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PREFACE

The first edition of the Shock and Vibration Handbook in 1961 brought together for
the first time a comprehensive survey of classical shock and vibration theory and
current applications of that theory to contemporary engineering practice. Edited by
Cyril M. Harris and the late Charles E. Crede, the book was translated into several
languages and became the standard reference work throughout the world. The Sec-
ond Edition appeared in 1976, the Third Edition in 1988, and the Fourth Edition in
1996.

There have been many important developments in the field since the Fourth
Edition was published, including advances in theory, new applications of computer
technologies, new methods of shock and vibration control, new instrumentation,
and new materials and techniques used in controlling shock and vibration. Many
new standards and test codes have also been enacted. These developments have
necessitated this Fifth Edition, which covers them all and presents a thorough,
unified, state-of-the-art treatment of the field of shock and vibration in a single
volume that is approximately 10 percent longer than its predecessor edition. A new
co-editor, highly regarded as an author in his own right, has collaborated with an
original editor in this endeavor. The book brings together a wide variety of skills
and expertise, resulting in the most significant improvements in the Handbook
since the First Edition.

New chapters have been added and many other chapters updated, revised, or
expanded to incorporate the latest developments. Several chapters written by
authors who are now deceased have been revised and updated by the editors, but the
credits to the original authors are retained in recognition of their outstanding con-
tributions to shock and vibration technology. (For convenience, and to retain as
closely as possible the chapter sequence of prior editions, several chapters have been
designated Part II or III of an associated chapter.) The editors have avoided dupli-
cation of content between chapters except when such repetition is advisable for rea-
sons of clarity. In general, chapters in related areas are grouped together whenever
possible.The first group of chapters presents a theoretical basis for shock and vibra-
tion. The second group considers instrumentation and measurement techniques, as
well as procedures for analyzing and testing mechanical systems subjected to shock
and vibration.The third group discusses methods of controlling shock and vibration,
and the design of equipment for shock and vibration environments. A final chapter
presents the effects of shock and vibration on human beings, summarizing the latest
findings in this important area. Extensive cross-references enable the reader to
locate relevant material in other chapters.The Handbook uses uniform terminology,
symbols, and abbreviations throughout, and usually both the U.S. Customary System
of units and the International System of units.

The 42 chapters have been written by outstanding authorities, all of them experts
in their fields. These specialists come from industrial organizations, government and
university laboratories, or consulting firms, and all bring many years of experience to
their chapters. They have made a special effort to make their chapters as accessible

xi
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as possible to the nonspecialist, including the use of charts and written explanations
rather than highly technical formulas when appropriate.

Over the decades, the Handbook has proven to be a valuable working reference
for those engaged in many areas of engineering, among them aerospace, automotive,
air-conditioning, biomedical, civil, electrical, industrial, mechanical, ocean, and
safety engineering, as well as equipment design and equipment maintenance engi-
neering. Although this book is not intended primarily as a textbook, it has been
adopted for use in many universities and engineering schools because its rigorous
mathematical basis, combined with its solutions to practical problems, are valuable
supplements to classroom theory.

We thank the contributors to the Fifth Edition for their skill and dedication in the
preparation of their chapters and their diligence in pursuing our shared objective of
making each chapter the definitive treatment in its field; in particular, we thank
Harry Himelblau for his many helpful suggestions. We also wish to express our
appreciation to the industrial organizations and government agencies with which
many of our contributors are associated for clearing for publication the material
presented in their chapters. Finally, we are indebted to the standards organizations
of various countries—particularly the American National Standards Institute
(ANSI), the International Standards Organization (ISO), and the International
Electrotechnical Commission (IEC)—as well as to their many committee members
whose selfless efforts have led to the standards cited in this Handbook.

The staff members of the professional book group at McGraw-Hill have done an
outstanding job in producing this new edition. We thank them all, and express our
special appreciation to the production manager, Tom Kowalczyk, for his support.

Cyril M. Harris
Allan G. Piersol

xii PREFACE
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CHAPTER 1
INTRODUCTION

TO THE HANDBOOK

Cyril M. Harris

CONCEPTS OF SHOCK AND VIBRATION

Vibration is a term that describes oscillation in a mechanical system. It is defined by
the frequency (or frequencies) and amplitude. Either the motion of a physical object
or structure or, alternatively, an oscillating force applied to a mechanical system is
vibration in a generic sense. Conceptually, the time-history of vibration may be con-
sidered to be sinusoidal or simple harmonic in form. The frequency is defined in
terms of cycles per unit time, and the magnitude in terms of amplitude (the maxi-
mum value of a sinusoidal quantity). The vibration encountered in practice often
does not have this regular pattern. It may be a combination of several sinusoidal
quantities, each having a different frequency and amplitude. If each frequency com-
ponent is an integral multiple of the lowest frequency, the vibration repeats itself
after a determined interval of time and is called periodic. If there is no integral rela-
tion among the frequency components, there is no periodicity and the vibration is
defined as complex.

Vibration may be described as deterministic or random. If it is deterministic, it
follows an established pattern so that the value of the vibration at any designated
future time is completely predictable from the past history. If the vibration is ran-
dom, its future value is unpredictable except on the basis of probability. Random
vibration is defined in statistical terms wherein the probability of occurrence of des-
ignated magnitudes and frequencies can be indicated.The analysis of random vibra-
tion involves certain physical concepts that are different from those applied to the
analysis of deterministic vibration.

Vibration of a physical structure often is thought of in terms of a model consist-
ing of a mass and a spring. The vibration of such a model, or system, may be “free”
or “forced.” In free vibration, there is no energy added to the system but rather the
vibration is the continuing result of an initial disturbance. An ideal system may be
considered undamped for mathematical purposes; in such a system the free vibra-
tion is assumed to continue indefinitely. In any real system, damping (i.e., energy dis-
sipation) causes the amplitude of free vibration to decay continuously to a negligible
value. Such free vibration sometimes is referred to as transient vibration. Forced
vibration, in contrast to free vibration, continues under “steady-state” conditions

1.1
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because energy is supplied to the system continuously to compensate for that dissi-
pated by damping in the system. In general, the frequency at which energy is sup-
plied (i.e., the forcing frequency) appears in the vibration of the system. Forced
vibration may be either deterministic or random. In either instance, the vibration of
the system depends upon the relation of the excitation or forcing function to the
properties of the system. This relationship is a prominent feature of the analytical
aspects of vibration.

Shock is a somewhat loosely defined aspect of vibration wherein the excitation is
nonperiodic, e.g., in the form of a pulse, a step, or transient vibration.The word shock
implies a degree of suddenness and severity. These terms are relative rather than
absolute measures of the characteristic; they are related to a popular notion of the
characteristics of shock and are not necessary in a fundamental analysis of the appli-
cable principles. From the analytical viewpoint, the important characteristic of shock
is that the motion of the system upon which the shock acts includes both the fre-
quency of the shock excitation and the natural frequency of the system. If the exci-
tation is brief, the continuing motion of the system is free vibration at its own natural
frequency.

The technology of shock and vibration embodies both theoretical and experi-
mental facets prominently. Thus, methods of analysis and instruments for the meas-
urement of shock and vibration are of primary significance. The results of analysis
and measurement are used to evaluate shock and vibration environments, to devise
testing procedures and testing machines, and to design and operate equipment and
machinery. Shock and/or vibration may be either wanted or unwanted, depending
upon circumstances. For example, vibration is involved in the primary mode of oper-
ation of such equipment as conveying and screening machines; the setting of rivets
depends upon the application of impact or shock. More frequently, however, shock
and vibration are unwanted.Then the objective is to eliminate or reduce their sever-
ity or, alternatively, to design equipment to withstand their influences. These proce-
dures are embodied in the control of shock and vibration. Methods of control are
emphasized throughout this Handbook.

CONTROL OF SHOCK AND VIBRATION

Methods of shock and vibration control may be grouped into three broad categories:

1. Reduction at the Source
a. Balancing of Moving Masses. Where the vibration originates in rotating or

reciprocating members, the magnitude of a vibratory force frequently can be
reduced or possibly eliminated by balancing or counterbalancing. For example,
during the manufacture of fans and blowers, it is common practice to rotate
each rotor and to add or subtract material as necessary to achieve balance.

b. Balancing of Magnetic Forces. Vibratory forces arising in magnetic effects of
electrical machinery sometimes can be reduced by modification of the mag-
netic path. For example, the vibration originating in an electric motor can be
reduced by skewing the slots in the armature laminations.

c. Control of Clearances. Vibration and shock frequently result from impacts
involved in operation of machinery. In some instances, the impacts result from
inferior design or manufacture, such as excessive clearances in bearings, and
can be reduced by closer attention to dimensions. In other instances, such as
the movable armature of a relay, the shock can be decreased by employing a
rubber bumper to cushion motion of the plunger at the limit of travel.

1.2 CHAPTER ONE
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2. Isolation
a. Isolation of Source. Where a machine creates significant shock or vibration

during its normal operation, it may be supported upon isolators to protect
other machinery and personnel from shock and vibration. For example, a forg-
ing hammer tends to create shock of a magnitude great enough to interfere
with the operation of delicate apparatus in the vicinity of the hammer. This
condition may be alleviated by mounting the forging hammer upon isolators.

b. Isolation of Sensitive Equipment. Equipment often is required to operate in
an environment characterized by severe shock or vibration. The equipment
may be protected from these environmental influences by mounting it upon
isolators. For example, equipment mounted in ships of the navy is subjected to
shock of great severity during naval warfare and may be protected from dam-
age by mounting it upon isolators.

3. Reduction of the Response
a. Alteration of Natural Frequency. If the natural frequency of the structure of

an equipment coincides with the frequency of the applied vibration, the vibra-
tion condition may be made much worse as a result of resonance. Under such
circumstances, if the frequency of the excitation is substantially constant, it
often is possible to alleviate the vibration by changing the natural frequency
of such structure. For example, the vibration of a fan blade was reduced sub-
stantially by modifying a stiffener on the blade, thereby changing its natural
frequency and avoiding resonance with the frequency of rotation of the blade.
Similar results are attainable by modifying the mass rather than the stiffness.

b. Energy Dissipation. If the vibration frequency is not constant or if the vibra-
tion involves a large number of frequencies, the desired reduction of vibration
may not be attainable by altering the natural frequency of the responding sys-
tem. It may be possible to achieve equivalent results by the dissipation of
energy to eliminate the severe effects of resonance. For example, the housing
of a washing machine may be made less susceptible to vibration by applying a
coating of damping material on the inner face of the housing.

c. Auxiliary Mass. Another method of reducing the vibration of the respond-
ing system is to attach an auxiliary mass to the system by a spring; with proper
tuning the mass vibrates and reduces the vibration of the system to which it is
attached. For example, the vibration of a textile-mill building subjected to the
influence of several hundred looms was reduced by attaching large masses to
a wall of the building by means of springs; then the masses vibrated with a 
relatively large motion and the vibration of the wall was reduced. The incor-
poration of damping in this auxiliary mass system may further increase its
effectiveness.

CONTENT OF HANDBOOK

The chapters of this Handbook each deal with a discrete phase of the subject of
shock and vibration. Frequent references are made from one chapter to another, to
refer to basic theory in other chapters, to call attention to supplementary informa-
tion, and to give illustrations and examples. Therefore, each chapter when read with
other referenced chapters presents one complete facet of the subject of shock and
vibration.

Chapters dealing with similar subject matter are grouped together. The first 11
chapters following this introductory chapter deal with fundamental concepts of
shock and vibration. Chapter 2 discusses the free and forced vibration of linear sys-

INTRODUCTION TO THE HANDBOOK 1.3
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tems that can be defined by lumped parameters with similar types of coordinates.
The properties of rigid bodies are discussed in Chap. 3, together with the vibration
of resiliently supported rigid bodies wherein several modes of vibration are coupled.
Nonlinear vibration is discussed in Chap. 4, and self-excited vibration in Chap. 5.
Chapter 6 discusses two degree-of-freedom systems in detail—including both the
basic theory and the application of such theory to dynamic absorbers and auxiliary
mass dampers. The vibration of systems defined by distributed parameters, notably
beams and plates, is discussed in Chap. 7. Chapters 8 and 9 relate to shock; Chap. 8
discusses the response of lumped parameter systems to step- and pulse-type excita-
tion, and Chap. 9 discusses the effects of impact on structures. Chapter 10 discusses
applications of the use of mechanical impedance and mechanical admittance meth-
ods. Then Chap. 11 presents statistical methods of analyzing vibrating systems.

The second group of chapters is concerned with instrumentation for the measure-
ment of shock and vibration. Chapter 12 includes not only piezoelectric and piezo-
resistive transducers, but also other types such as force transducers (although strain
gages are described in Chap. 17).The electrical instruments to which such transducers
are connected (including various types of amplifiers, signal conditioners, and re-
corders) are considered in detail in Chap. 13. Chapter 14 is devoted to the important
topics of spectrum analysis instrumentation and techniques.The use of all such equip-
ment in making vibration measurements in the field is described in Chap. 15.There has
been increasing use of vibration measurement equipment for monitoring the mechan-
ical condition of machinery, as an aid in preventive maintenance; this is the subject of
Chap. 16.The calibration of transducers, Chap. 18, is followed by Chap. 19 on national
and international standards and test codes related to shock and vibration.

A discussion of test criteria and specifications is given in Chap. 20, followed by a
comprehensive chapter on modal analysis and testing in Chap. 21. Chapters 22 and
23 discuss data analysis, in conjunction with Chap. 14; the first of these two chapters
is primarily concerned with an analysis of vibration data and the second is concerned
with shock data. Vibration that is induced in buildings, as a result of ground motion,
is described in Chap. 24. Then Chap. 25 considers vibration testing machines, fol-
lowed by Chap. 26 on conventional shock testing and pyrotechnic shock testing
machines.

The next two chapters deal with computational methods. Chapter 27 is concerned
with applications of computers, presenting information that is useful in both analyt-
ical and experimental work. This is followed by Chap. 28, which is in two parts: Part
I describes modern matrix methods of analysis, dealing largely with the formulation
of matrices for use with digital computers and other numerical calculation methods;
the second part shows how finite element methods can be applied to the solution of
shock and vibration problems by the use of computer techniques.

Part I of Chap. 29 describes vibration that is induced as a result of air flow, the
second part discusses vibration that is induced by the flow of water, and the third
part is concerned with the response of structures to acoustic environments.

The theory of vibration isolation is discussed in detail in Chap. 30, and an analo-
gous presentation for the isolation of mechanical shock is given in Chap. 31. Various
types of isolators for shock and vibration are described in Chap. 32, along with the
selection and practical application of such isolators.The relatively new field of active
vibration control is described in Chap. 33. A presentation is given in Chap. 34 on the
engineering properties of rubber, followed by a presentation of the engineering
properties of metals (including conventional fatigue) and the engineering properties
of composite materials in Chap. 35.

An important method of controlling shock and vibration involves the addition of
damping or energy-dissipating means to structures that are susceptible to vibration.
Chapter 36 discusses the general concepts of damping together with the application
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of such concepts to hysteresis and slip damping. The application of damping materi-
als to devices and structures is described in Chap. 37.

The latter chapters of the Handbook deal with the specific application of the
fundamentals of analysis, methods of measurement, and control techniques—where
these are developed sufficiently to form a separate and discrete subject. Torsional
vibration is discussed in Chap. 38, with particular application to internal-combustion
engines.The balancing of rotating equipment is discussed in Chap. 39, and balancing
machines are described. Chapter 40 describes the special vibration problems associ-
ated with the design and operation of machine tools. Chapter 41 describes proce-
dures for the design of equipment to withstand shock and vibration—both the
design and practical aspects. A comprehensive up-to-date discussion of the human
aspects of shock and vibration is considered in Chap. 42, which describes the effects
of shock and vibration on people.

SYMBOLS AND ACRONYMS

This section includes a list of symbols and acronyms generally used in the Hand-
book. Symbols of special or limited application are defined in the respective chap-
ters as they are used.

Symbol Meaning

a radius
A/D analog-to-digital
ANSI American National Standards Institute
ASTM American Society for Testing and Materials
B bandwidth
B magnetic flux density
BSI British Standards Institution
c damping coefficient
c velocity of sound
cc critical damping coefficient
C capacitance
CPU central processing unit
CSIRO Commonwealth Scientific and Industrial Research Organisation
D diameter
D/A digital-to-analog
DFT discrete Fourier transform
DSP discrete signal processor
e electrical voltage
e eccentricity
E energy
E modulus of elasticity in tension and compression (Young’s modulus)
f frequency
fn undamped natural frequency
fi undamped natural frequencies in a multiple degree-of-freedom system,

where i = 1, 2, . . .
fd damped natural frequency
fr resonance frequency
F force
ff Coulomb friction force
FEM finite element method, finite element model
FFT fast Fourier transform
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g acceleration of gravity
G modulus of elasticity in shear
h height, depth
H magnetic field strength
Hz hertz
i electric current
Ii area or mass moment of inertia (subscript indicates axis)
Ip polar moment of inertia
Iij area or mass product of inertia (subscripts indicate axes)
IC integrated circuit
ISO International Standards Organization
I imaginary part of
j �−�1�
J inertia constant (weight moment of inertia)
J impulse
k spring constant, stiffness, stiffness constant
kt rotational (torsional) stiffness
l length
L inductance
m mass
mu unbalanced mass
M torque
M mutual inductance
� mobility
MIMO multiple input, multiple output
n number of coils, supports, etc.
NEMA National Electrical Manufacturers Association
NIST National Institute of Standards and Technology
p alternating pressure
p probability density
P probability distribution
P static pressure
q electric charge
Q resonance factor (also ratio of reactance to resistance)
r electrical resistance
R radius
� real part of
s arc length
S area of diaphragm, tube, etc.
SEA statistical energy analysis
SIMO single input, multiple output
SCC Standards Council of Canada
t thickness
t time
T transmissibility
T kinetic energy
v linear velocity
V potential energy
w width
W weight
W power
We spectral density of the excitation
Wr spectral density of the response
x linear displacement in direction of X axis
y linear displacement in direction of Y axis
z linear displacement in direction of Z axis
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Z impedance
α rotational displacement about X axis
β rotational displacement about Y axis
γ rotational displacement about Z axis
γ shear strain
γ weight density
δ deflection
δst static deflection
∆ logarithmic decrement
� tension or compression strain
ζ fraction of critical damping
η stiffness ratio, loss factor
θ phase angle
λ wavelength
µ coefficient of friction
µ mass density
µ mean value
� Poisson’s ratio
ρ mass density
ρi radius of gyration (subscript indicates axis)
σ Poisson’s ratio
σ normal stress
σ root-mean-square (rms) value
τ period
τ shear stress
φ magnetic flux
Φ phase angle
� phase angle
� standard deviation
ω forcing frequency—angular
ωn undamped natural frequency—angular
ωi undamped natural frequencies—angular—in a multiple degree-of-freedom 

system, where i = 1, 2, . . .
ωd damped natural frequency—angular
ωr resonance frequency—angular
Ω rotational speed
� approximately equal to

CHARACTERISTICS OF HARMONIC MOTION

Harmonic functions are employed frequently in the analysis of shock and vibration.
A body that experiences simple harmonic motion follows a displacement pattern
defined by

x = x0 sin (2πft) = x0 sin �t (1.1)

where f is the frequency of the simple harmonic motion, ω = 2πf is the corresponding
angular frequency, and x0 is the amplitude of the displacement.

The velocity ẋ and acceleration ẍ of the body are found by differentiating the dis-
placement once and twice, respectively:

ẋ = x0(2πf ) cos 2πft = x0ω cos ωt (1.2)

ẍ = −x0(2πf )2 sin 2πft = −x0ω2 sin ωt (1.3)
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TABLE 1.2 Conversion Factors for Rotational Velocity and Acceleration

Multiply
Value in → rad/sec degree/sec rev/sec rev/min

or → rad/sec2 degree/sec2 rev/sec2 rev/min/sec
By

To obtain
value in ↓

rad/sec 1 0.01745 6.283 0.1047
rad/sec2

degree/sec 57.30 1 360 6.00
degree/sec2

rev/sec 0.1592 0.00278 1 0.0167
rev/sec2

rev/min 9.549 0.1667 60 1
rev/min/sec

TABLE 1.1 Conversion Factors for Translational Velocity and Acceleration

Multiply
Value in → g-sec, ft/sec in./sec cm/sec m/sec

or → g ft/sec2 in./sec2 cm/sec2 m/sec2

By
To obtain

value in ↓

g-sec, 1 0.0311 0.00259 0.00102 0.102
g

ft/sec 32.16 1 0.0833 0.0328 3.28
ft/sec2

in./sec 386 12.0 1 0.3937 39.37
in./sec2

cm/sec 980 30.48 2.540 1 100
cm/sec2

m/sec 9.80 0.3048 0.0254 0.010 1
m/sec2

The maximum absolute values of the displacement, velocity, and acceleration of a
body undergoing harmonic motion occur when the trigonometric functions in Eqs.
(1.1) to (1.3) are numerically equal to unity.These values are known, respectively, as
displacement, velocity, and acceleration amplitudes; they are defined mathemati-
cally as follows:

x0 = x0 ẋ0 = (2πf )x0 ẍ0 = (2πf )2x0 (1.4)

It is common to express the displacement amplitude x0 in inches when the
English system of units is used and in centimeters or millimeters when the metric
system is used. Accordingly, the velocity amplitude x0 is expressed in inches per sec-
ond in the English system (centimeters per second or millimeters per second in the
metric system). For example, consider a body that experiences simple harmonic
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TABLE 1.3 Conversion Factors for Simple Harmonic Motion

Multiply numerical
value in terms of → Amplitude Average Root-mean- Peak-to-peak

By value square (rms) value
To obtain value value

in terms of ↓

Amplitude 1 1.571 1.414 0.500

Average value 0.637 1 0.900 0.318

Root-mean-
square (rms) 0.707 1.111 1 0.354
value

Peak-to-peak 2.000 3.142 2.828 1
value

motion having a frequency f of 50 Hz and a displacement amplitude x0 of 0.01 in.
(0.000254 m). According to Eq. (1.4), the velocity amplitude ẋ0 = (2πf ) x0 = 3.14
in./sec (0.0797 m/s). The acceleration amplitude ẍ0 = (2πf )2 x0 in./sec2 = 986 in./sec2

(25.0 m/s2).The acceleration amplitude x0 is often expressed as a dimensionless mul-
tiple of the gravitational acceleration g where g = 386 in./sec2 (9.8 m/s2). Therefore
in this example, the acceleration amplitude may also be expressed as ẍ0 = 2.55g.

Factors for converting values of rectilinear velocity and acceleration to different
units are given in Table 1.1; similar factors for angular velocity and acceleration are
given in Table 1.2.

For certain purposes in analysis, it is convenient to express the amplitude in terms
of the average value of the harmonic function, the root-mean-square (rms) value, or
2 times the amplitude (i.e., peak-to-peak value).These terms are defined mathemat-
ically in Chap. 22; numerical conversion factors are set forth in Table 1.3 for ready
reference.
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APPENDIX 1.1 NATURAL FREQUENCIES 

OF COMMONLY USED SYSTEMS

The most important aspect of vibration analysis often is the calculation or measure-
ment of the natural frequencies of mechanical systems. Natural frequencies are dis-
cussed prominently in many chapters of the Handbook. Appendix 1.1 includes in
tabular form, convenient for ready reference, a compilation of frequently used
expressions for the natural frequencies of common mechanical systems:

1. Mass-spring systems in translation
2. Rotor-shaft systems
3. Massless beams with concentrated mass loads
4. Beams of uniform section and uniformly distributed load
5. Thin flat plates of uniform thickness
6. Miscellaneous systems

The data for beams and plates are abstracted from Chap. 7.
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APPENDIX 1.2 TERMINOLOGY

For convenience, definitions of terms which are used frequently in the field of shock
and vibration are assembled here. Many of these are identical with those developed
by technical committees of the International Standards Organisation (ISO) and the
International Electrotechnical Commission (IEC) in cooperation with the Ameri-
can National Standards Institute (ANSI). Copies of standards publications may be
obtained from the Standards Secretariat, Acoustical Society of America, 120 Wall
Street, 32d Floor, New York, NY 10005-3993; the e-mail address is asastds@aip.org.
In addition to the following definitions, many more terms used in shock and vibra-
tion are defined throughout the Handbook—far too many to include in this appen-
dix. The reader is referred to the Index.
acceleration Acceleration is a vector quantity that specifies the time rate of change of velocity.

acceleration of gravity (See g.)

accelerometer An accelerometer is a transducer whose output is proportional to the accel-
eration input.

ambient vibration Ambient vibration is the all-encompassing vibration associated with a
given environment, being usually a composite of vibration from many sources, near and far.

amplitude Amplitude is the maximum value of a sinusoidal quantity.

analog If a first quantity or structural element is analogous to a second quantity or structural
element belonging in another field of knowledge, the second quantity is called the analog of the
first, and vice versa.

analogy An analogy is a recognized relationship of consistent mutual similarity between the
equations and structures appearing within two or more fields of knowledge, and an identifica-
tion and association of the quantities and structural elements that play mutually similar roles
in these equations and structures, for the purpose of facilitating transfer of knowledge of math-
ematical procedures of analysis and behavior of the structures between these fields.

angular frequency (circular frequency) The angular frequency of a periodic quantity, in radi-
ans per unit time, is the frequency multiplied by 2π.

angular mechanical impedance (rotational mechanical impedance) Angular mechanical
impedance is the impedance involving the ratio of torque to angular velocity. (See impedance.)

antinode (loop) An antinode is a point, line, or surface in a standing wave where some char-
acteristic of the wave field has maximum amplitude.

antiresonance For a system in forced oscillation, antiresonance exists at a point when any
change, however small, in the frequency of excitation causes an increase in the response at this
point.

aperiodic motion A vibration that is not periodic.

apparent mass (See effective mass.)

audio frequency An audio frequency is any frequency corresponding to a normally audible
sound wave.

autocorrelation coefficient The autocorrelation coefficient of a signal is the ratio of the auto-
correlation function to the mean-square value of the signal:

R(τ) = x�(�t�)�x�(�t��+��τ�)�/[�x�(�t�)�]�2�

autocorrelation function The autocorrelation function of a signal is the average of the prod-
uct of the value of the signal at time t with the value at time t + τ:

R(τ) = x�(�t�)�x�(�t��+��τ�)�
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For a stationary random signal of infinite duration, the power spectral density (except for a
constant factor) is the cosine Fourier transform of the autocorrelation function.

autospectral density The limiting mean-square value (e.g., of acceleration, velocity, displace-
ment, stress, or other random variable) per unit bandwidth, i.e., the limit of the mean-square
value in a given rectangular bandwidth divided by the bandwidth, as the bandwidth approaches
zero. Also called power spectral density.

auxiliary mass damper (damped vibration absorber) An auxiliary mass damper is a system
consisting of a mass, spring, and damper which tends to reduce vibration by the dissipation of
energy in the damper as a result of relative motion between the mass and the structure to
which the damper is attached.

background noise Background noise is the total of all sources of interference in a system
used for the production, detection, measurement, or recording of a signal, independent of the
presence of the signal.

balancing Balancing is a procedure for adjusting the mass distribution of a rotor so that
vibration of the journals, or the forces on the bearings at once-per-revolution, are reduced or
controlled. (See Chap. 39 for a complete list of definitions related to balancing.)

bandpass filter A bandpass filter is a wave filter that has a single transmission band extend-
ing from a lower cutoff frequency greater than zero to a finite upper cutoff frequency.

bandwidth, effective (See effective bandwidth.)

beat frequency The absolute value of the difference in frequency of two oscillators of slightly
different frequency.

beats Beats are periodic variations that result from the superposition of two simple har-
monic quantities of different frequencies f1 and f2. They involve the periodic increase and
decrease of amplitude at the beat frequency (f1 − f2).

broadband random vibration Broadband random vibration is random vibration having its
frequency components distributed over a broad frequency band. (See random vibration.)

calibration factor The average sensitivity of a transducer over a specified frequency range.

center-of-gravity Center-of-gravity is the point through which passes the resultant of the
weights of its component particles for all orientations of the body with respect to a gravita-
tional field; if the gravitational field is uniform, the center-of-gravity corresponds with the 
center-of-mass.

circular frequency (See angular frequency.)

complex angular frequency As applied to a function α = Aeσt sin (ωt − φ), where σ, ω, and φ
are constant, the quantity ωc = σ + jω is the complex angular frequency where j is an operator
with rules of addition, multiplication, and division as suggested by the symbol �−�1�. If the sig-
nal decreases with time, σ must be negative.

complex function A complex function is a function having real and imaginary parts.

complex vibration Complex vibration is vibration whose components are sinusoids not har-
monically related to one another. (See harmonic.)

compliance Compliance is the reciprocal of stiffness.

compressional wave A compressional wave is one of compressive or tensile stresses propa-
gated in an elastic medium.

continuous system (distributed system) A continuous system is one that is considered to have
an infinite number of possible independent displacements. Its configuration is specified by a func-
tion of a continuous spatial variable or variables in contrast to a discrete or lumped parameter
system which requires only a finite number of coordinates to specify its configuration.

correlation coefficient The correlation coefficient of two variables is the ratio of the correla-
tion function to the product of the averages of the variables:

x�1�(�t�)��⋅��x�2�(�t�)�/x�1�(�t�)� ⋅ x�2�(�t�)�
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correlation function The correlation function of two variables is the average value of their
product:

x�1�(�t�)��⋅��x�2�(�t�)�

Coulomb damping (dry friction damping) Coulomb damping is the dissipation of energy
that occurs when a particle in a vibrating system is resisted by a force whose magnitude is a
constant independent of displacement and velocity and whose direction is opposite to the
direction of the velocity of the particle.

coupled modes Coupled modes are modes of vibration that are not independent but which
influence one another because of energy transfer from one mode to the other. (See mode of
vibration.)

coupling factor, electromechanical The electromechanical coupling factor is a factor used to
characterize the extent to which the electrical characteristics of a transducer are modified by a
coupled mechanical system, and vice versa.

crest factor The crest factor is the ratio of the peak value to the root-mean-square value.

critical damping Critical damping is the minimum viscous damping that will allow a dis-
placed system to return to its initial position without oscillation.

critical speed Critical speed is the speed of a rotating system that corresponds to a resonance
frequency of the system.

cross-talk The signal observed in one channel due to a signal in another channel.

cycle A cycle is the complete sequence of values of a periodic quantity that occur during a
period.

damped natural frequency The damped natural frequency is the frequency of free vibration
of a damped linear system. The free vibration of a damped system may be considered periodic
in the limited sense that the time interval between zero crossings in the same direction is con-
stant, even though successive amplitudes decrease progressively. The frequency of the vibra-
tion is the reciprocal of this time interval.

damper A damper is a device used to reduce the magnitude of a shock or vibration by one or
more energy dissipation methods.

damping Damping is the dissipation of energy with time or distance.

damping ratio (See fraction of critical damping.)

decibel (dB) The decibel is a unit which denotes the magnitude of a quantity with respect to
an arbitrarily established reference value of the quantity, in terms of the logarithm (to the base
10) of the ratio of the quantities. For example, in electrical transmission circuits a value of
power may be expressed in terms of a power level in decibels; the power level is given by 10
times the logarithm (to the base 10) of the ratio of the actual power to a reference power
(which corresponds to 0 dB).

degrees-of-freedom The number of degrees-of-freedom of a mechanical system is equal to
the minimum number of independent coordinates required to define completely the positions
of all parts of the system at any instant of time. In general, it is equal to the number of inde-
pendent displacements that are possible.

deterministic function A deterministic function is one whose value at any time can be pre-
dicted from its value at any other time.

displacement Displacement is a vector quantity that specifies the change of position of a
body or particle and is usually measured from the mean position or position of rest. In general,
it can be represented as a rotation vector or a translation vector, or both.

displacement pickup Displacement pickup is a transducer that converts an input displace-
ment to an output that is proportional to the input displacement.

distortion Distortion is an undesired change in waveform. Noise and certain desired changes
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in waveform, such as those resulting from modulation or detection, are not usually classed as
distortion.

distributed system (See continuous system.)

driving point impedance Driving point impedance is the impedance involving the ratio of
force to velocity when both the force and velocity are measured at the same point and in the
same direction. (See impedance.)

dry friction damping (See Coulomb damping.)

duration of shock pulse The duration of a shock pulse is the time required for the accelera-
tion of the pulse to rise from some stated fraction of the maximum amplitude and to decay to
this value. (See shock pulse.)

dynamic stiffness Dynamic stiffness is the ratio of the change of force to the change of dis-
placement under dynamic conditions.

dynamic vibration absorber (tuned damper) A dynamic vibration absorber is an auxiliary
mass-spring system which tends to neutralize vibration of a structure to which it is attached.
The basic principle of operation is vibration out-of-phase with the vibration of such structure,
thereby applying a counteracting force.

effective bandwidth The effective bandwidth of a specified transmission system is the band-
width of an ideal system which (1) has uniform transmission in its pass band equal to the max-
imum transmission of the specified system and (2) transmits the same power as the specified
system when the two systems are receiving equal input signals having a uniform distribution of
energy at all frequencies.

effective mass (apparent mass) The complex ratio of force to acceleration during simple
harmonic motion.

electromechanical coupling factor (See coupling factor, electromechanical.)

electrostriction Electrostriction is the phenomenon wherein some dielectric materials expe-
rience an elastic strain when subjected to an electric field, this strain being independent of the
polarity of the field.

ensemble A collection of signals. (See also process.)

environment (See natural environments and induced environment.)

equivalent system An equivalent system is one that may be substituted for another system
for the purpose of analysis. Many types of equivalence are common in vibration and shock
technology: (1) equivalent stiffness, (2) equivalent damping, (3) torsional system equivalent
to a translational system, (4) electrical or acoustical system equivalent to a mechanical sys-
tem, etc.

equivalent viscous damping Equivalent viscous damping is a value of viscous damping
assumed for the purpose of analysis of a vibratory motion, such that the dissipation of energy
per cycle at resonance is the same for either the assumed or actual damping force.

ergodic process An ergodic process is a random process that is stationary and of such a
nature that all possible time averages performed on one signal are independent of the signal
chosen and hence are representative of the time averages of each of the other signals of the
entire random process.

excitation (stimulus) Excitation is an external force (or other input) applied to a system that
causes the system to respond in some way.

filter A filter is a device for separating waves on the basis of their frequency. It introduces rel-
atively small insertion loss to waves in one or more frequency bands and relatively large inser-
tion loss to waves of other frequencies. (See insertion loss.)

force factor The force factor of an electromechanical transducer is (1) the complex quotient
of the force required to block the mechanical system divided by the corresponding current in
the electric system and (2) the complex quotient of the resulting open-circuit voltage in the
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electric system divided by the velocity in the mechanical system. Force factors (1) and (2) have
the same magnitude when consistent units are used and the transducer satisfies the principle of
reciprocity. It is sometimes convenient in an electrostatic or piezoelectric transducer to use the
ratios between force and charge or electric displacement, or between voltage and mechanical
displacement.

forced vibration (forced oscillation) The oscillation of a system is forced if the response is
imposed by the excitation. If the excitation is periodic and continuing, the oscillation is
steady-state.

foundation (support) A foundation is a structure that supports the gravity load of a mechan-
ical system. It may be fixed in space, or it may undergo a motion that provides excitation for the
supported system.

fraction of critical damping The fraction of critical damping (damping ratio) for a system
with viscous damping is the ratio of actual damping coefficient c to the critical damping coeffi-
cient cc.

free vibration Free vibration is that which occurs after the removal of an excitation or
restraint.

frequency The frequency of a function periodic in time is the reciprocal of the period.The unit
is the cycle per unit time and must be specified; the unit cycle per second is called hertz (Hz).

frequency, angular (See angular frequency.)

fundamental frequency (1) The fundamental frequency of a periodic quantity is the fre-
quency of a sinusoidal quantity which has the same period as the periodic quantity. (2) The fun-
damental frequency of an oscillating system is the lowest natural frequency. The normal mode
of vibration associated with this frequency is known as the fundamental mode.

fundamental mode of vibration The fundamental mode of vibration of a system is the mode
having the lowest natural frequency.

g The quantity g is the acceleration produced by the force of gravity, which varies with the
latitude and elevation of the point of observation. By international agreement, the value
980.665 cm/sec2 = 386.087 in./sec2 = 32.1739 ft/sec2 has been chosen as the standard acceleration
due to gravity.

harmonic A harmonic is a sinusoidal quantity having a frequency that is an integral multiple
of the frequency of a periodic quantity to which it is related.

harmonic motion (See simple harmonic motion.)

harmonic response Harmonic response is the periodic response of a vibrating system
exhibiting the characteristics of resonance at a frequency that is a multiple of the excitation fre-
quency.

high-pass filter A high-pass filter is a wave filter having a single transmission band extending
from some critical or cutoff frequency, not zero, up to infinite frequency.

image impedances The image impedances of a structure or device are the impedances that
will simultaneously terminate all of its inputs and outputs in such a way that at each of its inputs
and outputs the impedances in both directions are equal.

impact An impact is a single collision of one mass in motion with a second mass which may
be either in motion or at rest.

impedance Mechanical impedance is the ratio of a force-like quantity to a velocity-like quan-
tity when the arguments of the real (or imaginary) parts of the quantities increase linearly with
time. Examples of force-like quantities are: force, sound pressure, voltage, temperature. Exam-
ples of velocity-like quantities are: velocity, volume velocity, current, heat flow. Impedance is the
reciprocal of mobility. (See also angular mechanical impedance, linear mechanical impedance,
driving point impedance, and transfer impedance.)

impulse Impulse is the product of a force and the time during which the force is applied;

more specifically, the impulse is �t2

t1
Fdt where the force F is time dependent and equal to zero

before time t1 and after time t2.
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impulse response function See Eq. (21.7).

induced environments Induced environments are those conditions generated as a result of
the operation of a structure or equipment.

insertion loss The insertion loss, in decibels, resulting from insertion of an element in a trans-
mission system is 10 times the logarithm to the base 10 of the ratio of the power delivered to
that part of the system that will follow the element, before the insertion of the element, to the
power delivered to that same part of the system after insertion of the element.

isolation Isolation is a reduction in the capacity of a system to respond to an excitation,
attained by the use of a resilient support. In steady-state forced vibration, isolation is expressed
quantitatively as the complement of transmissibility.

isolator (See vibration isolator.)

jerk Jerk is a vector that specifies the time rate of change of acceleration; jerk is the third
derivative of displacement with respect to time.

level Level is the logarithm of the ratio of a given quantity to a reference quantity of the same
kind; the base of the logarithm, the reference quantity, and the kind of level must be indicated.
(The type of level is indicated by the use of a compound term such as vibration velocity level.
The level of the reference quantity remains unchanged whether the chosen quantity is peak,
rms, or otherwise.) Unit: decibel. Unit symbol: dB.

line spectrum A line spectrum is a spectrum whose components occur at a number of dis-
crete frequencies.

linear mechanical impedance Linear mechanical impedance is the impedance involving the
ratio of force to linear velocity. (See impedance.)

linear system A system is linear if for every element in the system the response is propor-
tional to the excitation. This definition implies that the dynamic properties of each element in
the system can be represented by a set of linear differential equations with constant coeffi-
cients, and that for the system as a whole superposition holds.

logarithmic decrement The logarithmic decrement is the natural logarithm of the ratio of
any two successive amplitudes of like sign, in the decay of a single-frequency oscillation.

longitudinal wave A longitudinal wave in a medium is a wave in which the direction of dis-
placement at each point of the medium is normal to the wave front.

