TTM-H(a,)' W T N  = -H(ajrm- ___"n ( 1  7.2024
2 2 

-H(a,).'?TN = H(fl)Tm-H ( a J T 7qs = F I ( ~ ~ ) ~ T M  '4 1 I n  ( 1  7.202b) 

In relation to the variations of (17.202), we require the equivalent of (17.82) with 
'additive variables' for which: 

6TN = -S(n)fia, = -S(n)H(a,) ____ ( 1  7.203)ra;@> 

with a similar expression for 6TM. Using ( 17.76),( 17.78),( 17.86).( 17.199),( 17.200)and 
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(1  7.203)’ equation (1 7.202a) can be differentiated to give (see also (1 7.86) and ( 1  7.88)): 

1 1
6q, = -H(a)TTCbTTH(a)6a--H(a)TTCbTTH(P)dp 

10 10 

+iH(a)TS(m)H(a,)ba+ iH(a)TS(m)H(a,)bp+ ;H(aJTS(n)bd, 

Y Y
+iH(ac)T-H(ac)Ba+ $H(a,)T-

2 
H(a,)@ + ‘extra’ (1 7.204) 

2 

where the ‘extra’ terms come from the variations of H(x) and H(or,) in (17.202a) so 
that: 

‘extra’ = -6H(a)Tm- i6H(a,)T(x;,) x n) (17.205) 

If we now set a = P = 0 so that a, = 0 and 

H(a)= H(P)= H(a,) = I (17.206) 

the terms in (1 7.204) are found to coincide with those in (17.89) while, from (1 6.96) and 
(16. loo), equation (1 7.205) can be re-expressed as 

‘extra’ = -$S(m)6a-+S(xi, x n)(Sa + 6s) 

inxFl +ix; InT 6a + [ -$nxiTl+ i x ;  ,nT] 6s  ( 17.207)1 

Combining (17.204) with (17.207), leads to the symmetric tangent stiffness matrix that 
would result from ‘artificially symmetrising’ the original non-symmetric matrix of 
(17.89)so that the non-symmetric matrix in (1 7.90) vanishes. This conclusion coincides 
with that of Simo [S3] who obtained the result by following a rather different route. 

Having set a = P =  a, =0, from (17.206) and (1 7.192), there is no difference between 
A a  and A@and, provided that actual update on the mid-point triad is performed using 
(17.69, the former process will not effect the earlier formulation. Hence, we can simply 
use the procedure of symmetrising the previous non-symmetric stiffness matrix ob- 
tained via spin variables, although now we have some theoretical justification. 

While the previous developments have related to the beam element of Simo and 
Vu-Quoc for which an interpretation was given in Section 17.2, i t  is believed that 
a similar justification for the symmetrising process could be applied to the corotational 
elements of Sections 17.1 (although the algebra would be more tedious). A similar 
process could also probably be applied to the derivation in Section 17.3 of an 
isoparametric Timoshenko beam element. In the latter case, certain aspects would be 
simpler because, as indicated in Section 17.3.1, for this element all the non-symmetry is 
confined to the 3 x 3 block diagonals associated with the rotation terms. 

Cardona and Geradin [Cl] have used similar arguments to develop symmetric 
formulations that, with respect to rotations, can be considered as total lagrangian or 
updated Lagrangian with the latter working with increments from the last converged 
equilibrium state. Buechter and Ramm [BSI appear to propose a method that is closer 
to the present, with 0 being set to zero at the start of the current iteration in order to 
generate a relatively simple symmetric tangent stiffness matrix. The issue of symmetry 
in relation to co-rotational beam elements has been discussed by Krenk [K3]. 
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17.5 VARIOUS FORM OF APPLIED LOADING 
INCLUDING ‘FOLLOWER LOADS’ 

The loading on three-dimensional beams can either be related to fixed global axes or 
can be related to local ‘follower axes’. In some cases, these loadings lead to a conserva- 
tive system with a symmetric tangent stiffness matrix; in other cases, the loading is 
‘non-conservative’and the tangent stiffness matrix will be non-symmetric [A4, H I ,  S1). 
In some cases, we obtain an ‘extra’ contribution to the tangent stiffness matrix. 

With conventional ‘load control’, the corrector phase of the Newton-Raphson 
process, can be derived via a truncated Taylor series of the form: 

( 17.208) 

Normally, with the load level fixed (the process is a little different with the arc-length 
methods, but can very easily be adapted), there is no contribution to the term ?q,J?p. 
However, with certain types of loading, particularly those that depend on the current 
configuration of the structure, we do have such a contribution so that, dropping the 
subscript o for ‘old’, equation (1 7.208) becomes: 

( 17.209) 

Loadings on beams can take the form of point loads or distributed loads. In the 
former case the loads can be ‘distributed’ to the nodes in the conventional manner 
(strictly via the shape functions). We will therefore start by considering various forms of 
point loading-initially via conventional forces (Section 17.5.1) and later via moments 
(Section 17.5.2). 

17.5.1 Point loads applied at a node 

Clearly if the point load is applied in a fixed global direction, then conventional 
procedures apply. Consequently, we will concentrate on various forms of follower load. 

In relation to Figure 17.1, suppose that we have a load P that is to be applied at node 
1 in one of the directions ti (i  = 1,3), where t, define the direction of the (moving) nodal 
triad. The external virtual work is then given by 

V ,= P(GdTvti)= qzSd,, ( 17.2 10) 

so that the external force corresponding to the translational degrees of freedom at the 
node would be given by 

q, = Pt, (17.21 I )  

To obtain the associated stiffness relationships, with P fixed, the variation of (17.21 1) is 
given by 

6q, = Pat ,  = -PS(t,)Ga = K,,(q,)Sp (17.212) 

where use has been made of (17.20). I t  follows that we obtain a contribution to the 
stiffness matrix Ktu(qe)in the K , ,  position of (17.44) of -PS(t,).The tangent stiffness 
matrix is non-symmetric and the loading is non-conservative. 
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As an alternative, follower loads might be applied in the direction of the unit vectors 
of the ‘element frame’, e,-e3 (Figure 17.1). The load might still be applied at the 
‘left-hand end’ (node 1). In  these circumstances ( 1  7.21 I )  would be replaced by 

q, = Ple,  + P2e2+ P,e ,  (17.213) 

and the variation would involve the terms 6e, - 3. Consequently, in relation to the 
translational variables at the first node, with the P’s fixed, we would have: 

6q, = PI F3(1-3)T + P2F3(3-6)T + P3F,(6-9)T = K,,(q,)Gp ( 17.124) 

where F3(3-6) for example has the third to sixth rows of the matrix F, of (17.62). 
For the two-noded element of Simo and Vu-Quoc CS3.161 (Section 17.2). a point load 

applied at node 1 which followed the ‘element direction’, t;, which have a load vector 
applied to node 1 as in (17.21 1). With the aid of (17.69), with q, fixed. differentiation 
would lead to 

P 
f_
6q, = P 6ti = - S(ti)(6a+ Sp) = K,,(q,)Sp ( 17.215 )
2 

so that stiffness contributions would be added to both K , ,  and K , ,  in (17.44). 

17.5.2 Concentrated moments applied at a node 

Ziegler [Zl] has shown that moments about fixed axes are non-conservative. The 
reasoning can be related to the system in Figure 17.4 in which a constant moment M is 
assumed to act about the fixed X ,  axis. The motion from the system in Figure 7.4a to 
the configuration in 7.4b then results in the work, W = n M ,  where a rotation of TI 

radians has been applied about the X ,  axis. (The lower-case letters relate to the 
orientation of the rotated body.) On the other hand, the motion from the initial 
configuration in Figure 7 . 4 ~  (which is identical to that in 7.4a) to the configuration in 
Figure 7.4e (which is identical to that in 7.4b) via the intermediate configuration in 
Figure 7.4d leads to no work. The latter process involves a rotation of TI radians about 
the X ,  axis followed by a rotation of n radians about the X ,  axis, but none the less leads 
to the same final configuration as the earlier work-consuming process. Consequently, 
the work is path-dependent and the moment is non-conservative and will lead to 
a non-symmetric tangent stiffness matrix. 

In relation to the element of Sections 17.1 and 17.2 which use ‘spin rotation 
variables’, conjugate to moments about fixed axes, we simply have external loadings 
that contribute to the rotation terms (i.e. for node 1 of the elements of Section 17.1, the 
moments would be applied to the third to the sixth terms in the load vector). 
Consequently, no contributions are added to the tangent stiffness matrices when 
variations are applied to these loads so that there are no terms KJqe). However, for 
such loadings, we can no longer use the arguments of Sections 17.4 justify artificially 
symmetrising the tangent stiffness matrices. Indeed, the tangent stiffness matrix will, in 
such cases, turn out to be non-symmetric and, if an artificial symmetry is imposed, 
a very poor convergence rate will be found [CS]. 

For the co-rotational elements of Section 17.1, it is not difficult to apply local 
‘follower moments’ at the nodes. For example, if such moments were applied in relation 
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Figure 17.4 Illustration of the non-conservative nature of moments about fixed axes. 

to the local element axes at node 1, one could consider the external work to be given by 

ve = Me16011 -tMe26012 -k Me36013 = qi6PI ( 17.2 16a) 

where to avoid cluttering, we have omitted the subscript v for virtual. The qel term in 
(17.216a) would take the form: 

q: = (O ,O,O,  Mei- Me2. ~ e 3 , O , O ~ O , O , O ,0 )  (17.216b) 

so that using (17.4) whereby Sp, = Fbp,, the global external forces could be obtained as 

(1  7.2 17) 

(17.218) 

where the tangent terms Kia(q,/) would take precisely the same form as the 
conventional initial stress terms, Ktn(qil) of Section 17.1.3. 
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17.5.3 Gravity loading with co-rotational elements 

While gravity loading is normally considered to be a conventional. ‘non-follower’ 
loading, some anomalies arise with the co-rotational formulation. 

Suppose a gravity loading is applied in the fixed unit direction a, with a density, p. 
For a two-noded co-rotational Timoshenko element, we would conceptually derive an 
appropriate loading vector by considering shape functions of the form: 

which relate to the centre-line translations using ‘global measures’. The external virtual 
work would then follow as 

Ve= qT6p = sAopg(aTddV)d.u,, ( 17.220) 

from which we would obtain a conventional lumped load vector: 

(17.221) 

With a being fixed, we would find no contribution to K,o(qe). 
Strictly, the situation with a two-noded Euler-Bernoulli element would be rather 

more complicated, because in place of (17.219)we would have: 

= - i)d, ++( 1 + [)a, + Ad (1  7.222a) 
with: 

10 v 2  10Ad = 8(6 - I)(( - 1)(O12e2+ O,,e,) + -(i2- l ) ( i  + 1)(Orse2+ O,,e,) (17.222b)
8 

where the latter term relates to the cubic transverse shape functions. For a strict 
solution, we are forced to relate some of the shape, functions to the moving local 
directions because the shape functions for the different displacement components are 
not the same. The first two terms on the right-hand side of (17.222a) will lead to the 
same external load vector as previously obtained for the Timoshenko element (see 
(17.221)). However, the term in (17.222b) will lead to some additional, more compli- 
cated, terms. The latter can be simplified to give ‘fixed end-moments’ which, in relation 
to the sign convention and ordering adopted for the element of Section 17.1, take the 
form: 

The latter should be added to the terms in (17.221). Strictly, differentiation of (17.223) 
will lead to stiffness contributions, Kt,,(qe), which can be incorporated using terms from 
the matrix F, of (17.62). It might, however, be better to use a Timoshenko-type 
formulation for such loadings even if a Euler-Bernoulli formulation is used for the 
stiffness. A similar approach is advocated in Section 24.1 1 for the treatment of inertia 
effects in dynamics. 
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17.6 INTRODUCING JOINTS 

Many structures which are modelled with three-dimensional beam elements require 
joints at the nodes which follow the axes of the rotating system. Examples include 
deployable space structures, robots and rotating machinery. Joints can be modelled 
using Lagrangian multipliers (see Section 23.6 for the use of Lagrangian multipliers in 
relation to contact with continuum elements). Not only do such methods introduce 
extra variables but also Cardona and Geradin [C2] have shown that, in a non-linear 
dynamic environment, problems can sometimes arise with oscillations in the multi- 
pliers. As with continuum contact problems (see Section 23.7), various forms of 
augmented Lagrangian approach can be adopted [B2]. 

Perhaps the simplest approach is the penalty procedure, but convergence difficulties 
can then result 11521. An alternative procedure involves the ‘master-slave approach’ 
[ A l l  in which certain subservient, slave variables, are expressed in terms of master 
variables. In the present section, we will describe a ‘master-slave approach’ that has 
been specifically geared to deal with large rotations [J2]. The description does not 
require the precise detail of the formulation adopted for the particular t hree-dimen-
sional element, although it should have six degrees of freedom at each of the two (end) 
nodes. However, for the theory to be directly applied, the beam elements should use 
‘spin variables’ (see Section 16.1 1 )  as the rotation variables. In describing the theory, 
we have also assumed an element with ‘nodal triads’ (such as the elements in Sections 
17.1) rather than ‘Gauss point triads’ (as with the elements of Section 17.2). However, 
the concepts would still apply to the latter and it  would not be difficult to modify the 
detail. 

Figure 17.5 shows the basis of the proposed master-slave formulation. The deforma- 
tions for the internal element are considered to be slave variables which are subservient 
to the master variables associated with adjoining nodes. These slave variables will be 
expressed in terms of the master variables and a set of ‘relative variables’ which will be 
eliminated at the element level so that, at the structural level, the only variables are the 
master variables. Generally, some of these ‘relative variables’ will bezero and only some 
of the local ‘relative variables’ will be released. However, in describing the theory, a full 
set of ‘relative variables’ will be assumed. 

We will adopt a similar notation to that used for the beam element of Section 17.1 
(see Figure 17.1). Hence, at node 1, the master variables involve a translation vector d,,, 
and a pseudo-vector a, associated with a nodal triad, T, = [tml, t,,, tml].  The slave 
variables takes a similar form, although now with a subscript s instead of m. For the 
relative variables, we will use the subscript sm. In relation to node I ,  the following 
relationships connect the variables (Figure 17.5): 

4 1 = d m 1  + dvnl ( 17.224a) 

T,(a,)= T\,(a\m)T,(am) ( 17.224b) 

Using the notation of Section 17.1 (see also Figures 17.1 and 17.5), the equivalent 
relationships for node 2 are 

( 17.225a) 

( 1  7.225b) 
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Figure 17.5 Master-slave relationships. 

It will be assumed that the relative variables can be expressed in relation to the 
continuously rotating master triads and we will supply a superscript bar for the 
variables when they are expressed with respect to the latter so that at node 1, for 
example, we have: 

CX,, =TL~L,, ( 17.226b) 

Some of these variables will be constrained to zero and others will be released. For 
example, in Figure 17.6a, we only allow a sliding in the direction of the second 
component of dsml(labelled as S in the figure) while in Figure 17.6b. we only allow 
a rotation (labelled as cp in the figure) about the continuously movingdirection t,, = t,, 
so that the first component ofa,, is free. The former is a 'prismaticjoint'while the latter 
is a 'revolute joint' [A23. 

The presented theory is based on the hypothesis that the master and slave triads are 
initially coincident (with an initial triad [tol,to,, to33at node 1 and a triad [uol,U,,, uO3] 
at node 2-Figure 17.5) and that the required freedoms can be related to the former. 
The required kinematics will not always be consistent with this assumption. However, 
the problem could be overcome by defining an auxiliary triad, rigidly connected to 
either the master or slave triads. This approach would have similarities to the method 
that will be discussed in Section 18.6 for defining an 'element nodal triad' U, that is 
always a fixed rotation from a surface triad U,). 
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Figure 17.6 Examples of different joints. (a)Prismatic joint; (b) revolute joint. 

As a result of the Newton-Raphson equilibrium iterations, we will obtain (details 
later) the variables: 

and 

Given the first of the vectors, the master variables would be updated in the standard 
way (as in Section 17.1), so that at node 1, for example, we would have: 

-
d m l , n e w  - d r n l , o l d + 6 d m l  (17.228a) 

Trn,new = ATm(Garn)Tm,o,d = eXPS(6arn)Tm.old (1 7.228b) 

The slave variables are now updated via: 
-

d s l , n e w  ='rnl,new + Tm.newdsrn1.new - d r n l . n e w  + T m . n e w { d s m l , n e w  + 'dsrn1) 

-
Ts,new = Tm,newTsm,new - Tm,new Cexp S(6asrn)Tsm,o~d~  (17.229b) 

where we have made use of (17.226) to convert back from the barred variables, which 
relate to the rotating master triad. The first relationship in (17.229b) needs further 
elaboration. It stems from the relationship: 

T,, = T;T,,T, (17.230) 

and hence, from (17.224b), we can write: 

T, = Ts,T, = T,T,,T~T, = T,T,, (17.231) 

For the application of the principle of virtual work, we require the variation of ( 1  7.229) 
which gives: 

Sd, = Sd, + T,6d,, + S(6am)Tmdsm= ad, + T,Sd,, + S(Sa,, l)dsm 
= Sd, + T,6dS, -S(d,, ,)Sa, (17.232a) 

Sa, = Sa, + Tm6a,, (17.232b) 
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Equation ( 17.232b) is ‘intuitively obvious’, but a proof of its derivation is given in [J2]. 
By combining ( 17.232) with the equivalent relationships for the right-hand side node 2, 
we obtain: 

where c’ip, and dp,, were defined in ( 1  7.227) and the reader may need reminding that the 
triad U is the equivalent at node 2 to the triad T at node 1. The subscript ‘mr‘ used for 
the combined displacement variation vector, on the right-hand side of (1 7.233), stands 
for ‘master and released’. 

Application of the principle of virtual work, now leads to the internal force vector 
qi.mrcorresponding to Sp,, as 

(17.234) 

where qi,sis the standard internal force vector relating to the ‘slave element’. 
To obtain the tangent stiffness matrix related to dp,,, we vary ( 1  7.234) to obtain: 

’qi.mr = H T K , . s H 8 p m r  + c’iHTqi,s= HTKt,sH’pmr + Kto’pmr ( 1  7.235) 

(For simplicity, we have assumed no external forces associated with the slave variables 
but the developments are easily modified should the latter exist.) 

In  deriving the initial stress matrix, we use relationships such as 

T, = S(Ga,)T, ( 17.236) 

and 

( 1  7.238) 

where we have split qi,sinto subvectors such that: 
T T Tqls  = (q1 ,  427 Q37 4) ( 17.239) 
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As discussed in Section 17.4, because we have used ‘spin variables’, non-symmetric 
terms are found in the tangent stiffness matrix. However, following the arguments of 
that section, in the absence of follower loads, there should be no deterioration in the 
convergence charateristics if we apply an aritificial symmetrisation. This theory is 
borne out by numerical experiments [J2]. 

Because the ‘release variables’, dp,,, are only related to a particular node and 
element, they can be eliminated ‘at the element level’ using a similar procedure to that 
described in Section 18.12 for eliminating internal variables, such as ‘enhanced strains’, 
within continuum elements. 

17.7 SPECIAL NOTATION 

a,, hi = ‘nodal thicknesses’ in Section 17.4 
A = matrix (see (17.22) in Sections 17.1 and 17.2 
A = matrices in (17.23)-( 17.27) in Section 17.3 

A(8) = matrix defined in (17.1 14) in Section 17.2 
Bi,B,, B, = matrices connecting d,, d,, d, to 6p in Section 17.3 

C = constitutive matrix; C,-membrane, C,-bending 
d = displacement vector (d at left-hand-side node, d, at right-hand-side 

node in Sections (17.1- 17.2) 
d = displacement vector at reference section in Section 17.3 

d,, = relative displacement vector written with respect to current master triad 
in Section 17.6 

d,,d,,dl = partial derivatives of d with respect to r,  s and t in Section 17.4 
e -e3 = element base vectors 

E = triad containing e,-e, 
fi = columns of F in Section 17.1, vectors (see (1 7.16)) in Section 17.1 
F = (Section 17.1) matrix connecting 68, to 6p (see (17.4)) 

g,, g,, g, = covariant base vectors in current configuration in Section 17.3 
G,,C,,G,= covariant base vectors in initial configuration in Section 17.3 

G = matrix connecting 68 to 6p in Section 17.3 
hi = vectors (see ( 17.92) 
H = matrix in (17.1 16) in Section 17.3 
H = matrix in relating changes in slave variables, 6p,, to changes in master and 

released variables, dp,, in Section 17.6 
H(8)= matrix connecting be to 68 (see (17.184)) in Section 17.5 

L = matrix connecting be’s to dp’s (see (17.32)) 
m = scaled local bending moments (see ( 17.78) in Section 17.2) 
M = vector of local bending moments 
N = axial force 
n = scaled N’s (see (1 7.78)) in Section 17.2 

N = vector of local axial and shear stress-resultants in Section 17.2 
P,, etc. = 3 x 3 submatrices for tangent stiffness matrix in Section 17.3 

qi = internal force vector 
qi = internal force vector work-conjugate to 66 in Section 17.4 

r l -r3  = components of R (Section 17.1) 
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r = non-dimensional coordinate along bar in Section 17.3 
R = intermediate triad (Section 17.1) 

s, t = non-dimensional coordinates in 'pseudo-normal' directions in Section 

S = skew-symmetric matrix 
S = in Section 17.3, also vector with covariant components of second 

Piola-Kirchhoff stress (see (17.130))-with components S", s's, S" 
T = in Section 17.1, nodal triad for left-hand-side node, component vectors 

are t,-t3 
T = in Section 17.2, mid-element triad (see (1 7.89)) 
T = in Section 17.3, matrix in (1 7.74) 
U = nodal triad for right-hand-side node, component vectors u1-U, 
v = in Section 17.1, vector defined in (1 7.55b) 

vi,w i  = nodal 'unit pseudo-normal vectors' in Section 17.3 
x = initial coordinate vector 
X = initial coordinate vector of reference section in Section 17.3 
x' = current coordinate vector 
X = in Section 17.1.5, matrix-see (17.47); in Section 17.1.5, matrix-see 

(17.56b);in Section 17.2, matrix-see (17.100) 
Y = in Section 17.2, matrix-see (17.88) 
z = vector representing t ,  or U,, etc. in (17.46)-( 17.50) 

Z = in Section 17.2 matrix-see (1 7.91) 
U/ = local axial stretch displacement 

I,, I, = old and new length of beam (straight between nodes) 
cc = length parameter (see (1 7.95)) in Section 17.2.6 

Aa = finite element rotation variables at left-hand-side node (Sections 17.1-
17.2) 

AP = finite element rotation variables at right-hand-side node (Sections 17.1-
17.2) 

; q 2 ,  y 3  = local shear strains in Section 17.2 
cl = local 'strain vector'; see (1 7.67) for Section 17.2 and (17.97) for Section 17.2.6 
8, = vector of local element rotations 

ARm= rotation matrix defining rotation from T to 'mean configuration'(Section 
17.1) 

~ , 1 - ~ 1 3= local curvatures (Sections 17.1 and 17.2)
x I= vector of local curvatures (Section 17.2)
i= non-dimensional coordinate along beam in Section 17.5 

68 = vector of variations in displacement derivatives in Section 17.4 
68 = small changes in pseudo-vector in Section 17.3: also 60-larger changes 
S e  = spin variables in Section 17.4-also A 0  
q~ = potential in Section 17.4 
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18 More on continuum and 

shell elements 

18.1 INTRODUCTION 

In relation to specific finite element work rather than to the surrounding mechanics, the 
main developments on continua in this volume have involved the ‘Eulerian formula- 
tion’ of Chapter 12 and the various mixed or hybrid formulations introduced in 
Chapter 13 in relation to hyperelasticity so as to combat volumetric locking. In this 
chapter, an alternative technique is discussed (Section 18.12) in which ‘incompatible 
modes’ or ‘enhanced strains’ or ‘assumed co-variant strains’ are used to improve the 
performance of lower-order elements. This is achieved with the aid of an enhanced 
deformation gradient and leads directly to an enhanced Eulerian formulation which 
was originally introduced by Simo and co-workers [SS-S7]. 

The remainder of the chapter is primarily directly concerned with the co-rotational 
approach and starts with continua and then moves on to shells (with a short return to 
three-dimensional beams in Section 18.10). However, although the work on shells 
is based on the co-rotational approach, some of the concepts have a wider application. 
In particular, the treatment of large rotations is a also relevant to other formulations. 
In addition. three separate approaches are adopted for dealing with the ‘drilling 
rot at ion ’. 

In  the first (Section 18.6). the issue is effectively ignored and the problem is 
formulated directly in terms of nodes with three rotational variables. Because the 
method is based on the co-rotational procedure, the issue of the drilling rotation is left 
to the embedded linear element which is assumed to have an in-plane rotational 
stiffness. This stiffness may be ‘real’ if the element directly incorporates ‘drilling 
variables’ [ A l ,  B3, F1.11,K1, Ml]. Alternatively the stiffness may be left as zero in 
which case singularities may arise as the curvature of the system approaches zero 
and the system becomes planar or as the mesh is refined. As a third alternative, the 
approach of Zienkiewicz et U / .  [Zl] may be adopted so that an artificial stiffness is 
introduced. However, in a non-linear environment. there are likely to be problems 
with such an approach in which the artificial stiffness is related to the real stiffness of 
the adjacent elements. In  particular, these problems may arise when plasticity is 
involved. 

A n  alternative way of dealing with the problem of the ‘drilling variable’ is to use 
no drilling variable and instead use a single rotation about an element side. This is 
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the procedure adopted in both the ‘Morley triangle’ [M4] (see also [B2, H 1, H2, W4)) 
and in Irons’s semi-loof elements [I2,13]. A moderate rotation formulation involv- 
ing the former has been given by Morley [M5] while large-rotation formulations 
have been given by Peng and Crisfield [P2], Peric ef al. [P3] and by van Keulen 
et al. [Vl] (see also Backlund [Bl]). A similar (but simpler) approach is described in 
Section 18.7 while a possible extension to the semi-loof elements is discussed in 
Section 18.9. 

Yet another procedure for handling the issue of the ‘drilling rotation’ is to only 
include such a rotations at branched intersections (In contrast to the previous 
technique, a more complex ‘house-keeping’ is required). Away from intersections, 
assuming the shell to be smooth, only two rotational variables are included. Such 
a formulation is described in Section 18.8. In a non-linear context, the method can be 
considered to have its origins in an important early paper by Horrigmoe and Bergan 
[H3]. However, in contrast to the latter work, the accuracy of the current work does 
not depend on the assumption of small increments. With respect to its treatment of the 
rotational variables, the current work has much in common with the procedure of Simo 
et ul. [Sl-S4] and Celicoj [Cl]. Other work on shells which specifically deals with 
large rotations can be found in [B5.17, P1, P1.17, B4, H4,N1, W2). I t  is worth adding 
that it is possible to derive a shell element formulation without considering rotations at 
all [ 0 1 ,  P41. 

Many finite element formulations for shells have followed on from continuum 
formulations so that the finite element techniques take the form of ‘degenerate 
continuum techniques’ (Section 8.2). In the present chapter the co-rotational shell 
formulations also follow on from equivalent formulations for continua. This is much 
less conventional. Indeed at first sight there seems to be little to be gained by applying 
the co-rotational procedure to a continuum. However, we will attempt to show in 
Sections 18.2 and 18.3 that there are some benefits (apart from leading the way to 
a more elegant technique for handling shells). In particular, with small strains (but 
including plasticity), it is found to be a simple matter to include any (preferably 
lower-order) continuum element within a co-rotational framework in which the 
internal linear element formulation remains untouched. This procedure was described 
in Section 17.1 for three-dimensional beams and has its origins in the work of Rankin 
and Brogan [R 1.16). However, for continua, there remains the issue of how to choose 
the local element frame and we adopt an idea originally due to Jetteur and Cescotto 
[Jl] which will be detailed in Sections 18.2 and 18.3. Once the co-rotational ‘harness’ 
has been generated, it is a simple matter to change the internal linear element. In  this 
way, one can quickly incorporate the best new linear element. These ideas are 
illustrated in Section 18.1 1 where ‘incompatible modes’ or ‘enhanced strains’ are 
introduced. 

I t  turns out that some of the concepts for a co-rotational continuum formulation 
help to introduce a more elegant formulation for shells (and indeed three-dimensional 
beams-Section 18.10). The concepts can again be traced back to the work of Rankin 
and Brogan [R1.161 and Nour-Omid and Rankin [N 1.171. 

In the final sections of this chapter, it is shown how both the Eulerian formulation 
(Chapter 12) and the co-rotational approach for continua can be extended to handle 
large (here elastic) strains in conjunction with extra internal variables such as incom- 
patible modes or enhanced strains. 
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18.2 A CO-ROTATIONAL APPROACH FOR 
TWO-DIMENSIONAL CONTINUA 

The current section describes the work originally described in [C3,M21. As a first step, 
the initial co-rotating local coordinates are set equal to the initial co-ordinates minus 
those at node 1 so that at nodej: 

X J1 -- XI -X 1  (18.1) 

In this and in niany subsequent equations, the node numbers have been placed as 
postscripts. This is purely for convenience to avoid a clash with the subscript I for local. 
However, where such a potential clash would not arise, we will sometimes revert to 
using subscripts for node numbers. If we assume, for the present, that the local rotating 
unit vectors, e ,  and e, are know, then from Figure 18.1. by writing the current position 
vector of nodej  in two separate ways, we can obtain: 

Figure 18.1 Initial and final configuration-rotation follower by stretch 
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where 

E = [e,e,] = (1  8.2b) 

It would be possible to make the vector e, coincide with one of the sides of the element. 
However, the element would not then pass the large-strain patch test [Jl,S6] which 
was originally proposed by Jetteur and Cescotto [Jl] and later defined by Simo and 
Armero [SS] as requiring 'the exact solution for homogeneous deformations with 
constant deformation gradient F. The concept is illustrated in Figure 18.2 for direct 
tension. No matter what hyperelastic model is chosen, the strains (of whatever type) 
should be the same for each integration point in each element. An equivalent test under 
shear could involve the example of Section 13.10.3 with a non-uniform mesh. 

A procedure for successfully choosing the local axes was originally proposed by 
Jetteur and Cescotto [Jl] and is illustrated in Figure 18.3 and ensures that the lccal 

n 


I 

I 

Figure 18.2 Large strain patch test (in uniaxial tension). 

Initial 

,'- Final 
Rotatedinitial 

I 
I 1' 

Figure 18.3 example with local axes e, and e2. 
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'spin' at the centre of the element is zero. i.e. 

( 18.3) 

Here the subscript m means 'middle' and the 2 x 1 vectors a; are obtained from the 
conventional linear formulation using the derivatives of the shape functions evaluated 
at the centre of the element. The terms a{ (withj = 1,4 for a four-noded element) are 
functions of the initial coordinates X,.They can be obtained by first computing the 
displacement derivative matrix, G(X,)(see (5.8))where: 

( 18.4) 

and the combined vector of nodal displacements takes the form: 

(18.5) 

with an equivalent expression for the local quantities. 
Substitution from (18.2a) and (1 8.2b) into (18.3) leads to 

( 18.6) 

However, from the standard properties of isoparametric linear elements, the last term is 
zero so that: 

Q,, = US + bc =0 ( 18.7) 
where 

( 1  8.8) 

Clearly the angel f l  (Figures 18.1 and 18.3) which defines the local axes, in E, can be 
obtained from the above equation. 

A key step in the co-rotational procedure is the computation of the transformation 
matrix whereby, 

6p ,=TSp (18.9) 

(In contrast to Chapter 17, where F was used for the transformation matrix, we are now 
using T because F is being used for the deformation gradient.) 

To obtain this matrix, differentiation of (18.2a) leads to 

(18.10a) 
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Equation (18.10a) will ensyre that 6d: is zero. We could proceed with such an approach 
which would closely follow that of Sections 7.2 and 17.1. However, the equations turn 
out to be simpler if we work with a modified set of local displacement changes. ddj, 
which are obtained by adding ET6dl to each local nodal displacement change vector. If  
the local element computations correctly satisfy the infinitesimal strain-free rigid body 
requirements, this modification should have no effect. As a result of the modification, 
( 18.1 Oa) is replaced by 

(18.10b) 

In  the following (and for all of the co-rotational work in this chapter), we will use 
(18.10b) rather than (18.10a) although we will not bother to use the barred superscript. 

In order to obtain 6/J differentiation of (18.7) leads to 

(U( ‘ - hs)G/?= - ssa - c s h  = fT6p (18.11)  

where the vector f stems from the differentiation of the terms in (18.8) (note the 
a{ vectors are fixed as they are functions of X,and, for example, 6 ~ ” ’= 6ri-6r1).I t  is 
therefore a simple matter to obtain a vector v such that: 

sp =vT6p ( 18.12) 

so that, via (18.1Ob), the transformation matrix T in (18.9) is given by 

T = Diag(ET)-Diag(ET)zvT ( 18.13) 

with 
ZT = (O,O, - J121,.x21, -y31,x31, - ,41,.x41) (18.14) 

(For the first predictor solution on the first increment the matrix T can be taken as the 
identity matrix in order to obtain the global stiffness matrix from the local stiffness 
matrix.) 

The equivalence of virtual work in the local and global systems leads to the 
relationship: 

qi =TTqli ( 1  8.15 )  

or 
qi =col (Eq /i ) - vzT col (Eq/i)  = col ( i j  ji)- V Z ~COI ( i j  / i )  ( 18.16) 

With a view to later developments, we will express the 2 x 1 vector for nodej  as 

(18.17) 

1fqiiare the local internal forces at nodej with respect to the axes e,  and e,, it is clear 
that qji are the equivalent forces with respect to the global axes. Equally, the scalar: 

(18.18) 

in (18.16) represents the total moment of the internal forces about the v j  axis 
perpendicular to the paper) and is therefore zero once equilibrium is established. 
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The tangent stiffness matrix is obtained as usual by differentiation of (18.15) (or 
(18.16)) so that: 

Sqj = TTK,TSp + col (bEq;,) + v SZ' col (qli)+ VZ' col (6Eq{i) (18.19) 

In deriving( 18.19), i t  has been assumed that, with respect to the rotating base frame the 
local element stiffness matrix, K,, is fixxed and linear. (The introduction of large strains 
will be considered later in Section 18.13.) We have also omitted terms stemming from 
the variation of the 'spin vector' v. The reasoning relates to the observation below 
(18.18) that the terms multiplying v in (18.17) will be zero at equilibrium. Away from 
equilibrium, therefore, the terms stemming from the variation of v should strictly be 
included. This can be done [C3, M21. However, numerical experience has shown that 
almost nothing is gained in terms of any improvement in the convergence rate 
[C3, M2J. Consequently in the following (and throughout this chapter) we will neglect 
the variation of the 'spin vector (or later matrix)' so that, in the current case, the last 
three terms in (18.19) lead to the initial stress matrix and provide: 

K,, = ;v' + ~ 4 '- v(z';E)v' ( 18.20) 

where 

;E' = ( - v,,u l ,- v 2 ,  U , ,  - v3,u 3 ,  - v4,U4) (18.21) 

with and Vhaving been defined in (18.17). 

18.3 A CO-ROTATIONAL APPROACH FOR 
THREE-DIMENSIONAL CONTINUA 

In order to extend the previous formulation to three dimensions [M2, M3, C41, it will 
be shown that the previous procedure for computing the local rotating base vectors e ,  
and e2 (now also e3),is equivalent to the computation of 

E = re, e ,  e , ]  = R, ( 18.22) 

where 

F, = R,U, ( 18.23) 

involves a polar decomposition at the centroid (or 'middle'-hence the subscript m) of 
the element. To demonstrate this assertion, we begin with the deformations shown in 
Figure 18.4. If we compare Figure 18.1 with Figure 18.4, we note that they are 
equivalent with the latter illustrating a process whereby the element is strained and 
later rotated while the former represents a rotation followed by a stretch. 

From Figures 18.1 and 18.4, at the centroid of the element, we can write: [s],+%I,U, = =[I = I  + D,, ( 18.24) 

Here x, = X, + U, and D,, is the local displacement derivative matrix (see (4.72)). 
We can also write the local engineering strain (still at the centroid) as 



267 APPROACH FOR THREE-DIMENSIONAL CONTINUA 

Figure 18.4 Polar decomposition-stretching preceding the rotation. 

Equations (18.24) and (18.25) lead to an expression for the local engineering strain of 
the form: 

E ~ ,=+U, ++U; - I = U, - I  (18.26) 

~which shows that E , can be considered as a Biot strain (see also (10.14) and (10.64)). In 
(18.26)we have used the property of the symmetry of the right stretch matrix U so that 
D,, =DTm.In the two-dimensional case, the latter relationship is entirely equivalent to 
(18.3). 

In practice. we do not compute the local strains from (18.26) but rather (at the Gauss 
points) from the local displacements pl obtained from the d{ of (18.2a) with the aid of the 
E matrix previously computed from (18.22) and (18.23) using a polar decomposition at 
the centroid of the element. 

To obtain the important transformation matrix T, we differentiate (18.2a) and now 
also use the relationship (see (16.81~)): 

6E = S(6P)E (1 8.27) 

so that 

6d; = ET6d+ E'S(X'')@ (18.28) 

To obtain an expression for SP, we note that, as a parallel with (18.6), we can obtain: 

Q, = 1A{ d{ = 0 (18.29) 

where the 3 x 1 vector filmis the vector equivalent of D,, -DT, (see (18.24)) and is 
obtained at the centroid of the element (possibly via the equivalent of (18.4)-see 
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(5.29)-(5.31)). Differentiation of (18.29) and substitution from (18.27) leads to 

SSZ,, = CA{Ercidj+ 1A/ETS(xi')bp= 0 ( 18.30) 

from which 
- 1  

@ = -I1A{ETS(xjl)] A/ET6dj= VTGp ( 18.31 )  

where the 'spin matrix' VT is of dimension 3 x 24 (assuming an eight-noded brick 
element) and is the equivalent of the vector v in (18.12). 

Equation ( 18.31) can now be substituted into (18.28) so that: 

Csp, = T Csp = [[Diag ET] +col(ETS(xj'))VT]Gp ( 18.32) 

and consequently, the global internal force vector, qi =TTq,,,can be expressed as 

=qi = col(Eq{i)-Vrow(S(xj'))col(Eq~,)col(q{,)-Vrow(S(xil))col(q{i) (18.33) 

As with the previous two-dimensional case, the terms following V in (18.33) represent 
rotational equilibrium equations (now three of them) for the element and will therefore 
vanish at equilibrium. Again as in the two-dimensional case, we will use this observa- 
tion as a justification for ignoring the bV terms in the following derivation of the initial 
stress matrix. (It is, however, worth noting that while in the two-dimensional case, the 
full formulation (including terms from bV) leads to a symmetric stiffness matrix [M21, 
this is not true of the three-dimensional formulation for which a non-symmetric 
tangent stiffness matrix results [M2, M3-J.) 

As usual the tangent stiffness matrix is composed of a conventional term TTK,Tand 
an initial stress contribution, with the latter stemming from the differentiation of(18.33) 
with qli fixed. This process leads to 

6qi =T'K,Tiip + col(bEq{,)-Vrow(S(dxJ'))col(Eq{,) 
-Vrow(S( xj')) col (GEq{,) ( 18.34) 

With the aid of (18.27) and (18.3 1 )  we now obtain: 

K,, = - col(S(q{,))V' + Vrow(S(q{i))+ Vrow(S(xj'))col(S(q{,))VT (18.35) 

The first term is the transpose of the second term, but the third term is in general 
non-symmetric because the central 3 x 3 component can be written as 

S(x")s(q{,) = C(xjlq/; - (xj'Tq{i)I) ( 18.36) 

where use has been made of (16.86). The non-symmetric part of 18.36) is 

Non-sym = (xj'q{T - q{,xj'?'') ( 18.37) 

However, as previously discussed, at equilibrium the term after V in the ast term of 
(18.33)will be zero, i.e. 

q = c xjl x q{, = 0 ( 18.38a) 
and in addition: 

S(a)= 1S(X" x qji)= 1(x j 'qc  -q{ixj'T)=0 ( 18.38b) 

where use has been made of( 16.100). It  follows that the non-symmetric term (18.37) will 



APPROACH FOR A CURVED MEMBRANE USING FACET TRIANGLES 269 

vanish at equilibrium and we will be justified in using the symmetric part of the tangent 
stiffness matrix in ( 18.35) for our Newton-Raphson iterations so that: 

Numerical experiments support this contention and show that an excellent rate of con-
vergence is achieved [M2,M3]. A theoretical justification has been given by Nour- 
Omid and Rankin [N 1.171 who prove that a formulation which becomes symmetric at 
equilibrium will still exhibit ‘quadratic convergence’ if artificially symmetrised away 
from equilibrium. 

18.4 A CO-ROTATIONAL APPROACH FOR A CURVED 
MEMBRANE USING FACET TRIANGLES 

With a view to later work on shells, we will first consider a curved triangular membrane 
composed of simple constant strain triangles by means of facet approximation (Figure 
18.5). Facet approximations to shells have been adopted by many authors (see 
[Bl,C2, D1, H4, M6,Zl,Z1.13]. 

Figure 18.5 Triangular facet approximation to curved shell with first choice for local element frame 
(e,,e,, e,) and nodal surface triad U, = (U,, U,, uJ. 
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In the following, we will again choose the origin of the co-rotating system at node 1. 
The e3 vector is simply chosen as being orthogonal to the current facet (Figure 18.5). 
The simplest way to choose the two remaining vectors e,  and e2would be to make one 
of them coincide with one of the current sides of the element so that: 

x2-x1 x21 . e, = x 2 1  '31 ,. e2 = e 3  x e ,  (18.40)e ,  = -
1 1  x2 - x ,  / I  1 1  X z 1  1 1  11x21 / I  I / X j i  11  

In the initial configuration, the local initial nodal coordinates, X!, would then be 
computed with respect to this initial element frame and would be kept fixed as the 
co-rotating local initial coordinates. For the first predictor solution on the first 
increment, one could use the E matrix given by combining the e vectors in (18.40) and 
could ignore the zvT term in (18.13) when forming the initial tangent stiffness matrix 
K, = TTK,T. 

In the current configuration, with a view to possible later extensions to large strains, 
and also to produce a formulation that is independent of the nodal ordering, i t  is best to 
follow the approach of Sections 18.1 and 18.2. To this end, we could start with an initial 
set of current base vectors obtained from (18.40) in the current configuration and then 
use (1  8.2)to obtain intial values for the nodal displacements d; at each of the nodesj and 
hence obtain initial estimates for the local nodal displacement vector p,.At which point 
the local displacements derivatives (4 x 1) can be obtained from (1  8.4) and hence the 
matrix equivalent D,(2 x 2). To obtain the new e ,  and e, with respect to the old ones 
(Figure 18.6) we can (via (18.23) and (18.24)) write: 

(18.41) 

so that the condition U( 1,2) = U(2,l)  leads to 

( 18.42)- sin;T( 1 + ('),) + cosy('), = cos;(')l + sin;.( 1 + (g),) 
from which we can obtain the angle ;.and hence the new axes (Figure 18.6): 

e lnew= cos ~ e , , , ,+ sin 
( 18.43) 

e2new= - sin ;.elold+ cos 

while the e3vector is unaltered. 
The local displacements can now be recomputed (via (18.2a)) using the new base 

vectors. In the future developments, we will not use the subscript 'new', but i t  will be 
implied whenever the base vectors are referred to. In order to proceed further, it is 
necessary to find an expression for the spin of the (new) base vectors. To this end, the 
key equations are 

(1  8.44) 

The first two of the above equations (which are consistent with (18.2a) having noted 
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Figure 18.6 Modifying first-choice (old) element frame to new element frame. 

that Z ,  = Z ,  = Z ,  = 0)ensure that the local base frame always passes through nodes 
2 and 3 (as well as the origin at node 1). Differentiation of the first two of these equations 
leads to 

e:bd, - x:,(S(e,)bP) = 0 
( 18.45) 

e:6d3 , -x:,(S(e,)@) =0 

while differentiation of the last equation gives: 

bR, = arbdj = 0 ( 18.46) 

where a/ and bd/ are here of dimension 2 x 1, With the aid of (18.28)we can obtain: 

( 18.47) 

The combination of (18.46) and (18.47) provides one equation in the three unknown 
coefficients of 6p while the two other equations are provided by (18.45). Hence we can 
use a similar procedure to that leading to (18.31) to obtain a relationship of the form: 

sfl = VTSp ( I  8.48) 

where for the current three-noded triangle, VT is of dimensions 3 x 9. 
The transformation matrix T now takes precisely the same form as that previously 

given in (18.31)(although T is now of dimensions 9 x 9) while (18.33) again defines the 
global internal force vector and (1 8.39) defines the initial stress matrix. 

18.5 A CO-ROTATIONAL APPROACH FOR A CURVED 
MEMBRANE USING QUADRILATERALS 

Figure 18.7 illustrates the proposed procedure for obtaining a close fit to the curved 
surface (see also CR1.161). Again as a starting-point, the initial e ,  vector is chosen to lie 
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Figure 18.7 First-choice element frame for a curved quadrilateral. 

(as closely as possible along a side). Hence the initial choice of base vectors is 

As with the triangular element, a two-stage procedure is again applied with the second 
stage involving equations (18.41)-( 18.43) (although we should now emphasise that the 
subscript I terms are really subscript Im, i.e. they are computed at the centroid of the 
element). 

To obtain the current 3 x 12 spin matrix VT,we again use the combination of ( 18.46) 
and ( I  8.47) for one of the equations in the three components of Ss.  For the other two, we 
first differentiate (18.49a) to obtain an equation of the form: 

he, = A dp ( 1  8.50) 

where A is of dimension 3 x 12. However, we also know that: 

be3 = -S(e,)GP ( I  8.5 1)  

so that 

eTAGp = - e':!3(e3)6fl=el@ 

and ( 18.52) 
e:A dp = - e:S(e,)@ = -er@ 

provide the remaining two equations from which we can obtain (18.48) with V'r now 
being of dimension 3 x 12. Apart from the different nature of the V matrix and the 
different number of nodes, the formation of the internal force vector and tangent 
stiffness matrix takes essentially the same form as it  did for the three-noded facet 
membrane and again follows the continuum formulation in using (18.33) for qi and 
( 18.39) for K,,,. 
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18.6 A CO-ROTATIONAL SHELL FORMULATION WITH 
THREE ROTATIONAL DEGREES OF FREEDOM PER NODE 

Figure 18.8 shows a faceted approximation for a shell with a typical surface triad, 
Ue, and a typical element triad, E (drawn in relation to separate elements purely to 
avoid cluttering). Let us assume that these triads relate to the initial configuration 
and can therefore be found from the initial geometry of the shell. As a first stage. for 
each element, we conceptually relate these nodal triads to the element frame so that: 

U, = Us[UsTE]= USX ( 18.53) 

and hence in the initial configuration, U, is simply E. In the deformed configuration, 
we would again have: 

U, = u S X  ( I  8.54) 

where X is fixed and computed for the original configuration from U, = USTE.In the 
deformed configuration, of course, U, will not (as in the original configuration) 
coincide with the element E frame. 

The membrane contribution to the element will be assumed to be identical to that 
of Section 18.4 as will the procedure for choosing the current E frame. Given some 
iterative pseudo-vector change hai at node j (say, from the structural Newton- 
Raphson iterations), we can update Us according to 

Us = R(Sa)Ue ( 18.55) 

e, 

jl 

Figure 18.8 Triangular facet approximation to curved shell with first choice for 
local element frame (et,e2. e3 and nodal surface triad U, = (U,.up, u3) 
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with R(Ga)being computed from the Rodrigues formula (16.22). Given the new U,. the 
new U, can be computed from ( 18.54)and ( 16.120) can now be used to obtain the local 
rotations, 6, (a the particular node) so that: 

( 18.56) 

In the following, we will drop the subscript e on U (and its components), but the 
subscript will be implied so that from (18.56) we can obtain: 

( 18.57a) 
e:u, -ulel 

For the virtual work, we will require the variation of (18.57a) which gives: 

2Sq = E* col S(u,)jdaj-U*jco1 S(e,)V'"dp, ( 18.57b) 

where pl contains the translational nodal variables and 

( 18.58) 

while 

S(U,) j 
( 18.59) 

= [3E!i ] ;  colS(uk)'= [:[%:;I
The part of the global internal force vector stemming from the 'rotational local forces', 
qliris now obtained via the usual equivalence of virtual work in the two systems. Once 
this process is combined with the similar procedure for the translational internal forces, 
qlie,(previously just qli in ( 18.33)),we obtain: 

-$(rowS(e,)U*jTq{i,))qil = col(Eq{,,)- V ( S ( X ~ ' ) ~ { ~ ,  

( 18.60) 

Here, the first two terms are taken directly from (18.33)while the last term stems from 
the local rotational virtual work: 

Vr = q{:S6{ (18.61) 

As in the previous developments, the terms following the V vector represent three 
rotational equilibrium equations for the element and will therefore vanish at equilib- 
rium. 
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Stemming from the first term in (18.57b), we have global ‘rotational forces’ at each 
node j of the form: 

= -+rowS(U,)’ qi’,r2 ( 18.62)qir= -+ row S(u,)JE*Tq;lr [::::I.
For the initial stress part of the tangent stiffness matrix, the translational-translational 
terms due to qlI1have already been given in (18.35)(where the current qIltwere simplj 
qll) .From ( 18.60), we now have an additional contribution stemming from: 

J 

which gives an additional contribution of the form: 

( 18.64) 

This term can be combined with the last term in (18.35)to give a contribution of the 
form VZV’, where following previous arguments, the Z term may be symmetrised 
because it will become symmetric at equilibrium when the term follo\*ring the matrix 
V in ( 1  8.60) vanishes. 

For the term coupling the translational and rotational variables, the variation of 
( 18.60) leads to a term 

( 18.65) 

term = -+ row S(uk)6E*Tq/ir ( 18.67) 

we obtain: 

-qlir(’P(e3) + q/i,(3)S(e,) 
K1,,(xj, t )= -$row S(u,)[ qlir(1)S(e3) -q,,,(3)S(eI) VT ( 18.68) 

- q l i r (  ‘)S(e,) + q,ir(’)S(e, 1 
which can be shown to be the transpose of (18.66). 

Finally, the rotational-rotational terms are obtained from the term involving the 
variation of ( 1  8.62) with: 

[:Sri1 
term = f row S(duh)JE*Tq/ir= -+rowS(6uk)J , i r ,  ( 18.69) 
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from which we obtain: 

( 18.70) 

This 3 x 3 submatrix is in general non-symmetric. However(for conservative loadings), 
we can probablyjustify taking the symmetric part by again resorting to the argument of 
a recovery of symmetry at equilibrium. However, a proof of such a contention would 
now be more complex as i t  would involve equilibrium with terms such as (18.62) now 
being summed over the element contributions to a particular node(as in Section 17.4.3). 

At  the beginning of this section, we specifically considered a triangular facet 
approximation (Figure 18.8). However, the developments could equally be applied to 
a quadrilateral-based facet approximation using the procedure of Section 18.4. Indeed, 
the same equations would apply althoughj would now range from one to four. In 
addition, there is no reason why the element level computations should be restricted to 
a facet. They could instead involve a shallow shell formulation. In these circumstances, 
i t  would be necessary to revise the procedure discussed at the beginning of this section 
to set up the element nodal frame, U, from the surface nodal frame U,. Instead we could 
obtain the initial value of the U, frame by rotating the initial element E frame through 
the vector angle, y between e3and uS3where 

(18.714 

so that initially, 

U, = R(yjE ( 1  8.71 b) 

with R(y) being obtain via the Rodrigues formula (16.22). The initial local rotations 
could then be computed from (18.57a). In addition, the matrix X of (18.54) could be 
computed in the initial configuration as X = U,UT and subsequently used in the 
current configuration in conjunction with (18.54) to obtain U, from U,. I t  is worth 
re-emphasising that from (18.57a) onwards, the expressions for U have an implied 
subscript e (see the text below ( 18.56)). 

Before leaving this section, it is worth mentioning that the formulation at the local 
element level can itself be non-linear. The resulting formulation was discussed in Section 
17.1.5for co-rotational beams and a very similar procedure can be applied for shells. 

18.7 A CO-ROTATIONAL FACET SHELL FORMULATION 
BASED ON MORLEY’S TRIANGLE 

As discussed in the Introduction to this chapter, the previous formulation (Sec- 
tion 18.6) has some serious drawbacks because of the need for a drilling rotation at the 
local element level. A n  alternative is to use a rotation about an element side as 
originally applied in a linear context by Morely [M4). The following large-deformation 
formulation is closely related to that originally given by Peng and Crisfield [P2] and 
Crisfield and Peng CC9.141. However, we now adopt the general framework originally 
developed for continuum elements and the resulting formulation turns out to be much 
neater. 
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r3 

4 

= r2 

Figure 18.9 ‘Rotational variables and triads’ for use with Morley’s triangle. (a) Initial mid-side triad 
(R,, R,, R3) for side j i  (initial configuration; (b) intermediate mid-side triad (r;, r;, rj) in current 
configuration; (c) final mid-side triad in current configuration; (d) global mid-side rotation 0; (e) local 
mid-side rotation 0,. 

The element frame and equivalent spin matrix, VTcan be taken to be identical to that 
for the facet membrane of Section 18.4. For the mid-side rotational variables, we will 
suppose a current triad composed of r,,r2 and r3 (Figure 18.9(c)) with r, lying along 
a side with node j at the ‘front’ of r, and node i at the ‘tail’. For a simple facet 
formulation, the initial side triad R , ,  R ,  and R, can be found with R, coinciding with 
the initial value ofe, (i.e. being perpendicular to the plane of the initial facet). To obtain 
the equivalent current triad, we first obtain r2 from: 

r2 =- X j i  ( 18.72)
/ I  Xji I1 

and then rotate the initial triad R,-R,  in the plane formed by R,  and r, through the 
vector angle: 

( 18.73) 

As a result of this exercise, the initial mid-side triad R I - R ,  becomes the triad r;-r; 
(Figure 18.9b) where r; = r2 but, in general, r’, # r l  and r; # r3.  
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In  order to reach the final configuration with the mid-side triad of r l -r3 ,  we now 
apply the (positive c1ockwise)global rotation, 0, about the r, = r; axis. This leads to the 
relationships: 

r l  =r;cosO-r',sinO ( 18.74a) 

r2 = r; ( 18.74b) 

r3 = r', sin 0 + r; cos 0 ( 18.74c) 

Having computed the triad, r1  -r3,  the current (clockwise) local mid-side rotations 
(Figure I8.9e) can be obtained using: 

sin Ol  = - e'lr, ( 8.75) 

At  this stage. we should note that the r' triad can be computed from: 

[r'*J;,r;l = R(y)[R,,  R,, R31 ( 8.76) 

where R(y) is obtained from the Rodrigues formula (16.22) or as an alternative 
equivalent form (see ( 16.107)): 

( 111.774 

r; = r2 ( I8.77b) 

( 18.774 

where 

h, = Rlr, ( 18.78) 

With a view to the use of virtual work, we require the variation of (18.75) so that: 

- - I
SO, = -(e:Sr + delr,) ( 18.70)

cos ( I l  

The change in the e3vector is simply: 

iie, = -s(~,)sP= - S(e,)V'Sp, ( 18.80) 

where we have used (18.48) for S s  and Sp, relates to the translational nodal variables. 
With a view to the insertion of (18.80) into (18.79), we also note that: 

e, x r ,  = S(e,)r, = r, cos 0, ( 18.8I ) 

and hence for the last term in ( 1  8.79), we have: 

- 1  
cos 0,

(SeTr,) = - r:@ = - rTV7'dp, ( 18.82) 

With a view to the first term in (18.79), differentiation of (1  8.74a) and ( 18.77) leads, after 
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some manipulation, to 

- 1  
-- S(r,)S(R, + r2)6r2- r,6O ( 18.83)

( 1  +h,)  

where the scalar h ,  comes from (18.78)and use has been made of (16.86).Substitution 
from ( 18.83)and (18.81) into (18.79) leads to 

( 18.84) 

To proceed further we can either express fir, via: 

fir, = - S(r,)fip = - S(rz)V’16p, ( 18.85a) 

which is strictly only valid for small strains or (see ( 17.21) and ( 1  7.22))via: 
1

fir, = -[I - r,rz](Sd,ji ( 1  8.85b)
s 


where s is the current length of the side along which r, lies. 
While the former might seem the most direct, i t  turns out that there are some 

advantages in using the latter so that substitution into (18.84)leads to 

60, = 60 -____ (R, x r2).rddjj- r;V’dp, ( 18.86)
( 1 +1

h,)s 

By equating the virtual work in the local and global systems, we now arrive at the 
translational internal forces as: 

qil= col(qjit)-v c (s(xj1)qjil)+c (qfirr:)) +q: ( 18.87) 
( j  

where the first two terms are related to local translations and take the same form as in 
( 18.60),while the last two terms stem from the ‘rotational local virtual work’ via ( 18.86). 
In  (18.87). the s u m j  is over the corner nodes and the sum k is over the mid-side nodes. 
For a particular corner nodej. the contribution to q: (which stems from the second 
term in ( 1  8.86))is 

wherej - is the mid-side node clockwise behind the node a n d j  + is the mid-side node 
clockwise ahead of the corner node. 

For the ‘rotational internal forces’, using (18.86), the equivalence of virtual work in 
the local and global systems leads to the trivial relationship: 

Y i r  =qlir ( 1  8.89) 
at each of the mid-side nodes. 

I t  is now useful to study the equilibrium relationships in (18.87)and (18.88).As in the 
previous developments, the terms following the V matrix in (18.87)can be identified as 
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three rotational equilibrium equations for the element and will therefore vanish at 
equilibrium. Noting the results in (18.89), if no external moments are applied, any 
particular mid-side local internal moment will, via (18.88) contribute terms to the 
translational forces of an adjacent corner node which will be exactly cancelled by the 
equivalent contributions from the adjacent element. Hence we can argue that at the 
structural level the qz terms in ( 18.87) and ( 18.88) will vanish at equilibrium. These 
terms take the form of scalar, involving the local qlirterms which will be zero, multiplied 
by terms which we would normally vary for the initial stress matrix. However, because 
the scalar will become zero at equilibrium, we can argue that there is no need to apply 
such variations. ( I t  is possible to include all terms [P2], but the resulting equations are 
rat her complex.) 

The translational translational terms in K,, due to qlilin (18.87)have already been 
given in ( 1  8.35)(although the current qlitwere in (18.35) simply referred to as qri).From 
(18.87),we now have an additional contribution stemming from: 

which, using br, from (18.85a) gives an additional contribution of the form: 

K , , k  d = v (4:irs(r;))v’ ( 18.90b) 
k 

When this term is combined with the last term in (18.35), it can be expressed in the form 
V Z V ’  where following previous arguments, the Z term may be symmetrised because i t  
will become symmetric at equilibrium when the term following V in ( 18.87) vanishes. 
Indeed, in these circumstances, because S(ry) is skew-symmetric, the term in ( 18.90b) 
vanishes. 

The previous developments have followed the work in [P2] and have used a ‘total 
formulation’ in which the current mid-side triad [r r2, r,] are updated directly from 
the initial triads [ R , ,  R,, R3] via the total global rotation, 0. Numerical experiments 
have shown that a more robust formulation can be devised by resetting R ,  = r l  and 
0 = 0  at the end of each increment. The key equations remain unaltered and, in 
particular, the local rotations are still computed from ( 18.75).Van Keulen et cil. [V 13 go 
one stage further and apply this update at the end of each iteration. As a consequence 
(with R, = r , ) ,  some of the previous expressions can be simplified further. These 
authors also include second-order memberane terms due to the curvature which 
effectively involves adding local shallow shell terms (see Section 17.1.5). 

Numerical experiments have been conducted using the current formulation. These 
have shown that, for small strains, we achieve effectively the same solutions and 
convergence rate as those obtained via the earlier formulation [P2) although the 
current formulation is much simpler [C6]. 

18.8 A CO-ROTATIONAL SHELL FORMULATION WITH 
TWO ROTATIONAL DEGREES OF FREEDOM PER NODE 

As indicated in the introduction to this chapter, two rotational variables would be used 
for those nodes associated with a smooth part of the shell while three rotational 
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variables(using the procedure of Section 18.6)would be used for those nodes associated 
with a branched junction. 

Let us assume that in the initial configuration, we know the uni t  normal surface 
vector u3(Figure 18.8)as well as the element triad E = [e,,e,, e,]. In  which case we can 
approximate the initial local rotations as 

O r ,  = -uJe,; O, ,  = uTe, (18.91) 

The directions U, and U, can be arbitrarily chosen with, say, U, lying above a particular 
side. For the first load increment, we will keep this surface triad fixed as U ,  ( 0 for old) 
and will allow two rotations x ,  about U,, and z2 about U,,. We will now be concerned 
with the updating, within the increment, of u3, to u3,. To this end we will operate in 
fixed surface coordinates (with components along U,,, U,, and u3J. We will use 
a superimposed bar to denote that quantities are written with respect to these axes. 
Then we have: 

, ( 18.92)
=[!I 


and (see Figure 18.10) 

sin IX 

U3, = cos x U3, + -a x U3() ( 18.93)
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Figure 18.10 RotatingU, to u3". 
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with 

a' = ( x l ,x , , O ) ;  x = ( ~ f+ x;) '  ( 18.94) 

With respect to the usual fixed cartesian coordinate frame, we can then compute: 

with the current local rotations then being obtained in a similar fashion to (18.91), i.e. 
with 

O , ,  = - ulne,; o,,= ul,e, ( 18.96) 

where e ,  and e, now relate to the current (new) element frame. At this stage we have all 
the required local quantities to pass to the local element routines so as to compute qlit  
and qIirwhere, for a simple triangle, the latter will be of dimensions six. 

With a view to the virtual work, we can write: 

du,, = ba x U,, = -S*(u,,)ha, ( 1  8.97) 

where we have introduced the * on S to indicate that the current matrix is ofdimensions 
3 x 2, i.e. (see (16.8)): 

( 18.98) 

and the subscript 2 on 6a implies that we have only two components, Cix, and &,. For 
the future developments, we will drop this subscript on Sa (and on a )  which will be 
assumed to be of dimensions 2 x 1. 

Using ( 18.95) and ( 18.97). we can obtain the variation of ( 18.96) as 

so that. in conjunction with the relationships of ( 18.33) and ( 18.48) we can construct the 
element T matrix and hence obtain the internal force vector for which the translational 
terms may be explicitly written as 

while at node j the rotational terms may be expressed as 

q;, = qIlr(1)S*(u,,,)'UJe, -~ , ~ , ( W * W , , ) ' U J ~ ,  (18.101 

where qi, is of dimensions 2 x 1. 
For the initial stress matrix, the translational-translational terms due to qlit  ii  

(18.100)have already been given in (18.35) (although the current qIitwere in (18.35) 
simply referred to as qli) .From (18.100), we now have an additional contribution 
stemming from: 
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which gives an additional contribution of the form: 

Also stemming from (18.100), we have a translational coupling term stemming from: 

(18.104) 

which leads to a term coupling the translational forces to the rotational variables at 
nodej  of the form: 

K,Jt,a;)= V(- ylir(l)iS(e,)UiS*(u~n) (18.105)+ ylir(2)’S(e,)U~S*(u~,,))  

The transpose of the above is obtained from the variation of the terms e,  and e2 in 
( 1  8.101)while we obtain a rotational-rotational term from: 

where we have introduced the vectors e’; = U:e, and e; = L/l‘,e,so that we can evaluate 
18.106a) as leading to 

18.9 A CO-ROTATIONAL FRAMEWORK FOR THE 
SEMI-LOOF SHELLS 

Irons’s semi-loof shell elements C12.13) can be considered as higher-order versions of 
the Morley triangle (considered in Section 18.7). The nodal connectivity for the 
triangular element is illustrated in Figure 18.1 1.  We will now outline one possible way 
of embedding such elements within a co-rotational framework. Following the earlier 
work, the objective will be to use existing element routines which may be linear or 
non-linear. ( I f  the latter applies, the objective of the co-rotational harness would be to 
extend the range of the non-linearity.) We will concentrate on the triangular element 
although. using the concepts of Section 18.5, i t  should also be possible to consider the 
quadrilateral. 

I n  the initial configuration, the element E = [e,,e2.e3] frame would be computed 
using the approach of Section 18.4 and, in particular, using (18.40) as illustrated in 
Figure 18.11 with e3 being orthogonal to both the straight lines between nodes 2 and 
1 and nodes 3 and 1. Using this frame, the initial co-rotating coordinates of the nodes 
j can be obtained (and stored) as X{. Also we will assume that we know the initial 
[RI,
Rz.R3] triads at the loof nodes (Figure 18.11). Knowing the normal to the surface, 
R, at a loof node (Figure 18.1I ) ,  one can obtain the vector angle between this vector 
and the element normal, e3 so that: 

(18.107) 
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Figure 18.11 Nodal configuration, initial element and loof triads for semi-loof triangular shell 
element. 

and 

R3 = (18.108) 

with R(y) being obtained from the Rodrigues formula (16.22). 
Havingcomputed the first predictor solution (using the local coordinates Xi to define 

the geometry and with the transformation matrix T being given by Diag(ET) for the 
translational terms and with unity alone on the diagonals for the rotational terms), in 
the updated current configuration, the first estimate of the current element E frame can 
again be chosen using the procedure illustrated in Figure 18.6 which relates to equation 
(18.40)and is outlined in Section 18.4. A better estimate could then follow using the 
procedure contained in equations (18.41)-( 18.43) with D, in (18.41) being computed at 
the centre of the element using the shape functions for a six-noded plane triangle. The 
V r  matrix of (18.48) would then be of dimensions 3 x 18 and would relate the spin 
vector S s  to the 18 translational variables. 

To obtain the local rotations at the loof nodes(designated (a)  and (b) in Figure 18.11 ), 
instead of using (18.75) one would use: 

sin ( I ,  = - Rtr  ( 18.109) 

where in the current configuration, R 3 ,  would be computed from: 

R3 = w e 3  (18.1 10) 

with e3being current and R(y) being computed from the vector y previously computed 
from (18.107) in the initial configuration. 

The current loof triad [r, ,  r2,  r3] would be obtained from the current r2 vector and 
the global loof rotation 0, by essentially following the procedure of Section 18.7 and, in 
particular, using equations (18.73)-( 18.78). However, rather than using (18.72), the 
current rz  vector would be computed from the quadratic shape functions and current 
nodal coordinates along the relevant side. In forming the translational internal forces, 
qi,.it would be better to follow the route of (18.85a) rather than that of(18.85b) so that 
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instead of being given by ( 18.88), the qz vector in ( 18.87) would be given by 

(18.11 1 )  

18.10 AN ALTERNATIVE CO-ROTATIONAL 
FRAMEWORK FOR THREE-DIMENSIONAL BEAMS 

The earlier developments in this chapter can be used to produce an alternative 
formulation to that of Section 17.1 for three-dimensional beams. The kinematics would 
basically remain the same, but a rather neater formulation can be derived and, in 
addition, the current procedure automatically neglects certain of the initial stress terms. 

To use the earlier developments in this chapter, we need to follow closely the 
procedure of Section 18.6 for a shell element with three rotations at each node although 
now we have a beam with three rotations at each node. As with the shell, we will now 
define the pseudo-vector rotations at nodej  (j= 1,2) as aJwith the equivalent triad as 
Uj while the translations at n o d e j  will be dj while the local rotations will be 0;. In  
contrast to the work in Section 17.1, the latter will now be clockwise about U , ,  u2 and uj 
respectively so they are given by ( 18.57a). 

In  order to obtain the important spin matrix, VT, we can first apply the conditions 
that the local axes pass through the second node so that: 

~ 7 , ~= e:x2 = 0; w , ~= e:x2 = O (18.1 12) 

Differentiation of the above gives: 

x:,Se, + e:Sd, = - xTIS(e,)@+ elbd, =0 (18.113) 

xzlbe3+ eTbd, = - xT1S(e3)@+ e:6d, = 0 (18.1 14) 

Equations ( 18.1 13) and (18.1 14) provide two equations in the three components of zip. If 
we use the procedure of Rankin and Brogan [R1.16] which was discussed at the 
beginning of Section 17.1.6, we can then differentiate equation (17.59a) to obtain the 
third equation: 

e;S( 1,)da = - (t:e )eJ@ (18.1 15) 

where bar, is the pseudo-vector change at the first node. Using equations (18.1 13)- 
(18.1 14) one can obtain (18.48) which is reproduced here for convenience as 

sp = VTGp (18.1 16) 

In contrast to the work of Section 18.6 on shells, SS is now coupled to the rotational 
variables (via (18.15)) and not just the translational variables. 

With a view to the use of the procedure of Section 17.1.1 for defining the element 
triad, it is worth noting that equation (18.1 15) could equally have been obtained by 
taking the expression for de, in (1 7.60a) and substituting: 

Add,,  =del = -S(e,)@ (18.1 17) 

and premultiplying the resulting equation by e: before setting it to zero. The same 
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equation could be obtained by working in an equivalent manner with be, (from 17.60b) 
and e3. 

Consequently, if we use the procedure of Section 17.1.1 for defining the element triad, 
we can adopt a similar approach. For example, equation (17.32a) gives an expression 
for de, involving A dd, for which we can substitute from (18.117) before premultiplica- 
tion by el and setting the result to zero. This process would provide an equation for bp 
which could be combined with equations (18.1 13) and (18.1 14) in order to obtain the 
spin matrix V' of( 18.1 16). However, because the procedure of(17.13) and (17.14) does 
not lead to an exactly orthogonal E =  [el,e2,e3Jframe, a slightly different third 
equation would be obtained if we worked with (17.32b) for de, instead of ( 17.32a) for 
be,. One could take the average of the two equations. 

Having obtain the 3 x 12 VTmatrix, we are now in a position to apply a very similar 
procedure to that of Section 18.6 for shells. In  particular from (18.28), we would 
have: 

6dj = E'Zid' + ETS(xj*)VTSp (18.118) 

while from ( 18.57b) we would obtain: 

ZSO; = E*col S(L4k)jba'- U*~colS(e,)V'Sp (18.119) 

from which the 12 x 12 transformation matrix T can be obtained and hence the global 
internal force vector. 

The initial stress matrix would then follow by combining the last part of(  18.35) with 
(18.64)to give a contribution: 

(18.120) 

where following previous arguments, the central part could be symmetrised. Also, from 
(18.35)and ( 1  8.66),we would obtain a contribution connecting all of the variables (p)to 
the pseudo-vector rotations at nodej  (aj)of the form: 

-4,ir(2)SCU,) + Y,ir(3)S(",) ] ]K,,(p,a') = S(q:i,)+ rowS(ek)[ q l i r (  l)s(u,) - 4, ir (3)s (u , )  (18.121a) 

[ . - 4[ir(l)S(~1)+ q,ir(2)S(U,) 

with equivalent transposed terms. Finally, from (18.70) we would obtain the rotation- 
rotation terms as 

(18.121b) 

Following the previous arguments, it is likely that we could artificially symmetrise 
these terms without introducing any deterioration to the convergence characteristics. 
However, numerical evidence is required. 

18.10.1 Two-dimensional beams 

It is a useful exercise to apply the theory of this section to the simple two-dimensional 
beam formulation of Section 7.2. In  contrast to this earlier approach, we are now 
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working with all of the local variables. As a consequence, we are eventually left 
with an expression for the tangent stiffness matrix that involves W,,,‘!, instead of 
( M ,  + M,)/Ii  as the factor pre-multiplying the last term in (7.79). Here, is the 
local normal internal force (in the e ,  direction) at node 2. The two terms can be shown 
to be identical once i t  is realised that the local nodal forces satisfy the equilibrium 
relationship: 

M ,  + M 2 + /“W*,= M ,  + M 2- r,w,, = 0 (18.122) 

Also, the vector z/ln in (7.66) is the current ‘spin vector’, v. 

18.11 INCOMPATIBLE MODES, ENHANCED STRAINS 
AND SUBSTITUTE STRAINS FOR CONTINUUM 
ELEMENTS 

The performance of the conventional lower-order isoparametric elements (four noded 
quadrilaterals and eight noded bricks) are in many respects deficient. In  particular. they 
perform badly in bending due to shear locking (Figure 18.12a) and in  the incompres- 
sible limit (as p+O.5 for a linear material) due to ‘incompressible locking’ (Fig- 
ure 18.12b, which indicates that if the element sides are straight, point d cannot move in 
the direction of F without an increase in the volume). In a linear context, a number of 
different techniques have been proposed for improving the basic elements. If  a co- 
rotational approach is adopted (as in Sections 18.2 and 18.3), these techniques can be 
very easily introduced into a non-linear formulation (details in Section ( 18.12). Alterna- 
tively, if a ‘Eulerian formulation’ is adopted (Chapter 12), the linear element formula- 
tions may be extended to the non-linear range with the aid of the enhanced deformation 
gradient, F. This method was proposed by Simo and co-workers [S6, S7] and will be 
discussed in Section 18.13. In  either case, the key building block is the linear enhance- 
ment. 

Various options will be discussed here (a ‘constant volume’ approach related to the 
B-bar method CH3.131 has already been discussed in Section 13.5) with emphasis being 
placed on two-dimensional elements. Extensions to three dimensions are relatively 
straightforward, although there are additional complexities [A2, S7). While the current 
developments will all be related to continua, i t  should be noted that many of the 
concepts can also be applied to shells [B4]. 

18.11.1 Incompatible modes 

In a linear context, the method of ‘incompatible modes’ was originally formulated by 
Wilson et ul. [Wl] and later modified so that it passed the ‘patch test’ by Taylor et d. 
[Tl]. If we start with the ‘shear locking’ of Figure 18.12a, a possible solution involves 
the addition of the mode (Figure 18.13): 

1‘ = (1 -p,.: ( 18.123) 

This mode is clearly ‘incompatible’. A more general procedure, proposed by Wilson 
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True solution 
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icompatible modes Key incompatible modes 
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Figure 18.12 Locking behaviour. (a) Shear locking in bending; (b) incompressible locking. 

et ul. [W 11, is to introduced the two incompatible modes: 

1 - c 2J (18.124)h * = (  1 - 1 1  

so that the displacements U and L' would be interpolated via: 

U = hTU+ h*TU* 
h.'V + h*TV* (18.125) 
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f q  

1’ 1’ 
2 *  


U =  (1 -t2)fi,  U =  (1 - <  )U2 

q = - 1  
1 

2 *  
v =  (1 - 5  )v ,  v =  (1 - q2)C2 

Figure 18.13 Incompatible modes. 

with h containing the conventional, compatible, shape functions for the corner- 
nodes and U and v being the corresponding nodal variables (collectively p l )  and U* 

and v* (collectively p2) containing the magnitudes of the incompatible modes 
(Figure 18.13). 

In its basic form the resulting elements does not always pass the ‘patch test’. The 
proposed modification, by Taylor ef al. [Tl], introduces the strain-displacement 
relationships: 

E = E ,  + = B,p ,  + B2p2 (18.126) 
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with 

[
JG'(1, I)h;*T+ J , ' ( l . 2 ) h t T  OT 

J; I (2. I )hTT + J i  ' ( 2 , 2 ) h;T I
j J o i ( 2 .  l ) h ~ T + J ; 1 ( 2 . 2 ) h ; r  J d ( 1 ,  I ) h T T + J ; 1 ( 1 , 2 ) h ~ T  )'*0' 
(18.127) 

where h;" and h; contain the derivatives of the incompatible shape functions of 
(18.124) with respect to ,( and tl respectively and: 

, j  = det(J):  j,, = det(J,,) (18.128) 

where the Jacobian matrix J,, is computed at the centroid of the element. For future 
working, we will re-express ( 18.127) as 

To show that the resulting element will pass the patch test, we note that the internal 
forces associated with the incompatible modes can be written as 

Under patch test conditions, the stresses are constant and hence for q,? t o  \wish.  we 
require that: 

1B,d<drl= 0 (18.131) 

Because of the form of B? in (18.127) and ( I  8.129), which involves the constant terms 
from J , .  (18.131) is satisfied if: 

(18.132) 

These conditions are clearly satisfied by the shape functions of (18.124). 
The incompatible variables p2 can be eliminated at the element level (see Section 

18.12) and the resulting element gives an excellent performance (see Section 18.11.4). 
We have already indicated why this is true for shear locking. With respect t o  
incompressible locking, i t  is worth considering a square of side length 2 and noting 
that (for plane strain), the standard shape functions h head to a 'linear volumetric 
strain' of the form: 

E,, +E,, = A + f ( I ' l  - I ' ,  + I ' j  - 1 ' 4 ) t  + f (111 - I Q  + 113 - 11&] (18.131) 

Hence. without 'incompatible' modes, we cannot, in general, recover a constant 
volumetric strain. Using the previous developments, the incompatible modes give. 

F,,, + E?, ,  = -2<(uT + (1;) - 2/](242*+ (1;) (18.134) 

so that coefficients of ( and 11 in (18.133) can be neutralised by the additions of 
incompatible terms arising from (18.134). Further discussion on this topic is g i tm in 
[AI] .  
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18.11.2 Enhanced strains 

The full derivation [SS] involves a mixed three-field variational approach. In  the 
following we will be less rigorous and will start by deriving an 'enhanced strain 
formulation' that is exactly equivalent to the previous technique with two incompatible 
modes and four incompatible variables. Using ( 1  8.124) and ( 1  8.125)). we can use the 
incompatible shape functions in ( 1  1.47)to write: 

(18.135) 

So that, via ( 1  1.49) we can write the covariant (or natural) strains with respect t o  the 
contravariant base vectors at the centroid as 

(18.136) 

or, in vector form as 

or defining new variables so that: 

( 18.138) 

we have: 

0;I[;;I 
= Ga ( 18.139)0 

0 

and the corresponding 'natural strains' are: 

(18.140) 

With the aid of ( 1  1.44), we can now write: 

where J,  was defined in ( 1  1.44) and is here evaluated at the centroid (hence the J ,  in 
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parenthesis). We have added a subscript 2 to the strains k for consistency with Section 
18.11.1, where the 2 implies enhanced strains to be superimposed on the conventional 
strains. Equation ( 18.141 ) is now entirely equivalent to ( 18.127) and ( 18.129) which were 
obtained using incompatible modes. 

Regarding the satisfaction of the patch test, following the approach of equation 
( 18.130).the internal forces corresponding to the variables a are: 

Under patch test conditions. the stresses are constant and hence for qiz  to vanish, we 
require that: 

[ [BdEdq = 0 (18.143) 
J J  

Clearly, from ( 18.140) this condition is satisfied. 
Simo and Rifai [SS] proposed a 'fifth mode' whereby: 

18.144) 

with 

(18.145) 

(which is zero at the integration points if  2 x 2 Gaussian integration is adopted). 
For a rectangular element of dimensions 2u x 2h, in relation to the method of Section 

18.11.1 ,  this is equivalent to adding an incompatible mode of the form: 

if $1 in ( 18.144) is (<' - $ ) I  2. 
In relation to the enhanced F formulation which will be detailed in Section 18.13, it is 

useful to work with the enhanced displacement derivatives. I n  this situation. in place of 
(18.141) we have: 

a'' =$J,(J,)- 'G,a = C,a = G2p2 (18.147)
Dz=[;::]D2 2 J 

where the matrix J, was given in ( 1  1.42) and G was defined in (18.139). For this 
enhanced F method, the author and co-workers have shown [C4] (see also [W3, D3] ) 
that when the either the full four or full five modes are introduced, there are difficulties 
with the incompatible mode or 'enhanced strain' formulations for large compressive 
strains. These problems are associated with eigenmodes involving the incompatible 
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modes which can propagate in an hour-glassing manner (see also Section 18.15). In 
relation to a rectangular element, the ‘dangerous modes’ are those involving i y T and 
U: (Figure 18.13). For other shapes, i t  is difficult to visualise the incompatible modes 
but, with enhanced strains, we can associate the difficulties with the variables x 3  and x4 
(see (18.139), (18.140) and (18.144)). One possible remedy [D2] is to retain only the 
enhanced natural strains associated with x ,  and ct2. As will be shown in Section 18.11.4, 
this approach improves the performance of the basic element with respect to incom- 
pressible locking but still leads to a poor performance in near-rectangular configur- 
ations under bending. The problem is associated with shear locking and can be 
alleviated by the method of substitute functions. 

18.11.3 Substitute functions 

In relation to the poor bending performance of a rectangle, a well-known solution 
(particularly in the development of beam elements) is to use ‘reduced integration’ for the 
shear energy [Z1.13]. An equivalent technique is to use substitute functions or 
substitute strains so that: 

E = [ B +  0 0 0 [Bo-B]]p (18.148)[I 1 P]

Equation (18.148) effectively replaces the last row of the B matrix (associated with the 
shear) with the last row of the B matrix at the centroid (Bo). 

Bathe and Dvorkin [BSI have generalised the concept of substitute strain functions, 
in relation to the analysis of shells. More recently, the approach has been applied to 
continua by Dvorking and Vassolo [D5] who, in relation to Figure 18.14, use the 
following functions for the covariant strain components (with respect to the con- 
travariant base vectors at the centroid): 

C l 2  = E1210 ( 18.149) 

where all the terms on the right-hand side of the equal signs are evaluated at the 
specified points using the conventional isoparametric shape functions. Consequently, 
we could for example, compute: 

where J, was defined in (1 1.44) and BID is the conventional B matrix computed at point 
D. Equations (18.149) can be used to compute B(<,q)where: 
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Figure 18.14 Assumed strain procedures. (a) Displacement nodes; (b) strain sampling points. 

after which: 

2(<, q )= J,(J,)- *B(<,q)p = Bp ( 18.1 52) 

where B is the modified B matrix with respect to the conventional a r t e s i an  axes. 
In relation to the patch test, we note that with the adopted functions (see (18.149) and 

(18.152)): 

( 18.153) 

where B is the conventional B matrix computed directly from the isoparametric shape 
functions. 

Dvorkin and Vassolo [DS] use the substitute strain functions in conjunction with 
a five-noded quadrilateral (Figure 18.14) so that the basic shape functions h of (18.125) 
include: 

h(5)= (1 - c2)(1- q 2 )  ( 18.154) 

The associated variables u s  and cs are then eliminated at the element level using a very 
similar procedure to that adopted for the incompatible displacements or enhanced 
strain variables. In relation to a ‘co-rotational formulation’ details are given in Section 
18.12. 

In order to extend the method to an enhanced F formulation (details in Section 
18.13), substitute functions must be found for the displacement derivatives. To this end, 
the author proposes the relationship: 

D = Z? ++[Do-DX] (18.1%) 
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Figure 18.15 Cantilever for mesh distortion tests. 

where B are the substitute strains and Doare the conventional displacement derivatittes 
at the centroid. Using this approach, for a linear formulation, the original substitute 
strain procedure of Dvorking and Vassolo [DS) will be recovered. 

18.11.4 Numerical comparisons 

In this section, we will compare the numerical performances obtained using a number 
of the previous algorithms when analysing (in a linear mode) the cantilever of 
Figure 18.15.To this end, we will define the following methods: 

Conventional displacement based isoparametric formulation with no extra inter- 
nal variables 

B Conventional B-bar method CH3.131 or constant pressure approach. 
E2 Enhanced strain formulation using aland a2 from (18.140).The results obtained 

by adding r5 from (1 8.144) were very similar. 
E4 Enhanced strain formulation using a,, a2,x 3  and r4 from ( 1  8.140). The results 

obtained by adding r5from (18.144)were very similar. 
D2 The substitute strain method of Dvorkin and Vassolo (Section 18.1 1.3) with two 

internal variables related to the 'bubble function'. The substitute strain procedure 
is also applied to the latter. 

D4 A modified version of the substitute strain procedure in which instead of adding 
the bubble functions, the four incompatible modes (or enhanced strains) are used 
as internal variables. These are directly added without resource to substitute 
strains. 

All of the results were obtained with the aid of 2 x 2 Gaussian integration and relate to 
the average displacement at the tip. For methods E2 and E4, the same results could 
have been obtained using incompatible modes. 

Figure 18.16a and 18.16billustrates the very poor performance of the conventional 
formulation (I) particularly as 11 40.5.  At  the other end of the spectrum, the best results 
are obtained for method E4. However, as noted at the end of Section 18.11.2(see also 
Section 18.15),in a large strain context, problems can result from the use of the full 
four-moded enhancement. Consequently, we are also interested in the performance of 
the other methods. 
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Figure 18.16 Sensitivity to mesh distortion. (a) 11 = 0;(b) 1’ = 0.499. 

As anticipated, the E2 method behaves badly when a rectangular elements are used 
(U = 0) although as v+0.5, the technique gives significantly better results than the 
conventional formulation ( I )  and gives solutions that are very similar to those obtained 
by the B-bar (or constant pressure) approach. The method of Dvorkin et al. (D2) 
behaves well when the element is of nearly rectangular shape and, even when distorted, 
is significantly better than the other formulations with two or less ‘internal variables’. 
The proposed method D4 gives a response that is only a little worse than that of the 
element E4. However, as will be indicated in Section 18.15, it would seem to be less 
sensitive to instabilities than the latter in a non-linear environment when used with the 
‘enhanced F’ formulation (Section 18.13). 

18.12 INTRODUCING EXTRA INTERNAL VARIABLES 
INTO THE CO-ROTATIONAL FORMULATION 

In  Section 18.1 1, we discussed a number of methods for enhancing the linear perform- 
ance of the standard ‘isoparametric element’ by introducing extra internal variables. 
Using the method of Section 18.11.1, the latter would be displacements relating to 
incompatible modes; with the method of Section 18.11.2, they would be enhanced strain 
multipliers, while with one of the methods of Section 18.1 1.3, they would be displace- 
ments related to the bubble function. In a co-rotational context, these variables would 
be added (and eliminated) at the local level where we could define them as plz with pI1 
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being the local nodal displacement variables associated with the corner nodes. In  this 
section, we will indicate how these extra local internal variables would be treated in 
a small-strain (but possibly materially non-linear) context. 

We will assume that the work is related to a continuum formulation (as in Sections 
18.2, 18.3 and 18.1 1 ), but similar concepts could be applied to shells. Let us assume that 
we have some trial displacements, p, related to the primary, corner-node variables. (We 
will not use specific subscripts or superscripts to indicate the difference between the 
structural and element level variables, but will rather assume that the distinction is 
obvious from the context.) The main steps would then involve: 

1. Compute the element frame E = [e,,e,,e,] and hence obtain the local displace- 
ments, p,. In terms of the current terminology, these variables are p I 1 .We will assume 
we also have current estimates for pl,. 

2. Enter existing linear element routines and compute: 

(a) 0, (possibly accounting for plasticity); 

(b) qlil = sB ~ ( X I I ~ ~ , ~ V , ;qli2 = sB,(X,)TO,dI/, (18.156) 

Using the methods of 18.1 1.1 or 18.1 1.2, the matrix B, would include the ‘tricks’ 
required to ensure satisfaction of the patch test. Using the methods of Section 
18.11.3, B,  would also be modified. 

(18.157) 

These local stiffness matrices will generally be in the nature of local tangent stiffness 
matrices with C, accounting for plasticity. (Indeed we could, in concept, also have 
local geometric non-linearity so that we might write Bl(X,+ pI1)- see Section 
17.1.5.) 

3. Exit from the existing linear element routines and prepare for static condensation for 
which truncated Taylor series on qIi l  and qli2give: 

Because there are no external local forces we can operate directly on (1  8.159) at the 
element level to obtain: 

and hence substitute into (18.158) to obtain: 

where: ‘= K11 1 -K,, ,K,;K,, 1 (18.162) 
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4. Form the transformation matrix, T and hence the effective internal global force 
vector: 

gi = T'Qli ( 18.163) 

5. Form the (global) tangent stiffness matrix: 

K ,  = TK,Tr+ K,,(Q/,1 ) (18.164) 

6. Merge to the structural level and solve: 

6p = - K,- '(gi- 9,) (18.165) 
7. Update p = p + Bp 
8. At the element level, recover: 

(?PI ,  = T 6 p  ( 18.166) 

and obtain hp,, via (18.160) and update: 

P/2 = PI2 + 6P/, ( 18.167) 

18.13 INTRODUCING EXTRA INTERNAL VARIABLES 
INTO THE EULERIAN FORMULATION 

The main developments of this section follow the work of Simo and co-workers 
[S6, S7] and will introduce a form of 'enhanced deformation gradient', F which these 
authors applied in conjunction with the method of enhanced strains (Section 18.1 1.2). 
Naturally. the method could also be applied to incompatible modes. Unconvention- 
ally, we will advocate here that the method could be applied to the method of  substitute 
strains (Section 18.1 1.3). 

We will adopt a similar notation to that of the previous sections so that subscript 
1 relates to the basic (possibly corner-node) variables while subscript 2 relates to the 
extra internal variables (see the beginning of the previous section). The starting-point is 
to split the deformation gradient into parts associated with the primary corner-node 
variables and those associated with the extra internal variables so that: 

F = I + D , + D 2  (18.168) 

where D contains the displacement derivatives ?u,iC".X.The latter can be obtained from: 

W1)= G,(X)p1; 0 2 )  = G,(X)p, (18.169) 

where v ( D , )means the vector form of D, (see for example (5.8) or (18.4)). For the 
method of enhanced strains, G ,  would be conventional (see (5.8) or (12.3)) while G ,  
would involve the techniques discussed in Section 18.1 1.2(see( 18.147)). For the method 
of incompatible modes, G , would again be conventional while G ,  would follow a very 
similar procedure to that described in Section 18.1 1.1 for the generation of B,. 
Adapting the proposed modification of the method of Dvorking and Vassolo [DS], we 
could apply the procedure discussed in the latter part of Section 1 1.4.3,so that both G ,  
and G, would be obtained as submatrices of obtained from D as defined in (18.155).  
( I t  is worth noting that Dvorkin and co-workers adopted an alternative approach 
involving the 'rotated stress tensor' [D6] in order to introduce large strain.) To use the 
method D4 of Section 18.11.4, G ,  would be obtained from G via (18.155) without 
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considering any 'bubble function', while G , would take the same form as i t  would with 
the method of incompatible modes or enhanced strains. Having obtained F, the 
Kirchhoff stresses t can be obtained using, for example, a hyperelastic model as in 
Chapter 13. In  order to obtain the internal nodal force vector, with a conventional 
displacement-based procedure, one would simply compute (see ( 12.13)): 

(18.170) 

where x are the updated coordinates. However, if we adopt any of the modified 
techniques of Section 18.1 I ,  i t  is necessary to go back to the origins of the Eulerian 
formulation and compute the velocity gradient (see (12.19)): 

L = L , + L 2 = F F - 1 = ( D l + D 2 ) F - '  (18.171) 
with 

r ( D 1 )= G1(X)P1; 2 7 ( D 2 )  = G,(X)P, (18.172) 

Using (18.171) it is easy to modify G,(X)and G,(X) by multiplying terms by F - to 
obtain G,('x') and C,('x') such that: 

V(L,)= Gl(bx')pl; Z'(L,)= G2('X')P2 (18.173) 

Again, with a conventional, pure displacement-based, formulation. G(x) could be 
directly computed from the current coordinates as in (12.11). Having obtained the 
matrices G,('x') and G,('X') i t  is a simple matter to compute the equivalent 'strain 
matrices' Bl('x') and B,('x') (see (12.10)) and hence the two internal force vectors: 

qi l  = sBl('x')rtdVo; qi2= B,('x')'tdV0 (18.174)j

and the three tangent stiffness submatrices (see (12.14)): 

J J 

r 
KI2, = J B2( '~ ' )TC,B, (b~ ' )d~o C',,+ J

r 
G,('~')~'1G,('x')d 

The procedure for non-linear static condensation is very similar to that outlined in the 
previous section although there are now no distinctions between local and global 
quantities. 

Simo er d.[S7] adopt a slightly different procedure for the enhanced D, term in 
(18.168). Instead of directly applying (18.147) for D,, they use D, = F,D, ( ( 18.147) 
tensor), where F, is the deformation gradient at the centroid computed from the 
conforming corner node variables, i.e. F, = [I + D ,I. If  the F, term is omitted and D is 
computed from (18.1 39).the results will be unaltered although the enhanced variables. 
x1-z4, will be modified via a linear combination. However, if other interpolations are 
used for D, without the addition of the F, term, the formulation may not be invariant to 
a rigid-body rotation (see Section 18.1 5) .  If the F, term is included, the G , matrix must 
be modified using a similar procedure to that discussed in ( 18.171)-( 18.173). 
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In concept there are no problems in applying this enhanced F technique to 
hyperelastic materials. Indeed, because of the effectiveness of the modified methods or 
enhanced strains in overcoming 'volumetric locking', there is no need directly to 
introduce mixed of hybrid formulations (see Sections 13.5.1 and 13.5.2). However, as 
already discussed, it is sometimes found that there are difficulties with 'hour-glassing' 
when the four or more extra internal variables are adopted. These diffiulties particular- 
ly rzlate to constrained compressive environments when the strains are large 
[C4, D3, W3] (and see Section 18.15). 

18.14 INTRODUCING LARGE ELASTIC STRAINS INTO 
THE CO-ROTATIONAL APPROACH 

The key to the introduction of hyperelasticity into the co-rotational continuum 
approaches of Sections 18.2 and 18.3 is the observation drawn at the beginning of 
Section 18.3 that the local engineering strain is a close approximation to the Biot strain. 
In  particular, under uniform strain states the local engineering strain is equal to the 
Biot strain (see (18.26)).I t  follows that i t  is only sensible to apply the co-rotational 
approach to large strains when using lower-order elements. 

Let us work with a hyperelastic formulation using principal stretches (as in Section 
13.8).I n  a strict formulation the Biot stresses could be obtained via (13.108) as: 

where cp is the elastic potential and the i i ' s  are the principal stretch ratios while the N,'s 
are the equivalent principal directions of U of F'F. I t  follows that, for the co-rotational 
approach, a reasonable approximation is to replace ( 18.176) with: 

(18.177) 

where a, are the principal directions of the local engineering strain E,. and the principal 
stretches can be approximated as 

i ,= 1 + I;,i ( 18.178) 

where I : , ~are the principal values of the local engineering strain. E,. 

The local tangent stiffness matrix is simply computed using the local linear B matrix 
and the constitutive tangent modular matrix appropriate to a Biot formulation. Using 
a very similar procedure to that of Section 13.8.2, with respect to principal directions N,  
(here approximated by af), the components of the constitutive tensor are given by 

( 18.179) 

which can be rotated back to the 'base frame' (here the local frame) using the standard 
transformations of (4.55)(or see ( 13.137)). 

For output purpose. because the local stresses approximate the Biot stresses, using 
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(13.109), the Kirchhoff stresses can be obtained as 
t = R,a,[I + E,]RL ( 18.180) 

Probably because of the approximation whereby the rotation matrix R is held at its 
centroidal value (see Section 18.3), it is found that no hour-glassing difficulties are 
encountered with this method even when using (in a two-dimensional context) four or 
more enhanced strain variables (or equivalent incompatible modes)[C4]. However, the 
stress distribution has been found to be rather more oscillatory than that obtained from 
the enhanced F technique [CS]. These oscillations are reduced [CS] by using the 'fifth 
mode'x, of(18.144). In thiscontext,it wasnotedat theendofsection 18.1 I (see( 18.133) 
and ( 1  8.134)), that the four incompatible modes (or equivalent enhanced strains) 
allowed a constant volumetric strain (see also [A2]). However, the arguments related 
to a linear volumetric strain. For hyperelasticity (see ( 13.2I ) ) ,  we instead use (1- I ) or 
logJ, where J = det(F). In  a plane-strain context, with J - 1, instead of t:.,., + I:,,,, (see 
( 18.I33)), we would have, in addition, the non-linear terms t : , . ,~~ , ,+ and i t  is in this ;tf,, 

context that the fifth mode appears to help to reduce the oscillations in the volumetric 
strain and hence the stresses. 

18.15 A SIMPLE STABILITY TEST AND ALTERNATIVE 
ENHANCED F FORMULATIONS 

Following on form the work of Wriggers [W3], the author and co-workers used the 
single element example of Figure 18. I7 to investigate the stability of various enhanced 
formulations under large compressive strains [C4). The originally square element is 
initially of unit  side and is uniformly compressed using displacement control. A Hencky 
hyperelastic model (Section 13.10.1) has been adopted with p = 2 0  and the bulk 
modulus K = 10'. 

Using the conventional enhanced F formulation, with four enhanced strains or 
incompatible modes (Sections 18.11 and 18.13), at an imposed deflection at nodes 1 and 
2 of A = 0.377, a zero pivot was encountered. For further deformations, factorisation of 
the tangent stiffness matrix introduced a negative pivot. indicating an instability. The 
eigenmode associated with the zero pivot is also plotted in Figure 18.17, with the 
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Figure 18.17 Single element instability test with eigenmode. 
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incompatible modes also being illustrated. For a multi-element formulation, this 
eigenmode can propagate [C4, W31. 

For this problem, no negative pivots were encountered, up to a squash ratio of 
A = 0.95, with any of the methods E2, D2 or D4 of Section 18.1 1.4 when they were 
embedded within an enhanced F framework (Section 18.1 3). The same observation 
applied to the co-rotational method of Section 18.14 when using the four conventional 
enhanced strains or incompatible modes. 

As discussed in Section 18.13, the key to an enhanced F formulation is the 
specification of the displacement-derivative matrix, D. In addition to the previous 
methods D2 and D4 (see Sections 18.1 1.3 and 18.1 1.4), the author has found that 
a procedure to avoid ‘hour-glassing’ can be found by setting: 

+ ~ [ D , , - D ~ , ]D = E ~  + & z = $ [ D I  +D:J +i[D1,,-D:,] + E Z  (18.181) 

where E ,  contains the conventional corner--node strains, D,,contains the conventional 
corner--node displacement derivatives at the centroid and E, contains the conventional 
enhanced strains (see (18.140) and (18.141)). 

Having studied the closed form solution for the instability problem of this section, 
Korelc and Wriggers [K2] have proposed an alternative technique that is more closely 
related to the original enhanced F procedure whereby (see (18.168)): 

D = D , + D ,  (18.182) 

with D ,  relating to the corner nodes and for the usual enhanced F procedure (see 
Section 18.1 I .  1 and ( 18.I35)-( 18.139)), we would use ( 18.147) for Dzwith the associated 
D (see ( 18.139))being given by: 

(18.183) 

Korelc and Wriggers propose a general form [K2]: 

( 18.184) 

and argue that, for stability, we should ensure that: 
r 

(18.185a) 

( 18.185b) 

( 18.185~) 

The original formulation with D from ( 18.183) does not satisfy ( 18.185b) and ( 18.185~) 
and so, instead, Korlec and Wriggers propose adopting: 

(18.186) 

which is the transpose of the relationship in (18.184) and now does completely satisfy 
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( 18.185). For a linear problem, we are only interested in: 

= +[D, + DT] 

T 
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1 
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C, = 1.5; C, = 0.5; k =  1000). 

( 18.187) 

and, in this context, both (1  8.184) and ( 1  8.186) degenerate to the conventional enhanced 
strain formulation (E4) for linear problems. Glaser and Armero [G 1 J have pointed out 
that the formulation of Korelc and Wriggers [K2] is not invariant to a superimposed 
rigid-body rotation. They recommend a similar procedure using (1  8.186) but with the 
addition of the F, term as discussed below (18.175). 

From the numerical tests that have been conducted by Korelc and Wriggers [K2] 
(and those conducted by the author), this procedure would seem to be free of 
hour-glassing. In addition, i t  exhibits better convergence characteristics than those 
exhibited by the original enhanced F procedure. However, when analysing a particular 
hyperelastic indentation problem (see Figure 18.18 and [C3]), the author has found 
that all of the previous enhanced F procedures suffer from rather poor convergence 
characteristics. Better convergence characteristics were obtained with the co-rotational 
method (Section 18.14 and [C3]) and even better characteristics by the 'constant 
pressure approach' (Sections 13.5,13.7 and 19.9). The latter procedure also gives a very 
similar distribution (and magnitude) for the reactions. 

I t  would seem that for constrained problems, without significant bending, there can 
still be advantages in using the constant pressure (or mean dilatation) approach. In  this 
context,de Souza Net0 et d. [D4J advocate an constant F approach that is very similar 
to the constant pressure procedure (although leading to a non-symmetric tangent 
stiffness matrix). These authors point out some disadvantages of the enhanced F 
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procedures in relation to adaptivity when the enhanced strain variables must be 
mapped from one mesh to another. The overall issue is still not fully resolved. I t  is 
worth noting that in relation to large-strain elasto-plasticity (see Chapter 19 and, in 
particular. Section 19.9), Simo and Armero [S6] have reported hour-glassing with the 
constant pressure approach for axisymmetric and three-dimensional problems. 

18.16 SPECIAL NOTATION 
B = matrix relating strains to nodal displacements 
d = translational displacement vector 

D = displacement derivatives 
D = (Section 18.1 1.3)matrix of displacement derivatives with respect to 

orthonormal cartesian base vectors 
D = [Ei,] matrix of covariant components of the displacement derivatives 

(Sections 18.1 1.2 and 18.15) 
D: = matrix derivatives with respect to natural coordinates (see ( 1  1.47)) 

E = element triad matrix containing unit orthogonal column vectors 
e ,  -e3= which define the local coordinate axes 

F = deformation gradient 
G = matrix relating 8 to p (or (SO to dp) 
h = shape functions 
J = Jacobian matrix 
j = det ( J )  

J ,  = Jacobian matrix computed at centroid 
j<,= det (JJ 
p = nodal ‘displacements’ (including rotations) 
q = internal forces 
Q = Eq 
r = [r,, r2, r,] current values of mid-side triad in Section 18.7 

r’,,r i ,  r; = intermediate values of mid-side triad in Section 18.7 
R = [R , ,  R,, R,]  initial values of mid-side triad in Section 18.7 
S = skew symmetric matrix 
T = transformation matrix whereby Sp, = T Sp (the latter is ‘global’) 
U = right stretch tensor or 
U = nodal triad matrix containing unit orthogonal column vectors 

U, -U, which define the nodal triad 
V = ‘spin matrix’ whereby (is = V16p or hp = V’hp, (translational) 
v = ‘spin vector’, whereby Op = v ’  Sp or ( S P  = v‘bp, (translational) 
x = current coordinates or position vector 
X = initial coordinates or position vector 
Sa = pseudo-vector change for nodal rotations 
/j = angle defining direction of e ,  

Op = vector rotation change of element triad 
E = strains 
0 = mid-side rotation in Section 18.7 
8 = vector of displacement derivatives i.e. vector form of D 
8, = vector of local rotations 

<, 17 = non-dimensional coordinates 
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Subscripts of superscripts 

I relates to primary ‘corner node‘ variables in Sections 18.1 1 18.14~ 

2 relates to secondary ‘internal’ variables in Sections 18.11 - 18.14 
i = internal 
I = local 
r = rotational 
t = translational or tangential
* = ‘incompatible’-Section 18.11.1 
A relating to conventional cartesian axes (Sections 18. 1 1 -18.12)
-

relating to covariant components (Sections 18.I I - 18.12) 
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19 Large strains and 
plasticity 

19.1 INTRODUCTION 

Since the pioneering work of Hibbitt et (11. in 1979 [H2] and of McKeeking and Rice 
[M 1.123 in 1975, there have been very many publications of describing finite element 
analysis of plasticity with large strains. This work has included important contribu- 
tions by Nagtegaal [NI] and Nagtegaal and de Jong [N2,N3] in 1981 and 1982. 
However, while certain trends have developed, the subject still invokes much contro- 
versy. This controversy relates as much to the underlying physics as it does to the 
numerical algorithms. For the former, the reader is referred to the work in [A 1- A3, D1. 
N 1.10. L l ,  L2, L4.14, M 1, N5. N6, R 1, S5.141. In the present chapter, we will largely 
concentrate on the latter. 