low-pass filter A low-pass filter is a wave filter having a single transmission band extending
from zero frequency up to some critical or cutoff frequency which is not infinite.

magnetic recorder A magnetic recorder is equipment incorporating an electromagnetic
transducer and means for moving a ferromagnetic recording medium relative to the transducer
for recording electric signals as magnetic variations in the medium.

magnetostriction Magnetostriction is the phenomenon wherein ferromagnetic materials
experience an elastic strain when subjected to an external magnetic field. Also, magnetostric-
tion is the converse phenomenon in which mechanical stresses cause a change in the magnetic
induction of a ferromagnetic material.

maximum value The maximum value is the value of a function when any small change in the
independent variable causes a decrease in the value of the function.

mechanical admittance (See mobility.)

mechanical impedance (See impedance.)

mechanical shock Mechanical shock is a nonperiodic excitation (e.g., a motion of the foun-
dation or an applied force) of a mechanical system that is characterized by suddenness and
severity and usually causes significant relative displacements in the system.

mechanical system A mechanical system is an aggregate of matter comprising a defined
configuration of mass, stiffness, and damping.

mobility (mechanical admittance) Mobility is the ratio of a velocity-like quantity to a force-
like quantity when the arguments of the real (or imaginary) parts of the quantities increase lin-
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early with time. Mobility is the reciprocal of impedance. The terms angular mobility, linear
mobility, driving-point mobility, and transfer mobility are used in the same sense as correspond-
ing impedances.

modal numbers When the normal modes of a system are related by a set of ordered integers,
these integers are called modal numbers.

mode of vibration In a system undergoing vibration, a mode of vibration is a characteristic
pattern assumed by the system in which the motion of every particle is simple harmonic with
the same frequency. Two or more modes may exist concurrently in a multiple degree-of-
freedom system.

modulation Modulation is the variation in the value of some parameter which characterizes
a periodic oscillation. Thus, amplitude modulation of a sinusoidal oscillation is a variation in
the amplitude of the sinusoidal oscillation.

multiple degree-of-freedom system A multiple degree-of-freedom system is one for which
two or more coordinates are required to define completely the position of the system at any
instant.

narrow-band random vibration (random sine wave) Narrow-band random vibration is ran-
dom vibration having frequency components only within a narrow band. It has the appearance
of a sine wave whose amplitude varies in an unpredictable manner. (See random vibration.)

natural environments Natural environments are those conditions generated by the forces of
nature and whose effects are experienced when the equipment or structure is at rest as well as
when it is in operation.

natural frequency Natural frequency is the frequency of free vibration of a system. For a
multiple degree-of-freedom system, the natural frequencies are the frequencies of the normal
modes of vibration.

natural mode of vibration The natural mode of vibration is a mode of vibration assumed by
a system when vibrating freely.

neutral surface That surface of a beam, in simple flexure, over which there is no longitudinal
stress.

node A node is a point, line, or surface in a standing wave where some characteristic of the
wave field has essentially zero amplitude.

noise Noise is any undesired signal. By extension, noise is any unwanted disturbance within
a useful frequency band, such as undesired electric waves in a transmission channel or device.

nominal bandwidth The nominal bandwidth of a filter is the difference between the nominal
upper and lower cutoff frequencies. The difference may be expressed (1) in cycles per second,
(2) as a percentage of the passband center frequency, or (3) in octaves.

nominal passband center frequency The nominal passband center frequency is the geomet-
ric mean of the nominal cutoff frequencies.

nominal upper and lower cutoff frequencies The nominal upper and lower cutoff frequencies
of a filter passband are those frequencies above and below the frequency of maximum response
of a filter at which the response to a sinusoidal signal is 3 dB below the maximum response.

nonlinear damping Nonlinear damping is damping due to a damping force that is not pro-
portional to velocity.

normal mode of vibration A normal mode of vibration is a mode of vibration that is uncou-
pled from (i.e., can exist independently of) other modes of vibration of a system. When vibra-
tion of the system is defined as an eigenvalue problem, the normal modes are the eigenvectors
and the normal mode frequencies are the eigenvalues.The term classical normal mode is some-
times applied to the normal modes of a vibrating system characterized by vibration of each ele-
ment of the system at the same frequency and phase. In general, classical normal modes exist
only in systems having no damping or having particular types of damping.

octave The interval between two frequencies that have a frequency ratio of two.
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oscillation Oscillation is the variation, usually with time, of the magnitude of a quantity with
respect to a specified reference when the magnitude is alternately greater and smaller than the
reference.

partial node A partial node is the point, line, or surface in a standing-wave system where
some characteristic of the wave field has a minimum amplitude differing from zero.The appro-
priate modifier should be used with the words partial node to signify the type that is intended;
e.g., displacement partial node, velocity partial node, pressure partial node.

peak-to-peak value The peak-to-peak value of a vibrating quantity is the algebraic differ-
ence between the extremes of the quantity.

peak value Peak value is the maximum value of a vibration during a given interval, usually
considered to be the maximum deviation of that vibration from the mean value.

period The period of a periodic quantity is the smallest increment of the independent vari-
able for which the function repeats itself.

periodic quantity A periodic quantity is an oscillating quantity whose values recur for certain
increments of the independent variable.

phase of a periodic quantity The phase of a periodic quantity, for a particular value of the
independent variable, is the fractional part of a period through which the independent variable
has advanced, measured from an arbitrary reference.

pickup (See transducer.)

piezoelectric (crystal) (ceramic) transducer A piezoelectric transducer is a transducer that
depends for its operation on the interaction between the electric charge and the deformation
of certain asymmetric crystals having piezoelectric properties.

piezoelectricity Piezoelectricity is the property exhibited by some asymmetrical crystalline
materials which when subjected to strain in suitable directions develop electric polarization
proportional to the strain. Inverse piezoelectricity is the effect in which mechanical strain is
produced in certain asymmetrical crystalline materials when subjected to an external electric
field; the strain is proportional to the electric field.

power spectral density Power spectral density is the limiting mean-square value (e.g., of
acceleration, velocity, displacement, stress, or other random variable) per unit bandwidth, i.e.,
the limit of the mean-square value in a given rectangular bandwidth divided by the bandwidth,
as the bandwidth approaches zero. Also called autospectral density.

power spectral density level The spectrum level of a specified signal at a particular frequency
is the level in decibels of that part of the signal contained within a band 1 cycle per second wide,
centered at the particular frequency. Ordinarily this has significance only for a signal having a
continuous distribution of components within the frequency range under consideration.

power spectrum A spectrum of mean-squared spectral density values.

process A process is a collection of signals. The word process rather than the word ensemble
ordinarily is used when it is desired to emphasize the properties the signals have or do not have
as a group. Thus, one speaks of a stationary process rather than a stationary ensemble.

pulse rise time The pulse rise time is the interval of time required for the leading edge of a
pulse to rise from some specified small fraction to some specified larger fraction of the maxi-
mum value.

Q (quality factor) The quantity Q is a measure of the sharpness of resonance or frequency
selectivity of a resonant vibratory system having a single degree of freedom, either mechanical
or electrical. In a mechanical system, this quantity is equal to one-half the reciprocal of the
damping ratio. It is commonly used only with reference to a lightly damped system and is then
approximately equal to the following: (1) Transmissibility at resonance, (2) π/logarithmic
decrement, (3) 2πW/∆W where W is the stored energy and ∆W the energy dissipation per cycle,
and (4) fr /∆f where fr is the resonance frequency and ∆f is the bandwidth between the half-
power points.

quasi-ergodic process A quasi-ergodic process is a random process which is not necessarily
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stationary but of such a nature that some time averages performed on a signal are independent
of the signal chosen.

quasi-periodic signal A quasi-periodic signal is one consisting only of quasi-sinusoids.

quasi-sinusoid A quasi-sinusoid is a function of the form α = A sin (2πft − φ) where either A
or f, or both, is not a constant but may be expressed readily as a function of time. Ordinarily φ
is considered constant.

random sine wave (See narrow-band random vibration.)

random vibration Random vibration is vibration whose instantaneous magnitude is not
specified for any given instant of time.The instantaneous magnitudes of a random vibration are
specified only by probability distribution functions giving the probable fraction of the total
time that the magnitude (or some sequence of magnitudes) lies within a specified range. Ran-
dom vibration contains no periodic or quasi-periodic constituents. If random vibration has
instantaneous magnitudes that occur according to the Gaussian distribution, it is called Gauss-
ian random vibration.

ratio of critical damping (See fraction of critical damping.)

Rayleigh wave A Rayleigh wave is a surface wave associated with the free boundary of a
solid, such that a surface particle describes an ellipse whose major axis is normal to the surface,
and whose center is at the undisturbed surface. At maximum particle displacement away from
the solid surface the motion of the particle is opposite to that of the wave.

recording channel The term recording channel refers to one of a number of independent
recorders in a recording system or to independent recording tracks on a recording medium.

recording system A recording system is a combination of transducing devices and associated
equipment suitable for storing signals in a form capable of subsequent reproduction.

rectangular shock pulse An ideal shock pulse for which motion rises instantaneously to a
given value, remains constant for the duration of the pulse, then drops to zero instantane-
ously.

relaxation time Relaxation time is the time taken by an exponentially decaying quantity to
decrease in amplitude by a factor of 1/e = 0.3679.

re-recording Re-recording is the process of making a recording by reproducing a recorded
signal source and recording this reproduction.

resonance Resonance of a system in forced vibration exists when any change, however small,
in the frequency of excitation causes a decrease in the response of the system.

resonance frequency Resonance frequency is a frequency at which resonance exists.

response The response of a device or system is the motion (or other output) resulting from
an excitation (stimulus) under specified conditions.

response spectrum (See shock response spectrum.)

rotational mechanical impedance (See angular mechanical impedance.)

seismic pickup; seismic transducer A seismic pickup or transducer is a device consisting of
a seismic system in which the differential movement between the mass and the base of the sys-
tem produces a measurable indication of such movement.

seismic system A seismic system is one consisting of a mass attached to a reference base by
one or more flexible elements. Damping is usually included.

self-induced (self-excited) vibration The vibration of a mechanical system is self-induced if it
results from conversion, within the system, of nonoscillatory excitation to oscillatory excitation.

sensing element That part of a transducer which is activated by the input excitation and sup-
plies the output signal.

sensitivity The sensitivity of a transducer is the ratio of a specified output quantity to a spec-
ified input quantity.

shake table (See vibration machine.)
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shear wave (rotational wave) A shear wave is a wave in an elastic medium which causes an
element of the medium to change its shape without a change of volume.

shock (See mechanical shock.)

shock absorber A shock absorber is a device which dissipates energy to modify the response
of a mechanical system to applied shock.

shock excitation An excitation, applied to a mechanical system, that produces a mechanical
shock.

shock isolator (shock mount) A shock isolator is a resilient support that tends to isolate a
system from a shock motion.

shock machine A shock machine is a device for subjecting a system to controlled and repro-
ducible mechanical shock.

shock motion Shock motion is an excitation involving motion of a foundation. (See founda-
tion and mechanical shock.)

shock mount (See shock isolator.)

shock pulse A shock pulse is a substantial disturbance characterized by a rise of acceleration
from a constant value and decay of acceleration to the constant value in a short period of time.
Shock pulses are normally displayed graphically as curves of acceleration as functions of time.

shock-pulse duration (See duration of shock pulse.)

shock response spectrum A shock spectrum is a plot of the maximum response experienced
by a single degree-of-freedom system, as a function of its own natural frequency, in response to
an applied shock. The response may be expressed in terms of acceleration, velocity, or dis-
placement.

shock testing machine; shock machine A shock testing machine is a device for subjecting a
mechanical system to controlled and reproducible mechanical shock.

signal A signal is (1) a disturbance used to convey information; (2) the information to be con-
veyed over a communication system.

simple harmonic motion A simple harmonic motion is a motion such that the displacement is
a sinusoidal function of time; sometimes it is designated merely by the term harmonic motion.

single degree-of-freedom system A single degree-of-freedom system is one for which only
one coordinate is required to define completely the configuration of the system at any instant.

sinusoidal motion (See simple harmonic motion.)

snubber A snubber is a device used to increase the stiffness of an elastic system (usually by a
large factor) whenever the displacement becomes larger than a specified value.

spectrum A spectrum is a definition of the magnitude of the frequency components that con-
stitute a quantity.

spectrum density (See power spectral density.)

standard deviation Standard deviation is the square root of the variance; i.e., the square root
of the mean of the squares of the deviations from the mean value of a vibrating quantity.

standing wave A standing wave is a periodic wave having a fixed distribution in space
which is the result of interference of progressive waves of the same frequency and kind. Such
waves are characterized by the existence of nodes or partial nodes and antinodes that are
fixed in space.

stationary process A stationary process is an ensemble of signals such that an average of val-
ues over the ensemble at any given time is independent of time.

stationary signal A stationary signal is a random signal of such nature that averages over
samples of finite time intervals are independent of the time at which the sample occurs.

steady-state vibration Steady-state vibration exists in a system if the velocity of each parti-
cle is a continuing periodic quantity.
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stiffness Stiffness is the ratio of change of force (or torque) to the corresponding change on
translational (or rotational) deflection of an elastic element.

subharmonic A subharmonic is a sinusoidal quantity having a frequency that is an integral
submultiple of the fundamental frequency of a periodic quantity to which it is related.

subharmonic response Subharmonic response is the periodic response of a mechanical sys-
tem exhibiting the characteristic of resonance at a frequency that is a submultiple of the fre-
quency of the periodic excitation.

superharmonic response Superharmonic response is a term sometimes used to denote a par-
ticular type of harmonic response which dominates the total response of the system; it fre-
quently occurs when the excitation frequency is a submultiple of the frequency of the
fundamental resonance.

time history The magnitude of a quantity expressed as a function of time.

transducer (pickup) A transducer is a device which converts shock or vibratory motion into
an optical, a mechanical, or most commonly to an electrical signal that is proportional to a
parameter of the experienced motion.

transfer impedance Transfer impedance between two points is the impedance involving the
ratio of force to velocity when force is measured at one point and velocity at the other point.
The term transfer impedance also is used to denote the ratio of force to velocity measured at
the same point but in different directions. (See impedance.)

transient vibration Transient vibration is temporarily sustained vibration of a mechanical
system. It may consist of forced or free vibration or both.

transmissibility Transmissibility is the nondimensional ratio of the response amplitude of a
system in steady-state forced vibration to the excitation amplitude. The ratio may be one of
forces, displacements, velocities, or accelerations.

transmission loss Transmission loss is the reduction in the magnitude of some characteristic
of a signal, between two stated points in a transmission system.

transverse wave A transverse wave is a wave in which the direction of displacement at each
point of the medium is parallel to the wave front.

tuned damper (See dynamic vibration absorber.)

uncorrelated Two signals or variables α1(t) and α2(t) are said to be uncorrelated if the aver-
age value of their product is zero: α�1�(�t�)��⋅��α�2�(�t�)� = 0. If the correlation coefficient is equal to unity,
the variables are said to be completely correlated. If the coefficient is less than unity but larger
than zero, they are said to be partially correlated. (See correlation coefficient.)

uncoupled mode An uncoupled mode of vibration is a mode that can exist in a system con-
currently with and independently of other modes.

undamped natural frequency The undamped natural frequency of a mechanical system is
the frequency of free vibration resulting from only elastic and inertial forces of the system.

variance Variance is the mean of the squares of the deviations from the mean value of a
vibrating quantity.

velocity Velocity is a vector quantity that specifies the time rate of change of displacement
with respect to a reference frame. If the reference frame is not inertial, the velocity is often des-
ignated “relative velocity.”

velocity pickup A velocity pickup is a transducer that converts an input velocity to an output
(usually electrical) that is proportional to the input velocity.

velocity shock Velocity shock is a particular type of shock motion characterized by a sudden
velocity change of the foundation. (See foundation and mechanical shock.)

vibration Vibration is an oscillation wherein the quantity is a parameter that defines the
motion of a mechanical system. (See oscillation.)
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vibration acceleration Vibration acceleration is the rate of change of speed and direction of
a vibration, in a specified direction. The frequency bandwidth must be identified. Unit meter
per second squared. Unit symbol: m/s2.

vibration acceleration level The vibration acceleration level is 10 times the logarithm (to the
base 10) of the ratio of the square of a given vibration acceleration to the square of a reference
acceleration, commonly 1g or 1 m/s2. Unit: decibel. Unit symbol: dB.

vibration isolator A vibration isolator is a resilient support that tends to isolate a system
from steady-state excitation.

vibration machine A vibration machine is a device for subjecting a mechanical system to
controlled and reproducible mechanical vibration.

vibration meter A vibration meter is an apparatus for the measurement of displacement,
velocity, or acceleration of a vibrating body.

vibration mount (See vibration isolator.)

vibration pickup (See transducer.)

vibrograph A vibrograph is an instrument, usually mechanical and self-contained, that pro-
vides an oscillographic recording of a vibration waveform.

vibrometer An instrument capable of indicating some measure of the magnitude (such as
r.m.s. acceleration) on a scale.

viscous damping Viscous damping is the dissipation of energy that occurs when a particle in
a vibrating system is resisted by a force that has a magnitude proportional to the magnitude of
the velocity of the particle and direction opposite to the direction of the particle.

viscous damping, equivalent (See equivalent viscous damping.)

wave A wave is a disturbance which is propagated in a medium in such a manner that at any
point in the medium the quantity serving as measure of disturbance is a function of the time,
while at any instant the displacement at a point is a function of the position of the point. Any
physical quantity that has the same relationship to some independent variable (usually time)
that a propagated disturbance has, at a particular instant, with respect to space, may be called
a wave.

wave interference Wave interference is the phenomenon which results when waves of the
same or nearly the same frequency are superposed; it is characterized by a spatial or temporal
distribution of amplitude of some specified characteristic differing from that of the individual
superposed waves.

wavelength The wavelength of a periodic wave in an isotropic medium is the perpendicular
distance between two wave fronts in which the displacements have a difference in phase of one
complete period.

white noise White noise is a noise whose power spectral density is substantially independent
of frequency over a specified range.
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CHAPTER 2
BASIC VIBRATION THEORY

Ralph E. Blake

INTRODUCTION

This chapter presents the theory of free and forced steady-state vibration of single
degree-of-freedom systems. Undamped systems and systems having viscous damp-
ing and structural damping are included. Multiple degree-of-freedom systems are
discussed, including the normal-mode theory of linear elastic structures and
Lagrange’s equations.

ELEMENTARY PARTS OF VIBRATORY SYSTEMS

Vibratory systems comprise means for storing potential energy (spring), means for
storing kinetic energy (mass or inertia), and means by which the energy is gradually
lost (damper). The vibration of a system involves the alternating transfer of energy
between its potential and kinetic forms. In a damped system, some energy is dissi-
pated at each cycle of vibration and must be replaced from an external source if a
steady vibration is to be maintained. Although a single physical structure may store
both kinetic and potential energy, and may dissipate energy, this chapter considers
only lumped parameter systems composed of ideal springs, masses, and dampers
wherein each element has only a single function. In translational motion, displace-
ments are defined as linear distances; in rotational motion, displacements are
defined as angular motions.

TRANSLATIONAL MOTION

Spring. In the linear spring shown in Fig. 2.1, the
change in the length of the spring is proportional
to the force acting along its length:

F = k(x − u) (2.1)

The ideal spring is considered to have no mass;
thus, the force acting on one end is equal and

2.1

FIGURE 2.1 Linear spring.
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opposite to the force acting on the other end.The constant of proportionality k is the
spring constant or stiffness.

Mass. A mass is a rigid body (Fig. 2.2) whose
acceleration ẍ according to Newton’s second law is
proportional to the resultant F of all forces acting on
the mass:*

F = mẍ (2.2)

Damper. In the viscous damper shown in Fig. 2.3,
the applied force is proportional to the relative
velocity of its connection points:

F = c(ẋ −u̇) (2.3)

The constant c is the damping coefficient, the charac-
teristic parameter of the damper. The ideal damper
is considered to have no mass; thus the force at one
end is equal and opposite to the force at the other
end. Structural damping is considered below and
several other types of damping are considered in
Chap. 30.

ROTATIONAL MOTION

The elements of a mechanical system which moves with pure rotation of the parts
are wholly analogous to the elements of a system that moves with pure translation.
The property of a rotational system which stores kinetic energy is inertia; stiffness
and damping coefficients are defined with reference to angular displacement and
angular velocity, respectively. The analogous quantities and equations are listed in
Table 2.1.

2.2 CHAPTER TWO

TABLE 2.1 Analogous Quantities in Translational 
and Rotational Vibrating Systems

Translational quantity Rotational quantity

Linear displacement x Angular displacement α
Force F Torque M
Spring constant k Spring constant kr

Damping constant c Damping constant cr

Mass m Moment of inertia I
Spring law F = k(x1 − x2) Spring law M = kr(α1 − α2)
Damping law F = c(ẋ1 − ẋ2) Damping law M = cr(α̈1 − α̇2)
Inertia law F = mẍ Inertia law M = Iα̈

* It is common to use the word mass in a general sense to designate a rigid body. Mathematically, the mass
of the rigid body is defined by m in Eq. (2.2).

FIGURE 2.2 Rigid mass.

FIGURE 2.3 Viscous damper.
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Inasmuch as the mathematical equations for a rotational system can be written by
analogy from the equations for a translational system, only the latter are discussed in
detail.Whenever translational systems are discussed, it is understood that correspond-
ing equations apply to the analogous rotational system, as indicated in Table 2.1.

SINGLE DEGREE-OF-FREEDOM SYSTEM

The simplest possible vibratory system is shown in Fig. 2.4; it consists of a mass m
attached by means of a spring k to an immovable support.The mass is constrained to
translational motion in the direction of the X axis so that its change of position from

an initial reference is described fully by
the value of a single quantity x. For this
reason it is called a single degree-of-
freedom system. If the mass m is dis-
placed from its equilibrium position and
then allowed to vibrate free from further
external forces, it is said to have free
vibration. The vibration also may be
forced; i.e., a continuing force acts upon
the mass or the foundation experiences a
continuing motion. Free and forced
vibration are discussed below.

FREE VIBRATION WITHOUT DAMPING

Considering first the free vibration of the undamped system of Fig. 2.4, Newton’s
equation is written for the mass m. The force mẍ exerted by the mass on the spring
is equal and opposite to the force kx applied by the spring on the mass:

mẍ + kx = 0 (2.4)

where x = 0 defines the equilibrium position of the mass.
The solution of Eq. (2.4) is

x = A sin �� t + B cos �� t (2.5)

where the term �k�/�m� is the angular natural frequency defined by

ωn = �� rad/sec (2.6)

The sinusoidal oscillation of the mass repeats continuously, and the time interval to
complete one cycle is the period:

τ = (2.7)

The reciprocal of the period is the natural frequency:

fn = = =  �� =   �� (2.8)
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FIGURE 2.4 Undamped single degree-of-
freedom system.
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where W = mg is the weight of the rigid body forming the mass of the system shown
in Fig. 2.4. The relations of Eq. (2.8) are shown by the solid lines in Fig. 2.5.

2.4 CHAPTER TWO

FIGURE 2.5 Natural frequency relations for a single degree-of-freedom system. Relation of
natural frequency to weight of supported body and stiffness of spring [Eq. (2.8)] is shown by solid
lines. Relation of natural frequency to static deflection [Eq. (2.10)] is shown by diagonal-dashed
line. Example: To find natural frequency of system with W = 100 lb and k = 1000 lb/in., enter at 
W = 100 on left ordinate scale; follow the dashed line horizontally to solid line k = 1000, then ver-
tically down to diagonal-dashed line, and finally horizontally to read fn = 10 Hz from right ordi-
nate scale.

Initial Conditions. In Eq. (2.5), B is the value of x at time t = 0, and the value of A
is equal to ẋ/ωn at time t = 0.Thus, the conditions of displacement and velocity which
exist at zero time determine the subsequent oscillation completely.

Phase Angle. Equation (2.5) for the displacement in oscillatory motion can be
written, introducing the frequency relation of Eq. (2.6),

x = A sin ωnt + B cos ωnt = C sin (ωnt + θ) (2.9)

where C = (A2 + B2)1/2 and θ = tan−1 (B/A). The angle θ is called the phase angle.

Static Deflection. The static deflection of a simple mass-spring system is the
deflection of spring k as a result of the gravity force of the mass, δst = mg/k. (For
example, the system of Fig. 2.4 would be oriented with the mass m vertically above
the spring k.) Substituting this relation in Eq. (2.8),

fn = �� (2.10)
g
�
δst

1
�
2π
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The relation of Eq. (2.10) is shown by the diagonal-dashed line in Fig. 2.5. This rela-
tion applies only when the system under consideration is both linear and elastic. For
example, rubber springs tend to be nonlinear or exhibit a dynamic stiffness which
differs from the static stiffness; hence, Eq. (2.10) is not applicable.

FREE VIBRATION WITH VISCOUS DAMPING

Figure 2.6 shows a single degree-of-freedom system with a viscous damper. The dif-
ferential equation of motion of mass m, corresponding to Eq. (2.4) for the
undamped system, is

mẍ + cẋ + kx = 0 (2.11)

The form of the solution of this equa-
tion depends upon whether the damp-
ing coefficient is equal to, greater than,
or less than the critical damping coeffi-
cient cc:

cc = 2�k�m� = 2mωn (2.12)

The ratio ζ = c/cc is defined as the frac-
tion of critical damping.

Less-Than-Critical Damping. If the damping of the system is less than critical,
ζ < 1; then the solution of Eq. (2.11) is

x = e−ct/2m(A sin ωdt + B cos ωdt)

= Ce−ct/2m sin (ωdt + θ) (2.13)

where C and θ are defined with reference to Eq. (2.9).The damped natural frequency
is related to the undamped natural frequency of Eq. (2.6) by the equation

ωd = ωn(1 − ζ2)1/2 rad/sec (2.14)

Equation (2.14), relating the damped
and undamped natural frequencies, is
plotted in Fig. 2.7.

Critical Damping. When c = cc, there
is no oscillation and the solution of Eq.
(2.11) is

x = (A + Bt)e−ct/2m (2.15)

Greater-Than-Critical Damping.
When ζ > 1, the solution of Eq. (2.11) is

x = e−ct/2m(Aeωn�ζ2�− 1� t + Be−ωn�ζ2�− 1� t)
(2.16)

This is a nonoscillatory motion; if the
system is displaced from its equilibrium
position, it tends to return gradually.

BASIC VIBRATION THEORY 2.5

FIGURE 2.6 Single degree-of-freedom system
with viscous damper.

FIGURE 2.7 Damped natural frequency as a
function of undamped natural frequency and
fraction of critical damping.
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Logarithmic Decrement. The degree of damping in a system having ζ < 1 may be
defined in terms of successive peak values in a record of a free oscillation. Substitut-
ing the expression for critical damping from Eq. (2.12), the expression for free vibra-
tion of a damped system, Eq. (2.13), becomes

x = Ce−ζωnt sin (ωdt + θ) (2.17)

Consider any two maxima (i.e., value of x when dx/dt = 0) separated by n cycles of
oscillation, as shown in Fig. 2.8. Then the ratio of these maxima is

= e−2πnζ/(1 − ζ2)1/2 (2.18)

Values of xn/x0 are plotted in Fig. 2.9 for
several values of n over the range of ζ
from 0.001 to 0.10.

The logarithmic decrement ∆ is the
natural logarithm of the ratio of the
amplitudes of two successive cycles of
the damped free vibration:

∆ = ln or    = e−∆ (2.19)
x2�
x1

x1�
x2

xn�
x0

2.6 CHAPTER TWO

FIGURE 2.8 Trace of damped free vibration
showing amplitudes of displacement maxima.

FIGURE 2.9 Effect of damping upon the ratio of
displacement maxima of a damped free vibration.
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[See  also Eq. (37.10).] A comparison of this relation with Eq. (2.18) when n = 1 gives
the following expression for ∆:

∆ = (2.20)

The logarithmic decrement can be expressed in terms of the difference of successive
amplitudes by writing Eq. (2.19) as follows:

= 1 − = 1 − e−∆

Writing e−∆ in terms of its infinite series, the following expression is obtained which
gives a good approximation for ∆ < 0.2:

= ∆ (2.21)

For small values of ζ (less than about 0.10), an approximate relation between the
fraction of critical damping and the logarithmic decrement, from Eq. (2.20), is

∆ � 2πζ (2.22)

FORCED VIBRATION

Forced vibration in this chapter refers to the motion of the system which occurs in
response to a continuing excitation whose magnitude varies sinusoidally with time.
(See Chaps. 8 and 23 for a treatment of the response of a simple system to step, pulse,
and transient vibration excitations.) The excitation may be, alternatively, force
applied to the system (generally, the force is applied to the mass of a single degree-
of-freedom system) or motion of the foundation that supports the system. The
resulting response of the system can be expressed in different ways, depending upon
the nature of the excitation and the use to be made of the result:

1. If the excitation is a force applied to the mass of the system shown in Fig. 2.4, the
result may be expressed in terms of (a) the amplitude of the resulting motion of
the mass or (b) the fraction of the applied force amplitude that is transmitted
through the system to the support.The former is termed the motion response and
the latter is termed the force transmissibility.

2. If the excitation is a motion of the foundation, the resulting response usually is
expressed in terms of the amplitude of the motion of the mass relative to the
amplitude of the motion of the foundation. This is termed the motion transmissi-
bility for the system.

In general, the response and transmissibility relations are functions of the forcing
frequency and vary with different types and degrees of damping. Results are pre-
sented in this chapter for undamped systems and for systems with either viscous or
structural damping. Corresponding results are given in Chap. 30 for systems with
Coulomb damping, and for systems with either viscous or Coulomb damping in
series with a linear spring.

x1 − x2�
x1

x2�
x1

x1 − x2�
x1

2πζ
��
(1 − ζ2)1/2
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FORCED VIBRATION WITHOUT DAMPING

Force Applied to Mass. When the
sinusoidal force F = F0 sin ωt is applied to
the mass of the undamped single degree-
of-freedom system shown in Fig. 2.10,
the differential equation of motion is

mẍ + kx = F0 sin ωt (2.23)

The solution of this equation is

x = A sin ωnt + B cos ωnt +  sin ωt (2.24)

where ωn = �k�/m�. The first two terms represent an oscillation at the undamped nat-
ural frequency ωn.The coefficient B is the value of x at time t = 0, and the coefficient
A may be found from the velocity at time t = 0. Differentiating Eq. (2.24) and setting
t = 0,

ẋ(0) = Aωn + (2.25)

The value of A is found from Eq. (2.25).
The oscillation at the natural frequency ωn gradually decays to zero in physical

systems because of damping. The steady-state oscillation at forcing frequency ω is

x = sin ωt (2.26)

This oscillation exists after a condition of equilibrium has been established by decay
of the oscillation at the natural frequency ωn and persists as long as the force F is
applied.

The force transmitted to the foundation is directly proportional to the spring
deflection: Ft = kx. Substituting x from Eq. (2.26) and defining transmissibility T = Ft/F,

T = (2.27)

If the mass is initially at rest in the equilibrium position of the system (i.e., x = 0
and ẋ = 0) at time t = 0, the ensuing motion at time t > 0 is

x = (sin ωt − sin ωnt) (2.28)

For large values of time, the second term disappears because of the damping inher-
ent in any physical system, and Eq. (2.28) becomes identical to Eq. (2.26).

When the forcing frequency coincides with the natural frequency, ω = ωn and a
condition of resonance exists. Then Eq. (2.28) is indeterminate and the expression
for x may be written as

x = − t cos ωt + sin ωt (2.29)
F0�
2k

F0ω�
2k

ω
�
ωn

F0/k��
1 − ω2/ωn

2

1
��
1 − ω2/ωn

2

F0/k��
1 − ω2/ωn

2

ωF0/k��
1 − ω2/ωn

2

F0/k��
1 − ω2/ωn

2
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FIGURE 2.10 Undamped single degree-of-
freedom system excited in forced vibration by
force acting on mass.
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According to Eq. (2.29), the amplitude x
increases continuously with time, reach-
ing an infinitely great value only after
an infinitely great time.

Motion of Foundation. The differen-
tial equation of motion for the system of
Fig. 2.11 excited by a continuing motion
u = u0 sin ωt of the foundation is

mẍ = −k(x − u0 sin ωt)

The solution of this equation is

x = A1 sin ωnt + B2 cos ωnt + sin ωt

where ωn = k/m and the coefficients A1, B1 are determined by the velocity and dis-
placement of the mass, respectively, at time t = 0. The terms representing oscillation
at the natural frequency are damped out ultimately, and the ratio of amplitudes is
defined in terms of transmissibility T:

= T = (2.30)

where x = x0 sin ωt. Thus, in the forced vibration of an undamped single degree-of-
freedom system, the motion response, the force transmissibility, and the motion
transmissibility are numerically equal.

FORCED VIBRATION WITH VISCOUS DAMPING

Force Applied to Mass. The differ-
ential equation of motion for the single
degree-of-freedom system with viscous
damping shown in Fig. 2.12, when the
excitation is a force F = F0 sin ωt applied
to the mass, is

mẍ + cẋ + kx = F0 sin ωt (2.31)

Equation (2.31) corresponds to Eq.
(2.23) for forced vibration of an un-
damped system; its solution would cor-

respond to Eq. (2.24) in that it includes terms representing oscillation at the natural
frequency. In a damped system, however, these terms are damped out rapidly and
only the steady-state solution usually is considered. The resulting motion occurs at
the forcing frequency ω; when the damping coefficient c is greater than zero, the
phase between the force and resulting motion is different than zero. Thus, the
response may be written

x = R sin (ωt − θ) = A1 sin ωt + B1 cos ωt (2.32)

1
��
1 − ω2/ωn

2

x0�
u0

u0��
1 − ω2/ωn

2
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FIGURE 2.11 Undamped single degree-of-
freedom system excited in forced vibration by
motion of foundation.

FIGURE 2.12 Single degree-of-freedom sys-
tem with viscous damping, excited in forced
vibration by force acting on mass.
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Substituting this relation in Eq. (2.31), the following result is obtained:

= = Rd sin (ωt − θ) (2.33)

where θ = tan−1 � �
and Rd is a dimensionless response factor giving the ratio of the amplitude of the
vibratory displacement to the spring displacement that would occur if the force F
were applied statically. At very low frequencies Rd is approximately equal to 1; it
rises to a peak near ωn and approaches zero as ω becomes very large. The displace-
ment response is defined at these frequency conditions as follows:

x � � � sin ωt [ω << ωn]

x = sin �ωnt + � = −  [ω = ωn] (2.34)

x � sin (ωt + π) = sin ωt [ω >> ωn]

For the above three frequency conditions, the vibrating system is sometimes
described as spring-controlled, damper-controlled, and mass-controlled, respectively,
depending on which element is primarily responsible for the system behavior.

Curves showing the dimensionless response factor Rd as a function of the fre-
quency ratio ω/ωn are plotted in Fig. 2.13 on the coordinate lines having a positive
45° slope. Curves of the phase angle θ are plotted in Fig. 2.14.A phase angle between
180 and 360° cannot exist in this case since this would mean that the damper is fur-
nishing energy to the system rather than dissipating it.

An alternative form of Eqs. (2.33) and (2.34) is

=

= (Rd)x sin ωt + (Rd)R cos ωt (2.35)

This shows the components of the response which are in phase [(Rd)x sin ωt] and 90°
out of phase [(Rd)R cos ωt] with the force. Curves of (Rd)x and (Rd)R are plotted as a
function of the frequency ratio ω/ωn in Figs. 2.15 and 2.16.

Velocity and Acceleration Response. The shape of the response curves changes
distinctly if velocity ẋ or acceleration ẍ is plotted instead of displacement x. Differ-
entiating Eq. (2.33),

= Rd cos (ωt − θ) = Rv cos (ωt − θ) (2.36)

The acceleration response is obtained by differentiating Eq. (2.36):

= − Rd sin (ωt − θ) = − Ra sin (ωt − θ) (2.37)
ω2

�
ωn

2

ẍ
�
F0/m

ω
�
ωn

ẋ
�
F0/�k�m�

(1 − ω2/ωn2) sin ωt − 2ζ(ω/ωn) cos ωt
����

(1 − ω2/ωn
2)2 + (2ζω/ωn)2

x
�
F0/k

F0�
mω2

ωn
2F0�

ω2k

F0 cos ωnt��
cωn

π
�
2

F0�
2kζ

F0�
k

2ζω/ωn��
1 − ω2/ωn

2

sin (ωt − θ)
���
�(1� −� ω�2/�ω�n

2�)2� +� (�2�ζω�/ω�n)�2�
x

�
F0/k
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The velocity and acceleration response factors defined by Eqs. (2.36) and (2.37) are
shown graphically in Fig. 2.13, the former to the horizontal coordinates and the lat-
ter to the coordinates having a negative 45° slope. Note that the velocity response
factor approaches zero as ω → 0 and ω → ∞, whereas the acceleration response fac-
tor approaches 0 as ω → 0 and approaches unity as ω → ∞.

BASIC VIBRATION THEORY 2.11

FIGURE 2.13 Response factors for a viscous-damped single degree-of-freedom system
excited in forced vibration by a force acting on the mass.The velocity response factor shown
by horizontal lines is defined by Eq. (2.36); the displacement response factor shown by diag-
onal lines of positive slope is defined by Eq. (2.33); and the acceleration response factor
shown by diagonal lines of negative slope is defined by Eq. (2.37).
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Force Transmission. The force transmitted to the foundation of the system is

FT = cẋ + kx (2.38)

Since the forces cẋ and kx are 90° out of phase, the magnitude of the transmitted
force is

	FT 	 = �c2ẋ2 + k2x2 (2.39)

The ratio of the transmitted force FT to the applied force F0 can be expressed in
terms of transmissibility T:

= T sin (ωt − ψ) (2.40)

where

T = � (2.41)

and

ψ = tan−1

The transmissibility T and phase angle ψ are shown in Figs. 2.17 and 2.18, respec-
tively, as a function of the frequency ratio ω/ωn and for several values of the fraction
of critical damping ζ.

2ζ(ω/ωn)3

���
1 − ω2/ωn

2 + 4ζ2ω2/ωn
2

1 + (2ζω/ωn)2

���
(1 − ω2/ωn

2)2 + (2ζω/ωn)2

FT�
F0
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FIGURE 2.14 Phase angle between the response displacement and the excitation
force for a single degree-of-freedom system with viscous damping, excited by a
force acting on the mass of the system.
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FIGURE 2.15 In-phase component of response factor of a viscous-damped system in
forced vibration. All values of the response factor for ω/ωn > 1 are negative but are plotted
without regard for sign. The fraction of critical damping is denoted by ζ.
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FIGURE 2.16 Out-of-phase component of response factor of a viscous-damped system in
forced vibration. The fraction of critical damping is denoted by ζ.
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BASIC VIBRATION THEORY 2.15

FIGURE 2.17 Transmissibility of a viscous-damped system. Force transmissibility
and motion transmissibility are identical numerically. The fraction of critical damp-
ing is denoted by ζ.
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Hysteresis. When the viscous damped, single degree-of-freedom system shown
in Fig. 2.12 undergoes vibration defined by

x = x0 sin ωt (2.42)

the net force exerted on the mass by the spring and damper is

F = kx0 sin ωt + cωx0 cos ωt (2.43)

Equations (2.42) and (2.43) define the
relation between F and x; this relation is
the ellipse shown in Fig. 2.19. The
energy dissipated in one cycle of oscilla-
tion is

W = 
T + 2π/ω

T
F dt = πcωx0

2 (2.44)

Motion of Foundation. The excita-
tion for the elastic system shown in Fig.
2.20 may be a motion u(t) of the founda-
tion.The differential equation of motion
for the system is

mẍ + c(ẋ − u̇) + k(x − u) = 0 (2.45)

Consider the motion of the foundation
to be a displacement that varies sinu-

dx
�
dt

2.16 CHAPTER TWO

FIGURE 2.18 Phase angle of force transmission (or motion transmission) of a vis-
cous-damped system excited (1) by force acting on mass and (2) by motion of foun-
dation. The fraction of critical damping is denoted by ζ.