Most early finite element work was based on a Eulerian formulation (Section 12.2 
and 12.3) using the Jaumann rate of Cauchy or Kirchhoff stress. This stage was 
followed by debates relating to the advantages or otherwise of using other rates (see 
Section 10.8 CA1.10, D1.lO, N1.lO, R3] and Section 13.10.3).However, no matter which 
rate form was used, the formulations were only ‘objective’(see Section 10.2and 19.4)as 
the step sizes tended to zero. Hence special measures were adopted to ‘integrate’ the 
rate relationships without leading to straining under rigid rotations. [Fl, G1, H3. H4, 
Kl-K3, P31. In an ‘explicit dynamics code’ (Section 19.4), the time steps may be 
sufficiently small that these ‘special measures’ can be avoided. 

More recently, one of the main trends has seen the increasing use of a multiplicative 
decompositionofthedeformationgradient [C2, E l .  M2, P1, P2,Sl--S4] in conjunction 
with the elastic deformation being computed via a hyperelastic relationship (as in the 
previous references and Bl, B2). The main objective has not necessarily been to 
consider large elastic strains but rather to avoid the issue of integrating the rate 
equations and linearising the resulting algorithms. (None the less, some of the resulting 
formulations can be used with elastic strains that are large or moderately large). In  
addition, following the work on small-strain plasticity, much work has been concen- 
trated on the development of consistent tangent modular matrices. 

In this chapter, we will start by outlining the basis of the multiplicative decomposi- 
tion and will then show how the resulting equations can be simplified to lead to the 
conventional ‘Jaumann-rate form’. We will then briefly indicate the difficulties with 
integration and mention some of the solutions that have been proposed. Finally, we will 
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consider a more modern approach based on a multiplicative decomposition which 
leads, for J ,  plasticity, to both a ‘return algorithm‘ and a ‘consistent tangent modular 
matrix’ that is very similar to that previously described in Chapter 6 for small-strain 
plasticity. While emphasis is placed on J ,  plasticity, many of the concepts are relevant 
to other yield criteria. 

19.2 THE MULTIPLICATIVE F,F, APPROACH 

The F,, F, multiplicative decomposition was originally introduced by Lee [Ll]. In  
order to illustrate the procedure, we will assume (see Figure 19.I ) ,  that a line element dX 
is first moved plastically into an intermediate configuration d i  and then elastically into 
its final state dx. For the first phase, we have: 

3
d%=-c?xdX = F,dX (19.1) 

and for the second: 
6X 
(7% 

dx =-dri = F,dri ( 19.2) 

so that in total: 
(7X 

c?Xdx =-dX = FdX = F,F,dX ( 19.3) 

Figure 19.1 The F,F, decomposition. (a) Initial (dX); (b) intermediate (dx); (c) final (dx). 
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Figure 19.2 Multiplicative decomposition in one dimension. 

with 

F = F,F, ( 19.4211 

containing the multiplicative decomposition of the deformation gradient, F. For 
a 'one-dimensional idealisation' (Figure 19.2),we can write: 

1, 1, 1, -/-=-= - -- i C A P  ( 19.4b)
1, 410 

where the i ' s  are 'stretch ratios'and in relation to Figure 19.2,I ,  is the original length, I ,  
the final length and I ,  the 'plastic length'. 

As noted by Lee, the multiplicative decomposition is non-unique. In particular, 
following (19.1),we could rotate the intermediate configuration via: 

( 19.5) 

so that 

dk = RF,dX = FbdX ( 19.6) 

after which. using ( 19.2), 

( 19.7) 

so that 

dx = F,F,dX = F:FbdX = FdX ( 19.8) 

Lee included the rotation in the plastic deformation gradient while, following micro- 
mechanical models involving a single slip crystal in crystalline plasticity [A 13, Simo 
and Hughes [SS.14) consider Feas involving the stretching and rotation of the crystal 
lattice with F, characterising plastic flow (via dislocation-see Figure 19.1). 

For a general material, there is a problem in relating the stresses on the intermediate 
configuration, say S, to E, because, following the procedure above, one can show 
CL4.14) that E, is not invariant to a rotation of the intermediate configuration. In 
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particular, using (19.7), we would obtain: 

E: = REeRT (19.9a) 

However, if the material is isotropic, we would also obtain: 

s'= R S R ~  ( 19.9b) 

and hence the stress state would not be affected by the intermediate rotation. 
From (4.1 12) and (1 9.4) 

Sv
I = - =  FF- = F,F,- + F,F,F; = I, + I, (19.10)

S X  

where following Simo [Sl, S2] and Oritz [Ol], we have now used lower case 1's for the 
velocity gradients because they are related to the final configuration. Equation (19.10) 
can be used to show that, although we started with a multiplicative decomposition 
(19.4), we have an additive decomposition of the strain rates [N 1.10, N5, N61. However, 
this depends on the definition of 1, taking the form in (19.10)(if we are referring to the 
current configuration) rather than the form: 

L, = F,F, (19.1 1) 

Referring to the current configuration, we would then have: 

Ip= sym(1,) =$(F,L,F, + Fe-TLiF%) ( 19.1 2) 

The equivalent relationship on the intermediate configuration can be obtained, using 
a transformation of the form of (4.101) so that: 

E, = FZI,F, = $(C,L, + Lice) (19.13) 

Lubliner CL4.141 has observed that 'regarding the plastic deformation rate, (here 8, on 
the current configuration or E, on the intermediate configuration where the dot merely 
indicates a rate and does not imply that I,is the differential of some E,  nor the E, the 
differential of some EP)there is no unequivocal definition'. Among those that have been 
advocated, apart from (19.12) and (19.13), he also quotes: 

E, =$(LP+ L;) ( 19.14) 

from which one might obtain: 

I P = F i T (  L p 2  '>F;'+ L T  
(19.15) 

In more recent work, Simo [S4] uses (see also Section 19.7.1): 

P )  F; (19.16)0, = - iL,(b,)b, ' = Fe( 
L + L T  

where L,,( ) is the Lie derivative (see footnote in Section 10.4 and ref. CM1.101) and 
be = F,FZ. For small elastic strains, Fe*R e  (see Section 4.10) and hence Fe z FevTso 
that (19.15) and (19.1 6) would coincide. Also, for small elastic strains, C, 1: I and (19.13) 
and (19.14) coincide. Indeed, in these circumstances, one can show an equivalence 
between (19.12) and (19.16). 
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19.3 USING THE F,F, APPROACH TO ARRIVE AT THE 
CONVENTIONAL ‘RATE FORM’ 

As explained in the introduction to this chapter, most early finite element formulations 
started from a rate formulation (usually from the Jaumann rate). In  this section, we will 
show that, given certain assumptions, such procedures (which we refer to as ‘conven- 
tional’ in the title to this section) are entirely consistent with an F,F, approach. The 
work is largely based on that of Needleman “4). We start by assuming that the elastic 
behaviour is governed by some elastic energy potential (Chapter 13) so that the second 
Piola- Kirchhoff stresses with respect to the intermediate configuration can be 
obtained as 

(19.17) 

where the elastic Green strains E are also taken with respect to the intermediate 
configuration, i.e. 

E, = $(FTF, - I )  (19.18) 

If plastic straining is assumed to have no effect on the elastic moduli, further 
differentiation of (19.17) gives (see also (10.47) and Section 13.4): 

S = DrK2Eeor s,, = Dbt,”d kFd (19.19) 

with 

( 19.20) 

Given (19.17), the Kirchhoff stresses, t, which relate to the final configuration can be 
obtained via (10.50) as 

t = F,SF; (19.21j 

Following very closely the approach in Section 10.4,we can now differentiate ( 19.21) to 
obtain: 

t = t T  + I , t  + T I T  = D1K2:Ce+ I , t  + t l f  ( 19.22) 

where, via (10.56).the components of the tangential tensor are related to those in  
(19.20)via: 

( 19.23) 

(There is no significance in the e for elastic now being a superscript, i t  is put there 
purely for considerations of space.) 

Using the relationships in Section 12.4, equation (19.22) can be reworked to include 
the Jaumann rate so that 

Z = i, + d,t + td; = D:tlK:C,+ d,t + ( 19.24) 

where the relation between the Jaumann-rate constitutive tensor, D,JKand the Trues- 
dell-rate tensor, DrTKhas been given in (12.51). 
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By assuming that stresses are small compared to any elastic moduli, the stress terms 
in ( 12.51 ) can be ignored so that we are left with the tansformations in ( 19.23) to relate 
D,,, to DIKZ.Assuming small elastic strains, the Fe terms (from F,) in (19.23) may be 
approximated by terms from the rotation, R, (see (Section 4.10)). Hence. assuming 
elastic isotropy, the latter has no effect so that: 

i = i, +act+~a := D:E, +act+ t@ (19.25) 

where D in (19.25) would contain the tangent moduli stemming from (19.20). Using the 
simplest possible formulation, this would be a fixed linear-elastic modular matrix. 

If, in addition, it is assumed that the plastic spin (a,)is zero (valid for a wide range, 
but not all plasticity [N4]), (19.25) is further replaced by 

z = i, +at+ ta*= D:&,+at+ ta7 ( 19.26) 

where a are the total spins. Equation (19.26) is the basis of the Eulerian finite element 
formulation already described in Section 12.4. 

We must now introduce the yield criterion and plastic flow. The latter are strictly 
associated with the Cauchy stresses, n, rather than the Kirchhoff stresses t = Jo. 
However, we have already shown in Section 12.5 that the use of the Jaumann rate of 
Cauchy stress (in conjunction with a fixed symmetric modular matrix D) leads to 
a non-symmetric tangent stiffness matrix while this is not true (Section 12.4) of the 
Kirchhoff stresses. Luckily, the only difference between the two involves the J term 
which relates the current volume to the initial volume. For von Mises, J , ,  plasticity, the 
volume change is only associated with elastic deformation and can therefore be 
considered as small. Hence, we can approximate J as 1 and effectively redefine the 
reference configuration as the current configuration. 

Indeed, we can make such an approximation even if there are large plastic volume 
changes provided the elastic strains are small "21. This observation follows from 
(19.21)from which t is related to CJ by 

o = t/J, ( 19.27) 

where J ,  is the elastic volume change from the intermediate to the current configur- 
ation. 

To consider plasticity, we may therefore as a reasonable approximation, write the 
yield criterion etc. in terms of Kirchhoff stresses and apply (19.26). In  order to apply the 
finite element formulation of Section 12.4, we need to be able to re-express (19.26) so as 
to involve the total strain rate (E) rather than the elastic strain rate (6,) so that: 

z = Z, + at + taT= D , , ~ : &+ at + faT ( 19.28) 

Naively, one might simply use the small-strain procedures of Sections 6.3-6.5 to obtain 
D,,,. I t  is, however, not obvious that such an approach is valid and hence we will outline 
the derivation which is closely related to that in Section 6.5.2. 

As a start, we write the yield function in the form: 

.f=7, - 7" = vG(tf:tt)' - 70 ( 19.29) 

where, for the reasons given previously, we are working with Kirchhoff stresses rather 
than Cauchy stresses. Certainly for metal plasticity, there will be very little difference 
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between the two. In the following we will work with the first form in (19.29) with 7, as 
the equivalent stress (equivalent to 0,in Chapter 6) and 7, as the yield stress. 

We assume an additive decomposition of the strain rates (Section 19.2) so that: 
. . .  
E, = E -E, ( 19.30) 

Assuming associative plasticity. the plastic strain rates are then given (see (6.33)) by 

. 3- * 
E, = q-2t - qa (19.31) 

so that (19.26) can be written as 

i = +J +sit - ts i  = D ( &-4a)  +sit -tsi ( 19.32) 

The consistency condition is now given by 

j =  a : i  + A’tj =0 (19.33) 

(with A‘ as the hardening parameter-see Chapter 6). Substituting from (19.32) into 
( 19.33) leads to 

a:i ,  + A‘rj = a : D : ( i- rja)=0 (19.34) 

The validity of (19.34) depends on the relationship: 

a : ( d t-th)=0 (19.35) 

This relationship is true if (as here) a and t are symmetric while fi is antisymmetric. It is 
this step that will allow the direct use of the small-strain equations for Dtep.I t  is also 
valid if, in (19.32), we used some other objective stress rate of the form: 

Z , = i  -Ar +tA ( 19.36) 

with A as a skew matrix. For example, the Green-Nagdhi rate (Section 10.8)would be 
satisfactory in this respect while the Truesdell rate would not. 

For completeness, we note that substitution for rj from (19.33) into (19.32) leads in 
conjunction with (19.28) to the standard expression of (6.18), i.e. 

i , = ( D - 1 
a:D:a+ A’ 

(19.37) 

The issue of the use of different objective rates in relation to elastic analysis has been 
discussed in Sections 10.8 and 13.10.3 where the issue of oscillating stresses following 
a pure shear deformation [D1.10] was discussed. It was pointed out that the problem 
largely related to the use of a hypoelastic rather than a hyperelastic model for the 
elasticity and was associated with large elastic strains. The oscillations can be removed 
by adopting the Green-Nagdhi rate [Dl.lO]. However, other anomalies remain [A2]. 
Similar oscillating stresses can be obtained with plasticity and small elastic strains if  
kinematic hardening is introduced “3, L4.141. Needleman “43, Atluri [A21 and 
Nemat-Nasser CN1.101 argue that the key issue is not the chosen rate but rather the 
evolution law used in a large-strain environment for the relevant internal variables 
(back st resses-Chapter 15) .  

In summary, in this section, we have shown that (with elastic isotropy and isotropic 
hardening), ‘conventional’ Jaumann-rate based solutions are consistent with Fe- F,-
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based solutions if the elastic strains are small. This will be illustrated numerically in 
Section 19.10. 

19.4 USING THE RATE FORM WITH AN 
'EXPLICIT DYNAMICS CODE' 

In the previous section, we showed that, for small elastic strains, a Jaumann rate 
formulation was effectively equivalent to an FeFpformulation (see also "41). But 
unless the increments are very small, there are considerable difficulties with the 
integration of the rate equations such as (19.26). However, for one important class of 
problem, the incremental steps are indeed very small. Algorithms for explicit dynamics 
are discussed in Section 24.5 and 24.6 of Chapter 24 on 'Non-linear Dynamics'. For 
such codes, a staggered system is usually applied so that the nodal velocities are known 
at the half time steps (i.e. pn+ 2 )  and the stresses and displacements at the whole time 
steps (i.e. a,+ and pn+l). 

We will assume that the Jaumann rate of Cauchy stress is being adopted so that, 
instead of starting from (19.26), our basic equation is 

& =ir, + aa + ailT (19.38) 

A n  appropriate updating procedure might then involve: 

1. Given pn+1 1 2 ,  compute: 

8,- 1 2 = 4,+1 , 2 )  = WJP,+1 2 ( 19.39a) 

where the symbol v(A) means vector form of A and G(x) has been described in 
Section 12.2 (see ( 12.11)). 

2. Then use (10.22) to compute in+ and a,+ from I,,+ i.e. with 

&"+ 1 2 
- 1  
- >(In+ 1 2 + I;+ 1/21; a = + ( i n +  1 2 - I,'+ 1 2) (19.39b) 

3. Compute: 

%"+ 112 =Dtep(%F"+ 112 ( 19.40) 

where Dtepis the elasto-plastic modular matrix which is assumed to be a function of 
the known Cauchy stresses at n (and internal variables such as equivalent plastic 
strains at n). 

4. Compute: 

(19.41) 

5. Compute the (static) internal force vector via: 

( 19.42) 

Steps 3 and 4 above could be replaced by 
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3a. Compute: 

stria,= a8= 6, + AtD,E,,+ ( 19.43) 

where D, is the elastic modular matrix. 
3b. Apply a small strain 'radial return' or 'backward Euler procedure'(see Chapters 6, 

14 and 15) to change oH to q.. 
4. Compute: 

( 19.44) 

Algorithm 19.1 A rate related update suitable for an explicit dynamics code. 

19.5 INTEGRATING THE RATE EQUATIONS 

While the method of the previous section may be valid for an explicit dynamics code 
using very small times steps, more generally we must address the issue of a more 
accurate 'integration of the rate equations'. (Alternatively, as in Sections 19.6 19.8, we 
may return to an F,F, formulation using a hyperelastic relationship.) Part of this 
integration is related to the 'plasticity side' as in small strain plasticity (see Chapters 6, 
14 and 15). However, with large strains, we also have the issue of the rotation. As 
originally discussed in Section 10.2, if we use the Jaumann rate and have a pure rotation 
there will be no straining. However, this is only true for infinitesimal rates and not for 
the 'increments' that will be obtained within the implicit finite element formulation. 
Hence we require some simple 'integration procedure' that, at the very least, ensures no 
straining with finite rigid rotations. Much work has centred on this issue CS3.14, Fl ,  
G 1. H3, H4. K 1 -K3, P31. One such integration algorithm was obtained by Hughes and 
Winget [H4] and involves an extension of the mid-point algorithm discussed in Section 
3.8 for simple truss elements. The algorithm is obtained by starting from equation 
(10.17) from which we derived the Jaumann rate relationship, i.e. 

0, = R0,R' + AtD,:E ( 19.45) 

where subscript o means 'old' and subscript n means 'new'. The Hughes Winget 
algorithm, involves replacing (19.45) with 

( 19.46) 

where subscript m relates to the 'mid-point' and Q is an approximation to R that 
coincides with R when the incremental motion involves a pure rotation; A&,,, and 
R,,would be obtained from: 

( 19.47) 

where in a finite element context, 1, would be obtained from A6 which would be of the 
same form as ( 12.1 1) but given by 

A6 = G(x,)Ap ( 19.48) 

The tensors $2, and Aq,, in (19.46) would be obtained from: 

(19.49) 
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To be incrementally objective, the algorithm must ensure that, for a pure rigid body 
rotation, both ALE,is zero and the stresses are correctly updated with Q(Q,) = R. For 
such a rigid rotation we have: 

X, = Rx, = X, + AU ( 19.50) 

so that: 

2x, = X, + X, = (I + R)x, ( 19.51 ) 

and hence, from (19.50) and (19.5 1): 

AU = (R -I)x,= 2(R - I ) (R  + I ) - 'x, ( 19.52) 

and 

?Au 
-= I,
?Xm 

= 2(R - I ) (R  + I ) - ' ( 19.53) 

Substitution into the first expression in (19.49) gives: 

A&, = (R - I ) (R  + I ) - ' + (R + I)pT(R- I )T  ( 19.54a) 

= R(R + 1)- ' - (R + I ) - T  - (R + 1)- ' + (R  + 1)-'RT (19.54b) 

The relationship: 

(R + I)T= (I + R)RT= RT(I+ R )  ( 19.55) 

which stems from the relationship RTR = RRT= I, can be used to ensure that the first 
two terms and last two terms in (19.54b)each combine to be zero and hence, as required, 
A&,,,is zero. In the following, we will also require the relationship: 

( I + A T ) - '  = ( I + A ) - ' A = A ( I  + A ) - '  ( 19.56) 

which applies when A is a skew-symmetric matrix. 
With A&, zero, from (19.49), we obtain: 

Q, = 1, = 2(R - I)(R + 1)- ' ( 19.57) 

or: 

Q,(R + I) = 2(R - I) ( 19.58) 

This equation can be solved for Q, to obtain: 

R = [I -+Q,] '[I ++Cl,] = [I  + +Qm] [I -+am]- ' = [I + [I -+Qm]- 'Qm] 

( 19.59) 

The equivalence of the various expressions in (19.59) can be demonstrated with the aid 
of (19.56) (note that Q, is skew-symmetric). 

In summary, the algorithm involves the use of( 19.46) with Q(n,)= R from (19.59). In  
practice, there is no need to introduce the matrix divisions in (19.59) because the 
solution to (19.58) can also be expressed as (now using the symbol Q): 

( 19.60) 
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Figure 19.3 Illustrating the Hughes-Wingert algorithm. 

where the antisymmetric mid-point spin matrix, amfrom (19.49) can be written as: 

(19.61) 

and: 

is the vector equivalent of a,,,.(In fact (19.60) is the form of the rotation matrix given in 
(16.35)while mm is the tangent scaled pseudo vector.) 

As a simple example, consider the square block in Figure 19.3 which is rotated 
through 90” about 0 from configuration OABC to configuration OA’B’C’via the 
intermediate configuration 0A”B”C”D”.The use of the standard bilinear shape 
functions will show that the mid-point Jacobian is given by 

J, = (19.63) 

while the total displacement derivatives with respect to the non-dimensional 
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coordinates are: 

a u l  
( 19.64)

1 - 1-'I 

so that we obtain (with the ordering as in (4.72)): 

;;]I,=-=[; ?U 0 -2 0 
( 19.65) 

%l 

from which with the aid of (19.49), A&, =0 while (as anticipated) SZ, = I,. We can now 
use either Q = R from (19.59) or (19.60) (with (19.62)) to obtain: 

( 19.66) 

which is the correct rotation matrix. 
The reader can attempt to apply the same procedure with the block being rotated 

through 180^.He or she will find that graphically the mid-point configuration collapses 
to a point while numerically, J, is singular. The rotation and stretch (here zero) could. 
of course, be obtained via a polar decomposition as in Section 4.8. 

While the Hughes-Winget algorithm gives the correct solution for a pure rotation, i t  
can introduce inaccuracies when the incremental motion involves stretching as well as 
a rotation. More sophisticated mid-point procedures have therefore been advocated by 
among others KeyCKl-K3] and Hughes and Winget [H4] (seealso Simo and Hughes 
CSS.14)). In  essence, these techniques involve firstly rotating the stresses to the 
mid-point configuration, then applying the stress update (say via the conventional 
small-strain 'radial return'), then rotating on to the final configuration. The techniques 
therefore require the mid-point rotation matrix which may either be total or incremen- 
tal. In  either case, knowing R (either obtained approximately or exactly). one requires 
R1j2where: 

Considering, firstly the two-dimensional case, the rotation angle 0 can easily be 
obtained from R which is then given by (see ( 1  6.27)): 

0 
( 19.68) 

so that we can simply obtain: 

0 0 
cos (0/2) -sin (0/'2) ( 19.69) 
sin (0/2) cos ( 0 , / 2 )  
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The three-dimensional equivalents of (19.68) and (19.69) are (see ( 16.22)) 

sin 0 + ( 1  -
0 
COSO) 

S ( W wR(8)  = R(Oe)= I + -S(8) ( 19.70)
0 

R 1Z = R ( 6 / 2 ) = R  S(8)+
(1  -COS(0/2))s(e)s(e)(19.71)p 

The simplest way to find R '  is to use the procedure of Section 16.10 to obtain the unit 
quaternion, 4.from R where 4 takes the form: 

sin(0/ 2)e 
( 19.72) 

=(c0s(0/2) ) 
after which R l JZ  is easily computed from (19.71). 

19.6 AN F,F, UPDATE BASED ON THE 
INTERMEDIATE CONFIGURATION 

A numer of workers have applied the FeFpdecomposition in conjunction with updates 
based on the intermediate configuration [C2, E l ,  H1, M2, 0 1 ,  P1, P2, Sl-S3, Wl]. 
Such procedures are usually applied in conjunction with a hyperelastic constitutive 
law and thereby obviate the need for the integration of any rate equations. We will 
concentrate on a simple J ,  plasticity with isotropic hardening and will work with 
a hyperelastic model which uses principal log strains (Section 13.10.1). Such procedures 
have been applied in [ E l ,  PI, P2, Wl] and lead to an updated algorithm which turns 
out to be of a very similar form to the radial return algorithm (Section 6.6.7.) for small 
strains. The present work is largely based on that of Eterovic and Bathe [El] but also 
includes elements from a similar procedure by Cuitino and Ortiz [C2]. 

The formulation for elasticity is based on the principal log strains and hence follows 
closely the development of Section 13.10.1. If  we are working in fixed principal 
directions (as in an axisymmetric shell formulation [W2]), then, with respect to such 

(see (19.4b)) and I : ,  = log,iWea direction, if  i = ieip while cp = logeip,then we have an 
additive decomposition in terms of these log strains so that c = logeil= loge(;l

, P
i ) = 

I ; ,  + I:,,. In  the following we are also considering the changes of principal directions 
and we will initially concentrate on a formulation based on the stresses 0 which 
are work-conjugate to log,U (Section 10.5). Following the approach of Section 6.6.6 
and 6.6.7, we apply a form of 'operator split' and first compute the stresses at the 
'trial point', B, for which the plastic configuration (F,,,,) is assumed frozen in the form 
that i t  was at the end of the previous increment. In addition, we know the current total 
value of F(F, with n for new). Via (19.4a), wecan thereforecompute the value of F at the 
'trial point' B as 

F, = F,F,' (19.73) 

and hence the principal directions of C, = FiF, with equivalent stretches, i,<so that 
(see (4.137) or (10.9)): 

C, =Ci:,Ni, 0N,, ( 19.74) 
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I t  follows that: 

log, U, = Clog, jViHNi, @ Ni, ( 19.75) 

while the equivalent rotation (which will be required later) is given by 

R, = F,U, ' = FHQ(NB)Diag(& ' )Q(N, , ) '  ( 19.76) 

From (13.185) and (13.187), the equivalent 'log stresses', 0,,(which are related to the 
intermediate configuration) are given by 

O,,= 1OiHNiH0Ni, = C O&Ni, ONiI3+ K log, Ji31 ( 19.77) 

where the symbol ' denotes the deviatoric part and 

Oil,= O:, + K log, J,, = OIB+ K 1log,(i,,) ( 19.78) 

with 

0;,= 211 log, r';, = 211 log, iLi,- $1 log, J ,  ( 19.79) 

Regarding the yield function, we have already indicated in Section 19.3 that i t  is 
reasonable to write the function in terms of the kirchhoff stresses (see (19.29)) rather 
than the Cauchy stresses so that: 

r
.f= r ,  - r ,  = \/+(r':r')' - 5, ( 19.80) 

From (10.83). the Kirchhoff stresses r are related to the 'rotated' stresses 0 (here with 
respect to the intermediate configuration) via a rotation so that: 

z = R,OR; (19.81) 

can be obtained from Kirchhoff stresses. Equation (19.81) also applies with the 
deviatoric stresses. Hence the isotropic yield function of (19.80) transforms directly to 

.f=0, -0, = &Ot:Ot)' -0" ( 19.82) 

(The yield stress in (19.82) has been written as 0,; but 0,= z,, 2 (T~,.)The flow rule then 
follows as 

( 19.83) 

In  writing (19.83), (19.14) has been used for the 'plastic deformation rate', while the 
plastic spin (on the intermediate configuration) has been assumed to be zero. The 
plastic work rate, wp(see (6.21))can then be written as 

@, = S:E, = F,-'rF,-T:Ep= U,OUL: ' :Ep= O:EP= 0, fi,, ( 19.84) 

where we have used the fact that 0 and U, are coaxial and (see (6.29) and (6.34)): 

i j = EPs= &(Ep:Ep)  = , . /~(A:A) ( 19.85) 

is the equivalent plastic strain rate. The development in (19.84) remain valid even if an 
antisymmetric plastic spin term is added to the definition of Ep in (19.83) because, with 
S symmetric, there will be no alteration to the work rate. If i t  is assumed that the plastic 
flow direction, A, is fixed during the increment (say at  A,) [CZ], the solution to ( 19.83)in 
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moving from the 'trial elastic solution', B, to the final solution at C is 

Fpn= FPc= exp(AqA,)F,,, = exp(AqA,)F,, ( 19.86) 

Hence the final value of the elastic right Cauchy- Green tensor (at the 'return point', C )  
is given by 

C, = (FI3FpG)'F,F,,.' = exp(.- ArlAA)C,exp( -AiiA,) ( 19.87) 

Having assumed that the flow direction is fixed at that at €3, the principal directions 
of the flow direction coincide with those of 0, and log,U, -see (19.75) and (19.77) and 
of C,, (see (19.74)). I t  follows from (19.87) that the latter coincide with the principal 
directions of C, (and hence of Oc),i.e. N, = N,. Also from (19.87). it follows that: 

A;. = exp(- 2 A q A , , ) i &  ( 19.88) 

where AI,, are the principal values of the flow tensor A at B. Taking logs of both sides in 
(19.88)leads to the relationship: 

log, i,i,= log, iilj-A 11 Ai, ( 19.89) 

ln moving from B to C, the process has only involved plasticity and hence (with J ,  
plasticity) no volume change would be expected. To check this, we note that via ( 19.89) 
we can write: 

C,. = i&N,, @ N,, = i:,exp( - 2Aq Ait3)NiH@ Nil, ( 19.90) 

so that: 

detC,- = A~,i~,A~, ,exp(-2Aq( A , ,  + A,,  + A 3 , ) )  

= >.:,Af,>.:, = det C, (19.91) 

where we have used the fact that the flow direction A is deviatoric(proportiona1 to 0') 
so that: 

A , , +  A,,+ A, ,=O ( 19.92) 

We can therefore write: 

= loge,i~13l ~ g , ; ~ ; ~  -ArlAi, ( 19.93) 

J,. = det(F,) = J,, = det(F,) ( 9.94) 

and finally: 

=0,-= COic.Ni,+@Ni,COI,.Nil+@Ni,+ Klog, J,I ( 9.95) 

where 

Oi,. = O;,. + Klog, J, ,  = O:c+ KClog,(>-,,,) i 9.96) 

with the symbol ' denoting the deviatoric part, and 

Ofc= 2/~10g,A;, = 2/~(logcR~,,-AqAiH) 

(19.971 
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with 

( 19.98) 

Equation (19.98) is of an identical form to the small-strain expression in (6.90). To 
obtain the unknown scalar, All, we substitute (19.94)-( 19.96) into the yield function 
f (from (19.82)) at C to obtain (compare (6.88)): 

1, = o,,(o;) -q#p,) ( 19.99) 

With linear hardening, we can apply an identical procedure to that in (6.89) to obtain: 

AV = 
(3p 

.f+ A ’ )  
(19.100) 

where ,f’, is the value of the yield function at the ‘trial point’. B. With non-linear 
hardening, we can apply a scalar Newton-Raphson iteration as described at the end of 
Section 6.6.7 (in particular, see (6.93)). 

The complete algorithm can therefore be written as 

1. Compute: 

F, = FF,’ = FFi i  (19.1014 

2. Apply a polar decomposition on C, = FiF, to obtain iiH,Nit,and RI, (via (19.76)) 
3. Obtain elastic trial stresses in the principal directions (at B)  via: 

oi, = 0 : ~  = 0 : ~+ oim~ + K log,J, (19.101b) 

o;,,= 2 p log& = 2p l0geii, -5/ I  log,J,, (19.101~) 

4. Check for yielding, if no yielding, apply step (7) (with 0, = 0,)and then finish. 
5. Apply a standard small-strain update to obtain: 

oi, = No;, + OimH (19.101d) 

where the x parameter is obtained using the same procedure as that for the 
small-strain update (via (19.98) and (19.100) with linear hardening). 

6. Set Ni,.= Nit,and hence obtain: 

0, = C OicNi,@ Ni, (19.10le) 

7. Rotate the stresses so as to obtain Kirchhoff stresses for use in the finite element code 
via: 

‘ I ~= R,O,R; ( 19.101f )  

where R, has been obtained in step 2. 
8. Update the plastic deformation gradient F, via: 

where 
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and 

( 19.101i )  

Algorithm 19.2 An update on the intermediate configuration. 

It is worth noting that, having obtained the principal ‘trial stresses’ at point B in step 
3 above, if these are converted back to full stresses using the principal directions NiH, 
we can then apply an entirely conventional small-strain plasticity algorithm on the 
resulting trial stresses 0,,to obtain the ‘returned stresses’. 0, before rejoining the 
previous algorithm at step 7. 

Cuitino and Ortiz [C2] have given a consistent tangent modular tensor for use with 
a very similar algorithm. Rather than pursue this line, we will now consider an update) 
that is performed directly on the current configuration (in terms of Kirchhoff stresses) 
from which a cnsistent tangent tensor will be obtained. 

19.7 AN F,F, UPDATE BASED ON THE FINAL 
(CUR R ENT) C0N FIG URAT10N 

Simo [S4] has described an updating procedure that is directly applied to Kirchhoff 
stresses in the current configuration. In the present section, we will derive an equivalent 
formulation largely by mapping directly from the previous update which was based on 
the intermediate configuration. The main assumptions are the same. In  particular, an 
isotropic hyperelastic relationship is assumed which is again based on principal log 
strains. Also the formulation will be limited to J ,  plasticity with isotropic hardening. 

As before. we assume that we know, F from the current displacements and also the 
old value of F, and hence C, = F:F, (at the last converged equilibrium state). We will 
write the latter as Cp,. Hence with C,, held fixed, we can compute the trial elastic 
configuration (at B) from: 

b, = F,,FL = FC,’ F1 (19.102) 

and obtain the principal directions niI, and principal stretches Ai, (which will be 
identical to those obtained in (19.74)). 

Hence we can write: 

b, = z>&ni ,  @ niH (19.103) 

The ’trial elastic’ Kirchhoff stresses at B will be coaxial with b, so that we can write: 

tH= Cr,HniH0niH= C5~, ,n i I ,0niB+ K log, J,I (19.104) 

where 

T ~ ,= si, + Klog, J,, = 5iH+ K C  log,( ;.iB) (19.105) 

with the symbol ’ again denoting the deviatoric part. The principal deviatoric stresses 
are given by 
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A check for yielding is now made by inserting (19.104)-(19.106) into the yield 
function to obtain: 

.fH = reR-z, = f i ( t t : T t l l  - r ,  (19.107) 

If,f, < 0, the response is elastic and we simply set the final stresses tc= tH. If-f, 20, we 
require a plastic return and adopt a similar 'operator split' to before so that in the 
movement from B to C the total displacements are fixed and only plastic straining 
occurs. 

Using standard transformations between the intermediate and final configuration. 
we find that the previous coaxiality whereby the eigenvectors NiH= Ni, were shared by 

O,,O,, FEF, and FrF, 

now require that the eigenvectors niH= nic are shared by 

tB,tC,  F,Fi,  F,F: 

and hence Algorithm 19.2 can easily be adapted to give: 
1. Compute: 

F, = FFie' = FF i i .  (19.108a) 

2. Apply a polar decomposition on b, = F,Fi to obtain I . , ,  and niHand 

R, = Q(nR )Diag(& 1Q (n, )TF, (19.108b) 

3. Obtain elastic trial stresses in the principal directions (at B) via: 

riH= riH+ timR T;, + Klog, J ,  (19.108~)= 

zIH= 2p logeL;, = 2p1ogeiiR log, J, ,  (19.108d)-

4. Check for yielding, if no yielding apply set tC = t, and finish. 
5. Apply a standard small strain update to obtain: 

zic= rxr;, + rim, (19.108e) 

where the IX parameter is obtained using the procedure to the small-strain update (with 
linear hardening from (19.98) and (19.100) although with rcBinstead of OCR). 
6. Set nic = niRand hence obtain: 

7. Update the plastic deformation gradient via: 

where the principal directions Ni, can be obtained (see (4.147) from: 

Algorithm 19.3 An update on the current configuration. 

I t  is worth emphasising that, having obtained the principal 'trial stresses' at point B in 
step 3 above, if these are converted back to full stresses using the principal directions 
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niB,we can then apply an entirely conventional small-strain plasticity algorithm on the 
resulting trial stresses r B  to obtain the 'returned stresses', rc before rejoining the 
previous algorithm at step 7. 

19.7.1 The flow rule 

The previous return algorithm was obtained directly from an equivalent return on the 
'intermediate configuration' given in Section 19.6. As previously indicated, Simo [S4] 
developed his return algorithm by working directly in the current configuration. To 
that end, he derived a flow rule of the form: 

F f 'ip= - L,( b,)be- = rja = 4 + (19.109) 
P t 

where a is the flow direction and was used by Simo to obtain the previous 'return 
algorithm'. Here, we merely show that (19.109) is equivalent to the expression previous- 
ly given in Section 19.2 (see equation (19.16)). To this end, we note that the expression 
L,(.) is the Lie derivative (see footnote in Section 10.4 for the Lie derivative of the 
Kirchhoff stress and refs CM.10) for further elaboration) so that with be= F,F:. via the 
decomposition F = F,F,: 

d d
L,(b , )=F-(F' - 'b ,F-T)FT=F-(C- l )FT= - I  p eb - b  e p  (19.1 10) 

dt dt 

with I, from (19.10). Consequently, from (19.109) and (19.1 10): 

i p = F c ( L, + LTe)F;' 
(19.11 1 )  

where L, was given in (19.1 1 )  and is related to the intermediate configuration. 

19.8 THE CONSISTENT TANGENT 

The following is closely related to the work of Simo [S4], although the present 
derivations are different and the solution is expressed in a different form. We will first 
restate the equations that make up the return and must be differentiated to obtain the 
consistent tangent. From (19.108~) to (19.108f) they are 

tC = tk + rmC= r t ; ,+ zmB (19.112) 

where 

(19.113) 

Differentiation of (19. I 12) gives: 

i, = zi; + z,, + 15t; (19.114) 

We intend to adopt a Eulerian finite element formulation as discussed in Sections 12.2 
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and 12.3and hence require the tangent modular tensor relating to the Truesdell rate of 
Kirchhoff stress. From (19.114),we have: 

i:"= [D"TK(Xp,K)+2pP(re,)f;jOt;j]:&=[D"TK(~p,K)+D2'TK]:&(19.115) 

where the term TK means 'Truesdell rate' and the constant P is given by (see also (6.101 ) )  

(19.116) 

The term DltTK(ap,K) in (19.115) stems from the first two terms in (19.1 14) and is 
derived from the hyperelastic relationships of Section ( 1  3.10.1)although, because of the 
'U term in (19.1 14), the shear modulus p is replaced by UP. In relation to the principal 
directions niB,from ( 1  3.189b) we have: 

D,?i;YKE= ( K-5%~)+ 2c(p6ij- 2ricbij (19.117) 

while via (13.148b): 

(19.118) 

In (19.117) and (19.118), the indicial summation convention does not apply. The 
tensor components Dl!j:JKEmust be transformed back from the principal directions niB 
using: 

D:zK = QiaQ j b  QkrQlP;icTdKE (19.1 19) 

where the terms such as Qiaare components of Q = [n,,, n2,, n,,]. 
The term DZtTKin (19.115) stems from the last term in (19.1 14) and is computed with 

the important proviso that the principal directions remain fixed during the 'plastic 
return'. It is obtained in an almost identical manner to that given previously for the 
small-strain case in Section 6.7.1. In particular, differentiation of cx from (19.113) 
combined with the consistency condition: 

fc = &re,+ c(feB+ Akq =0 ( 1 9.1 20) 

leads to: 

& = ip(7eB)reBfeB= P(r,B)f; :j L  = ~,uP(T,B)TH (19.121):& 

with /?(re,) being given by (19.116). Combining (19.121) with (19.114)leads to the 
expression for D21TKin (19.115).It is worth noting that this term can be re-expressed 
as 

19.8.1 The limitingcase 

We would expect that, in the limit, as the step size tends to zero, we would obtain the 
same solution as that obtain in Section 19.3 using the Jaumann rate. In this situation, 
the parameters ct (from 19.113) and p (from (19.116)) tend to unity and -3/(2r:) 
respectively. (For simplicity, we are here assuming perfect plasticity). Hence from 
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(19.115), (19.1 17) and (19.1 18), we obtain: 

(19.124) 

where the last term in (19.123) stems from D21TKtensor. Following the approach of 
Section 13.10.1 (particularly equations (1 3.190b)-( 13.190e)), we can transform the 
above to relate to the Jaumann rate so that: 

(19.125a) 

(19.125b) 

In deriving (19.125b), the assumption was made (see (13.190e)) that the elastic stretch 
ratios are close to unit. Rewriting the tensor components in ( 19.125)in relation to the 
‘base co-ordinate system results in the relationship: 

or 

(19.126b) 

with I as the unit fourth-order tensor and 1 as the unit second order tensor (see also 
(4.31)). Equation (19.126b) takes precisely the form that i t  had in the small-strain case 
(see (6.44)). This conclusion is the same as that proved at the end of Section 19.3. 

19.9 INTRODUCING LARGE ELASTO-PLASTIC STRAINS 
INTO THE FINITE ELEMENT FORMULATION 

The methods of Sections 19.7 and 19.8 can be directly applied using a Eulerian finite 
element formulation (Sections 12.2 and 12.3). In  order to handle the incompressibility 
of metal plasticity, one may either use high-order elements (which are not very 
susceptible to incompressible locking [SS]) or introduce a mixed (or hybrid) formula- 
tion with pressure as a separate variable. Such techniques were discussed for hyperelas- 
ticity in Sections 13.5 and 13.7. The extension to large-strain elasto-plasticity is 
relatively straightforward. I n  this context, we will now give the key equations for 
a two-dimensional plane-strain formulation assuming a constant pressure over the 
element. In these circumstances, the ‘equilibrium equations’ take the form: 

qi = sB( x)1tCd Vo ( 19.127) 

(19.128) 

where the latter equation provides a weighted average satisfaction (over the element) o f  
the relationship between the pressure ( y ) and the determinant of F,, which is J ,  (with 
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the plastic deformation gradient, F,, being frozen at the end of previous increment-see 
(19.108a)). In  contrast to the work in Section 19.7 and 13.10.1, we are now using 
p = - K( J - 1 )  rather than p = -Klog, J / J .  

The current Kirchhoff stresses, zc, in (19.127) would be computed (see (19.108)and 
(13.186a)) from: 

tC= 2prClog,il,ni@ni - ~ J , I  = xrk -pJ,I  (19.129) 
where the plastic return scalar, a, would be computed in the standard manner from the 
deviatoric stresses, 7; .  

For the Newton-Raphson iterations, we require the variations of (19.127) and 
( 19.128). The former gives: 

dq, = B(x)TD,B(x)dV,,dp + 6B(x)TtdVo- J , B ( x ) ~  0 d Vobp (19.130)s s 1 ill 

where the tangent modularmatrixD, isasgivenin(19.115)-( 19.1 19),although the bulk 
modulus K in (19.1 17) would now be replaced by - p J , .  

The second term on the right-hand side of (19.130)gives the conventional initial 
stress contribution (associated with the Truesdell rate-- see ( 12.14)). The variation of 
(19.128) gives: 

(19.131) 

where we have used (10.60) to obtain 65. 
Instead of using a presseure/displacement formulation, one may adopt one of the 

methods with extra internal variables discussed in Sections 18.1I - 18.13. The finite 
element algorithm for hyperelasticity (Section 18.13) is easily extended to introduce 
large-strain elasto-plasticity. 

For plane-stress problems, there are no difficulties with the incompressibility issue. 
Consequently we may use a pure displacement-based approach coupled, for example, 
with the F,F, ‘Eulerian formulation’of Section 19.7. The trial stresses would be obtained 
from tB = C:log,V,, (see below (13.186b)) where C is the standard 3 x 3 plane-stress linear 
elastic constitutive matrix (see (4.17). A conventional small-strain backward-Euler return 
algorithm (as in Sections 6.8 or 14.10.1) would then return t, to t,. 

Regarding the tangent modulus matrix, it is important to note the observations 
below (19.36)in relation to the consistency condition. I t  follows that, as input to the 
small-strain plasticity algorithm, in order to create the consistent tangent modular 
matrix, we should provide C relating to the Jaumann rather than the Truesdell rate. 
Hence, to enter this routine, the top 2 x 2 components of C would be standard while the 
shear term would be given by (13.190~) (with all terms computed at B).Assuming the 
finite element equations were based on the Truesdell rate so that the tangent stiffness 
matrix took the form of( 12.14), one would now need to modify C, by subtracting f from 
( 12.46). The latter would be computed using 2,. 

Returning the conditions of plane strain, because of difficulties that were observed 
with the full enhanced strain formulation (CC4.181 and discussion in Section 18.1 1.2), 
the author and co-workers have extended the co-rotational technique to cover large 
elasto-plastic strains [C4. 181. The equivalent formulation for large elastic strains 
(hyperelasticity) has been discussed in Section 18.14. Unfortunately. the extension to 
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plasticity is not straightforward. However, in comparison with the enhanced F formu-
lation using the full set of enhanced strains (four or five for plane strain), the method 
appears to be less prone to hour-glassing CC4.143 and consequently we will now briefly 
outline the adopted procedure. 

By combining the approaches of Section 18.2,18.3 and 19.6, the starting-point can be 
taken as the computation of the rotation matrix R, at the centroid allowing for the old 
(stored) plastic deformation gradient, F,, at the centroid. To this end (see (18.23) and 
(19.73)), we compute: 

FB = FF,' = R,U, = 
cosp -sin/) 

(19.132)
sinp cosp 

where we have expanded R, for the two-dimensional case which will now be studied. 
The matrix F, would be computed from the global displacements p, by first computing: 

e = t . ( ~ ~ )= GP (19.133) 
so as to obtain F = I + D ,. We are here adopting the notation of Sections 18.1 1- 18.14 
whereby the subscript 1 related to the primary (corner node) variables and the subscript 
2 (to enter later) to the secondary variables. At the centroid, only the former are involved. 

As in Section 18.3, the columns of R, provide the base vectors for the local frame and 
hence, knowing Rm,we can compute the local displacements P , ~(details in Sections 18.2 
and 18.3). Before turning to the computations at the local element level, we will describe 
the procedure for computing the transformation matrix, T, which is used to transform 
the local internal forces to global internal forces (18.15). We will concentrate on the 
two-dimensional formulation and in this case (see Section 18.2), the key element is the 
computation of the spin vector, v which relates the change of angle of the local axes ( S g )  
to the changes in (primary) nodal variables, 6pl (see (18.12)). 

From the work of Sections 18.2 and 18.3, the angle p defining the local axes can be 
obtained from the condition: 

Um(192) = u,(2,1) (19.134) 
which, from (19.132), leads to the condition: 

Qlm = as + bc = 0 (19.135) 
where c' = =sand ,!3cos sin p. and 

U =  -FB(l,l)-FB(2,2); b=FB(2,1)-FB(1,2) (19.136) 

Toproceedfurther(seealso(l8.1l)),wemust set thevariationof(19.135) tozeroso that: 

Using conventional procedures (see (12.3)) we can compute: 

6 = G,P, (19.138) 

However, for (19.137). we require GB where, via (19.132): 

ci, = P(F,)= ~ ( F F ; ~ ~ )= GBpl (19.139) 

and u(A)implies the vector form of A. Knowing Fie' and G , ,it is a simple matter to find 
GB (see (18.171)-(18.173)) for similar manipulations). The combination of(19.137) and 
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( 19.139) leads to the relationship: 

1 
(ac - bs)

s/3=---- dTGBPl= V T P l  (19.140) 

which gives the spin vector, v required for the generation of the transformation matrix, 
T, using the method of Section 18.2. The initial stress matrix stemming from 6T then 
follows without any additional complications. 

We can now return to the local element computations for which, knowing pI1 and P , ~ ,  
we can, at a typical Gauss point, compute the ‘stretch’, allowing for the old plastic 
deformation gradient, via: 

U, = [I + Dl(P,,) + D2(P,2)lF;01 (19.141) 

where F,, now relates to the particular Gauss point. For a uniform deformation 
gradient or with an element with a single Gauss point (and no incompatible modes, p12), 
this U, would coincide with the U,,, from (19.132). However, this coincidence will gene-
rally not apply and, indeed U, will generally not be symmetric. Strictly therefore, we 
should not use the symbol U and indeed, without plasticity, using the earlier notation 
U, would be I + E ,  where E ,  is the local engineering strain (see Section 18.3). However, 
we will continue to use U and indeed will use B for the Biot stresses (which were written 
as cr, in Section 18.12) and 0 for the log stresses even although these definitions are not 
longer strictly valid (because we have applied the polar decomposition at the centroid 
rather than at the Gauss point). If the Gauss points were used, we would obtain a Biot 
stress formulation entirely equivalent to the earlier ‘Eulerian formulation’. 

We now obtain the principal directions and stretches from the symmetric part of U, 
so that: 

(19.142) 

(Note in Section 18.14, we called these directionsa, (see (18.177))to draw the distinction 
between the co-rotational formulation and a pure Biot stress-based formulation.) For 
the yield criterion, we must use the 0 stresses and not the Biot stresses. The former are 
now obtained from (19.77) and will be designated 0,.After checking for yielding, we 
can apply a ‘small strain return’ via step 5 of algorithm 19.2 which involves the scalar 
c1 of (19.98) and (19.100) and returns the stresses 0, to 0,.At which point, with the aid 
of (10.80), we can convert 0, to ‘Biot-like’ stresses B, via: 

BC = oC[sym[UBl 1- ( 1 9.1 43) 

and the local internal force vectors can be computed from: 

qill = sBIllBcdI/, (19.144a) 

qi12 = J B L ~ B C ~ V ~  (19.144b) 

(In moving from (19.143) to (19.144) we have changed Bc from a matrix or tensor to 
a vector.) The matrices BBll and BB,, in (19.144) are not the ‘conventional B matrices’ 
but have to account for the old plastic F’s. To this end (although now at the Gauss 
points), we can use a very similar procedure to that adopted in (19.138) to (19.139) so 
that (with j = 1,2), using conventional procedures (see (12.3)) we can compute Glj 
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where: 
= ~ I j P l j41, (19.145 

Knowing C,, and Fpoli t  is a simple matter to compute CHIJwhere: 

‘ , , I ,  = cIi),iFiol) = G B I J P l j  (19.146 

and hence the required G,,, which is easily modified to give the equivalent BB!J. 
Because of the non-symmetry, the updating of F, is not straightforward and instead 

of using ( 19.101 g), the author and co-workers [C4.18) have adopted: 

F,, = AUpFpo= [exp( -AqA,)sym( Ui3)+ skew(U,)] U,F,, (19.147) 

where exp(ArlA,) was defined in (19.lOli). For homogeneous deformations, (19.147) 
coincides with ( 19.101g). 

I n  relation to the principal directions N,,, the tangent modular terms are related to 
those for a hyperelastic Biot stress formulation and involve: 

(19.148b) 

If  x =  I (and point C is equal to point B), the above merely defines the conventional 
hyperelastic relationships stemming from ( 18.179) in conjunction with Bi = i c p  ?j.iwith 
v,from ( 13.182).In ( 19.148a). the introduction of the x term that changes / i  to x p  follows 
the lines detailed in Section 19.8 for the ‘Kirchhoff stress formulation’. The components 
in (19.148) must be transformed back to the base(loca1) directions before the addition of 
2p/$Occ)Bc@Bc which is the counterpart of (19.122). 

There is one additional complexity (and drawback). Via (19.147). we have updated F, 
at the Gauss points. However, to commence the next increment, we require F, at the 
centroid (see (19.132)). Consequently, at the end of an increment, we apply a least- 
squares fit to the AU,,’s at the Gauss points (see (19.147)), with principal directions 
being dictated by those of U, given by (19.132). Calling the resulting tensor AU,,, %re 
then updated the centroidal plastic deformation gradient via: 

(19.1491 

I t  should be noted that for uniform deformations, this co-rotational formulation gives 
identical results to those obtained using the method Section 19.7 CC4.181. Indeed, when 
in addition the elastic strains are small, both methods give solutions [C14.18] that 
coincide with an exactly integrated Jaumann rate formulation due to Moss [M3] as the 
step size tends to zero. These observations will be amplified in the following section. 

19.10 A SIMPLE EXAMPLE 

In Sections 19.3 and 19.8.1, we have demonstrated the F,F, formulations should 
coincide with the formulation based on the Jaumann rate if the elastic strains are small. 
We will now demonstrate this numerically in relation to the simple shearing example 
previously considered for hyperelasticity in Section 13.10.3. The example is reproduced 
here in Figure 19.4. Closed-form solutions to this problem have been derived by Moss 
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Figure 19.4 Simple shear. 
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Figure 19.5 Normalised stress (o,Jrj as a function of shear strain (e/2). 

[M3]. In obtaining the solutions in Figures 19.5 and 19.6, the shear modulus, p, has 
been set to unity and the yield stress, o0,has been set to 0.1 and it has been assumed that 
there is no hardening. Because the volume is exactly preserved, the solution should be 
independent of the bulk modulus. K .  None the less for the numerical. F,F,-based, 
solutions, K was set to 2 '3. 