FIGURE 2.19 Hysteresis curve for a spring
and viscous damper in parallel.
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soidally with time, u = u0 sin ωt. A
steady-state condition exists after the
oscillations at the natural frequency ωn

are damped out, defined by the dis-
placement x of mass m:

x = Tu0 sin (ωt − ψ) (2.46)

where T and ψ are defined in connection
with Eq. (2.40) and are shown graphi-
cally in Figs. 2.17 and 2.18, respectively.
Thus, the motion transmissibility T in
Eq. (2.46) is identical numerically to the
force transmissibility T in Eq. (2.40).The
motion of the foundation and of the
mass m may be expressed in any consis-
tent units, such as displacement, velocity,
or acceleration, and the same expression
for T applies in each case.

Vibration Due to a Rotating Eccentric
Weight. In the mass-spring-damper
system shown in Fig. 2.21, a mass mu is
mounted by a shaft and bearings to the
mass m. The mass mu follows a circular
path of radius e with respect to the bear-
ings. The component of displacement in
the X direction of mu relative to m is

x3 − x1 = e sin ωt (2.47)

where x3 and x1 are the absolute displacements of mu and m, respectively, in the X
direction; e is the length of the arm supporting the mass mu; and ω is the angular
velocity of the arm in radians per second.The differential equation of motion for the
system is

mẍ1 + mu ẍ3 + cẋ1 + kx1 = 0 (2.48)

Differentiating Eq. (2.47) with respect to time, solving for ẍ3, and substituting in 
Eq. (2.48):

(m + mu) ẍ1 + cẋ1 + kx1 = mueω2 sin ωt (2.49)

Equation (2.49) is of the same form as Eq. (2.31); thus, the response relations of
Eqs. (2.33), (2.36), and (2.37) apply by substituting (m + mu) for m and mueω2 for F0.
The resulting displacement, velocity, and acceleration responses are

= Rd sin (ωt − θ) = Rv cos (ωt − θ)
(2.50)

= − Ra sin (ωt − θ)
ẍ1m�

mueω2

ẋ1��km
�
mueω2

x1�
mueω2
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FIGURE 2.20 Single degree-of-freedom sys-
tem with viscous damper, excited in forced
vibration by foundation motion.

FIGURE 2.21 Single degree-of-freedom sys-
tem with viscous damper, excited in forced
vibration by rotating eccentric weight.
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Resonance Frequencies. The peak values of the displacement, velocity, and
acceleration response of a system undergoing forced, steady-state vibration occur at
slightly different forcing frequencies. Since a resonance frequency is defined as the
frequency for which the response is a maximum, a simple system has three resonance
frequencies if defined only generally. The natural frequency is different from any of
the resonance frequencies. The relations among the several resonance frequencies,
the damped natural frequency, and the undamped natural frequency ωn are:

Displacement resonance frequency: ωn(1 − 2ζ2)1/2

Velocity resonance frequency: ωn

Acceleration resonance frequency: ωn/(1 − 2ζ2)1/2

Damped natural frequency: ωn(1 − ζ2)1/2

For the degree of damping usually embodied in physical systems, the difference
among the three resonance frequencies is negligible.

Resonance, Bandwidth, and the Quality Factor Q. Damping in a system can
be determined by noting the maximum response, i.e., the response at the resonance
frequency as indicated by the maximum value of Rv in Eq. (2.36). This is defined by
the factor Q sometimes used in electrical engineering terminology and defined with
respect to mechanical vibration as

Q = (R�)max = 1/2ζ

The maximum acceleration and displacement responses are slightly larger, being

(Rd)max = (Ra)max =

The damping in a system is also indi-
cated by the sharpness or width of the
response curve in the vicinity of a reso-
nance frequency ωn. Designating the
width as a frequency increment ∆ω meas-
ured at the “half-power point” (i.e., at a
value of R equal to Rmax/2), as illustrated
in Fig. 2.22, the damping of the system is
defined to a good approximation by

= = 2ζ (2.51)

for values of ζ less than 0.1.The quantity
∆ω, known as the bandwidth, is com-
monly represented by the letter B.

Structural Damping. The energy dis-
sipated by the damper is known as hys-
teresis loss; as indicated by Eq. (2.44), it
is proportional to the forcing frequency
ω. However, the hysteresis loss of many
engineering structures has been found

1
�
Q

∆ω
�
ωn

(R�)max��
(1 − ζ2)1/2
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FIGURE 2.22 Response curve showing band-
width at “half-power point.”
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to be independent of frequency.To provide a better model for defining the structural
damping experienced during vibration, an arbitrary damping term k� = cω is intro-
duced. In effect, this defines the damping force as being equal to the viscous damp-
ing force at some frequency, depending upon the value of �, but being invariant with
frequency.The relation of the damping force F to the displacement x is defined by an
ellipse similar to Fig. 2.19, and the displacement response of the system is described
by an expression corresponding to Eq. (2.33) as follows:

= Rg sin (ωt − θ) =  (2.52)

where � = 2ζω/ωn.The resonance frequency is ωn, and the value of Rg at resonance is
1/� = Q.

The equations for the hysteresis ellipse for structural damping are

F = kx0 (sin ωt + � cos ωt)

x = x0 sin ωt
(2.53)

UNDAMPED MULTIPLE DEGREE-OF-FREEDOM

SYSTEMS

An elastic system sometimes cannot be described adequately by a model having
only one mass but rather must be represented by a system of two or more masses
considered to be point masses or particles having no rotational inertia. If a group of
particles is bound together by essentially rigid connections, it behaves as a rigid body
having both mass (significant for translational motion) and moment of inertia (sig-
nificant for rotational motion). There is no limit to the number of masses that may
be used to represent a system. For example, each mass in a model representing a
beam may be an infinitely thin slice representing a cross section of the beam; a dif-
ferential equation is required to treat this continuous distribution of mass.

DEGREES-OF-FREEDOM

The number of independent parameters required to define the distance of all the
masses from their reference positions is called the number of degrees-of-freedom N.
For example, if there are N masses in a system constrained to move only in transla-
tion in the X and Y directions, the system has 2N degrees-of-freedom. A continuous
system such as a beam has an infinitely large number of degrees-of-freedom.

For each degree-of-freedom (each coordinate of motion of each mass) a differ-
ential equation can be written in one of the following alternative forms:

mjẍj = Fxj Ikα̈k = Mαk (2.54)

where Fxj is the component in the X direction of all external, spring, and damper
forces acting on the mass having the jth degree-of-freedom, and Mαk is the compo-
nent about the α axis of all torques acting on the body having the kth degree-of-
freedom. The moment of inertia of the mass about the α axis is designated by Ik.
(This is assumed for the present analysis to be a principal axis of inertia, and prod-

sin (ωt − θ)
��
�(1� −� ω�2/�ω�n

2�)2� +� ��2�
x

�
F0/k
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uct of inertia terms are neglected. See Chap. 3 for a more detailed discussion.) Equa-
tions (2.54) are identical in form and can be represented by

mjẍj = Fj (2.55)

where Fj is the resultant of all forces (or torques) acting on the system in the jth
degree-of-freedom, ẍj is the acceleration (translational or rotational) of the system
in the jth degree-of-freedom, and mj is the mass (or moment of inertia) in the jth
degree-of-freedom. Thus, the terms defining the motion of the system (displace-
ment, velocity, and acceleration) and the deflections of structures may be either
translational or rotational, depending upon the type of coordinate. Similarly, the
“force” acting on a system may be either a force or a torque, depending upon the
type of coordinate. For example, if a system has n bodies each free to move in three
translational modes and three rotational modes, there would be 6n equations of the
form of Eq. (2.55), one for each degree-of-freedom.

DEFINING A SYSTEM AND ITS EXCITATION

The first step in analyzing any physical structure is to represent it by a mathematical
model which will have essentially the same dynamic behavior. A suitable number
and distribution of masses, springs, and dampers must be chosen, and the input
forces or foundation motions must be defined. The model should have sufficient
degrees-of-freedom to determine the modes which will have significant response to
the exciting force or motion.

The properties of a system that must be known are the natural frequencies ωn, the
normal mode shapes Djn, the damping of the respective modes, and the mass distri-
bution mj. The detailed distributions of stiffness and damping of a system are not
used directly but rather appear indirectly as the properties of the respective modes.
The characteristic properties of the modes may be determined experimentally as
well as analytically.

STIFFNESS COEFFICIENTS

The spring system of a structure of N degrees-of-freedom can be defined completely
by a set of N 2 stiffness coefficients. A stiffness coefficient Kjk is the change in spring
force acting on the jth degree-of-freedom when only the kth degree-of-freedom is
slowly displaced a unit amount in the negative direction.This definition is a general-
ization of the linear, elastic spring defined by Eq. (2.1). Stiffness coefficients have the
characteristic of reciprocity, i.e., Kjk = Kkj.The number of independent stiffness coef-
ficients is (N 2 + N)/2.

The total elastic force acting on the jth degree-of-freedom is the sum of the
effects of the displacements in all of the degrees-of-freedom:

Fel = − �
N

k = 1
Kjkxk (2.56)

Inserting the spring force Fel from Eq. (2.56) in Eq. (2.55) together with the external
forces Fj results in the n equations:

mjẍj = Fj − �
k

Kjkxk (2.56a)
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FREE VIBRATION

When the external forces are zero, the preceding equations become

mj ẍj + �
k

Kjkxk = 0 (2.57)

Solutions of Eq. (2.57) have the form

xj = Dj sin (ωt + θ) (2.58)

Substituting Eq. (2.58) in Eq. (2.57),

mjω2Dj = �
k

KjkDk (2.59)

This is a set of n linear algebraic equations with n unknown values of D. A solution
of these equations for values of D other than zero can be obtained only if the deter-
minant of the coefficients of the D’s is zero:

(m1ω2 − K11) − K12 ⋅ ⋅ − Kin

− K21 (m2ω2 − K22) ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ = 0 (2.60)	 ⋅ ⋅ ⋅ ⋅ ⋅ 	

− Kni ⋅ ⋅ ⋅ (mnω2 − Knn)

Equation (2.60) is an algebraic equation of the nth degree in ω2; it is called the fre-
quency equation since it defines n values of ω which satisfy Eq. (2.57). The roots are
all real; some may be equal, and others may be zero.These values of frequency deter-
mined from Eq. (2.60) are the frequencies at which the system can oscillate in the
absence of external forces. These frequencies are the natural frequencies ωn of the
system. Depending upon the initial conditions under which vibration of the system
is initiated, the oscillations may occur at any or all of the natural frequencies and at
any amplitude.

Example 2.1. Consider the three degree-of-freedom system shown in Fig. 2.23;
it consists of three equal masses m and a foundation connected in series by three

BASIC VIBRATION THEORY 2.21

FIGURE 2.23 Undamped three degree-of-freedom system on foundation.

equal springs k. The absolute displacements of the masses are x1, x2, and x3. The 
stiffness coefficients (see section entitled Stiffness Coefficients) are thus K11 = 2k,
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K22 = 2k, K33 = k, K12 = K21 = −k, K23 = K32 = −k, and K13 = K31 = 0.The frequency equa-
tion is given by the determinant, Eq. (2.60),

(mω2 − 2k) k 0

	 k (mω2 − 2k) k 	 = 0
0 k (mω2 − k)

The determinant expands to the following polynomial:

� �
3

− 5 � �
2

+ 6 � � − 1 = 0

Solving for ω,

ω = 0.445�� , 1.25�� , 1.80��
Normal Modes of Vibration. A structure vibrating at only one of its natural fre-
quencies ωn does so with a characteristic pattern of amplitude distribution called a
normal mode of vibration. A normal mode is defined by a set of values of Djn [see
Eq. (2.58)] which satisfy Eq. (2.59) when ω = ωn:

ωn
2mjDjn = �

k
KjnDkn (2.61)

A set of values of Djn which form a normal mode is independent of the absolute
values of Djn but depends only on their relative values. To define a mode shape by a
unique set of numbers, any arbitrary normalizing condition which is desired can be
used. A condition often used is to set D1n = 1 but �

j
mjDjn

2 = 1 and �
j

mjDjn
2 = �

j
mj

also may be found convenient.

Orthogonality of Normal Modes. The usefulness of normal modes in dealing
with multiple degree-of-freedom systems is due largely to the orthogonality of the
normal modes. It can be shown that the set of inertia forces ωn

2mjDjn for one mode
does not work on the set of deflections Djm of another mode of the structure:

�
j

mjDjmDjn = 0 [m ≠ n] (2.62)

This is the orthogonality condition.

Normal Modes and Generalized Coordinates. Any set of N deflections xj can
be expressed as the sum of normal mode amplitudes:

xj = �
N

n = 1
qnDjn (2.63)

The numerical values of the Djn’s are fixed by some normalizing condition, and a set
of values of the N variables qn can be found to match any set of xj’s. The N values of
qn constitute a set of generalized coordinates which can be used to define the position
coordinates xj of all parts of the structure. The q’s are also known as the amplitudes
of the normal modes, and are functions of time. Equation (2.63) may be differenti-
ated to obtain

ẍj = �
N

n = 1
q̈nDjn (2.64)

k
�
m

k
�
m

k
�
m

mω2

�
k

mω2

�
k

mω2

�
k
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Any quantity which is distributed over the j coordinates can be represented by a lin-
ear transformation similar to Eq. (2.63). It is convenient now to introduce the
parameter γn relating Djn and Fj/mj as follows:

= �
n

γnDjn (2.65)

where Fj may be zero for certain values of n.

FORCED MOTION

Substituting the expressions in generalized coordinates, Eqs. (2.63) to (2.65), in the
basic equation of motion, Eq. (2.56a),

mj �
n

q̈nDjn + �
k

kjk �
n

qnDkn − mj �
n

γnDjn = 0 (2.66)

The center term in Eq. (2.66) may be simplified by applying Eq. (2.61) and the equa-
tion rewritten as follows:

�
n

(q̈n + ωn
2qn − γn)mjDjn = 0 (2.67)

Multiplying Eqs. (2.67) by Djm and taking the sum over j (i.e., adding all the equa-
tions together),

�
n

(q̈n + ωn
2qn − γn) �

j
mjDjnDjm = 0

All terms of the sum over n are zero, except for the term for which m = n, according
to the orthogonality condition of Eq. (2.62). Then since �

j
mjDjn

2 is not zero, it fol-
lows that

q̈n + ωn
2qn − γn = 0

for every value of n from 1 to N.
An expression for γn may be found by using the orthogonality condition again.

Multiplying Eq. (2.65) by mjDjm and taking the sum taken over j,

�
j

FjDjm = �
n

γn �
j

mjDjnDjm (2.68)

All the terms of the sum over n are zero except when n = m, according to Eq. (2.62),
and Eq. (2.68) reduces to

γn = (2.69)

Then the differential equation for the response of any generalized coordinate to the
externally applied forces Fj is

q̈n + ωn
2qn = γn = (2.70)

�
j

FjDjn

��
�

j
mjDjn

2

�
j

FjDjn

��
�

j
mjDjn

2

Fj
�
mj
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where ΣFjDjn is the generalized force, i.e., the total work done by all external forces
during a small displacement δqn divided by δqn, and ΣmjDjn

2 is the generalized mass.
Thus the amplitude qn of each normal mode is governed by its own equation,

independent of the other normal modes, and responds as a simple mass-spring sys-
tem. Equation (2.70) is a generalized form of Eq. (2.23).

The forces Fj may be any functions of time. Any equation for the response of an
undamped mass-spring system applies to each mode of a complex structure by sub-
stituting:

The generalized coordinate qn for x

The generalized force �
j

FjDjn for F

(2.71)
The generalized mass �

j
mjDjn for m

The mode natural frequency ωn for ωn

Response to Sinusoidal Forces. If a system is subjected to one or more sinu-
soidal forces Fj = F0j sin ωt, the response is found from Eq. (2.26) by noting that k =
mωn

2 [Eq. (2.6)] and then substituting from Eq. (2.71):

qn = (2.72)

Then the displacement of the kth degree-of-freedom, from Eq. (2.63), is

xk = �
N

n = 1
(2.73)

This is the general equation for the response to sinusoidal forces of an undamped
system of N degrees-of-freedom. The application of the equation to systems free in
space or attached to immovable foundations is discussed below.

Example 2.2. Consider the system shown in Fig. 2.24; it consists of three equal
masses m connected in series by two equal springs k. The system is free in space and

Dkn �
j

F0jDjn sin ωt

���
ωn

2 �
j

mjDjn
2(1 − ω2/ωn

2)

sin ωt
��
(1 − ω2/ωn

2)

�
j

F0jDjn

��
ωn

2 �
j

mjDjn
2
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FIGURE 2.24 Undamped three degree-of-freedom system
acted on by sinusoidal force.

a force F sin ωt acts on the first mass. Absolute displacements of the masses are x1,
x2, and x3. Determine the acceleration ẍ3. The stiffness coefficients (see section enti-
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tled Stiffness Coefficients) are K11 = K33 = k, K22 = 2k, K12 = K21 = −k, K13 = K31 = 0, and
K23 = K32 = −k. Substituting in Eq. (2.60), the frequency equation is

(mω2 − k) k 0

	 k (mω2 − 2k) k 	 = 0
0 k (mω2 − k)

The roots are ω1 = 0, ω2 = �k�/m�, and ω3 = �3�k�/m�. The zero value for one of the natu-
ral frequencies indicates that the entire system translates without deflection of the
springs.The mode shapes are now determined by substituting from Eq. (2.58) in Eq.
(2.57), noting that ẍ = −Dω2, and writing Eq. (2.59) for each of the three masses in
each of the oscillatory modes 2 and 3:

mD21 � � = K11D21 + K21D22 + K31D23

mD22 � � = K12D21 + K22D22 + K32D23

mD23 � � = K13D21 + K23D22 + K33D23

mD31 � � = K11D31 + K21D32 + K31D33

mD32 � � = K12D31 + K22D32 + K32D33

mD33 � � = K13D31 + K23D32 + K33D33

where the first subscript on the D’s indicates the mode number (according to ω1 and
ω2 above) and the second subscript indicates the displacement amplitude of the par-
ticular mass. The values of the stiffness coefficients K are calculated above. The
mode shapes are defined by the relative displacements of the masses.Thus, assigning
values of unit displacement to the first mass (i.e., D21 = D31 = 1), the above equations
may be solved simultaneously for the D’s:

D21 = 1 D22 = 0 D23 = −1

D31 = 1 D32 = −2 D33 = 1

Substituting these values of D in Eq. (2.71), the generalized masses are determined:
M2 = 2m, M3 = 6m.

Equation (2.73) then can be used to write the expression for acceleration ẍ3:

ẍ3 = � + +  F1 sin ωt
(ω2/ω3

2)(+1)(+1)
��

6m(1 − ω2/ω3
2)

(ω2/ω2
2)(−1)(+1)

��
2m(1 − ω2/ω2

2)
1

�
3m

3k
�
m

3k
�
m

3k
�
m

k
�
m

k
�
m

k
�
m
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Free and Fixed Systems. For a structure which is free in space, there are six “nor-
mal modes” corresponding to ωn = 0. These represent motion of the structure 
without relative motion of its parts; this is rigid body motion with six degrees-of-
freedom.

The rigid body modes all may be described by equations of the form

Djm = ajmDm [m = 1,2, . . . ,6]

where Dm is a motion of the rigid body in the m coordinate and a is the displacement
of the jth degree-of-freedom when Dm is moved a unit amount. The geometry of the
structure determines the nature of ajm. For example, if Dm is a rotation about the Z
axis, ajm = 0 for all modes of motion in which j represents rotation about the X or Y
axis and ajm = 0 if j represents translation parallel to the Z axis. If Djm is a transla-
tional mode of motion parallel to X or Y, it is necessary that ajm be proportional to
the distance rj of mj from the Z axis and to the sine of the angle between rj and the
jth direction. The above relations may be applied to an elastic body. Such a body
moves as a rigid body in the gross sense in that all particles of the body move
together generally but may experience relative vibratory motion. The orthogonality
condition applied to the relation between any rigid body mode Djm and any oscilla-
tory mode Djn yields

�
j

mjDjnDjm = �
j

mjajmDjn = 0 �  (2.74)

These relations are used in computations of oscillatory modes, and show that normal
modes of vibration involve no net translation or rotation of a body.

A system attached to a fixed foundation may be considered as a system free in
space in which one or more “foundation” masses or moments of inertia are infinite.
Motion of the system as a rigid body is determined entirely by the motion of the
foundation. The amplitude of an oscillatory mode representing motion of the foun-
dation is zero; i.e., MjDjn

2 = 0 for the infinite mass. However, Eq. (2.73) applies
equally well regardless of the size of the masses.

Foundation Motion. If a system is small relative to its foundation, it may be
assumed to have no effect on the motion of the foundation. Consider a foundation
of large but unknown mass m0 having a motion x0 sin ωt, the consequence of some
unknown force

F0 sin ωt = −m0x0ω2 sin ωt (2.75)

acting on m0 in the x0 direction. Equation (2.73) is applicable to this case upon 
substituting

−m0x0ω2D0n = �
j

F0jDjn (2.76)

where D0n is the amplitude of the foundation (the 0 degree-of-freedom) in the nth
mode.

The oscillatory modes of the system are subject to Eqs. (2.74):

�
j

= 0 mjajmDjn = 0

Separating the 0th degree-of-freedom from the other degrees-of-freedom:

�
j = 0

mjajmDjn = m0a0mD0n + �
j = 1

mj ajmDjn

m ≤ 6
n > 6
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If m0 approaches infinity as a limit, D0n approaches zero and motion of the system as
a rigid body is identical with the motion of the foundation. Thus, a0m approaches
unity for motion in which m = 0, and approaches zero for motion in which m ≠ 0. In
the limit:

lim
m0→∞

m0D0n = − �
j

mjaj0Djn (2.77)

Substituting this result in Eq. (2.76),

lim
m0→∞ �

j
F0jDjn = x0ω2 �

j
mjaj0Djn (2.78)

The generalized mass in Eq. (2.73) includes the term m0D0n
2, but this becomes zero

as m0 becomes infinite.
The equation for response of a system to motion of its foundation is obtained by

substituting Eq. (2.78) in Eq. (2.73):

xk = �
N

n = 1
Dkn + x0 sin ωt (2.79)

DAMPED MULTIPLE DEGREE-OF-FREEDOM

SYSTEMS

Consider a set of masses interconnected by a network of springs and acted upon by
external forces, with a network of dampers acting in parallel with the springs. The
viscous dampers produce forces on the masses which are determined in a manner
analogous to that used to determine spring forces and summarized by Eq. (2.56).The
damping force acting on the jth degree-of-freedom is

(Fd)j = − �
k

Cjkẋk (2.80)

where Cjk is the resultant force on the jth degree-of-freedom due to a unit velocity of
the kth degree-of-freedom.

In general, the distribution of damper sizes in a system need not be related to the
spring or mass sizes. Thus, the dampers may couple the normal modes together,
allowing motion of one mode to affect that of another. Then the equations of
response are not easily separable into independent normal mode equations. How-
ever, there are two types of damping distribution which do not couple the normal
modes. These are known as uniform viscous damping and uniform mass damping.

UNIFORM VISCOUS DAMPING

Uniform damping is an appropriate model for systems in which the damping effect
is an inherent property of the spring material. Each spring is considered to have a
damper acting in parallel with it, and the ratio of damping coefficient to stiffness
coefficient is the same for each spring of the system. Thus, for all values of j and k,

= 2G (2.81)

where G is a constant.

Cjk
�
kjk

�
j

mjaj 0Djnx0 sin ωt

���
�

j
mjDjn

2(1 − ω2/ωn
2)

ω2

�
ωn

2
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Substituting from Eq. (2.81) in Eq. (2.80),

−(Fd)j = �
k

Cjk ẋk = 2G �
k

kjk ẋk (2.82)

Since the damping forces are “external” forces with respect to the mass-spring sys-
tem, the forces (Fd)j can be added to the external forces in Eq. (2.70) to form the
equation of motion:

q̈n + ωn
2qn = (2.83)

Combining Eqs. (2.61), (2.63), and (2.82), the summation involving (Fd)j in Eq. (2.83)
may be written as follows:

�
j

(Fd)jDjn = −2Gωn
2q̇n �

j
mjDjn

2 (2.84)

Substituting Eq. (2.84) in Eq. (2.83),

q̈n + 2Gωn
2q̇n + ωn

2qn = γn (2.85)

Comparison of Eq. (2.85) with Eq. (2.31) shows that each mode of the system
responds as a simple damped oscillator.

The damping term 2Gωn
2 in Eq. (2.85) corresponds to 2ζωn in Eq. (2.31) for a sim-

ple system. Thus, Gωn may be considered the critical damping ratio of each mode.
Note that the effective damping for a particular mode varies directly as the natural
frequency of the mode.

Free Vibration. If a system with uniform viscous damping is disturbed from its
equilibrium position and released at time t = 0 to vibrate freely, the applicable equa-
tion of motion is obtained from Eq. (2.85) by substituting 2ζω for 2Gωn

2 and letting
γn = 0:

q̈n + 2ζωnq̇n + ωn
2qn = 0 (2.86)

The solution of Eq. (2.86) for less than critical damping is

xj(t) = �
n

Djne−ζωnt(An sin ωdt + Bn cos ωdt) (2.87)

where ωd = ωn(1 − ζ2)1/2.
The values of A and B are determined by the displacement xj(0) and velocity

ẋj(0) at time t = 0:

xj(0) = �
n

BnDjn

ẋj(0) = �
n

(Anωdn − Bnζωn)Djn

�
j

(Fd)jDjn + �
j

FjDjn

���
�

j
mjDjn

2
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Applying the orthogonality relation of Eq. (2.62) in the manner used to derive Eq.
(2.69),

Bn =

(2.88)

Anωdn − Bnζωdn =

Thus each mode undergoes a decaying oscillation at the damped natural frequency
for the particular mode, and the amplitude of each mode decays from its initial
value, which is determined by the initial displacements and velocities.

UNIFORM STRUCTURAL DAMPING

To avoid the dependence of viscous damping upon frequency, as indicated by Eq.
(2.85), the uniform viscous damping factor G is replaced by �/ω for uniform struc-
tural damping.This corresponds to the structural damping parameter � in Eqs. (2.52)
and (2.53) for sinusoidal vibration of a simple system. Thus, Eq. (2.85) for the
response of a mode to a sinusoidal force of frequency ω is

q̈n + ωn
2q̇n + ωn

2qn = γn (2.89)

The amplification factor at resonance (Q = 1/�) has the same value in all modes.

UNIFORM MASS DAMPING

If the damping force on each mass is proportional to the magnitude of the mass,

(Fd)j = −Bmj ẋj (2.90)

where B is a constant. For example, Eq. (2.90) would apply to a uniform beam
immersed in a viscous fluid.

Substituting as ẋj in Eq. (2.90) the derivative of Eq. (2.63),

Σ(Fd)jDjn = −B �
j

mjDjn �
m

q̇mDjm (2.91)

Because of the orthogonality condition, Eq. (2.62):

Σ(Fd)jDjn = −Bq̇n �
j

mjDjn
2

Substituting from Eq. (2.91) in Eq. (2.83), the differential equation for the system is

q̈n + Bq̇n + ωn
2qn = γn (2.92)

2�
�
ω

�
j

ẋj(0)mjDjn

��
�

j
mjDjn

2

�
j

xj(0)mjDjn

��
�

j
mjDjn

2
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where the damping term B corresponds to 2ζω for a simple oscillator, Eq. (2.31).
Then B/2ωn represents the fraction of critical damping for each mode, a quantity
which diminishes with increasing frequency.

GENERAL EQUATION FOR FORCED VIBRATION

All the equations for response of a linear system to a sinusoidal excitation may be
regarded as special cases of the following general equation:

xk = �
N

n = 1
Rn sin (ωt − θn) (2.93)

where xk = displacement of structure in kth degree-of-freedom
N = number of degrees-of-freedom, including those of the foundation

Dkn = amplitude of kth degree-of-freedom in nth normal mode
Fn = generalized force for nth mode
mn = generalized mass for nth mode
Rn = response factor, a function of the frequency ratio ω/ωn (Fig. 2.13)
θn = phase angle (Fig. 2.14)

Equation (2.93) is of sufficient generality to cover a wide variety of cases, includ-
ing excitation by external forces or foundation motion, viscous or structural damp-
ing, rotational and translational degrees-of-freedom, and from one to an infinite
number of degrees-of-freedom.

LAGRANGIAN EQUATIONS

The differential equations of motion for a vibrating system sometimes are derived
more conveniently in terms of kinetic and potential energies of the system than by
the application of Newton’s laws of motion in a form requiring the determination of
the forces acting on each mass of the system. The formulation of the equations in
terms of the energies, known as Lagrangian equations, is expressed as follows:

− + = Fn (2.94)

where T = total kinetic energy of system
V = total potential energy of system
qn = generalized coordinate—a displacement
q̇n = velocity at generalized coordinate qn

Fn = generalized force, the portion of the total forces not related to the
potential energy of the system (gravity and spring forces appear in the
potential energy expressions and are not included here)

The method of applying Eq. (2.94) is to select a number of independent coordi-
nates (generalized coordinates) equal to the number of degrees-of-freedom, and to
write expressions for total kinetic energy T and total potential energy V. Differenti-
ation of these expressions successively with respect to each of the chosen coordi-
nates leads to a number of equations similar to Eq. (2.94), one for each coordinate
(degree-of-freedom). These are the applicable differential equations and may be
solved by any suitable method.

∂V
�
∂qn

∂T
�
∂qn

∂T
�
∂q̇n

d
�
dt

Fn�
mn

Dkn�
ωn

2
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Example 2.3. Consider free vibration of the three degree-of-freedom system
shown in Fig. 2.23; it consists of three equal masses m connected in tandem by equal
springs k. Take as coordinates the three absolute displacements x1, x2, and x3. The
kinetic energy of the system is

T = 1⁄2m(ẋ1
2 + ẋ2

2 + ẋ3
2)

The potential energy of the system is

V = [x1
2 + (x1 − x2)2 + (x2 − x3)2] = (2x1

2 + 2x2
2 + x3

2 − 2x1x2 − 2x2x3)

Differentiating the expression for the kinetic energy successively with respect to the
velocities,

= mẋ1 = mẋ2 = mẋ3

The kinetic energy is not a function of displacement; therefore, the second term in
Eq. (2.94) is zero. The partial derivatives with respect to the displacement coordi-
nates are

= 2kx1 − kx2 = 2kx2 − kx1 − kx3 = kx3 − kx2

In free vibration, the generalized force term in Eq. (2.93) is zero. Then, substituting
the derivatives of the kinetic and potential energies from above into Eq. (2.94),

mẍ1 + 2kx1 − kx2 = 0

mẍ2 + 2kx2 − kx1 − kx3 = 0

mẍ3 + kx3 − kx2 = 0

The natural frequencies of the system may be determined by placing the preceding
set of simultaneous equations in determinant form, in accordance with Eq. (2.60):

(mω2 − 2k) k 0

	 k (mω2 − 2k) k 	 = 0
0 k (mω2 − k)

The natural frequencies are equal to the
values of ω that satisfy the preceding
determinant equation.

Example 2.4. Consider the com-
pound pendulum of mass m shown in
Fig. 2.25, having its center-of-gravity
located a distance l from the axis of
rotation. The moment of inertia is I
about an axis through the center-of-
gravity. The position of the mass is
defined by three coordinates, x and y to
define the location of the center-of-
gravity and θ to define the angle of 
rotation.

∂V
�
∂x3

∂V
�
∂x2

∂V
�
∂x1

∂T
�
∂ẋ3

∂T
�
∂ẋ2

∂T
�
∂ẋ1

k
�
2

k
�
2
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The equations of constraint are y = l cos θ; x = l sin θ. Each equation of constraint
reduces the number of degrees-of-freedom by 1; thus the pendulum is a one degree-
of-freedom system whose position is defined uniquely by θ alone.

The kinetic energy of the pendulum is

T = 1⁄2(I + ml2)θ̇2

The potential energy is

V = mgl(1 − cos θ)

Then

= (I + ml2)θ̇ � � = (I + ml2)θ̈

= 0 = mgl sin θ

Substituting these expressions in Eq. (2.94), the differential equation for the pendu-
lum is

(I + ml2)θ̈ + mgl sin θ = 0

Example 2.5. Consider oscillation of
the water in the U-tube shown in Fig. 2.26. If
the displacements of the water levels in the
arms of a uniform-diameter U-tube are h1

and h2, then conservation of matter requires
that h1 = −h2. The kinetic energy of the water
flowing in the tube with velocity h1 is

T = 1⁄2ρSlḣ1
2

where ρ is the water density, S is the cross-
section area of the tube, and l is the devel-
oped length of the water column. The

potential energy (difference in potential energy between arms of tube) is

V = Sρgh1
2

Taking h1 as the generalized coordinate, differentiating the expressions for energy,
and substituting in Eq. (2.94),

Sρlḧ1 + 2ρgSh1 = 0

Dividing through by ρSl,

ḧ1 + h1 = 0

This is the differential equation for a simple oscillating system of natural frequency
ωn, where

ωn = ��2g
�
l

2g
�
l

∂V
�
∂θ

∂T
�
∂θ

∂T
�
∂θ̇

d
�
dt

∂T
�
∂θ̇
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CHAPTER 3
VIBRATION OF A

RESILIENTLY SUPPORTED
RIGID BODY

Harry Himelblau

Sheldon Rubin

INTRODUCTION

This chapter discusses the vibration of a rigid body on resilient supporting elements,
including (1) methods of determining the inertial properties of a rigid body, (2) dis-
cussion of the dynamic properties of resilient elements, and (3) motion of a single
rigid body on resilient supporting elements for various dynamic excitations and
degrees of symmetry.

The general equations of motion for a rigid body on linear massless resilient sup-
ports are given; these equations are general in that they include any configuration of
the rigid body and any configuration and location of the supports. They involve six
simultaneous equations with numerous terms, for which a general solution is
impracticable without the use of high-speed automatic computing equipment. Vari-
ous degrees of simplification are introduced by assuming certain symmetry, and
results useful for engineering purposes are presented. Several topics are considered:
(1) determination of undamped natural frequencies and discussion of coupling of
modes of vibration; (2) forced vibration where the excitation is a vibratory motion
of the foundation; (3) forced vibration where the excitation is a vibratory force or
moment generated within the body; and (4) free vibration caused by an instanta-
neous change in velocity of the system (velocity shock). Results are presented math-
ematically and, where feasible, graphically.

SYSTEM OF COORDINATES

The motion of the rigid body is referred to a fixed “inertial” frame of reference. The
inertial frame is represented by a system of cartesian coordinates �X, �Y, �Z. A similar sys-
tem of coordinates X, Y, Z fixed in the body has its origin at the center-of-mass. The
two sets of coordinates are coincident when the body is in equilibrium under the

3.1
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action of gravity alone. The motions of
the body are described by giving the dis-
placement of the body axes relative to
the inertial axes. The translational dis-
placements of the center-of-mass of the
body are xc, yc , zc in the �X, �Y, �Z directions,
respectively. The rotational displace-
ments of the body are characterized by
the angles of rotation α, β, γ of the body
axes about the �X, �Y, �Z axes, respectively.
These displacements are shown graphi-
cally in Fig. 3.1.

Only small translations and rotations
are considered. Hence, the rotations are
commutative (i.e., the resulting position
is independent of the order of the com-
ponent rotations) and the angles of rota-
tion about the body axes are equal to
those about the inertial axes. Therefore,
the displacements of a point b in the body
(with the coordinates bx, by, bz in the X,Y,
Z directions, respectively) are the sums of
the components of the center-of-mass
displacement in the directions of the �X,
�Y, �Z axes plus the tangential components
of the rotational displacement of the
body:

xb = xc + bzβ − byγ

yb = yc − bzα + bxγ (3.1)

zb = zc − bxβ + byα

EQUATIONS OF SMALL MOTION OF A RIGID BODY

The equations of motion for the translation of a rigid body are

mẍc = Fx mÿc = Fy mz̈c = Fz (3.2)

where m is the mass of the body, Fx, Fy, Fz are the summation of all forces acting on
the body, and ẍc , ÿc , z̈c are the accelerations of the center-of-mass of the body in the
�X, �Y, �Z directions, respectively.The motion of the center-of-mass of a rigid body is the
same as the motion of a particle having a mass equal to the total mass of the body
and acted upon by the resultant external force.

The equations of motion for the rotation of a rigid body are

Ixxα̈ − Ixyβ̈ − Ixz γ̈ = Mx

−Ixyα̈ + Iyyβ̈ − Iyzγ̈ = My (3.3)

−Ixzα̈ − Iyzβ̈ + Izzγ̈ = Mz

3.2 CHAPTER THREE

FIGURE 3.1 System of coordinates for the
motion of a rigid body consisting of a fixed iner-
tial set of reference axes (�X, �Y, �Z) and a set of
axes (X, Y, Z) fixed in the moving body with its
origin at the center-of-mass. The axes ��X, �Y, �Z and
X, Y, Z are coincident when the body is in equi-
librium under the action of gravity alone. The
displacement of the center-of-mass is given by
the translational displacements xc, yc, zc and the
rotational displacements α, β, γ as shown. A pos-
itive rotation about an axis is one which
advances a right-handed screw in the positive
direction of the axis.
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where α̈, β̈, γ̈ are the rotational accelerations about the X, Y, Z axes, as shown in Fig.
3.1; Mx , My , Mz are the summation of torques acting on the rigid body about the axes
X, Y, Z, respectively; and Ixx . . . , Ixy . . . are the moments and products of inertia of
the rigid body as defined below.

INERTIAL PROPERTIES OF A RIGID BODY

The properties of a rigid body that are significant in dynamics and vibration are the
mass, the position of the center-of-mass (or center-of-gravity), the moments of iner-
tia, the products of inertia, and the directions of the principal inertial axes. This sec-
tion discusses the properties of a rigid body, together with computational and
experimental methods for determining the properties.

MASS

Computation of Mass. The mass of a body is computed by integrating the prod-
uct of mass density ρ(V) and elemental volume dV over the body:

m = �
v
ρ(V)dV (3.4)

If the body is made up of a number of elements, each having constant or an average
density, the mass is

m = ρ1V1 + ρ2V2 + ⋅⋅⋅ + ρnVn (3.5)

where ρ1 is the density of the element V1, etc. Densities of various materials may be
found in handbooks containing properties of materials.1

If a rigid body has a common geometrical shape, or if it is an assembly of sub-
bodies having common geometrical shapes, the volume may be found from compi-
lations of formulas. Typical formulas are included in Tables 3.1 and 3.2. Tables of
areas of plane sections as well as volumes of solid bodies are useful.

If the volume of an element of the body is not given in such a table, the integra-
tion of Eq. (3.4) may be carried out analytically, graphically, or numerically.A graph-
ical approach may be used if the shape is so complicated that the analytical
expression for its boundaries is not available or is not readily integrable. This is
accomplished by graphically dividing the body into smaller parts, each of whose
boundaries may be altered slightly (without change to the area) in such a manner
that the volume is readily calculable or measurable.