In presenting the graphs in Figures 19.5 and 19.6, the non-dimensionalising factor, i'.-
is set to 1)  3. In these figures, the stresses S , , and S, ,  are the Cauchy stresses which. 
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Figure 19.6 Normalised stress (a,Jr) as a function of shear strain (e/2). 

for the current problem, are equal to the Kirchhoff stresses. The solutions labelled T, 
J and GN are those obtained by Moss using Truesdell, Jaumann and Green-Nagdhi 
rates respectively. 

While these 'rate-based' solutions were exactly integrated, the F,F,-based solutions 
were not and the solutions labelled C, and C, were obtained with steps of Ae = 0.025 
and 0.01 respectively [C4.18]. The latter solutions could be obtained using either the 
current configuration formulation of Section 19.7 or the CO-rotational formulation 
described in Section 19.9. Because the deformation is homogeneous, both formulations 
give identical results. It is clear from Figures 19.5 and 19.6 that as Ae+O, the 
F,F,-based solutions are tending towards the Jaumann-rate-based solutions. These 
observations coincide with those proved theoretically in Sections 19.3 and 19.8.1. 

19.11 SPECIAL NOTATION 
A' = hardening modulus 
b = FFT(left Cauchy-Green tensor) 
B = approximate Biot stresses (Section 19.9) 
C = FTF(right Cauchy-Green tensor) 
D = fourth-order constitutive tensor or displacement derivatives 
f= yield function 
F = deformation gradient 

Fe= elastic deformation gradient 
F, = plastic deformation gradient 
G = matrix connecting displacement or velocity derivatives to nodal displace- 

ment changes or velocities 
I = identity matrix 
J = det(F) 
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k = bulk modulus 
I = velocity gradient on the current configuration 

L = velocity gradient on the intermediate configuration 
NI-N,  = unit  principal vectors in initial or intermediate configuration 

n1-n3 = unit  principal vectors in current (Eulerian or spatial) configuration 
0 = stress work conjugate to log,U 
U = right stretch tensor 
p = nodal displacements; changes, dp or p 

Q(N)= orthogonal matrix containing the triad of N’s 
Q(n)= orthogonal matrix containing the triad of n’s 
R = rotation matrix 
S = second Piola-Kirchhoff stresses 
Y = scalar for ‘plastic return’ 
i: = Eulerian strain rate (or 6s) 
= strain energy function 

Q = spin 
t = Kirchhoff stresses 

I I ? 

n - lL3= principal stretches 
1.1 = shear modulus 

AI?= plastic strain rate multiplier, change is 

Subscript or superscripts 
’ = deviatoric 

B = at ‘trial point’ 
C = at ‘return point’ 
e = elastic (or equivalent) 
f = yield function 
J = Jaumann rate 

m = mean 
n = new 
o = old 
p = plastic 
t = tangential 

tJK = tangential for Jaumann rate of Kirchhoff stress 
tTK = tangential for Truesdell rate of Kirchhoff stress 
tK2 = tangential for second Piola-Kirchhoff stress 

1= local 
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20 Stability theory 

20.1 INTRODUCTION 

The work in this chapter will be strictly related to elastic systems. None the less. some of 
the theory can be useful in providing a framework for analysis procedures that include 
material non-linearity. The developments are closely related to those given by Koiter 
[Kl,K2], Thompson and Hunt [TI], Sewell [Sl,S2], Riks [ R l ]  and, in particular, 
Allman [A I ,  A2]. A review has been given by Komarakul-Na-Nakorn and Arora [K3]. 

20.2 GENERAL THEORY WITHOUT ‘HIGHER-ORDER 
TERMS’ 

As a starting-point, we will restate the energy functional of Section 9.1 as 

6,(P*4 = cp(P) - i.pTq (20.1) 

where 6, is the total potential energy, cp is the strain energy which is a function of 
the displacements, p. q is a fixed load vector (previously qef) and i.a scalar load 
multiplier. 

A small change in potential energy, 86, is found by applying a Taylor series to (20.1 
(with j. fixed) to give: 

(20.2 

or, using the relationships established in Section 9.1 for ?6,/?p and ?26,/C:p2. 

(s+ = gvp+ ;ijp~zc,iip+ o(ap3) (20.3) 

For the rest of this section, we will omit the higher-order terms in (20.2)-(20.3)and in 
similar expansions. 

For equilibrium, the energy change in (20.3) should be stationary irrespective of 6p 
and hence, the equilibrium equations are 

(20.4) 

Also, for stable equilibrium, we would like the small change of energy to be positive 
for any small perturbation, hp, about the equilibrium point. Hence, with equilibrium 
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from (20.4),in (20.3),we require: 

cSp'K,Op> 0 for all 6p (20.5a) 

Hence K ,  should be positive definite (with only positive eigenvalues). For unstable 
equilibrium the change in energy will be negative, for a small perturbation. hp, in 
a particular direction and consequently such a perturbation will move the system to 
another equilibrium state with a lower energy. Hence: 

6p1K,hp< 0 for some cjp (20.5b) 

In these circumstances, K ,  will not be positive definite and will have at least one 
negative eigenvalue. A range o f  stable and unstable equilibrium states are illustrated in 
Figures 20.1 and 20.2. 

Apart from stable and unstable states, we can also haLre a neutral state for kvhich: 

6p'Kt6p = 0 for some Op ( 20.5c ) 

and K ,  will have a zero eigenvalue. ( In  these circumstances, a full investigation o f  the 
stability will require higher-order terms- - see Section 20.3.)Condition ( 2 O . k )  coincides 
with the condition: 

det (K,)  = 0 (20.5d) 

Given a solution at load level .A, involving pA and i,,,a Taplor expansion of the 

Load q 
or 

load. 
0 Limit points parameter 

h 

/ 
\ Deflection,p 
\ 
1 
\ 
\ 

\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 

- _ - _  

Figure 20.1 Limit points. 
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Figure 20.2 (contd.) 
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t 

Stable 

Unstable 

Figure 20.2 Various bifurcations. (a) Stable symmetric bifurcation; (b) unstable symmetric 
bifurcation; (c) unsymmetric bifurcation. 

equilibrium equations (20.4)(with iLvarying) gives: 

(20.6) 

where the symbol 1,
 means 'evaluated at A'. If point A is at equilibrium, 

g(p*I - )IA = (20.7) 

If point B is also to be at equilibrium, 

g(p94 l B  = 0 (20.8) 

so that, neglecting the higher-order terms in (20.6), 

(20.9) 

from which, provided, 
det ( K , )  # 0 (20.10) 

it follows that: 
Ap = ARK,- '9 (20.11 )  

which is the standard tangential solution. The latter is only exact if the solution path is 
linear and there are no higher-order terms in (20.6). 

If, (20.5d) applies. we cannot find Ap from (20.11 )  and we have a 'singular point' which 
may be either a limit point (Figure 20.1) or a bifurcation point (Figure 20.2). The former 
figure coincides with the load/deflection relationship for the simple bar considered in 
Section 1.2 (see Figures 1.1-1.2). To illustrate bifurcations, Figures 20.2a and 20.2b 
show possible responses for a system with two degrees of freedom, p ,  and p z .  These 
responses are closely related to the responses of Figure 3.15 that follow from the perfect 
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bar spring systems of Figure 3.1 2 (with z = 0).(These systems were discussed in Section 
3.10.4.) However. for more generality, the non-linear fundamental paths have been 
illustrated in Figures 20.2a and 20.2b so that the paths are functions of p1 and p 2  with 
the lowest eigenmode, z ,  (Figure20.2a) being another function of p ,  and p,. The 
asymmetric bifurcation of Figure 2 0 . 2 ~  will be discussed further in Section 20.4.4. 

In  order to proceed with the investigation, it is useful to introduce the eigenvalues, 0,. 
and eigenvectors, z,, of K, for which: 

Ktzi= OIzi (20.12) 

where we will assume that the orthogonal z, have been normalised so that: 

z’zj = a,,( = I ,  if i = j ;  = 0, if i # j )  (20.13) 

We will also assume an ordering of the 0,’s such that: 

0, > o n - ,> . * .  > 0,  (20.14) 

In the following, we will assume that the solution procedure is following the path from 
a stable state. In  these circumstances, the lowest eigenvalue. (I,, will be zero at the 
singular point. Consequently. at the singular point, from (20.12). 

K,z, = O  (20.15 )  

This equation can be usefully applied with solution procedures that aim at the direct 
computation of ‘singular points’ (see Section 21.6). In the meantime, it is useful to 
multiply (20.9)by z , .  This leads to 

ApTK,zl -Aiqrz ,  = 0 (20.16) 

On account of (20.15).  at the singular point, (20.16)leads to 

A i q ’ z ,  = O  (20.I 7 )  

At a limit point (Figure 20.I ), (20.17) is satisfied via: 

AR = 0; qTzl f 0 (20.18) 

while, at a bifurcation point (Figures 20.2 and 20.3), 

47’2, = 0 (20.19) 

and (without considering higher-order terms), A;. is indeterminate. Equation (20.19)is 
illustrated for a very simple example, in Figure 20.3. 

To proceed further, i t  is useful to express the displacement Ap in terms of the 
eigenvectors of K, via: 

Ap = A , z ,  + A2z2+ A,z, (20.20) 

We now wish to find a typical coefficient in (20.20)such as A ,  which, using (20.13). can 
be expressed as zfAp. By multiplying (20.9)by z, and substituting from (20.20)for Ap, 
we obtain: 

(20.21) 

where we have made use of (20.12)and (20.13). 
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Figure20.3 Illustration of equation (20.19),qTzl= 0. 

20.2.1 Limit point 

From (20.1 8). at a limit point, A i  = 0, and hence, from (20.21). with O2 # 0, 

A2(orzTAp) =0 (20.22) 

Similar developments can be used to show that A ,  = A, = = A, = 0. Hence, from 
(20.20). at a limit point, 

Ap = A , z ,  (20.23) 

Also, if  we introduce the incremental arc length, As (Section 9.3.2), we have: 

ApTAp = As2 = A :  (20.24) 

so that A ,  can be equated to As. 

20.2.2 Bifurcation point 

At a bifurcation point, from (20.21), with A;. # 0, 

(20.25) 

Similar relationships can be derived for A ,  - A, .  Hence, (20.20) gives: 

(20.26) 

Equation (20.26) applies to the limit point as well as the bifurcation point, although in 
the former case, from (20.18), A;. = 0 and hence (20.26) coincides with (20.23). For 
a symmetric bifurcation (Figures 20.2a and 20.2b), (Ap = A , z ,  A;. = 0) defines the 
bifurcated path while, for the fundamental path, A ,  is related to A;. in a manner to be 
discussed in the Section 20.3. Non-symmetric bifurcations will also be considered in 
that sect ion. 

An alternative formula for the y vector in (20.26) does not involve the eigenvectors. 
z, - z, and is given by 

y = Kt-‘q = (K,  + Bz,z:)- ‘9 (20.27) 

where [j is a positive scalar and the ‘rank-one’ modification [Iz,z: ensures that K T  has 
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a non-zero determinant and can be inverted. The equivalence of the two expressions for 
y (in (20.26) and (20.27))can be established using the relationship: 

(20.28) 

(20.2%) 

The use of (20.29b) with (20.19) and (20.27) gives the same vector y as in (20.26). 

20.3 THE INTRODUCTION OF HIGHER-ORDER TERMS 

In  a finite element context, i t  is expensive to generate higher-order terms (involving 
differentials of the tangent stiffness matrix) and some progress with advanced path 
following can be made without such terms (Chapter 21). However, for a further 
development of the general theory, such terms are essential and they can be directly 
used in some finite element formulations (Sections 20.5 and 2 1.3). 

In  order to introduce the higher-order terms, we will write a fuller version of the 
Taylor expansion in (20.6) as 

(20.30) 

(In order to clarify the notation and concepts, the reader might find it useful to turn to 
Section 20.5 in which, for truss elements, some of the higher derivatives are explicitly 
computed.) To make use of (20.30),we must be more rigorous about defining Ap and 
A;.. To this end. we will expand the former using a Taylor expansion in terms of 
a path-length (see Section 9.3) parameter, As. Consequently, 

PAp = p AS + -AS'
2 

(20.31 ) 

and for the latter: 
1. 

A L = ~ A S + - A S ~
2 

(20.32) 

where the vector, p, contains the first order changes in p (with respect to s) and the 
vector p contains the second-order changes. Substituting from (20.31) and (20.32)into 
(20.30)gives: 
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Setting the coefficient of As in (20.33) to zero (with a view to equilibrium) leads to 

(20.34) 

which is of a very similar form to (20.9).A similar development to that used in the 
previous section (leading to (20.26))now leads to 

p = A,z, +Ay (20.35) 

withyfrom(20.26). Also,in placeof(20.17), wenow havejq‘z, = Oand hencein placeof 
(20.18)and (20.19). we obtain: 

limit point: i = 0; B, = - q‘z, # o (20.36a) 

bifurcation point; B, = - q’z,  = 0 (20.36b) 

From (20.33), for B to be an equilibrium point we also require the second-order terms 
(coefficients of A?) to be zero. For the special case of proportional loading which is 
governed by (20.1 ), we have: 

(20.37) 

and are left with 

(20.38) 

Substitution from (20.35)into (20.38) and multiplication by the lowest eigenvector ( z , )  
gives: 

(A,z,Cj) + i y ( j ) )  + 0,z:p - q’rz*2=0 (20.39) 

Notethat we havewedpias theithcomponent ofp, but,z,(i)as theithcomponent ofz,. 
The latter notation is adopted because the subscript 1 has already been applied to z in 
order to indicate the first (lowest) eigenmode). 

At  the singular point, 0, =0, and (20.39) provides the following equation: 

B , A ~ + 2 B , A l ~ +B , i 2 +  B,>:=O (20.40) 
where 

(20.41) 

(20.42) 

(20.43) 

B, = - qTZl (20.44) 

where B, has already been introduced in (20.36b). 
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By multiplying equation (20.40) by A?. we obtain: 

BIASZ+ 2B,A;.AS + B3A;? + B,A% = 0 ( 20.45) 

where A.? is given by 

AS = A ,AS (20.46) 

and is the coeficien t of z , in the expansion for Ap. From (20.3 1 ) and (20.35).the latter is 

Close to the singular point. the A.? term in (20.47a) [nay be neglected and we then have: 

Ap = ASZ, + A i y  (20.47b) 

In some circumstances, (i.e. at a limit point), A i  = 0 and we have: 

Ap = ASZ, (20.47~) 

We can now classify various types of singular point. However, we will first find an 
expression for the change of energy (20.2)which will allow us to investigate the stability 
of the singular points. As indicated in Section 20.2, we need to investigate the change of 
energy with i.fixed. In these circumstances, close to the singular point. (20.47~) applies. 
Substitution into (20.3) (with higher-order terms), followed by the use of (20.4) and 
(20.15)then leads to [Al,A2]: 

(20.48) 

where B ,  was given in (20.41) and B ,  is given by [Al,A2] 

20.4 CLASSIFICATION OF SINGULAR POINTS 

We can now classify the various type of singular points and derive some properties both 
in relation to their stability and to the tangential path directions. 

20.4.1 Limit points 

At a limit point, A i  = 0 (see (20.18)).and we use (20.47~).Hence. (20.45)reduces to 

B ,A.? + B 4 A 2 i  =0 ( 20.50a 1 

From (20.50a). we have 

(20.50b) 

from which, with (20.47c), 

Ap = ASZ, = & XA’;.z, (20.5I ) 



347 CLASSIFICATIONOF SINGULAR POINTS 

which gives two solutions for As (of equal magnitude and opposite sign) in terms of A';. 
which are symmetrically placed about the limit point (Figure 20.1).Also, with B ,  # 0, 
from (20.48): 

B
dq5 = 2AS3 + O(A.?)4 (20.52)

6 

If B ,  is positive. the energy change is positive for positive A,? and negative for negative 
AS. Alternatively, if B ,  is negative, the energy change is negative for positive A.: and 
positive for negative A.?. In  either case, there is a direction in which negative energy 
results (Figure 20.1) and hence a limit point is unstable. 

20.4.2 Bifurcation points 

At a bifurcation point, from (20.36b) B, = 0 so that (20.45) gives: 

B,A.?' + 2B2A.7Ai + B3A>.' = 0 (20.53) 
while from (20.47b): 

Ap = A.%, + A i y  

20.4.3 Symmetric bifurcations 

At a symmetric bifurcation point, B, = 0 and hence (20.53)gives: 

(2B,A.? + B,A;.)Ai = 0 (20.54) 
with solutions: 

A i = O  (20.55a) 
or 

(20.55b) 

Equation (20.55a) relates to the bifurcated path and in conjunction with (20.47b). we 
then have: 

Aph = ASZ, (20.56) 

where A,?may be positive or negative (Figures 20.2a or b).The fundamental path ciin be 
obtained by substituting from (20.55b) into (20.47b) and leads to 

Ap, = A i ( X z ,  + y )  (20.57) 

with X from (20.55b). In (20.57)AA may be positive or negative. 
Because B ,  =0, from (20.48), the stability of the symmetric bifurcation point 

(Figure 20.2a and b) is governed by the coefficient B ,  (see (20.49)). 

20.4.4 Asymmetric bifurcations 

At an asymmetric bifurcation (Figure 20.2c), B, # 0 and the solution of (20.53)is 

1
A.? =-( - B, (Bf- B I B , ) '  ')A;,; A.? = X i A i  (20.58)

Bl 
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where there are two possible values for X i . By considering the limit of Xias B ,  tends to 
zero and comparing the result with (20.55b), one can show that X I ,which corresponds 
to the use of the + sign from the in (20.58)relates to the fundamental path for which, 
via (20.47b). we have: 

(20.59) 

while for the bifurcated path we adopt the - sign from the _+ in (20.58)which gives X ,  
and, in place of (20.59) we have: 

(20.60) 

Both the fundamental (20.59) and bifurcated (20.60) solutions have two equal and 
opposite directions because, considering the first forms in (20.59)and (20.60),A;. can be 
positive or negative. 

If we know the fundamental path in the vicinity of the bifurcation point so that u ~ e  
can obtain Apf for a given AL, from (20.59)and (20.60).we can obtain: 

Apb = Ap, + Ai(X1 -X ~ ) Z ,  (20.61) 

F

1 

U 


Negative 

Figure20.4 System and response for asymmetric bifurcation. (a) System; (b) response; (c) 
alternative loading. 
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The coefficient X I  need not be obtained from (20.58), but rather could be obtained 
by multiplying (20.59) by z1 to obtain: 

(20.62) 

so that the vector y can be obtained as 

AXY = APf - (AP;zl)z/ (20.63) 

However, there does not seem to be any way to obtaining X I  without using second- 
order information. Without such information, there would seem to be no way of getting 
an estimate for the ratio between Apf and zI in Apbin order to obtain a better predictor 
for the asymmetric bifurcation than (20.56) which applies for the symmetric bifurcation. 

with BI  # 0, the energy change is similar to that of a limit point (see (20.52)) and, 
following a similar argument to that given at the end of Section 20.4, it can be shown 
that an asymmetric bifurcation point is inevitably unstable (see Figure 20.2~) .  

Figure 20.4 shows a two-bar truss system that is closely related to the simple 
bar-spring systems of Chapters 1 and 3 (see also Figure 20.3). However. the vertical 
member 2 (Figure 20.4) is now rigid while the sideways, ‘spring member’ is inclined 
Croll and Walker [Cl] give a detailed analysis of this simple system which, when 
perfect, responds with an asymmetric bifurcation (Figure 20.4b). I t  should be noted 
that this bifurcation vanishes if the vertical member is made flexible (see Figure 
20.4b). However, an asymmetric bifurcation from a non-linear fundamental path can 
be induced by adding a sideways load as illustrated in Figure 20 .4~.  

20.5 COMPUTATION OF HIGHER-ORDER 
DERIVATIVES FOR TRUSS ELEMENTS 

Explicit computations for truss elements have been given by Wriggers c’t al. [WI]. 
Procedures using ‘finite differences’ have been described by Riks [R 13, Eriksson [E 1J 
and Wriggers and Simo [W2]. 

20.5.1 Amplification of notation 

In the earlier sections of this chapter, we have introduced vectors of the form: 

(20.64) 

(see, for example (20.30) which involves terms of the same form, although with A’s instead 
of 6’s). The vector v in (20.64) stems from the differentiation of the vector (dg/ap)C;p 
or Kt6pwith Sp kept fixed. We can consider an individual term in the latter vector as 

(20.65) 

Differentiation (with the Sp’s fixed) then leads to 

(20.66) 
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Generally in this chapter, we have re-expressed the above in terms of the complete 
vector rather than in terms of an individual component, i.e. using (20.64) rather than 
(20.66). For further work, we will refer to the vector v as 

(20.67) 

(20.68) 

where V(a) is a matrix. In most applications, we require the vector v and do  not directly 
require this matrix (but see Section 21.5, for an application where the matrix V is required). 
The vector dp in (20.68) can be replaced by another vector b so that we would have: 

V,(K,a) = v(b, a )  = V(a)b (20.69) 

The expression on the very left of (20.69) denotes the directional derivative (in the 
direction b). This form allows the computation of terms such as B ,  in (20.43). 

20.5.2 Truss element using Green's strain 

As a first example, we will consider the element of Section 3.3 for which the tangent 
stiffness matrix is 

(20.70) 

with 

(20.71) 

where z, is half the length of the element. In  relation to (20.70), for a two-dimensional 
element (as in Figure 3.6): 

(20.72) 

where the primes indicate updated coordinates (see Section 3.3.5) and, for example. 
~. Y =~ s>-xi .  Also. with the nodal variables ordered as in Chapter 3 (see Figure 3.6), 

the matrix is given by 

A = [ -

1 
1 
0 
0 

- 1 
1 
0 
0 -

0 
0 
1 
I 

- 1:I1 

(20.73) 

To differentiate (20.70), we require: 

Sc(x') = A cip (20.74) 

and (see (3.65)) 
E60 = Eb(p)Tdp=7c( x') 9 p

4%; 
(20.75) 



COMPUTATION OF HIGHER-ORDER DERIVATIVES 351 

In  relation to (20.68), we can now obtain: 

v(bp,aj = V,(K,a) = c,Sc(x’)c(x’)Ta+ c,c(x’)6c(x‘)Ta 
A,ha -

(20.76)+ ,-Aa 
A x o  

or 
v(hp, a )  = V,(K,a) = c1[ (c(xf)Ta)A 16p + (c(x’)Tbp)Aa+ (bpTAa)c(x’) (20.77) 

The matrix V(a) of (20.68) follows as 

V(a)= c1[(c(x’)Ta)A+ Aac(xflT+ c(x’)a’A) (20.78) 

The vector v(b,a) = V,(K,a) of (20.69) can be simply obtained by replacing cip by b in 
(20.77). 

Equations (20.77) and (20.78) remains valid for three-dimensional truss elements, 
provided the definitions of the vector c(x’) and the matrix A are suitably modified (see 
Section 3.7). 

20.5.3 Truss element using a rotated engineering strain 

For this element (see Section 3.4j, the stiffness matrix is 

A0a2 -
K, = jV2c( + -A (20.79)x’)c(x’)~ 

2% 
with c ,  being given by (20.71): 

/” 
“ =-20 (20.80) 

Zll 

with rnas the current half-length of the element (see (3.53)). Using the relationship: 

A 

ar, = -GpTc(x’) (20.81a)

4a0 
so that: 

(20.81 b) 

one can show that in place of (20.77), we now arrive at: 

v(6p,aj= V,(K,aj = c,[(c(x’)’a)A bp + (c(x’ir6p)Aa+ (6pTAa)c(x’)) 

+ c4( (GpTc(x’))(aTc(x’))c(x’) (20.82)1 
with 

(20.83) 

and 
(20.84) 

The matrix V(a) of (20.68) follows as 

V(a)= ~ , ( ( c ( x ’ ) ~ a ) A+ Aac(x’)’‘+ c(xf)aTA) 

+ c4 [ (aTc(x‘j)c(x’)c(x’jr; (20.85) 
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20.5.4 Computation of the stability coefficients B,-B3 

In  relation to the earlier work of Section 20.3. we can now compute the 'stability 
coefficients'. B ,  - B,  of (20.41)-(20.43) (the stability coefficient B,  of (20.44) does 
not need higher-order terms) by first using the notation of (20.68) to compute the 
vectors: 

(20.86a) 

(20.86~) 

For the truss elements, these vectors can be computed directly from (20.77) or (20.82). 
The coefficients B ,  B ,  of (20.41)--(20.43) then follow as 

B ,  = z ; v ( z l , z l )= z;v,  = z: ) (20.87a) 

(20.87b) 

(20.87~) 

20.6 SPECIAL NOTATION 

A , - A, = coefficients in eigenvector expansion of Ap (see (20.20)) 
B , - B ,  = stability coefficients (see (20.36), (20.41)-(20.44) and (20.49)) 

g = gradient of total potential energy 
p = displacement vector 
q = load vector 

v(b, a)= related to directional derivative-see (20.69) 
y = see (20.26) or (20.27) 
z,  = eigenvectors of K, 
Oi = eigenvalues corresponding to eigenvectors zi 
E, = load multiplier 

cp = strain energy 
4 = total potential energy 

As = incremental length 
V, = directional derivative (in direction b)--see (20.69) 

Subscripts 

f = fundamental path 
p = predictor 
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21 Branch switching and 

further advanced 
solution proced ures 

A n  extensive review of solution procedures for non-linear analysis \+!as given in 
Chapter 9. In  general. we will not repeat these references here. However, in the earlier 
volume, apart from the discussion in Section 9.10,we did not specifically consider either 
the computation of singular points or ‘branch switching‘. Because these matters will be 
directly addressed in this chapter, we will include here reference to papers on these 
topics. previously discussed in Section 9.10, which relate specifically t o  the finite 
element met hod. Reference to papers on the more general mathematical background 
can be found in Section 9.10 or in the review papers [C4, K2,S7]. 

In Section 2 1 . 1 .  we start by describing some simple bracketing procedures for the 
computation of singular points (limit points or bifurcations). Other work in this area is 
given in [B3, Ml,S3,S4. W3J. Assuming that the bracketed point is a ‘bifurcation 
point‘. we may then wish t o  switch on to the ‘post-bifurcation path’ instead of 
remaining on the fundamental path. Simple techniques for such branch switching [W2] 
only require the computation of the eigenmode associated with the lowest eigenkrector 
and are considered in Section 21.2. Other work involving forms of ‘eigenmodc 
injection’ has been given in [C3, D2, E 1 ,  M21. 

In Section 21.3, we move on to consider more sophisticated branch switching 
techniques [E 1.20,R 1.201 that require second derivatives(of the total potential energy) 
and thus utilize some of the theory from Chapter 20. Sections 21.4 and 21.5 also 
consider implementations involving these higher-order derivatives for general pre- 
dictor corrector algorithms [W I]. I n  Section 21.4 the ‘higher derivatives’ are used to 
give better predictors. while in Section 21.5 they are used to give better ‘correctors’. I t  
should perhaps be emphasised that these techniques are not used in most current 
non-linear finite element programs and, indeed, that it has yet t o  be demonstrated that 
they are economically viable. 

Further applications of the higher derivatives are considered in Section 21.5 which 
describes methods for directly computing singular points that can be considered as 
more sophisticated alternatives to the simple techniques discussed earlier in Section 
2 1. I .  Other work in this area is due to Wriggers c’t 111. [W 1.20,W2.201. Riks [R 1.201 and 
Azrar ct ~ r l .[A I] .  
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In  Section 2 I .7, we consider the extension of 'line search techniques' (Section 9.2) to 
various forms of 'arc-length method' [S2, S5, C1, C21. While the technique often leads 
to an improvement in the basic method, with arc-length methods which may be used to 
con\.erge to an unstable equilibrium state, some fundamental problems apply to 'line 
searches' ivhich are aimed at a 'minimum energy' (see Section 21.7.3). 

I n  Section 21 .X, we describe some alternative arc-length methods using rclatiLre 
variables. This uork is motivated by the problems Lvith conventional arc-length 
methods that have been reported by a number of workers [D2. DXSI] uho suggest 
a possible solution that inLrolves the implementation of a special form of generalised 
displacement control at a specific variable (see Section 9.2.2.3). I n  contrast to the 
conventionul implementation of the latter methods, these techniques [D2, D3. SI ]  
control the r c 4 ~ i ~ I wdisplacement at a particular point for example the 'crack opening 
displacement'. These methods have considerable potential for use in coiljunction with 
contact algorithms (Chapter 23). 

For 'cracking problems'. these techniques require a pre-knowledge of the crack 
position and its local topology. Particularly once multiple cracks are encountered. 
t h ese met h od s may i n t rod u ce COnsidera ble co In pu tat i ona1 problem s. Con sequ en t 1j , i n 
Section 21.9, a modification is proposed to the cylindrical arc-length method ( [H 13)  
that inLalLxs no such 'pre-knowledge and may extend the life of existing quadratic 
arc-length methods. Instead, the method is based on a n w  mt.thod for chocxing the root 
for the cylindrical arc-length method (Section 9.4).The author and co-uorker h i t \  e found 
[H 13 that this alternatiLre technique (which is very easily to implement) giics a much 
better numerical performance for difficult path-following problems particularly those 
invohing the 'sharp snap-backs' that are often associated uith cracking [C3]. 

Finallj, in Section 2 I .  10, we will describe an alternative method for overcoming comp- 
lex snap-throughs and snap-backs which involves a switch from statics to d>mmics. 
Such procedures haLre been described by Riks c't ul. [R2] and b j  Skeie ot t r l .  [SX]. 

21.I  INDIRECT COMPUTATION OF SINGULAR POINTS 

In  the following. we will assume that the analyst is tracing a load deflection equilibrium 
path using some form of predictor/'corrector (or incremental iterative) method. At 
some stage. the solution procedures converges on to an equilibrium point that is 
beyond the first singular point which may be a limit point or a bifurcation point. The 
computer code should give an indication as to which is likely (we can o n l y  say likely, 
because, from the work of Chapter 2 (see Figure 2.6) and Chapter 3 (see Figure 3.19). it 
is possible to converge on to a 'complementary equilibrium path'). To this end, if both 
the current stiffness parameter (Section 9.5.2)and the minimum pivot switch signs, i t  is 
likely that a limit point has been passed (further tests can be made with subsequent 
increments on the magnitude of the load parameter). On the other hand, if only the 
minimum pivot has switched signs, with no change in the sign of the current stiffness 
parameter, it is likely that a bifurcation point has been passed (see Figure 21. I ). In these 
circumstances, the analyst might like to 'home in' on the singular point using some form 
of bracketing procedure. In the case of a 'bifurcation', this process could precede the 
activation of a 'branch switching' procedure. Such techniques Lvill be discussed in  
Section 2 1.2. 
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Figure21.1 Response of current stiffness parameter C,and minimum pivot, D,,, to limit and 
bifurcation points. (a) Limit point; (b) bifurcation point. 

The decision to implement the 'bracketing proces' may either be automatically 
activated, following the passing of a singular point (especially a bifurcation point), or 
may be introduced after 'a restart'. In  the following we will briefly outline an algorithm 
to implement such a bracketing. We will concentrate on the situation in which the first 
singular point has been passed although the concepts can be applied to other situations. 

The first issue to decide is the choice of 'test function'. 7, which changes sign as the 
singular point is passed (see Figure 21.2). Possible choices are: 

7 = det(K,) (a) 

T = min. pivot from K , ,  i.e. Dmin (b) (21.1) 
r = product of D,,, and Dmin (c) 
T = min. eigenvalue of K ,  (d) 
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Figure21.2 Bracketing procedure. (a)Bracketing points; (b) bisection for control parameter; (c) 
interpolationfor control parameter. 

where the D’s are taken from the diagonal matrix, D, from the LDLTfactorisation (or 
equiva1ent)of K, (see Section 2.2.6).The test function in (d)above is potentially the most 
effective, but also requires the most work. The test function in (a) will not work with 
a multiple bifurcation. In the computer program for which results will be given in  
Chapter 22, we have included a range of bracketing options. In practice, it is best [SS] 
to use a normalised test function, Z where: 

f =  z/(lzlr21)1’2 (21.2) 

and z1 and z2 are the closest values of the test function on either side of the singular 
point once the bracketing procedure is started. 

The bracketing process is very similar to that adopted for a line-search on the energy 
slopes (see Section 9.2). In particular, we always use the closest values on either side of 
the singular point so that in Figures 21.lb, z i - 2  would be positive, while ti- would be 
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negative. The 'control parameter' in Figures 2 1.2b and 2 1 . 2 ~  is x.This could be the 'load 
parameter' (;Ielsewhere in the book) or it could be the arc length. 

The simplest bracketing procedures involve bi-section or the golden section, but i t  is 
probably best to use interpolation so that: 

= x ,  - 2  - t, 2 ( m ,  - 1 - x ,  - 2 ) / ( 7 , - 1 - t, 2 )  (21.3) 
where x ,  1 ,  and 7, and 7 , _ 2  are the control parameters and test functions at the 
latest solutions that straddle the singular point (Figure 2 1.2). Equation (2 1.3) is applied 
with the proviso that close to the ends in Fi,gure21.2c, interpolation might lead to 
a very slow convergence rate. In these circumstances, one can overwrite (21.3) and 
introduce a minimum change so that: 

I X , - ~ , _ ~ I = O . ~ I C I , _ ~-2, 2 1  iffrom(21.3) 
1x1 - 2, 11 > 0.81x,- 1 -% 2 l  

(21.4) 

~ z l - x l ~ ~ ~ = 0 . 2 / z l ~ liffrom(21.3)- x I p 2 1  
(2,- 3,-1 I < 0.2(r , -1 - 2,-21 

In deciding on a suitable termination criterion for ending the bracketing, it is best to use 
both the value of the test function and the size of the bracket (Ax, ) .For example, one 
may use a small value (say 10 ') on r j  where 

r j  =( [ iAct , /x , l ) '  '= ( / T A i , / j . , [ ) '  for load control 
(21.5) 

11 = (I iAxi/ ixoI) l'=(lfAli /A(, l ) '  for arc-length control 

Control parameter 

Displacement 

Figure 21.3 Semi-direct bracketing (without full iteration for intermediate points). 
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In the above, 2, is the current value of the load parameter, while A/, is the value of the 
arc-length increment just prior to the implementation of the bracketing procedure. 

I t  has been assumed that we are allowed to move backwards along the solution path. 
Hence in relation to Figure21.2a we would move sequentially through the points 
1-2 -3 -+4 (with the latter being assumed to be at the limit point). However, if we 
have a ‘path-dependent material’ and, for example, plasticity is involved, such a path 
reversal is invalid. However, the bracketing procedures can still be used but now, in 
relation to Figure 2 I .2a, we must apply the solutions: 

(a) From point 1 to point 2 
(b) From point 1 to point 3 
(c) From point 3 to point 4 

If the sole purpose of the analysis is to compute the singular point, i t  is possible to either 
eliminate the equilibrium iterations or, at least slacken the tolerance, for the intermedi- 
ate points (see Fig. 21.3 and ref. [S6]). 

21.2 SIMPLE BRANCH SWITCHING 

Having computed the singular point with sufficient accuracy at say @.:), we cfn 
compute z, the lowest eigenmode corresponding to the lowest eigenvalue ( 0zr 0)  ofK,. 
To this end, i t  may be necessary to introduce a ‘stift’ [ B l . l O J  for the eigenvalue 
calculation (because of the near-singular nature of K,). Having computed z, we can 
compute the stability coefficient B, of (20.44) via: 

B, = -qsz (21.6) 

where q, is the external load pattern. As indicated in Section 20.2 (see (20.19)). this 
quantity should be zero (or very nearly zero) for a bifurcation point. If  we introduce, 
higher-order derivatives, i t  is possible to compute the coefficients B , - B ,  of (20.41)- 
(20.43)) (and also B ,  of (20.49)) and hence to obtain additional information on the 
nature of the bifurcation. This information can also be useful for branch-switching. 
However, the higher derivatives are generally not available in standard finite element 
programs and, in any case, i t  is possible to branch switch without these terms. 

Following standard predictor-c9rrector techniques, we will start with a predictor 
App relating to some new load level ;1+ A i p .However, instead of using the usual Euler 
predictor, we will adopt: 

App= Ah; AAp= 0 (21.7) 
fAt this stage we know (ri + ApP,iv+ A&) and can, as usual, compute the out-of-balance 

force vector g and tangent stiffness matrix, K,.  In the following algorithms, we will 
follow the procedures adopted for the various arc-length methods (Sections 9.3 and 9.4) 
and will implicitly calculate the standard Newton-Raphson iterative change at a new 
load level, 1. + b i  so that (see (9.23)): 

bp = -K,- ‘(go- 6RqJ = 6p + bihp, (21.8) 

Given the iterative form of (21.8) and the predictor of (21.7). we can simply apply any of 
the methods of Section 9.3.2 based on ‘generalised displacement control’ 
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21.2.1 Corrector based on a linearisedarc-length method 

Conceptually the simplest algorithm is to adopte the 'two-vector' form of the Riks 
Wempner algorithm (Section 9.3.2.2) so that, at each iteration, we force Sp to be 
orthogonal to the predictor solution App and hence find 6 i  as 

(21.9) 

Because, from (21.7),Appis simply a multiple of z, this procedure ensures that we obtain 
corrections that are orthogonal to z so that the final incremental solution (from @)) will 
be of the form 

Ap =App + 6p,  + dp, + ..-= Alz + y where yTz=0. (21.10) 

Geometrically (Figure 21.4), it follows that the solution is most unlikely to converge 
back on the unstable fundamental path. Kouhia [Kl]  has proposed using Fried's 
approah [F2] instead of (21.9). For this method (see Section 9.3.2.2), 6p is made 
orthogonal to bp, so that the iterative change in i.(61)is as in (21.9)but with Appbeing 
replaced by dp,. 

// 
// 

//
// 

// 
// 

// 
// 

+ 
Displacement,p 

Figure 21.4 After branching, an iterativechange dp that is orthogonalto the predictor App= Ak. 
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21.2.2 Corrector using displacement control at a specified variable 

In Section 9.3.2.3, we discussed Batoz’s method [B2] (with enhancements by Rhein- 
boldt [ R I ] )  whereby the displacement increment at a specific variable was kept 
constant. Rheinboldt’s modification was to choose the specific variable as the compo- 
nent with the maximum value in the predictor, App, say, App(k). From (21.7) this 
corresponds to taking the displacement component ( k )with the maximum value in z. 
Also for future iterations Ap(k) must be kept fixed so that future iterative changes, cip, 
must be such that the k t h  component is zero. From (21.8) i t  follows that: 

(21.11 )  

21.2.3 Corrector using a ‘cylindrical arc-length method’ 

In  Section (9.4) we described a cylindrical arc-length method, which was a degenerate 
form (with Y =0) of the ‘spherical method’ of Section 9.3.2.1. This method combined 
(21.8)with the constraint: 

AplAp = A12 ( 21.12) 

where AI was a specified ‘arc-length‘. (Note the predictor solution of (21.7)satisfies this 
constraint.) When combined with theiterativechangeof(21.8).wecan simplyapply the 
standard arc-length method and find 6iLfrom the quadratic scalar equation (9.26). 

21.3 BRANCH SWITCHING USING HIGHER-ORDER 
DERIVATIVES 

From the work of Section 20.3, the stability coefficients B,-B, (see (20.41)-(20.44) and 
Section 20.5.4) can help by giving a better predictor than (21.7) only if we have an 
asymmetric bifurcation and from Section 20.4.4, B ,  # 0. In these circumstances we can 
solve the quadratic in (20.58) to find X ,  and X,,  with the former leading to a ‘branching 
predictor’, 

App = A)”(X ,z + y) = Ai,Sp, (21.13) 

where the final expression is taken from (9.38) and shows that, in contrast to the 
standard tangential direction: 

lip, = K,- ‘q (2  1.14) 

where q is the load pattern, we now have an equivalent vector of dp, = X , z  + y where 
the vector y is orthogonal to z. In  relation to (20.63) and (21.14), the predictor along the 
fundamental path, Apf, would be Aidp, and hence, from (20.63), the vector y can be 
obained from: 

y = Sp, - (Sp?z)z (21.15) 

Hence, we can completely define the vector Sp, in (21.13). With a given arc-length Al, A i  



362 FURTHER ADVANCED SOLUTION PROCEDURES 

can be obtained from (9.39). but with S p ,  instead of tip, so that: 

The plus sign will lead to one branch and the minus sign to another asymmetric branch. 

21.4 GENERAL PREDICTORS USING HIGHER-ORDER 
DERIVATIVES 

In  Section 21.6. we will return to bifurcations and will consider the use of higher-order 
derivatives to produce methods that directly iterate to the bifurcation point. However, 
we will firstly consider the use of higher-order derivatives for the computation o f  better 
(but, sadly. not cheaper) predictors for general predictor corrector path-following 
techniques in the absence of bifurcation points (see also [W I ] ) .  

As a starting-point, we consider the Taylor expansion of the equilibrium conditions 
at some point where the control parameter has increased to As beyond the current 
equilibrium point. From (20.33)this leads to: 

[g,p + g,iiAs + & [g,,,pp + 2gPApj+ gjb,.j2+ g,p + g,j.*iAs' + - . .  = 0 (21.17) 

where the subscripts denote differentiation. In addition to (21.17). from (20.31 ) and 
(20.32),we have: 

/.
A;L = ;.AS + -2 A.s' + . . . ( 2 I .  18b) 

Setting the coeffcient of As from ( 21.17) to zero leads to 

where the equilibrium equations are assumed to take the form: 

g(p.i")= q,(p)- ;.q, = 0 ( 2 120) 

where q, is the fixed vector of the external loading pattern (referred t o  as q,, in 
Chapter 9). In conjunction with (21.20).if we set the coefficient of As2 to zero in ( 2I .  17), 
we obtain (assuming q, is fixed s o  that g P ,= gAi,= 0): 

gpppp+ KIP - i q ,  = 0 ( 2I .2 1 ) 

From ( 21.19), we can obtain: 

p = i,K, 'q, = ;L 6p, (21.22) 

where the 'tangential vector', (Sp, is the same as  in Chapter 9. Substituting from (21.22)  
into (21.21) leads to 

i'.'gg,,dp,iip,+ K , P  - jvq,= 0 (2I .23a) 
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Using the notation of Section 20.5.1 we can rewrite equation (21.23a) as 

(21.23b) 

where, we have shown in Sections 20.5.2 and 20.5.3 how to explicitly compute the 
vector v for a truss element and have also indicated how, for other elements, a finite 
difference form can be used [R 1.20,E 1.20, W2.201. 

The solution of (21 23b)  can be expressed as 

l~ = X ~ P ,ji = %- lqC-i2~, - i 2 a  (21.24a) 

a = KIP‘ v  (2124b)  

In order to proceed further, it is necessary to specify the control parameter, As. 

21.4.1 Load control 

In this case, we have: 

A S  = A i ;  i = 1 ;  i.= 0 (21.25) 

so that from (21.22) and (21.24a) we obtain: 

( 21.26~1) 

and in (21 .  I & ) ,  we have: 

A i 2
Ap = Aidp,  - -a ( 21.27)

2 

Without the higher-order terms, the a vector would be zero and we would obtain the 
standard Euler predictor. With the higher-order terms, in order to compute (21.27), we 
must first obtain p = Cip, = K,- ‘qe and then compute the vector v as a function of 6p, 
using the method discussed in Section 20.5 for truss elements (or using a finite difference 
approximation [E 1.20, W2.20, R 1.20) and then compute a = Kl- v (see (21 24b)  using 
the previously factorised K , .  

One can of course continue to use even higher derivatives so that the process is a form 
of ‘perturbation technique’ [A 1. BI]. If we only consider second-order derivatives (ofg) 
as here, the extra work, in comparison with the first-order Euler predictor is of the same 
order as a modified Newton-Raphson iteration. 

21.4.2 Displacement control at a specified variable 

In this case, we have: 

AS = 1 Apk1 = 1 Ap(k) 1 = rAp(k) (21.28a) 

where As is a given positive scalar and the term k relates to the largest absolute value in 
Cip, (see Section 9.3.2.3).We are adopting the convention whereby, having added the 
term ( k ) ,the expression is a scalar (involving the kth term i n  the vector) despite the bold 
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character for the vector (here p). The scalar t in (21.28a) is given by 

( 21.28h) 

I t  follows from (21,28a) and (21.28b)that: 

P(k) = t; P(k) = 0 ( 21.28c) 

From the first expression in (21.28~)in conjunction with (21.22), we can directly 
com pu te: 

i= r,:op,(k) ( 21.2'3) 

Hence, with r: known, from the last expression in (21.28~)in conjunction with the 
(21.24a). we obtain: 

(21.30) 

so that we can obtain Ap and A;. in terms of the prescribed As = t Ap(k) from (21.18). 
The final expressions take the form: 

A;. = A& + k c A i i  ( 21.3I a )  

(21.31 b) 

Apr.= AiEi6p,  ( 21.3l c )  

where A& and Ap,; are the Euler predictor's as given in Chapter 9 so that: 

(21.32) 

The constant c in (21.31) is given by 

1 8  = a(k)/dp,(k) (21.33) 

The plus or minus sign in (21.32) follows from the procedure described for the 
arc-length method in Section 9.4.3 and is related to either the minimum pivot of K, or 
the current stiffness parameter. The algorithm for load control in Section 21.4.1 is also 
given by (21.31) but with A& = A;* and c* = 0. 

21.4.3 The 'cylindrical arc-length method' 

In this case, we have: 

As2 = ApTAp (21.34) 

so that substitution from (21.18a) leads to 

tP P,  [ p  p ,  t S p  1 p + f 'pp)A.~'+ . * .  (21.35)A s z =  f ' I ' l A s l +  f'T"1As3+ f l 

Equating the coefficients of As' and using (21.22) leads to 

1A =  ( 2 I .36)
(hp:'dp,)' 



CORRECTORS US1NG HIGHER-ORD E R DERIVATIVES 365 

and setting thecoefficient o f A s 3  in (21.35) tozero leads, i n  conjunction with(21.24a), to: 

( 21.37) 

Hence, in conjunction with (21.18), Ap and A i  are completely defined for a given As. The 
solution is given by (21.31) in conjunction with: 

(21.38) 

(21.39) 

where the sign in (21.38) follows the procedures discussed i n  Section 9.4.3. 
Because the As" terms in (21.35) have not been equated to zero, equation (21.31 b) ( in  

conjunction with (21.38) and (21.39)) will not exactly satisfy the constraint of (21.34). 
Two strategies are open. First, one may simply accept the solution and allou. the 
subsequent 'corrector iterations' to automatically return to the required length. 
Alternatively, the length given following the higher-order predictor can be computed 
and this new length, which will be slightly different from the original intended length, 
can be employed for the corrector iterations. 

21.5 CORRECTORS USING HIGHER-ORDER DERIVATIVES 

In Section I .3. the conventional Newton-Raphson method for load control u.as 
computed by expanding the residual g as a truncated Taylor series about some old 
(subscript o)configuration. A similar approach including second-order derivatives (of 
g) leads to 

c:g 1 
g, = go + -8P +p p p 6 P 6 P  (2 1.40) 

CP 
where we can now set the 'new estimate', g, to zero. If we set up a new residual vector, f ,  
which should be made zero, this leads to 

f = g,(p,) + K,(p,)Ap + f V,(K,Ap) = go+ K,Ap + v(Ap. Ap) = 0 ( 2I .41 

where we are introducing the notation of Section 20.5.1 and have introduced A's 
instead of 6's because we will make iterative changes (dp) to Ap with a view to the 
satisfaction of(21.41)as part ofan inner loop. Equations(21.4l)are to be solved for Ap, 
with p, kept fixed. A predictor to solve (21.41) would involve: 

AP = -Kt(P0)- '$LAP) (2 1.42) 

which is the standard first-order corrector from (21.40). We could now apply a correc- 
tor to (21.41) to give: 

6P = - (KJP,) + V(AP0>)- 'fo(P0, AP,) = - K,-'f,(Po3 AP") (2 1.43a) 

with Ap, as the predictor from (21.42). Having obtained 6 p  from (21.43). the displace- 
ment change would be updated to give Apl = Apo + dp and a second iteration would 
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produce a further change: 

6 p =  - [ K t ( p o ) + V ( A p l ) i  ~ l f l ( p , , A p l ) =  -K, ‘ f l (po ,Apl)  (21.43b) 

until  eventually f from (21.41) would be sufficiently near to zero. The algorithm 
involving (21.43) will be referred to as implicit. 

To avoid the formation and factorisation of the new K,,we could apply a modified 
Newton Raphson iteration for the ‘inner loop’and replace K, in (21.43) with K,(p,)‘ 
which would already be formed and factorised. This will be referred to as an explicit 
algorithm. There could be advantages in using the full implicit form near singular 
points when K, may be nearly singular. 

The techniques can easily be extended to encompass arc-length-like techniques by 
including terms that involve the change in load level so that (21.41) would be replaced 
by 

f = g, + K,Ap + 4v(Ap, Ap) -Aibqe (21.44) 

with the predictor solution being given by 

Ap = -K,(p,)- ‘g,(p) + AiK,(p,)- I q e  = - Aji)+ AiAp, (21.45) 

and A i  being chosen using standard arc-length techniques to satisfy the constraint. At 
this stage, Ap and A)”are the variables and, in place of (21.43a). we obtain: 

which is split into two vectors with fii being found from the arc-length constraint in the 
standard way. 

21.6 DIRECT COMPUTATION OF THE SINGULAR POINTS 

In Section 21.1, we discussed indirect or bracketing methods for obtaining singular 
points on the equilibrium path. An alternative method using a form of ‘secant 
formulation’ has been proposed by Onate et ul. [013. We will now consider a method 
[W 1.20, W2.203 based on the solution of the ‘extended system’ composed first of the 
standard equilibrium equations: 

g(p,1)= 0 (21.47a) 

and secondly of a set of equations: 

K,z = 0 (21.47b) 

with z as the eigenmode corresponding to the lowest eigenvector of K,. This equation is 
only satisfied at singular points because at such points the eigenvalue is zero. The final 
equation puts some constraint on the size of the vector z and here we apply: 

Zk = z (k )= 1 (21 .47~)  

where k is a particular component of z. We could, instead have ensured that z was 
scaled to be of unit length. However, this would lead to a quadratic constraint and 
(21.47~)leads to an easier solution. 
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Because Newton’s method has a finite bowl of convergence, i t  is probably best to 
start with a standard continuation method and to only introduce the direct computa- 
tion once the first singular point has been passed and possibly after a few applications of 
the indirect bracketing approach of Section 21.1. In  these circumstances, k can be 
chosen as the variable with the smallest pivot once the singular point has been passed. 
In order to start the process, an initial estimate is required for z at the singular point. 
For this purpose, one may compute the eigenmode, z, corresponding to the lowest 
eigenvalue at the starting-point for the direct solution. Alternatively, one may use 
Seydel’s approximation [S3]. This is obtained by prescribing the variable with the 
smallest pivot (here variable k )  to unity and obtaining the predictor solution by firstly 
computing the equivalent load vector q’ (see Section 2.2.5) and then obtaining K,- ‘q’ 
with the kth variable being treated (for this solution only) as prescribed. 

Newton’s solution procedure can be applied directly to (21.47a)-(21 .47c) with the 
variables being p, z and 1,. However, as with the arc-length methods it  is best to work in 
an indirect manner and apply Newton’s method to (21.47a) to obtain the iterative 
change: 

Sp = -K,- ‘g + SAKI-‘qC= Sp + GiSp, (2 1.48) 

while the application of a truncated Taylor series to (21.47b) leads to 

(K,z],  = (K,zJ,+ K,Sz + V,(K,z) ( 21.49) 

with the subscript, n, meaning ‘new’and the subscript, 0,meaning ‘old’. To compute the 
last term in (21.49)’ one can adopt the procedures of Section 20.5 to obtain: 

v(Sp,z)=V,(K,z)= v,(SJi,z)+ SRv,(Sp,,z) ( 2 1.50) 

where use has been made of(21.48). Setting the left-hand side of(21.49) tozero and using 
(21.50a) leads to: 

SZ= -K,- ‘(K,z + ~1 + S ~ V , )= - z + w 1  + 6 iw2  (21.50b) 

At  this stage, the kth component of z can be updated to give: 

z,(k) = z,(k) - z,(k) + w , ( k )  + SAw,(k) = w , ( k )  + 6 iw, (k )  = 1 (21.51) 

where use has been made of (21.47~). The unknown S i  is very simply obtained from 
(21.51) after which both Sp (from (21.48)) and 6z (from (21 Sob)) are fully defined. 