The weight W of a body of mass m is a function of the acceleration of gravity g at
the particular location of the body in space:

W = mg (3.6)

Unless otherwise stated, it is understood that the weight of a body is given for an
average value of the acceleration of gravity on the surface of the earth. For engi-
neering purposes, g = 32.2 ft/sec2 or 386 in./sec2 (9.81 m/sec2) is usually used.

Experimental Determination of Mass. Although Newton’s second law of
motion, F = mẍ, may be used to measure mass, this usually is not convenient. The
mass of a body is most easily measured by performing a static measurement of the
weight of the body and converting the result to mass.This is done by use of the value
of the acceleration of gravity at the measurement location [Eq. (3.6)].

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.3
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TABLE 3.1 Properties of Plane Sections (After G. W. Housner and D. E. Hudson.2)

The dimensions Xc,Yc are the X,Y coordinates of the centroid, A is the area, Ix . . . is the area moment
of inertia with respect to the X . . . axis, ρx . . . is the radius of gyration with respect to the X . . . axis; uni-
form solid cylindrical bodies of length l in the Z direction having the various plane sections as their cross
sections have mass moment and product of inertia values about the Z axis equal to ρl times the values
given in the table, where ρ is the mass density of the body; the radii of gyration are unchanged.
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TABLE 3.1 Properties of Plane Sections (Continued)
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TABLE 3.1 Properties of Plane Sections (Continued)
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TABLE 3.2 Properties of Homogeneous Solid Bodies (After G. W. Housner and D. E. Hudson.2)

The dimensions Xc,Yc, Zc are the X,Y, Z coordinates of the centroid, S is the cross-sectional area of the
thin rod or hoop in cases 1 to 3, V is the volume, Ix . . . is the mass moment of inertia with respect to the
X . . . axis, ρx . . . is the radius of gyration with respect to the X . . . axis, ρ is the mass density of the body.
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TABLE 3.2 Properties of Homogeneous Solid Bodies (Continued)
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TABLE 3.2 Properties of Homogeneous Solid Bodies (Continued)
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CENTER-OF-MASS

Computation of Center-of-Mass. The center-of-mass (or center-of-gravity) is
that point located by the vector

rc = �
m

r(m)dm (3.7)

where r(m) is the radius vector of the element of mass dm. The center-of-mass of a
body in a cartesian coordinate system X, Y, Z is located at

Xc = �
V

X(V)ρ(V)dV

Yc = �
V

Y(V)ρ(V)dV (3.8)

Zc = �
V

Z(V)ρ(V)dV

where X(V), Y(V), Z(V) are the X, Y, Z coordinates of the element of volume dV
and m is the mass of the body.

If the body can be divided into elements whose centers-of-mass are known, the
center-of-mass of the entire body having a mass m is located by equations of the fol-
lowing type:

Xc = (Xc1m1 + Xc2m2 + ⋅⋅⋅ + Xcnmn), etc. (3.9)

where Xc1 is the X coordinate of the center-of-mass of element m1.Tables (see Tables
3.1 and 3.2) which specify the location of centers of area and volume (called cen-
troids) for simple sections and solid bodies often are an aid in dividing the body into
the submasses indicated in the above equation. The centroid and center-of-mass of
an element are coincident when the density of the material is uniform throughout
the element.

Experimental Determination of Center-of-Mass. The location of the center-of-
mass is normally measured indirectly by locating the center-of-gravity of the body,
and may be found in various ways. Theoretically, if the body is suspended by a flexi-
ble wire attached successively at different points on the body, all lines represented
by the wire in its various positions when extended inwardly into the body intersect
at the center-of-gravity. Two such lines determine the center-of-gravity, but more
may be used as a check. There are practical limitations to this method in that the
point of intersection often is difficult to designate.

Other techniques are based on the balancing of the body on point or line supports.
A point support locates the center-of-gravity along a vertical line through the point; a
line support locates it in a vertical plane through the line.The intersection of such lines
or planes determined with the body in various positions locates the center-of-gravity.
The greatest difficulty with this technique is the maintenance of the stability of the

1
�
m

1
�
m

1
�
m

1
�
m

1
�
m
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body while it is balanced, particularly
where the height of the body is great rel-
ative to a horizontal dimension. If a per-
fect point or edge support is used, the
equilibrium position is inherently unsta-
ble. It is only if the support has width that
some degree of stability can be achieved,
but then a resulting error in the location
of the line or plane containing the center-
of-gravity can be expected.

Another method of locating the 
center-of-gravity is to place the body in a
stable position on three scales. From static
moments the vector weight of the body is
the resultant of the measured forces at the
scales, as shown in Fig. 3.2. The vertical
line through the center-of-gravity is
located by the distances a0 and b0:

a0 = a1

(3.10)

b0 = b1

This method cannot be used with more than three scales.

MOMENT AND PRODUCT OF INERTIA

Computation of Moment and Product of Inertia.2,3 The moments of inertia of
a rigid body with respect to the orthogonal axes X, Y, Z fixed in the body are

Ixx = �
m

(Y 2 + Z 2) dm Iyy = �
m

(X 2 + Z 2) dm Izz = �
m

(X 2 + Y 2) dm (3.11)

where dm is the infinitesimal element of mass located at the coordinate distances X,
Y, Z; and the integration is taken over the mass of the body. Similarly, the products
of inertia are

Ixy = �
m

XY dm Ixz = �
m

XZ dm Iyz = �
m

YZ dm (3.12)

It is conventional in rigid body mechanics to take the center of coordinates at the
center-of-mass of the body. Unless otherwise specified, this location is assumed, and
the moments of inertia and products of inertia refer to axes through the center-of-
mass of the body. For a unique set of axes, the products of inertia vanish. These axes
are called the principal inertial axes of the body.The moments of inertia about these
axes are called the principal moments of inertia. The moments of inertia of a rigid
body can be defined in terms of radii of gyration as follows:

Ixx = mρx
2 Iyy = mρy

2 Izz = mρz
2 (3.13)

F3��
F1 + F2 + F3

F2��
F1 + F2 + F3

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.15

FIGURE 3.2 Three-scale method of locating
the center-of-gravity of a body. The vertical
forces F1, F2, F3 at the scales result from the
weight of the body. The vertical line located by
the distances a0 and b0 [see Eqs. (3.10)] passes
through the center-of-gravity of the body.
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where Ixx, . . . are the moments of inertia of the body as defined by Eqs. (3.11), m is
the mass of the body, and ρx, . . . are the radii of gyration. The radius of gyration has
the dimension of length, and often leads to convenient expressions in dynamics of
rigid bodies when distances are normalized to an appropriate radius of gyration.
Solid bodies of various shapes have characteristic radii of gyration which sometimes
are useful intuitively in evaluating dynamic conditions.

Unless the body has a very simple shape, it is laborious to evaluate the integrals
of Eqs. (3.11) and (3.12). The problem is made easier by subdividing the body into
parts for which simplified calculations are possible. The moments and products of
inertia of the body are found by first determining the moments and products of iner-
tia for the individual parts with respect to appropriate reference axes chosen in the
parts, and then summing the contributions of the parts.This is done by selecting axes
through the centers-of-mass of the parts, and then determining the moments and
products of inertia of the parts relative to these axes. Then the moments and prod-
ucts of inertia are transferred to the axes chosen through the center-of-mass of the
whole body, and the transferred quantities summed. In general, the transfer involves

two sets of nonparallel coordinates
whose centers are displaced. Two trans-
formations are required as follows.

Transformation to Parallel Axes.
Referring to Fig. 3.3, suppose that X, Y,
Z is a convenient set of axes for the
moment of inertia of the whole body
with its origin at the center-of-mass. The
moments and products of inertia for a
part of the body are Ix″x″, Iy″y″, Iz″z″, Ix″y″,
Ix″z″, and Iy″z″, taken with respect to a set
of axes X″, Y″, Z″ fixed in the part and
having their center at the center-of-mass
of the part.The axes X′,Y′, Z′ are chosen
parallel to X″, Y″, Z″ with their origin at
the center-of-mass of the body. The per-
pendicular distance between the X″ and
X′ axes is ax; that between Y″ and Y′ is
ay; that between Z″ and Z′ is az. The
moments and products of inertia of the
part of mass mn with respect to the X′,
Y′, Z′ axes are

Ix′x′ = Ix″x″ + mnax
2

Iy′y′ = Iy″y″ + mnay
2 (3.14)

Iz′z′ = Iz″z″ + mnaz
2

The corresponding products of inertia are

Ix′y′ = Ix″y″ + mnaxay

Ix′z′ = Ix″z″ + mnaxaz (3.15)

Iy′z′ = Iy″z″ + mnayaz

If X″, Y″, Z″ are the principal axes of the part, the product of inertia terms on the
right-hand side of Eqs. (3.15) are zero.

3.16 CHAPTER THREE

FIGURE 3.3 Axes required for moment and
product of inertia transformations. Moments
and products of inertia with respect to the axes
X″, Y″, Z″ are transferred to the mutually paral-
lel axes X′, Y′, Z′ by Eqs. (3.14) and (3.15), and
then to the inclined axes X, Y, Z by Eqs. (3.16)
and (3.17).
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Transformation to Inclined Axes. The desired moments and products of iner-
tia with respect to axes X, Y, Z are now obtained by a transformation theorem relat-
ing the properties of bodies with respect to inclined sets of axes whose centers
coincide.This theorem makes use of the direction cosines λ for the respective sets of
axes. For example, λxx′ is the cosine of the angle between the X and X′ axes. The
expressions for the moments of inertia are

Ixx = λxx′
2Ix′x′ + λxy′

2Iy′y′ + λxz′
2Iz′z′ − 2λxx′λxy′Ix′y′ − 2λxx′λxz′Ix′z′ − 2λxy′λxz′Iy′z′

Iyy = λyx′
2Ix′x′ + λyy′

2Iy′y′ + λyz′
2Iz′z′ − 2λyx′λyy′Ix′y′ − 2λyx′λyz′Ix′z′ − 2λyy′λyz′Iy′z′ (3.16)

Izz = λzx′
2Ix′x′ + λzy′

2Iy′y′ + λzz′
2Iz′z′ − 2λzx′λzy′Ix′y′ − 2λzx′λzz′Ix′z′ − 2λzy′λzz′Iy′z′

The corresponding products of inertia are

−Ixy = λxx′λyx′Ix′x′ + λxy′λyy′Iy′y′ + λxz′λyz′Iz′z′ − (λxx′λyy′ + λxy′λyx′)Ix′y′
− (λxy′λyz′ + λxz′λyy′)Iy′z′ − (λxz′λyx′ + λxx′λyz′)Ix′z′

−Ixz = λxx′λzx′Ix′x′ + λxy′λzy′Iy′y′ + λxz′λzz′Iz′z′ − (λxx′λzy′ + λxy′λzx′)Ix′y′
− (λxy′λzz′ + λxz′λzy′)Iy′z′ − (λxx′λzz′ + λxz′λzx′)Ix′z′

(3.17)

−Iyz = λyx′λzx′Ix′x′ + λyy′λzy′Iy′y′ + λyz′λzz′Iz′z′ − (λyx′λzy′ + λyy′λzx′)Ix′y′
− (λyy′λzz′ + λyz′λzy′)Iy′z′ − (λyz′λzx′ + λyx′λzz′)Ix′z′

Experimental Determination of Moments of Inertia. The moment of inertia of
a body about a given axis may be found experimentally by suspending the body as a
pendulum so that rotational oscillations about that axis can occur.The period of free
oscillation is then measured, and is used with the geometry of the pendulum to cal-
culate the moment of inertia.

Two types of pendulums are useful:
the compound pendulum and the tor-
sional pendulum. When using the com-
pound pendulum, the body is supported
from two overhead points by wires,
illustrated in Fig. 3.4. The distance l is
measured between the axis of support
O–O and a parallel axis C–C through
the center-of-gravity of the body. The
moment of inertia about C–C is given by

Icc = ml2�� �2� � − 1� (3.18)

where τ0 is the period of oscillation in sec-
onds, l is the pendulum length in inches,
g is the gravitational acceleration in
in./sec2, and m is the mass in lb-sec2/in.,
yielding a moment of inertia in lb-in.-sec2.

The accuracy of the above method 
is dependent upon the accuracy with

which the distance l is known. Since the center-of-gravity often is an inaccessible
point, a direct measurement of l may not be practicable. However, a change in l can
be measured quite readily. If the experiment is repeated with a different support axis
O′–O′, the length l becomes l + ∆l and the period of oscillation becomes τ0′.Then, the
distance l can be written in terms of ∆l and the two periods τ0, τ0′ :

g
�
l

τ0�
2π

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.17

FIGURE 3.4 Compound pendulum method of
determining moment of inertia. The period of
oscillation of the test body about the horizontal
axis O–O and the perpendicular distance l
between the axis O–O and the parallel axis C–C
through the center-of-gravity of the test body
give Icc by Eq. (3.18).
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l = ∆l� � (3.19)

This value of l can be substituted into Eq. (3.18) to compute Icc.
Note that accuracy is not achieved if l is much larger than the radius of gyration

ρc of the body about the axis C–C (Icc = mρc
2). If l is large, then (τ0/2π)2 � l/g and the

expression in brackets in Eq. (3.18) is very small; thus, it is sensitive to small errors in
the measurement of both τ0 and l. Consequently, it is highly desirable that the dis-
tance l be chosen as small as convenient, preferably with the axis O–O passing
through the body.

A torsional pendulum may be constructed with the test body suspended by a sin-
gle torsional spring (in practice, a rod or wire) of known stiffness, or by three flexi-
ble wires. A solid body supported by a single torsional spring is shown in Fig. 3.5.
From the known torsional stiffness kt and the measured period of torsional oscilla-
tion τ, the moment of inertia of the body about the vertical torsional axis is

Icc = (3.20)

A platform may be constructed below the torsional spring to carry the bodies to
be measured, as shown in Fig. 3.6. By repeating the experiment with two different
bodies placed on the platform, it becomes unnecessary to measure the torsional stiff-
ness kt. If a body with a known moment of inertia I1 is placed on the platform and an
oscillation period τ1 results, the moment of inertia I2 of a body which produces a
period τ2 is given by

I2 = I1� � (3.21)

where τ0 is the period of the pendulum composed of platform alone.
A body suspended by three flexible wires, called a trifilar pendulum, as shown in

Fig. 3.7, offers some utilitarian advantages. Designating the perpendicular distances

(τ2/τ0)2 − 1
��
(τ1/τ0)2 − 1

ktτ2

�
4π2

(τ0′2/4π2)(g/∆l) − 1
���
[(τ0

2 − τ0′2)/4π2][g/∆l] − 1

3.18 CHAPTER THREE

FIGURE 3.5 Torsional pendulum method of
determining moment of inertia. The period of
torsional oscillation of the test body about the
vertical axis C–C passing through the center-of-
gravity and the torsional spring constant kt give
Icc by Eq. (3.20).

FIGURE 3.6 A variation of the torsional pen-
dulum method shown in Fig. 3.5 wherein a light
platform is used to carry the test body. The
moment of inertia Icc is given by Eq. (3.20).
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of the wires to the vertical axis C–C through the center-of-gravity of the body by R1,
R2, R3, the angles between wires by φ1, φ2, φ3, and the length of each wire by l, the
moment of inertia about axis C–C is

Icc = (3.22)

Apparatus that is more convenient for
repeated use embodies a light platform
supported by three equally spaced wires.
The body whose moment of inertia is to
be measured is placed on the platform
with its center-of-gravity equidistant
from the wires.Thus R1 = R2 = R3 = R and
φ1 = φ2 = φ3 = 120°. Substituting these
relations in Eq. (3.22), the moment of
inertia about the vertical axis C–C is

Icc = (3.23)

where the mass m is the sum of the
masses of the test body and the plat-
form. The moment of inertia of the plat-
form is subtracted from the test result to
obtain the moment of inertia of the
body being measured. It becomes un-
necessary to know the distances R and l
in Eq. (3.23) if the period of oscillation is
measured with the platform empty, with

the body being measured on the platform, and with a second body of known mass m1

and known moment of inertia I1 on the platform. Then the desired moment of iner-
tia I2 is

I2 = I1 � � (3.24)

where m0 is the mass of the unloaded platform, m2 is the mass of the body being
measured, τ0 is the period of oscillation with the platform unloaded, τ1 is the period
when loaded with known body of mass m1, and τ2 is the period when loaded with the
unknown body of mass m2.

Experimental Determination of Product of Inertia. The experimental determi-
nation of a product of inertia usually requires the measurement of moments of iner-
tia. (An exception is the balancing machine technique described later.) If possible,
symmetry of the body is used to locate directions of principal inertial axes, thereby
simplifying the relationship between the moments of inertia as known and the prod-
ucts of inertia to be found. Several alternative procedures are described below,
depending on the number of principal inertia axes whose directions are known.
Knowledge of two principal axes implies a knowledge of all three since they are
mutually perpendicular.

If the directions of all three principal axes (X′, Y′, Z′) are known and it is desir-
able to use another set of axes (X, Y, Z), Eqs. (3.16) and (3.17) may be simplified

[1 + (m2/m0)][τ2/τ0]2 − 1
���
[1 + (m1/m0)][τ1/τ0]2 − 1

mgR2τ2

�
4π2l

R1 sin φ1 + R2 sin φ2 + R3 sin φ3�����
R2R3 sin φ1 + R1R3 sin φ2 + R1R2 sin φ3

mgR1R2R3τ2

��
4π2l
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FIGURE 3.7 Trifilar pendulum method of
determining moment of inertia. The period of
torsional oscillation of the test body about the
vertical axis C–C passing through the center-of-
gravity and the geometry of the pendulum give
Icc by Eq. (3.22); with a simpler geometry, Icc is
given by Eq. (3.23).
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because the products of inertia with respect to the principal directions are zero. First,
the three principal moments of inertia (Ix′x′, Iy′y′, Iz′z′) are measured by one of the
above techniques; then the moments of inertia with respect to the X, Y, Z axes are

Ixx = λxx′
2Ix′x′ + λxy′

2Iy′y′ + λxz′
2Iz′z′

Iyy = λyx′
2Ix′x′ + λyy′

2Iy′y′ + λyz′
2Iz′z′ (3.25)

Izz = λzx′
2Ix′x′ + λzy′

2Iy′y′ + λzz′
2Iz′z′

The products of inertia with respect to the X, Y, Z axes are

−Ixy = λxx′λyx′Ix′x′ + λxy′λyy′Iy′y′ + λxz′λyz′Iz′z′

−Ixz = λxx′λzx′Ix′x′ + λxy′λzy′Iy′y′ + λxz′λzz′Iz′z′ (3.26)

−Iyz = λyx′λzx′Ix′x′ + λyy′λzy′Iy′y′ + λyz′λzz′Iz′z′

The direction of one principal axis Z may be known from symmetry. The axis
through the center-of-gravity perpendicular to the plane of symmetry is a principal
axis.The product of inertia with respect to X and Y axes, located in the plane of sym-
metry, is determined by first establishing another axis X′ at a counterclockwise angle
θ from X, as shown in Fig. 3.8. If the three moments of inertia Ixx , Ix′x′, and Iyy are
measured by any applicable means, the product of inertia Ixy is

Ixy = (3.27)

where 0 < θ < π. For optimum accuracy, θ
should be approximately π/4 or 3π/4.
Since the third axis Z is a principal axis,
Ixz and Iyz are zero.

Another method is illustrated in Fig.
3.9.4, 5 The plane of the X and Z axes is a
plane of symmetry, or the Y axis is other-
wise known to be a principal axis of iner-
tia. For determining Ixz , the body is
suspended by a cable so that the Y axis is
horizontal and the Z axis is vertical.Tor-
sional stiffness about the Z axis is pro-
vided by four springs acting in the Y
direction at the points shown. The body
is oscillated about the Z axis with vari-

ous positions of the springs so that the angle θ can be varied. The spring stiffnesses
and locations must be such that there is no net force in the Y direction due to a rota-
tion about the Z axis. In general, there is coupling between rotations about the X
and Z axes, with the result that oscillations about both axes occur as a result of an
initial rotational displacement about the Z axis. At some particular value of θ = θ0,
the two rotations are uncoupled; i.e., oscillation about the Z axis does not cause
oscillation about the X axis. Then

Ixz = Izz tan θ0 (3.28)

The moment of inertia Izz can be determined by one of the methods described under
Experimental Determination of Moments of Inertia.

Ixx cos2 θ + Iyy sin2 θ − Ix′x′
���sin 2θ

3.20 CHAPTER THREE

FIGURE 3.8 Axes required for determining
the product of inertia with respect to the axes X
and Y when Z is a principal axis of inertia. The
moments of inertia about the axes X, Y, and X′,
where X′ is in the plane of X and Y at a counter-
clockwise angle θ from X, give Ixy by Eq. (3.27).
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When the moments and product of inertia with respect to a pair of axes X and Z
in a principal plane of inertia XZ are known, the orientation of a principal axis P is
given by

θp = 1⁄2 tan−1� � (3.29)

where θp is the counterclockwise angle from the X axis to the P axis. The second
principal axis in this plane is at θp + 90°.

Consider the determination of products of inertia when the directions of all
principal axes of inertia are unknown. In one method, the moments of inertia about
two independent sets of three mutually perpendicular axes are measured, and the
direction cosines between these sets of axes are known from the positions of the
axes. The values for the six moments of inertia and the nine direction cosines are
then substituted into Eqs. (3.16) and (3.17). The result is six linear equations in the
six unknown products of inertia, from which the values of the desired products of
inertia may be found by simultaneous solution of the equations. This method leads
to experimental errors of relatively large magnitude because each product of iner-
tia is, in general, a function of all six moments of inertia, each of which contains an
experimental error.

An alternative method is based upon the knowledge that one of the principal
moments of inertia of a body is the largest and another is the smallest that can be
obtained for any axis through the center-of-gravity. A trial-and-error procedure can
be used to locate the orientation of the axis through the center-of-gravity having the
maximum and/or minimum moment of inertia. After one or both are located, the
moments and products of inertia for any set of axes are found by the techniques pre-
viously discussed.

The products of inertia of a body also may be determined by rotating the body at
a constant angular velocity Ω about an axis passing through the center-of-gravity, as
illustrated in Fig. 3.10. This method is similar to the balancing machine technique
used to balance a body dynamically (see Chap. 39). If the bearings are a distance l
apart and the dynamic reactions Fx and Fy are measured, the products of inertia are

2Ixz�
Izz − Ixx

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.21

FIGURE 3.9 Method of determining the product of inertia with
respect to the axes X and Z when Y is a principal axis of inertia. The
test body is oscillated about the vertical Z axis with torsional stiff-
ness provided by the four springs acting in the Y direction at the
points shown.There should be no net force on the test body in the Y
direction due to a rotation about the Z axis. The angle θ is varied
until, at some value of θ = θ0, oscillations about X and Z are uncou-
pled.The angle θ0 and the moment of inertia about the Z axis give Ixz

by Eq. (3.28).
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Ixz = − Iyz = − (3.30)

Limitations to this method are (1) the size of the body that can be accommodated
by the balancing machine and (2) the angular velocity that the body can withstand
without damage from centrifugal forces. If the angle between the Z axis and a prin-
cipal axis of inertia is small, high rotational speeds may be necessary to measure the
reaction forces accurately.

PROPERTIES OF RESILIENT SUPPORTS

A resilient support is considered to be a
three-dimensional element having two
terminals or end connections. When the
end connections are moved one relative
to the other in any direction, the ele-
ment resists such motion. In this chap-
ter, the element is considered to be
massless; the force that resists relative
motion across the element is considered
to consist of a spring force that is
directly proportional to the relative dis-
placement (deflection across the ele-
ment) and a damping force that is
directly proportional to the relative
velocity (velocity across the element).
Such an element is defined as a linear
resilient support. Nonlinear elements are
discussed in Chap. 4; elements with mass
are discussed in Chap. 30; and nonlinear
damping is discussed in Chaps. 2 and 30.

In a single degree-of-freedom system or in a system having constraints on the
paths of motion of elements of the system (Chap. 2), the resilient element is con-
strained to deflect in a given direction and the properties of the element are defined
with respect to the force opposing motion in this direction. In the absence of such
constraints, the application of a force to a resilient element generally causes a
motion in a different direction. The principal elastic axes of a resilient element are
those axes for which the element, when unconstrained, experiences a deflection co-
lineal with the direction of the applied force. Any axis of symmetry is a principal
elastic axis.

In rigid body dynamics, the rigid body sometimes vibrates in modes that are cou-
pled by the properties of the resilient elements as well as by their location. For
example, if the body experiences a static displacement x in the direction of the X
axis only, a resilient element opposes this motion by exerting a force kxxx on the
body in the direction of the X axis, where one subscript on the spring constant k
indicates the direction of the force exerted by the element and the other subscript
indicates the direction of the deflection. If the X direction is not a principal elastic
direction of the element and the body experiences a static displacement x in the X
direction, the body is acted upon by a force kyxx in the Y direction if no displacement
y is permitted. The stiffnesses have reciprocal properties; i.e., kxy = kyx. In general,

Fyl�
Ω2

Fxl�
Ω2
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FIGURE 3.10 Balancing machine technique
for determining products of inertia. The test
body is rotated about the Z axis with angular
velocity Ω. The dynamic reactions Fx and Fy

measured at the bearings, which are a distance l
apart, give Ixz and Iyz by Eq. (3.30).
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the stiffnesses in the directions of the coordinate axes can be expressed in terms of
(1) principal stiffnesses and (2) the angles between the coordinate axes and the
principal elastic axes of the element. (See Chap. 30 for a detailed discussion of a
biaxial stiffness element.) Therefore, the stiffness of a resilient element can be rep-
resented pictorially by the combination of three mutually perpendicular, idealized
springs oriented along the principal elastic directions of the resilient element. Each
spring has a stiffness equal to the principal stiffness represented.

A resilient element is assumed to have damping properties such that each spring
representing a value of principal stiffness is paralleled by an idealized viscous
damper, each damper representing a value of principal damping. Hence, coupling
through damping exists in a manner similar to coupling through stiffness. Conse-
quently, the viscous damping coefficient c is analogous to the spring coefficient k;
i.e., the force exerted by the damping of the resilient element in response to a veloc-
ity ẋ is cxxẋ in the direction of the X axis and cyxẋ in the direction of the Y axis if ẏ is
zero. Reciprocity exists; i.e., cxy = cyx.

The point of intersection of the principal elastic axes of a resilient element is des-
ignated as the elastic center of the resilient element. The elastic center is important
since it defines the theoretical point location of the resilient element for use in the
equations of motion of a resiliently supported rigid body. For example, the torque on
the rigid body about the Y axis due to a force kxxx transmitted by a resilient element
in the X direction is kxxazx, where az is the Z coordinate of the elastic center of the
resilient element.

In general, it is assumed that a resilient element is attached to the rigid body by
means of “ball joints”; i.e., the resilient element is incapable of applying a couple to
the body. If this assumption is not made, a resilient element would be represented
not only by translational springs and dampers along the principal elastic axes but
also by torsional springs and dampers resisting rotation about the principal elastic
directions.

Figure 3.11 shows that the torsional elements usually can be neglected. The
torque which acts on the rigid body due to a rotation β of the body and a rotation b
of the support is (kt + az

2kx) (β − b), where kt is the torsional spring constant in the β
direction. The torsional stiffness kt usually is much smaller than az

2kx and can be ne-
glected.Treatment of the general case indicates that if the torsional stiffnesses of the
resilient element are small compared with the product of the translational stiffnesses
times the square of distances from the elastic center of the resilient element to the
center-of-gravity of the rigid body, the torsional stiffnesses have a negligible effect
on the vibrational behavior of the body. The treatment of torsional dampers is com-
pletely analogous.

EQUATIONS OF MOTION FOR A RESILIENTLY

SUPPORTED RIGID BODY

The differential equations of motion for the rigid body are given by Eqs. (3.2) and
(3.3), where the F’s and M’s represent the forces and moments acting on the body,
either directly or through the resilient supporting elements. Figure 3.12 shows a view
of a rigid body at rest with an inertial set of axes �X, �Y, �Z and a coincident set of axes
X,Y, Z fixed in the rigid body, both sets of axes passing through the center-of-mass.A
typical resilient element (2) is represented by parallel spring and viscous damper
combinations arranged respectively parallel with the �X, �Y, �Z axes. Another resilient
element (1) is shown with its principal axes not parallel with �X, �Y, �Z.

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.23
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The displacement of the center-of-
gravity of the body in the �X, �Y, �Z direc-
tions is in Fig. 3.1 indicated by xc , yc , zc ,
respectively; and rotation of the rigid
body about these axes is indicated by a,
b, g, respectively. In Fig. 3.12, each
resilient element is represented by three
mutually perpendicular spring-damper
combinations. One end of each such
combination is attached to the rigid
body; the other end is considered to 
be attached to a foundation whose cor-
responding translational displacement is
defined by u, v, w in the �X, �Y, �Z di-
rections, respectively, and whose rota-
tional displacement about these axes is
defined by a, b, g, respectively.The point
of attachment of each of the idealized
resilient elements is located at the coor-
dinate distances ax , ay , az of the elastic
center of the resilient element.

Consider the rigid body to experi-
ence a translational displacement xc of
its center-of-gravity and no other dis-
placement, and neglect the effects of the

viscous dampers.The force developed by a resilient element has the effect of a force
−kxx(xc − u) in the X direction, a moment kxx(xc − u)ay in the γ coordinate (about the
Z axis), and a moment −kxx(xc − u)az in the β coordinate (about the Y axis). Further-
more, the coupling stiffness causes a force −kxy(xc − u) in the Y direction and a force
−kxz(xc − u) in the Z direction. These forces have the moments kxy(xc − u)az in the α
coordinate; −kxy(xc − u)ax in the γ coordinate; kxz(xc − u)ax in the β coordinate; and 
−kxz(xc − u)ay in the α coordinate. By considering in a similar manner the forces and
moments developed by a resilient element for successive displacements of the rigid
body in the three translational and three rotational coordinates, and summing over
the number of resilient elements, the equations of motion are written as follows:6, 7

mẍc + Σkxx(xc − u) + Σkxy(yc − v) + Σkxz(zc − w)

+ Σ(kxzay − kxyaz)(α − a) + Σ(kxxaz − kxzax)(β − b)

+ Σ(kxyax − kxxay)(γ − g) = Fx (3.31a)

Ixxα̈ − Ixyβ̈ − Ixzγ̈ + Σ(kxzay − kxyaz)(xc − u)

+ Σ(kyzay − kyyaz)(yc − v) + Σ(kzzay − kyzaz)(zc − w)

+ Σ(kyyaz
2 + kzzay

2 − 2kyzayaz)(α − a)

+ Σ(kxzayaz + kyzaxaz − kzzaxay − kxyaz
2)(β − b)

+ Σ(kxy ayaz + kyzaxay − kyyaxaz − kxzay
2)(γ − g) = Mx (3.31b)

mÿc + Σkxy(xc − u) + Σkyy(yc − v) + Σkyz(zc − w)

+ Σ(kyzay − kyyaz)(α − a) + Σ(kxyaz − kyzax)(β − b)

+ Σ(kyyax − kxyay)(γ − g) = Fy (3.31c)

3.24 CHAPTER THREE

FIGURE 3.11 Pictorial representation of the
properties of an undamped resilient element in
the XZ plane including a torsional spring kt. An
analysis of the motion of the supported body in
the XZ plane shows that the torsional spring can
be neglected if kt << az

2kx.
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Iyyβ̈ − Ixyα̈ − Iyzγ̈ + Σ(kxxaz − kxzax)(xc − u)

+ Σ(kxyaz − kyzax)(yc − v) + Σ(kxzaz − kzzax)(zc − w)

+ Σ(kxzayaz + kyzaxaz − kzzaxay − kxyaz
2)(α − a)

+ Σ(kxxaz
2 + kzzax

2 − 2kxzaxaz)(β − b)

+ Σ(kxyaxaz + kxzaxay − kxxayaz − kyzax
2)(γ − g) = My (3.31d)

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.25

FIGURE 3.12 Rigid body at rest supported by resilient elements, with inertial axes �X, �Y, �Z and
coincident reference axes X, Y, Z passing through the center-of-mass. The forces Fx, Fy, Fz and the
moments Mx, My, Mz are applied directly to the body; the translations u, v, w and rotations a, b, g in
and about the X, Y, Z axes, respectively, are applied to the resilient elements located at the coordi-
nates ax, ay, az. The principal directions of resilient element (2) are parallel to the �X, �Y, �Z axes 
(orthogonal), and those of resilient element (1) are not parallel to the �X, �Y, �Z axes (inclined).
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mz̈c + Σkxz(xc − u) + Σkyz(yc − v) + Σkzz(zc − w)

+ Σ(kzzay − kyzaz)(α − a) + Σ(kxzaz − kzzax)(β − b)

+ Σ(kyzax − kxzay)(γ − g) = Fz (3.31e)

Izzγ̈ − Ixzα̈ − Iyzβ̈ + Σ(kxyax − kxxay)(xc − u)

+ Σ(kyyax − kxyay)(yc − v) + Σ(kyzax − kxzay)(zc − w)

+ Σ(kxyayaz + kyzaxay − kyyaxaz − kxzay
2)(α − a)

+ Σ(kxyaxaz + kxzaxay − kxxayaz − kyzax
2)(β − b)

+ Σ(kxxay
2 + kyyax

2 − 2kxyaxay)(γ − g) = Mz (3.31f )

where the moments and products of inertia are defined by Eqs. (3.11) and (3.12) and
the stiffness coefficients are defined as follows:

kxx = kpλxp
2 + kqλxq

2 + krλxr
2

kyy = kpλyp
2 + kqλyq

2 + krλyr
2

kzz = kpλzp
2 + kqλzq

2 + krλzr
2

kxy = kpλxpλyp + kqλxqλyq + krλxrλyr

(3.32)

kxz = kpλxpλzp + kqλxqλzq + krλxrλzr

kyz = kpλypλzp + kqλyqλzq + krλyrλzr

where the λ’s are the cosines of the angles between the principal elastic axes of the
resilient supporting elements and the coordinate axes. For example, λxp is the cosine
of the angle between the X axis and the P axis of principal stiffness.

The equations of motion, Eqs. (3.31), do not include forces applied to the rigid
body by damping forces from the resilient elements. To include damping, appropri-
ate damping terms analogous to the corresponding stiffness terms are added to each
equation. For example, Eq. (3.31a) would become

mẍc + Σcxx(ẋc −u̇) + Σkxx(xc − u) + ⋅⋅⋅
+ Σ(cxzay − cxyaz)(α̇ − ȧ ) + Σ(kxzay − kxyaz)(α − a) + ⋅⋅⋅ = Fx (3.31a′ )

where cxx = cpλxp
2 + cqλxq

2 + crλxr
2

cxy = cpλxpλyp + cqλxqλyq + crλxrλyr

The number of degrees-of-freedom of a vibrational system is the minimum num-
ber of coordinates necessary to define completely the positions of the mass elements
of the system in space.The system of Fig. 3.12 requires a minimum of six coordinates
(xc ,yc ,zc ,α,β,γ) to define the position of the rigid body in space; thus, the system is
said to vibrate in six degrees-of-freedom. Equations (3.31) may be solved simulta-
neously for the three components xc , yc , zc of the center-of-gravity displacement and
the three components α, β, γ of the rotational displacement of the rigid body. In most
practical instances, the equations are simplified considerably by one or more of the
following simplifying conditions:

1. The reference axes X,Y, Z are selected to coincide with the principal inertial axes
of the body; then

3.26 CHAPTER THREE
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Ixy = Ixz = Iyz = 0 (3.33)

2. The resilient supporting elements are so arranged that one or more planes of
symmetry exist; i.e., motion parallel to the plane of symmetry has no tendency to
excite motion perpendicular to it, or rotation about an axis lying in the plane 
does not excite motion parallel to the plane. For example, in Eq. (3.31a), motion
in the XY plane does not tend to excite motion in the XZ or YZ plane if Σkxz,
Σ(kxzay − kxy az), and Σ(kxxaz − kxzax) are zero.

3. The principal elastic axes P, Q, R of all resilient supporting elements are orthog-
onal with the reference axes X,Y, Z of the body, respectively.Then, in Eqs. (3.32),

kxx = kp = kx kyy = kq = ky kzz = kr = kz

kxy = kxz = kyz = 0
(3.34)

where kx, ky, kz are defined for use when orthogonality exists. The supports are
then called orthogonal supports.

4. The forces Fx, Fy, Fz and moments Mx, My, Mz are applied directly to the body and
there are no motions (u = v = w = a = b = g = 0) of the foundation; or alternatively,
the forces and moments are zero and excitation results from motion of the foun-
dation.

In general, the effect of these simplifications is to reduce the numbers of terms in the
equations and, in some instances, to reduce the number of equations that must be
solved simultaneously. Simultaneous equations indicate coupled modes; i.e., motion
cannot exist in one coupled mode independently of motion in other modes which
are coupled to it.

MODAL COUPLING AND NATURAL

FREQUENCIES

Several conditions of symmetry resulting from zero values for the product of inertia
terms in Eq. (3.33) are discussed in the following sections.

ONE PLANE OF SYMMETRY WITH ORTHOGONAL RESILIENT

SUPPORTS

When the YZ plane of the rigid body system in Fig. 3.12 is a plane of symmetry, the
following terms in the equations of motion are zero:

Σkyy ax = Σkzzax = Σkyy axaz = Σkzzaxay = 0 (3.35)

Introducing the further simplification that the principal elastic axes of the resilient
elements are parallel with the reference axes, Eqs. (3.34) apply. Then the motions in
the three coordinates yc , zc , α are coupled but are independent of motion in any of
the other coordinates; furthermore, the other three coordinates xc , β, γ also are cou-
pled. For example, Fig. 3.13 illustrates a resiliently supported rigid body, wherein the
YZ plane is a plane of symmetry that meets the requirements of Eq. (3.35).The three
natural frequencies for the yc , zc , α coupled directions are found by solving Eqs.

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.27
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(3.31b), (3.31c), and (3.31e) [or Eqs. (3.31a), (3.31d), and (3.31f) for the xc , β, γ cou-
pled directions] simultaneously.6

� �
6

− A� �
4

+ B� �
2

− C = 0 (3.36)

where fz = 	 (3.37)

is a quantity having mathematical rather than physical significance if translational
motion in the direction of the Z axis is coupled to other modes of motion. (Such cou-
pling exists for the system of Fig. 3.13.) The roots fn represent the natural frequencies
of the system in the coupled modes. The coefficients A, B, C for the coupled modes
in the yc , zc , α coordinates are

Ayzα = 1 + + Dzx

Byzα = Dzx + (1 + Dzx) −

Cyzα = �Dzx − � −

where Dzx =

and ρx is the radius of gyration of the rigid body with respect to the X axis.
The corresponding coefficients for the coupled modes in the xc, β, γ coordinates are

Axβγ = + Dzy + Dzz

Bxβγ = (Dzy + Dzz) + DzyDzz

− − −

Cxβγ = �DzyDzz − � − Dzy

− Dzz + 2 

where Dzy = Dzz =

and ρy , ρz are the radii of gyration of the rigid body with respect to the Y, Z axes.
The roots of the cubic equation Eq. (3.36) may be found graphically from Fig.

3.14.6 The coefficients A, B, C are first calculated from the above relations for the
appropriate set of coupled coordinates. Figure 3.14 is entered on the abscissa scale
at the appropriate value for the quotient B/A2. Small values of B/A2 are in Fig.
3.14A, and large values in Fig. 3.14B. The quotient C/A3 is the parameter for the
family of curves. Upon selecting the appropriate curve, three values of (fn /fz)/
A�
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are read from the ordinate and trans-
ferred to the left scale of the nomo-
graph in Fig. 3.14B. Diagonal lines are
drawn for each root to the value of A on
the right scale, as indicated by dotted
lines, and the roots fn/fz of the equation
are indicated by the intercept of these
dotted lines with the center scale of the
nomograph.

The coefficients A, B, C can be sim-
plified if all resilient elements have
equal stiffness in the same direction.The
stiffness coefficients always appear to
equal powers in numerator and denomi-
nator, and lead to dimensionless ratios
of stiffness. For n resilient elements, typ-
ical terms reduce as follows:

= =

= � �
2
, etc.

TWO PLANES OF SYMMETRY

WITH ORTHOGONAL RESILIENT

SUPPORTS

Two planes of symmetry may be achieved
if, in addition to the conditions of Eqs.
(3.33) to (3.35), the following terms of
Eqs. (3.31) are zero:

Σkxxay = Σkzzay = Σkxxayaz = 0

(3.38)

Under these conditions, Eqs. (3.31) sep-
arate into two independent equations,
Eqs. (3.31e) and (3.31f ), and two sets
each consisting of two coupled equa-
tions [Eqs. (3.31a) and (3.31d); Eqs.

(3.31b) and (3.31c)]. The planes of symmetry are the XZ and YZ planes. For exam-
ple, a common system is illustrated in Fig. 3.15, where four identical resilient sup-
porting elements are located symmetrically about the Z axis in a plane not
containing the center-of-gravity.6 Coupling exists between translation in the X direc-
tion and rotation about the Y axis (xc ,β), as well as between translation in the Y
direction and rotation about the X axis (yc ,α).Translation in the Z direction (zc) and
rotation about the Z axis (γ) are each independent of all other modes.

The natural frequency in the Z direction is found by solving Eq. (3.31e) to obtain
Eq. (3.37), where Σkzz = 4kz. The rotational natural frequency fγ about the Z axis is
found by solving Eq. (3.31f); it can be expressed with respect to the natural fre-
quency in the direction of the Z axis:

Σay az
�ρyρz

kx
�
nkz

(Σkxayaz)2

��ρy
2ρz

2(Σkz)2

Σay
2

�
nρx

2

Σkzay
2

�ρx
2Σkz

ky
�
kz

Σky
�Σkz
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FIGURE 3.13 Example of a rigid body on
orthogonal resilient supporting elements with
one plane of symmetry.The YZ plane is a plane of
symmetry since each resilient element has prop-
erties identical to those of its mirror image in the
YZ plane; i.e., kx1 = kx2, kx3 = kx4, kx5 = kx6, etc. The
conditions satisfied are Eqs. (3.33) to (3.35).
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FIGURE 3.14A Graphical method of determining solutions of the cubic Eq. (3.36). Calculate A, B, C for the
appropriate set of coupled coordinates, enter the abscissa at B/A2 (values less than 0.2 on Fig. 3.14A, values greater
than 0.2 on Fig. 3.14B), and read three values of (fn/fz)/
A� from the curve having the appropriate value of C/A3.
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FIGURE 3.14B Using the above nomograph with values of (fn/fz)/
A� (see Fig. 3.14A), a diagonal line is drawn
from each value of (fn/fz)/
A� on the left scale of the nomograph to the value of A on the right scale, as indicated
by the dotted lines.The three roots fn/fz of Eq. (3.36) are given by the intercept of these dotted lines with the cen-
ter scale of the nomograph. (After F. F. Vane.6)
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= 	 � �
2

+ � �
2

(3.39)

where ρz is the radius of gyration with respect to the Z axis.
The natural frequencies in the coupled xc , β modes are found by solving Eqs.

(3.31a) and (3.31d) simultaneously; the roots yield the following expression for nat-
ural frequency:

= � �1 + � + ±

	� �1 + � + �2
− 4 

(3.40)

Figure 3.16 provides a convenient
graphical method for determining the
two coupled natural frequencies fxβ. An
expression similar to Eq. (3.40) is
obtained for fyα

2 /fz
2 by solving Eqs.

(3.31b) and (3.31d) simultaneously. By
replacing ρy , ax , kx , fxβ with ρx , ay , ky , fyα ,
respectively, Fig. 3.16 also can be used to
determine the two values of fyα.

It may be desirable to select resilient
element locations ax, ay, az which will pro-
duce coupled natural frequencies in
specified frequency ranges, with resilient
elements having specified stiffness ratios
kx /kz, ky /kz. For this purpose it is conven-
ient to plot solutions of Eq. (3.40) in the
form shown in Figs. 3.17 to 3.19. These
plots are termed space-plots and their
use is illustrated in Example 3.1.8

The space-plots are derived as fol-
lows: In general, the two roots of Eq.
(3.40) are numerically different, one
usually being greater than unity and the
other less than unity. Designating the
root associated with the positive sign
before the radical (higher value) as fh /fz,
Eq. (3.40) may be written in the follow-
ing form:

+ = 1

(3.40a)

Equation (3.40a) is shown graphically
by the large ellipses about the center of
Figs. 3.17 to 3.19, for stiffness ratios kx/kz
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FIGURE 3.15 Example of a rigid body on
orthogonal resilient supporting elements with
two planes of symmetry. The XZ and YZ planes
are planes of symmetry since the four resilient
supporting elements are identical and are located
symmetrically about the Z axis. The conditions
satisfied are Eqs. (3.33), (3.34), (3.35), and (3.38).
At any single frequency, coupled vibration in the
xc, β direction due to X vibration of the founda-
tion is equivalent to a pure rotation of the rigid
body with respect to an axis of rotation as shown.
Points 1, 2, and 3 refer to the example of Fig. 3.26.
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of 1⁄2, 1, and 2, respectively.A particular type of resilient element tends to have a con-
stant stiffness ratio kx/kz; thus, Figs. 3.17 to 3.19 may be used by cut-and-try methods
to find the coordinates ax, az of such elements to attain a desired value of fh.

Designating the root of Eq. (3.40) associated with the negative sign (lower value)
by fl, Eq. (3.40) may be written as follows:

− = 1 (3.40b)
(az/ρy)2

��
1 − (kz/kx)( fl /fz)2

(ax/ρy)2

�
(f2 /fx)2

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.33

FIGURE 3.16 Curves showing the ratio of each of the two coupled
natural frequencies fxβ to the decoupled natural frequency fz , for motion
in the XZ plane of symmetry for the system in Fig. 3.15 [see Eq. (3.40)].
Calculate the abscissa (ρy/ax) 
k�x /�k�z� and the parameter az/ρy , where ax,
az are indicated in Fig. 3.15; kx , kz are the stiffnesses of the resilient sup-
porting elements in the X, Z directions, respectively; and ρy is the radius
of gyration of the body about the Y axis. The two values read from the
ordinate when divided by ρy /ax give the natural frequency ratios fxβ /fz.
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Equation (3.40b) is shown graphically by the family of hyperbolas on each side of
the center in Figs. 3.17 to 3.19, for values of the stiffness ratio kx/kz of 1⁄2, 1, and 2.

The two roots fh/fz and fl/fz of Eq. (3.40) may be expressed as the ratio of one to
the other. This relationship is given parametrically as follows:

�2 ± 	 � + ��
2

+ � 2 �
2

= 1 (3.40c)

	 � − � −

Equation (3.40c) is shown graphically by the smaller ellipses (shown dotted) dis-
placed from the vertical center line in Figs. 3.17 to 3.19.

Example 3.1. A rigid body is symmetrical with respect to the XZ plane; its
width in the X direction is 13 in. and its height in the Z direction is 12 in. The center-
of-gravity is 51⁄2 in. from the lower side and 63⁄4 in. from the right side. The radius of
gyration about the Y axis through the center-of-gravity is 5.10 in. Use a space-plot to
evaluate the effects of the location for attachment of resilient supporting elements
having the characteristic stiffness ratio kx/kz = 1⁄2.
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fh
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fl

fl�
fh

fh�
fl
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kz

az�
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fl�
fh

fh�
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kx�
kz

ax�
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FIGURE 3.17 Space-plot for the system in Fig. 3.15 when the stiffness ratio kx/kz = 0.5,
obtained from Eqs. (3.40a) to (3.40c). With all dimensions divided by the radius of gyration ρy

about the Y axis, superimpose the outline of the rigid body in the XZ plane on the plot; the cen-
ter-of-gravity of the body is located at the coordinate center of the plot. The elastic centers of
the resilient supporting elements give the natural frequency ratios fl/fz, fh/fz, and fh/fl for xc, β
coupled motion, each ratio being read from one of the three families of curves as indicated on
the plot. Replacing kx, ρy, ax with ky, ρx, ay, respectively, allows the plot to be applied to motions
in the YZ plane.
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Superimpose the outline of the body on the space-plot of Fig. 3.20, with its center-
of-gravity at the coordinate center of the plot. (Figure 3.20 is an enlargement of the
central portion of Fig. 3.17.) All dimensions are divided by the radius of gyration ρy .
Thus, the four corners of the body are located at coordinate distances as follows:

Upper right corner:

= = +1.28 = = +1.32

Upper left corner:

= = +1.28 = = −1.23

Lower right corner:

= = −1.08 = = +1.32

Lower left corner:

= = −1.08 = = −1.23
−6.25
�
5.10

ax�
ρy

−5.50
�
5.10

az�
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+6.75
�
5.10
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az�
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+6.75
�
5.10

ax�
ρy
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�
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ρy
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FIGURE 3.18 Space-plot for the system in Fig. 3.15 when the stiffness ratio kx /kz = 1. See cap-
tion for Fig. 3.17.
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The resilient supports are shown in heavy outline at A in Fig. 3.20, with their elastic
centers indicated by the solid dots. The horizontal coordinates of the resilient sup-
ports are ax/ρy = ±0.59, or ax = ±0.59 × 5.10 = ±3 in. from the vertical coordinate axis.
The corresponding natural frequencies are fh /fz = 1.25 (from the ellipses) and fl /fz =
0.33 (from the hyperbolas). An alternative position is indicated by the hollow cir-
cles B. The natural frequencies for this position are fh /fz = 1.43 and fl /fz = 0.50. The
natural frequency fz in vertical translation is found from the mass of the equipment
and the summation of stiffnesses in the Z direction, using Eq. (3.37). This example
shows how space-plots make it possible to determine the locations of the resilient
elements required to achieve given values of the coupled natural frequencies with
respect to fz.

THREE PLANES OF SYMMETRY WITH ORTHOGONAL RESILIENT

SUPPORTS

A system with three planes of symmetry is defined by six independent equations of
motion.A system having this property is sometimes called a center-of-gravity system.
The equations are derived from Eqs. (3.31) by substituting, in addition to the condi-
tions of Eqs. (3.33), (3.34), (3.35), and (3.38), the following condition:

Σkxx az = Σkyy az = 0 (3.41)

3.36 CHAPTER THREE

FIGURE 3.19 Space-plot for the system in Fig. 3.15 when the stiffness ratio kx/kz = 2. See cap-
tion for Fig. 3.17.
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The resulting six independent equations define six uncoupled modes of vibration,
three in translation and three in rotation. The natural frequencies are:

Translation along X axis:

fx = 	
Translation along Y axis:

fy = 	
Translation along Z axis:

fz = 	 Σkz�
m

1
�
2π

Σky
�
m

1
�
2π

Σkx�
m

1
�
2π
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FIGURE 3.20 Enlargement of the central portion of Fig. 3.17 with the outline of the rigid body dis-
cussed in Example 3.1.
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Rotation about X axis:

fα = 	 (3.42)

Rotation about Y axis:

fβ = 	
Rotation about Z axis:

fγ = 	

TWO PLANES OF SYMMETRY

WITH RESILIENT SUPPORTS

INCLINED IN ONE PLANE ONLY

When the principal elastic axes of the
resilient supporting elements are in-
clined with respect to the X, Y, Z axes,
the stiffness coefficients kxy , kxz , kyz are
nonzero. This introduces elastic cou-
pling, which must be considered in eval-
uating the equations of motion. Two
planes of symmetry may be achieved by
meeting the conditions of Eqs. (3.33),
(3.35), and (3.38). For example, consider
the rigid body supported by four identi-
cal resilient supporting elements located
symmetrically about the Z axis, as
shown in Fig. 3.21. The XZ and the YZ
planes are planes of symmetry, and the
resilient elements are inclined toward
the YZ plane so that one of their princi-
pal elastic axes R is inclined at the angle
φ with the Z direction as shown; hence
kyy = kq, and kxy = kyz = 0.

Because of symmetry, translational
motion zc in the Z direction and rotation
γ about the Z axis are each decoupled
from the other modes.The pairs of trans-
lational and rotational modes in the xc, β
and yc, α coordinates are coupled. The
natural frequency in the Z direction is

= 	 sin2 φ + cos2 φ (3.43)

where fr is a fictitious natural frequency used for convenience only; it is related to
Eq. (3.37) wherein 4kr is substituted for Σkz:
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FIGURE 3.21 Example of a rigid body on
resilient supporting elements inclined toward
the YZ plane. The resilient supporting elements
are identical and are located symmetrically
about the Z axis, making XZ and YZ planes of
symmetry. The principal stiffnesses in the XZ
plane are kp and kr . The conditions satisfied are
Eqs. (3.33), (3.35), and (3.38).
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fr = 	
Equation (3.43) is plotted in Fig. 3.22, where the angle φ is indicated by the upper of
the abscissa scales.

The rotational natural frequency about the Z axis is obtained from

= 	� cos2 φ + sin2 φ� � �2
+ � �2

(3.44)

For the xc , β coupled mode, the two natural frequencies are

= �A ± 	A2 − 4 � �2� (3.45)

where A = � cos2 φ + sin2 φ��1 + � �
2� + � sin2 φ + cos2 φ�� �2

+ 2�1 − �� � sin φ cos φax
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FIGURE 3.22 Curves showing the ratio of the decoupled natural frequency
fz of translation zc to the fictitious natural frequency fr for the system shown in
Fig. 3.21 [see Eq. (3.43)] when the resilient supporting elements are inclined at
the angle φ. The curves also indicate the ratio of the decoupled natural fre-
quency fx of translation xc to fr when φ has a value φ′ (use lower abscissa scale)
which decouples xc, β motions [see Eqs. (3.47) and (3.48)].
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For the yc, α coupled mode, the natural frequencies are

= �B ± 	B2 − 4 � sin2 φ + cos2 φ�� �2� (3.46)

where B = �1 + � �2� + � sin2 φ + cos2 φ�� �2

DECOUPLING OF MODES IN A PLANE USING 

INCLINED RESILIENT SUPPORTS

The angle φ of inclination of principal elastic axes (see Fig. 3.21) can be varied to
produce changes in the amount of coupling between the xc and β coordinates.
Decoupling of the xc and β coordinates is effected if

� � = (3.47)

where φ′ is the value of the angle of inclination φ required to achieve decoupling.
When Eq. (3.47) is satisfied, the configuration is sometimes called an “equivalent
center-of-gravity system” in the YZ plane since all modes of motion in that plane are
decoupled. Figure 3.23 is a graphical presentation of Eq. (3.47). There may be two
values of φ′ that decouple the xc and β modes for any combination of stiffness and
location for the resilient supporting elements.

The decoupled natural frequency for translation in the X direction is obtained from

= 	 cos2 φ′ + sin2 φ′ (3.48)

The relation of Eq. (3.48) is shown graphically in Fig. 3.22 where the angle φ′ is indi-
cated by the lower of the abscissa scales. The natural frequency in the β mode is
obtained from

= 	 (3.49)

COMPLETE DECOUPLING OF MODES USING 

RADIALLY INCLINED RESILIENT SUPPORTS

In general, the analysis of rigid body motion with the resilient supporting elements
inclined in more than one plane is quite involved. A particular case where sufficient
symmetry exists to provide relatively simple yet useful results is the configuration
illustrated in Fig. 3.24. From symmetry about the Z axis, Ixx = Iyy. Any number n of
resilient supporting elements greater than 3 may be used. For clarity of illustration,
the rigid body is shown as a right circular cylinder with n = 3.

The resilient supporting elements are arranged symmetrically about the Z axis;
they are attached to one end face of the cylinder at a distance ar from the Z axis and
a distance az from the XY reference plane.The resilient elements are inclined so that
their principal elastic axes R intersect at a common point on the Z axis; thus, the angle
between the Z axis and the R axis for each element is φ. The principal elastic axes P
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also intersect at a common point on the Z axis, the angle between the Z axis and the
P axis for each element being 90° − φ. Consequently, the Q principal elastic axes are
each tangent to the circle of radius ar which bounds the end face of the cylinder.

The use of such a configuration permits decoupling of all six modes of vibration
of the rigid body. This complete decoupling is achieved if the angle of inclination φ
has the value φ′ which satisfies the following equation:

� � = (3.50)
(1⁄2)[1 − (kp/kr)] sin 2φ′

����
(kq/kr) + (kp/kr) + [1 − (kp/kr)] sin2φ′

az�
ar
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FIGURE 3.23 Curves showing the angle of inclination φ′ of the resilient
elements which achieves decoupling of the xc , β motions in Fig. 3.21 [see
Eq. (3.47)]. Calculate the ordinate |az /ax| and with the stiffness ratio kp /kr

determine two values of φ′ for which decoupling is possible. Decoupling is
not possible for a particular value of kp /kr if |az /ay| has a value greater than
the maximum ordinate of the kp /kr curve.
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Since complete decoupling is effected, the system may be termed an “equivalent
center-of-gravity system.”9, 10 The natural frequencies of the six decoupled modes are

= = 	 � cos2 φ′ + sin2 φ′ + � (3.51)

= = � � sin φ′ � sin φ′ + cos φ′� + cos φ′ � cos φ′ − sin φ′��1/2

(3.52)

= 	 (3.53)

The frequency ratio fz/fr is given by Eq.
(3.43) or Fig. 3.22. The fictitious natural
frequency fr is given by

fr = (1/2π)	�nkr /m

Similar solutions are also available for
the configuration of four resilient sup-
ports located in a rectangular array and
inclined to achieve complete decou-
pling.11

FORCED VIBRATION

Forced vibration results from a continu-
ing excitation that varies sinusoidally
with time.The excitation may be a vibra-
tory displacement of the foundation for
the resiliently supported rigid body
(foundation-induced vibration), or a
force or moment applied to or gener-
ated within the rigid body (body-
induced vibration). These two forms of
excitation are considered separately.

FOUNDATION-INDUCED SINUSOIDAL VIBRATION

This section includes an analysis of foundation-induced vibration for two different
systems, each having two planes of symmetry. In one system, the principal elastic
axes of the resilient elements are parallel to the X,Y, Z axes; in the other system, the
principal elastic axes are inclined with respect to two of the axes but in a plane par-
allel to one of the reference planes. The excitation is translational movement of the
foundation in its own plane, without rotation. No forces or moments are applied
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FIGURE 3.24 Example of a rigid cylindrical
body on radially inclined resilient supports. The
resilient supports are attached symmetrically
about the Z axis to one end face of the cylinder
at a distance ar from the Z axis and a distance az

from the XY plane. The resilient elements are
inclined so that their principal elastic axes R and
P intersect the Z axis at common points. The
angle between the R axes and the Z axis is φ;
and the angle between the P axis and Z axis is
90° − φ.The Q principal elastic axes are each tan-
gent to the circle of radius ar.
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directly to the rigid body; i.e., in the equations of motion [Eqs. (3.31)], the following
terms are equal to zero:

Fx = Fy = Fz = Mx = My = Mz = a = b = g = 0 (3.54)

Two Planes of Symmetry with Orthogonal Resilient Supports. The system is
shown in Fig. 3.15.The excitation is a motion of the foundation in the direction of the
X axis defined by u = u0 sin ωt. (Alternatively, the excitation may be the displace-
ment v = v0 sin ωt in the direction of the Y axis, and analogous results are obtained.)
The resulting motion of the resiliently supported rigid body involves translation xc

and rotation β simultaneously. The conditions of symmetry are defined by Eqs.
(3.33), (3.34), (3.35), and (3.38); these conditions decouple Eqs. (3.31) so that only
Eqs. (3.31a) and (3.31d), and Eqs. (3.31b) and (3.31c), remain coupled. Upon substi-
tuting u = u0 sin ωt as the excitation, the response in the coupled modes is of a form
xc = xc0 sin ωt, β = β0 sin ωt where xc0 and β0 are related to u0 as follows:

xc 0
=

�� �2
− � �2�

u0 � �4

− � + � �2

+ � �2�� �2

+ � �2
(3.55)

β0
=

− � �2

(3.56)
u0 /ρy � �4

− � + � �2

+ � �2�� �2

+ � �2

where fz = 
4�k�z/�m� in accordance with Eq. (3.37). A similar set of equations

apply for vibration in the coupled yc , α coordinates. There is no response of the sys-
tem in the zc or γ modes since there is no net excitation in these directions; that is, Fz

and Mz are zero.
As indicated by Eqs. (3.1), the displacement at any point in a rigid body is the sum

of the displacement at the center-of-gravity and the displacements resulting from
motion of the body in rotation about axes through the center-of-gravity. Equations

(3.55) and (3.56) together with analo-
gous equations for yc0, α 0 provide the
basis for calculating these displace-
ments. Care should be taken with phase
angles, particularly if two or more exci-
tations u, v, w exist concurrently.

At any single frequency, coupled
vibration in the xc , β modes is equivalent
to a pure rotation of the rigid body with
respect to an axis parallel to the Y axis,
in the YZ plane and displaced from the
center-of-gravity of the body (see Fig.
3.15).As a result, the rigid body has zero
displacement x in the horizontal plane
containing this axis. Therefore, the Z
coordinate of this axis bz′ satisfies xc 0 +
bz′β0 = 0, which is obtained from the first
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FIGURE 3.25 Curve showing the position of
the axis of pure rotation of the rigid body in Fig.
3.15 as a function of the frequency ratio f/fz when
the excitation is sinusoidal motion of the foun-
dation in the X direction [see Eq. (3.57)]. The
axis of rotation is parallel to the Y axis and in the
XZ plane, and its coordinate along the Z axis is
designated by bz′.
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of Eqs. (3.1) by setting xb = 0 (γ0 motion is not considered). Substituting Eqs. (3.55)
and (3.56) for xc 0 and β0, respectively, the axis of rotation is located at

= (3.57)

Figure 3.25 shows the relation of Eq. (3.57) graphically. At high values of frequency
f /fz, the axis does not change position significantly with frequency; bz′ /ρy approaches
a positive value as f /fz becomes large, since az is negative (see Fig. 3.15).

When the resilient supporting elements have damping as well as elastic properties,
the solution of the equations of motion [see Eq. (3.31a)] becomes too laborious for
general use. Responses of systems with damping have been obtained for several typi-
cal cases using a digital computer. Figures 3.26 A, B, and C show the response at three
points in the body of the system shown in Fig. 3.15, with the excitation u = u0 sin ωt.
The weight of the body is 45 lb; each of the four resilient supporting elements has 
a stiffness kz = 1,050 lb/in. and stiffness ratios kx/kz = ky/kz = 1⁄2. The critical damping
coefficients in the X, Y, Z directions are taken as ccx = 2
4�k�xm�, ccy = 2
4�k�ym�, ccz =
2
4�k�zm�, respectively, where the expression for ccz follows fromthe single degree-
of-freedom case defined by Eq. (2.12). The fractions of critical damping are cx/ccx =

(ax/ρy)2 − (f /fz)2

��
(az/ρy)(f /fz)2

bz′�
ρy
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FIGURE 3.26A Response curves for point 1 with damping in the resilient supports in the system
shown in Fig. 3.15. The response is the ratio of the amplitude at point 1 of the rigid body in the X
direction to the amplitude of the foundation in the X direction (x0/u0). The fraction of critical
damping c/cc is the same in the X, Y, Z directions.
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cy /ccy = cz/ccz = c/cc , the parameter of the curves in Figs. 3.26A, B, and C. Coordinates
locating the resilient elements are ax = ±5.25 in., ay = ±3.50 in., and az = −6.50 in. The
radii of gyration with respect to the X, Y, Z axes are ρx = 4.40 in., ρy = 5.10 in., and 
ρz = 4.60 in.

Natural frequencies calculated from Eqs. (3.37) and (3.40) are fz = 30.0 Hz;
fxβ = 43.7 Hz, 15.0 Hz; and fyα = 43.2 Hz, 11.7 Hz. The fraction of critical damping 
c/cc varies between 0 and 0.25. Certain characteristic features of the response curves
in Figs. 3.26A, B, and C are:

1. The relatively small response at the frequency of 24.2 Hz in Fig. 3.26C occurs
because point 3 lies near the axis of rotation of the rigid body at that frequency. Point 2
lies near the axis of rotation at higher frequencies, and the response becomes corre-
spondingly low, as shown in Fig. 3.26B. The position of the axis of rotation changes rap-
idly for small changes of frequency in the low- and intermediate-frequency range
(indicated by the sharp dip in the curves for small damping in Fig. 3.26C) and varies
asymptotically toward a final position as the forcing frequency increases (see Fig.
3.25).

2. The effect of damping on the magnitude of the response at the higher and
lower natural frequencies in coupled modes is illustrated. When the fraction of crit-
ical damping is between 0.01 and 0.10, the response at the lower of the coupled nat-
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FIGURE 3.26B Response curves at point 2 in the system shown in Fig. 3.15. See caption for
Fig. 3.26A.

8434_Harris_03_b.qxd  09/20/2001  11:32 AM  Page 3.45



ural frequencies is approximately 10 times as great as the response at the higher of
the coupled natural frequencies.With greater damping (c/cc ≥ 0.15), the effect of res-
onance in the vicinity of the higher coupled natural frequency becomes so slight as
to be hardly discernible.

Two Planes of Symmetry with Resilient Supports Inclined in One Plane Only.
The system is shown in Fig. 3.21, and the excitation is u = u0 sin ωt. The conditions of
symmetry are defined by Eqs. (3.33), (3.35), and (3.38). The response is entirely in
the xc , β coupled mode with the following amplitudes:

xc0
=

� �2
− � cos2 φ + sin2 φ�� �2

u0 � �4

− A� �2

+ � �2

(3.58)

β0
=

−�� cos2 φ + sin2 φ�� � + �1 − �� � sin φ cos φ�� �2

u0/ρy � �4

− A� �2

+ � �2

where A is defined after Eq. (3.45). A similar set of expressions may be written for
the response in the yc , α coupled mode when the excitation is the motion v = v0

sin ωt of the foundation:

yc 0
=

� sin2 φ + cos2 φ�� �2
− � �2

v0 � �4
− B� �2

+ � sin2 φ + cos2 φ�� �
(3.59)

α0
� �2

v0/ρx
=
� �4

− B� �2
+ � sin2 φ + cos2 φ�� �

where B is defined after Eq. (3.46). No motion occurs in the zc or γ mode since the
quantities Fz and Mz are zero in Eqs. (3.31e) and (3.31f ).

Response curves for the system shown in Fig. 3.21 when damping is included are
qualitatively similar to those shown in Figs. 3.26.The significant advantage in the use
of inclined resilient supports is the additional versatility gained from the ability to
vary the angle of inclination φ, which directly affects the degree of coupling in the xc ,
β coupled mode. For example, a change in the angle φ produces a change in the posi-
tion of the axis of pure rotation of the rigid body. In a manner similar to that used to
derive Eq. (3.57), Eqs. (3.58) yield the following expression defining the location of
the axis of rotation:

bz′ � �2
− � cos2 φ + sin2 φ�� �2

ρy
=
�� cos2 φ + sin2 φ� + �1 − � � � sin φ cos φ�� �2 (3.60)f
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BODY-INDUCED SINUSOIDAL VIBRATION

This section includes the analysis of a resiliently supported rigid body wherein the
excitation consists of forces and moments applied directly to the rigid body (or orig-
inating within the body). The system has two planes of symmetry with orthogonal
resilient supports; the modal coupling and natural frequencies for such a system are
considered above. Two types of excitation are considered: (1) a force rotating about
an axis parallel to one of the principal inertial axes and (2) an oscillatory moment
acting about one of the principal inertial axes. There is no motion of the foundation
that supports the resilient elements; thus, the following terms in Eqs. (3.31) are equal
to zero:

u = v = w = a = b = g = 0 (3.61)

Two Planes of Symmetry with Orthogonal Resilient Elements Excited by a
Rotating Force. The system excited by the rotating force is illustrated in Fig. 3.27.
The force F0 rotates at frequency ω about an axis parallel to the Y axis but spaced
therefrom by the coordinate distances dx, dz ; the force is in the XZ plane.The forces
and moments applied to the body by the rotating force F0 are
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FIGURE 3.26C Response curves at point 3 in the system shown in Fig. 3.15. See caption for
Fig. 3.26A.
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Fx = F0 cos ωt Mx = 0

Fy = 0 My = F0(dz cos ωt − dx sin ωt) (3.62)

Fz = F0 sin ωt Mz = 0

The conditions of symmetry are defined by Eqs. (3.33), (3.34), (3.35), and (3.38); and
the excitation is defined by Eqs. (3.61) and (3.62). Substituting these conditions into
the equations of motion, Eqs. (3.31) show that vibration response is not excited in the
coupled yc , α mode or in the γ mode. In the Z direction, the motion zc 0 of the body
and the force Ftz transmitted through the resilient elements can be found from Eq.
(2.30) and Fig. 2.17 since single degree-of-freedom behavior is involved. The hori-
zontal displacement amplitude xc 0 of the center-of-gravity in the X direction and the
rotational displacement amplitude β0 about the Y axis are given by

xc 0 kx
	� � − � + � �2

− � �2�2
+ � �2

F0 /4kx
=

kz � �
4

− � + � �
2

+ � �
2

�� �
2

+ � �
2

(3.63)

β0 kx
	� � − � + � �2�2

+ � � − ��2

F0 /4kxρy
=

kz � �4

− � + � �2

+ � �2�� �2
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FIGURE 3.27 Example of a rigid body on orthogonal resilient supports with
two planes of symmetry, excited by body-induced sinusoidal excitation. Alter-
native excitations are (1) the force F0 in the XZ plane rotating with angular
velocity ωt about an axis parallel to the Y axis and (2) the oscillatory moment
M0 sin ωt acting about the Y axis.There is no motion of the foundation that sup-
ports the resilient elements.
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where ax, az are location coordinates of the resilient supports, and

fz = 	 (3.64)

The amplitude of the oscillating force Ftx in the X direction and the amplitude of the
oscillating moment Mty about the Y axis which are transmitted to the foundation by
the combination of resilient elements are

Ftx = 4kx 	xc 0
2 − 2azxc 0β0 cos (φx − φβ) + az

2β0
2

(3.65)
Mty = 4kzax

2β0

where Ftx is the sum of the forces transmitted by the individual resilient elements
and Mty is a moment formed by forces in the Z direction of opposite sign at opposite
resilient supports. The angles φx and φβ are defined by

tan φx =
� − � + � �

2
− � �

2

[0° ≤ φx ≤ 360°]

tan φβ =
� − � + � �2

[0° ≤ φβ ≤ 360°]

� − � �
2�

To obtain the correct value of (φx − φβ) in Eq. (3.65), the signs of the numerator and
denominator in each tangent term must be inspected to determine the proper quad-
rant for φx and φβ.

Example 3.2. Consider an electric motor which has an unbalanced rotor, creat-
ing a centrifugal force. The motor weighs 3,750 lb, and has a radius of gyration ρy =
9.10 in.The distances dx = dy = dz = 0, that is, the axis of rotation is the Y principal axis
and the center-of-gravity of the rotor is in the XZ plane. The resilient supports each
have a stiffness ratio of kx/kz = 1.16, and are located at az = −14.75 in., ax = ±12.00 in.
The resulting displacement amplitudes of the center-of-gravity, expressed dimen-
sionlessly, are shown in Fig. 3.28; the force and moment amplitudes transmitted to
the foundation, expressed dimensionlessly, are shown in Fig. 3.29.The displacements
of the center-of-gravity of the body are dimensionalized with respect to the dis-
placements at zero frequency:

zc 0(0) =

xc 0(0) = �1 + � �2� (3.66)

β0(0) = � �2

At excitation frequencies greater than the higher natural frequency of the xc , β cou-
pled motion, the displacements, forces, and moment all continuously decrease as the
frequency increases.
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Two Planes of Symmetry with Orthogonal Resilient Elements Excited by an
Oscillating Moment. Consider the oscillatory moment M0 acting about the Y axis
with forcing frequency ω. The resulting applied forces and moments acting on the
body are

My = M0 sin ωt

Fx = Fy = Fz = Mx = Mz = 0
(3.67)

Substituting conditions of symmetry defined by Eqs. (3.33), (3.34), (3.35), and (3.38),
and the excitation defined by Eqs. (3.61) and (3.67), the equations of motion [Eqs.
(3.31)] show that oscillations are excited only in the xc , β coupled mode. Solving for
the resulting displacements,

xc 0
� �2

M0 /4kxρy

=

� �4
− � + � �2

+ � �2�� �2
+ � �2

(3.68)
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FIGURE 3.28 Response curves for the system shown in Fig. 3.27 when excited by a rotating force
F0 acting about the Y axis. The parameters of the system are kx /kz = 1.16, ax /ρy = ±1.32, az /ρy = −1.62.
Only xc , zc , β displacements of the body are excited [see Eqs. (3.63)].The displacements are expressed
dimensionlessly by employing the displacements at zero frequency [see Eqs. (3.66)].
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The amplitude of the oscillating force Ftx in the X direction and the amplitude of
the oscillating moment Mty about the Y axis transmitted to the foundation by the
combination of resilient supports are

Ftx = 4kx(xc 0 − azβ0)

Mty = 4kzax
2β0

(3.69)

where Ftx and Mty have the same meaning as in Eqs. (3.65). Low vibration transmis-
sion of force and moment to the foundation is decreased at the higher frequencies in
a manner similar to that shown in Fig. 3.29.

FOUNDATION-INDUCED VELOCITY SHOCK

A velocity shock is an instantaneous change in the velocity of one portion of a sys-
tem relative to another portion. In this section, the system is a rigid body supported
by orthogonal resilient elements within a rigid container; the container experiences
a velocity shock.The system has one plane of symmetry; modal coupling and natural
frequencies for such a system are considered above. Two types of velocity shock are
analyzed: (1) a sudden change in the translational velocity of the container and (2) a
sudden change in the rotational velocity of the container. In both instances the
change in velocity is from an initial velocity to zero. No forces or moments are
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FIGURE 3.29 Force and moment amplitudes transmitted to the foundation for the system shown
in Fig. 3.27 when excited by a rotating force F0 acting about the Y axis. The parameters of the system
are kx/kz = 1.16, ax/ρy = ±1.32, az/ρy = −1.62. The amplitudes of the oscillating forces in the X and Z
directions transmitted to the foundation are Ftx and Ftz, respectively. The amplitude of the total oscil-
lating moment about the Y axis transmitted to the foundation is Mty.
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applied directly to the resiliently supported body; i.e., only the forces transmitted by
the resilient supports act. Thus, in the equations of motion, Eqs. (3.31):

Fx = Fy = Fz = Mx = My = Mz = 0 (3.70)

The modal coupling and natural frequencies for this system have been deter-
mined when the YZ plane is a plane of symmetry and the conditions of symmetry
of Eqs. (3.33) to (3.35) apply. It is assumed that the velocity components of the
body (ẋc , ẏc , żc , α̇, β̇, γ̇) and the velocity components of the supporting container
(u̇, v̇, ẇ, ȧ, ḃ, ġ) are respectively equal at time t < 0.At t = 0, all velocity components
of the supporting container are brought to zero instantaneously. To determine the
subsequent motion of the resiliently supported body, the natural frequencies fn in
the coupled modes of response are first calculated using Eq. (3.36). Then the
response motion of the resiliently supported body to the two types of velocity
shock can be found by the analyses which follow.

One Plane of Symmetry with Orthogonal Resilient Supports Excited by a
Translational Velocity Shock. Figure 3.30 shows a rigid body supported within a
rigid container by resilient supports in such a manner that the YZ plane is a plane of
symmetry. The entire system moves with constant velocity v̇0 and without relative
motion.At time t = 0, the container impacts inelastically against the rigid wall shown
at the right.The following initial conditions of displacement and velocity apply at the
instant of impact (t = 0):

ẏc(0) = v̇0

xc(0) = yc(0) = zc(0) = α(0) = β(0) = γ(0) = 0 (3.71)

ẋc(0) = żc(0) = α̇ (0) = β̇(0) = γ̇(0) = 0

As a result of the impact, the velocity of the supported rigid body tends to continue
and is responsible for excitation of the system in the coupled mode of the yc , zc , α
motions. The maximum displacements of the center-of-gravity of the supported
body are

= �
3

n = 1
� �

= �
3

n = 1
� � (3.72)

= �
3

n = 1
� �

The maximum accelerations of the center-of-gravity of the supported body are
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�|An| �
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where the subscript m denotes maximum value and

Mn = � − � �2�
Nn = � − � �2�

(3.74)
An = Mn + 1Nn + 2 − Mn + 2Nn + 1

B = � �
3

n = 1
Mn(Nn + 1 − Nn + 2)�

The fictitious natural frequency fz is defined for mathematical purposes by Eq.
(3.37).The numerical values of the subscript numbers n, n + 1, n + 2 denote the three
natural frequencies in the coupled mode of the yc , zc , α motions determined from
Eq. (3.36). These natural frequencies are arbitrarily assigned the values n = 1, 2, 3.
When n + 1 or n + 2 equals 4, use 1 instead; when n + 2 equals 5, use 2 instead. Max-
imum displacements and accelerations may be calculated for other points in the sup-
ported rigid body by using Eqs. (3.1) except that each of the terms must be made
numerically additive. For example, the maximum value of the y displacement at the
point b having the Z coordinate bz is

ybm = ycm + |bz|αm (3.75)

since γ = 0.

ρxΣkz
�Σkyaz

fn
�
fz

Σky
�Σkz

Σkzay
�Σkyaz

fn
�
fz

Σky
�Σkz

1
��
1 − (fn/fz)2

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.53

FIGURE 3.30 Example of a rigid body supported within a rigid container by resilient elements
with YZ a plane of symmetry. Excitation is by a translational velocity shock in the Y direction. Prior
to impact the entire system moves with constant velocity v̇0 and without relative motion. The rigid
container impacts inelastically against the wall shown at the right, and yc , zc , α motions of the inter-
nally supported body result, as described mathematically by Eqs. (3.72) and (3.73).
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Since the system is assumed undamped, the response of the suspended body in
terms of displacement or acceleration consists of a superposition of three sinusoidal
components at the three natural frequencies in the coupled yc, zc , α mode. The
absolute values of terms appear in Eq. (3.75) because the maximum response is the
sum of the amplitudes of the three component vibrations which make up the over-all
response. In general, the maximum response occurs when the three component vibra-
tions reach their maximum positive or negative values at the same instant. Thus, the
maximum values of response apply both in positive and negative directions.