Wriggers and Simo CW2.201 have indicated that there may be numerical problems 
with the previous technique because of increasing ill-conditioning as K, approaches 
singularity as the singular point is approached. They therefore propose the introduc- 
tion of a penalty function (the concept being originally proposed in a different context 
by Felippa [Fl]) whereby (21.47) is modified to give: 

g(p,4 + ;fek(e:p -p)= 0 (21S2a) 

K,z + ye,(e:z - 1 )  = 0 (21S2b) 

zk= z (k)= ezz = 1 (21.52~) 

e lp  -p =O (21.52d) 
where 7 is a penalty parameter and the vector ekis zero for all terms apart from the term 
k where it is unity. Applying a very similar procedure to that given previously starting 
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from (2 I .47), one may arrive at a 2 x 2 set of simultaneous equations for the two scalar 
variable changes hi. and iSp CW2.201. 

21.7 LINE-SEARCHES WITH ARC-LENGTH AND 
SIMILAR METHODS 

In  Section 9.2 of Volume 1, we described a simple bracketed line-search procedure 
which can be applied in a conjunction with iterative techniques such as the full or 
modified Newton-Raphson methods (or the quasi-Newton methods of Section 9.7). We 
also gave a set of references of which relatively few were specifically related to the finite 
element method (but see [Ll ] ) .  Although the theoretical basis for these methods 
involve the minimisation of the total potential energy, they are particularly effective for 
problems involving plasticity in which there is no energy function. Indeed, line searches 
are especially rewarding for problems with sudden non-linearity such as those involv- 
ing concrete cracking or contact (see Chapter 23). 

In  Sections 9.3 and 9.4, a range of arc length and similar techniques were considered 
with particular emphasis being given in Section 9.4 to the ‘spherical’arc-length method 
and indeed to a sub set. the ‘cylindrical method’, All these methods involve a form of 
indirect displacement control and we will in future refer to them as ‘arc-length 
methods‘. Such arc-length methods have been combined with line-search procedures in 
[C 1. c2.s2,S 5 ) .  

In  introducing such a combination, two special difficulties are encountered. The first 
of these arises because the line searches are now aimed at finding the minimum energy 
configuration at a load level that is continuously varying as the iterations proceed. The 
second difficulty arises because these ‘arc-length methods are often used to iterate to 
equilibrium points that do not coincide with minimum energy configurations because 
they are beyond limit points. For the present we will ignore this second problem (but 
later see Section 21.7.3) and will assume that we are analysing problems with a continu- 
ously rising stable equilibrium path. 

21.7.1 Line-searches with the RiksMlempner linear arc-length 
method 

From Section 9.3.2.2 of Chapter 9, the adopted constraint is 

Ap’,Sp = Apg(CSP + SiSp,) = 0 (21.53) 

where App is the ‘predictor’ incremental displacement. To introduce a line-search 
step-length, q ,  we have: 

+ Yb) (21.54)p = p, + (4)” 
where p, are the ‘old’ displacements at the end of the last increment, Ap, are the ‘old’ 
incremental displacements, prior to the current iteration. I t  follows that, in place of 
(21S3).we now have: 

qGpTApp= 0 = rj (  6p + bi,dp,)’ Ap, (21.55) 



LINE-SEARCHESWITH ARC-LENGTH AND SIMILAR METHODS 369 

which leads to precisely the same expression as (21.53) for h i .  Hence, the line-search and 
arc-length constraints are largely uncoupled so that at the end of the iteration, with an 
exact line search, we would aim to satisfy (see Section 9.2): 

?#
s ( q )  = -= GpTg(rj.do + 6 i )  = 0 (21.56)

(711 

where i., is the 'old' load level at the beginning of the iteration (and prior to the 
computation of hi. from (21.53)). 

In practice, a 'slack-line search' is applied so that one aims to satisfy (see Section 9.2): 

(21.57) 

With load-control, so is the energy slope at the beginning of the iteration with rl = 0, so 
that: 

?# so = s( 11 = 0) = -= (Sp7go= hp'g( I /  = 0) (21.58)
??I 

Although the application of the line-search procedure or the Riks Wempner arc- 
length method is relatively straightforward, we will outline the steps. partly as an 
introduction to the more complicated procedure required for the cylindrical arc-length 
method. Also, there is an important step (step 4 in Algorithm 21.1 below) that is not 
immediately obvious. 

I .  At the beginning of the iteration, compute: 

6p = - K,- lg0(q= O,i ,  = io) 
(Sp, = K,- 'qc 

2. Apply the arc-length constraint to obtain: 

b i  = - ~p;dp;~p;cip, 
cip = (Sp + 6i,(Sp, 

3. Update with q = 1: 

q = l  

Ap = Ap, + t16p 
P = PO + @PO + VhP) 
E. = i,,+ i j i  

4. Compute the inner product s ,  so as to relate to the current load level. 

.s(,(t~= 0, i.,+ h i )= Opr(g,(rl=0, ).") - ciiq,) = 6p7g- hicip'q, 

5. Compute the residual with q = 1 (at i= 2, + (SR); compute g l ( q l  = I,;., + hi.). 

6. Compute the current inner product, 

s 1 ( q 1= 1 , i  = i., + (Si)= hp*g,(q, = I,;,, + 6i,) 

7. I f s ,  is not sufficiently negative (downhill), abandon line search and accept the 
solution with tI = 1 before moving to the next iteration. 
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8. If r = ( s l  s , (  < cp, accept the current solution with q =  1 before moving to the next 
iteration. 

9. I f  the previous tolerance check is not satisfied, apply a bracketed line search (i.e. via 
subroutine SEARCH of Section 9.2.2.1) to obtain a new estimate q 2 .The search 
requires the information: 

(s,,,.s l )  at ( r l o  = 0,tjl = I )  all at load level i., + (5;. 

10. Recompute the current displacements via: 

p = P" + (Ap" + V$P) 

1 1 .  Compute the residual with ,I = t j 2  at EL = j." + d i ) ,  i.e. compute g 2 ( q 2 ,i",,+ h i )  
12. Compute the current inner product: 

? .. s 2 ( q 2 ,L = X ,  + hi,) = hpTg2(q2.i.,+ 8i.) 

13. I f  r = I s 2  s , I  d (p, accept the current solution with q 2  before moving to the next 
iteration. 

14. If the previous tolerance check is not satisfied. apply a bracketed line search (i.e. via 
subroutine SEARCH of Section 9.2.2.1) to obtain a new estimate q 3 .The search 
require the information: 

Algorithm 21.1 Line-searches with the Riks-Wempner arc-length method. 

I t  is a simple matter to modify Algorithm 21.1 to relate t o  any of the lineariseci 
arc-length methods (see Section 9.3.2.2) or to the method for generalised displacement 
control at  a specific variable (see Section 9.3.2.3). 

21.7.2 Line-searches with the cylindrical arc-length method 

The cylindrical arc-length method can be considered a s  a special case of the spherical 
method (Section 9.4). Here we will only consider the cylindrical method, in Uhich there 
are no load parameter terms in the constraint (see Section 9.4). 

With the introduction of the line-search scalar, '1. the cylindrical constraint becomes: 

(AP,, + rl(Sp + (j;.(jpt))'(Apc,+ 11(dp+ &jp,)) - A / ?  = o (21.50) 

where Apt, contains the incremental displacements prior to the current iteration. In  
contrast to the linear constraint of (21.55), (21.59) involkes a full coupling between hi. 
and 11. In other words, if(21.59) is initially solved with 11 = 1 to obtain Si.,the application 
of a line search to obtain a non-unit 11. will lead t o  a violation of (21.59). Because the 
load level is continuously changing as the line search progresses. i t  will be useful to store 
the load level at each trial step length. 11 ,  so  that we have: 

j 0 I 2 
) IJ  0 1.0 I ] ? ' . .  
. * . 

x,, /"1 /.2 . . . 

where i is the line-search number. 
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For the cylindrical arc-length method, the iterative direction. bp, is itself changing 
as the line search proceeds because, from (21.48), we can write: 

bp = 6p + ( A  - Ao)Sp, (21.60) 

where A, is the load level at the end of the last iteration. Hence, we can express (21.56)as 

.y,(A. T l , )  = (6P + (A - Xo)6PJT(g,(~,lv , )  - ( A  - V q , )  (21.61) 

Equation (21.61) is only strictly valid for A = A,, where A, is the precise load level at 
which the residual g, is computed. None the less. the approximation allows us to 
estimate the line-search inner product at other load levels. I t  will be convenient to 
re-express (2 I .61 ) as 

.V,(X,?/,) = e 1 . 1  + ( A  - X,)C2./ + (A - A/)CiS + (A - A,,)(A - AJC.2 (21.62) 

where 
" I . /  = ~PTg,(A,,'I/) 


(21.63) 

('2 = -np;rq, 

(Some of the notation follows from refs [Cl,  C2], but there are differences.) 
In a similar fashion, we can express the inner product at the beginning of the 

iteration as 
.F,(A. '1 = 0) = d(j + ( A  - A O ) ( &  + d , )  + ( A  - A(,)2r.2 (21.64) 

where d 5  and ('2 have already been defined and 

(21.65) 

The inner products c'2, ds, db and d7 can be computed at the beginning of each 
iteration, while the inner products el?,and eZ,, can be computed once the out-of- 
balance force vector, g at the trial step length is known. Equations (21.62) and 
(21.64) then allow the inner-product ratios of (21.57), which are required for to 
estimate a new step length, to be adjusted so as to relate to any modified load level. 

The arc-length constraint of (21.59) can be rewritten with 6A = ( A  - A()) where A, 
is the load level prior to the application of the current iteration so that we have: 

NI (A - A())? + CQ(A - A,) + U3 = 0 (2 1.66) 

where 
U1 = $6p;r6p, = 7 p C I  (2 1.67a) 
02 = 26pTAp, + 276p76p = 27d1 + 2 ~ 1 2 d 2  (21.67b) 

= q'GpT6p + 276pTAp, + [ApiAp,, - A/?] 
= q2d3 + 27d4 f [I& - A/'-] ( 21 . 6 7 ~ )  

where the square-bracketed terms will be zero if the arc-length constraint was exactly 
satisfied at the previous iteration. In choosing the appropriate root from (21.66),ure 
use the 'angles' (see 9.36): 

a/?
cos 0, = A P T A P ~  = (is+ l?(d4+ (A, - ~ ( , ) d ~ )  (21.68) 
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where ill, d ~ ,and d g  have been defined in (21.67) and A, - A, give the two possible 
solutions to (21.66), with i = 1 and 2. 

The adopted solution procedure for each iteration now involves the following steps: 

1. Compute b p  = -K;'gc,(AO,7l= 0) and bp, = KF'g,. 
2. Compute the inner products cr'l - cix and cI  and ('2. 

3.  Set 711 = 1 and compute (A1 -A,,) to satisfy (21.66); set A1 = A,, + A1 - A,, 
and store. 

4. Set p = pc, + + ( A I  - X,,)bp,) and compute g , ( v I A ) .  
5.  Compute e1.l and ~ ' 2 . 1  (see (21.63)). 
8. Computes1 (AI,  r l l )  via (21.62) and s,(A1) via (21.64). Abandon the line searches 

and accept the solution with '11 = 1 i f s ,  is not sufficiently negative (downhill). 
9. Check js~/s,lagainst line-search tolerance, if the check is satisfied accept the 

solution with 111 = I and proceed to the next iteration. 
The aim of this section (10) is to find A,, rl?. 

10. Call SEARCH to apply a bracketed line search to estimate rl,. This search 
requires the information: 

(s,, .sI) at ( r l  = 0,rll = 1) all at load level AI 

IOa. Solve (21.66) to obtain (A, - A,) and hence obtain A,. 
1Ob. Compute .s1 (A?. 1 1 1 )  via (21.62) and so(A,) via (21.64). 
I oc. Recall SEARCH to apply a bracketed line search to estimate rl,. This search 

requires the information: 
(.sO,.sl) at ( r l  = 0, rll = 1) all at load level A? 

10d. If current r l?  is close enough to the r l z  computed in (10) (or more generally to 
the last compute r l . )  accept T ] ,  in (10) and A2 from IOa (or more generally the 
last comuted A,) which will exactly satisfy arc-length constraint. If not: 

1Oe. Resolve (21.66) to obtain (A? - A,) and hence recompute A?. etc. 
1 1 .  Assume we now have A,, r l ,  then: 
12. Set p = po + r ) ? ( O p ,  + (A, - A,)cip,) and compute g 2 ( r l ? ,A,) 
13. Comute P I . ,  and ~ 2 . 7(see (21.63)). 
14. Compute .s?(X,, I ) ? )  and .s1(A,. r i l )  via (21.62) and sO(A,) via (21.64) 
15. I f  s o  is not sufficiently negative, abandon the line search and accept the solution 

with 711 = 1 and AI.  
16. Check (.s,/.sO( against the line-search tolerance, if satisfactory. terminate the line 

search and accept the solution with r l ,  and A?. The aim of the next section (17) 
is to find A j ,  113. 

17. Call SEARCH to apply a bracketed line-search to estimate 113. This search 
requires the information: 

(.so. '91 ,s,) at ( 1 1  = 0. rll = 1. { I ? )  all at load level A? 

17a. Solve (21.66) to obtain (A3 - A,) and hence compute A3. 

17b. Compute s l ( A 3 ,  1 1 1 )  and ,s?(X3, rl,) via (21.62) and s,(AJ) via (21.64). 
17c. Recall SEARCH to apply a bracketed line search to estimate r/3. This search 

requires the information: 
( s o ,  S I ,s,) at ( 1 1  = 0, r l l  = 1 , ~ l z )all at load level AT 
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17d. If current t i 3  is close enough to q3 in (17) accept i l 3  in (1  7) and i,from 17a which 
will exactly satisfy arc-length constraint. If not: 

17e. Resolve (21.66) to obtain (2 -2 , )  and hence recompute i3,etc. 

Algorithm 21.2 Line searches with cylindrical arc-length method. 

This algorithm is a lot more complicated than that for the linearised arc-length 
methods. However, the required computer time is very similar because the extra 
complexity largely involves scalar computations with previously computed inner 
products. 

21.7.3 Uphill or downhill? 

Conventionally, line-search procedures are aimed at problems with a stable equilib- 
rium state, a positive definite K,,  and hence a minimum energy configuration. However, 
as previously discussed, the arc-length methods are often used to converge on unstable 
equilibrium points. Such states will often be associated with a K, with only one negative 
eigenvalue. This implies that, even for unstable equilibrium states, the iterative 
directions, hp, will often be ‘downhill’ so that the previous line-search algorithms can 
still be applied [Cl, C21. Indeed, algorithms 21.1 and 21.2 specifically abandon the line 
searches (for the particular iteration in question), if the inner product, so, is found to be 
positive (or more strictly, insufficiently negative). However, this is clearly an area where 
further work is required. 

21.8 ALTERNATIVE ARC-LENGTH METHODS USING 
RELATIVE VARIABLES 

Suppose for a particular increment, we wish to constrain the difference between the 
displacements at variables a and b to a prescribed magnitude A. Such a procedure is 
clearly a simple extension of the technique of Sections 9.3.2.3 and 21.4.2 and involves 
a constraint: 

Ap(a) -Ap(h) = A (21.69) 

where AP(N)is a scalar which is the ath component of the vector Ap. 
If the ‘fixed load pattern’ is q, which is to be multiplied by a scalar loading parameter, 
i,then the predictor displacement change is 

App = AiGp,, = ALKti ‘q, (21.70) 

whereK,, in theaboveis the predictor tangent. Substitutingfrom (21.70)into(21.69), we 
obtain: 

A i  = A , / ( ~ P , ~ ( U )- 6p,,(h)) ( 21.71) 

From (21.69). the iterative change is given by 

cSp(u)- 6p(h) = (fp(i(N)- dp(h)) + sr,(cSp,(a)- 6p , (h ) )= 0 ( 21.72) 
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where we have used (21.48) for dp. Equation (21.72) provides an expression for the 
change of load level, CiA. 

In relation to contact algorithms (see Chapter 23), we might wish to prescribe 
a particular magnitude for the incremental gap, Q,associated with a particular contact 
element, c. (This could be the magnitude required to close the gap.) In these circumstan- 
ces, in place of (21.69), we would have: 

Aiy(Ap,) = A (21.73) 

where the subscript c defines the nodal variables associated with the particular contact 
element (Chapter 23). The predictor load change would then be 

A)- = A/(AddP,,, ) )  (21.74) 

while, in place of (2 I .72), we would have: 

dg = 
c?y 

= aTGpc= a'r(Spc+ CiAdp8c)= O (21.75) 
"Pc 

where, considering a simple two-dimensional contact element, with a constraint on the 
normal gap, the vector a would be given by (23.7) and the vectors with subscripts 
c would be of dimension 6 x 1 (there being six displacement variables associated with 
the contact element). These vectors would simply be taken from the equivalent 
structural vectors (without the subscript c). Equation (21.74) provides the required 
change to the loading parameter, 62. 

21.9 AN ALTERNATIVE METHOD FOR CHOOSING THE 
ROOT FOR THE CYLINDRICAL ARC-LENGTH METHOD 

When using the cylindrical arc-length method [Cl] to analyse a double cantilever 
beam (DCB) subject to progressive delamination, the author and co-worder [H 1-1 
frequently experienced severe numerical difficulties that were associated with very 
sharp snap-backs. A careful analysis of the incremental/iterative behaviour showed 
that the problems were associated with an 'incorrect choice of root' from the two 
solutions to the quadratic equation in the load level change that is associated with the 
solution of the cylindrical constraint (see (9.26) and Section 9.4.1). The original strategy 
was to choose the root that gave the minimum angle between the old incremental 
displacement vector Ap, and the new vector Apn,where (see (9.35) and Figure 2 1.5)the 
two possibilities for Apn are updated from Ap0 via: 

Apnl = Apo + i@+ d;.l Cip, (2 1.76a) 

Ap,, = Apo + 6p + 6i.,Cip, (21.76b) 

with 

and 

sp, = K, - IQ, ( 2  1.77b) 
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Figure 21.5 Avoiding a solution doubling back. 

and 62, and 6 i 2 are the two roots of the quadratic equation: 

a,di2 + a,d/! + a3 = O (21.78) 

with u,-u3 as given in (21.67) with ~7 = O .  
The idea behind the choice of minimum angle is to avoid the solution 'doubling back' 

as illustrated in Figure 21.5. However, for a very sharp snap-back (Figure 21.6), one 
wants the solution to double back! The idea for the new choice of root is also illustrated 
in Figure 21.6 and is that, if  one were to compute the new residual g ( i n l )having applied 
(21.76a) (with =;I,+di,) and g(&) having also applied (21.76b) (with 
ibn2i,,+ 6 i 2 )then the best root will be that leads to the smallest residual norm. In= 
other words both options have to be tried and we compute both g(p, + Apnl ,in,)and 
g(p, + Apn2,in2)where p, are the displacements at the end of the last increment. 

I I I b 
P(hnA P(hn1) P 

Figure 21.6 Illustrationof the minimum residual criterion. 
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Naturally, this approach is more expensive than the conventional procedure. 
However, the extra expense is not large and is approximately of the same order as 
one step in a 'line search'. In addition, for most relatively smooth problems, this 
technique is not needed (although in such cases it should give the same answer as the 
'conventional technique'). Consequently, an analyst need only turn on this option 
when he or she anticipates snap-backs or when he or she has had convergence 
difficulties. The author and co-worker found that for difficult problems this nen 
method gave effective solutions where the conventional method f d e d  [H I] .  

21.10 STATIC/DYNAMIC SOLUTION PROCEDURES 

Despite the various improvements that can be made to the 'static solution procedure', 
it is worth re-emphasising that in many circumstances, the 'true solution' involves 
a combination of statics and dynamics. For example Figure 21.7a illustrates the 
dynamic snap, that would occur under load control for a simple 'snap-through' 
problem. When this observation is coupled with the difficulties that can accompany 
complex 'static path-following procedures', i t  is not surprising that a number of papers 
have recently considered a staticidynamic solution option [R2. S8]. Riks e t  d.[R2] 
also observe that, on some occasions, the real system will dynamically snap to a point 
that is statically separated from the original path. In other words, even if a static 
path-following technique could be used it  would lead to the wrong equilibrium state. 

Skeie e t  d.[SS] describe a dynamic procedure that they label as a 'Dynamic 
relaxation' algorithm with reference being made to the early work on dynamic 
relaxation by Day [Dl]. The latter is a form of iterative method for the solution of 
equations which has a close relationship with the 'explicit dynamics' solution pro- 
cedures (Section 24.5 and 24.6). However, Skeie et d.[S8]apply an 'implicit dynamics 
solution procedure' (Chapter 24) and hence the terminology may be a little confusing. 
The objective of the dynamic solution is to pass as quickly as possible to the next static 
solution and, to this end, Skeie et  d.[SS] adjust the mass proportional coefficient 
appearing in the Rayleigh damping so that they solve the dynamic equations: 

Mji + qMi, + g(p.A) = 0 ( 21.79) 

where g(p,A) is the usual static term. The coefficient q is obtained via: 

-, 21j: J APTKd,agAP 
APTMdlagAP 

(2  1.80) 

Here U! is considered to be an approximation to the lowest eigenfrequency of the 
structure. The calculation of uj is very similar to that described in more detail in 
Section 24.13 in relation to the computation of an automatically varying time-step 
for implicit dynamics. 

Riks et d.[R2] give no detail on the damping procedure but do describe the 
technique for implementing a static/dynamic/static solution algorithm. The 0bjectiL.e is 
to use existing static path-following techniques in combination with existing 'implicit 
dynamic solution procedures'. In relation to Figure 2 1.7b, the path-following tech- 
nique would be used until the singular point (here limit point) had been passed, i.e. until  
point B at which point the displacements would be pB.We could then 'home in' on the 
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Figure21.7 Statiddynamic solution procedure. (a) Static and dynamic paths; (b) solution 
strategy. 

limit point using, for example, the ‘bracketing technique of Section 2 1. I .  The dynamic 
stage of the solution would now be instigated via a restart. The initial conditions, would 
involve: 

(21.81) 
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For a limit point, there would seem to be no need to return to point A and one could 
replace the subscript A in the above by the subscript B relating to the point just beyond 
the limit point. In this way the bracketing procedure could be avoided. The dynamic 
algorithm would lead to a solution that oscillated, with decreasing amplitude due to the 
damping, about point C.  Riks u t a l .  [R2] recommend that this dynamic stage is 
terminated (at C’ in Figure 21.7b) when the kinetic energy is reduced below a certain 
quantity. At this stage, a restart would be used to implement a static-solution 
procedure with (;.+\,, pc.) as starting-points (i.e. the predictor) for a static Newton 
Raphson iteration which should converge on point C.  Further static path-following 
could not proceed up the path CD. 

The previous technique can also be used for symmetric bifurcations [R 13 although if 
we are restarting from an unstable point, i t  may be necessary to introduce a perturba- 
tion possibly via an initial velocity. Riks U [  d . [ R l ]  suggest that this can be used to 
speed up the dynamic part of the algorithm. The initial velocity would then take the 
form, pA= ;lz where the z is the eigenvector associated with the zero eigenvalue at the 
singularity (see Section 2 1.2). 

21.11 SPECIAL NOTATION (SEE ALSO SECTION 20.6) 

cil -1i3 see(21.67) 
c1 ,c2  see (21.67a), (21.63) 

d l  d,, ‘1, see (2 1.67) 
d - d ,  see (21.63), (21.64) 
~ ~ . t ‘ ~see (21.63) 

x = control parameter 
T = test function 
i.= load parameter scalar 
rl = line-search step length 

A s  = incremental control parameter 
s = energy slope- -see (21.56) 

AI = incremental length parameter 
p = nodal displacement vector 

Op = iterative nodal displacement vector 
Sp, = tangential displacement change-see (21.14) 
Opt = modified tangential displacement change---see (21.13) 
6p see (2 1.48) 

q external load vector 
v(b,a)  related to directional derivative see (20.69) 

z eigenvector of K,,  corresponding to lowest eigenvalue 

Subscripts 

e = external 
p = predictor or partial derivative in p 
i,= partial derivative E,. 
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22 Examples from an 

updated non-linear finite 
element computer 

program using truss 
elements 
(written in conjunction with Dr Jun Shi) 

In  Chapters 2,3 and 9 of Volume 1, we described a very simple non-linear finite element 
program involving a truss element and a linear spring which could be used to illustrate 
some of the fundamental structural problems including limit points and bifurcations. 
In  addition, the programs incorporated not only the basic predictor-corrector algo- 
rithms but also more advanced concepts such as line searches and arc-length methods. 
Fortran routines were included in the text and were originally also available on floppy 
disks although in later editions they were instead made available on anonymous FTP. 
The author and co-worker (Dr Jun Shi) have now up-dated this computer program so 
that it firstly encompasses multiple elements and secondly includes some of the branch 
switching techniques and further advanced solution procedures of the previous chapter 
(as well as a few others). 

While the resulting computer program is not large, i t  is inevitably significantly larger 
than that related to the initial volume. Consequently, we have decided not to include 
Fortran routines in the text, but rather to have them available on anomymous FTP (see 
the Preface). In  addition to the Fortran routines, an input manual and a set ofinput files 
and a few sample output files are provided. These files relate directly to a set ofexamples 
which will be described in this chapter. Some of these problems have been taken 
from earlier analyses by other authors including (Fl, P1, R1.21, S7.21. M2.211. The 
labelling of the data and output files relates directly to the section headings in this 
chapter. 

A number of the problems involve a range of singular points beyond the lowest point 
and, to that extent, are a little academic. The examples that illustrate the higher-order 
predictors and correctors of Sections 2 1.4and 2 1.5 should be considered as preliminary 
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in that, although they illustrate the performance of the methods, no attempt has been 
made to properly assess their efficiency in comparison with more traditional tech- 
niques. 

22.1 A TWO-BAR TRUSS WITH AN ASYMMETRIC 
BIFURCATION 

Figure 22.1 shows a simple two-bar truss with two free degrees of freedom (variables 
4 and 5 ) for which the response involves an asymmetric bifurcation (Figures 22.2 and 

I I =  1 I 

O6h-

Figure22.1 A simple asymmetrical bifurcation problem. 
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Figure22.2 Structural response of the two-bar truss: load versus horizontal displacement. 
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Figure22.3 Structural response of the two-bar truss: load versus vertical displacement 

22.3). Physically, the reason for the asymmetry is that the inclined bar gives a different 
response depending on whether the bar moves in an upward or downward direction. 

22.1.1 Bracketing 

The first stage is to use the bracketing techniques to identify and home in on the 
singular point. The type of bracketing technique is controlled by the input parameter 
IBRAC where the first five options relate to indirect methods as discussed in Section 
21.1. The following options are available: 

1. Bisection with the test function r =Dmin(referred to as PMIN or PIVS in the 
computer program). 

2. 0.618 Golden section with the test function z= Dmin. 
3. Interpolation based on 7 = determinant of K,. 
4. Interpolation based on product of D,,, (PIVB in the computer program) and Dmin 

(i.e. test function c of (21.1)). 
5. Interpolation based on Dmin(i.e. test function h of (21.l)). 

Alternatively, we can use the direct method of Section 21.6 or a combination of direct 
and indirect methods. In relation to the input parameter, IBRAC, these options are as 
follows: 

-6- Direct method of Section 2 1.6-Direct 2. 
6-Direct bracket using method 5 above until the first singular point is passed, 

followed by a switch to the direct method of Section 21.6--Direct I .  
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Two alternative 'semi-direct methods' are available in which, as discussed in Sec- 
tion 21.1 and in more detail in CS6.211, once bracketing has started, the equilibrium 
iterations are initially omitted and then phased in as the singular point is ap- 
proached. 

7 - A  semi-direct method using bi-section with the test function T = Dmin. 
- 7---The same semi-direct method using interpolation with T = Dmin. 

The data file for the current example is given below 

Data input file 22.1.I 

ANALYSIS W O  DIMENSIONAL 
1 
GENERAL DATA (NV,NE,NBCON,NLOAD,NMATE,NANIT,NDIM) 
6 2 3 1 0 0 2  
ITEYL,POSS,E,ANIT 

2 O . O D 0  1.OD7 O.ODO 
NODAL COOR. 
1,-0.7071067DO,-0.707 1067DO 2,0.ODO,O.ODO 3,1.ODO,O.ODO 
ELEM. COON. 
1 , l J  'L,2,3 
LOADINGS 
3 -1.oD6 o.oD0 
BOUNDARY COND. 
1,1,1 2,1,0 3,0,1 
OUTPUT VARJABLES 
2 4 5  
EARTHEDSPRINGS 
0 
FACI, NINC,IWRIT,IAUTO,JARC,ILOAD 
0.7DO40 0 1 0 1 
IACC,IRES,fBRAC,ICRIT,IBRSW,IROW 

0 0 1 1 0 0 
ICVC~B~K,ITER~,NITMAX,NLSMX,EPSI,SHIF 

1 1.OD-6 1 21  0 1.OD-4 O.OD0 
IDl3,FACMX,FACMN,ISH,ICORT,IPRED 
3 1.oDo 0 . 1 w  1 0 0 
CSllFS 
0.6DO 

~~ ~ ~ ~ 

data file for two-flexual-bar bar asymmetric bifurcation problem 
( 45 degrees inclination) 
pre-critical solution inl. bracketing 

This file relates to the bracketing option, IBRAC = 1. The user can simply change 
IBRAC in the file to implement the other options although it should be emphasised that 
the current very simple example is not ideal for comparing the different methods. 
A truncated output file is given below. 



385 A TWO-BAR TRUSS WITH AN ASYMMETRIC BIFURCATION 

Truncated output file 22.1.I 

No.OFVARlABLES = 6 
No.OFELEMENTS = 2 
P O I S O N  RATIO = 0 . 0 0 0 0 0 E + 0 0  

ELEMENTTYPE- 2 
1= GREENS !TITAIN; 
2 = ENGNG. STRAIN; 
3 = LOG m I N ;  
4 = LOG -IN WITH VOLUME CHANGES. 

ELEM No. NODAL No. LENGTH E INITIAL FORCE INITIAL AREA 

1 1 2 0 . 1 0 0 0 E + 0 1  0 . 1 0 0 0 E + 0 8  O.OOOOE+OO 0 . 1 0 0 0 E + 0 1  
2 2 3 0 . 1 0 0 0 E + 0 1  0 .1000E+08 0.0000E+00 0 . 1 0 0 0 E + 0 1  

NODALNo.  X Y Fx Fy BCx BCy 

1 -0.707E+00 -0.707E+OO 0.000E+000.000E+00 1 1 
2 0 . 0 0 0 E + 0 0  0 .000E+00 0 . 0 0 0 E + 0 0  0.000E+00 1 0 
3 0 . 1 0 0 E + 0 1  O.OOOE+OO -0.100E+07 0 . 0 0 0 E + 0 0  0 1 

RT O N  ERRORS IN INPUT 

!!!! N O  ERROR FOUND IN INPUT DATA: PART 1 !!!! 

N CON-

INCREMENTAL LOAD FACTOR = 0.70000 
NO. OF INCS. (NINC) = 40 
W R I T  = 0; 0 = LIMITED ; 1 = FULL 
l A U T 0  = 1; 0 = FIXED INCS., 1 = AUTOMATIC 
M C  = 0; 0 = LOAD CONTROL 1 = Crisfield CYLINDRICAL ARC-LENGTH CONTROL 

2 = R i b  ORTHORGONAL PLANE ARC-LENGTH CONTROL 
3 = R a m  UPDATED ORTHORGONAL PLANE ARC-LENGTH CONTROL 
4 = Fried ORTHORGONAL TRAJECTORY ARC-LENGTH CONTROL 
5 = R h e i n b o l d t  SPECIFIC DISPLACEMENT CONTROL 
6 = Powell  and S i m o n  INCREMENTAL WORK CONTROL 

ILOAD = 1; 1 = SLN. GUIDED BY CSTIFF.; 
2 = SLN. GUIDED BY NO. NEG. PIV.; 
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lACC = 0; 0 = NO ACCEL, 1 = ACCEL WITH MOD. N-R 
I R E  = 0; 0 = NOT A RE-START, 1 = IS A RE-START 
IBRAC = 1; 0 = NO BRACKETING, 1 = ORIGINAL BISECTION 

2 = 0.618 GOLDEN SECTION 
3 = INTERPOLATION BASED ON THE DETERMINENT 
4= ......................... PIVPPIVB 

5 = ......................... PMlN 

6 = AS 5;BUT ONCE ONLY THEN USE DIRECT COMP. 

-6 = DIRECT COMPUTATION OF SINGULAR PT 
7 = Riks's SEMI-DIRECTwith BI-SECTION 

-7 = .................with INTERPOLATION ON PMlN 

IBRSW = 0; 0 = NO BRANCHING, 1 = 1st EIGN-VECIDR INJECT. 

2 = USING 2nd ORDER TERMS 
3 = MULTlBlFUR WITH imulti LOWESTEIGEN-VEC.s 
4 = Seydel's APPROX. To THE 1ST EIGN-VEC. 
5 = Riks's ORTHOGANAL TO PRIMARY TANGENT 

ICRlT - 1; THE CRITICAL PT. NO. TO BE BRACKETED 
IROW = 0; ROW No. OF Kt REPLACED BY A UNIT VECTOR TO GJT Seydel's 

PREDICTOR FOR BRANCHING IF A B (  IBRSW) = 4 
D.O.F. TO BE FIXED I N  

DIRECT COMP. OF SINGULAR PT. IF ABS(1BRAC) - 6 

CONV. CONTR. TYPE,ICVCK = 1 
1 = RESlD-F SCALED BY EXTERNAL FORCE; 
2 = RESID-F SCALED BY REACTION; 
3 5 ITER. DISP. SCALED BY TOTOAL DISP 

CONV. TOL FACTOR, BETOK = 0.10000E-OS 
ITERATNE SOLN. TYPE, ITERTY = 1 ( 1 = FULL N-R; 2 = MOD. N-R ) 

MAX NO OF WERATIONS = 21 
MAX NO. OF L-SEARCHES = 0 

BRACKETING TOLERENCE EPSILON = 0.10000E-03 
SHIFT IN ElGEN ANALYSIS SHlF = 0.00000E+OO 

DATA FOR AUTOMATIC INCREMENTS 
DESIRED NO. OF ITERATIONS - 3 
MAX.LOAD INC. = 1.000 
MIN. LOAD INC. = 0.1000 
PARAM FOR ARC-L, IWCH = 1 ( O=NO SWITCH, OTHER-SWITCH TO CORRP. A-L) 
CORRECTOR TYPE, ICORT - 0 ( O=NORMAL, 1-2ND ORDER EXPLICIT, 2-IMPUCIT) 
PREDICTOR TYPE, IPRED = 0 ( 0-NORMAL., 1-2ND ORDER) 

SWITCHES TO ARC-L WHEN CSTIF < CSllFS 0.6000 

RT ON ER- IN INPUT DATA:PABT2_ 

!!!! NO ERROR FOUND IN INPUT DATA: PART 2 !!!! 

INCREMENT NO. = 1 

CURR. STIFF'. FAnOR = 0.1000E+01 NO. OF NEG. PIVOT 0 PIVOT RATIO = 0.1000E+01 
THE SMALLEST PIVOT = O.SOOOE+O~ THE LARGESTPIVOT = O . I O O O E + O ~  DETERMINENT = G.iooor:+o! 
AT THE D.O.F. = 4  ATTHE D.O.F. = 5 M l N M  PIV A I '  = 4 



-- -- -- -- - - - - --- ---- 

----- 

1 
2 
3 
4 
5 
6 

A TWO-BAR TRUSS WITH AN ASYMMETRIC BIFURCATION 387 

TOTAL LOAD FACTOR = 0.7000E+00 INC LOAD FACTOR = 0.7000E+00 INC LENGTH = 0.7000E-O 

TOTAL DISPS. AFTER TANG. SOLN. 
NODE No. u v NODE No. u v 

-__-__-_===I====- i =  E =------_-
1 0.000E+000.000E+00 2 0 .000E+00 0 . 0 0 0 E + 0 0  

FINAL TOTAL DISPL FINAL REACTION 
NODENo. 
-__= 

u 
= 

v 
P 

Fx Fy 

1 0.000E+00 0 .000E+00 O.OOOE+OO 0.000E+00 
2 0.000E+00 0 .000E+00 0.7 0 0 E + 0 6  0.000E+ 00 
3 -0.700E-01 0.000E+00 -0.700E+06 0 .000E+00 

INCREMENT NO. = 16 

CURR. STIFF. FACTOR = 0.1000E+01 NO. O F  NEG. PIVOT = 0 PIVOT RATIO = 0.3766E-04 
THE SMALLEST PIVOT = 0.7382E+02 THE IARGEST PIVOT = 0.1000E+08 DETERMINENT = 0.7382E-01 
A T  THE D.O.F. = 4 ATTHED.0.F. = 5 M l N M P N A T =  4 

SOW. FOR THE LOWEST EICNVALUES AND E I G N V E n O R S  : 

THE 1 s t  EICENVALUE 
ITER. N O  EX.EST. C O W .  FACT. 
-----E== lPIIIIPIP =========== 

1 0.738E+02 0 .100E+03 
2 0.738E+02 -0.738E-03 
3 0.738E+02 -0.385E-13 

X2 = -0.40221E-16 

D.O.F. W VECTOR EIGN. VECTOR(S) 
------------ ------_-- ---_-----------______- -_  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

0.000E+00 0.000E+00 
0.000E+00 0.000E+00 
0.000E+00 0.000E+00 
0.402E-16 0 .100E+01 

-0 .100E+00 0.402E-15 
0.000E+00 0.000E+00 
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B1 = 0.1414E+08 B2 --0.2250E+07 B3 =-0.1207E-09 64 =-0.4022E49 

ASYMMETRIC BIFURCATION 

X1 = 0.31819E+00 X2 = -0.32927E-16 

AT END OF RUN 
FACI = -0.4883E-03 FACMX - 0.1000E+01FACMN = O.lOOOE+OO INBR = 11 

!!!! NFEA EXECUTION COMPLETED !!!! 

In  the above, we have omitted the initial part of the file which simply 'echoes' the 
data input. At  the beginning of each increment, information regarding the structure 
stiffness is written to the output file. This is followed by the tangential predictor and the 
iterative history. At  the end of each increment, the converged displacements and 
corresponding internal forces are sent to the output file. If a more detailed output is 
required, this can be achieved by setting the input parameter IWRIT to 1. Because the 
bracketing flag (IBRAC) is non-zero, once a singular point has been found at the last 
increment, extra information regarding the type of singular point is output. In  
particular, the stability coefficients B,-B, (equations (20.41)--(20.44)) are computed so 
that (see Section 20.4), we can specify a limit point if B, # 0, a bifurcation point i f  B, = 0 
and an asymmetric bifurcation point if B ,  # 0. In the latter case(as here), we also output 
X ,  and X ,  from (20.58). In  addition, the output file specifies the eigenvector ( z , )  
associated with the lowest eigenvalue at the critical point and the number of bracketing 
increments (INBR). 

Plotfile 22.1.1 contains the load factors (A's) in the first column and the correspond- 
ing displacements at certain specified degrees of freedom (D0Fs)---here 4 and 5 (see 
Figure 22.1) 

Plotfile 22.7.7 

LOAD FACTOR DlSP AT D.O.F. = 
4 5 

0.70000000E+00 0.00000000E+00 -0.70000OO0E-0 1 
0.17000000E+01 0.00000000E+00 -0.17000000E+00 
0.27000000E+01 0.00000000E+00 -0.27000000E+00 
0.37000000E+O 1 0.00000000E+00 -0.3 7000000E+00 
0.32000000E+01 0.00000000E+00 -0.32000000E+00 
0.34500000E+01 0.00000000E+OO 4.34500000E+00 
0.33250000E+01 0.00000000E+00-0.33250000E+00 
0.33875000E+01 0.00000000E+00 -0.33875000E+00 
0.33562500E+01 0.00000000E+00-0.33562500E+00 
0.33406250E+01 0.00000000E+OO 4.33406250E+00 
0.33328125E+Ol 0.00000000E+00 4.333281 25E+OO 
0.33367 188E+01 0.00000000E+004.33367 188E+00 
0.33347656E+01 0.00000000E+00 -0.33347656E+OO 
0.33 3 3789 1 E+O 1 0.00000000E+00 -0.3333 789 1 E+OO 
0.33 3 3 3008 E+ 01 0.00000000E+00-0.333 3 3008E+00 
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Table 22.1 Number of bracketing increments for asymmetric bifurcation problem. 

Met hod 
~~~~~ 

Bisection Interp. on Interp.on Direct 1 Direct 2 
on Dmin determinant Dmin 

~ 

IBRAC 2 3 5 6 -6  
No of increments 11 4 4 3 5 

Despite the earlier reservation regarding the relevance of the current example, it is 
worth tabulating and discussing the bracketing performance with different bracketing 
options. 

In Table 22.1, the number of increments are from the point when bracketing 
commenced. A number of additional increments (between two and three) were applied 
prior to this bracketing. I n  relation to the direct methods, the numbers given in the 
table are ‘iterations’ rather than increments. For the indirect methods, iterations are 
required during each increment, and it follows that the direct methods were inore 
efficient at finding the asymmetric bifurcation point. We will see later that it is 
advantageous to adopt direct method 1 rather than direct method 2 (see Section 22.1) 
when the problems include more than one singular point. 

Clearly, interpolation on either the determinant or the minimum pivot is more 
efficient than the bisection method. In general, interpolations are superior to the 
bisection method if the singular point is simple. I t  should be emphasised that the 
number of bracketing steps depends strongly on the specified bracketing tolerance 
(EPSI). 

22.1.2 Branch switching 

After bracketing, we can either use eigenmode injection (Section 21.2) or the tangents to 
the secondary path (Section 21.3).This is achieved by ‘restarting’ from the bifurcation 
point. The ‘restart output file’, REOUT, generated at the end of the bracketing takes the 
form: 

Reout file 22.1.1 

Do PIVRO PMINO S n F l  PIVMINI CSTIFO X 1  FACT NEGO IMULT
0 . 1 0 0 0 E 1 1  0 . 5 0 0 0 E 1 4  0 . 5 0 0 0 E 0 7  0 . 1 0 0 0 E + 0 8  0 . 1 9 6 0 E 0 7  O.IOOOEO1 0 . 3 1 8 2 E 0 0  0 . 3 3 3 3 3 E 0 1  1 1 
N E  A N  ALN A R N  

1 0 . 0 0 0 0 E + O O  0 . 1 0 0 0 E + 0 1  0 . 1 0 0 0 E + 0 1  
2 4 . 3 3 3 3 E + 0 7  0 . 6 6 6 7 E + 0 0  0 . 1 0 0 0 E + 0 1  

N O D E  PI’ W DT Z l ( s )  
1 0.0000E+OO O.OOOOE+OO 0 . 0 0 0 0 E + O O  O.OOOOE+OO 
2 O.OOWE+OO O.OOWE+OO 0 . 0 0 0 0 E + 0 0  0 . 0 0 0 0 E + 0 0  
3 0 . 0 0 0 0 E + 0 0  0 . 0 0 0 0 E + O O  0 . 0 0 0 0 E + O O  0 . 0 0 0 0 E + 0 0  
4 O.M)OOE+OO 0 . 2 0 3 0 E - 2 0  0 . 0 0 0 0 E + O O  0 . 1 0 0 0 E + 0 1  
5 - 0 . 3 3 3 3 E + 0 0  - 0 . 1 0 0 0 E + 0 0  - 0 . 1 0 0 0 E + 0 0  0 . 2 0 3 0 E - 1 9  
6 0 . 0 0 0 0 E + 0 0  O.OOOOE+OO 0 . 0 0 0 0 E + 0 0  0 . 0 0 0 0 E + 0 0  
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6 0.0000E+00 O.OOOOE+OO 0.0000E+00O.OOOOE+OO 
DERT PNR PMIN MOD N P N  
1.425 0.2850E-03 -0.3003E02 3.340 1 

0.1425E-02 0.2850E-06 0.2850E-06 3.333 0 

0.1425E-05 0.2850609 0.2850E-09 3.333 0 


I t  contains all of the information from the last ‘restart write’. The first line gives 
information regarding the stiffness at the initial (undeformed) and final loaded states. 
Here: 

DO = det(K,)--at the initial state 
PIVRPO = the product of the smallest and largest pivots (still at the initial state). 

PMINO = the smallest pivot of K, at the start of the solution. 
STIFl = the scaling factor for the current stiffness parameter (denominator in 

(9.43)of (9.44)). 
PIVMINI = the smallest pivot just before bracketing starts. 
CSTIFO = the initial current stiffness parameter. 

XI = coefficient for the tangent of the secondary path (from 20.58)) 
FACT = the total load factor ( A )  at the end of the last run. 

NEGO = the number of negative pivots at the end of the last run. 
IMULTI = the multiplicity of the bracketed singular point (i.e. number of zero 

pivots). 

For each member, the current internal force (AN), element length (ALN) and area 
(ARN) are also saved. In  addition, we have the predictor tangential displacement 
vector,6p,(see(21.14)and labelled DT), theeigenmode,z,,and the vector y(see(21.15) 
and labelled YY). 

The last three lines of data in REOUT is provided for the last three increments so that 
i t  can be used to continue bracketing from a restart. To initiate such a ‘restart’, one first 
copies REOUT to REIN. In addition, one must provide a different control data in the 
input file. To branch switch for the current problem one can use the data file 22.1.2. The 
control data block is shown in Data Input file 22.1.2. 

Da fa input file 22.I .2 

.............................. 

FACI,NINC,TWRIT,LAUTO,WPC,ILOAD 

0.7DO40 0 1 1 2 
IACC,f~,IBRAC,ICRIT,fBRSW,,IROW 
0 1 0 0 2 0 

ICVCK,BETOK, ITERTY,NITMAX,NLSMX,EPSI, SHlF 
1 0.1D-81 21  0 1.OD5 o.oD0 
IDES,FACMX,FACMN,ISWCH,ICORT,IPRED 

3 1.oDo 0.1w 0 0 0 
DLDES,DLDMX,DLDMN 

1.OD-1 2.OD-1 1.OD-2 
__.-----------

data file for two-flexual-bar bar asymmetric bifurcation problem 
(post-critical solution) 
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Table 22.2 Branching residuals for asymmetric bifurcation problem. 

Method IBRSW 
~~~~~~ 

Predictor First iteration 

Eigenmode injection 1 0.3874E-1 0.2417E-4 
Path tangents 2 0.2600E-1 0.6057E-5 

The main difference from the previous pre-critical data file (22.1.1) is that now 
IBRAC = 0 and IBRSW # 0. Also, IRES = 1 and IARC = 1.  (Branch switching is 
always initiated with a restart using 'arc-length control'.) To follow the two parts of the 
secondary path (see Figure 22.2 and 22.3), one needs to use (separately) IBRSW as 
positive and negative. The last row of control data in file 22.1.2 is important for the 
success of the branching because too small a length AI (DLDES) will lead to the 
solution reverting back to the primary path, while if the length is too large, convergence 
difficulties may result. This is particularly true for large systems. 

Either eigenmode injection (IBRSW = 1 and Section 21.2) may be used, or alterna- 
tively one may utilise higher-order information regarding the tangent to the secondary 
path (IBRSW = 2  and Section 21.6). Although the present example involves an 
asymmetric bifurcation, for the current problem there is little difference in the resulting 
numerical performance between the two methods. Table 22.2 compares the residual 
force norm scaled by the external forces at the end of the predictor solution and the first 
iteration. Clearly these results depend on the selected length increment, Al. The 
computed results for the post-bifurcation analyses are plotted in Figures 22.2 and 22.3. 

t4  
. I I 

Figure 22.4 The von Mises truss. 
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22.2 THE VON MISES TRUSS 

The truss is shown in Figure 22.4 and has two degrees of freedom (variables 3 and 4). 
The response involves both a limit and a bifurcation point (Figures 22.5 and 22.6) and 
the analytical results are obtained from CR1.211. 

5.000 

4.000 

3.000 

2.000 
Vertical displacement 

1.000 
x 
g 

- 3  
0.0 

-1.000 

c 
0lu 
U 
-
4 

-2.000 

-3.000 

-4.000 

-5.000 

Figure22.5 Structural response of the von Mises truss: load versus vertical displacement. 
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Figure22.6 Structural response of the von Mises truss: load versus horizontal displacement. 
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22.2.1 Bracketing 

The data file for bracketing on the first singular point (the bifurcation point) is given in 
Input Data file 22.2.1. 

Input data file 22.2.1 

ANALYSISTWO DIMENSIONAL 
1 

GENERAL DATA (NV,NE,NBCON,NLOAD,NM,NANIT,NDIM) 

6 221002 

ITEYL,POSS,E, ANlT 

1 O.OD0 1.OD7 O.OD0 
NODAL COOR. 

1,-0.1736481DO,O.ODO 2,0.0D0,0.9848077DO 3,0.1736481DO,O.ODO 

ELEM. CONN. 
1,1,2*2,2,3 

LOADINGS 

2,0.ODO,-1
.OD6 

BOUNDARY COND. 

1,1,1 3,1,1 
OUTPUT VARIABLES 
2,3,4

EARTHED SPRING 

0 

FACI, NINC,IWRIT,LAUTO,IARC,ILOAD 

0.2Do40 0 1 0 1 

IACC,IRES,IBRAC,ICRIT,IBRSW,IROW 

0 0 1  1 0 3 

ICVCK,BETOK,ITERTY,NITMAX,NLSMX,EPSI,SHIF 
1 1.OD-10 1 21 0 1.OD-4 O.ODO 
IDES,FACMX,FACMN,ISWCH,IPRED,ICORT 

3 5.OD-1 0.1DO 0 0 0 

CSTIFFS 
0.8LM 

DLDES,DLDMX,DLDMN 

5.OD-21.OD-1 1.OD-2 

input datafile for 2D-two-bar-system (Von Mlses' Truss) 
precritical solution inl. bmcketing 
(80 degrees inclination) 

If one wishes to home in on the second singular point (limit point), the input data 
parameter ICRIT would be changed from 1 to 2. To introduce bracketing on to 
singular points beyond the first, very simple changes have been made to the theory in 
Section 21.1. For these methods to work, the increments must be such that not more 
than one singular point is passed in a particular increment. Considering the first 
singular point, the number of bracketing increments is given in Table 22.3. 

For this problem, the indirect bracketing results depended on the specified equilib- 
rium convergence tolerance, BETOK. A loose tolerance (BETOK = 10 ") led to 
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Table 22.3 Number of bracketing increments for von Mises truss. 

Method Bisection Interp. on Interp. on Direct 1 Direct 2 
on Dmin determinant Dmin 

IBRAC 2 3 5 6 - 6  
No. of increments 13 3 3 4 4 

a failure in the bracketing procedure because the number of negative pivots was 
wrongly assessed. However, a tighter tolerance (10 *') overcame this problem and 
gave the results shown in Table 22.3. 

For direct bracketing, we can apply the constraint on the eigenmode(2 I .47c) with the 
parameter k being input as either 3 or 4 (Figure 22.4) as these are the only free variables. 
As anticipated, with k =3 we converge on to the bifurcation point while if k =4, we 
converge on to the limit point. Clearly some engineering pre-knowledge is very 
beneficial! (Note. If K is set to zero then the program implements the procedure 
discribed below (21.47c), where K corresponds to the variable with the smallest point 
once the singular point has been passed.) 