One Plane of Symmetry with Orthogonal Resilient Supports Excited by a
Rotational Velocity Shock. Alternative to the type of impact illustrated in Fig.
3.30, the system may be excited by imparting a rotational velocity shock (e.g., by lift-
ing and dropping one end of the container), as illustrated in Fig. 3.31. It is assumed
that the container impacts inelastically. The system has the same form of symmetry
as that shown in Fig. 3.30, and only the yc , zc , α modes are excited. The initial condi-
tions at the instant of impact (t = 0), based upon the angular velocity ȧ0 of the rigid
container about point A in Fig. 3.31, are

ẏc(0) = −dzȧ0 żc(0) = dyȧ0 ȧ(0) = ȧ0

xc(0) = yc(0) = zc(0) = α(0) = β(0) = γ(0) = 0 (3.76)

ẋc(0) = β̇(0) = γ̇(0) = 0

Note that dy and dz are negative quantities. The initial conditions in Eqs. (3.76) are
based on the assumption that motion of the rigid body relative to the container dur-
ing the fall is negligible compared to that which occurs after the impact. The maxi-
mum displacements of the center-of-gravity of the supported body are

= �
3

n = 1
�� An + (Nn + 1 − Nn + 2) + (Mn + 2 − Mn + 1)� �

= �
3

n = 1
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(3.77)

= �
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The maximum accelerations of the center-of-gravity of the supported body are
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(3.78)
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where dz and dy are the Z and Y coordinates, respectively, of the edges of the con-
tainer, as shown in Fig. 3.31, and the other quantities are the same as those appear-
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ing in Eqs. (3.72) and (3.74). The maximum response at any point in the suspended
body can be found in the manner of Eq. (3.75).

The rotational velocity ȧ 0 of the container about the corner A in Fig. 3.31 may be
induced by lifting the opposite end to a height h and dropping it.The resulting veloc-
ity ȧ 0 is

ȧ 0 = � � dy′ + dz′ 	1 − � �2
− dz′�1/2

(3.79)

where g is the acceleration of gravity, ρA is the radius of gyration of the rigid body
plus container about the corner A, h is the initial elevation of the raised end of the
container, l is the length of the container, and dy′ and dz′ are the Y and Z coordinates,
respectively, of the edges of the container with respect to the center-of-gravity of the
assembly of rigid body plus container (see Fig. 3.31).

Example 3.3. The rigid body shown in Fig. 3.31 weighs 1,500 lb and has a radius
of gyration ρx = 42 in. with respect to the X axis. The resilient supporting elements
apply forces parallel to their longitudinal axes only. Each element with its longitudi-
nal axis in the X or Y direction has a stiffness of kx = ky = 500 lb/in. Each element
whose longitudinal axis extends in the Z direction has a stiffness kz = 1,000 lb/in.The
resilient elements are positioned as shown in Fig. 3.30, and l = 168 in., dy = dy′ =
−84 in., dz = dz′ = −21 in., ρA = 308 in. The rotational velocity shock results from a
height of drop h = 36 in.

The fictitious natural frequency fz is obtained from Eq. (3.37), yielding fz =
7.22 Hz. From Eq. (3.36) or Fig. 3.14, the natural frequencies in the yc , zc , α mode are
f1 = 3.58 Hz, f2 = 6.02 Hz, and f3 = 9.75 Hz. From Eqs. (3.74), it is determined that 
M1 � 0, M2 = 11.7, M3 = −15.3, N1 = −0.1, N2 = 7.1, N3 = 25.1, A1 = 402, A2 = 2, A3 = 1,
B = 405. Sample calculations for M1 and A1 are

M1 = � − � �2� = −0.04

A1 = M2N3 − M3N2 = (11.7)(25.1) − (−15.3)(7.1) = 402

4(1,000)(68 − 26)
��

4(500)(−10.5)
3.58
�
7.22

4(500)
�
8(1,000)

1
��
1 − (3.58/7.22)2

h
�
l

h
�
l

2g
�
ρA

2

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.55

FIGURE 3.31 System shown in Fig. 3.30 excited by a rotational velocity
shock about the X axis. The shock is induced by lifting and dropping one end
of the rigid container to make inelastic impact with the foundation. If the
height of drop is h, the rotational velocity of the system about the corner A at
the instant of impact is given by Eq. (3.79). The response of the resiliently sup-
ported body is described mathematically by Eqs. (3.77) and (3.78).
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From Eq. (3.79), ȧ 0 = 0.38 rad/sec. Then Eqs. (3.78) give the maximum acceleration
of the center-of-gravity in the Y direction of the supported body as follows:

� A1 + (N2 − N3) + (M3 − M2)�
ÿcm = +� A2 + (N3 − N1) + (M1 − M3)�

+� A3 + (N1 − N2) + (M2 − M1)�

� (402) + (7.1 − 25.1) + (−15.3 − 11.7)�
= +� (2) + (25.1 + 0.1) + (0 + 15.3)�

+� (1) + (−0.1 − 7.1) + (11.7 − 0)�
= 286 in./sec2 = 0.74g

In a similar manner:

zcm = 1,580 in./sec2 = 4.09g

α̈m = 45.9 rad/sec2
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CHAPTER 4
NONLINEAR VIBRATION

Fredric Ehrich

H. Norman Abramson

INTRODUCTION

A vast body of scientific knowledge has been developed over a long period of time
devoted to a description of natural phenomena. In the field of mechanics, rapid
progress in the past two centuries has occurred, due in large measure to the ability
of investigators to represent physical laws in terms of rather simple equations. In
many cases the governing equations were not so simple; therefore, certain assump-
tions, more or less consistent with the physical situation, were employed to reduce
the equations to types more easily soluble. Thus, the process of linearization has
become an intrinsic part of the rational analysis of physical problems. An analysis
based on linearized equations, then, may be thought of as an analysis of a corre-
sponding but idealized problem.

In many instances the linear analysis is insufficient to describe the behavior of
the physical system adequately. In fact, one of the most fascinating features of a
study of nonlinear problems is the occurrence of new and totally unsuspected phe-
nomena; i.e., new in the sense that the phenomena are not predicted, or even hinted
at, by the linear theory. On the other hand, certain phenomena observed physically
are unexplainable except by giving due consideration to nonlinearities present in
the system.

The branch of mechanics that has been subjected to the most intensive attack
from the nonlinear viewpoint is the theory of vibration of mechanical and electrical
systems. Other branches of mechanics, such as incompressible and compressible
fluid flow, elasticity, plasticity, wave propagation, etc., also have been studied as non-
linear problems, but the greatest progress has been made in treating vibration of
nonlinear systems.The systems treated in this chapter are systems with a finite num-
ber of degrees-of-freedom which can be defined by a finite number of simultaneous
ordinary differential equations; on the other hand, the mechanics of continua
involves partial differential equations. Nonlinear ordinary differential equations are
easier to handle than nonlinear partial differential equations. An interesting survey
of the entire realm of nonlinear mechanics is given in Ref. 1.

This chapter provides information concerning features of nonlinear vibration
theory likely to be encountered in practice and methods of nonlinear vibration
analysis which find ready application.

4.1
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EXAMPLES OF SYSTEMS POSSESSING

NONLINEAR CHARACTERISTICS

SIMPLE PENDULUM

As a first example of a system possessing nonlinear characteristics, consider a simple
pendulum of length l having a bob of mass m, as shown in Fig. 4.1. The well-known
differential equation governing free vibration is

ml2θ̈ + mglθ = 0 (4.1)

This equation holds only for small oscillations about the position of equilibrium since
the actual restoring moment is characterized by the quantity sin θ. Equation (4.1) thus
employs the assumption sin θ � θ.The exact, but nonlinear, equation of motion is

ml2θ̈ + mgl sin θ = 0 (4.2)

SIMPLE SPRING-MASS SYSTEM

A simple spring-mass system, as shown in Fig. 4.2, is characterized by the equation

mẍ + kx = 0

This equation is based on the assumption that the elastic spring obeys Hooke’s law;
i.e., the characteristic curve of restoring force versus displacement is a straight line.
However, many materials do not exhibit such a linear characteristic. Further, in the
case of a simple coil spring, a deviation from linearity occurs at large compression as
the coils begin to close up, or conversely, when the extension becomes so great that
the coils begin to lose their individual identity. In either case, the spring exhibits a
characteristic such that the restoring force increases more rapidly than the displace-
ment. Such a characteristic is called hardening. In a similar manner, certain systems
(e.g., a simple pendulum) exhibit a softening characteristic. Both types of character-
istic are shown in Fig. 4.3.A simple system with either softening or hardening restor-
ing force may be described approximately by an equation of the form

mẍ + k(x ± µ2x3) = 0

where the upper sign refers to the hardening characteristic and the lower to the soft-
ening characteristic.

4.2 CHAPTER FOUR

FIGURE 4.1 Simple pendulum. FIGURE 4.2 Simple spring-mass system.
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It is possible for a system with only
linear components to exhibit nonlinear
characteristics, by snubber action for
example, as shown in Fig. 4.4. A system
undergoing vibration of small amplitude
also may exhibit nonlinear characteris-
tics; for example, in the pendulum shown
in Fig. 4.5, the length depends on the
amplitude.

STRETCHED STRING WITH

CONCENTRATED MASS

The large amplitude vibration of a
stretched string with a concentrated
mass, as shown in Fig. 4.6, offers another

example of a nonlinear system. The governing nonlinear differential equation is,
approximately,

NONLINEAR VIBRATION 4.3

FIGURE 4.3 Restoring force characteristic
curves for linear, hardening, and softening vibra-
tion systems.

FIGURE 4.4 Nonlinear mechanical system with snubber
action showing piecewise linear restoring force characteristic
curve.

FIGURE 4.5 Pendulum with nonlinear char-
acteristic resulting from dependence of length
on vibration amplitude.

FIGURE 4.6 Vibration of a weighted string as
an example of a nonlinear system.
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mẅ + F0 � � w + (SE − F0) � � w3 = 0

where F0 is the initial tension, S is the cross-sectional area, and E is the elastic mod-
ulus of the string. Consider now the special case of a = b and denote the unstretched
length of the half string by l0. Then the initial tension and the restoring force
become

F0 = SE � �
Fr � SE �2� − 1�� � + �2 − �� �3�

An interesting feature of this system is that it exhibits a wide variety of either harden-
ing or softening characteristics, depending upon the value of a/l0, as shown in Fig. 4.7.

SYSTEM WITH VISCOUS

DAMPING

The foregoing examples all involve non-
linearities in the elastic components,
either as a result of appreciable ampli-
tudes of vibration or as a result of pecu-
liarities of the elastic element. Consider
a simple spring-mass system which also
includes a dashpot. The usual assump-
tions pertaining to this system are that
the spring is linear and that the motion is
sufficiently slow that the viscous resist-
ance provided by the dashpot is pro-
portional to the velocity; therefore, the
governing equation of motion is linear.
Frequently, the dashpot resistance is

more correctly expressed by a term proportional to the square of the velocity. Fur-
ther, the resistance is always such as to oppose the motion; therefore, the nonlinear
equation of motion may be written

mẍ + c|ẋ|ẋ + kx = 0

BELT FRICTION SYSTEM

The system shown in Fig. 4.8A involves a nonlinearity depending upon the dry fric-
tion between the mass and the moving belt.The belt has a constant speed v0, and the
applicable equation of motion is

mẍ + F(ẋ) + kx = 0

where the friction force F(ẋ) is shown in Fig. 4.8B. For large values of displacement,
the damping term is positive, has positive slope, and removes energy from the sys-

w
�
a

a
�
l0

w
�
a

a
�
l0

a − l0�
l0

a3 + b3

�
2a3b3

l
�
ab
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FIGURE 4.7 Restoring force characteristics
for the weighted string shown in Fig. 4.6.
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tem; for small values of displacement, the damping term is negative, has negative
slope, and actually puts energy into the system. Even though there is no external
stimulus, the system can have an oscillatory solution, and thus corresponds to a non-
linear self-excited system. (See Chap. 5.)

SYSTEMS WITH ASYMMETRIC STIFFNESS

The aforementioned examples of nonlinear stiffness, typified by the stiffness varia-
tions in Figs. 4.3, 4.4, and 4.7, all may be characterized as symmetric.That is, the vari-
ation in the absolute value of the restoring force with displacement in the positive
direction is identical to the variation in the absolute value of the restoring force with
displacement in the negative direction.As will be seen in the following sections, sym-
metric stiffness distributions result in changes in the shape of the resonant peak of
the response curve and slight distortion in the waveform of the dynamic motion
without changing the basic synchronism between forcing function and response. But
many more diverse phenomena and much more profound changes are encountered
when dealing with asymmetric stiffness distributions.

A typical physical situation is encountered in the dynamics of rotating machinery
where a softly mounted rotor is located eccentrically within the small clearance of a
motion limiting stiff stator as illustrated in Fig. 4.9A and C. When rotating with some
unbalance in the rotor, the vertical component of the unbalance force will cause
intermittent local contact with the stiff stator, resulting in a “bouncing” motion of
the rotor.The stiffness characteristic for the vertical motion is asymmetric. In its sim-
plest form, it may be represented as a bilinear relationship—very soft for vertical
motion in the upward direction and very stiff for vertical motion in the downward
direction, as illustrated in Fig. 4.9B. More explicitly,

k = K1 x > 0

k = K2 x < 0

Many other examples of nonlinear systems are given in the references of this
chapter.

NONLINEAR VIBRATION 4.5

FIGURE 4.8A Belt friction system which ex-
hibits self-excited vibration.

FIGURE 4.8B Damping force characteristic
curve for the belt friction system shown in Fig.
4.8A.
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DESCRIPTION OF NONLINEAR PHENOMENA

This section describes briefly, largely in nonmathematical terms, certain of the more
important features of nonlinear vibration. Further details and methods of analysis
are given later.

FREE VIBRATION

Insofar as the free vibration of a system is concerned for systems with symmetric
stiffness distributions, one distinguishing feature between linear and nonlinear be-
havior is the dependence of the period of the motion in nonlinear vibration on the
amplitude. For example, the simple pendulum of Fig. 4.1 may be analyzed on the basis
of the linearized equation of motion, Eq. (4.1), from which it is found that the period 
of the vibration is given by the constant value τo = 2π/ωn. An analysis on the basis of
the nonlinear equation of motion, Eq. (4.2), leads to an expression for the period 
of the form

= 1 + 1⁄4(U)2 + 9⁄64(U)4 + 25⁄256(U)6 + . . . (4.3)

where U is related to the amplitude of the vibration Θ by the relation U = sin (Θ/2).
The linear solution thus corresponds to the first term of Eq. (4.3).The dependence of
the period of vibration on amplitude is shown in Fig. 4.10. Systems in which the period
of vibration is independent of the amplitude are called isochronous, while those in
which the period τ is dependent on the amplitude are called nonisochronous.

The dependence of period on amplitude also may be seen from the vibration
trace shown in Fig. 4.11, which corresponds to a solution of the equation

mẍ + c ẋ + k(x + µ2x3) = 0

For systems with asymmetric stiffness distributions, free undamped vibration will
display significant distortion of the natural waveform. The simple bilinear stiffness

τ
�
τo
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FIGURE 4.9 Nonlinear spring characteristic of a rotor operating with local intermittent con-
tact in a clearance.
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distribution of Fig. 4.9B will result in the system having a simple harmonic half cycle
at relatively low frequency for upward motion and a simple harmonic half cycle at
relatively high frequency for downward motion. The overall waveform is then a
combination of these two disparate half cycles as represented in Fig. 4.9D and sug-
gests a bouncing motion.

RESPONSE CURVES FOR FORCED VIBRATION OF SYSTEMS 

WITH SYMMETRIC STIFFNESS

Representations of vibration behavior in the form of curves of response amplitude
versus exciting frequency are called response curves. The response curves for an
undamped linear system acted on by a harmonic exciting force of amplitude p and
frequency ω may be derived from the equation of motion

ẍ + ωn
2x = cos ωt (4.4)

The solution has the form shown in Fig. 4.12. The vertical line at ω = ωn corresponds
not only to resonance but also to free vibration (p = 0); the amplitude in this instance
is determined by the initial conditions of the motion. In a nonlinear system the char-
acter of the motion is dependent upon the amplitude. This requires that the natural
frequency likewise be amplitude-dependent; hence, it follows that the free vibration
curve p = 0 for nonlinear systems cannot be a straight line. Figure 4.13 shows free
vibration curves (i.e., natural frequency as a function of amplitude) for hardening
and softening systems.

Figures 4.12 and 4.13 suggest that the forced vibration response curves for systems
with nonlinear restoring forces have the general form of those of a linear system but
are “swept over” to the right or left, depending on whether the system is hardening or
softening.These are shown in Fig. 4.14.The principal effect of damping in forced vibra-
tion of a nonlinear system is to limit the amplitude at resonance, as shown in Fig. 4.15.

These rightward- and leftward-leaning resonant response peaks have special
meaning to the dynamic response of the system. Consider a hardening system whose
response curve is shown in Fig. 4.15B. Suppose that the exciting frequency starts at a
low value, and increases continuously at a slow rate. The amplitude of the vibration

p
�
m

NONLINEAR VIBRATION 4.7

FIGURE 4.10 Period of free vibration of a
simple pendulum according to Eq. (4.3) and
showing the effect of nonlinear terms.

FIGURE 4.11 Deflection time-history for free
damped vibration of the nonlinear system de-
scribed by Duffing’s equation [Eq. (4.16)].
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FIGURE 4.12 Family of response curves for
the undamped linear system defined by Eq. (4.4).

FIGURE 4.13 Free vibration curves (natural
frequency as a function of amplitude) in the
response diagram for linear, hardening, and soft-
ening vibration systems [see Eq. (4.49)].

FIGURE 4.14 Response curves for undamped nonlinear systems with hardening and softening
restoring force characteristics [see Eq. (4.50)].

FIGURE 4.15 Response curves for damped nonlinear systems with hardening and softening restor-
ing force characteristics [see Eq. (4.52)].
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also increases, but only up to a point. In particular, at the point of vertical tangency
of the response curve, a slight increase in frequency requires that the system perform
in an unusual manner; i.e., that it “jump” down in amplitude to the lower branch of
the response curve. This experiment may be repeated by starting with a large value
of exciting frequency but requiring that the forcing frequency be continuously
reduced.A similar situation again is encountered; the system must jump up in ampli-
tude in order to meet the conditions of the experiment. This jump phenomenon is
shown in Fig. 4.16 for both the hardening and softening systems.2 The jump is not
instantaneous in time but requires a few cycles of vibration to establish a steady-
state vibration at the new amplitude.

There is a portion of the response curve which is “unattainable”; it is not possible to
obtain that particular amplitude by a suitable choice of forcing frequency.Thus, for cer-
tain values of ω there appear to be three possible amplitudes of vibration but only the
upper and lower can actually exist. If by some means it were possible to initiate a
steady-state vibration with just the proper amplitude and frequency to correspond to
the middle branch, the condition would be unstable; at the slightest disturbance the
motion would jump to either of the other two states of motion. The direction of the
jump depends on the direction of the disturbance. Thus, of the three possible states of
motion, one in phase and two out-of-phase with the exciting force, the one having the

larger amplitude of the two out-of-phase
motions is unstable. This region of insta-
bility in the response diagram is defined
by the loci of vertical tangents to the
response curves, and is shown for a hard-
ening system in Fig. 4.16C.

RESPONSE CURVES FOR

FORCED VIBRATION OF

SYSTEMS WITH ASYMMETRIC

STIFFNESS

The system pictured in Fig. 4.9 is typical
of systems with asymmetric stiffness
characteristics, and its response3,4 in-

NONLINEAR VIBRATION 4.9

FIGURE 4.16 Jump phenomenon in hardening and softening systems.

FIGURE 4.16C Instability region defined by
the loci of vertical tangents of the damped
response curves for the hardening system.
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cludes a variety of phenomena, including regions of chaotic response,1 not observed
in systems with symmetric stiffness characteristics.

The equations of motion in the plane normal to the plane of contact, with a stiff-
ness of k1 when the rotor is deflected from its rest position in the soft direction and
a stiffness k2 when the rotor is deflected from its rest position in the hard direction,
may be integrated numerically using a simple trapezoidal integration procedure.The
rest position of the rotor is taken at the contact point, so the break point of the bilin-
ear elastic characteristic is at zero deflection. The system is then simply character-
ized by only two parameters—the ratio of the stiffnesses β = k1/k2 and z1, the linear
damping ratio of the system referred to critical damping of the soft system—when
operated at a given rotational speed s, which is taken in normalized format as the
ratio of rotational frequency to the system natural frequency.

For typical values and z1 and β at any speed s, the numerical model may be used
to compute the orbit of the rotor mass point as the orthogonal coordinates of the
motion X and Y, where each of the coordinates is normalized as the ratio of the
deflection from the rest position to the unbalance mass eccentricity. In considering
the response over a large range of rotational speed, the motion may be simply char-
acterized at any particular speed as Yp, the local peak value(s) of the normalized
amplitude in the direction of the nonlinear stiffness. As shown in Fig. 4.17A in com-
parison with the response of an equivalent system with a linear spring support stiff-
ness, a plot of this parameter over a range of speeds is quite effective in detecting
and identifying various different response phenomena.

Superharmonic Response.5,6 Fig. 4.17B characterizes superharmonic response
at subcritical speed. Shown here at approximately one-half critical speed, the rotor
is bouncing at approximately its natural frequency against the hard surface of the

4.10 CHAPTER FOUR

FIGURE 4.17A Identification of various classes of nonlinear behavior in the
peak amplitude response curve—typical subcritical/critical/supercritical regime
(z1 = 0.200; β = 0.002).
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FIGURE 4.17B Identification of various classes of nonlinear behavior in the
peak amplitude response curve—detail of superharmonic pseudo-critical peak and
interorder transition zone (z1 = 0.05; β = 0.005).

FIGURE 4.17C Identification of various classes of nonlinear behavior in the peak
amplitude response curve—detail of transcritical spontaneous sidebanding (z1 =
0.002; β = 0.002).
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contact point, energized at every other bounce by the component of the unbalance
centrifugal force as suggested in Fig. 4.18.The dominant frequency of the response is
then precisely 2 times operating speed. Such a pseudo-critical speed is possible for
any integer order M at approximately 1/M times critical speed and with a significant
frequency component of precisely M times operating speed or approximately equal
to the natural frequency.

Transition between Successive Superharmonic Orders.6 In between the suc-
cessive superharmonic response zones (i.e., between the Mth and (M − 1)th order
superharmonic responses) there may occur a regime of irregular response. Most
commonly, the response may be chaotic, as identified as Zone II in Fig. 4.17B and
shown in Fig. 4.19A. For such chaotic motion, the Poincaré section, which is a stro-
boscopic view of the phase-plane plot of velocity versus displacement at a reference
angle of shaft rotation, is effectively a slice of the system’s attractor as shown in Fig.
4.19B. The chaotic motion may be preceded on one side by a cascade of period-
doubling bifurcations in the trace of peak amplitude Yp, as suggested in Zone I of
Fig. 4.17B. Another pattern of transition response is periodic in waveform.As shown
in Zone III of Fig. 4.17B, instead of having an unending series of local peaks with no
identifiable periodicity of repetitions as would be the case in truly chaotic motion,
the response appears to have clusters of K bounces that actually repeat every L rota-
tions to give a major periodicity of K/L times s. In both the chaotic and periodic
transition zones, the response has a significant component at or near the system’s
natural frequency.

Ultra-Subharmonic Response in Transcritical Response (Subcritical).7, 8 A
unique response has been identified which appears in very lightly damped, highly non-
linear systems operating in the transcritical range, as shown in Fig. 4.17C. It has been
observed that one of the dominant sidebands occurs at approximately critical fre-
quency, and the sideband separation is generally a whole-number fraction |1/(J + 1)| of

4.12 CHAPTER FOUR

FIGURE 4.18 Subcritical superharmonic response—waveform (z1 = 0.050; β =
0.005; s = 0.525; M = 2).
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the operating speed and, in the Jth order manifestation (that is, J = −1, −2, −3, . . .) of
subcritical spontaneous sidebanding when the speed is approximately (J + 1)/J times
the natural frequency, the dominant frequency is precisely J/(J + 1) times the rota-
tive speed or approximately equal to the natural frequency. The waveform, shown in
Fig. 4.20, is periodic in nature. There appear to be transition zones between succes-

NONLINEAR VIBRATION 4.13

FIGURE 4.19A Subcritical chaotic transition between successive superhar-
monic orders—waveform (z1 = 0.050; β = 0.005; s = 0.560; 2 < M < 1).

FIGURE 4.19B Subcritical chaotic transition between successive superharmonic
orders—Poincaré section (z1 = 0.050; β = 0.005; s = 0.560; 2 < M < 1).
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sive orders of J when the response has a dominant frequency approximately equal to
the system’s natural frequency and the waveform may be chaotic. The general phe-
nomenon has been referred to as ultra-subharmonic response. It has also been
called spontaneous sidebanding because the sidebands appear around the center
forcing frequency without the presence of and interaction with a second external
forcing frequency. In a more general formulation,9 it has been noted that such ultra-
subharmonic response can be found in a speed range just below the Mth-order sub-
harmonic peak at a rotational speed which is approximately (MJ + 1)/J times the
natural frequency (where J = −1, −2, −3, . . .) with a dominant response frequency
precisely equal to J/(MJ + 1) times the rotational speed.

Synchronous Resonant Response. Synchronous critical response in the nonlin-
ear system, shown in Fig. 4.17A, is very similar to that of the linear system except for
the distortion of the waveform reflecting the bouncing nature of the motion illus-
trated in Fig. 4.21. Although the dominant frequency component is that of the forc-
ing frequency or operating speed which is close to the natural frequency of the
system, the bouncing waveform produces significant spectral content at whole num-
ber multiples of the operating speed.

Ultra-Subharmonic Response in Transcritical Response (Supercritical).8 As
shown in Fig. 4.17C, ultra-subharmonic response or spontaneous sidebanding can
occur at speeds slightly higher than critical speed, very similar in nature to the
response already noted above which occurs at slightly subcritical speeds.Again, the
waveform is periodic in nature. In the Jth order manifestation (that is, J = 1, 2, 3, . . .)
of supercritical spontaneous sidebanding, when the rotative speed is approximately
(J + 1)/J times the natural frequency, the dominant frequency is precisely J/(J + 1)
times the rotative speed, or approximately equal to the natural frequency. Once
again, there appears to be transition zones between successive orders of J when the
response has a dominant frequency approximately equal to the natural frequency

4.14 CHAPTER FOUR

FIGURE 4.20 Transcritical spontaneous sidebanding—waveform (z1 = 0.001; β =
0; s = 0.900; J = −10).
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and the waveform may be chaotic. Analogous to the general finding for subcritical
ultra-subharmonic response, it has been noted9 that such ultra-subharmonic
response can be found in a speed range just above the Mth-order subharmonic
peak at a rotational speed which is approximately (MJ + 1)/J times the natural fre-
quency (where J = 1, 2, 3, . . .) with a dominant repsonse frequency precisely equal
to J/(MJ + 1) times the rotational speed.

Subharmonic Response.10–14 The pseudo-critical peak at 2 times critical speeds
shown in Fig. 4.17A exemplifies subharmonic response at supercritical speed.With a
peak amplitude of the same order of magnitude as critical response, the rotor is
bouncing at its natural frequency against the hard surface of the contact point as
depicted in Fig. 4.22 and is subjected to the periodic component of the unbalance
centrifugal force twice every bounce. Only one of the two pulses of unbalance force
is effective in energizing the bouncing motion in the course of each bounce, so the
dominant frequency of the response is then precisely one-half the operating speed.
Such a pseudo-critical is possible for any integer order N at a rotational speed
approximately N times critical speed and with a dominant frequency of precisely 1/N
times operating speed or approximately the system natural frequency.

Transition between Successive Subharmonic Orders. The transition response
between successive subharmonic orders is quite analogous to the transition response
between successive superharmonic orders previously noted. In between the succes-
sive subharmonic response zones (i.e., between the Nth and (N + 1)th order subhar-
monic responses) there may occur a regime of irregular response. The response has
been noted by many researchers to be chaotic,1,15–22 as identified as Zone II in Fig.
4.17A and illustrated in Fig. 4.23A. The chaotic motion may be preceded on one side
by a cascade of period-doubling bifurcations in the trace of peak amplitude Yp, as
suggested in Zone I of Fig. 4.17A. Another pattern of transition response is periodic
in waveform.As shown in Zone III of Fig. 4.17A, instead of having an unending series

NONLINEAR VIBRATION 4.15

FIGURE 4.21 Critical synchronous resonant response—waveform (z1 = 0.200; β =
0.005; s = 1.050).
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FIGURE 4.22 Supercritical subharmonic response—waveform (z1 = 0.200; β =
0.005; s = 2.150; N = 2).

FIGURE 4.23A Supercritical chaotic transition between successive subharmonic
orders—waveform (z1 = 0.200; β = 0.005; s = 1.600; 1 < N < 2).
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of local peaks with no identifiable periodicity of repetitions as would be the case in
truly chaotic motion, the response appears to have clusters of K bounces that actually
repeat every L rotations to give a major periodicity of K/L times s. In both the chaotic
and periodic transition zones, the response has a significant component at or near the
system’s natural frequency. As with subcritical chaotic transition zones, a Poincaré
section of chaotic motion in a supercritical chaotic transition zone is effectively a slice
of the system’s attractor as shown in Fig. 4.23B.

OTHER PHENOMENA

Self-Excited Vibration.* Consider the nonlinear equation of motion

mẍ + c(x2 − 1) ẋ + kx = 0

This is known as Van der Pol’s equation and may be written alternatively

ẍ − ε(1 − x2) ẋ + κ 2x = 0 (4.5)

The principal feature of this self-excited system resides in the damping term; for small
displacements the damping is negative, and for large displacements the damping is
positive. Thus, even an infinitesimal disturbance causes the system to oscillate; how-
ever, when the displacement becomes sufficiently large, the damping becomes posi-
tive and limits further increase in amplitude. This is shown in Fig. 4.24. Such systems,
which start in a spontaneous manner, often are called soft systems in contrast with
hard systems which exhibit sustained oscillations only if a shock in excess of a certain

NONLINEAR VIBRATION 4.17

* A general treatment of self-excited vibration is given in Chap. 5.

FIGURE 4.23B Supercritical chaotic transition between successive subharmonic
orders—Poincaré section (z1 = 0.200; β = 0.005; s = 1.600; 1 < N < 2).
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level is applied. Note that stability ques-
tions arise here (which are different from
those discussed earlier in connection
with jump phenomena) concerning the
existence of one or more limiting ampli-
tudes, such as the one noted above in the
Van der Pol oscillator.

Relaxation Oscillations. As shown
in Fig. 4.18, the motion of the Van der
Pol oscillator is very nearly harmonic for
c/m = 0.1 while the motion is made up of
relatively sudden transitions between
deflections of opposite sign for c/m =
10.0. The period of the harmonic motion

for c/m = 0.1 is determined essentially by the linear spring stiffness k and the mass m;
the period of the motion corresponding to c/m = 10.0 is very much larger and
depends also on c. Thus, it is possible to obtain an undamped periodic oscillation in
a damped system as a result of the particular behavior of the damping term. Such
oscillations are often called relaxation oscillations.

Asynchronous Excitation and Quenching. In linear systems, the principle of
superposition is valid, and there is no interaction between different oscillations.
Moreover, the mathematical existence of a periodic solution always indicates the
existence of a periodic phenomenon. In nonlinear systems, there is an interaction
between oscillations; the mathematical existence of a periodic solution is only a nec-
essary condition for the existence of corresponding physical phenomena.When sup-
plemented by the condition of stability, the conditions become both necessary and
sufficient for the appearance of the physical oscillation. Therefore, it is conceivable
that under these conditions the appearance of one oscillation may either create or
destroy the stability condition for another oscillation. In the first case, the other
oscillation appears (asynchronous excitation), and in the second case, disappears
(asynchronous quenching). The term asynchronous is used to indicate that there is
no relation between the frequencies of these two oscillations.

Entrainment of Frequency. According to linear theory, if two frequencies ω1 and
ω2 are caused to beat in a system, the period of beating increases indefinitely as ω2

approaches ω1. In nonlinear systems, the beats disappear as ω2 reaches certain val-
ues. Thus, the frequency ω 1 falls in synchronism with, or is entrained by, the fre-
quency ω2 within a certain range of values. This is called entrainment of frequency,
and the band of frequencies in which entrainment occurs is called the zone of
entrainment or the interval of synchronization. In this region, the frequencies ω 1 and
ω2 combine and only vibration at a single frequency ensues.

EXACT SOLUTIONS

It is possible to obtain exact solutions for only a relatively few second-order nonlin-
ear differential equations. In this section, some of the more important of these exact
solutions are listed. They are exact in the sense that the solution is given either in
closed form or in an expression that can be evaluated numerically to any desired
degree of accuracy. Some general examples follow.

4.18 CHAPTER FOUR

FIGURE 4.24 Displacement time-histories for
Van der Pol’s equation [Eq. (4.5)] for various
values of the damping.
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FREE VIBRATION

Consider the free vibration of an undamped system with a general restoring force
f(x) as governed by the differential equation

ẍ + κ 2f(x) = 0

This can be rewritten as

+ 2κ 2f(x) = 0 (4.6)

and integrated to yield

ẋ2 = 2κ 2 �Χ

x
f(�) d�

where � is an integration variable and X is the value of the displacement when ẋ = 0.
Thus

|ẋ| = κ�2	
�X

x
f(�) d�

This may be integrated again to yield

1 dζ
t − t0 = κ�2	 �x

0 
�Χ

ζ
f(�) d�

(4.7)

where ζ is an integration variable and t0 corresponds to the time when x = 0.The dis-
placement-time relation may be obtained by inverting this result. Considering the
restoring force term to be an odd function, i.e.,

f(−x) = −f(x)

and considering Eq. (4.7) to apply to the time from zero displacement to maximum
displacement, the period τ of the vibration is

4 dζ
τ =

κ�2	 �X

0 
�Χ

ζ
f(�) d�

(4.8)

Exact solutions can be obtained in all cases where the integrals in Eq. (4.8) can be
expressed explicitly in terms of X.

Case 1. Pure Powers of Displacement. Consider the restoring force function

f(x) = xn

Equation (4.8) then becomes

dζ
τ = 
 �X

0 �X	n	+	1−	 ζ	n	+	1	

Setting u = ζ/X,

4 duτ =
κ�Χ	n	−	1	 �
 �1

0 �1	 −	 u	n	+	1	�
n + 1
�

2

n + 1
�

2
4
�
κ

d( ẋ2)
�

dx
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The expression within the parentheses depends only on the parameter n and is
denoted by ψ(n). Thus

τ = ψ(n) (4.9)

The factor ψ(n) may be evaluated numerically to any desired degree of accuracy, and
is tabulated in Table 4.1.

Case 2. Polynomials of Displacement. Consider the binomial restoring force

f (x) = x n + µxm [m > n ≥ 0]

Introducing this expression into Eq. (4.8) and performing the integrations:

4 duτ =
κ��Χ n − 1 �
 �1

0 �(1	 +		µ̄	)	−	 (	u	n	+	1	+		µ̄	u	m	+	1)	� (4.10)

where

µ̄ = µX m − n� � (4.11)

For particular values of n, m, and µ̄, the expression within the parentheses can be
evaluated to any desired degree of accuracy by numerical methods.The extension of
this method to higher-order polynomials can be made quite readily.

Case 3. Harmonic Function of Displacement. Consider now the problem of the
simple pendulum which has a restoring force of the form

f (x) = sin x

Introducing this relation into Eq. (4.7):

dζt − t0 = �x

0 
sin2 − sin2

If x = X and t0 = 0, this integral can be reduced to the standard form of the complete
elliptic integral of the first kind:

dvK̂(α) = �π/2

0 �1	 −	 s	in	2	α	 s	in	2	v	
(4.12)

Thus, the period of vibration is

τ = K̂ � � (4.13)

The displacement-time function can be obtained by inversion and leads to the
inverse elliptic functions. Replacing sin α by U in Eq. (4.12), expanding by the bino-
mial theorem, and then integrating yields Eq. (4.3).

Case 4. Velocity Squared Damping. As indicated by Eq. (4.6), the introduction
of any other function of ẋ2 does not complicate the problem. Thus, the differential
equation*

X
�
2

1
�
κ

ζ
�
2

X
�
2

1
�
2κ

n + 1
�
m + 1

n + 1
�

2

4��
κ��Χ n − 1
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* The ± sign is employed here, and elsewhere in this chapter, to account for the proper direction of the
resisting force. Consequently, reference frequently is made to upper or lower sign rather than to plus or minus.
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ẍ ± ẋ2 + κ 2f(x) = 0

can be reduced to

± δẋ2 = 2κ 2f(x)

Integrating the above equation,

ẋ2 = 2κ 2e�δx �X

x
e±δξf(ξ) dξ

Integrating again,

t = �x

x0

where η is an integration variable.

FORCED VIBRATION

Exact solutions for forced vibration of nonlinear systems are virtually nonexistent,
except as the system can be represented in a stepwise linear manner. For example,
consider a system with a stepwise linear symmetrical restoring force characteristic,
as shown in Fig. 4.4. Denote the lower of the two stiffnesses by k1, the upper by k2,
and the displacement at which the change in stiffness occurs by x1.Thus, the problem
reduces to the solution of two linear differential equations:

mẍ′ + k1x′ = ±P sin ωt [x1 ≥ x′ ≥ 0] (4.14a)

mẍ″ + (k1 − k2)x1 + k2x″ = ±P sin ωt [x″ ≥ x1] (4.14b)

where the upper sign refers to in-phase exciting force and the lower sign to out-of-
phase exciting force. The appropriate boundary conditions are

x′(t = 0) = 0

x′(t = t1) = x″(t = t1) = x1

(4.15)
ẋ′(t = t1) = ẋ″(t = t1)

ẋ″ �t = � = 0

The solutions of Eqs. (4.14) are

x′ = sin ωt + A1 cos ω1t + B1 sin ω1t

x″ = sin ωt + A2 cos ω 2t + B2 sin ω 2t + �1 − �x1

where ω1
2 = k1/m, ω2

2 = k2/m, and the constants A1, A2, B1, B2 may be evaluated from
the boundary conditions, Eq. (4.15).

This analysis also applies to the case of free vibration by setting P = 0. By assign-
ing various values to k1 and k2, a wide variety of specific problems may be treated. It
is not necessary to restrict the restoring forces to odd functions.

k1�
k2

±P/k2��
1 − ω2/ω2

2

±P/k1��
1 − ω2/ω1

2

π
�
2ω

dη
�
ẋ(η)

d(ẋ2)
�

dx

δ
�
2
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NUMERICAL METHODS AND CHAOTIC

DYNAMICS

The advent of availability of high-speed digital computation in the 1960s has had a
profound effect on the study of nonlinear vibrations, not only in the speed, efficiency,
and extent of the solutions which were made available but also in the variety of prob-
lems that could be studied and the new phenomena that were discovered. The
methodology is quite straightforward.A timewise integration of the equation or equa-
tions of motion is carried out using any appropriate numerical integration scheme—
from the simplest trapezoidal format to more complex schemes such as that of
Runge-Kutta.The criteria for selection of the integration scheme are dependent on:

1. The nature of the solution being sought. A solution that is expected to have
sharp discontinuities in amplitude or velocity would suggest the use of a linear or
very low-order polynomial fit implicit in the integration scheme.

2. The efficiency of the solution scheme. Complex schemes that require more cal-
culation for each incremental step in time usually permit the use of longer steps
and hence fewer steps for a given total time interval. Conversely, simpler schemes
that require less calculation for each incremental step in time usually require the
use of shorter steps and hence more steps for a given total time interval.

The final selection of integration scheme and the size of the time step is very often
made on the basis of trial and error where the step is refined to smaller and smaller
values until the successive solutions no longer show a dependence on step size.

In cases where the requirement is for the stabilized “steady-state” solution to a
dynamics problem (rather that the transient solution from a prescribed set of initial
conditions), another precaution must be taken in numerical solution. The solution
must be run long enough so that the initial transient from an arbitrarily selected set
of initial conditions has decayed to negligible value. Here again, actual trials are gen-
erally conducted to assure the stabilization of the solution to the required accuracy.
The issue does represent an important limitation when solutions are sought for the
behavior of systems with very low damping.

Other limitations of numerical methods relate to their similitude with the actual
physical systems which they are intended to model:

1. Numerical integration techniques are generally ineffective in deriving solutions
in regions where those solutions are unstable in the sense that they are physically
not achievable (such as illustrated in Fig. 4.16C).

2. For systems that have multivalued solutions, the particular solution branch which
is achieved on any particular trial is dependent on the conditions set for initiating
the computation sequence.

CHAOTIC DYNAMICS

Perhaps the most fundamental impact of the digital computer on the field of nonlin-
ear vibration had been to make possible the discovery and the elucidation of chaotic
vibrations.1, 20

Chaotic vibrations are characterized by an irregular or ragged waveform such as
illustrated in Figs. 4.19A and 4.23A. Although there may be recurrent patterns in the
waveform, they are not precisely alike, and they repeat at irregular intervals, so the
motion is truly nonperiodic as is implied in Zone II of Figs. 4.17A and 4.17B. Indeed,

4.22 CHAPTER FOUR
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care must be taken in characterizing vibration as chaotic since there are irregular
motions which mimic chaotic response but in which there are recurrent patterns which
repeat at regular intervals, such as are implied in Zone III of Figs. 4.17A and 4.17B.

Another characteristic of chaotic vibration is that, if the numerical solution (and,
presumably, the physical system it represents) is started twice at nearly identical ini-
tial conditions, the two solutions will diverge exponentially with time.

For all its irregularity, there is a certain basic structure and patternation implicit
in chaotic vibration. As one can infer from the response curves of local peak ampli-
tude for chaotic vibration shown in Zone II of Figs. 4.17A and 4.17B, the maximum
amplitude is bounded.

A remarkable response behavior associated with chaotic vibration is the cascade
of period-doubling bifurcations or tree-like structure in peak amplitude response
curve (illustrated in Zone I of Figs. 4.17A and 4.17B) that may take place in the tran-
sition from simple periodic response to chaotic response.

But the most remarkable property of chaotic vibrations is evident in the Poincaré
section of the motion, shown typically in Figs. 4.19B and 4.23B. The Poincaré section
contains a large number of discrete points of velocity plotted as a function of dis-
placement of the chaotic motion where the points are sampled stroboscopically with
reference to a particular phase angle of the forcing periodic function. Rather than a
random scatter of points, the Poincaré section generally reveals striking patterns.
The Poincaré section is sometimes referred to as an attractor.

Chaotic vibration also differs from random motion in that the power frequency
spectrum generally has distinct peaks rather than consisting of broadband noise.
There will often be not only synchronous response peaks at the forcing function fre-
quency as in the response of linear systems, but there will also be a significant asyn-
chronous response peak or peaks at the system’s natural frequency of frequencies.

APPROXIMATE ANALYTICAL METHODS

A large number of approximate analytical methods of nonlinear vibration analysis
exist, each of which may or may not possess advantages for certain classes of prob-
lems. Some of these are restricted techniques which may work well with some types
of equations but not with others. The methods which are outlined below are among
the better known and possess certain advantages as to ranges of applicability.

Approximate analytical methods, while useful for yielding insights into basic mech-
anisms and relative influence of independent variables, have been largely displaced by
numerical methods which are capable of giving very precise results for very much
more complex models by exploiting the enormous power of modern computers.

DUFFING’S METHOD

Consider the nonlinear differential equation (known as Duffing’s equation)

ẍ + κ 2(x ± µ2x3) = p cos ωt (4.16)

where the ± sign indicates either a hardening or softening system. As a first approx-
imation to a harmonic solution, assume that

x1 = A cos ωt (4.17)

and rewrite Eq. (4.16) to obtain an equation for the second approximation:

NONLINEAR VIBRATION 4.23
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ẍ2 = −(κ 2A ± 3⁄4κ 2µ2A3 − p) cos ωt − 1⁄4κ 2µ2A3 cos ωt

This equation may now be integrated to yield

x2 = (κ 2A ± 3⁄4κ 2µ2A3 − p) cos ωt + 1⁄36κ 2µ2A3 cos 3ωt (4.18)

where the constants of integration have been taken as zero to ensure periodicity of
the solution.

This may be regarded as an iteration procedure by reinserting each successive
approximation into Eq. (4.16) and obtaining a new approximation. For this iteration
procedure to be convergent, the nonlinearity must be small; i.e., κ2, µ2, A, and p must
be small quantities. This restricts the study to motions in the neighborhood of linear
vibration (but not near ω = κ, since A would then be large); thus, Eq. (4.17) must rep-
resent a reasonable first approximation. It follows that the coefficient of the cos ωt
term in Eq. (4.18) must be a good second approximation and should not be far dif-
ferent from the first approximation.23 Since this procedure furnishes the exact result
in the linear case, it might be expected to yield good results for the “slightly nonlin-
ear” case.Thus, a relation between frequency and amplitude is found by equating the
coefficients of the first and second approximations:

ω2 = κ 2(1 ± 3⁄4µ2A2) − (4.19)

This relation describes the response curves, as shown in Fig. 4.14.
The above method applies equally well when linear velocity damping is included.

RAUSCHER’S METHOD24

Duffing’s method considered above is based on the idea of starting the iteration
procedure from the linear vibration. More rapid convergence might be expected if
the approximations were to begin with free nonlinear vibration; Rauscher’s method
is based on this idea.

Consider a system with general restoring force described by the differential
equation

ω2x″ + κ 2f(x) = p cos ωt (4.20)

where primes denote differentiation with respect to ωt, and f(x) is an odd function.
Assume that the conditions at time t = 0 are x(0) = A, x′(0) = 0. Start with the free
nonlinear vibration as a first approximation, i.e., with the solution of the equation

ω 0
2x″ + κ 2f(x) = 0 (4.21)

such that x = x0(φ) (where ωt = φ) has the period 2π and x0(0) = A, x0′(0) = 0. Equa-
tion (4.21) may be solved exactly in the form of quadratures according to Eq. (4.7):

ω 0 dζφ = φ0(x) =
κ�2	

�x

A 
�A

ζ
f(ξ) dξ

(4.22)

p
�
A

1
�
ω2
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Since f(x) is an odd function and noting that ωt varies from 0 to π/2 as x varies from
0 to A,

dζ= �A

0 
�A

ζ
f(ξ) dξ

(4.23)

With ω0 and φ0 determined by Eqs. (4.23) and (4.22), respectively, the next
approximation may be found from the equation

ω1
2x″ + κ 2f(x) − p cos φ0 = 0 (4.24)

In the original differential equation, Eq. (4.20), ωt is replaced by its first approxima-
tion φ0 and ω 0 (now known) is replaced by its second approximation ω1, thus giving
Eq. (4.24).This equation is again of a type which may be integrated explicitly; there-
fore, the next approximation ω1 and φ1 may be determined. In those cases where f(x)
is a complicated function, the integrals may be evaluated numerically.

This method involves reducing nonautonomous systems to autonomous ones* by
an iteration procedure in which the solution of the free vibration problem is used to
replace the time function in the original equation, which is then solved again for t(x).
The method is accurate and frequently two iterations will suffice.

THE PERTURBATION METHOD

In one of the most common methods of nonlinear vibration analysis, the desired
quantities are developed in powers of some parameter which is considered small;
then the coefficients of the resulting power series are determined in a stepwise man-
ner. The method is straightforward, although it becomes cumbersome for actual
computations if many terms in the perturbation series are required to achieve a
desired degree of accuracy.

Consider Duffing’s equation, Eq. (4.16), in the form

ω2x″ + κ 2(x + µ2x3) − p cos φ = 0 (4.25)

where φ = ωt and primes denote differentiation with respect to φ. The conditions at
time t = 0 are x(0) = A and x′(0) = 0, corresponding to harmonic solutions of period
2π/ω.Assume that µ2 and p are small quantities, and define κ2µ2 � ε, p � εp0.The dis-
placement x(φ) and the frequency ω may now be expanded in terms of the small
quantity ε:

x(φ) = x0(φ) + εx1(φ) + ε2x2(φ) + . . .
(4.26)

ω = ω 0 + εω1 + ε2ω2 + . . .

The initial conditions are taken as xi(0) = xi′(0) = 0 [i = 1,2, . . . ].
Introducing Eq. (4.26) into Eq. (4.25) and collecting terms of zero order in ε gives

the linear differential equation

ω 0
2x0″ + κ 2x0 = 0

�2	
�
κπ

1
�
ω 0
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* An autonomous system is one in which the time does not appear explicitly, while a nonautonomous sys-
tem is one in which the time does appear explicitly.
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Introducing the initial conditions into the solution of this linear equation gives
x0 = A cos ωt and ω 0 = κ. Collecting terms of the first order in ε,

ω 0
2x1″ + κ 2x1 − (2ω 0ω1A − 3⁄4A3 + p0) cos φ + 1⁄3A3 cos 3φ = 0 (4.27)

The solution of this differential equation has a nonharmonic term of the form φ cos φ,
but since only harmonic solutions are desired, the coefficient of this term is made to
vanish so that

ω1 = �3⁄4A2 − �
Using this result and the appropriate initial conditions, the solution of Eq. (4.27) is

x1 = (cos 3φ − cos φ)

To the first order in ε, the solution of Duffing’s equation, Eq. (4.25), is

x = A cos ωt + ε (cos 3ωt − cos ωt)

ω = κ + �3⁄4A2 − �
This agrees with the results obtained previously [Eqs. (4.18) and (4.19)]. The analy-
sis may be carried beyond this point, if desired, by application of the same general
procedures.

As a further example of the perturbation method, consider the self-excited sys-
tem described by Van der Pol’s equation

ẍ − ε(1 − x2)ẋ + κ2x = 0 (4.5)

where the initial conditions are x(0) = 0, ẋ(0) = Aκ0. Assume that

x = x0 + εx1 + ε2x2 + . . .

κ2 = κ0
2 + εκ1

2 + ε2κ2
2 + . . .

Inserting these series into Eq. (4.5) and equating coefficients of like terms, the result
to the order ε2 is

x = �2 − � sin κ0t + cos κ0t + � sin 3κ0t − cos 3κ0t� − sin 5κ0t

(4.28)

THE METHOD OF KRYLOFF AND BOGOLIUBOFF2 5

Consider the general autonomous differential equation

ẍ + F(x, ẋ) = 0

which can be rewritten in the form

ẍ + κ 2x + εf(x, ẋ) = 0 [ε << 1] (4.29)

5ε2

�
124κ0

2

3ε
�
4κ0

ε
�
4κ0

ε
�
4κ0

29ε2

�
96κ0

2

p0�
A

ε
�
2κ

A3

�
32κ 2
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�
32κ 2

p0�
A
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For the corresponding linear problem (ε � 0), the solution is

x = A sin (κt + θ) (4.30)

where A and θ are constants.
The procedure employed often is used in the theory of ordinary linear differen-

tial equations and is known variously as the method of variation of parameters or
the method of Lagrange. In the application of this procedure to a nonlinear equation
of the form of Eq. (4.29), assume the solution to be of the form of Eq. (4.30) but with
A and θ as time-dependent functions rather than constants. This procedure, how-
ever, introduces an excessive variability into the solution; consequently, an addi-
tional restriction may be introduced.The assumed solution, of the form of Eq. (4.30),
is differentiated once considering A and θ as time-dependent functions; this is made
equal to the corresponding relation from the linear theory (A and θ constant) so that
the additional restriction

Ȧ(t) sin [κt + θ(t)] + θ̇(t)A(t) cos [κt + θ(t)] = 0 (4.31)

is placed on the solution. The second derivative of the assumed solution is now
formed and these relations are introduced into the differential equation, Eq. (4.29).
Combining this result with Eq. (4.31),

Ȧ(t) = −� � f[A(t) sin Φ, A(t)κ cos Φ] cos Φ

θ̇(t) = f[A(t) sin Φ, A(t)κ cos Φ] sin Φ

where Φ = κt + θ(t)

Thus, the second-order differential equation, Eq. (4.29), has been transformed into
two first-order differential equations for A(t) and θ(t).

The expressions for Ȧ(t) and θ̇(t) may now be expanded in Fourier series:

Ȧ(t) = − � � Κ0(A) + �
r

n = 1
[Κn(A) cos nΦ + Ln(A) sin nΦ]�

(4.32)

θ̇(t) = P0(A) + �
r

n = 1
[Pn(A) cos nΦ + Qn(A) sin nΦ]�

where

Κ0(A) = �2π

0
f[A sin Φ, Aκ cos Φ] cos Φ dΦ

P0(A) = �2π

0
f[A sin Φ, Aκ cos Φ] sin Φ dΦ

It is apparent that A and θ are periodic functions of time of period 2π/κ; therefore,
during one cycle, the variation of Ȧ and θ̇ is small because of the presence of the
small parameter ε in Eqs. (4.32). Hence, the average values of Ȧ and θ̇ are consid-

1
�
2π

1
�
2π

ε
�
κA

ε
�
κ

ε
�
κA(t)

ε
�
κ
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ered. Since the motion is over a single cycle, and since the terms under the summa-
tion signs are of the same period and consequently vanish, then approximately:

Ȧ � − � � K0(A)

θ̇ � P0(A)

Φ̇ � κ + P0(A)

For example, consider Rayleigh’s equation

ẍ − (α − β ẋ2)ẋ + κ 2x = 0 (4.33)

By application of the above procedures:

Ȧ = − � � Κ0(A) = − � �2π

0
(−α + βA2κ 2 cos2 Φ)Aκ cos2 Φ dΦ�

= (α − 3⁄4βA2κ 2) (4.34)

Equation (4.34) may be integrated directly:

t = 2 �A

A0

= ln

Solving for A,

1A = �1 + � − 1�e−αt�
1/2

(4.35)

where γ = 3⁄4β2κ 2 (4.36)

The application of the method to Van der Pol’s equation, Eq. (4.5), is easily
accomplished and leads to a solution in the first approximation of the form similar
to that of the perturbation solution given by Eq. (4.28).

THE RITZ METHOD

In addition to methods of nonlinear vibration analysis stemming from the idea of
small nonlinearities and from extensions of methods applicable to linear equations,
other methods are based on such ideas as satisfying the equation at certain points of
the motion or satisfying the equation in the average. The Ritz method is an example
of the latter method and is quite powerful for general studies.

One method of determining such “average” solutions is to multiply the differential
equation by some “weight function” ψn(t) and then integrate the product over a period
of the motion. If the differential equation is denoted by E, this procedure leads to

�2π

0
E⋅ψn(t) dt = 0 (4.37)
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A second method of obtaining such average solutions can be derived from the
calculus of variations by seeking functions that minimize a certain integral:

I = �t1

t0

F( ẋ,x,t) dt = minimum

Consider a function of the form

x̃(t) = a1ψ1(t) + a2ψ2(t) + . . . + anψn(t)

where the ψk(t) are prescribed functions. If x̃ is now introduced for x, then

I = I(a1, a2, . . . , an)

and a necessary condition for I to be a minimum is

= 0, = 0, . . . , = 0 (4.38)

This gives n equations of the form

= �t1

t0

� ψk + ψ̇k� dt = 0 (4.39)

for determining the n unknown coefficients. Integrating Eq. (4.39),

= � ψk�
t1

t0

+ �t1

t0

� − � ��ψk dt = 0

The first term is zero because ψk must satisfy the boundary conditions; the expres-
sion in brackets under the integral in the second term is Euler’s equation. The con-
ditions given in Eqs. (4.38) then reduce to

�t

t0

E(x̃)ψk dt = 0 [k = 1, 2, . . . , n] (4.40)

This is the same as Eq. (4.37); thus, it is not necessary to “know” the variational prob-
lem, but only the differential equation.The conditions given in Eqs. (4.40) then yield
average solutions based on variational concepts.

Examples. As a first example of the application of the Ritz method, consider the
equation

ẍ + κ 2xn = 0

for which an exact solution was given earlier in this chapter [Eq. (4.9)]. Assume a
single-term solution of the form

x̃ = A cos ωt

The Ritz procedure, defined by Eq. (4.40), gives

�2π

0
(−ω2A cos2 ωt + κ 2An cosn + 1 ωt) d(ωt) = 0

∂F
�
∂ ˜̇x

d
�
dt

∂F
�
∂ x̃

∂F
�
∂ ˜̇x

∂I
�
∂ak

∂F
�
∂ ˜̇x

∂F
�
∂x̃

∂I
�
∂ak

∂I
�
∂an

∂I
�
∂a2

∂I
�
∂a1
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from which

= An − 1�π/2

0
cosn + 1 ωt d(ωt) = An − 1ϕ(n) (4.41)

The comparable exact solution obtained previously by introducing in Eq. (4.9) the
quantity 2π/ω for the period τ is

= � � Xn − 1 = Φ(n)Xn − 1 (4.42)

Values of ϕ(n) from the approximate analysis and Φ(n) from the exact analysis are
compared directly in Table 4.1, affording an appraisal of the accuracy of the method.

TABLE 4.1 Values of the Functions ψ(n), Φ(n), ϕ(n)*

n ψ(n) Φ(n) ϕ(n)

0 1.4142 1.2337 1.2732
1 1.5708 1.0000 1.0000
2 1.7157 0.8373 0.8488
3 1.8541 0.7185 0.7500
4 1.9818 0.6282 0.6791
5 2.1035 0.5577 0.6250
6 2.2186 0.5013 0.5820
7 2.3282 0.4552 0.5469

* The mathematical expressions for ψ(n), Φ(n), and ϕ(n)
and the equations to which they refer are:

duψ(n) = 
 �1

0 �1	 −	 u	n	+	1	
[Eq. (4.9)]

Φ(n) = [Eq. (4.42)]

ϕ(n) = �π/2

0
cosn + 1 σ dσ [Eq. (4.41)]

Consider now the nonautonomous system described by Duffing’s equation

E � ẍ + κ 2(x + µ2x3) − p cos ωt = 0

Assuming

x̃ = A cos φ, φ = ωt

the Ritz condition, Eq. (4.40), leads to

�2π

0
{[(1 − η2)A − s] cos φ + µ2A3 cos3 φ} cos φ dφ

4
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π

π2/4
�
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from which the amplitude-frequency relation is

(1 − η2)A + 3⁄4µ2A3 = ± s (4.43)

where s = , η2 = (4.44)

The upper sign indicates vibration in phase with the exciting force. Equation (4.43)
describes the response curves shown in Fig. 4.14A and corresponds to Eq. (4.19)
obtained by Duffing’s method.

Application of the Ritz method to Van der Pol’s equation, Eq. (4.5), leads to the
identical result given by Eq. (4.36).

GENERAL EQUATIONS FOR RESPONSE CURVES

The Ritz method has been applied extensively in studies of nonlinear differential
equations. Some of the general equations for response curves thereby obtained are
given here, both as a further example of the application of the method and as a col-
lection of useful relations.

SYSTEM WITH LINEAR DAMPING AND GENERAL RESTORING

FORCES

Consider a system with general elastic restoring force (an odd function) and
described by the equation of motion

aẍ + bẋ + cf(x) − P cos ωt = 0

A solution may be assumed in the form

x̃ = A cos (ωt − θ) = B cos φ + C sin φ (4.45)

where φ = ωt, B = A cos θ, C = A sin θ. Introducing Eq. (4.45) according to the Ritz
conditions, and recalling that f(x) is to be an odd function,

−aω2A cos θ + bωA sin θ + cAF(A) cos θ = P
(4.46)

−aω2A sin θ − bωA cos θ + cAF(A) sin θ = 0

where F(A) = �2π

0
f(A cos σ) cos σ dσ

and σ is simply an integration variable.
Some algebraic manipulations with Eqs. (4.46) give independent equations for

the two unknowns A and θ:

[F(A) − η2]2 + 4D2η2 = � �2
(4.47)

tan θ = (4.48)

where η2 and s are defined according to Eq. (4.44) and

2Dη
��
F(A) − η2

s
�
A

1
�
πA

ω2

�
κ 2

p
�
κ 2
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κ 2 = p = D =

Equation (4.47) describes response curves of the form shown in Fig. 4.15, and Eq.
(4.48) gives the corresponding phase angle relationships. These two equations also
yield other special relations which describe various curves in the response diagram:

Undamped free vibration curve (Fig. 4.13),

η2 = F(A) (4.49)

Undamped response curves (Fig. 4.14),

η2 = F(A) � (4.50)

Locus of vertical tangents of undamped response curves (Fig. 4.17),

η2 = F(A) + A (4.51)

Damped response curves (Fig. 4.15),

η2 = [F(A) − 2D2] � 
� �2
− 4D2[F(A) − D2] (4.52)

Locus of vertical tangents of damped response curves (Fig. 4.17),

[F(A) − η2] �F(A) + A − η2� = −4D2 η2 (4.53)

The maximum amplitude of vibration is of interest.The amplitude at the point at
which a response curve crosses the free vibration curve is termed the resonance
amplitude, and is determined in the nonlinear case by solving Eqs. (4.49) and (4.52)
simultaneously. This leads to

2Dη = θ = (4.54)

The first of these two equations defines
a hyperbola in the response diagram,
describing the locus of crossing points,
as shown in Fig. 4.25; hence, the intersec-
tion of this curve with the free vibration
curve gives the resonance amplitude.
The phase angle at resonance has the
value π/2, as in the linear case.This result
is of great help in computing response
curves since the effect of damping
(except for very large values) is negligi-
ble except in the neighborhood of reso-
nance.Therefore, one may compute only
the undamped curves (which is not diffi-
cult) and the hyperbola (which does not

contain the nonlinearity); then, the effect of damping may be sketched in from
knowledge of the crossing point.
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SYSTEM WITH GENERAL DAMPING AND 

GENERAL RESTORING FORCES

The preceding analysis may be extended to include the more general differential
equation

E � ẍ + 2Dκg(ẋ) + κ 2f(x) − p cos ωt = 0

By procedures similar to those employed above:

[F(A) − η2]2 + 4D2S2(A) = � �2
(4.55)

tan θ = (4.56)

where S(A) = �2π

0
g(ωA sin σ) sin σ dσ

In the case of linear velocity damping, S(A) = η, and Eqs. (4.55) and (4.56) reduce
to Eqs. (4.47) and (4.48). The results for various types of damping forces are:

Coulomb damping: g(ẋ) = ±υ0 S(A) =

Linear velocity damping: g(ẋ) = υ1ẋ S(A) = υ1η

Velocity squared damping: g(ẋ) = υ2 ẋ|ẋ| S(A) = υ2η(Aω)

nth-power velocity damping: g(ẋ) = υnẋ|ẋ|n − 1 S(A) = υnη(Aω)n − 1ϕ(n)

where ϕ(n) is defined in Eq. (4.41) and values are given in Table 4.1.
The locus of resonance amplitudes or crossing points is now given by

2DS(A) = θ =

GRAPHICAL METHODS OF INTEGRATION

Graphical methods (or their numerical equivalents) may be employed in the analy-
sis of nonlinear vibration and often prove to be of great value both for general stud-
ies of the behavior of a particular system and for actual integration of the equation
of motion.

A single degree-of-freedom system requires two parameters to describe com-
pletely the state of the motion. When these two parameters are used as coordinate
axes, the graphical representation of the motion is called a phase-plane representa-
tion. In dealing with ordinary dynamical problems, these parameters frequently are
taken as the displacement and velocity. First consider an undamped linear system
having the equation of motion

ẍ + ωn
2x = 0 (4.57)

and the solution

π
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x = A cos ωnt + B sin ωnt

y = = −A sin ωnt + B cos ωnt
(4.58)

Eliminating time as a variable between Eqs. (4.58):

x2 + y2 = c2

Thus, the phase-plane representation is a family of concentric circles with centers at
the origin. Such curves are called trajectories. The necessary and sufficient conditions
in the phase-plane for periodic motions are (1) closed trajectories and (2) paths
described in finite time.

Now, suppose that the solution of Eq. (4.57) is not known. By introducing y = ẋ/ωn,

= ωny = −ωnx

Therefore

= − (4.59)

Thus, the path in the phase-plane is described by a simple first-order differential
equation. This process of eliminating the time always can be done in principle, but
frequently the problem is too difficult. Since the time is to be eliminated, only
autonomous systems can be treated by phase-plane methods. When an equation of
the type of Eq. (4.59) can be found, a direct solution of the problem follows since
slopes of the trajectories can be sketched in the phase-plane and the trajectories
determined by connecting the tangents; this is known as the method of isoclines. It
sometimes happens that dx = 0, dy = 0 simultaneously so that there is no knowledge
of the direction of the motion; such points in the phase-plane are called singular
points. In the present example, the origin constitutes a singular point.

Consider now a damped linear system having the equation of motion

ẍ + 2ζωnẋ + ωn
2x = 0

and the solution

x = Ce−δt cos Φ
(4.60)

y = = Ce−δt cos (Φ + σ)

where δ = ζωn = −ωn cos σ �σ > �
Φ = υt + θ

υ = ωn�1	 −	 ζ	2	 = ωn sin σ

Equations (4.60) indicate that the trajectories in the phase-plane are some form of spi-
ral (one of the simplest known of which is the logarithmic spiral). By referring to the
oblique coordinate system shown in Fig. 4.26, and recalling that sin σ is a constant and

r 2 = x 2 + y 2 − 2xy cos σ

Eqs. (4.60) reduce to

π
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�
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r = Ce−δt sin σ

This is a form of a logarithmic spiral.
The trajectories also could be found

in a rectangular coordinate system, by
the method of isoclines, without knowl-
edge of the solution [Eqs. (4.60)]. The
governing differential equation is

= − (4.61)

The resulting trajectories can be sketched
in the phase-plane. On the other hand,
Eq. (4.61) also can be integrated analyti-
cally by use of the substitution z = y/x and
separation of the variables:

y2 + 2ζxy + x2 = C exp � tan−1 �
This is a spiral of the form of Eqs. (4.60).

The method of isoclines is extremely useful in studying the behavior of solutions
in the neighborhood of singular points and for the related questions of stability of
solutions. In this sense, phase-plane methods may be thought of as topological meth-
ods. However, it is desirable also to study the over-all solutions, rather than solutions
in the neighborhood of special points, and preferably by some straightforward
method of graphical integration. Such integration methods are given in the follow-
ing sections of this chapter.

PHASE-PLANE INTEGRATION

OF STEPWISE LINEAR

SYSTEMS

Consider the undamped linear system
described by Eq. (4.57).The known solu-
tion x = A sin ωnt, ẋ = Aωn cos ωnt may be
shown graphically in the phase-plane
representation of Fig. 4.27. The point P
moves with constant angular velocity ωn,
and the deflection increases to P′ in the
time β/ωn.

If the system has a nonlinear restor-
ing force composed of straight lines (as
in Fig. 4.4), the motion within the region
represented by any one linear segment
can be described as above. For example,
consider a system with the force-

deflection characteristic shown at the top of Fig. 4.28. If the motion starts with initial
velocity q6 and zero initial deflection, the motion is described by a circular arc with
center at 0 and angular velocity

xζ + y
�
x�1	 −	 ζ	2	

2ζ
�
�1	 −	 ζ	2	

2ζy + x
�

y
dy
�
dx
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FIGURE 4.26 Phase-plane using oblique
coordinates which results in a logarithmic spiral
trajectory for a linear system with viscous damp-
ing [Eqs. (4.60)].

FIGURE 4.27 Phase-plane solution for a lin-
ear undamped vibrating system.
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ωn1
= 
 tan α1

from q6 to q5. At the point q5, it is seen
that ẋA/ωn1

= x	A	q	5	 and ẋA/ωn2
= x	A	q	4	.

Therefore

= 

In this example, tan α1 < tan α2 so that
x	A	q	4	 < xx	A	q	5	.The circular arc from q4 to q3

corresponds to the segment AB of the
restoring force characteristic with center
at the intersection 01 of the segment
(extended) with the X axis.The radius of
this circle is 0	1	q	4	, where

q4 = and ωn2
= 
 tan α2

The total time required to go from q6 to
q1 is

t = + +

For a symmetrical system this is one-
quarter of the period.

If the force-deflection characteristic
of a nonlinear system is a smooth curve,
it may be approximated by straight line
segments and treated as above. It should
be noted that the time required to com-
plete one cycle is strongly influenced by
the nature of the curve in regions where

the velocity is low; therefore, linear approximations near the equilibrium position do
not greatly affect the period.

The time-history of the motion (i.e., the x,t representation) may be obtained quite
readily by projecting values from the X axis to an x,t plane.

Inasmuch as phase-plane methods are restricted to autonomous systems, only
free vibration is discussed above. However, if a constant force were to act on the sys-
tem, the nature of the vibration would be unaffected, except for a displacement of
the equilibrium position in the direction of the force and equal to the static deflec-
tion produced by that force.Thus, the trajectory would remain a circular arc but with
its center displaced from the origin. Therefore, nonautonomous systems may be
treated by phase-plane methods, if the time function is replaced by a series of stepwise
constant values. The degree of accuracy attained in such a procedure depends only
on the number of steps assumed to represent the time function.

A system having a bilinear restoring force and acted upon by an external step-
wise function of time, treated by the method described above, is shown in Fig. 4.29.
Phase-plane methods therefore offer the possibility of treating transient as well as
free vibrations.

β3�
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FIGURE 4.28 Phase-plane solution for the
stepwise linear restoring force characteristic
curve shown at the top. The motion starts with
zero displacement but finite velocity.
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Phase-plane methods have been widely used for the analysis of control mecha-
nisms.

PHASE-PLANE INTEGRATION OF AUTONOMOUS SYSTEMS 

WITH NONLINEAR DAMPING

Consider the differential equation

ẍ + g(ẋ) + κ 2x = 0

Introducing y = ẋ/κ, the following isoclinic equation is obtained:

= − (4.62)

For points of zero slope in the phase-plane, the numerator of Eq. (4.62) must vanish;
therefore, the condition for zero slope is

x0 = −g(y)

Points of infinite slope correspond to the X axis. Singular points occur where the x0

curve intersects the X axis.
To construct the trajectory, the slope at any point Pi must be determined first.

This is done as illustrated in Fig. 4.30: A line is drawn parallel to the X axis through
Pi. The intersection of this line with the x0 curve determines a point Si on the X axis.
With Si as the center, a circular arc of short length is drawn through Pi; the tangent
to this arc is the required slope.The termination of this short arc may be taken as the
point Pi + 1, etc. The accuracy of the construction is dependent on the lengths of the
arcs. This construction is known as Liénard’s method.

g(y) + x
�

y
dy
�
dx

NONLINEAR VIBRATION 4.37

FIGURE 4.29 Phase-plane solution for transient motion.The bilinear restoring force characteristic
curve is shown at the left, and the exciting force F(t) and the resulting motion of the system X(t) are
shown at the right.
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As an example of Liénard’s method, consider Rayleigh’s equation, Eq. (4.33), in
the form

ẍ + ε � − ẋ� + x = 0

The corresponding isoclinic equation is

=

The x0 curve is given by

x0 = ε �y − � (4.63)

This is illustrated in Fig. 4.31.
A little experimentation shows that if a point P1 is taken near the origin, the slope

is such as to take the trajectory away from the origin (as compared with the
undamped vibration); by the same reasoning, a point P2 far from the origin tends to
take the trajectory toward the origin (again as compared with the undamped vibra-
tion). Therefore, there is some neutral curve, describing a periodic motion, toward
which the trajectories tend; this neutral curve is called a limit cycle and is illustrated
in Fig. 4.32. Such a limit cycle is obtained when x0 has a different sign for different
parts of the Y axis.

For extreme values of ε, the x0 curves would appear as shown in Fig. 4.33. For ε >>
1, introduce the notation ξ = x/ε; then

= �y − − ξ�
This leads to a trajectory as shown in Fig. 4.34. This type of motion is known as a
relaxation oscillation. Note from Fig. 4.34 that for this case of large ε the slope
changes quickly from horizontal to vertical. Hence, for a motion starting at some
point Pi, a vertical trajectory is followed until it intersects the ξ0 curve; then, the tra-
jectory turns and follows the ξ0 curve until it enters the vertical field at the lower

y3

�
3

ε
�
y

dy
�
dξ

y3

�
3

ε(y − y3/3) − x
��

y
dy
�
dx

ẋ3

�
3
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FIGURE 4.30 Liénard’s construction for
phase-plane integration of autonomous systems
with nonlinear damping.

FIGURE 4.31 Curve of x0 for Rayleigh’s equa-
tion [Eq. (4.33)] as given by Eq. (4.63).
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knee in the curve. The trajectory then
moves straight up until it intersects ξ0

again after which it swings right and
down again. A few circuits bring the tra-
jectory into the limit cycle.

There is a possibility that more than
one limit cycle may exist. If the x0 curve
crosses the X axis more than three times,
it can be shown that at least two limit
cycles may exist.

GENERALIZED PHASE-PLANE

ANALYSIS

The following method of integrating
second-order differential equations by
phase-plane techniques has general 
application. Consider the general equa-
tion

ẍ + F(x,ẋ,t) = 0 (4.64)

Equation (4.64) can be converted to the form

ẍ + κ 2x = g(x,ẋ,t)

by adding κ 2x to both sides where

κ 2x − F(x,ẋ,t) = g(x,ẋ,t)

Let

g(x0, ẋ0,t0) = −κ 2∆0

NONLINEAR VIBRATION 4.39

FIGURE 4.32 Limit cycle for Rayleigh’s equa-
tion [Eq. (4.33)].

FIGURE 4.33 Curves of x0 for extreme values
of ε in Rayleigh’s equation [Eq. (4.33)]. See Fig.
4.31 for a solution with a moderate value of ε.

FIGURE 4.34 Relaxation oscillations of
Rayleigh’s equation [Eq. (4.33)].
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where κ is chosen arbitrarily. At some point P0 on the trajectory,

ẍ + κ 2(x + ∆0) = 0

and

= −

Referring to Fig. 4.35,

dt = = dθ

Therefore, the time may be obtained by
integration of the angular displace-
ments. Thus, at a nearby point P1 on the
trajectory:

x1 = x0 + dx

y1 = y0 + dy

t1 = t0 + dt

Now, compute ∆1 for the new center, and
repeat the process.

This method has been applied to a very wide variety of linear and nonlinear
equations. For example, Fig. 4.36 shows the solution of Bessel’s equation

ẍ + ẋ + �p2 − �x = 0

of order zero. The angle (or time) projection of x yields J0(pt), while the ẋ/p projec-
tion yields J1(pt); that is, the Bessel functions of the zeroth and first order of the first
kind. Bessel functions of the second kind also can be obtained.

STABILITY OF PERIODIC NONLINEAR VIBRATION

Certain systems having nonlinear restoring forces and undergoing forced vibration
exhibit unstable characteristics for certain combinations of amplitude and exciting
frequency. The existence of such an instability leads to the “jump phenomenon”
shown in Fig. 4.16. To investigate the stability characteristics of the response curves,
consider Duffing’s equation

ẍ + κ 2(x + µ2x3) = p cos ωt (4.65)

Assume that two solutions of this equation exist and have slightly different initial
conditions:

x1 = x0

x2 = x0 + δ [δ << x0]

n2

�
t2

1
�
t

1
�
κ

dx
�
y

1
�
κ

x + ∆ 0�
y

dy
�
dx
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FIGURE 4.35 Method of construction em-
ployed in the generalized phase-plane analysis.
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Introducing the second of these into Eq. (4.65) and employing the condition that x0

is also a solution,

δ̈ + κ 2(1 + 3µ2x0
2)δ = 0 (4.66)

Now an expression for x0 must be obtained; assuming a one-term approximation of
the form x0 = A cos ωt, Eq. (4.66) becomes

+ (λ + γ cos ϕ)δ = 0 (4.67)

where κ 2(1 + 3⁄2µ2A2) = 4ω2λ
(4.68)

and 3⁄2κ 2µ2A2 = 4ω2γ 2ωt = ϕ

Equation (4.67) is known as Mathieu’s equation.
Mathieu’s equation has appeared in this analysis as a variational equation char-

acterizing small deviations from the given periodic motion whose stability is to be
investigated; thus, the stability of the solutions of Mathieu’s equation must be stud-
ied.A given periodic motion is stable if all solutions of the variational equation asso-
ciated with it tend toward zero for all positive time and unstable if there is at least

d 2δ
�
dϕ2
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FIGURE 4.36 Generalized phase-plane solution of Bessel’s equation.
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one solution which does not tend toward zero. The stability characteristics of Eq.
(4.67) often are represented in a chart as shown in Fig. 4.37.

From the response diagram of Duffing’s equation, the out-of-phase motion hav-
ing the larger amplitude appears to be unstable. This portion of the response dia-
gram (Fig. 4.16C) corresponds to unstable motion in the Mathieu stability chart (Fig.
4.37), and the locus of vertical tangents of the response curves (considering un-
damped vibration for simplicity) corresponds exactly to the boundaries between sta-
ble and unstable regions in the stability chart. Thus, the region of interest in the
response diagram is described by the free vibration

ω2 = κ 2(1 + 3⁄4µ2A2) (4.69)

and the locus of vertical tangents

3⁄2κ 2µ2A2 + = 0 (4.70)

The corresponding curves in the stability chart are taken as those for small posi-
tive values of γ and λ which have the approximate equations

γ = 1⁄2 − 2λ (4.71)

γ = −1⁄2 + 2λ (4.72)

Now, if Eq. (4.69) is introduced into Eqs. (4.68), the resulting equations expanded
by the binomial theorem (assuming µ2 small), and Eq. (4.72) introduced, the result is
an identity.Therefore, the free vibration-response curve maps onto the curve of pos-
itive slope in the stability chart.The locus of vertical tangents to the response curves
maps into the curve of negative slope in the stability chart; this may be seen from the
identity obtained by introducing the equations obtained above by binomial expan-
sion into Eq. (4.71) and then employing Eq. (4.70).

In any given case, it can be determined whether a motion is stable or unstable on
the basis of the values of γ and λ, according to the location of the point in the stabil-
ity chart.

p
�
A
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FIGURE 4.37 Stability chart for Mathieu’s equation [Eq. (4.67)].
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The question of stability of response also can be resolved by means of a “stability
criterion” developed from the Kryloff-Bogoliuboff procedures. The differential
equation of motion is considered in the form

ẍ + κ 2x + f(x,ẋ) = p cos ωt

Proceeding in the manner of the Kryloff-Bogoliuboff procedure described earlier,

Ȧ = f(x,ẋ) sin (κt + θ) − cos ωt sin (κt + θ)

θ̇ = f(x,ẋ) cos (κt + θ) − cos ωt cos (κt + θ)

Expanding the last terms of these equations, the result contains motions of fre-
quency κ, κ + ω, and κ − ω. The motion over a long interval of time is of interest, and
the motions of frequencies κ + ω and κ − ω may be averaged out; this is accomplished
by integrating over the period 2π/ω:

Ȧ = S(A) − sin(Φ − ωt)

θ̇ = − cos(Φ − ωt)

where S(A) = �2π

0
f(A cos Φ, −Aκ sin Φ) sin Φ dΦ

C(A) = �2π

0
f(A cos Φ, −Aκ sin Φ) cos Φ dΦ

The steady-state solution may be determined by employing the conditions A =
A0, ψ = Φ − ωt = ψ0:

= S 2(A0) + [C(A0) + A0(κ − ω)]2

tan ψ0 =

This steady-state solution will now be perturbed and the stability of the ensuing
motion investigated. Let

A(t) = A0 + ξ(t) [ξ << A0]

ψ(t) = ψ0 + η(t) [η << ψ0]

By Taylor’s series expansion:

ξ̇ = ξS′(A0) − η cos ψ0

η̇ = [(κ − ω) + C′(A0)] + η sin ψ0

where primes indicate differentiation with respect to A. These two differential equa-
tions are satisfied by the solutions

ξ = Aezt η = Bezt

p
�
2κA0

ξ
�
A0

p
�
2κ

S(A0)���
C(A0) + A0(κ − ω)

p2

�
4κ 2

1
�
2πκ

1
�
2πκ

p
�
2κA

C(A)
�

A

p
�
2κ

p
�
Aκ

1
�
κ

p
�
κ

1
�
κ
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where A and B are arbitrary constants and

z = [S(A0) + A0S′(A0)] ± 
[S(A0) + A0S′(A0)]2 − 4A0p̄ �
and p̄ = p/2κ.