22.2.2 Branch switching 

To 'branch-switch' from the bifurcation point, file REOUT is copied to file REIN and 
the data file 22.2.2 (control section given in Input Data file 22.2.2) will lead to 
a successful switching using eigenmode injection (Section 21.2 and IBRSW = 1). 

Input Data file 22.2.2 

.................................. 

FACI, NINC,lWRIT,IAUTO,IARC,ILOAD 
1 . o w  2s 0 1 1 1 
LACC,IRES,IBRAC,ICRIT,f~~,IROW 

0 1 0 0 1 0 
ICVCK,BETOK, ITERTY, N ITMAX, NLSMX,EPSI,SHIF 
1 1.OD-3 1 21 0 1.OD-5 O.ODO 
IDES,FACMX,FACMN,ISWCH,IPREDIICORT 

4 1.oDo 0.1Do 0 0 0 
DLDES, DLDMX,DLDMN 
4.OD-2 1SD-1 1.OD-3 
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Plots of the load parameter against the horizontal and Lrertical deflections are given in 
Figures 22.5 and 22.6 respectively. 

22.3 A THREE-DIMENSIONAL DOME 

The dome is shown in Figure 22.7 and is loaded with a set of point loads in the three 
directions (Figure 22.7). At the central node, this load is - i ,  while at each of the six 
nodes the circular ring of diameter 50 (Figure 22.7), the loads are - 1 .  The response 
involves four singular points of which three are bifurcation points (including tn'o 
double bifurcations) and a limit point on the primary path (Figure 22.8). 

6.27.77 

EA= 104111
86.6 


Figure 22.7 Three-dimensional dome. 
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Figure22.8 Structural response of the dome: load versus vertical displacement at the apex. 
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22.3.1 Bracketing 

The singular points are fairly closely spaced (il= 8.68, i.,, = 10.26, i,, = 15.67, 
i., = 18.40).To avoid overstepping, the initial load step was taken as 3 and subsequent 
increments as 1.  The input for the computation of the first critical point (a bifurcation 
point) is given in Input Data file 22.3.1. 

Input data file 22.3.1 

ANALYSIS THREE DIMENSIONAL 
0 
GENERAL DATA (NV,NE,NBCON,NLOAD,NMATE,NANIT,NDlM) 
39 2 4  6 7 0 0,3 
I".$oSS, E,AN IT 
2 O.@DO 1.OD4 O.OD0 
NODAL COOR. 
1 0-ODO, O.OD0,8.2 16D0 2 2.5D1, O.OD0,6.216DO 
3 1.25D1,-2.165063 5D 1,6.2 16DO 4 -1.25D1,-2.1650635D1,6.216D0 
5 -2.5D1, O.OD0,6.216DO 6 -1.25D1, 2.1650635D1,6.216DO 
7 1.25D1, 2.1650635D1,6.216DO 8 4.330127D1, -2.5D1,O.ODO 
9 O.ODO, -5.OD1,O.ODO 104.330127D1,  -2.SD1,O.ODO 
114.330127D1,  2.5D1,O.ODO 1 2  O.OD0, S.OD1,O.ODO 
13 4.330127D1, 2.SD1,O.ODO 
ELEM. CONN. 
1,1,2 2,1,3 3,1,4 4,1,5 5,1,6 6,1,7 
7,2,3 8,3,4 9,4,5 10,5,6 11,6,7 12,7,2 
13,3,8 14,3,9 15,9,4 16,10,4 17,10,5 18,5,11 
19,11,6 20,6,12 21,12,7 22,7,13 23,13,2 24,2,8 
LOADINGS 
l,O.ODO,O.OD0,-0.5M3 2,O.ODO,O.ODO,-1.ODO 3,0.0DO,O.OW,-1.ODO 
4,0.0DO,0.0DO,-1.0DO S,O.ODO,O.ODO,-1.ODO 6,0.0DO,0.0W,-1.0DO 
7,O.ODO,O.ODO,- 1.ODO 
BOUNDARY COND. 
8,1,1,1 9,1,1,1 l O , l , l , l  11,1,1,1 12,1,1,1 13,1,1,1 
OUTPUT VARIABLES 
1,3 
EARTHED SPRING 
0 
FACI, NI NC,IWRIT,IAUlD,IARC,ILOAD 
3.0DO 2 0  0 1 1 1 
IACC,IRES, IBRAC,f C m ,IBRSW, IROW 
0 0 1 1 0 8 
ICVCK,BIXIK,ITERTY,NITMAX,NLSMX,EPSI,SHIF 
1 i.OD-6 1 40 0 1.OD-3 0.ODO 
IDES,FACMX,FACMN,ISWCH,ICORT,IPRED 

3 1.oDo 1.oDo 1 0 0 
CSllFFS 

0.6DO 
DLDES DLMAX DLMIN 
0Sd0 l.Od0 O.ld0 

input  datafile for 3DTruss-Dome 
pre-critical solution 
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Table 22.3 Number of bracketing increments for first bifurcation point (ICRIT= 1) with three- 
dimensional dome. 

Method Bisection Interp. on Interp. on Direct 1 Direct 2 
on Dmin determinant Dmin 

IBRAC 2 3 5 6 - 6  
No. of increments 9 6 5 4 12 

(limit pt) 

Table 22.4 Number of bracketing increments for second bifurcation point (ICRIT=2) with three- 
dimensional dome. 

Method Bisection Interp. on Interp. on Direct 1 Direct 2 
on Dmin determinant Dmin 

IBRAC 2 3 5 6 -6  
No. of increments 5 Failed 6 5 12 

(limit pt) 

In  Table 22.3, the number of bracketing increments is given. Here the direct method 
2 (with no prior incrementation) iterates on to the limit point rather than the 
bifurcation point (when k is set to zero. For the same reason, one must ensure that the 
increment sizes are small enough to avoid an overstepping of two singular points in one 
increment. 

When ICRIT is set to 2, we attempt to bracket the second bifurcation point (which is 
a double symmetric bifurcation point) and the response is summarised in Table 22.4. 

Because of the double nature of the bifurcation point, the interpolation methods are 
not necessarily always interpolating on to the same (of the two) negative pivots and the 
interpolation methods turn out to be inferior to the bisection method. Because, for this 
example, the nullity is even, the determinant does not change sign so that the method 
using the determinant as the test function (IBRAC =3) failed. 

The performance of the interpolation methods deteriorated even further when we 
attempted to compute the third bifurcation point. There are now a maximum of five 
negative pivots and the program found this so confusing that indirect bracketing failed 
even for pivot-based interpolation. This third bifurcation point (ICRIT =3) is also 
‘double in nature’ so that determinant-based interpolation again failed. The direct 
method 2 always converges on the limit point if k in (21.47~) was set to 3 .  However, if k is 
set to any other value, we obtain different singular points and, in some cases, the third 
bifurcation point. 

22.3.2 Branch switching 

Branch switching at the first (single) bifurcation point is simple (IBRSW = & 1). 
However, for the second and third double bifurcation points (IBRSW = _+ 3), a lot of 



398 UPDATED NON-LINEAR FINITE ELEMENT COMPUTER PROGRAM 

Table 22.5 Branching inputs for three-dimensional dome. 

First bifurcation pt 
Second bifurcation pt 

2.0 
1.O 

0.0 
0.0 

1.0 
1.O 

0.0 
5.0 

1.0 0.0 0.2 1.0 
Third bifurcation pt 1.O 0.1 0.2 1.O 

1.0 0.0 0.1 5.0 

‘fine tuning’ needs to be performed to find the weighting parameters Ci’s (multiples of 
the eigenmodes) and step lengths, Al. In  these circumstance, instead of using (21.7) as 
the predictor, we set: 

App = coy + <,it l  + ; Z Z ~  + (22.1)
* * a  

with ;o, <,.etc. are weighting factors and, following (22.l), App is then scaled to be of 
length AI = DLDES. 

For each of the double bifurcation points, two sets of constants are required for the 
two bifurcated branches. These constants should be added at the end of the REIN file in 
the form: 
.......... 

AMPS FOR MULTIPLE BIFURCATION PUT BELOW:[o,<l,iZ *. .  
O.ODO 1.ODO 5.ODO 

The employed constants are given in Table 22.5. 
The response in terms of the load against the vertical displacement at the apex is 

given in Figure 22.8. 

22.3.3 The higher-order predictor 

We have also used this problem to t ry  out the predictors using higher-order derivatives 
(Section 21.4). Considering the initial loading of the dome, with IBRAC=O (no 
bracketing), we could apply load control (IARC = 0) with the ‘higher-order predictor’ 
(IPRED = 1)  via Data File 22.3.3a (only the control section is shown here). 

Data file 22.3.3a 
........................... 

FACI, NINC,IWRIT,IAUTO,IARC,ILOAD 
3.0DO 2 0 1 0 1 
IACC,IRES,IBRAC,ICRIT,IBRSW,IROW 

0 0 0 4 0 8 

ICVCK,BERlK,ITERTY,NITMAX,NUMX,EPSI,SHlF 
1 1.OD-6 1 40 0 1.OD-3 O.ODO 
IDES,FACMX,FACMN,IW C H,ICORT,IPRED 
3 1.ODO 1.ODO 1 0 1 
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CSllFFS 
0.6DO 
DLDES DLMAX DLMIN 
OSdO 1.OdO O.ld0 

input damfile for 3D-Truss-Dome 
precritical solution 

The conventional (Euler) predictor would be obtained by setting IPRED=O. For the 
first step, the convergence history for the latter is given in Table 22.6. In contrast, if we 
set IPRED = 1, and use the method of Section 21.4, the convergence history is as given 
in Table 22.7. At  the end of the predictor phase (iteration number 0),the higher-order 
predictor has led to a convergence factor (0.006846) that is significantly smaller than 

Table22.6 Convergence history for first step analysis of a three- 
dimensional dome using Euler predictor (load control). 

Iteration Convergence Total potential Strain 
no. factor energy energy 

0 (predictor) 0.5879E-1 -1.733 1.626 
1 0.6324E-3 -1.738 1.801 
2 0.2895E-11 -1.738 1.801 

Table22.7 Convergence history for first step analysis of a three- 
dimensional dome using higher-order predictor (load control). 

Iteration Convergence Total potential Strain 
no. factor energy energy 

0 (predictor) 0.6846E-2 -1.738 1.778 
1 0.6324E-3 -1.738 1.801 
2 0.2895E-11 -1.738 1.801 

Table22.8 Convergence history for first step analysis of a three- 
dimensional dome using Euler predictor (Arc-length control). 

Iteration Convergence Total potential Strain 
no. factor energy energy 

0 (predictor) 0.6531 E-1 -2.150 2.002 
1 0.4647E-3 -1.922 1.997 
2 0.6339E-7 -1.923 1.997 
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that at the end of the equivalent Euler predictor (0.05879). Instead, we may use 
arc-length control with the following data file relating to the higher-order predictor. 

Data file 22.3.3b 

......................... 

FACI, NINC,IWRIT,IAUTO,IARC,ILOAD 
3.0W 2 0 1 1 1 
IACC,IRES,IBRAC,ICRIT,IBRSW,IROW 

0 0 1 4  0 8  
ICVCK,BEIY)K, ITER7Y,NITMAX,NLSMX,EPSI,SHI F 
1 1.OD-6 1 40 0 1.OD-3 O.ODO 
IDES,FACMX,FACMN,ISWCH,ICORT,IfRED 

3 1.OW 1.ODO 0 0 1 
DLDS DLMAX DLUIN 
O.SdO 1.OdO0.1dO 
CSTIFFS 

0.6DO 

input datafile for 3D-Truss-Dome 
pre-cri tical s o htion 

With the Euler predictor (data as above, but with IPRED =0),the convergence history 
is as given in Table 22.8, while with the higher-order predictor, i t  is as given in 
Table 22.9. Again, the higher-order predictor leads to a significantly lower convergence 
factor following the predictor solution. 

22.3.4 The higher-order correctors 

We have also used this example to apply the higher-order correctors (Section 21.5). 
Using load-control (IARC =O), the data for the conventional Newton Raphson 
iteration (ICORT =0)was already given as Data file 22.3.3a and the iterative perform- 
ance was given in Table 22.6. If we apply the ‘explicit higher-order corrector’ (see 
Section 21.5). we require Data file 22.3.4. 

Table22.9 Convergence history for first step analysis of a three- 
dimensional dome using higher-order predictor (Arc-length control). 

Iteration Convergence Total potential Strain 
no. factor energy en-gy 

0 (predictor) 0.7780-2 -1.930 1.997 
1 0.501OE-6 -1.923 1.997 
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Data file 22.3.4 
............................... 

FACI, NINC,IWRIT,IAUTO,IARC,lLOAD 

3.ODO 1 0 1 0 1 
IACC,IRES,IBRAC,ICRIT,IBRSW,IROW 

0 0 0 3  0 8  

ICVCK,BETOK, ITER~,NITM~,N~MX,€~s~,SHIF 
1 1.OD-10 1 40 0 1.OD-2 O.ODO 
IDES,FACMX,FACMN,ISWCH,ICORT,IPRED 

3 1.ODO 1.OD-1 0 1 0 
DLDES DLMAX DLMlN 
O S d O  1.0d0 O.ld0 
CSTlFFS 
0.6DO 

input datafile for 3D-Truss-Dome 
pre-critical solution 

Here ICORT = 1 and we have also specified EPSI. This governs the convergence of the 
inner loop (Section 21.5) which is assumed to have converged when the Euclidean norm 
of bp from (21.43a) is less than EPSI times the Euclidean norm of Ap from (21.42). The 
current problems were run with EPSI = 10-2, lO-'and 10-'and i t  was found that the 
outer convergence rate was not greatly affected by increasing EPSI above 10 ',even 
although this led to a greater number of inner iterations. A conventional Euler 
predictor was used and, with EPSI set to 1 O V 2 ,  only one iteration took place for each 
outer iteration and the performance of the outer iterations is detailed in Table 22.10. 

When ICORT is changed to 2, we introduce the implicit higher-order corrector of 
Section 21.5. Again EPSI was set to 10-2and there was one inner iteration per outer 
iteration. Table 22.1 1 details the convergence characteristics of the outer iteration. 
There is little difference between the performance of the explicit and implicit methods. 
However, the reader will find that if the inner loop tolerance (EPSI) is tightened, the 
implicit method gives a faster convergence rate. However, this is at the cost of 
significantly more work per inner iteration. 

The arc-length method may be introduced by changing IARC to unity. Using the 
conventional Newton-Raphson method, the input data file has already been given 
(Data file 22.3.3b) and the convergence characteristics have been detailed in Table 22.8. 
For the explicit corrector (with ICORT = 1 )  the convergence characteristics (relating to 

Table 22.10 Convergence history for first step analysis of a three-
dimensional dome using explicit higher-order corrector (ICORT = 1) 
(load control). 

Iteration Convergence Total potential Strain 
no. factor energy energy 

0 (predictor) 0.5879E-1 -1.733 1.626 
1 0.1096E-4 -1.738 1.801 
2 0.2899E-13 -1.738 1.801 
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Table 22.11 Convergence history for first step analysis of a three- 
dimensional dome using implicit higher-order corrector (ICORT =2) 
(load control) 

Iteration Convergence Total potential Strain 
no. factor energy energy 

0 (predictor) 0.5879E-1 -1.733 1.626 
1 0.5739E-5 -1.738 1.801 
2 0.4637E-14 - 1.738 1.801 

Table 22.12 Convergence history for first step analysis of a three- 
dimensional dome using explicit higher-order corrector (arc length). 

Iteration Convergence Total potential Strain 
no. factor energy energy 

0 (predictor) 0.6531 E-1 -2.150 2.002 
1 0.14446-4 -1.932 1.997 
2 0.2927E-14 -1.923 1.997 

Table 22.13 Convergence history for first step analysis of a three- 
dimensional dome using implicit higher-order corrector (arc length). 

~ 

Iteration Convergence Total potential Strain 
no. factor energy energy 
~~~ 

0 (predictor) 0.6531 6-1 -2.150 2.002 
1 0.1594E-5 -1.923 1.997 
2 0.1 260E- 1 4 -1.923 1.997 

the outer iteration) are given in Table 22.12). while for the implicit corrector (with 
ICORT = 2). they are given in Table 22.13. 

22.3.5 Line searches 

Using load control with a very large load increment (A;. = FACI = 12), without 
line-searches (NITMAX = 0), the program fails to converge within the specified 
maximum number of iterations ( 15). (The relevant data is on Data File 22.3.5a.) As an 
exercise, we will introduce line searches, using a very tight tolerance (see the following 
section from the Data Inut file 22.3.5b). 



A THREE-DIMENSIONAL DOME 403 

Data input file 22.3.5b 

FACI, NINC,IWRIT,IAUTO,IARC,lLOAD 
12.0Do 1 0 1 0 1 
IACC,IRES,IBRAC,ICRIT,IBRSW,
IROW 
0 0 0 4  0 8  

ICVCK,BWK, ITERn,NITMAX,NLSMX,EPSI,SHlF 
1 1.OD-4 2 IS 15 1.OD-3 O.OD0 
lDES,FACMX,FACMN, ISWCH ,ICORT,IPRED 
3 4.ODO 4.ODO 1 0 0 
DLDES DLDMAX DLMIN 
O.DO 0.DO O.DO 
PERMLS AMPMX ETMXA ETMNA 
0.5D-4 5.OW 25.DO 0.01DO 
CSTIFFS 

0.6DO 

input damfile for 3DTruss-Dome 
testing of line search 

Table 22.14 Extract of line-search response for analysis of three-
dimensional dome (load control). 

Line search Potential Strain Energy change Step 
no. energy energy ratio length 

0 -31.90 39.35 -0.7486 1.o 
1 -31.90 39.30 -0.435E-2 0.571 9 
2 -31.90 39.30 -0.251 E-4 0.5694 

IThe prog am now converges in eight iterations onto a point on the unstable primar 
path past the first two bifurcation points. To illustrate the line-search characteristics, in 
Table 22.14 we detail the line-search response for the third iteration. 

The energy change ratio in Table 22.14 is s(q)/s()~=O)-see (9.8)--(9.11) and (21.57). 
If the cylindrical arc-length method is applied and no line searches are introduced, 

we merely change IARC in Data File 23.3.5b to 1. This process leads to 13 iterations for 
convergence. A section of the input file is given below: 

Data input file 22.3.5~ 

FACI, NI NC ,I WRIT,I AUT0,I ARC ,I LOAD 
12.ODO 1 0 1 1 1 
IACC,IRES,IBRAC,ICRIT,IBRSW,IROW 

0 0 0 4  0 8  
ICVCK,BETOK,JTERTY,NITMAX,NISMX,EPSI,SHlF 
1 1.OD-4 2 15 0 1.OD-3 0.0DO 
IDES,FACMX,FACMN,ISWCH,ICORT,IPRED 

3 4.ODO 4.ODO 1 0 0 
DLDES DLDMAX DLMIN 
O.DO O.DO O.DO 
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As an exercise, line searches are introduced with a very tight tolerance 
(PERMLS = 0.5 x 10- ") in the Data Input file 22.3.5d of which the section relating to 
line searches is given below: 

Data input file 22.3.50' 

FACI, NINC,IWRIT,IAUTO,IARC,ILOAL) 
12.0Do 1 0 1 1 1 
IACC,IRES,IBRAC,ICRIT,IBRSW,IROW 

0 0 0 4  0 8  
ICVCK,BE?DK, ITER~,NITMAX,NLSMX,EPSI,SHIF 
1 1.OD-4 2 15  15  1.OD-3 O.OD0 
IDES,FACMX,FACMN,ISWCH,ICORT,IPRED 

3 4.ODO 4.0DO 1 0 0 
DLDES DLDMAX DLMIN 
O.DO O.DO 0.DO 
PERMLS AMPMX ETMXA ETMNA 
0.5D-4 5.OW 25.M 0.01W 
CSTIFFS 
0.6DO 

The number of iterations is now reduced from 13 to 4, but a lot of extra residual 
computations are required in relation to the line searches. None the less the exercise 
does show that the method of Section 21.7.2 will successfully apply the line-search 
concept. As an illustration, Table 22.1 5 details the line-search characteristics on the 
second iteration. 

When a 'slack tolerance' is introduced with PERMLS = 0.4 (Data File 22.3.5e),the 
line searches are more usefully employed with the total number of iterations being five 
with only three extra residual calculations as a result of the line searches. 

Table 22.15 Extract of line-search response for analysis of three-
dimensional dome (arc-length control-IARC = 1). 

Line search Potential Strain Energy change Step 
no. energy energy ratio length 

-19.99 23.27 -0.5388 1.o 
-19.99 23.27 0.21 5E-3 0.6498 
-19.99 23.27 -0.1 076 0.71 99 
-19.99 23.27 -0.21 3E-1 1.6639 
-19.99 23.27 -0.409E-2 0.6526 
-19.99 23.27 -0.647E-3 0.6504 
-19.99 23.27 -0.234E-9 0.6500 
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22.4 A THREE-DIMENSIONAL ARCH TRUSS 

Figure 22.9 shows the arch truss that has several singular points including four 
bifurcation points. There is a limit point at 1. = 99.26 and two bifurcation points before 
the limit point (2 = 12.28 and = 69.13) and two bifurcation points beyond the limit 
point (i= 91.05 and i= 22.94). The computed relationships between the load and the 
three deflections at one of the top nodes under the vertical loading are shown in Figures 
22.10,22.11 and 22.12 where we have only plotted the post-buckling path for the first 
bifurcation point beyond the limit point (A= 91.05). All of the bifurcation points are 
‘simple’ and, as a result, there are no particular, difficulties either in ‘bracketing’ or 
‘branch switching’ (except at the last bifurcation point (i= 22.94) from where i t  is 
difficult to follow the whole secondary path). 

As with the previous dome, care must be taken to ensure that the increment size is 
small enough so that no more than one singular point is passed in one increment. The 
adopted branching step lengths (AI = DLDES) for the first three bifurcation points 
were 1.0. 2.0 and 0.5 respectively. 

1004 

A 4 
I100 

Figure 22.9 Three-dimensional arch truss. 
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At the first bifurcation points (2  = 12.28)’the structure buckles in the ~ $ 2plane(Figure 
22.12) with no displacements in the x-direction: at the second (;I= 69.13) and third 
(2=99.105) bifurcation points, it buckles in the x z  plane (Figure 22.1 1 )  so that the 
ji-displacements are symmetric at the top nodes. In understanding Figures 22.1 1 and 
22.12, it is worth noting that there are no x-direction displacements on the primary 
path while there are equivalent (non-linear) y-displacements. 

A data file for ‘bracketing’ on to the first bifurcation point is given below: 

Input data file 22.4a 

ANALYSIS THRE DIMENSIONAL 
1 
GENERAL DATA (NV,NE,NBCON,NLOAD,NITE,”IT,NDIM) 
18  9 4 2  0 0  3 
ITEYL,POSS,E,ANIT 
2 O.ODO 1.OD4 O.ODO 
NODAL COOR. 

1 ,-2 .ODO,O.ODO,O.ODO 2 ,O.ODO,O.ODO,S .ODO 3,2 .ODO,O.O D0,O.O DO 
4,-2 .OD0,2 .ODO,O.ODO 5,0.OD0,2.OD0,5.ODO 6,Z.OD0,2.0DO,O.ODO 

ELEM. CONN. 
1,1,2 2,2,3 3,1,5 4 ,2 ,4  5,2,5 6,2,6 7,3,5 84,s 9,5,6 

LOADINGS 

2,0.ODO,O.ODO,- 1 .OD2 S,O.ODOIO.ODO,-l .OD2 
BOUNDARY COND. 

1,1,1,1 3,1,111 4,1,1,1 6,1,1,1 
OUTPUT VARIABlE 

6,4,5,6,13,14,15 
EARTHED SPRING 
0 
FACI, NINC,IWRIT,IAUTO,IARC,ILOAD 
2.0DO 300 0 1 0 1 
IACC,IRE!$IBRAC,ICRIT,IBRSW,IROW 

0 0 1 1 0 0 
ICVCK,BEIY)K, ITERTY,NITMAX,NLSMX,EPSI,SHIF 
1 1.0D-6 1 10 0 1.oD-s 5.oDo 
IDES,FACMX,FACMN,ISWCH,ICORT,IPRED 

1 1.OD1 1.ODO 1 0 ,O 
CSllFFS 

0.7DO 

input datafile for 3D-Truss-Arch 

22.5 A TWO-DIMENSIONAL CIRCULAR ARCH 

The arch is shown in Figure 22.13 with the response in Figure 22.14. The data to follow 
the unstable primary path is given in Input Data file 22.5a, while that to bracket on the 
bifurcation point (ICRIT = 1, ;t = 6.29)is given in Input Data file 22.5b. The final set of 
data in Data Input file 2 2 . 5 ~  relates to the ‘branch switching’. In contrast to the 
response of the von Mises truss (Section 22.2), the current secondary paths do  not rejoin 
the primary path. 
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1 

Figure 22.13 A two-dimensional circular arch. 
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Figure 22.14 Structural response of the two-dimensional arch: load versus vertical displacement 
at the apex. 
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Truncated data input file 22.5b 

ANALYSIS W O DIMENSIONAL 

GENERAL DATA (NV,NE,NBCON,NLOAD,NMATE,NANIT,NDlM) 
841012 1 0 0 2 


ITEYL,POSS,E,ANlT 
2 O.ODO 5.OD7 O.ODO 
NODAL COOR. 

1 -33.9400 
2 -35.3500 

42 35.3500 
41 33.9400 
4 -32.4675 
6 -29.3848 
8 -26.1210 
10 -22.6961 
1 2  -19.1313 
14 -15.4485 
16 -11.6705 
18 -7.82054 
20 -3.92236 

33.9400 
35.3500 
35.3500 
33.9400 
38.0146 
40.4447 
42.6256 
44.5436 
46.1870 
47.5456 
48.6112 
49.3770 
49.8383 

22 0.000000E+00 49.9924 
24 3.92236 49.8383 
II 


II 


II 


m M  CONNECTION 
1 1 2 

6 3 4 

11 5 6 

16 7 8 

21 9 10 

26 11 12 

31 13 14 

36 15 16 

41 17 18 

46 19 2 0  

51 21 22 

56 23 24 

61 25 26 

66 27 28 

71 29 30 

76 31 32 

81 33 34 


I f  

65 26 28 

70 28 30 

75 30 32 

80 32 34 

85 34 36 

90 36 38 

95 38 40 

100 40 42 
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LOAD1NGS 
22  O.OD0 -1.OD5 
BOUNDARY CONDlTION 
1 1 1  4 1  1 1  
OUTPUT VARIABLES 
2,43,44 
EARTHED SPRINGS 
0 
FACI,NINC,MrRIT,IAUTO,IARC,ILOAI) 

0.5DO 100 0 1 0 1 
IACC,IRE!$ IBRAC,ICRIT,I BRSW,IROW 
0 0 -6 1 0 ,8 
ICVCK,BETOK, ITERTY,NI?'MAX,NLSMX,EPSI,SHIF 
1 1.OD-6 1 20 0 1.OD-4 1.OD2 
IDES,FACMX,FACM N,IWCH ICORTJ PRED 
4 0.5D0 OSDO 1 0 0 
CSnFF 
0.2Do 
DLDES,DLMAX,DLMIN 

1.ODl,1.OD2,l .OM) 
CSnFs 
0.8DO 

input datafile for an 90 degrees' arch of radius 50 
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23 Contact with friction 


23.1 INTRODUCTION 

Overview and review paper on contact have been given by Oden and Martins [013 and 
Zong and Mackerle [Z3]. Early work [H5, B1, C2, F3] was largely related to a linear 
geometry and often involved node-to-node contact. Once significant non-linear con- 
tact deformations were introduced, methods tended to switch to node-on-segment or 
node-on surface contact [see, for example, H 1-H3, J I ,  P3, W 13. Many of the latter 
methods directly involved nodal forces although it is possible to introduce contact 
pressure [S2, L 11. 

Two main methods of solution have been adopted; the penalty approach [P4, H 1 -
H4, C5,M2, P1, W2] and the method of Lagrangian multipliers. see. for example 
[C3. G 1, M21. The former is closely related to techniques which attempt to introduce 
a genuine (although high and possibly non-linear) stiffness for the contact region 
[C4, K2. WS]. Thermomechanical coupling may then be involved [Zl]. One alterna- 
tive procedure involves the elimination of degrees of freedom and can be considered as 
a form of non-linear master slave approach (see rJ2.171 and Section 17.6). 

There are important links between the finite element contact problem and math- 
ematical programming techniques for constrained optimisation [Fl. L4. V 13. Indeed, 
because the problems usually involves inequality constraints (varying contact areas), 
the mathematics can be related to the method of variational inequalities [Kl]. 
However, in practice, the method is often treated using the engineering equivalent of 
the active set method [Fl, L4, Vl] whereby equality constraints are applied within the 
(changing) ‘active set’. Many concepts from the mathematical programing literature 
have been incorporated within finite element algorithms--in particular the augmented 
Lagrangian technique [Ll, L3, S1, W2, H41. Other procedures such as the perturbed 
Lagrangian method [ J l ,  S2] and a form of barrier method [Z2] can also be applied. 

Within a finite element context, one of the most important recent developments has 
involve the ‘consistent linearisation’ of the changing geometrical contact relationships, 
see, for example, [W 1, P3). The latter has also been applied to friction [G2. L2, W5) 
often with the aid of a plasticity technique which follows from the observation of the 
close links between friction and plasticity made by Michalowski and Mroz [M2]. The 
resulting algorithm takes a very similar form to the procedures already discussed in 
Chapters 6, 14 and 15 although. generally, a non-associative flow rule is introduced 
[M 13 so that the tangent stiffness matrix is non-symmetric. 

Within a general non-linear finite element context, important issues are associated 
with contact detection [B2, Hl-H3,02]. The latter is simpler with lower order 
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elements and, partially for this reason these lower-order elements are still very popular 
and will be considered in the current chapter (although many of the concepts are more 
general). In  a contact environment, there are clearly problems with lower-order faceted 
geometric approximations and, among others, Eterovic and Bathe [E 13 have looked at 
higher-order interpolations aimed at introducing the necessary continuity for general 
quadratic convergence. (In this context, we should stress the importance of line 
searches in the early iterations which are inevitably non-smooth.) 

Many of the lower-order contact formulations have origins in the non-linear 
‘slide-line procedure’ pioneered by Hallquist et ci l .  [H 1 -H3] (following on from linear 
geometric work by Chan and Tuba [C2]). In relation to these techniques. important 
issues are associated with the use of a one-pass or two-pass algorithm. In particular, 
Taylor and Papadopoulos have shown [T2] that a two-pass formulation is essential if  
the ‘contact path test’ (see Section 23.3) is to be passed. (A  related, more general 
procedure, has been proposed by Papadopoulos et ul. [P2]). 

Although the previous discussion has been largely directed at implicit finite element 
codes, many of the issues (but clearly not the consistent linearisation) are common to 
explicit dynamic techniques. Additional special procedures have been developed for the 
latter [B2, C l ,  H 1-H3, Tl], including momentum-related techniques in which modifi- 
cations are made to the accelerations, velocities and displacements, see [Tl]. One of the 
aims of the latter, is to avoid the penalising effect on the time step of the explicit procedure 
which can be introduced by the high stiffnesses associated with penalty approaches. 

In the present chapter, we will concentrate on the penalty approach, the Lagrangian 
multiplier approach and the augmented Lagrangian procedure. Both frictionless and 
frictional contact will be considered. For the latter, with ‘sliding friction’, we will 
describe a simple Coulomb friction technique which will be set within a ‘plasticity 
framework’. Consistent tangent matrices will be derived. In the final two sections of the 
chapter, we will consider a modified penalty/barrier approach [Z2] and, in addition, 
will consider some possible modifications to the line-search and arc-length methods 
that are specifically geared towards contact. 

23.2 A TWO-DIMENSIONAL FRICTIONLESS CONTACT 
FORMULATION USING A PENALTY APPROACH 

For linear problems, penalty approaches conventionally lead to rank-one updates of 
the stiffness matrix [H5,01]. However, for geometrically non-linear problems, a con- 
sistent approach should account for the change of geometry. In  the two-dimensional 
case, such a formulations can be simply expressed in a co-rotational framework, with 
the contact zone (or element) rotating and translating and hence producing a local 
frame with respect to which the contact and friction relationships can be expressed. As 
with the co-rotational elements of Sections 7.2 and 7.3, the formulations then depend 
heavily on the variations of the base vectors that define the rotating element-frame. 
Consequently, we will adopt the earlier notation with the unit vector, e , ,lying along the 
rotating tangent to the contact ‘element’ and the unit vector, e2, lying in the normal 
direction (Figure 23.1) so that: 

e :  = (cos 8,sin p); e, = ( - sin p, cos 8) (23.1) 
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Figure 23.1 Two-dimensional ‘contact element‘ 

The contact element will take the form proposed by Hallquist [H 1-H3] which involves 
a ‘master’ segment (with nodes 1 and 2) and a ‘slave’, impactor node (with node s). One 
may either adopt a ‘one-pass’ procedure or a ’two-pass’ approach with the definition of 
master and slave being reversed for the second pass along the ‘slide line’ (or potential 
contact region). Here, we will concentrate on the single-pass procedure and will 
consider the two-pass technique as a fairly straightforward extension which will be 
discussed in more detail in Section 23.3. In the present section, we will consider normal 
contact with the tangential movement being considered as free (frictionless). 

As a starting-point, we must define the normal gap, g~ (because there is a danger 
of a conflict of notation with our usual use of g for the residual vector, we are using 
an italic g for the ‘gap’). From Figure 23.1, the gap is given by 

g N  = (xS- X I )  
Te2 = xTleZ (23.2) 

which is negative with penetration and for the situation depicted in the figure there is 
a positive gap with no penetration. 

The following developments could be introduced by starting form an energy 
functional (see Section 23.2.1) but, instead, we will here employ a virtual work 
approach. Following the previous work on co-rotational formulations, we require 
the relationship between the changes in the local variable (here g ~ )and the changes 
in the global variables. The latter are given by 

(23.3) 

with, for example, dy = ( ~ 1 ,~ 1 ) .To obtain the change ingN ( see (23.2)), we require he?. 
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Using the approach of Section 7.2.3, the latter is given by 

-cos p 1 1
)Sp = - -e,eTfid2, = -e,bT6p (23.4)6e, = (

- sin p In 4 
with 

bT= (OVr,e; -e:) (23.5) 

so that in (23.2): 

bgN= 6df1e2+ xT1Se2= aTSp (23.6) 
with 

aT= (el, -(1 - a)el, - ae:) (23.7) 

and 

1 
ct = -x?,e,4 (23.8) 

where In is the current length between nodes I and 2 (as in previous work on trusses and 
beams). From Figure 23.1, ct can be interpreted as the non-dimensional tangential 
distance between node 1 and the projection of the contact node, s, on to e,.  If the 
contact force is t N  (negative with penetration and zero otherwise), in relation to the 
nodes associated with the contact element, the virtual work is given by 

v = v b  + vc= v b  + fNdgN = qsdp + q,',Sp= g'dp (23.9) 

where the subscript b relates to the two surrounding non-contact elements and the 
subscript c relastes to the contact element. (To avoid cluttering the subscript v for 
virtual has been omitted). The vector qib is the standard internal force vector derived 
from the non-contact elements for nodes 1 and 2 for the master body and for node s for 
the slave body. For simplicity, it has been assumed in (23.9) that there are no external 
forces applied in the contact area. 

The current objective is to find qicwhich, via (23.6)and (23.9), is given by 

Qic = t ~ a  (23.10) 

With a conventional penalty approach, to complete the procedure, we would stipulate 
that: 

t N  = FNYN; Y N  < O  (23.1la) 

f N = O ,  Y N > O  (23.1 lb) 

The positive scalar cNcan either be interpreted as the penalty parameter or as the elastic 
stiffness of the contact area. 

We now require the contribution to the tangent stiffness matrix that stems from the 
variation of (23.10). The latter is given by 

6qic= KtC6p= dtNa+ tN6a = c,aaT6p + KtC,6p 
= CKrc1 + KIC,I~P (23.12) 

where the matrix K,,, can be interpreted as the initial stress matrix for the contact 
element. The term K t c l  in (23.12) is the conventional linear rank-one contact stiffness 
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With a view to the computation of the initial stress matrix, we use: 

- sin/?
del = ( cosb)6/3 

1 1 
=I,e2e:fid21 = - -e2bTGp 

I n  

(23.13) 

and (see Section 7.2.3): 

61, = e:6d, = - (OT, eT, - e:)Sp = - b:, 6p (23.14) 

so that the variation of the scalar ct in (23.8) is given by 

1
6%= -(e:6dS 

I n  

1 
- ae:6d2 1)  + -xT16el 

1, 

1 1 
= -CT6p - gNibTfip

1, 1, 
(23.15) 

with 

cT= (e:, - ( 1  - ct)e:, - ore;) (23.16) 

Using (23.4) and (23.15), the variation of the vector a in (23.7) is given by 

1
6a=-[bcT+cbT-(gN/(,)bbT]6p (23.17)4 


and hence the initial stress matrix, Ktca, in (23.12) is given by 

(23.18) 

(The term t ,  has been added in brackets to distinguish this term from a later term that 
will be derived for 'sticking friction' in Section 23.4.) Equation (23.18) agrees with the 
expression given by Wriggers and Simo [Wl), although the derivation is different. 

23.2.1 Some modifications 

Some codes modify the previous formulation by making the stiffness parameter C~ vary 
linearly between given nodal values. (Thereby aiming to reduce the jump in contact 
force as the contact point crosses a node and moves from one master element to 
another.) More detail regarding'the contcact stiffness will be given in Section 23.7. For 
the present we will assume that: 

& N ( a )  = (1  - a)&1+ 0!&2 = E1 + (E2 - c1)x = & I  + &21 x (23.19) 

where ct is the non-dimensional length parameter defined in (23.8). At a first inspection, 
one might simply introduce the modification by directly using the internal force vector 
of(23.10) with thecontact forcet,now taking theformof(23.1 l )with~~(or)from(23.19)  
instead of the previous cN. However, the resulting formulation does not lead to 
a symmetric tangent stiffness matrix. With a view to achieving the latter, it is useful to  
start from an expression for the total potential energy whereby: 

where we have added the strain energy in the contact element, 47,. Using (23.20), we can 
write: 

(23.21) 
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Using (23.6)and (23.13, we obtain: 

(232 2 )  

where a, b and c have already been defined in (23.7), (23.5) and (23.16) respectively. 
Apply variations to (23.22)leads [A I ]  to the tangent stiffness matrix: 

K k  = K k l  + Ktca + K l C 2  (23.23) 

where K t c l  is as previously defined in (23.12) (with cN(r)instead of c ~ )and K,,, is as 
previously defined in (23.18)while the new matrix Klc2 is given by [A1 J 

- 3abT- 3baT + 2cb: 

+ 2b1c’1- 2 3 Ebb: + b1bT] (23.24)(:“I I 

All of the vectors on right-hand side of (23.24) have been defined in the previous 
sect ion. 

Some detail has not yet been considered. This includes the numerical treatment of the 
corner region (see Figure 23.2). THe latter could be handled in a very similar manner to 
the ‘two-vector return’ used in plasticity (see Section 14.3 and Figure 14.6). Alter-
natively, in an approximate manned, one could apply an effective normal vector, ez 
(Figure 23.l), which includes a contribution from the adjacent element as the corner 
is approached. However, as discussed earlier, the corner regions are always likely 
to introduce problems with a ‘faceted dealisation’. 

Corner region 

\< 

Figure23.2 The ‘corner-region’. 
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23.3 THE ‘CONTACT PATCH TEST’ 

Taylor and Papadopoulos [T2] described a contact patch test which is illustrated in 
Figure 23.3. A uniform pressure is applied along the top surface with a frictionless 
interface being assumed between the two bodies. Irrespective of the mesh, we should 
obtain a uniform stress state. If the penalty approach of the Section 23.2 is applied, this 
will be true as the penalty stiffness parameter I tends to infinity. (We can overcome this 
limitation by using the Lagrangian multiplier or the augmented Lagrangian technique 
which will be described in Sections 23.6 and (23.7.) 

In the following (more details is given in [Al l ) ,  a linear formulation will be adopted 
and we will apply the previous penalty method using both single- and double-pass 
strategies. In relation to Figures 23.3 and 23.4, only the vertical forces need be 
considered and in these circumstances, from (23.10), the internal forces in the contact 

Figure 23.3 The ‘contact patch test’. 

Figure23.4 Contact internal forces. 
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element are given by 

= t ,  r - 1  =r :y  r - 1  = - c 1x-1 (23.25)"-.1 [I-. 1 [I-. 1 
where we assume a negative gap (and hence penetration) with C as a positive force 
(Figure23.4). The forces in (23.25) could, of course, have been obtained by simple 
statics. 

We will now consider the application of uniform pressure to the mesh illustrated in 
Figure 23.5. The work-consistent external forces are given in Figure 23.5a while, 

n 
/ 

n f h  f\ n 
'a "b vd ve v f  

Figure 23.5 (a) External forces: (b) internal forces for non-contact elements; (c) one-pass solution- 
small surface into large surface-internal forces; (d) one-pass solution-large surface into small 
surface- internal forces. 
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I'---
2 1/2 1 1 /2 1 1I2 2 

J \ 

1 /2 1 1 1I2 
1' 1r 1' 1r 

Figure 23.6 (a) External forces; (b) internal forces for non-contact elements: (c) one-pass 
solution-small surface into large surface-internal forces; (d) one-pass solution- large surface 
into small surface-internal forces. 
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assuming the desired solution of a uniform pressure within each parent element, the 
internal forces for the non--contact elements are illustrated in Figure 23.5b. Suppose we 
now introduce a single-pass penalty procedure with the large body as the master. In 
these circumstances, we have two contact elements (hcd and defin Figure 23.5a) and. 
using (23.25) the internal forces from the contact elements are as shown in Figure 2 3 . 5 ~  
where we have used C, for the force C in (23.25). (We could also consider node d as 
penetrating either element hcd or element dej’but, in either case this would lead to 
self-equilibrating forces at node d.) Clearly, if C,  = 1,’2, the combination of forces from 
Figures 23.5a,23.5b and 2 3 . 5 ~  is in equilibrium. 

Suppose we now consider the small body as the master body. In these circumstances, 
we have one contact element (either cd or du in Fig. 23.5a) and the internal forces are as 
shown in Figure 23.5d. I t  is now impossible to obtain an equilibrium solution by 
combining the forces from Figures 23.5a and 23.5b with those from Figure 23.5d. (This 
is not to say that the single-pass algorithm does not lead to equilibrium but rather that 
equilibrium is incompatible with a solution that correctly gives a uniform stress state.) 
However, the two-pass algorithm which combines Figure 23.5a, 23.5b, 23.52 and 23.5d 
will give equilibrium with C,  = 11’2 and C, taking any value. 

Now consider the mesh in Figure 23.6, for which the applied external forces are given 
in Figure 23.6a and the internal forces from the non-contact elements are as illustrated 
in Figure 23.6b. With the large body as the master body, we have four contact elements 
( h w ,hdc., qfh. q h  in Figure 23.6a). Using (23.25), the internal forces are as illustrated in 
Figure 2 3 . 6 ~  (with C, relating to elements hcr-,and ~ j hand C, relating to elements hde 
and qfh). I t  is impossible to choose values for C,  and C, so that the combination of the 
forces in Figures 23.6a, 23.6b and 2 3 . 6 ~  leads to equilibrium. 

If  we now take the small body as the master body, we have one contact element (dqfin 
Figure 23.6a) and, using (23.26), we arrive at the internal forces in Figure 23.6d. Again, 
the resulting one-pass algorithm cannot lead to equilibrium. However, if we combine 
the forces from all of the figures (as in a two-pass algorithm) we can obtain equilibrium 
with C ,  = 1 2, C, = 314 and C, = 112. 

23.4 INTRODUCING ‘STICKING FRICTION’ IN TWO 
DIMENSIONS 

A very similar procedure can be applied, for sticking friction, as has already been 
applied in Section 23.2 for normal contact. In  this case, in place of (23.2). the twz(jllcwfiii1 

gap is defined (Figure 23.7) via: 

(23.26) 

where x ,  is the value of the non-dimensional length parameter, Ix (see (23.8) and 
Figures 23.1 and 23.7) when the current phase of contact was first activated. One might 
th ink  of defining differently with 1, replacing I ,  in (23.6). However, i t  turns out that 
the resulting tangent stiffness matrix is then non-symmetric. 

With the aid of (23.13, we can now write: 

4 1, 110 
& J ,  = -e16d,, - x(e;hd,,) + -xTldel =-crisp - q . Lb’bp = fr6p (23.27) 

In In In l\( 1; 
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1. 

Figure 23.7 Two-dimensional contact and the tangential gap. (a) Initial configuration: (b) current 
configuration on first contact; (c) current ’current configuration’. 

so that, using virtual work, the contribution to the internal force vector for the contact 
element is 

Qic  = tTf (23.28) 

where, t o  supplement (23.1 l ) ,  we now have: 

tT = g N  ‘c (23.29a) 

~ T = O ,  g N > o  (23.29 b) 

In the following, we will merely define the contributions from the ‘sticking’component. 
The contributions from the normal component (via tN) must also be added using the 
approach of Section 23.2. The two parts can be simply summed. 
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Again, following the approach of Section 23.2,we can write: 

6qic= K,,6p = dtr f  + t T 6 f  = ~ , f V 6 p+ K,,,6p (23.30) 

For the initial stress matrix, variations must be applied to the vector f defined in (23.27). 
To thisend, we use(23.14)for61,,(23.6)for6yN,(23.13)for6e,and(23.15)for &(for the 
variation of the vector c )  and (23.4)for 6e, (for the variation of the vector b- see (23.5)). 
This process eventually leads to the symmetric initial stress contribution: 

- ab’ -baT+ b,cT+ cb:] - 29 [bb: + b , b T j  (23.31)
I ;  1 

Because ‘sticking friction’ is inevitably combined with ‘normal contact’, the combina- 
tion of (23.10)and (23.28)leads to the relationship: 

(23.32) 


where 

(23.33) 


Also the combined tangent stiffness matrix can be expressed as 

where Klco(tT)was defined in (23.31)  while Ktca(fN)was defined earlier in (23.18). 

23.5 INTRODUCING COULOMB ‘SLIDING FRICTION’ 
IN TWO DIMENSIONS 

Sliding friction is simply introduced with the aid of a ‘plasticity algorithm’s0 that the 
yield function is given (see Figure 23.8)by 

where 

t 
S = T

1 rTl 
( = + U  (23.36) 

The contact forces are now given by 

f~ = ~ : N . L / N  ( 23.3 721) 

f T  = tTA + t ;T(AyT - = f,A + f : r ( A y T  - f b l s )  (23.37b) 

In (23.37a), the normal gap, gN, has previously been defined in (23.2)while the 
incremental tangential gap, AgT, is simply the current value O f g T  from (23.26)minus the 
value of gTat the end of the last increment. The term t,, is the value oft, at the end of 
the last increment while the ‘plastic tangential slip’, AgTp,is related to a non-associative 
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Figure 23.8 ‘Yield function’ for coulomb friction in two dimensions. 

plasticity law. To proceed further, we will write the yield function of (23.35) as 

(23.38) 

while the non-associative flow rule (see Section 6.3.1) is given by 

(23.39) 

If an associative flow rule was adopted with b = a J / d  = a, ‘plastic slip’ would occur in 
the normal direction (Figure 23.8). This would be physically unrealistic. 

The scalar AV in (23.37b) is the incremental form of 4 in (23.39). As with the earlier 
developments in plasticity, we will adopt a backward-Euler formulation which turns 
out to give a very simple ‘return mapping’. To this end, we will adopt the subscripts A, 
B and C of Chapters 6, 14 and 15 so that (23.37) can be expressed as 

with C having been defined in (23.34). The forces t, are those computed at the elastic 
trial point. The simple nature of the adopted yield function allows the use of sBinstead 
of sc in (23.40). Substitution from (23.40) into the yield function of (23.38) (or (23.35)) 
allows the scalar AV to be simply computed as 

c 


(23.41) 
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where f is the value of the yield function computed at the trial point, B. By combining 
(23.37)with (23.41),the internal forces are completely defined. 

A conventional return mapping procedure would be adopted so that we would first 
compute the elastic trial forces t, and then check if the resulting yield function scalar 
fB 3 0. If  not, the final forces, t, would be set to t, and we would have sticking friction. 
However, if jB3 0, we would obtain the 'returned forces' from (23.40)combined with 
(23.41). 

In  order to obtain the tangent stiffness matrix, (23.40)can be differentiated to obtain: 

t, =cg- 4CbB (23.42) 

where t j  is obtained by differentiating (23.41)so that: 

tj = s,& 
11 1 
ET iiTCb

+ -c N ~ N= -ii'Cg (23.43 

and (see also Section (6.3.1)) 

(23.44 

Because of the adopted non-associative law, C, is non-symmetric. 
In the previous 'plasticity developments', we have adopted 'rates' (dots) rather than 

the d's used earlier. This approach has been adopted for consistency with the earlier 
work on plasticity. However, (see the earlier discussion in Section 6.3),the two are 
effectively equivalent and we will return to 6's in differentiating (23.32)(with the new 
definition of t )  to obtain: 

6qic= BT6t+ GBTt= [BTC,B+ K,,,,(t.,) + Ktca(fN)J6p (23.45) 

where KIca(tT)was defined in (23.31) while KIco(tN)was defined in (23.18).Consequently, 
to change from sticking to sliding friction we merely change C to C, from (23.44) 
(thereby introducing non-symmetry). More sophisticated friction laws can be introduc- 
ed. If these are related to plasticity, they will often involve some form of hardening 
and/or softening related to the plastic work [Dl, H4]. A cohesion term can be added to 
the Coulomb friction of (23.35)[C4] by subtracting the 'initial shear yield term', t ,o .  

23.6 USING LAGRAN.GIAN MULTIPLIERS INSTEAD 
OF THE PENALTY APPROACH 

We will initially consider 'frictionless contact' for which the penalty approach was 
described earlier in Section 23.3. Using Lagrangiian multipliers, we can adopt classical 
optimisation techniques and form the Lagrangian, 

L =  4 + 1A N g N  (23.46) 

where 4 is the total potential energy, and the &'s are a set of Lagrangian multipliers 
relating to each of the contact elements. The variation of (23.46)gives: 

6 ~ =gTGp+ C A N R L J N  + CGANLJN (23.47) 

where g contains the gradient of the total potential energy for the 'non-contact 
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elements’. To satisfy the first-order conditions [F l ,  L4. V 13, this variation must vanish 
for arbitrary 6p, 69, (related to 6p) and 62,. In  addition, the original contact 
constraints apply so that we have: 

(23.48) 
and 

(23.49a) 

E w N  6 0 (23.49 b) 

{]N)bN = 0 (23.49c) 

If  we consider the 6 quantities in (23.48) as virtual, and identify the i ’ s  as the tractions 
across the interface, (23.48) can be recognised as a virtual work expression that takes 
a similar form to (23.9), although in the latter we had the (penalty) forces as t,’s rather 
than the current (Lagrangian multiplier) iN’s.Equations (23.49), which apply to all the 
possible contact conditions, are the Kuhn-Tucker conditions [Fl, L4. V 11. 

Equation (23.49a) ensures no penetration; equation (23.49b) ensures coinpressive 
contact forces while the complimentarity condition of (23.49~) ensures that, if there is 
no contact ( A N  = 0)’the gaps are non-zero, while if there is contact ( gN= 0).the contact 
forces are non-zero. Because the i ’ s  are zero away from the active contact zones, we can 
define an ‘active set’ which includes all of the current active contact elements and 
replace (23.46) with: 

(23.50) 

where in relation to the active set we have: 
g N = O  overa (23.5I ) 

At this stage we will introduce sticking friction and modify (23.48) to give: 

gT6p+ C j s N b Y N ( 6 P )  + z i T h g T ( 6 P )  = g’’f5p + qz6p = 0 (23.52) 
a a 

If we now consider a single contact element from the active set, we can define gNand gr 
in precisely the same manner as we did for the ‘penalty approach’ and, as before, obtain 
(23.33)which, for convenience, is reproduced below. 

= B6p = (23.53)Sg = (””’) [r:]dp
6g N  

Using (23.53), the internal forces for the contact element can be derived as 

qic= BT3L= .’( ?) (23.54) 

which takes a very similar form to (23.32). Again, considering a single contact element, 
the equilibrium equations of (23.54) must be supplemented by the contact constraints: 

,=(;:)=o (23.55)  

For a general stage in the iterative solution process we will have the displacements 
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p and the Lagrangian multipliers, A, but no satisfaction of either the equilibrium 
equations g = 0 (including the qlc'sfrom the active contact elements) or the constraints 
of (23.55) (again at the active contact elements). To improve the solutions, we can 
apply a truncated Taylor series, so that for the equilibrium equations we have: 

(23.56) 

where K, has the tangent stiffness matrix from the non-contact elements. For an 
individual element, the last term in  (23.56) produces precisely the same initial stress 
matrices iis those obtained previously for the penalty approach (although now with 
A's instead of t ' s ) .  Hence we can rewrite (23.56) as 

tl ( I  

In  a similar manner, applying a truncated Taylor series to (23.55) and using (23 .53 ) ,  
we have: 

-gold = B6P (23.58) 

If we skip over the issue of 'merging' the different element contributions, the 
combination of (23.57) and (23.58) leads to a Newton-Raphson iteration of the form: 

(23.59) 

which can be solved to obtain the changes in displacements and changes in 
Lagrangian multipliers. For the contact elements. K, in (23.59) contains the 
contributions from the earlier 'initial stress terms' (see (23.57). 

In contrast to the previous penalty method, the new framework ensures exact 
satiscaction of the required constraints. However, in practice there are a number of 
disadvantages. First, there is the need to increase the number of variables via the 
Lagrangian multipliers, and secondly special care must be taken with the ordering of 
the equations during the solution process. (There can also be an increase in the band 
o r  front width.) However, it is possible to combine the penalty and Lagrangian 
multiplier methods with the aim of retaining the good points from each approach. 
The resulting procedures wil l  be discussed in the next section. 

23.7 THE AUGMENTED LAGRANGIAN METHODS 

While in Sections 23.2 and 23.4, we used virtual work as the starting-point for the 
penalty method. we could have started with an 'energy functional': 

(23.60 I 

where we have added the strain energy in the active contact elements to the total 
potential energy of the rest of the body. In the following we will sometimes omit the 
summation sign. In these circumstances, using (23.60), we can write: 
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where we have used (23.53) for Sg.The internal force vector, qic,from (23.61) is the same 
as that derived earlier for the penalty method. 

For the augmented Lagrangian method, we augment the Lagrangian (see (23.46)) 
with the penalty (or contact strain energy terms) so that the starting-point is 

(23.62a) 

Before proceeding with the development of the augmented Lagrangian procedure, we 
note that perturbed Lagrangian techniques can be developed [ J l ]  from: 

(23.62b) 

Returning to the development of the augmented Lagrangian procedure, variations of 
(23.62a) give: 

6 A  = 6p’g + & I ~ B ’ ~ ( C ~+ k)+ 6LTg= 6pTg+ 6p’BT(r+ A.) + 8krg  (23.63) 

where we have dropped the summation sign over the active set (but i t  is implied). When 
the first-order conditions are satisfied, SA vanishes for arbitrary hp and dg and hence: 

g = g + qic= g + BT(r+ k)= g + BT(Cg+ k)= 0 (23.64) 

and 

g = O  (23.65) 

When both (23.64) and (23.65) are satisfied, we obtain the conventional Lagrangian 
multiplier solution (see (23.54)) because the Cg in (23.63) will then vanish. 

The first way of taking advantage of this fact is to add the penalty terms and retain 
the Lagrangian multipliers, thus effectively using a modified form of the procedure of 
Section 23.6. The key equations are now (23.64) and (23.65) and, following the approach 
leading to (23.59), the resulting Newton-Raphson iteration leads to 

(23.66) 

where now the tangent stiffness contribution from the contact elements is 

KT = BTCB+ Ktca(RT + & t g T )  + Ktsg()bN + & N g N )  (23.67) 

The first term in (23.67) stems from the variation of theg term in the last expression on 
the right-hand side of (23.64) while the Ktca terms stem from the variation of B in the 
same expression. These ‘initial stress matrices’ take the same form as those derived 
earlier in Sections 23.2 and 23.4 (see (23.18) and (23.3 1)). 

The advantage of adding these penalty terms is that by doing so, the difficulties 
associated with the ‘solution ordering’ in the Lagrangian multiplier approach are now 
effectively removed because K, on its own is now non-singular. (These advantages can 
also be obtained using the perturbed Lagrangian method.) Also, the adopted penalty 
parameters need not be very large because the contact conditions are effectively 
satisfied via the Lagrangian multipliers. None the less, we still have the disadvantages 
of the extra Lagrangian multiplier variables in the solution of the equations. 
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One way of overcoming this limitation is to use the ‘method of multipliers’ 
[B3, FI, L4, P5, R1, V l ) .  (There is some problem here with nomenclature because this 
new method is also known as the ‘augmented Lagrangian technique’. However, it is 
clearly different from the augmented Lagrangian procedure that has just been de- 
scribed.) In the method of multipliers, the Lagrangian multipliers are retained as 
variables in the active contact elements, but they remain as element level variables and 
do not enter the global structural solution. The latter only involves the conventional 
displacement variables as i t  does with the penalty method. The solution process is 
described in the following algorithm. 

1.  Set 3c = 3L + Cg from the last increment (and k = 0)and define the active set from the 
last increment. 

2. (Set k = k + I )  and use the Newton-Raphson method (or equivalent) to solve: 

+ Q i c  = 0 (23.68) 
with p as the variables and 

qic= B”(Cg(p)+ A) (with i fixed) (23.69) 

and K, for the contact elements as in (23.67). 

3. Within the active set, put 
3c = kold+ c g  ( 23.70) 

and (optionally-see later) update the penalty parameters within C, but if jL> 0. set 
i.= 0 and remove the element from the active set. Add into the active set any element 
for which gN6 0 and store the ct, value (see (23.26) and Figure 23.7). 

4. Check for ‘contact convergence’ by ensuring that within the active set (gNI< toler-
ance. If O.K., start next increment and go to 1). I f  not go to 2) for a new Newton 
Raphson loop. 

Algorithm23.1 The method of multipliers. 

The justification for using (23.70) for the updating of the Lagrangian multipliers can 
be found in [Fl, L4). The technique that has been described is often called the Powell 
algorithm [P5] and seems to be the method favoured by Simo and Laursen [Sl]. 
During the Newton-Raphson loop of stage 2), the L’s are fixed and so is the active set. 
Consequently, quadratic convergence can be expected for each of these stages. It  would 
seem that, because the active set is fixed, the tangent stiffnesses should be computed 
even if the R,’s are positive. 

An alternative procedure is sometimes known as the ‘Uzawa algorithm [see F21. In  
this algorithm, which has been applied to frictionless contact by Wriggers ur U!. [WZ]. 
the active set is checked and changed during the Newton-Raphson stage 2). There 
would seem to a number of possibilities. First, checks could be made for new elements 
coming into contact and entering the active set with appropriate penalty terms then 
being added (as in the usual penalty approach). In this way, it would still be true to say 
that during the iterations, the i ’ s  are fixed. One could allow a complete change of the 
active set by also checking for elements leaving the active set and putting the 
appropriate 1, values to zero. 

One of the main advantages of using the method of multipliers in contrast to the 
penalty procedure is the sensitivity of the latter to the selection of the penalty stiffnesses. 
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If the penalty parameter is too high, then a very poor convergence rate (or even no 
convergence rate) may result. Nour-Omid and Wriggers [N 13 suggest that the penalty 
parameters should be limited according to 

k 
c 6 c,,, =- (23.71)

J% 
where k is a characteristic stiffness parameter of the adjoining elements, N is the total 
number of unknowns and t is the computer precision. While one can reduce the penalty 
parameter to avoid ill-conditioning, the inevitable consequence is penetration and 
hence a violation of the real physical situation. However, when using the method of 
multipliers, one need not start with a very large stiffness because the constraints will 
eventually be satisfied via the Lagrangian multipliers. 

Equation (23.71) gives a guide to the maximum penalty stiffness that should be 
introduced. If the problem is sufficiently well conditioned that an efficient solution can 
be obtained with the penalty method, then clearly this will involve less work than an 
augmented Lagrangian solution. Consequently, the user would like to know when he 
or she should introduce ‘augmentation’. In  practice, it may be difficult to estimate the 
ill-conditioning effects of the high penalty stiffnesses because, although they will lead to 
poor convergence characteristics, this effect can also be introduced by other causes. For 
a linear ‘tied slide-line solution’, one can use the norm of the residual ; I  g 1 1  as a guide to 
contamination by ill-conditioning [All .  As part of a non-linear solution procedure, i t  
may also be advisable to keep a periodic check on such a norm taken over the contact 
elements. To this end, a residual g, should be computed with ‘linear assumptions’, i.e. 
without updating the geometry, etc. 

The performance of the method of multipliers can be significantly improvement by 
incorporating the update of the penalty stiffnesses indicated in step (3) of the previous 
algorithm. Bertsekas [B3] proposes updating c according to 

Ek = pf? - (23.72) 

where k is the number of the equilibrium iteration loop (see previous algorithm) and 

p = if ( c k (=- ’ I (23.73a) 

/j = 1 if Ick(< I (23.73b) 

In the above Pmight be 10while ;‘might be 1/4. Wriggers [W4] adopted this approach. 
but also used (23.71) to apply a final limit to I: and only introduced (23.73b) if the gap 
was reducing. 

23.8. AN AUGMENTED LAGRANGIAN TECHNIQUE 
WITH COULOMB ‘SLIDING FRICTION’ 

Laursen and Simo [L2] have described methods for applying the method of multipliers 
in conjunction with Coulomb ‘sliding friction’. The following description is closely 
related to their work. 

For the penalty approach, the internal forces were defined by (23.32) coupled with 
the t vector from (23.40). For the augmented Lagrangian formulation, we modify these 
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equations to give: 

(23.74a) 

q i c  = (j“ + F N g , ) a  + (AT + ET(ALJT - AY/S,))f  = t N a  f T f  (23.74b) 

In  (23.74b), we have split the matrix B of (23.32) and (23.33) into its two constituent 
vectors a (see (23.7)) and f (see (23.27)). The unknown scalar Aq in (23.74) is required to 
satisfy the yield criterion of(23.35) and is again given by (23.41) although now with the 
new definitions (see (23.74)) for the t’s. Using these new definitions, the tangent stiffness 
matrix of (23.45) still applies and we can write the first few steps of an algorithm related 
to the method of multipliers as follows: 

1 .  Set A = A from the last increment (and k = 0)and define the active set from the last 
increment. 

2. (Set k = k + 1 )  and use the Newton-Raphson method (or equivalent) to solve: 

g b  + Qic = 0 (23.75) 

with p as the variables and qic= B’t and AV from (23.41) and K, for the ‘contact 
elements’ from (23.45) with t from (23.74) and A fixed. 

3. Within the active set, put 

A = t (23.76) 

then continue with Algorithm 23.1 

Algorithm 23.2 The method of multipliers with sliding friction 

23.8.1 A symmetrised version 

In the previous algorithm, the tangent stiffness matrix is non-symmetric because of 
the non-symmetric C, in (23.45). Laursen and Simo (L3) have proposed a modified 
procedure to avoid this non-symmetry. In this case, equations (23.74) still apply, but no 
longer with Aq from (23.42) with the new definitions of the t‘s from (23.74). Instead Arl is 
chosen to satisfy the yield function (see (23.35)) as: 

(23.77) 

The key difference is that we have now used A N  instead oft,. Consequently, when used 
with the ‘method of multipliers’, iNis fixed. As a result, we still obtain AV from (23.42) 
but now with: 

1i= SBf!T, + / . f i N  (23.78) 

Consequently, in obtaining the tangent modular matrix, C,, we use: 

tj = ss!jT (23.79) 

in place of (23.43). I t  follows that, in place of (23.44), we now have: 

(23.80) 
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and hence: 

c,=':.[0 0j 
(23.81)

0 1  

and the tangent stiffness matrix is now symmetric. However, we must now adopt 
a different procedure to (23.76) for updating the Lagrangian multipliers. To this end, we 
set: 

& 1;-= + & N g N  (23.82a) 

i;= )L;- + ET(ABT - A)?sH) (23.82 b) 

where Aq in (23.82b) is no longer that obtained at the end of stage 2) of the 'multiplier 
algorithm', but is rather computed to satisfy: 

f (&,  E$ =0 (23.83) 

23.9 A THREE-DIMENSIONAL FRICTIONLESS 
CONTACT FORMULATION USING A PENALTY 
APPROACH 

For three-dimensional contact, a frictionless formulation has been given by Parisch 
[P3] and a frictional formulation by Laursen and Simo [L2]. Both papers introduce 
CO- and contravariant components. In the following, we will describe a frictionless 
formulation without introducing such components. The first stage. which leads to the 
precise location of the contact point and the definition of the associated normal vector 
was also described by Hallquist [HI]. 

For a general three-dimensional analysis, the contact surface is two-dimensional. In  
Figure 23.9, this surface is assumed to be a four-noded surface which can be mapped 
using the conventional isoparametric shape functions as 

where the three-by-one vectors xi contain the current coordinates of node i and hihas 
the shape function (of ( , q )  associated with node i. (The modification to introduce 
a three-noded planar surface is straightforward.) In general, the contact surface does 
not lie in a plane. In relation to Figure 23.9, x, is the three-by-one vector defining the 
slave node and the xi's are assumed to be related to the master surface. For the 
contact-detecting algorithm, there are many issues associated with the full definition of 
the appropriate master surface for a particular slave node [Hl-H3]. We will not 
consider these issues here; neither will we consider the issue of corner regions. Instead, 
we will takes as our starting-point the unambiguous definition of x, and the associated 
xi's.We will also assume that an intial estimate is available for the <,q values of the 
point r(<,v) in Figure 23.9 which lies immediately below (or above) x, on the master 
surface. 

In contrast to the previous two-dimensional case (with a one-dimensional contact 
zone), it is not a trivial matter to find the required (,11 values. (For the two-dimensional 
problem, the equivalent issue is the calculation of a-equation (23.8),which is trivial.) 
We will now describe an iterative process to find (<, q )which also leads to data that will 
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3 
Xl 

Figure23.9 Current configuration for three-dimensional contact with ‘normal gap’, gN. 

later be relevant to the generation of the internal force vector and consistent tangent 
stiffness matrix. For the three-dimensional formulation, we will define e3= n as the 
normal vector to the surface at the contact point (rather than the previous e2). 

In relation to Figure 33.9, assuming we have an estimate for (<, 1 1 ) .  we can compute 
the vector: 

x,, = x, - r(<,q )  = x, -C h i x i  (23.85) 

Once the correct value of (t,q )  is known, the vector x,, will be orthogonal to the two 
vectors r:, r,,(Figure 23.9) which lie on the master surface. Hence the required equations 
to define (<, q )  are 

( 23.86a ) 

(23.861 

which can be combined to give: 

a = (;) = [AIT = [rr rJTxsr= Jx,, (23.86~) 

where J is the Jacobian matrix at (Ty,q). 
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For future developments we will require 6r which, from (23.84) is given by 

A( ::)+6r = h,IGd, = A64 + h,IGd, (23.87) 

where I is a 3 x 3 unit  matrix and Sd, is the displacement vector change at node i. In 
relation to the contact element, the displacement vector will be 

pT= = (d:, d:, d;, d:, d i )  (23.88) 

while the equivalent current nodal coordinate vector is 

XT = = (x:, x:, x;, XT, x i )  (23.89) 

We will require the variation of x,, in (23.85). Using (23.87). this is given by 

6x,, = [I, - h , I ,  -h,I, - h31, - h41)6p -A64 = F6p -A& (23.90) 

We will also require fir, and dr,. Via (23.84), the latter are given by 

6rr = [0, h,, I, hS21, hS31, ht41]dp + r,,bri 

(23.91a )  

and 
fir, = [0, h,,,I, h,,I, h,,I, hq41]6p + rir,d< 

= C,dp+ C hiqix, f i [  (23.91 b) 0 

Assuming a four-noded contact surface (Figure 23.9), the shape functions and deriva- 
tives in (23.85)and (23.91) are 

hT=(121 .h , , h , , h , )=~( ( l  + ( ) ( I  + ) ? ) , ( I  - ( ) ( I  + r l ) , ( l  - < ) ( I  --)!),(I + < ) ( I  - r ! ) )  
(23.924 

h ~ = ( h ; , , 1 1 5 2 , h 5 j , h : 4 ) = ~ ( ( 1+ r j ) ,  - ( I  + I ! ) .- ( I  -ll).(l - - l ~ ) j  (23.92b) 

h ~ = ( h , I . h , 2 . h s 3 , h ~ ~ ) = $ : ( I+ ( ) , ( I  -0,- ( 1  -[), 
T - T -h:, - hai - ( h i q l  h;,Z, h5s3, h,,,4) =4[ 1, - 1,1, - 1 j 

- ( 1  +<)I (23.92~) 

(23.92d) 

Returning to (23.86), we can now write: 

S a  = r i  [F6p -A&] + xTrC,Sp + (x:,r;,)dtl (23.934 

fib = r:[FSp -A&] + x:,C,Gp + (x:,r#< (23.93b) 

Concentrating on the contact detection part of the algorithm, we have an estimate for 
(5.17) which we wish to improve. To this end the nodal coordinates are fixed so that 
6p = 0 and hence we can use (23.86) and (23.93) to obtain a truncated Taylor series for 
a whereby: 

0 = sold + D65 (23.94) 
with 

(23.95) 
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which is a symmetric matrix. Equation (23.94) can then be used in a Newton- Raphson 
manner to find an improvement (is and hence to update the initial estimates for (<, )I). 

Many of the previous vectors and matrices will turn out to play a crucial role in the 
definition of the tangent stiffness matrix. With a view to the latter, as usual we first 
consider the internal force vector and, to this end, require the normal gap, gh,which is 
given by 

{ I ;  = x,T,xqr (23.96) 

while the unit normal vector e, = n, is given by 

(23.97) 

With a view to virtual work, we require the variation of (23.96) which is given by 

(23.98) 

where we have made use of (23.90) and (23.97). However, using (23.86) and (23.97),we 
can write: 

ATn =0 (23.99) 

and hence simplify (23.98) to give: 

hqN= nTFGp= (ipTFTn ( 23.100) 

As a consequence, the application of the principle of virtual work leads to the 
relationship: 

qi, = f N F'rn= CN { I N  FTn (23.101) 

where gN,which must be negative, is taken from (23.96). 

23.9.1 The consistent tangent matrix 

In conjunction with (23.100), the variation of (23.101)leads to the relationship: 

6qic= r:,F'nn'Fiip + K,,,dp = K,,,dp + K,,,(fN)6p (23.102) 

where 
K,,,(fN)Sp = fNF'dn 4- t,hFTn (23.103) 

The variation of (23.97) gives: 

1
(in = -[I - nnT](ix,, (23.104) 

Y N  

where hx,, is given by (23.90).However, we wish to eliminate Sg from the latter. To this 
end, we now apply the condition that ha (from (23.93)) is zero. Consequently we have: 

[A'F + y,a(n)]Sp + DSg = 0 (23.105) 
in conjunction with: 

(23.106) 
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Equation (23.105) can be solved to give: 

66 = -D- '[ATF + y,a(n)]dp = D- 'YT6p (23.107) 

and substituting into (23.90), we obtain: 

6x,, = [F + A D -  '[ATF + gNa(n)]]6p = [F - A D -  'Y"]dp (23.108) 

so that substitution into (23.104) gives: 

1 1
bn = -[F + A D - ' [ATF + gNaT]]Gp - -nnTF6p (23.109) 

YN (1N 

where we have made use of (23.99). Using (23.109), the first term on the right-hand side 
of (23.103) is given by 

t 
t ,  FTGn=2[FTF-FTnnTF+ F T A D  '[ATF + g,a( n)] ] (23.1 10) 

Y N  

We will now consider the term GFTnwith F from (23.90). The definitions in (23.93) and 
(23.106) can be used to write: 

bFTn= - 6tC;n - 6qCin = -Cc(n),65 =aTD-'[ATF + g,a(n)]Sp (23.11 1 )  

Finally, combining(23.93) with (23.1 10)and (23.1 1 l), we obtain the initial stress matrix 
as 

t
Ktoc(rN)= *[FTF - FTnnTF+ F T A D -  'ATF + y,FTAD- 'a(n) 

.c/N 

+ yNa(n)TD- 'ATF + gka(n)TD- 'a(n)] (23.1 12) 

23.10 ADDING 'STICKING FRICTION' IN 
THREE DIMENSIONS 

The following development for sticking friction, has strong links with the formulation 
of Laursen and Simo [L2] (although there are significant differences). As a start, we 
wish to define the tangential gaps, g, (2 x 1) using a similar procedure to that adopted 
in two dimensions (see (23.26) and Figure 23.7). In the latter case, we introduced do 
which related to the initial configuration and we now apply a similar concept. In 
particular on first achieving contact (Figure 23.10), we have 5: = (to,qo)(as a counter- 
part to xo-see Figure 23.7-in two dimensions). We also have rtOand rqOas well as 
e30= no. Using these three vectors, we can create an orthogonal triad: 

where we could set: 

(23.114) 

We now define the initial coordinate vector of the contact point as 
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Figure 23.10 Three-dimensional contact and the tangential gap. (a) Initial configuration; (b) 
current configuration on first contact; (c) current ‘current configuration’. 

4 
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where the Xi'shave the (master) initial nodal coordinates of the contact surface. For the 
current contact point (is, q) ,we can find the equivalent vector: 

Finally we define the tangential gaps as 

(23.117) 

This is a two-dimensional equivalent to the scalar gap 61, of (23.26). (There are other 
possibilities [L21.) 

With a view to virtual work, we now require the variation of(23.117) which is given 
by 

Csg, = [e,,, e2,IT[Xr, X,]dc = A,d5 = -AxD [ATF+ y,a(n)]6p~ 

= A,D-'Y"Sp (23.118) 

where we have made use of (23.107). 
Applying the principle of virtual work, we obtain the internal force (related to the 

sticking friction forces) as 

23.10.1 The consistent tangent matrix 

The variation of (23.1 19) leads to the relationship: 

In  order to perform the variations in (23.121), i t  is useful to introduce the following 
auxiliary column vectors: 

T~ = [ J T ;  2, = AT; t,, = Le,,, e2,1t, (23.122) 

and the following auxiliary matrices: 

(23.123) 

(23.124) 

z =*t( 1)C; + T(2)C, (23.125) 
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as well as the auxiliary row vector: 

a g v (n) = nTCg, (23.126) 

The  matrix a(TA) in (23.124) takes precisely the same form as the matrix, a(n),previously 
defined in (23.106). 

Given the previous definitions, the initial stress matrix, Klnc(tT),of (23.121) takes the 
following form: 

K l a c ( t T ) = K 1+K:+YD-'WD-*YT (23.127) 

where 
* * 

K ,  = - FTZ+ Y D - ' [ A T Z + a ( t A ) - t i r & F - g N T i a , , ( n ) T ]  (23.128) 

and 

(23.129) 

The first term in (23.128) was obtained from the first term in (23.121), while the 
remaining terms in (23.128) were obtained from the second term in (23.12 1) as were the 
first three terms in (23.129), while the last term was obtained from the third term in 
(23.121). 

23.11 COULOMB 'SLIDING FRICTION' IN 
THREE DIMENSIONS 

To introduce sliding friction, the yield function of (23.38) must be altered to give: 

f = 1 1  t T  1 1  + P U f N= (23.130a) 

with: 

t; = ( tT1,  tT,) (23.130b) 

where the components, t T ,  t N  of the combined local force vector t are now given (see 
(23.40)in 2D)) by: 

t'l'C = tTA + cT(AgT - 'RpC) = tTB - 'TARpB 

(23.131a )  

In (23.131a), we have used a non-associative flow-rule so that Agp is normal to the 
cylinder )I t T  11 = constant and hence Agpc = AgpB.To completely define the forces, tc, 
the scalar ct (or the scalar A A )  must be obtained via the satisfaction of the yield 
condition, fc =0, from which: 

(23.132) 
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The internal force vector now follows as: 

qic= BTt, (23.133) 

where B is found by combining (23.100) with (23.1 18) so that: 

(23.134) 

To find the tangent modular relationships, variation of (23.131) and (23.132) leads to: 

(23.135a) 

t N c  = ENQN (23.13%) 

which can be combined to give t ,=C,g where the modular matrix, C,, is non- 
symmetric. 

The tangent stiffness matrix for the contact element can be obtained using a very 
similar procedure to that given earlier in Section 23.5 and we obtain the relationship: 

(23.136) 

with KIcu(fN)being given by (23.1 12) and KIC6(fT)being given by (23.1 18). 
The developments in Sections 23.9-23.11 have involved a single slave node in 

contact with a four (or three noded) surface. Clearly the techniques could be extended 
to higher order elements. The framework for such a formulation has been given by 
Laursen and Simo [L2]. In  such circumstances, one must add the concepts of area 
integration to the presented techniques which have all been developed in terms of 
contact forces rather than tractions. 

23.12 A PENALTY/BARRIER METHOD FOR CONTACT 

Apart from the issue of numerical conditioning, a further disadvantage of the earlier 
penalty approaches is that, in the early iterations, while a node is oscillating between 
being in and out of contact, the convergence characteristics can be very bad. In these 
circumstances, i t  is essential to use line searches or similar procedure. These issues will 
be discussed further in Section 23.13. One way of alleviating the numerical difficulties is 
to avoid the sudden change in stiffness that occurs when a previously contacting node 
moves out of contact. This can be achieved using a method proposed by Zavarise e t  al. 
[Z2] which combines elements from a penalty procedure with elements from a barrier 
method [FI, L4, Vl]. In relation to Figure 23.1 1, the normal contact force, f N ,  would be 
expressed as 

f N  = fN + E N g N ;  g N  <0 (23.137a) 

(23.137b) 

where cNis the earlier penalty stiffness and fN is an input estimate of the contact force. 
More details on fN (which is a negative quantity) will be given later but from (23.137) 
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g N  = 

(23.137bk 

A 

tN (negative)---+I 

g N  positive ’ gNnegative 
(opening) (penetration) 

Figure23.11 Contact force/gap relationship for penaltyharrier method. 

and Figure 23.1 I ,  i t  is clear that fN is the force when the gap is zero. When the gap is 
positive, the total force, r N ,  rapidly decays to zero while, with penetration, it builds up 
from f, via the penetration and the linear stiffness, cN.  From (23.137), the tangential 
stiffnesses, are given by 

(23.138a) 

(23.138b) 

and there is no sudden jump. 
I f  we assume for the moment that fN is given, the necessary changes to an existing 

penalty formulation are trivial. Considering the simple two-dimensional normal 
contact formulation of Section 23.2, one would first replace (23.1 1 )  with (23.1 37) while 
the tangent stiffness matrices in (23.12) and (23.18) would be unchanged apart form the 
use of ctan from (23.138) in place of cN in K t c l  from (23.12). 

Given reasonable estimates for fN, the author’s work supports the claim in [Z2] that 
the method reduces the oscillations that plague the conventional penalty method so 
that, in some circumstances, the modified method will converge where the standard 
penalty procedure will not converge. However, the oscillation problems are not totally 
eliminated. 

To obtain estimates for fh, one could use information from earlier increments and 
indeed from adjacent contact elements. The method can be used [Z2] in conjunction 
with a form of ‘augmentation procedure’ that has similarities with the earlier aug- 
mented Lagrangian methods (Sections 23.7 and 23.8). Having converged on a solution 
with tN, one may simply set fw= t ,  and then proceed with a new iterative loop. Using 
this formulation, one can converge on a solution with ‘no penetration’. As with the 
penalty and augmented Lagrangian methods, it can also be beneficial to iteratively 
increase the penalty parameter, C~ (see the end of Section 23.7). 
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23.13 AMENDMENTS TO THE SOLUTION 
PROCEDURES 

Although some of the earlier techniques involve some amendments to the solution 
procedures, the latter generally involve a cycle (or cycles) which are based on a Newton- 
like mode. For these cycles, one may use any of the enhancements of the earlier chapters 
(9 and 21) on solution techniques. However, some special considerations relate to 
problems with con tact. 

We have already emphasised the advantages to be gained by introducing line 
searches, particularly in the early iterations. However, with contact. there are some- 
times some special characteristics which can be used to modify the earlier algorithms 
(Sections 9.2 and 21.7). We will initially consider a very simple problem with one 
contacting node. 

Suppose that, at the end of the increment, this node will be in contact, but at the end 
of the current iteration it is out of contact. Consequently, for the next iteration there is 
no penalty stiffness and consequently, the iterative displacement vector, iip,can be very 
large in comparison with the displacement change required to restore contact. As 
a result, the minimum step length, qmin= ETMNA (in subroutine SEARCH-Sec- 
tion 9.2.2) must be set to a very small number. Also the energy slope plot (see Figure 9.2) 
can take the form illustrated in Figure 23.12 so that, using the conventional algorithm, 
a large number of residual evaluations will be required before the line-search tolerance 
is obtained. 

By using information relating to the gap size, one can reduce this work. Suppose that 
at q = t i0  = 0, we have a positive gap, go,  while at q =  1, we have . ~ j ~ ( q ~ )which is a large 
negative number (implying a large penetration because no penalty stiffness has been 
provided). We can easily estimate the step length to restore the gap to zero as 

-Yo
112 =- (23.139)

91 - g o  

which could be used to replace (9.13) which applies a similar interpolation on the 
energy slopes rather than the gaps. At  this stage, if the energy slope, . s , ( t ~ , ) ,  is negative, 
we can simply proceed with the conventional method using the energy slopes. 
However, if s2(t1,) is positive, we still need a negative slope much closer to ’1, than 
s 1 ( q 1  = 1 ) .  Consequently, we could set q3 = 2q2 and continue with doubling until we 
obtain a negative energy slope. Alternatively, we could interpolate between the values 
at i l l  and y,. However, for this interpolation to be activated, we would need to 
temporarily suppress the part of the algorithm (see Figure 9.3) that would otherwise 
imposes a minimum change so that q3 = q 2  + 0.2(q, - q 2 )  2: 0.2. 

In  reality there may be a large number of contacting nodes and one may then apply 
the previous technique, using the gap for the node with the maximum penetration at 
11 = 1 and for which the gap is positive at q = 0. These ideas should be extendable to 
increments rather than iterations with the aid of a form of ‘arc-length method’. In  
Section 21.8, i t  was demonstrated how such a technique could be introduced with the 
control constraint being a particular gap. I t  should be possible to introduce this 
procedure into a general algorithm whereby, at any increment, the chosen gap was that 
associated with the node for which, in the predictor solution, the penetration was 
a maximum while at the previous increment there was no contact. 
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q 2  Step length, q .-w 
from \ 
(23.139) Requiredq3 

I 
Figure 23.12 Line searches with contact. 

23.14 SPECIAL NOTATION 

Scalars 

31 = in two dimensions, non-dimensional coordinate of contact point 
x ,  = in two dimensions, value of IX on first contact 

c = penalty or contact stiffness 
(,q = in three dimensions, non-dimensional coordinates of contact point 

(,, q, = in three dimensions, values of t,q on first contact 
Aq = plastic strain rate multiplier (incremental) 

I, = in two dimensions, initial length of contact segment 
1, = in two dimensions, current length of contact segment 
s = plus or minus 1 
t = force (usually related to penalty stiffness) 
i = Lagrangian multiplier 
p = coefficient of friction 

gN= normal gap 
< l ~ r , g j r l , g , r 2= tangential gaps 
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Vectors 

a = flow vector (see (23.38)) 
b = plastic direction vector (see (23.39)) 
a = in two dimensions, vector of (23.7) 
b = in two dimensions, vector of (23.5) 

b, = in two dimensions, vector of (23.14) 
c = in two dimensions, vector of (23.16) 

d i  = global displacement vector for master node i 
f = in two dimensions, vector of (23.37) 

e, ,e ,  = in two dimensions, unit  vectors in tangential and normal directions 
e , ,e, = in three dimensions, unit  vectors in two tangential directions 

e3=n = in three dimensions, unit normal vector 
p = global nodal displacement vector with slave node first (see (23.3) and 

(23.88)) 
r = current position vector of point immediately below slave node 

- * *  * t = vector of local forces 
t, t ,  t i ,  t,, t,, = see (23.1 19) and (23.122) 

x,= current coordinate vector for master node i 
Xi = current coordinate vector for master node i 
X, = initial initial coordinte vector of contact point (see (23.1 15)) 
X = current initial coordinate vector of contact point (see (23.1 16)) 
x, =current coordinate vector of slave node 
3c = vector of Lagrangian multipliers 
g = vector of gaps 

Matrices 

A = in three dimensions matrix (related to Jacobian)-see (23.86~) 
A, = in three dimensions, matrix-see (23.1 18) 

B = matrix relating changes in gaps to changes in global nodal displace- 
ments 

C = penalty or ‘contact’ elastic stiffnesses (diagonal) 
C, = elasto-plastic tangential equivalent to C 

C:, C,,,C:, = see (23.91) and (23.123) 
D = see (23.95) 
E, = [e,,, ez0, e,,] orthogonal triad defined at first contact (see (23.1 13)) 
F = see (23.90) 

W,Y, Z = see (23.129)’ (23.1 19) and (23.135) respectively 
a(n),a(fA)= see (23.106) and (23.124) respectively 

Subscripts 

a = relates to ‘active set’ 
b = relates to ‘non-contact elements’ 
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c = relates to ‘contact element’ 
p = plastic 
T = tangential 
N = normal 

s = related to slave node 
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24 Non-linear dynamics 

24.1 INTRODUCTION 

Chapters on the application of the finite element method to dynamics can be found in the 
books by Hughes CH3.131, Zienkiewicz and Taylor CZ1.141, Bathe CB1.101 and Argyris 
and Mlejnek [All. The latter book also gives a good general introduction to dynamics. 
Conventional finite element solution procedures can be divided into two main types: 
explicit and implicit. The former is traditionally used for wave propagation and high- 
velocity impact problems, while the latter is more appropriate for structural appli- 
cations dominated by the low-frequency response. In this chapter we will consider both 
techniques. 

Conventional implicit techniques adopt very similar predictor/corrector procedures 
to those used for non-linear statics. However, the out-of-balance force vector is now 
augmented by the mass x acceleration terms while the conventional static tangent 
stiffness matrix is augmented by a factor x the mass matrix and another factor x the 
damping matrix. Dynamic equilibrium is usually enforced at the end of the time step. 
However, it will be shown in this chapter that there are alternative strategies including 
those that enforce a form of ‘mid-point’ dynamic equilibrium and, in some cases, are 
‘energy conserving’. 

Various time-integration strategies can be used for updating the velocities and 
accelerations with the Newmark methods being very popular. In the present chapter 
these methods will provide a starting-point to introduce both ‘implicit procedures’ and 
‘explicit procedures’. The latter involve no real equation solving, but there are tight 
restrictions on the size of the time steps. 

The initial sections will concentrate on continua or, more specifically, on finite 
element formulations in which the only variables are translations. As with statics 
(Chapters 16 and 17), considerable complexities are introduced once rotational vari- 
ables are introduced in a three-dimensional context. These issues will be addressed in 
the latter sections (Section 24.14 onwards). 

24.2 NEWMARK’S METHOD 

It will be assumed that we are given a fixed ‘mass matrix’ M (more details in Section 
24.9) and a fixed ‘damping matrix’ C. In these circumstances, the dynamic equilibrium 
equations at the end of a step may be expressed as 
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where g,, I are the ‘static out-of balance forces’ and g,+ , the equivalent dynamic 
out-of-balance forces. If  geometric non-linearity is present, the ‘static internal forces’, 
qi, ,+ in (24.1)can be computed using any of the methods that have been discussed 
earlier for statics. In  particular, we may use a total Lagrangian formulation (Chapter 5)’ 
a ‘Eulerian formulation’ (Chapter 12) or a ‘co-rotational formulation’ (Chapters 17 
and 18). 

The d’s in (24.1)are nodal displacements, the d’s are nodal velocities and the d’s 
are nodal accelerations. We are not using our usual notation with p’s as the nodal 
variables in order to emphasise that, at present, we are only considering nodal 
translations. The more complex issue of nodal rotations will be considered later in 
Section 24.14. In order to supplement (24.1)’Newmark’s time integration procedure 
[N 13 involves: 

At2
d,, = d ,  + Afd, + -2 ( ( 1  - 2P)d, + 2Pd,+ 1 ;  (24.2) 

and 
; I n i 1  = d , + A t { ( l  - y ) d n + y d , + l ]  (24.3) 

where 7 and P are the Newmark constants. By adopting certain choices for these 
constants, we can obtain either ‘implicit methods’ or ‘explicit methods’. In the 
following, we will start by describing one of the best known implicit procedure and will 
show how it  can be set within a ‘predictor corrector framework’ that is very similar to 
that conventionally applied with non-linear static analysis. 

24.3 THE ‘AVERAGE ACCELERATION METHOD’ OR 
‘TRAPEZOIDAL RULE’ 

I f  we set /3 = 114 and y = 112, then from (24.2)and (24.3),we obtain: 

. At2
d,, ,= d, + Atd, +-4 {d, + d,+ 1 ]  (24.4) 

and 
* At a .

d, + = d, +-2 {d, + d,+ ,) (24.5) 

Using (24.5)’ (24.4) can be re-expressed as. 

At . 
d,+1 = d, +?jd ,  + a,+ 1 )  (24.6) 

Equations (24.5)and (24.6)are both in the form of ‘trapezoidal rules’. 

24.4 THE ‘IMPLICIT SOLUTION PROCEDURE’ 

If all of the required information is available at step n, we can use (24.5)and (24.6)to 
substitute for d, , ,  and d , + l  into the dynamics equilibrium equations (24.1).This 
process leads to a set of equations of the form: 
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As with the equivalent static non-linear equilibrium equations, these equations are 
non-linear in d,+ and, following the static procedure, we can solve them with the aid of 
a ‘predict or-correct or technique’. 

24.4.1 The ‘predictor step’ 

Using a truncated Taylor series, let us assume that: 

(24.8) 

where Kt,, is the conventional ‘static tangent stiffness matrix’ computed at step 1 2 .  

Substitution from (24.8) for qi, ,+ from (24.5) for d,+ and from (24.6) for d,+ into 
(24.1) leads to the relationship: 

q i , n - q e . n + l  + K , , , A d + M  

from which: 

(24.10) 
where 

4Kt.,= Kt,, + 7M + -2 
C (24.11)

At At 

and 

(24.12) 

or 

-d,AqC= Aqe + M ( i t - + 2d, )+ 2Cd, (24.13) 
.* 

where in deriving (24.13), we have used (24.1) at n, thereby assuming exact satisfaction 
of dynamic equilibrium at the previous time step. 

Equation (24.10) provides a conventional incremental ‘predictor step’ although i t  
now uses an equivalent dynamic tangent stiffness matrix, Kl, ,  which includes contribu- 
tions from both the mass and damping matrices. 

24.4.2 The ‘corrector’ 

Having solved (24.10) for Ad, the displacement at  step U+1 can be obtained as 
d,, = d, + Ad and we can use (24.6) to obtain d, + and (24.5) to obtain d, Knowing 
d, + 1, we can also compute the stresses at n + 1 and hence obtain the internal forces 
qi, ,+ as if we were using a static algorithm. Again, as in statics, substitution into (24.1) 
will, in general, lead to a residual, g, + that is not zero. Consequently, we now employ 
a Newton-Raphson (or modified Newton-Raphson or quasi-Newton) corrector. To 
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this end, a truncated Taylor series is first applied to g,, so that: 

while from (24.6): 

(24.15) 

and from (24.5)and (24.15): 

4 .=--hd,+l  (24.16)
A t 2  

We can now use (24.14)--(24.16)to apply a truncated Taylor series on (24.1)so that: 
-

g, * 1,ncw -- g n t 1.old + 'I,,+ 1 'dn- 1 (24.17) 

where K,.,,,is given by 

(24.18) 

which takes the same form as that previously given in (24.11 )  for the predictor step. I f  
g, + f 0, we assume that by setting g,,+ = 0 in (24.17). we will obtain an 
improvement h d , ,  to d,, so that: 

( j d " + l =  - ~ - l l . , l t l g " + l  (24.19) 

where we have dropped the 'old' subscript on g, but. as with the usual static 
Newton Raphson iterations, i t  is implied. 

The predictor-corrector algorithm of Sections 24.4.1 and 24.4.2 takes a very similar 
form to conventional non-linear static procedures. However, i t  is worth emphasising 
one very important distinction. With a static procedure, without material non-
linearity, a converged solution corresponding to a particular set of external loads, 
should be independent of the adopted 'incremental steps'. This should strictly be true 
provided there is no material non-linearity and provided the converged equilibrium 
state is stable---i.e. we are ignoring the issue of multiple equilibrium states associated 
with limit points or bifurcations. However, in non-linear dynamics, even if we have 
converged to a configuration whereby g,+ = 0 ,  in general there will still be an error 
associated with the 'time integration'. This error will be related to the size of the 'time 
steps' and can be controlled if methods are introduced so that the 'time steps are 
limited' (see Section 24.13). 

The implicit solution technique has so far been described in relation to the 'average 
acceleration method' or 'trapezoidal rule', but the methodology could equally be 
applied to other 'time integration techniques'. 

24.5 AN EXPLICIT SOLUTION PROCEDURE 

Explicit solution schemes have been described by Belytschko and Schwer CB3.171,and 
Belytschko [B2, B3] among others. By setting;' = I 2 and /j = 0 in (24.2)and (24.3).we 
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obtain: 

A t 2  ..
d,, , =d, + Atd, + -d,

2 
(24.20) 

and 

. A t  ..
d, , ,  = d , + ~ { d , , + d , + , ~  (24.21 ) 

It will again assumed that all of the information is available at step 1 1 .  Hence, from 
(24.20), we can obtain d,, and hence both the stresses at 11 + I and the 'static internal 
forces' qi, ,+, at n + 1 so that the 'static residual', g, + ,is known. Substituting from 
(24.21)into (24.l), we obtain: 

which can be solved to give: 

(24.23) 

In explicit dynamics it is assumed that the mass matrix Mcan be diagonalised (possibly 
using a technique such as that in [H5]). If diagonal matrices are assumed for both 
M and C, the computation of d,+ from (24.23) is trivial. However, in many circumstan- 
ces, i t  is unrealistic to use a lumped damping matrix, and one is forced to make the 
algorithm asynchronous by introducing cd, rather than Cd,,, in (24.1). In these 
circumstances, in place of (24.23), we obtain: 

d n + l =  - M - ' ( g , + , + C d , )  (24.24) 

Having obtained d,, from (24.23) and (24.24), we can use (24.20) to obtain d, + and 
(24.21)to obtain d,, , so that all of the information is now known at step 11 + 1 and we 
are ready to move on to the next step. 

24.6 A STRAGGERED, CENTRAL DIFFERENCE, 
EXPLICIT SOLUTION PROCEDURE 

Most 'explicit dynamics' computer programs adapt a slightly different, staggered, 
time-marching procedure with the nodal velocities being cotnputed at the half time 
steps (i.e. dn+, 2 )  and the stresses, displacements and accelerations at the whole time 
steps (i.e G,, , and d,, and d,+ l). The time integration algorithms are then: 

which involve central difference approximations. 
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I t  will be assumed that we know the velocity at step I I  -+ and the displacements (or 
coordinates) at step 11 .  Also, the stresses will be known at step IZ and hence the internal 
force vector q,.,) may be obtained. This will usually involve a Eulerian formulation 
(Chapter 12). (Details of the stress-updating algorithm, which uses the Jaumann rate in 
conjunction with this staggered updating scheme, are given in Section 19.4.) 

I f  i t  is assumed that the damping matrix, C, is non-diagonal we must again introduce 
an asynchronous term so that, in place of (24.24), we now obtain: 

d,l = -M - (g, + Cd,I-, 2 )  (24.27) 

As a start, both the displacements d, and velocities dowill be assumed known as will 
any initial stresses. There are a number of variants on the starting procedure. Here. it 
will also be assumed that d - , is equal to do. To start the algorithm, we compute g,  
(possibly zero) and then begin with a modified form of (24.27) so that the complete 
algorithm takes the form: 

( 1 )  d ,  = - M - *(go+ CdJ. 
(2)  d ,  = Ard, + d = Ard, + d, (from (24.25). 
( 3 )  d ,  = Ard, + d ,  from (24.26). 
(4) Compute cr, and q,,,.using the methods of Section 19.4. 
( 5 )  d ,  = -M '(g1+ Cd,  2 )  from (24.27). 
(6) d, = Ard, + d ,  from (24.25). 
(7)  d, = Ard, ,+ d ,  from (24.26, et.) 

Algorithm 24.1 A staggered explicit, time-marching procedure. 

I f  variable time steps are to be introduced, we can replace At in (24.25) by A[, and At in 
(24.26)by , where: 

At ,  i1 2 = ; (At ,  + A[,l + 1 ) (24.28) 

I n  relation to the stress updating, in (19.41), (19.43) and (19.44), we would replace At by 
Arn+ , 2 .  Generally, for explicit computer codes, the time step size is governed by issues 
of stability. 

24.7 STABILITY 

Although much work has been devoted to the stability of time-marching algorithms 
[HS. H3.13, Z1.14], a lot of this work strictly relates to the linear regime. For such 
problems. assuming C = 0 and that there are no external forces (24.1) becomes: 

Kd + Md = 0 (24.29) 

We will assume that the solution takes the from: 

d = ae"~" (24.301 

so that equation (24.29) can be re-expressed as an eigenvalue problem to obtain the 
frequency, to ,  and the equivalent eigenvectors, a, so that: 

[K - co2M]a = [K - iM]a = 0 (24.31 ) 

In  a particular mode, the period is given by 2n,ico. For linear systems, i t  can be shown 
that the 'average acceleration' or trapezoidal rule (Newmark with p =  1 4 and ;' = 1 2)  



STABILlTY 453 

is unconditionally stable (irrespective of the size of the time step) while the equivalent 
explicit method (Newmark with p = 0 and 7 = 112) is conditionally stable so that the 
time step is limited by 

Ar < Affr i ,=-
2 

(24.32) 
‘“max 

Strictly, to obtain (omax,we should solve the structural eigenva ue problem n (22.31). 
Fortunately, however we can bracket wmaxusing: 

umax< maxto(,kx (24.33 )  
all  c 

where the e symbol relates to the elements. In other words, we can use the maximum of 
the maximum to over all of the elements. In practice, we do not even need to conduct the 
eigenvalue analysis at the element level, but may instead use Gorschgerin’s theorem 
[J2] or alternatively simple formulae that have been given for a range of elements by 
Belytschko [B2, B31. 

It was stated earlier that the ‘average acceleration’ or ‘trapezoidal rule’ was uncondi- 
tionally stable. Unfortunately this is only true for ‘linear systems’ and, among others 
Simo and co-workers [S3-S5] and the author and co-workers [C2-C4, Gl]  have 
shown that severe numerical instabilities can arise for non-linear problems. 

These difficulties are illustrated in Figures 24.2-24.4 which involves the analysis of 
the simple pendulum of Figure 24.1 which was originally analysed and discussed by 
Bathe in his book CB1.10) and study guide [Bl]. I n  both cases, the pendulum was 
dropped from the horizontal position while for the results shown in Figures 24.2 24.4 
(details in [C2]), the mass was ‘fired’ with an initial horizontal velocity of 772.5cm,’sec 
from the vertical position. (The basic behaviour is very similar for the two cases.) 

The results in Figures 24.2-24.4 that are labelled Newmark relate to the ‘average 
acceleration method’ or ‘trapezoidal rule’ with = 114 and jl = 1 !‘2(Section 24.3 and 
24.4). From the response in Figure 24.2, i t  can be seen that, using this method, a time 
step of the order of 0.025s is required (in comparison with the period of the order of 

m = 1 0 k g  
I =  304.43cm 
g = 980 cm/s2 
€A= 10’’ N 

, 4  \ 
\ ,. , 

\ 

Figure 24.1 Simple pendulum. 
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Figure 24.3 Variation of energy with time. 

4.0s) to obtain a satisfactory (but for how long?) solution. If a time step of 0.1s is 
adopted, the solution ‘locks’ at a position close to the initial position after one and 
a quarter periods. Figure 24.3 shows that, prior to this ‘locking’, there has been 
a build-up of energy with an increasing percentage going into strain energy rather than 
kinetic energy. This increase is associated (Figure 24.4) with an oscillating axial strain 
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Figure24.4 Variation of axial strain with time (with Newmark method) 

(Figure 24.4). I t  should be emphasised that there are no numerical difficulties in 
obtaining the ‘locked solutions’ shown in Figures 24.2 and 24.3. The predictor- 
corrector procedure does not ‘blow up’, but rather converges to the ‘wrong solution’. 
Indeed in some cases [C3], these ‘wrong solutions’ are not obviously wrong (see also 
Stewart [SS] on the general pitfalls that can result from numerical time-integration 
schemes). 

One possible remedy is the development of ‘energy-conserving algorithms’ which 
will be discussed later in Sections 24.10-24.12 and for which the results labelled ‘energy 
conserving’ in Figures 24.2 and 24.3 were obtained. Another possibility is to use an 
algorithm with some built-in ‘numerical dissipation’. A popular method that falls into 
this category is described below. 

24.8 THE HILBER-HUGHES-TAYLOR a METHOD 

The Hilbert-Hughes-Taylor method [H4] was originally formulated in a linear 
context as a variant of the Newmark algorithm. We will here directly consider its 
application in a non-linear context and will rewrite (24.1) as 

g,+ 1 =H.+ 1 ( 4  + Md,+ 1 = 0 (24.34) 
where 

g,*+ = (1+E ) ( q i . n +  1 - q e . n +  1 + ‘in+ 1) - z{qi,n - q e , n  + 
= (1+4 (g, + 1 + cd,+ 1 ) - a{g, + Cd,) (24.35) 

In re-expressing the dynamic equilibrium equations in this way, we have effectively 
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related the inertia terms Md, + to the 'end point' n + 1 (or SI =0) while the static and 
damping terms are related to some point x (with a<O). In this way we include 
a component of the terms from the previous step. The equilibrium equations of (24.34) 
and (24.35)are now combined with the time integration updates of (24.2)and (24.3). 

To obtain an expression for the predictor step, we substitute into (24.34)and (24.35) 
from the truncated Taylor expansion for qj,,+ previously given in (24.8)and from 
(24.3)and (24.2)ford,,+ and from (24.2)for d,, 1. This process leads to the incremental 
relationship of (24.10)(Aqe = K,,,Ad) with: 

K , . , = ( l + x )  K,, ,+-C + L M  (24.36)[ ;At ] pAt2 
and 

(24.37) 

With a view to obtaining the 'corrector', from the variation of (24.2),we have: 

and from the variation of (24.3)in conjunction with (24.38),we have: 
1' 


dd,, = dd,, (24.39)
pAt 

Substitution from (24.14), (24.38) and (24.39)into a truncated Taylor series from (24.34) 
to (24.35)leads to (24.17)where K,,,, is now given by 

and the Newton-Raphson iterative change is given by the standard equation (24.19). 
For a linear system, if the parameters x ,  p and -y are chosen so that: 

- 1 / 3 < ~ < 0 ;  p=(1-1~) ' /4;  j ' = ( 1 - 2 ~ ) / 2  (24.41 ) 

an unconditionally stable, second-order accurate scheme results [H2, H3]. In  a non- 
linear environment (where the method can be unstable [CS]) ,analysts typically use the 
scheme with x = -0.05 [H2, H3). When x is set to zero, the conventional implicit 
Newmark method is recovered. 

24.9 MORE ON THE DYNAMIC EQUILIBRIUM EQUATIONS 

I f  (as in all of the following), we neglect any damping terms, the previous dynamic 
equilibrium equations (24.l ) ,  can be considered as stemming from a weak form of the 
differential equation of dynamic equilibrium whereby: 

aij,j+ hi = p.fi (24.42) 
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with hi as the body forces and f ias the components of acceleration. For the present, we 
will not be precise regarding the definition of the ‘type of stress’. 

The weak form of (24.42) can be written as 

cT&,d V -sGuJbd V + p6u;ii d V = 0 (24.43)I I 

where the subscript v means virtual. Following from the finite element discretisations 
where by: 

u=Hd;  6u=H6d; i i=Hd; & = B 6 d  (24.44) 

we arrive at the equations: 

Gd:g =0 (24.45) 

where g is the dynamic residual given by 

g = qi -q, + M d = g  + Md (24.46) 

with 

q i =  B T a d Vs (24.47) 

sM =  pHTHdV (24.48) 

I t  is clear that, apart from the D’Alembert inertia terms, equation (24.26) takes the same 
form as the static equilibrium equations. Indeed, apart from the exclusion of a damping 
term Cd, these equations coincide with (24.1) which formed the starting-point for all of 
the work in the previous sections. In the next section, we will consider a ‘total 
Lagrangian formulation’and in this case the static internal force vector in (24.47) would 
involve B,, which is a function of the current displacements while, in place of c,we 
would have the second Piola-Kirchhoff stresses, S. 

The main aim of the work in the current section is to emphasise that (24.1) or (24.46) 
represent dynamic equilibrium equations for a single point in time and stem from 
(24.42)which also represented a single point in time. However,just as we use the finite 
element procedure to discretise in space and hence introduce an approximation. so we 
are now approximating in time and there are a number of ways in which the finite 
element method can be used for this purpose. Many methods start with equations 
(24.42) or (24.46). However, the starting-point can precede equations (24.42) and can 
stem from Hamilton’s principle which gives: 

6 1;( K  - 4)dt = 0 (24.49) 

where K is the kinetic energy and q5 is the total potential energy. 
In the following, we will start by giving the developments for a simple system with 

one degree of freedom. In this case, we have: 

6 1;(+m.t2- 4)dt = 0 (24.50) 
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from which we can obtain: 

(24.5I ) 

The first term can be integrated by parts so that:

iy 6:
(mtd .~ ) ; ;- (,Tl.fh.y + &)dr = - (m.fi5.u + &)dt = 0 (24.52) 

where the first term in (24.52)vanishes because .K is specified at the end points [S I .  161. I f  
equation (24.52)is to be valid irrespective of Cis,we arrive at the differential equation: 

nl.f + g(s)= 0 (24.53) 

which is the one-dimensional equivalent of (24.42).However, we could maintain the 
time integral i n  (24.52)and indeed we could adopt a form of Petrov -Galerkin approach 
[Z I .  13, Z 1.141so that the Ss’s are simply ‘test functions’ and are not derived from the 
X I S .  

24.10 AN ENERGY CONSERVING TOTAL 
LAGRANGIAN FORMULATION 

In  a finite element context, energy-conserving methods seem to have been first 
considered by Haug et d.[Hl] and Hughes et ul. [H6] who used Lagrangian 
multipliers to enforce the conservation as a constraint. Simo and co-workers [Sl,  S2] 
then explored the idea of a form of ‘mid-point equilibrium’ which follows on from the 
ideas of Hilber et al. [H4] and Zienkiewicz et ~ i l .[Zl]. I t  would seem that the key to the 
success of the method related to the precise form of the ‘mid-point stresses’ [S3 S 5 ,  
C2-C4. G1, SS]. In particular, they should be the average of those stresses at the 
beginning and end of the steps and should riot  be computed from the average of the 
displacements at the beginning and end of the steps. 

We will now explore the ideas further by extending the work of the previous section 
to the multi-dimensional case and by adopting a total Lagrangian approach with 
Green strains so that the equivalent of (24.52)can now be expressed as 

where S are the second Piola--Kirchhoff stresses and E are the Green strains. The 
bars on the Sd’s and &E’semphasise that (considering a Galerkin approach), they do 
not have to be derived from the d’s which are required for the computation of the S 
and d. 

We can use various approximate procedures to integrate (24.54)in time. A particular 
form involves a combination of trapezoidal and mid-point approximations so as to 
produce: 

(24.55) 
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Here the subscript m means 'mid-point' and we are writing: 

~(d 1ld2)6E, = B(d,)Gd, = B Sd, = i (B(d , )+ B(d2))Sd, (24.56) 

where the B s  are those appropriate to a total Lagrangian formulation (Chapter 5 )and 
were previously referred to as B,, (see (5.19) or (12.5)). In  (24.55), S, are the second 
Piola-Kirchhoff stresses computed at time c ,  (from d , )  and S2 are the second 
Piola-Kirchhoff stresses computed at time t 2  (from d,). I t  should be noted that the 
vector +(Sl+S,) is not computed from the mid-point displacements dm= ;(d, +d,) so 
that we are using a form of Petrov-Galerkin procedure. 

Equation (24.55) can be re-expressed as 

i5dT,gm=0 (24.57) 

where the dynamic, mid-point residual g, is given by 

(24.58) 

As the time step tends to zero, (25.58) tends to (24.46) with: 

qi = B(d)TS(d)d1/, (24.59)J 
The motivation for the particular form of integration in (24.55) relates to energy 
conservation [S3]. 

For the strain energy change over the step, we may write: 

where Ad are the displacement changes from time step 1 to time step 2 (i.e. d, - d , )  and 
the vector qimis that given in (24.58). (More discussion on the relationships in (24.60) is 
given in the next section.) For the kinetic energy change over the step, with the aid of 
(24.6), we can write: 

2 2 = i ( d 2 - d , ) T M ( d 2 + d 1 ) =(d2i \ id1  >' MAd (24.61)AK = ~ d T M d 2 - - ~ d ~ M d ,  ___ 

Hence, assuming a fixed external load vector (as with gravity loading), the total energy 
change is 

d2 - 4AK + Acp + AP = AdT( M ( y )  + qi, -qe) = AdTgm (24.62) 

where g, was defined in (24.58). Having iterated to dynamic equilibrium, this vector 
will be zero and hence, from (24.62), there will be no energy change over the time 
increment [53].While it is true that for most structural systems damping or dissipation 
will be involved, it none the less makes sense to start with an algorithm that is satisfactory 
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in the absence of such damping. In this context, the author believes that the main 
advantage of the ‘energy-conserving algorithms’ is not necessarily that they conserve 
energy, but rather that they are stable in the non-linear regime. 

In  describing the predictor-corrector steps for the energy-conserving algorithm. 
instead of using time steps 1 and 2, we will revert to using steps such as n - 1 and 1 2 .  The 
essential background for the method has already been described apart from the velocity 
update for which we use (24.6), which, for convenience is reproduced here as: 

2 - 2
d,+ = -Ad -d, = --(dflt -d,) -d, (2463)

At At 

24.10.1 The ‘predictor step’ 

If we assume dynamic equilibrium at step I N - = U - 11‘2, using a truncated Taylor 
series, we can write: 

-- qi.m.~+ K,,m.- Ad (24.64) 

where, from (24.58) 

(24.65) 

where K,, takes the form given in (5.25) or (12.6) and is symmetric while the first term in 
(24.65)is non-symmetric. This non-symmetry relates to the Petrov- Galerkin nature of 
the earlier derivation. As the step size tends to zero, symmetry is restored. Substitution 
from (24.64) for qiqn,+and from (24.63) for d,+ into g,,+ using (24.58)leads to the 
relationship: 

where 

(24.67) 

with K,,,, from (24.65) and: 

(24.681 

24.10.2 The ‘corrector’ 

Having solved (24.66) for Ad, the displacements at step n t  1 can be obtained as 
d,,+ =d,  +Ad and we can use (24.63) to obtain d,+ 1. Knowing d, we can also 
compute the stresses at S,, and hence obtain the internal forces q i a m +using (24.58) 
(with subscript 11 replacing subscript 1 and subscript IZ+ 1 replacing subscript 2) from 
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which the dynamic residual, which will not generally be zero, will be given by 

Applying a truncated Taylor series to g,, in (24.69), we obtain: 

where 

which takes the same form as (24.65). To complete the process, from (24.63) we have: 

2
6dn+1 =- Sd,, (24.72)

At 

We can now use (24.70) and (24.72) to apply a truncated Taylor series to (24.69) so that: 
-

g m t .new -- g m + .old + '1.m + + 1 (24.73) 

where K,,,,+ is given by 

(24.74) 

which takes the same form as that previously given in (24.67) for the predictor step. We 
can now apply the standard method to(24.73) to obtain the Newton-Raphson iterative 
change, dd, + with: 

dd,, ,  = -K-'t,m+ gn i i  (24.75) 

where, as usual, we are dropping the subscript 'old' 

24.11 A CO-ROTATIONAL ENERGY-CONSERVING 
PROCEDURE FOR TWO-DIMENSIONAL BEAMS 

The concepts of Section 24.10 can be adapted to apply to two-dimensional beams [G I]. 
To this end, we will start with an approximate co-rotational approach which does not 
exactly conserve energy. The starting equation is closely related to (24.58) and involves: 

E r n = (  Qi1.n +2Qil,n + 1 ) - ~ e r n + ~ ( p ~ + ~ ~ p ~ )Tn +2Tn+ 1 >'( 
(24.76) 
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Here, we are following the usual co-rotational approach (see Sections 7.2,7.3, 17.1 and 
Chapter 18) whereby qil.,+ are the local internal forces at step n +  1 and the 
'transformation matrix', T,, is such that, at step n + 1, the local nodal 'displacement 
changes'( here including rotations), dp,., ,are related to the global nodal 'displacement + 

changes'. 6p, via: 

bP/,flt1 =T,t  16P (24.77) 

With the more usual 'end-point' equilibrium relationship, in place of (24.76). the 
dynamic equilibrium equations would read: 

g n + 1  =TL1qiI.n+1-qe.n+1 +MPn+l 
-- Q i . n *  1 - q e , n +  1 + M P n +  1 = o  (24.78) 

In relation to energy conservation, we observe that: 

(24.79) 

Equation (24.79) can be considered as being derived from the average of: 

(24.80a) 

and 

P / . n  = PI,,+ 1 AP (24.80b)- % I f l +  

The equivalent relationship to (24.79) for the total Lagrangian continuum formulation 
of Section 24.10 is 

(24.81) 

where 

&E,+1 = B,+ ?P,+ 1 (24.82) 

Because of the quadratic nature of the Green strain, there is no approximation in 
(24.81). 

For the co-rotational approach, although (24.79) does involve an approximation, i t  
is a reasonably good one and so we can still use this equation as the starting-point for 
energy conservation. (Sophistications aimed at the removal of the approximation will 
be discussed later.) Having adopted (24.79), we can now write the change in strain 
energy over the step as 

(24.83) 

In addition, (24.61) still applies for the change in kinetic energy (although now with p's 
instead of d's because we are including rotational variables). Consequently, we can 
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again write an equation of the form of (24.62) whereby: 

(24.84) 

As with the total Lagrangian formulation of Section 24.10, once we have iterated to 
‘dynamic mid-point equilibrium’s0 that (24.76) is satisfied, the energy change over the 
step will vanish. 

Before considering refinements whereby we overcome the approximation in (24.79), 
some discussion will be given on the mass matrix M that was introduced in (24.76). For 
this matrix, either a ‘lumped’ or a ‘consistent’ form can be used and because an ‘implicit 
procedure’is being adopted, there will not be any advantages from adopting the former. 
For the latter, a ‘Timoshenko beam’ approach can be simply applied, with the mass 
matrix being derived from interpolations on the global translations and on the global 
rotation. Assuming a linear interpolation, this leads to the relationship: 

(24.85a) 

A 01 :j
where A is the area of the beam and I is the second moment of area. 

where p is the density and D is a 3 x 3 diagonal matrix given by 

D = O1:
 (24.85b) 

Following the ‘element independent’ co-rotational procedure of Section 17.1 and 
Chapter 18,in (24.76) and in subsequent developments, the local internal force vectors, 
qir,are unspecified and could be obtained from either a Timoshenko formulation or 
from a Bernoulli formulation. However, because of the movement of the local element 
frame, there would be considerable difficulties in deriving appropriate mass relation- 
ships for the latter (see Section 17.5.3). Consequently in [G 11,the author and co-worker 
adopted a Timoshenko formulation for the mass terms even if a Bernoulli formulation 
was being used for the ‘static internal forces’. 

24.11.1 Sophistications 

In the following, it  will be assumed that the variables are ordered as u l ri t l ,  01,u2 ,2 t 2 ,  0,. 
It can then be shown [Gl] that a better approximation than (24.79) is given by 

where Apr contains the incremental global rotations (in their usual positions) with all of 
the other variables zero, while Apt contains the incremental translations (in their usual 
positions) with the rotations being set to zero. In (24.86), P is a diagonal matrix with: 

2 *”) (24.87)1 +cosAa’ ‘sinAx 
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and Ax is the rigid-body rotation between steps nand P I  + 1. The latter can be computed 
from the relationship: 

sin A2 = 1 1  x21. I I  x x2 11 + 1 I /  '/,,I,, + (24.88) 

where the xZ1'sare the vectors lying between nodes 1 and 2 and the I's are theequivalent 
(straight) lengths. 

Because of the adopted ordering of the nodal variables, following an equivalent 
two-dimensional approach to the two-dimensional approach in Section 17.1, only the 
third and sixth rows (relating to rotations) and the fourth row (relating to the extension) 
in the T matrices in (24.86) will be non-zero. Consequently, the asterisks in (24.87) can 
take any value. Equation (24.86) is effectively exact for small strains. In these circum- 
stances, as the step size tends to zero. the approximation in (24.79) also becomes exact. 
I t  will be useful to re-express (24.86) as 

(24.89) 

where 1 is the diagonal matrix: 

Diag(1)= (0,0, 1,0,0, 1) (24.90) 

and the matrices TE and T:+ are the conventional transformation matrices after the 
diagonal terms corresponding to the nodal rotations have been set to zero. In place o f  
(24.83), the change of strain energy over the step can now be expressed as 

Hence, in order to ensure energy conservation, we must equate (24.91) to Ap'rqimso that 
the modified mid-point internal force vector is now: 

(24.92) 

24.11.2 Numericalsolution 

To apply the method, we combine (24.76) with the modified (24.92) (for approximate 
energy conservation there is no need to include the 'sophistications') in conjunction 
with a trapezoidal update of the form of (24.6), i.e. 

At 
P n - b  1 = P, +2{P"+ P n +  11 (24.93) 

The derivation of the predictor-corrector algorithm follows very similar lines to that 
adopted in Section 24.10. The key issue is the variation of the mid-point dynamic 
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residual, gm,which from (24.76)and (24.92)involves: 

(24.94) 

where 

(24.95) 

and 

(24.96) 

The latter matrix is non-symmetric while K,, in (24.95)takes precisely the same form as 
the conventional static co-rotational stress matrix (although now as a function of 
a modified local internal force vector). The matrices K,, and K,,  stem from the OP term 
in (24.95).From (24.87)we will require hr, where AY is the incremental rigid body 
rotation. From (7.65),this is given by 

(24.97) 

where e, is the unit vector at right angles to the current vector lying along the beam. e ,  
(see Figure 7.7) and iid, and ad, are the variations in translational displacements at 
nodes 1 and 2 respectively. With the aid of (24.97),the matrices K,, and K,, can be 
computed as 

-B1B 
(24.98a) 

(24.98b) 

with 

(24.99a) 

(24.99b) 
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24.12 AN ALTERNATIVE ENERGY-CONSERVING 
PROCEDURE FOR TWO-DIMENSIONAL BEAMS 

In Section 7.4, we described a formulation for two-dimensional beams that was based 
on Reissner's beam theory. This formulation can be considered as the two-dimensional 
equivalent of the three-dimensional formulation due to Simo and Vu-Quoc CS3.16) 
that was discussed in Section 17.2.1. In  relation to dynamics, Stander and Stein [S7] 
have incorporated the static two-dimensional formulation (Section 7.2) within an 
energy-conserving dynamic framework. Many of the adopted concepts are very similar 
to those discussed in the previous section for the co-rotational formulation. In  the 
current section, we will outline the extension of the static formulation of Section 7.4 so 
as to produce an energy-conserving dynamic technique. The derivations will rely 
heavily on those already given in Section 7.4 for the 'static case' and frequent reference 
will be made to equations from that section which will not be rederived here. 

The starting motivation can be considered as the desire to be able to express the 
change of energy over the step in the form of (24.84) and, in particular, the change of 
strain energy in the form of (24.83) so that Acp = ApTqim.We can use this concept to 
define the required 'static mid-point internal force vector', qim.To this end, we will start 
by considering the change in axial strain energy over the step which can be expressed 
via: 

In the above, the 'local strain', c l , is defined via (7.112) and using this equation, we can 
write: 

(24.101) 

Here, . x i l mand z i l m  are the components of the vector xblmwhich is related to (7.1 1 1 )  
although now with respect to the 'mid-point configuration's0 that: 

In the above and in subsequent developments the subscript 'av' means the average of 
the variables at nodes 1 and 2 (see (7.109)), while the subscript 'm' relates to the 
mid-point in time. The terms AuZlmand AwZlmin (24.101) are the incremental 
differences in the U (related to .Y-see Figure 7.9) and w (related to z-see Figure 7.9) 
displace men ts. 

Equation (24.101) can be re-expressed as 

(24.103) 
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The key step is the subsequent expression of: 

(24.104) 

followed by the expansion using expressions for terms such as cos(u +h).This process 
allows (24.103) to be re-expressed as 

(24.105) 

and hence, introducing more of the notation of Section 7.4, we obtain: 

1 ~ = 1l o ( ~ ; l , f l +  - ~ 1 , = ){ fm + L ; ~ s ) ~ A P  {im+ [pn+1 - pnj (24.106) 

where s was defined in (7.119) and fmis related to r in (7.1 12) which was defined in (7.62) 
so that we now have: 

i: = COS(AO,~/~){ -C, - S, 0, C, S, 0) (24.1 07) 
with 

c = cos(OaV,,,); s = (24.108) 

The constant C2 in (24.106) is related to c2 in (7.121) but now takes the form: 

The vector f ,  is related to t, in (7.1 10) but is now given by 

i; = { -s, c> (24.1 10) 
where s and c were defined in (24.108). The vector s in (24.106) was defined in (7.1 19). 

A very similar procedure can now be applied to the change in shear strain energy 
over the step so that: 

A c ~ s= i ( Q n  + Qn + 1Y o ( ~ n+ 1 - Y n ) = Qmlo(>qn+ 1 -3'") (24.111) 

In the above, the shear strain, y,was defined via (7.1 14) and using this equation, we can 
write: 

(24.112) 

with subsequent developments eventually leading to 

Io(yfl+ - yfl) = -2 sin(AOaV/2) 

+ cos(Atl,i2i( :'r( Aw, ) (24.1 13) 
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Introducing more of the notation of Section 7.4, we obtain: 

l,Jy,,+ ,- y,,) = (Z, + ?lS)TAP (24.1 14) 

where Z, is related to z in (7.1 14) so that we now have: 

ZT,= COS(AO~, /~ )(s, - c',0, -S, c',0) (24.1 15) 

with c' and s having been defined in (24.108). The vectors was defined in (7.1 19) while the 
constant C 1  in (24.1 14) is related to c ' ,  in (7.120) but now takes the form: 

The vector f ,  is related to t ,  in (7.110)but is now given by 

r; = .(c'.s) (24.1 17) 

where c and s have been defined in (24.108). 
For the bending strain energy, the change over the step is very simply expressed as 

A q b  = + ( M ,+ M ,  t 1 ) j o ( ~ n+ 1 -x,)= Mm("2 1 ,n+ 1 - ('2 1 .n) 

= M,fO,O, - 1,0,0, 1)Ap = M,aTAp (24.1 18) 

By combining the three strain energy changes, we arrive at the relationship: 

Acp = ApTqim= ApTBT = ApT[im+ F,s, a, Z, + Fls] (24.1 19) 

which defines the 'static internal force vector', qim required to ensure energy con- 
servation. The tangent stiffness matrix follows from the variation of qim(and the 
inertia terms-see Section 24.1 1 )in the usual way. As with the co-rotational technique 
of the previous section, a non-symmetric tangent stiffness matrix is again produced 
~ 7 1 .  

24.13 AUTOMATIC TIME-STEPPING 

As indicated in Sections 24.6 and 24.7, for explicit methods, the time step is best related 
to an estimate of the maximum eigenvalue of the system (which can change with time) in 
order to ensure stability(see also [Pl,  Ul]). In  the current section, we will beconcerned 
with automatic time-stepping for implicit methods. 

Hibbitt and Karlsson [H2, H3] observe that having obtained solutions at steps 
n and P I  + 1, one can interpolate the acceleration over the step via: 

d = (1 -Tjd, ,  + Td"+ 1 (24.1 20) 

where T varies from 0 to 1. (We are here reverting to the use of d for the nodal 
displacement variables. Certainly, for two-dimensional beams, we could use p instead. 
implying the inclusion of 'rotational displacements'. As will be discussed in Section 
24.14, the issue of interpolating three-dimensional rotational variables is more compli- 
cated). If we now use the Newmark formula (24.2) for d, + I ,  the acceleration at T,can be 
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written as 

(24.121 a)  

This equation can be integrated with respect to T and the constants of integration 
inserted so that the Newmark end conditions (24.2) and (24.3) are satisfied and we 
obtain: 

(24.121b) 

A further integration leads to 

d = d, + T ~ A ~  + T ~ (  
At2 ..+ T ( 1 - ~ ~ ) A t d ,  1 -T)-2 d, (24.121c) 

Hibbitt and Karlsson [H2, H3] were adopting an end-point dynamic equilibriutn 
procedure (as modified by the cc method-see Section 24.8) and noted that having 
obtained such an equilibrium point they could insert (24.121) into the dynamic 
equilibrium equations to obtain the dynamic residual at any point within the step, 5. In  
particular they considered T = 1/2. It was argued that, if the adopted time step was small 
enough for an accurate solution, this residual would be small, whereas if i t  were too 
large, the computed mid-point residual (and in particular its max-norm) would be 
significant in comparison with a typical real force. From numerical experiments, they 
considered that if the maximum mid-point residual was of the order of 1 per cent of such 
a real force, the solution had a high accuracy, while if the same percentage was of the 
order 10,moderate accuracy was being obtained and if the percentage were of the order 
of 100,the accuracy was considered poor. Using these observations they developed an 
empirical algorithm for adjusting the time steps. 

In order to apply this technique, once dynamic equilibrium is obtained, the stress 
updating routines must be re-entered with the mid-point displacements so that the 
mid-point residual can be evaluated. If the solution is considered too inaccurate and 
a time step reduction is required, the current increment is resolved with a reduced time 
step. 

Bergan and Mollestad [B4] have proposed an alternative procedure in which 
one uses the Rayleigh quotient to evaluate the 'current frequency', (I),at time step 
n via: 

AdTKAd 
= (24.1 22) 

AdTMAd 

In  detail, Bergain and Mollestad [B4] mainly discussed linear problems. For non- 
linear work, the author and co-worker [Zl] have computed this quantity immediately 
after convergence at the end of step n so that Ad = d,, -d, while K is the tangent 
stiffness at the end of step n (or at the beginning of step IZ + 1).The current period is then 
computed via: 

(24.123) 
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The absolute value is taken because CO' may be negative. Zhong and Crisfield 
[Zl] then use the period T so computed to adjust the step at the next increment 
(n+ 1). Bergan and Mollestad [B4] suggest the computation of preliminary time 
step via: 

At,*+ = cpT (24.1 24) 

where the input factor cp may lie between 0.001 (high accuracy) and 0.1 (low accuracy). 
In  the author's implementation [Zl], a maximum ratio for the time step increase is set 
to 2.0, while no limit is set for a reduction. If the incremental displacements become very 
small or vanish (as when passing through points of maximum amplitude), the current 
frequency computation is abandoned and the present time step is used for the next 
time step. 

The present author and a co-worker [Zl] have successfully applied this algorithm 
which is very easy to implement. It can be used with both the end-point equilibrium 
methods of Sections 24.2-24.8 and the mid-point equilibrium methods of Sections 
24.9-24.12. Particularly in the former case, it is important that the analysis should 
commence with a small time step. If this is too small, the automatic algorithm will 
quickly allow it to grow. However, if the initial time step is too large, the solution may 
never recover [Zl]. 

24.14 DYNAMIC EQUILIBRIUM WITH ROTATIONS 

In relation to finite elements, the issue of non-linear dynamics with rotations has been 
discussed in the papers by Simo and co-workers [Sl-S6] and those by Cardona and 
Geradin [Cl, C1.17, C2.171. In the following we will start by considering a point with 
a position vector x, which is assumed to rotate about the origin so that: 

where o is the angular velocity and S(w) is the skew-symmetric matrix of (16.8). The 
rotational kinetic energy can be written as 

pS(x)S(x)dVO = $ w ~ J , w  (24.1 26) 

where: 

3, = - pS(x)S(x)dVs = (s p(xTx)I-XXT)dV (24.127) 

and we have made use of (16.86). Equation (24.127) can be expanded to give: 

Assuming that the axes are chosen to coincide with the principal directions of inertia, 
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the terms such as ~ . x l x 2 pd V  are zero. We can then write: 

J u l l= s(.Y: +.ui)pdV 

Ju22= s(.xf + .yi)pdV (24.129) 

Ju33= s(.xf + .ui)pdV 

so that: 

(24.130) 

However, when the body rotates (Figure 24.5), the principal directions of inertia will 
change and hence the previous computations are only valid in a rotating coordinate 
system (although J, need only be computed once-in the initial coordinate system). In 

"2 


Figure 24.5 Rotatingbody. 
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the following, we will introduce a subscript I I  for all quantities that are related to this 
rot at ing coordinate sys tem. 

Suppose that the initial axes [ i l ,  i2 ,  i3] rotate with time to axes U = [U,, u2,U,] 

(Figure 24.5), then the inertia matrix with respect to the fixed frame [ i , , i 2 . i 3 ]  can be 
expressed as 

J(r)= UJ,UT (24.131 ) 

We can check this assertion, using the procedure of Section 4.3, with a transformation 
matrix T = U'rso that we obtain: 

J, = TJ(t)T' = UT[UJ,U"]U = J, (24.1 32) 

Consequently, as intended, the inertia matrix with respect to the rotating frame 
remains fixed. This rotating frame is often referred to as the 'body attached frame' 
(orconvected frame) and i t  will here be considered as having its origin at the centre of 
mass. 

We will now write down the rotational equilibrium equations as 

d d 
-(J([ ) C O )  =- [ U J , U ' r ~ )= M, (24.133)
d t  dt 

where Me are the external moments and J(t)ct,is the angular momentum. Evaluating 
the time derivative in (24.133) and noting that J, is fixed, we obtain: 

U J , ( U r ~ ) '+ UJ,U"W = M, (24.1 34) 

Writing: 

CO, = U'rCO (24.135) 

as the angular velocity with respect to the rotating 'body frame', then premultiplication 
of (24.134) by U leads to 

J,&, + U'UJ,CO, = U'M, = Me, (24.136) 

From previous work (see ( 1  6.8lc)), we can write: 

S(CO)= UU' (24.137 1 

so that with respect to the rotating frame: 

S(W,) = U'[UU"]U = U'U (24.138) 

and we can rewrite (24.136) as 

Juhu+ S(CO,)J,CO,,= J,h, + CO, x J,o, = M,, (24.139) 

Expanding (24.139) and assuming that J, is given by (24.130). we now obtain: 

(24.140) 
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24.15 AN 'EXPLICIT CO-ROTATIONAL PROCEDURE' 
FOR BEAMS 

The first dynamic co-rotational solutions would seem to have been described by 
Belytschko and Schwer CB3.171. While in the following, we will concentrate on beams, 
many of the concepts are also relevant to shells. 

As a first stage, we set up the initial element frames, E and compute the lumped 
inertia matrices with respect to these frames, J,. The contributions to a particular node 
(from different elements) are then transformed to the fixed global axes [ i l ,  i2,i3]  and 
summed to give: 

J = EJEET (24.141) 

Assuming that the element lies along the local 1 axis, for the element contribution to 
a node, Belytschko [B3] and Belytschko and Schwer CB3.171 take half the torsional 
inertia for the 1 1  term in J E  and a half of ApI2/12 for the 22 and 33 contributions. 
Having formed J via (24.141), an eigenvalue analysis gives: 

J = U Diag(Ju)UT (24.142) 

where Diag(Ju) is now fixed as the rotating principal inertia matrix (previously J,) and 
U defines the initial orientation of the nodal triad U. 

As a starting-point let us assume that we know the current values of the element 
frame E and the nodal frames Ui.Using the techniques of Section 17.1 or Chapter 18, we 
can now compute the local internal forces qiland hence the global internal forces via: 

qi =TTqi, (24.143) 

where the transformation matrix, T has been discussed in Chapters 17.1 (where it was 
called F)and in Chapter 18. At this stage, the internal forces (and residuals) are divided 
into translational forces, qitand 'rotational forces', qir.For the former, the method of 
Section 24.6 is directly applied so that, at a particular node: \ 

d, = -M - '(g,,,+ Cd,- 2 )  (24.144) 

where the subscript t on the vector g means 'translational'. The 'rotational forces' are 
now transformed to relate to the 'body attached' nodal frame so that a step ) I ,  at 
a particular node, we have: 

where the subscript r means 'rotational'. Neglecting any rotational damping, (24.136) 
can now be used to obtain: 

At  this stage, the translational velocities are updated via: 

while. in the body attached frame, the angular velocities, mu are updated via: 
- (24.148)mu,, + 1 2 -mu,"- 1 2 + A t 4 L n  
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The translational displacements (or coordinates) can be updated via: 

d,+l =d,+Atd,+ ,  2 (24.149) 

and finally the nodal triad U can be updated via: 

U,+ 1 = UJ + AtS(%,, t 1 *)I (24.1 50) 

The usual equation for updating a triad (see (16.47) or (17.10)) is 

U,, = AUU, (24.151 )  

In deriving (24.150), we have used the simplest approximation to the rotation matrix 
AU (see (16.5)) in the body attached frame, i.e. 

so that: 

AU = U,AUuUT = U,[I + AtS(uu,,+,2)]UT (24.153) 

Substitution from (24.153) into (24.15 1) leads to the relationship given in (24.150). 

24.16 UPDATING THE ROTATIONAL VELOCITIES 
AND ACCELERATIONS 

In (24.148). the update for the rotational velocities was applied in the 'body attached 
frame'. We will now use an illustration from Simo and Wong [Sl] to show that this is . 
indeed the correct way to introduce the update. 

Suppose that on top of the motion of our nodal triad U(t),we superimpose a constant 
rotation Q to produce a motion: 

U'(t) = QU(t) (24.154) 

Because Q is fixed, 

U'@) = QU(r) (24.155) 

and the angular velocity for this modified motion is given by 

=S(W*)= U+(f)U+(f)TQ[U(t)U(t,r]QT= QS(w)QT (24.1 56) 

or 

w +  = Q o  (24.157) 

Suppose we now consider the angular velocity with respect to the body attached frame, 
w,, where (see (24.1 38)): 

S(WU) = U'[UU"]U = U'U (24.158) 

or 

W, = UTW (24.159) 

If the same procedure is now applied to the modified motion (with superscript + ), we 



UPDATING THE ROTATIONAL VELOCITIES AND ACCELERATIONS 475 

obtain: 

s(~,+)= u"U+ = U'Q'QU = uru= s(a,) (24.160) 

or 

a,' =a, (24.161 ) 

The relationships in (24.160) and (24.161) clearly provide the appropriate updating (no 
updating) in the current situation. In order words, in body attached coordinates. the 
superimposition of a constant rotation does not change the angular velocity and hence 
this description is appropriate for applying the updates. 

We will consider the updates for the trapezoidal rule of (24.5) and (24.6). (An 
equivalent procedure could equally be applied to the general Newmark updates (24.2) 
and (24.3)). The rotational equivalent of (24.6) can be written as 

2 
a,.,+ 1 + a,.,= -

(24.162)At 

where the subscript U implies that we are working in 'body attached (to U )coordinates'. 
In  fixed coordinate, the A8 vector in (24.162) is related to that the obtained from the 
relationship: 

U,, ,= AU(AO)U, (24.163) 

Knowing U, + and U,, A8 can be obtained from AU using the method of Section 16.8 
or that of Section 16.10. The vector AO, in (24.162) is the body attached equivalent of 
A8. Using (24.135), we might expect this to be computed either from 

A8, = U:AO (24.164a) 

or else from 

AO, = U:+ , A 8  (24.164b) 

I t  can be shown that these two expressions are equivalent because: 

U:+ lA8 = U:AUTA8 = UzA8 (24.165) 

In the last step, we have used the fact (see (16.30)) that A8 is the eigenvalue of AU and 
AO/AO it eigenvector so that: 

AUAO = A8 (24.166a) 

and multiplying (24.166a) by AUT: 

AUTA8= A8 (24.166b) 

For the angular accelerations, the equivalent of (24.5) now follows as 

2 
k . n +  1 + 6j,,n = (a,,,+1 - a u . , )  (24.167) 

In  deriving both the predictors and correctors for the implicit solution procedures of 
Sections 24.3 and 24.8, we required the variations of the adopted updating algorithms 
(see i.e. (24.15)and (24.16)). The only difficulty relates to the variation of (24.162) when 
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combined with (24.164a),from which we obtain: 

2 
At6wu.,+ = -U p n+ 

-2 
At = -U,TH(AO)- ' S O ,  + (24.168) 

where H(A0)is given in (16.90)and its inverse in (16.94).The vector 60,+ contains the 
finite element spin variables that would be obtained from the iterative solver. Follow- 
ing the discussion in Section 16.11 ,  unlike &I,+in (24.168),the bared terms are 
non-additive to AO. Combining (24.168)with the variation of (24.167),we can now 
obtain: 

(24.169) 

24.17 A SIMPLE IMPLICIT CO-ROTATIONAL 
PROCEDURE USING ROTATIONS 

An explicit procedure with rotation variables was described in Section 24.15. We will 
now consider an equivalent implicit procedure based on the trapezoidal rule. For the 
present, we will still adopt a lumped mass matrix for which the rotary inertia matrix (J,) 
would again be computed using the method of Section 24.15 in a 'once-only', prep- 
rocessing pass. 

I t  will be assumed that we know all of the variables at step rz and have estimates 
for the variables at step n +  1 (possibly via a predictor stage for which the reader 
could provide the relevant equations as an exercise). The techniques of Section 17.1 
or Chapter 18 can then be used to provide the local static internal forces at step 
r r +  1 and hence the internal forces in relation to the fixed cartesian axes via (24.143). 
For the translational variables, we now have the equilibrium equations: 

while for the rotational variables at a particular node (see (24.139)premultiplied by 
U,,  1) ,  we have: 

g"+ 1 = gt,+ 1 + U"t 1 JU%" + 1 + U"+ 1S(wu.nt 1 ) J U ~ U J I  + 1 = 0 (24.171 ) 

To derive the equations for a 'corrector' iteration, we apply a truncated Taylor series to 
(24.171)so that: 

where, because we are only dealing with the rotational variables at a node, the term K,. 
only includes the relevant contributions. Using (24.168)and (24.169), (24.172) can be 
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re-expressed as 

In Section 24.19, we will describe an alternative co-rotational procedure which does not 
involve a lumped mass formulation. However, we will first outline an isoparametric 
formulation. 

24.18 AN ISOPARAMETRIC FORMULATION FOR 
THREE-DIMENSIONAL BEAMS 

In this section, we will outline the extension by Simo and Vu  Quoc [M]of their original 
work on the static analysis of three-dimensional beams CS3.171. The latter was 
described earlier in Section 17.2. We will here concentrate on the inertia terms and, in 
particular with those related to the rotations. Using the isoparametric approach, in 
place of (24.171), we can write the element contribution to the dynamic residual 
associated with the rotation variables at a node as 

+ 1 + U, + l S ( ~ u , r tg, + 1 = g, + 1 + NiW,+ 1Jhl,, + 1 )J;mu., 1 )  dS (24.1 74) s 
where h ( i )is the shape function associated with the node and JI is given by 

(24.175) 
0 

with the beam being assumed to lie along the x, axis. In contrast to the relationships in 
(24.171), in (24.175), U,, a,,+and 1, are now functions of i.the non-dimen- 
sional coordinate along the beam. In particular, the current triad U is the triad T of 
Section 17.2. 

For the static formulation of Section 17.2, once we had obtained the nodal changes 
in rotation variables, the latter were interpolated to the Gauss points using ( 17.93) 
and the triad T (here U) was updated in the usual way. For dynamics, we can also 
use the interpolated 69 at the Gauss points to obtain the change in angular velocities 
6au,,+ via (24.168) and hence we can update the angular velocities at the Gauss 
points. The angular accelerations at the Gauss points can then be updated using 
(24.167). 

Having performed the updates, the dynamic residual can be computed using 
numerical integration, in conjunction with (24.1 75) for the rotation terms. If we write 
the dynamic equilibrium equation as 

= g n + t  + q m a s = O  (24.1 76) 

with q,,, as the inertia (or mass) terms, for a two-noded element we can write the latter 
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as 

1 h,Apd 1 
(24.177) 

where the subscript n + 1 has been omitted but is implied. 
For the Newton-Raphson iterations, we require the relationship: 

h m a s  = K,,rnas6P (27.178) 

With the aid of (24.168) and (24.169), we can obtain: 

K l l  K 1 3  

K 2 2  K 2 4  
',,,as = (24.1 79) 

K31 0 K 3 3  0 
K 4 2  K44 

where 

4Apl
3AtA p h f d S = T I  (24.1 80a) 

4 Apl Aph,h,dS=- 6At2 I (24.180b) 

K,,=$jAph:dS=--I 4Apl 
(24.180c)

3At2 

At2 hihjU, + JkUjfH(A0)- dS (24.1 80d) 

In deriving the last expressions in (24.180a)-(24.180~),it has been assumed that the 
area of the element is constant. Equation (24.1804) applies for i =  1, 2 and j =  1, 2 
and therefore defines the submatrices K,,, K44,K24 and K,, in (24.179). The expres- 
sions in (24.180d) are closely related to (24.173) which was derived in more detail 
earlier. 

It is worth noting that for the isoparametric formulation there are some difficulties 
associated with the numerical integration. For example, with a two-noded element, to 
avoid shear locking, we should use one-point integration for the static terms (see 
Section 7.2), while for the mass or inertia terms a two-point integration scheme is 
required. Also we are updating and storing triads (possibly via quaternions-see 
Section 16.9) at both sets of integration points with the angular velocities and 
accelerations also being stored at the latter. 
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24.19 AN ALTERNATIVE IMPLICIT CO-ROTATIONAL 
FORMULATION 

In  Section 24.17, we considered a simple co-rotational procedure which depended on 
a lumped formulation for the inertia terms. In the present section, we will consider an 
alternative procedure [Jl] for which the starting-point can be considered to be 
a modified form of (24.177)with U being replaced by the fixed element frame, E (see 
Section 17.1 and Chapter 18). We can then write: 

dSQmas = 

(24.181) 

If the accelerations, rotational velocities, mu, and accelerations, hu,(in the body 
attached frame) are now assumed to be interpolated using the conventional 
isoparametric shape functions, we can replace (24.18 1) with the relationship: 

where 

pT= (a:, h;,a;, h;) (24.183) 

The matrix M in (24.182) is the conventional fixed mass matrix (see (24.85) in 
two-dimensional) that would relate to a linear isoparametric formulation. In  (24.182) 
and (24.183), we have dropped the subscript U on the a’s and b ’ s ,  but none the less, they 
are implied so that these quantities relate to a body-attached frame. 

In contrast to the previous isoparametric formulation (Section 24.18), the rotational 
nodal velocities and accelerations (in a body attached frame) are now updated at the 
nodes rather than at the Gauss points. In order to apply Newton-Raphson iterations, 
we require the variation of (24.182) which leads to an equation of the form of (24.178) 
with: 

The matrix Kmasl stems from the variation of E in (24.182). If we are using the 
co-rotational procedure of Section 17.1, the individual variations, del,6e, and he, can 
be taken from (17.21) and (17.32). Alternatively, using the co-rotational procedure of 
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Section 18.10, we could use (18.27) so that: 

6ei = -S(ei)VTbp (24.185) 

If we adopt the former, we obtain: 

(24.186) 

rim = E;+ l%as (24.187) 

The second matrix Kmas2is obtained from the variation of the acceleration terms in p. 
For these, we require (24.16) and (24.169) and obtain: 

I 
4 - U:, ,H(A8,)-

Kmas2= -E" t 1 M 1At2 

4 -
= -E, + 1 MB (24.188)

At2 

where Un.lis the nodal triad at node 1 at step n and is the equivalent triad at 
node 2. 

The final term Kmas3stems from the variations of the (body attached) rotational 
velocity terms in (24.182) and hence we require the use of (24.168) to obtain: 

10 0 0 0 1 
1 2 -

K m a s 3 = c z E n + 1  
0 
0 

3 F , + F 2  
0 

0 
0 

F l + F 2  (24.189) 

- 0  F , + F 2  0 F , + 3 F z  

where 

Fi = S(wi)J: -S(J:W,) (24.190) 

and B was defined in (24.188). 

24.20 (APPROXIMATELY) ENERGY-CONSERVING 
CO-ROTATIONAL PROCEDURES 

Section 24.1 I described an energy-conserving procedure for two-dimensional co-
rotational beams. To this end, i t  first described a formulation that effectively conserved 
energy for moderate-sized steps and later, in Section 24.1 1, sophistications were added 
to remove the restrictions. In this section, we will apply a similar (approximate) method 
to modify the co-rotational procedures of Sections 24.17 and 24.19. In relation to the 
translational variables, the starting point is the mid-point dynamic equilibrium 
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relationship of (24.76). With regard to the rotational variables, a similar procedure is 
applied to the static internal forces, while for the dynamic rotational forces, instead of 
applying (24.1 71) whereby: 

d 
q m a ,  =-dt 1UJuUa1 I n +  1 = U,+ , J u h u . n +  1 + U,+ 1 S ( a u , n +  1 ) J u o u . n +  1 (24.1 9 1 ) 

(see also (24.133)), we now apply: 

(24.192) 

For the present, we will concentrate on a 'lumped mass formulation'(see Section 24.17). 
In these circumstances, the change of kinetic energy can be expressed as: 

+ 1J,fJh,,AK = ;((4.fl + 1 )  - ( ~ , T , n J u ~ u . , , ) )  
1=T((%." t 1 + ~ u , n ) T J U ( % . n +  1 - (24.193) 

Substitution from the updating formula of (24.1 62) into (24.193) gives: 

1 
AK = -A O U TJu(au,,+ 1At 1 -au,n (24.194) 

while premultiplication of q,,, from (24.192) by A O T  gives: 

1 
A e T q m a s  = -AeT(Un+ 1Jumu, ,  + 1 - U n J u a u , n )At 

where use has been made of (24.164) and (24.194). Following the approach of Section 
24.1 1, we can also argue that: 

A P T q i m  2 (24.196) 

where qimare the 'mid-point'static internal forces and A c p  is the change in strain energy 
over the step. Consequently (for fixed external forces), the energy is (approximately) 
conserved once the combined residual qim-q,, + q,,, is zero. 

Rather than apply this 'lumped procedure', the present author and co-workers 
[CS, C6] have modified the co-rotational approach of Section 24.19 so that instead of 
(24.181), we start with: 

+ t u n + ,
l - s 
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where U is defined (in similar fashion to E from (24.181)) via: 

(24.I97b) 

with U ,  as the nodal triad at node I and U, as the equivalent triad at node 2. ( I t  is 
probable that the 'nodal-point formulation' of Section 24.19 could be improved by 
introducing the matrix instead of the E matrix.) Equation (24.197a) can be re-
expressed as: 

where M, contains the translational parts of the conventional fixed mass matrix and M, 
the rotational parts. Also p, contains the translational nodal velocities (with the 
rotational terms set to zero) while pr contains the (body attached) rotational nodal 
velocities (with the translational terms set to zero). 

In  oder to apply Newton-Raphson iterations, we require the variation of 
(24.198)which leads to an equation of the form of (24.178)so that: 

'qma, = Kma\l'Pr.rt + 1 + K m a , 2 ' ~ t . n  + 1 + Krn,,,'Pr.n (24.199a)
+ 1 

The matrix K,,,,l stems from the variation of U,,, in (24.198) and we obtain: 

0 0 0 0 
0 -S(qm(4-6)) 0 0 

',a\, = 0 0 0 (24.1 99 b)0 
0 0 0 -s(q,(lo- 12)) 

where: 

1 -
rim = U"+I M r P r . n +  1 (24.200) 

The second matrix Kmas2is obtained from the variation of the translational velocity 
terms in (24.198) and, with the aid of (24.15), leads to 

2 
',as, = Mt (24.201 

The final matrix Kmasj in (24.199a) is obtained from the variation of the(body attached 
rotational velocities in pr,n+,. With the aid of (24.168), we obtain: 

where is the nodal triad at node 1 at step n and Un,2is the equivalent triad at 
node 2. 
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Sophistications can probably be made to the method in order to achieve full energy 
conservation. Ideas on this topic are discussed in [CS,C6] where it is shown that even 
the current ‘approximately energy conserving’ procedure leads to a dramatic improve- 
ment in the ‘non-linear stability’ in comparison with the conventional end-point 
Newmark method. 

24.21 ENERGY-CONSERVING ISOPARAMETRIC 
FORMULATIONS 

A n  energy-conserving formulation for beams has been described by Simo et al. in [SS] 
while a formulation for shells has been described by Simo and Tarnow in [S4]. I n  the 
following we will consider beams. 

The developments start with the expression (17.79) derived for the static internal 
forces. Combining the latter with ( 1  7.74): 

1 - 2 u  O l  

(24.203) 

These equations relate to a two-noded element, but the extension to a more general 
isoparametric element is straightforward (see Section 17.2.6). 

In  (24.203),we have adopted the current notation whereby U is the triad which was 
labelled T in Section 17.2. This triad would be computed at the Gauss point (here centre 
point) using (see 17.65). In  Section 17.2, the internal force vector (here (24.203)) was 
related to the end point, IZ + 1.  A modification, aimed at energy conserlration. would be 
to replace (24.203)with a mid-point relationship: 

O 1 

(24.204) 

where the reason for the asterisks will be given shortly. In  (24.204) (see (17.66a) and 
(24.102)), we would use: 

(24.205) 

while 

N, = +(Nn+ Nn+1); M, = +(M,i+ Mn + 1 )  (24.206) 

The matrix U, has yet to be defined. To this end, Simo et al. [SS] used the non- 
orthogonal: 

U, =+[U n + l  +U“]  (24.207) 

and: 
U: = det(U,)U,T (24.208) 
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I t  can now be shown [SS) (see (24.60) and (24.196)) that: 

where Ap are the incremental displacements over the step and A q  is the change of strain 
energy over the step. However, Ap in (24.209) must be defined in such a way that the 
incremental rotation variables involve tangent scaled pseudo-vector components (see 
(16.34)). Indeed the up-dating procedures must also involve the latter. In  addition, in 
contrast to the static work of Section 17.2, we must now use the shape functions to 
interpolate 'incremental' rather than 'iterative'(see ( 1  7.64) and ( 17.93))(tangent scaled) 
rotational quantities. 

The procedure of Simo er al. [SS] fully conserves both energy and the components 
of angular momentum. However, because of the use of the tangent scaled pseudo- 
vector, i t  does not seem to be possible to implement this formulation as a direct 
extension (including the up-dating procedures) of the static formulation of Chapter 17. 
The present author and a co-worker have developed such an extension [J 1 )  which uses: 

expCS(fb1= U,, 1 U: (24.210) 

U, = exp[S(8/2)]Un = exp[S( -8/2)]U,+ (24.211 )  

(As with the formulation of Simo et (11. [SS]. the shape function interpolations must 
again be made to 'incremental rotations'-here not tangent scaled). While an approxi- 
mately energy conserving procedure can be obtained by directly using (24.204) (without 
the asterisks), a fully energy-conserving procedure can be obtained by modifying 
(24.204)so that: 

-2A1U, 0 

Irn 
q. 

2 
1 

=-
2A,U, 

-A~S(X;,,)U, 
0 

-2A,U, 
(24.2 12) 

with 

A ,  =[I11 + 
1 -COS(0/2)s7e,ae,]( ] 2  (24.213a) 

(24.213b) 

(24.213c) 

and 8 is the incremental pseudo-vector at the centre of the beam. In the two-dimensional 
case. i t  can be shown that this procedure coincides with the method of Stander and 
Stein [S7] which was discussed in Section 24.12. While the present technique leads to 
a fully energy-conserving procedure [J 13. the algorithm does not conserve angular 
momentum (except in the limit at At +O). None the less, numerical experiments show 
that the angular momentum remains bounded and that the formulation inherits the 
important property of remaining stable in the non-linear regime. However, these same 
numerical experiments currently indicate some convergence difficulties (see also [B5) ). 
These convergence problems do  not seem to arise with the method of Simo r t  ul. [SSJ. 
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For the mass terms, we modify (24.177) from Section 24.18 using the ideas from 
Section 24.20 so as to obtain: 

(24.214) 

As pointed out at the end of Section 24.18, we might require a different numerical 
integration procedure for the static and inertia terms. Further details on the formula- 
tions can be found in [SS] and [Jl]. I t  is worth noting that while for continua and 
two-dimensional beams, the energy-conserving formulations have the disadvantage of 
leading to non-symmetric stiffness matrices, for three-dimensional beams there are no 
such disadvantages because the conventional end-point formulations also lead to 
non-symmetry (Sections 24.17-24.19). 

24.22 SPECIAL NOTATION 

A = area 
A l , A 2 , A 3= see (24.213) 

C = damping matrix 
C, = tangent constitutive matrix 

d = displacement vector 
d = velocity vector 
;i= acceleration vector 
E = element triad, composed of unit vector e ,  --e3 
E = see (24.181) 
E =(Section 24.10)-Green strain 
g = static residual or out-of-balance force vector 
g = dyanmic residual or out-of-balance force vector 

12, = shape functions 
H = shape function matrix 

H(8)= matrix connecting 66 to 60 (see(1 7.173) and ( 16.89) and ( 16.90)). Here first 
used in Section 24.16 

J u  = rotary inertia matrix in body attached frame (see (24.128)-(24. 
J: = rotary inertia matrix in body attached frame (see (24.1 75)) 
K = kinetic energy 
K, = static tangent stiffness matrix 
K,= tangent stiffness matrix including inertia terms 
L = matrix connecting 6e's to 6p's (see(17.32)). Here first used in Sect 

M = mass matrix 
M = (Section 24.21) vector of local bending moments 
N = axial force 
N = vector of local axial and shear stress resultants in Section 17.3 
p = nodal displacement vector (including rotations) 
p = velocity vector (including rotational velocities) 
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p = acceleration vector (including rotational accelerations) 
P = see (24.87) 
qi = internal force vector 

q, = see (24.187) and (24.200) 
q,,, = internal forces due to mass or inertia terms 

S = skew-symmetric matrix or (Section 24.10) second Piola-Kirchhoff 
stresses 

T = transformation matrix relating small changes in local variables to small 
changes in global variables 

U = body attached triad (possibly related to a node) 
x = initial coordinate vector 
x’= current coordinate vector 

l,, I, = old and new length of beam (straight between nodes) 
x = constant for ‘a method’-see Section 24.8 
R = rigid body rotation in Section 24.1 1 

[I, = Newmark constants 
w = frequency or angular velocity 
o= vector of angular velocities 
ci, = vector of angular accelerations 
cp = strain energy 
4 = total potential energy 
p = density 
i= non-dimensional coordinate along beam 

Subscripts 

1 = local 
m = mid-point 

mas = relates to mass or inertia 
r = rotational 
t = translational (or tagential) 

U = related to triad U and hence ‘body attached’ 
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Trapezoidal rule 448, 452, 453 Work terms 32 
Tresca yield criterion 101-2, 106 
Triad rotation 2 0 2 4  Yield criteria 180 
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