For stability, the real parts of z must be negative; hence, the following criteria can
be established:

[S(A0) + A0S′(A0)] < 0, > 0, ensures stability

[S(A0) + A0S′(A0)] < 0, < 0, ensures instability

[S(A0) + A0S′(A0)] > 0, � 0, ensures instability

[S(A0) + A0S′(A0)] = 0, > 0, ensures stability

These criteria can be interpreted in terms of response curves by reference to Fig.
4.14. For systems of this type, [S(A0) + A0S′(A0)] < 0; when dp̄/dA0 > 0, p̄ increases
as A0 also increases. This does not hold for the middle branch of the response
curves, thus confirming the earlier results.

SYSTEMS OF MORE THAN A SINGLE 

DEGREE-OF-FREEDOM

Interest in systems of more than one degree-of-freedom arises from the problem of
the dynamic vibration absorber. The earliest studies of nonlinear two degree-of-
freedom systems were those of vibration absorbers having nonlinear elements.

The analysis of multiple degree-of-freedom systems can be carried out by various
of the methods described earlier in this chapter and are generally completely analo-
gous to those given here for the single degree-of-freedom system, with analogous
results.
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CHAPTER 5
SELF-EXCITED VIBRATION

F. F. Ehrich

INTRODUCTION

Self-excited systems begin to vibrate of their own accord spontaneously, the amplitude
increasing until some nonlinear effect limits any further increase. The energy supply-
ing these vibrations is obtained from a uniform source of power associated with the
system which, due to some mechanism inherent in the system, gives rise to oscillating
forces.The nature of self-excited vibration compared to forced vibration is:1

In self-excited vibration the alternating force that sustains the motion is created
or controlled by the motion itself; when the motion stops, the alternating force dis-
appears.

In a forced vibration the sustaining alternating force exists independent of the
motion and persists when the vibratory motion is stopped.

The occurrence of self-excited vibration in a physical system is intimately associ-
ated with the stability of equilibrium positions of the system. If the system is dis-
turbed from a position of equilibrium, forces generally appear which cause the
system to move either toward the equilibrium position or away from it. In the latter
case the equilibrium position is said to be unstable; then the system may either oscil-
late with increasing amplitude or monotonically recede from the equilibrium posi-
tion until nonlinear or limiting restraints appear. The equilibrium position is said to
be stable if the disturbed system approaches the equilibrium position either in a
damped oscillatory fashion or asymptotically.

The forces which appear as the system is displaced from its equilibrium position
may depend on the displacement or the velocity, or both. If displacement-dependent
forces appear and cause the system to move away from the equilibrium position, the
system is said to be statically unstable. For example, an inverted pendulum is stati-
cally unstable. Velocity-dependent forces which cause the system to recede from a
statically stable equilibrium position lead to dynamic instability.

Self-excited vibrations are characterized by the presence of a mechanism whereby
a system will vibrate at its own natural or critical frequency, essentially independent of
the frequency of any external stimulus. In mathematical terms, the motion is de-
scribed by the unstable homogeneous solution to the homogeneous equations of
motion. In contradistinction, in the case of “forced,” or “resonant,” vibrations, the fre-
quency of the oscillation is dependent on (equal to, or a whole number ratio of) the
frequency of a forcing function external to the vibrating system (e.g., shaft rotational

5.1
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speed in the case of rotating shafts). In mathematical terms, the forced vibration is the
particular solution to the nonhomogeneous equations of motion.

Self-excited vibrations pervade all areas of design and operations of physical sys-
tems where motion or time-variant parameters are involved—aeromechanical sys-
tems (flutter, aircraft flight dynamics), aerodynamics (separation, stall, musical wind
instruments, diffuser and inlet chugging), aerothermodynamics (flame instability,
combustor screech), mechanical systems (machine-tool chatter), and feedback net-
works (pneumatic, hydraulic, and electromechanical servomechanisms).

ROTATING MACHINERY

One of the more important manifestations of self-excited vibrations, and the one
that is the principal concern in this chapter, is that of rotating machinery, specifically,
the self-excitation of lateral, or flexural, vibration of rotating shafts (as distinct from
torsional, or longitudinal, vibration).

In addition to the description of a large number of such phenomena in standard
vibrations textbooks (most typically and prominently, Ref. 1), the field has been sub-
ject to several generalized surveys.2–4 The mechanisms of self-excitation which have
been identified can be categorized as follows:

Whirling or Whipping

Hysteretic whirl
Fluid trapped in the rotor
Dry friction whip
Fluid bearing whip
Seal and blade-tip-clearance effect in turbomachinery
Propeller and turbomachinery whirl

Parametric Instability

Asymmetric shafting
Pulsating torque
Pulsating longitudinal loading

Stick-Slip Rubs and Chatter

Instabilities in Forced Vibrations

Bistable vibration
Unstable imbalance

In each instance, the physical mechanism is described and aspects of its preven-
tion or its diagnosis and correction are given. Some exposition of its mathematical
analytic modeling is also included.

WHIRLING OR WHIPPING

ANALYTIC MODELING

In the most important subcategory of instabilities (generally termed whirling or
whipping), the unifying generality is the generation of a tangential force, normal to

5.2 CHAPTER FIVE
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an arbitrary radial deflection of a rotating shaft, whose magnitude is proportional to
(or varies monotonically with) that deflection. At some “onset” rotational speed,
such a force system will overcome the stabilizing external damping forces which are
generally present and induce a whirling motion of ever-increasing amplitude, limited
only by nonlinearities which ultimately limit deflections.

A close mathematical analogy to this class of phenomena is the concept of “nega-
tive damping” in linear systems with constant coefficients, subject to plane vibration.

A simple mathematical representation of a self-excited vibration may be found in
the concept of negative damping. Consider the differential equation for a damped,
free vibration:

mẍ + cẋ + kx = 0 (5.1)

This is generally solved by assuming a solution of the form

x = Cest

Substitution of this solution into Eq. (5.1) yields the characteristic (algebraic) equation

s2 + s + = 0 (5.2)

If c < 2�m�k�, the roots are complex:

s1,2 = − ± iq

where q = � − � �2

The solution takes the form

x = e−ct/2m(A cos qt + B sin qt) (5.3)

This represents a decaying oscillation because the exponential factor is negative, as
illustrated in Fig. 5.1A. If c < 0, the exponential factor has a positive exponent and
the vibration appears as shown in Fig. 5.1B. The system, initially at rest, begins to
oscillate spontaneously with ever-increasing amplitude. Then, in any physical sys-
tem, some nonlinear effect enters and Eq. (5.1) fails to represent the system realisti-
cally. Equation (5.4) defines a nonlinear system with negative damping at small
amplitudes but with large positive damping at larger amplitudes, thereby limiting
the amplitude to finite values:

mẍ + (−c + ax2)ẋ + kx = 0 (5.4)

Thus, the fundamental criterion of stability in linear systems is that the roots of the
characteristic equation have negative real parts, thereby producing decaying amplitudes.

In the case of a whirling or whipping shaft, the equations of motion (for an ideal-
ized shaft with a single lumped mass m) are more appropriately written in polar
coordinates for the radial force balance,

−mω2r + mr̈ + cṙ + kr = 0 (5.5)

and for the tangential force balance,

2mωṙ + cωr − Fn = 0 (5.6)

where we presume a constant rate of whirl ω.

c
�
2m

k
�
m

c
�
2m

k
�
m

c
�
m
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In general, the whirling is predicated
on the existence of some physical phe-
nomenon which will induce a force Fn

that is normal to the radial deflection r
and is in the direction of the whirling
motion—i.e., in opposition to the damp-
ing force, which tends to inhibit the
whirling motion. Very often, this normal
force can be characterized or approxi-
mated as being proportional to the
radial deflection:

Fn = fnr (5.7)

The solution then takes the form

r = r0eat (5.8)

For the system to be stable, the coeffi-
cient of the exponent

a = (5.9)

must be negative, giving the require-
ment for stable operation as

fn < ωc (5.10)

As a rotating machine increases its rotational speed, the left-hand side of this
inequality (which is generally also a function of shaft rotation speed) may exceed the
right-hand side, indicative of the onset of instability. At this onset condition,

a = 0+ (5.11)

so that whirl speed at onset is found to be

ω = � �1/2
(5.12)

That is, the whirling speed at onset of instability is the shaft’s natural or critical fre-
quency, irrespective of the shaft’s rotational speed (rpm).The direction of whirl may
be in the same rotational direction as the shaft rotation (forward whirl) or opposite
to the direction of shaft rotation (backward whirl), depending on the direction of the
destabilizing force Fn.

When the system is unstable, the solution for the trajectory of the shaft’s mass is,
from Eq. (5.8), an exponential spiral as in Fig. 5.2.Any planar component of this two-
dimensional trajectory takes the same form as the unstable planar vibration shown
in Fig. 5.1B.

GENERAL DESCRIPTION

The most important examples of whirling and whipping instabilities are

Hysteretic whirl
Fluid trapped in the rotor

k
�
m

fn − cω
�

2mω
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FIGURE 5.1 (A) Illustration showing a decay-
ing vibration (stable) corresponding to negative
real parts of the complex roots. (B) Increasing
vibration corresponding to positive real parts of
the complex roots (unstable).
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Dry friction whip
Fluid bearing whip
Seal and blade-tip-clearance effect in turbomachinery
Propeller and turbomachinery whirl

All these self-excitation systems involve friction or fluid energy mechanisms to gen-
erate the destabilizing force.

These phenomena are rarer than forced vibration due to unbalance or shaft mis-
alignment, and they are difficult to anticipate before the fact or diagnose after the
fact because of their subtlety. Also, self-excited vibrations are potentially more
destructive, since the asynchronous whirling of self-excited vibration induces alter-
nating stresses in the rotor and can lead to fatigue failures of rotating components.
Synchronous forced vibration typical of unbalance does not involve alternating
stresses in the rotor and will rarely involve rotating element failure. The general
attributes of these instabilities, insofar as they differ from forced excitations, are
summarized in Table 5.1 and Figs. 5.3A and 5.3B.

HYSTERETIC WHIRL

The mechanism of hysteretic whirl, as observed experimentally,5 defined analyti-
cally,6 or described in standard texts,7 may be understood from the schematic repre-
sentation of Fig. 5.4. With some nominal radial deflection of the shaft, the flexure of
the shaft would induce a neutral strain axis normal to the deflection direction. From

SELF-EXCITED VIBRATION 5.5

FIGURE 5.2 Trajectory of rotor center of gravity in unstable
whirling or whipping.
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TABLE 5.1 Characterization of Two Categories of Vibration of Rotating Shafts

Forced or resonant vibration Whirling or whipping

Vibration frequency– Frequency is equal to (i.e., Frequency is nearly constant and
rpm relationship synchronous with) rpm or a relatively independent of rotor

whole number or rational rotational speed or any external
fraction of rpm, as in Fig. 5.3A. stimulus and is at or near one of

the shaft critical or natural
frequencies, as in Fig. 5.3B.

Vibration amplitude– Amplitude will peak in a narrow Amplitude will suddenly increase
rpm relationship band of rpm wherein the rotor’s at an onset rpm and continue

critical frequency is equal to the at high or increasing levels as
rpm or to a whole-number rpm is increased, as in Fig. 5.3B.
multiple or a rational fraction of
the rpm or an external stimulus,
as in Fig. 5.3A.

Influence of damping Addition of damping may reduce Addition of damping may defer
peak amplitude but not ma- onset to a higher rpm but not
terially affect rpm at which materially affect amplitude
peak amplitude occurs, as in after onset, as in Fig. 5.3B.
Fig. 5.3A.

System geometry Excitation level and hence ampli- Amplitudes are independent of
tude are dependent on some system axial symmetry. Given
lack of axial symmetry in the an infinitesimal deflection to an
rotor mass distribution or geom- otherwise symmetric system,
etry, or external forces ap- the amplitude will self-
plied to the rotor. Amplitudes propagate.
may be reduced by refining the
system to make it more per-
fectly axisymmetric.

Rotor fiber stress For synchronous vibration, the Rotor fibers are subject to oscil-
rotor vibrates in frozen, de- latory stress at a frequency
flected state, without oscillatory equal to the difference between
fiber stress. rotor rpm and whirling speed.

Avoidance or 1. Tune the system’s critical 1. Restrict operating rpm to
elimination frequencies to be out of the below instability onset rpm.

rpm operating range.
2. Eliminate all deviations from 2. Defeat or eliminate the
axial symmetry in the system instability mechanism.
as built or as induced during
operation (e.g., balancing).

3. Introduce damping to limit 3. Introduce damping to raise
peak amplitudes at critical the instability onset speed to
speeds which must be traversed. above the operating speed

range.
4. Introduce stiffness anisotropy 
to the bearing support system.8
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first-order considerations of elastic-beam theory, the neutral axis of stress would be
coincident with the neutral axis of strain.The net elastic restoring force would then be
perpendicular to the neutral stress axis, i.e., parallel to and opposing the deflection. In
actual fact, hysteresis, or internal friction, in the rotating shaft will cause a phase shift
in the development of stress as the shaft fibers rotate around through peak strain to
the neutral strain axis.The net effect is that the neutral stress axis is displaced in angle
orientation from the neutral strain axis, and the resultant force is not parallel to the
deflection. In particular, the resultant force has a tangential component normal to the
deflection, which is the fundamental precondition for whirl. This tangential force
component is in the direction of rotation and induces a forward whirling motion
which increases centrifugal force on the deflected rotor, thereby increasing its deflec-
tion. As a consequence, induced stresses are increased, thereby increasing the whirl-
inducing force component.

SELF-EXCITED VIBRATION 5.7

FIGURE 5.3A Attributes of forced vibration or resonance in rotating machinery.
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Several surveys and contributions to the understanding of the phenomenon have
been published in Refs. 9, 10, 11, and 12. It has generally been recognized that hys-
teretic whirl can occur only at rotational speeds above the first-shaft critical speed
(the lower the hysteretic effect, the higher the attainable whirl-free operating rpm).
It has been shown13 that once whirl has started, the critical whirl speed that will be
induced (from among the spectrum of criticals of any given shaft) will have a fre-
quency approximately half the onset rpm.

A straightforward method for hysteretic whirl avoidance is that of limiting shafts
to subcritical operation, but this is unnecessarily and undesirably restrictive.A more
effective avoidance measure is to limit the hysteretic characteristic of the rotor.
Most investigators (e.g., Ref. 5) have suggested that the essential hysteretic effect is

5.8 CHAPTER FIVE

FIGURE 5.3B Attributes of whirling or whipping in rotating machinery.
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caused by working at the interfaces of joints in a rotor rather than within the mate-
rial of that rotor’s components. Success in avoiding hysteretic whirl has been
achieved by minimizing the number of separate elements, restricting the span of
concentric rabbets and shrunk fitted parts, and providing secure lockup of assem-
bled elements held together by tie bolts and other compression elements. Bearing-
foundation characteristics also play a role in suppression of hysteretic whirl.9

WHIRL DUE TO FLUID TRAPPED IN ROTOR

There has always been a general awareness that high-speed centrifuges are subject
to a special form of instability. It is now appreciated that the same self-excitation
may be experienced more generally in high-speed rotating machinery where liquids
(e.g., oil from bearing sumps, steam condensate, etc.) may be inadvertently trapped
in the internal cavity of hollow rotors. The mechanism of instability is shown
schematically in Fig. 5.5. For some nominal deflection of the rotor, the fluid is flung
out radially in the direction of deflection. But the fluid does not remain in simple
radial orientation.The spinning surface of the cavity drags the fluid (which has some
finite viscosity) in the direction of rotation. This angle of advance results in the cen-
trifugal force on the fluid having a component in the tangential direction in the
direction of rotation. This force then is the basis of instability, since it induces for-
ward whirl which increases the centrifugal force on the fluid and thereby increases
the whirl-inducing force.

SELF-EXCITED VIBRATION 5.9

FIGURE 5.4 Hysteretic whirl.
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Contributions to the understanding of the phenomenon as well as a complete his-
tory of the phenomenon’s study are available in Ref. 14. It has been shown15 that
onset speed for instability is always above critical rpm and below twice-critical rpm.
Since the whirl is at the shaft’s critical frequency, the ratio of whirl frequency to rpm
will be in the range of 0.5 to 1.0.

Avoidance of this self-excitation can be accomplished by running shafting sub-
critically, although this is generally undesirable in centrifuge-type applications when
further consideration is made of the role of trapped fluids as unbalance in forced
vibration of rotating shafts (as described in Ref. 15). Where the trapped fluid is not
fundamental to the machine’s function, the appropriate avoidance measure, if the
particular application permits, is to provide drain holes at the outermost radius of all
hollow cavities where fluid might be trapped.

5.10 CHAPTER FIVE

FIGURE 5.5 Whirl due to fluid trapped in rotor.
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DRY FRICTION WHIP

As described in standard vibration texts (e.g., Ref. 16), dry friction whip is experi-
enced when the surface of a rotating shaft comes in contact with an unlubricated sta-
tionary guide or shroud or stator system. This can occur in an unlubricated journal
bearing or with loss of clearance in a hydrodynamic bearing or inadvertent closure
and contact in the radial clearance of labyrinth seals or turbomachinery blading or
power screws.17

The phenomenon may be understood with reference to Fig. 5.6.When radial con-
tact is made between the surface of the rotating shaft and a static part, Coulomb 
friction will induce a tangential force on the rotor. Since the friction force is approx-
imately proportional to the radial component of the contact force, we have the pre-
conditions for instability. The tangential force induces a whirling motion which
induces larger centrifugal force on the rotor, which in turn induces a large radial con-
tact and hence larger whirl-inducing friction force.

It is interesting to note that this whirl system is counter to the shaft rotation direc-
tion (i.e., backward whirl). One may envision the whirling system as the rolling
(accompanied by appreciable slipping) of the shaft in the stator system.

SELF-EXCITED VIBRATION 5.11

FIGURE 5.6 Dry friction whip.
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The same situation can be produced by a thrust bearing where angular deflection
is combined with lateral deflection.18 If contact occurs on the same side of the disc as
the virtual pivot point of the deflected disc, then backward whirl will result. Con-
versely, if contact occurs on the side of the disc opposite to the side where the virtual
pivot point of the disc is located, then forward whirl will result.

It has been suggested (but not concluded)19 that the whirling frequency is gener-
ally less than the critical speed.

The vibration is subject to various types of control. If contact between rotor and
stator can be avoided or the contact area can be kept well lubricated, no whipping
will occur. Where contact must be accommodated, and lubrication is not feasible,
whipping may be avoided by providing abradability of the rotor or stator element to
allow disengagement before whirl. When dry friction is considered in the context of
the dynamics of the stator system in combination with that of the rotor system,20 it is
found that whirl can be inhibited if the independent natural frequencies of the rotor
and stator are kept dissimilar, that is, a very stiff rotor should be designed with a very
soft mounted stator element that may be subject to rubs. No first-order interde-
pendence of whirl speed with rotational speed has been established.

FLUID BEARING WHIP

As described in experimental and analytic literature,21 and in standard texts (e.g.,
Ref. 22), fluid bearing whip can be understood by referring to Fig. 5.7. Consider
some nominal radial deflection of a shaft rotating in a fluid (gas- or liquid-) filled
clearance. The entrained, viscous fluid will circulate with an average velocity of
about half the shaft’s surface speed.The bearing pressures developed in the fluid will
not be symmetric about the radial deflection line. Because of viscous losses of the
bearing fluid circulating through the close clearance, the pressure on the upstream
side of the close clearance will be higher than that on the downstream side.Thus, the
resultant bearing force will include a tangential force component in the direction of
rotation which tends to induce forward whirl in the rotor. The tendency to instabil-
ity is evident when this tangential force exceeds inherent stabilizing damping forces.
When this happens, any induced whirl results in increased centrifugal forces; this, in
turn, closes the clearance further and results in ever-increasing destabilizing tangen-
tial force. Detailed reviews of the phenomenon are available in Refs. 23 and 24.

These and other investigators have shown that to be unstable, shafting must
rotate at an rpm equal to or greater than approximately twice the critical speed, so
that one would expect the ratio of frequency to rpm to be equal to less than approx-
imately 0.5.

The most obvious measure for avoiding fluid bearing whip is to restrict rotor
maximum rpm to less than twice its lowest critical speed. Detailed geometric varia-
tions in the bearing runner design, such as grooving and tilt-pad configurations, have
also been found effective in inhibiting instability. In extreme cases, use of rolling
contact bearings instead of fluid film bearings may be advisable.

Various investigators (e.g., Ref. 25) have noted that fluid seals as well as fluid
bearings are subject to this type of instability.

SEAL AND BLADE-TIP-CLEARANCE EFFECT IN TURBOMACHINERY

Axial-flow turbomachinery may be subject to an additional whirl-inducing effect
by virtue of the influence of tip clearance on turbopump or compressor or turbine

5.12 CHAPTER FIVE
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efficiency.26 As shown schematically in Fig. 5.8, some nominal radial deflection will
close the radial clearance on one side of the turbomachinery component and open
the clearance 180° away on the opposite side. We would expect the closer clearance
zone to operate more efficiently than the open clearance zone. For a turbine, a
greater work extraction and blade force level is achieved in the more efficient
region for a given average pressure drop so that a resultant net tangential force is
generated to induce whirl in the direction of rotor rotation (i.e., forward whirl). For
an axial compressor, it has been found27 that the magnitude and direction of the
destabilizing forces are a very strong function of the operating point’s proximity to
the stall line. For operation close to the stall line, very large negative forces (i.e.,
inducing backward whirl) are generated. The magnitude of the destabilizing force
declines sharply for lower operating lines, and stabilizes at a small positive value
(i.e., making a small contribution to inducing forward whirl). In the case of radial-
flow turbomachinery, it has been suggested28 that destabilizing forces are exerted
on an eccentric (i.e., dynamically deflected) impeller due to variations of loading of
the diffuser vanes.

One text29 describes several manifestations of this class of instability—in the
thrust balance piston of a steam turbine; in the radial labyrinth seal of a radial-flow
Ljungstrom counterrotating steam turbine; in the Kingsbury thrust bearing of a

SELF-EXCITED VIBRATION 5.13

FIGURE 5.7 Fluid bearing whip.
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vertical-shaft hydraulic turbogenerator; and in the tip seals of a radial-inflow hy-
draulic Francis turbine.

A survey paper3 includes a bibliography of several German papers on the subject
from 1958 to 1969.

An analysis is available30 dealing with the possibility of stimulating flexural vibra-
tions in the seals themselves, although it is not clear if the solutions pertain to gross
deflections of the entire rotor.

It is reasonable to expect that such destabilizing forces may at least contribute
to instabilities experienced on high-powered turbomachines. If this mechanism
were indeed a key contributor to instability, one would conjecture that very small
or very large initial tip clearances would minimize the influence of tip clearance 
on the unit’s performance and, hence, minimize the contribution to destabilizing
forces.

5.14 CHAPTER FIVE

FIGURE 5.8 Turbomachinery tip clearance effect’s contribution to whirl.
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PROPELLER AND TURBOMACHINERY WHIRL

Propeller whirl has been identified both analytically31 and experimentally.32 In this
instance of shaft whirling, a small angular deflection of the shaft is hypothesized, as
shown schematically in Fig. 5.9.The tilt in the propeller disc plane results at any instant
at any blade in a small angle change between the propeller rotation velocity vector and
the approach velocity vector associated with the aircraft’s speed. The change in local
relative velocity angle and magnitude seen by any blade results in an increment in its
load magnitude and direction.The cumulative effect of these changes in load on all the
blades results in a net moment whose vector has a significant component which is nor-
mal to and approximately proportional to the angular deflection vector. By analogy to
the destabilizing cross-coupled deflection stiffness we noted in previously described
instances of whirling and whipping, we have now identified the existence of a cross-

SELF-EXCITED VIBRATION 5.15
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FIGURE 5.9 Propeller whirl.2

coupled destabilizing moment stiffness. At high airspeeds, the destabilizing moments
can grow to the point where they may overcome viscous damping moments to cause
destructive whirling of the entire system in a “conical” mode. This propeller whirl is
generally found to be counter to the shaft rotation direction. It has been suggested33

that equivalent stimulation is possible in turbomachinery.An attempt has been made34

to generalize the analysis for axial-flow turbomachinery. Although it has been shown
that this analysis is not accurate, the general deduction seems appropriate that forward
whirl may also be possible if the virtual pivot point of the deflected rotor is forward of
the rotor (i.e., on the side of the approaching fluid).

Instability is found to be load-sensitive in the sense of being a function of the veloc-
ity and density of the impinging flow. It is not thought to be sensitive to the torque
level of the turbomachine since, for example, experimental work32 was on an unloaded
windmilling rotor. Corrective action is generally recognized to be stiffening the entire
system and manipulating the effective pivot center of the whirling mode to inhibit
angular motion of the propeller (or turbomachinery) disc as well as system damping.
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PARAMETRIC INSTABILITY

ANALYTIC MODELING

There are systems in engineering and physics which are described by linear differ-
ential equations having periodic coefficients,

+ p(z) + q(z)y = 0 (5.13)

where p(z) and q(z) are periodic in z. These systems also may exhibit self-excited
vibrations, but the stability of the system cannot be evaluated by finding the roots
of a characteristic equation. A specialized form of this equation, which is represen-
tative of a variety of real physical problems in rotating machinery, is Mathieu’s
equation:

+ (a − 2q cos 2z)f = 0 (5.14)

Mathematical treatment and applications of Mathieu’s equation are given in Refs.
35 and 36.

This general subcategory of self-excited vibrations is termed “parametric insta-
bility,” since instability is induced by the effective periodic variation of the system’s
parameters (stiffness, inertia, natural frequency, etc.). Three particular instances of
interest in the field of rotating machinery are

Lateral instability due to asymmetric shafting and/or bearing characteristics
Lateral instability due to pulsating torque
Lateral instabilities due to pulsating longitudinal compression

LATERAL INSTABILITY DUE TO ASYMMETRIC SHAFTING

If a rotor or its stator contains sufficient levels of asymmetry in the flexibility 
associated with its two principal axes of flexure as illustrated in Fig. 5.10, self-
excited vibration may take place. This phenomenon is completely independent 

of any unbalance, and independent of
the forced vibrations associated with
twice-per-revolution excitation of such
shafting mounted horizontally in a grav-
itational field.

As described in standard vibration
texts,37 we find that presupposing a
nominal whirl amplitude of the shaft at
some whirl frequency, the rotation of
the asymmetric shaft at an rpm differ-
ent from the whirling speed will appear
as periodic change in flexibility in the
plane of the whirling shaft’s radial
deflection. This will result in an instabil-
ity in certain specific ranges of rpm as a

d2f
�
dz2

dy
�
dz

d2y
�
dz2
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FIGURE 5.10 Shaft system possessing un-
equal rigidities, leading to a pair of coupled inho-
mogeneous Mathieu equations.
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function of the degree of asymmetry. In general, instability is experienced when the
rpm is approximately one-third and one-half the critical rpm and approximately
equal to the critical rpm (where the critical rpm is defined with the average value of
shaft stiffness), as in Fig. 5.11. The ratios of whirl frequency to rotational speed will
then be approximately 3.0, 2.0, and 1.0. But with gross asymmetries, and with the
additional complication of asymmetrical inertias with principal axes in arbitrary
orientation to the shaft’s principal axes’ flexibility, no simple generalization is pos-
sible.

There is a considerable literature dealing with many aspects of the problem and
substantial bibliographies.38–40

Stability is accomplished by minimizing shaft asymmetries and avoiding rpm
ranges of instability.

LATERAL INSTABILITY DUE TO PULSATING TORQUE

Experimental confirmation41 has been achieved that establishes the possibility of
inducing first-order lateral instability in a rotor-disc system by the application of a
proper combination of constant and pulsating torque. The application of torque to a
shaft affects its natural frequency in lateral vibration so that the instability may also
be characterized as “parametric.” Analytic formulation and description of the phe-
nomenon are available in Ref. 42 and in the bibliography of Ref. 3. The experimen-

SELF-EXCITED VIBRATION 5.17

FIGURE 5.11 Instability regimes of rotor system induced by asymmetric stiffness (Ref. 39).
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tal work (Ref. 41) explored regions of shaft speed where the disc always whirled at
the first critical speed of the rotor-disc system, regardless of the torsional forcing fre-
quency or the rotor speed within the unstable region.

It therefore appears that combinations of ranges of steady and pulsating torque,
which have been identified40 as being sufficient to cause instability, should be
avoided in the narrow-speed bands where instability is possible in the vicinity of
twice the critical speed and lesser instabilities at 2/2, 2/3, 2/4, 2/5, . . . times the criti-
cal frequency, as in Fig. 5.12, implying frequency/speed ratios of approximately 0.5,
1.0, 1.5, 2.0, 2.5, . . . .

LATERAL INSTABILITY DUE TO PULSATING LONGITUDINAL LOADS

Longitudinal loads on a shaft which are of an order of magnitude of the buckling will
tend to reduce the natural frequency of that lateral, flexural vibration of the shaft.
Indeed, when the compressive buckling load is reached, the natural frequency goes
to zero. Therefore pulsating longitudinal loads effectively cause a periodic variation
in stiffness, and they are capable of inducing “parametric instability” in rotating as
well as stationary shafts,43 as noted in Fig. 5.13.

5.18 CHAPTER FIVE

FIGURE 5.12 Instability regimes of rotor system induced by pulsating torque (Ref. 42).
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STICK-SLIP RUBS AND CHATTER

Mention is appropriate of another family of instability phenomena—stick-slip or
chatter. Though the instability mechanism is associated with the dry friction contact
force at the point of rubbing between a rotating shaft and a stationary element, it
must not be confused with dry friction whip, previously discussed. In the case of
stick-slip, as is described in standard texts (e.g., Ref. 44), the instability is caused by
the irregular nature of the friction force developed at very low rubbing speeds.

At high velocities, the friction force is essentially independent of contact speed.
But at very low contact speeds we encounter the phenomenon of “stiction,” or
breakaway friction, where higher levels of friction force are encountered, as in Fig.
5.14. Any periodic motion of the rotor’s point of contact, superimposed on the
basic relative contact velocity, will be self-excited. In effect, there is negative

SELF-EXCITED VIBRATION 5.19

FIGURE 5.14 Dry friction characteristic giving rise to stick-slip rubs or chatter.

FIGURE 5.13 Long column with pinned ends. A periodic force is superim-
posed upon a constant axial pull. (After McLachlan.43)
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damping (as illustrated in Fig. 5.1B) since motion of the rotor’s contact point in the
direction of rotation will increase relative contact velocity and reduce stiction and
the net force resisting motion. Rotor motion counter to the contact velocity will
reduce relative velocity and increase friction force, again reinforcing the periodic
motion. The ratio of vibration frequency to rotation speed will be much larger
than unity.

While the vibration associated with stick-slip or chatter is often reported to be
torsional, planar lateral vibrations can also occur. Surveys of the phenomenon are
included in Refs. 45 and 46.

Measures for avoidance are similar to those prescribed for dry friction whip:
avoid contact where feasible and lubricate the contact point where contact is essen-
tial to the function of the apparatus.

INSTABILITIES IN FORCED VIBRATIONS

In a middle ground between the generic categories of force vibrations and self-
excited vibrations is the category of instabilities in force vibrations. These instabili-
ties are characterized by forced vibration at a frequency equal to rotor rotation
(generally induced by unbalance), but with the amplitude of that vibration being
unsteady or unstable. Such unsteadiness or instability is induced by the interaction
of the forced vibration on the mechanics of the system’s response, or on the unbal-
ance itself.Two manifestations of such instabilities and unsteadiness have been iden-
tified in the literature—bistable vibration and unstable imbalance.

BISTABLE VIBRATION

A classical model of one type of unstable motion is the “relaxation oscillator,” or
“multivibrator.”A system subject to relaxation oscillation has two fairly stable states,
separated by a zone where stable operation is impossible.47 Furthermore, in each of
the stable states, a mechanism exists which will induce the system to drift toward the
unstable state.The system will develop a periodic motion of the general form shown
in Fig. 5.15.

An idealized formulation of this class of vibration with nonlinear damping is48

mẍ + c(x2 − 1)ẋ + kx = 0 (5.15)

When the deflection amplitude x is greater than +1 or less than −1, as in A-B and 
C-D, the damping coefficient is positive, and the system is stable, although presence
of a spring system k will always tend to drag the mass to a smaller absolute deflec-
tion amplitude. When the deflection amplitude lies between −1 and +1, as in B-C or
D-A, the damping coefficient is negative and the system will move violently until it
stabilizes in one of the damped stable zones.

While such systems are common in electronic circuitry, they are rather rare in the
field of rotating machinery. One instance has been observed49 in a rotor system sup-
ported by rolling element bearings with finite internal clearance. In this situation,
the effective stiffness of the rotor is small for small deflections (within the clearance)
but large for large deflections (when full contact is made between the rollers and the
rotor and stator). Such a nonlinearity in stiffness causes a “rightward leaning” peak
in the response curve when the rotor is operating in the vicinity of its critical speed
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and being stimulated by unbalance. In this region, two stable modes of operation are
possible, as in Fig. 5.16. In region A-B, the rotor and stator are in solid contact
through the rollers. In region C-D, the rotor is whirling within the clearance, out of

contact. A jump in amplitude is experi-
enced when operating from B to C or D
to A. When operating at constant speed,
either of the nominally stable states can
drift toward instability by virtue of ther-
mal effects on the rollers. When the
rollers are unloaded, they will skid and
heat up, thereby reducing the clearance.
When the rollers are loaded, they will be
cooled by lubrication and will tend to
contract and increase clearance. In com-
bination, these mechanisms are suffi-
cient to cause a relaxation oscillation in
the amplitude of the forced vibration.

The remedy for this type of self-
excited vibration is to eliminate the pre-
condition of skidding rollers by reducing
bearing geometric clearance, by pre-
loading the bearing, or by increasing the
temperature of any recirculating lubri-
cant.

UNSTABLE IMBALANCE

A standard text50 describes the occurrence of unstable vibration of steam turbines
where the rotor “would vibrate with the frequency of its rotation, obviously caused
by unbalance, but the intensity of the vibration would vary periodically and

SELF-EXCITED VIBRATION 5.21

FIGURE 5.16 Response of a rotor, in bearings
with (constant) internal clearance, to unbalance
excitation in the vicinity of its critical speed.

FIGURE 5.15 General form of relaxation oscillations.
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extremely slowly.” The instability in the vibration amplitude is attributable to ther-
mal bowing of the shaft, which is caused by the heat input associated with rubbing at
the rotor’s deflected “high spot,” or by the mass of accumulated steam condensate in
the inside of a hollow rotor at the rotor’s deflected high spot. In either case, there is
basis for continuous variation of amplitude, since unbalance gives rise to deflection
and the deflection is, in turn, a function of that imbalance.

The phenomenon is sometimes referred to as the Newkirk effect in reference to
its early recorded experimental observation.51 A manifestation of the phenomenon
in a steam turbine has been diagnosed and reported in Ref. 52 and a bibliography is
available in Ref. 53. An analytic study54 shows the possibility of both spiraling, oscil-
lating, and constant modes of amplitude variability.

5.22 CHAPTER FIVE

TABLE 5.2 Diagnostic Table of Rotating Machinery Self-excited Vibrations

R, characteristic ratio:
whirl frequency/rpm Whirl direction

Whirling or whipping:
Hysteretic whirl R ≈ 0.5 Forward
Fluid trapped in rotor 0.5 < R < 1.0 Forward
Dry friction whip No functional relationship; Backward—axial contact 

whirl frequency a function on disc side nearest 
of coupled rotor-stator virtual pivot; Forward—
system; onset rpm is a axial contact on disc side 
function of rpm at contact opposite to virtual pivot;

Backward—radial 
contact

Fluid bearing whip R < 0.5 Forward
Seal and blade-tip-clearance Load-dependent Forward—blade tip 

effect in turbomachinery clearance; Unspecified—
for seal clearance

Propeller and Load-dependent Backward—virtual pivot 
turbomachinery whirl aft of rotor; Forward—

virtual pivot front of 
rotor  (where front is 
source of impinging flow)

Parametric instability:
Asymmetric shafting R ≈ 1.0, 2.0, 3.0, . . . Unspecified
Pulsating torque R ≈ 0.5, 1.0, 1.5, 2.0, . . . Unspecified
Pulsating longitudinal load A function of pulsating load Unspecified

frequency rather than rpm
Stick-slip rubs and chatter R << 1 Essentially planar rather 

than whirl motion
Instabilities in forced 
vibrations:
Bistable vibration R = 1 with periodic square Forward

wave fluctuations in ampli-
tude of frequency much
lower than rotation rate

Unstable imbalance R = 1 with slow variation Forward
in amplitude
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IDENTIFICATION OF SELF-EXCITED VIBRATION

Even with the best of design practice and application of the most effective methods
of avoidance, the conditions and mechanisms of self-excited vibrations in rotating
machinery are so subtle and pervasive that incidents continue to occur, and the
major task for the vibrations engineer is diagnosis and correction.

Figure 5.3B suggests the forms for display of experimental data to perceive the
patterns characteristic of whirling or whipping, so as to distinguish it from forced
vibration, Fig. 5.3A. Table 5.2 summarizes particular quantitative measurements that
can be made to distinguish between the various types of whirling and whipping, and
other types of self-excited vibrations. The table includes the characteristic ratio of
whirl speed to rotation speed at onset of vibration, and the direction of whirl with
respect to the rotor rotation.The latter parameter can generally be sensed by noting
the phase relation between two stationary vibration pickups mounted at 90° to one
another at similar radial locations in a plane normal to the rotor’s axis of rotation.
Table 5.1 and specific prescriptions in the foregoing text and references suggest cor-
rective action based on these diagnoses. Reference 55 gives additional description of
corrective actions.
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CHAPTER 6
DYNAMIC

VIBRATION ABSORBERS
AND AUXILIARY
MASS DAMPERS

F. Everett Reed

INTRODUCTION

Auxiliary masses are frequently attached to vibrating systems by springs and damp-
ing devices to assist in controlling the amplitude of vibration of the system. Depend-
ing upon the application, these auxiliary mass systems fall into two distinct classes.

1. If the primary system is excited by a force or displacement that has a constant fre-
quency, or in some cases by an exciting force that is a constant multiple of a rota-
tional speed, then it is possible to modify the vibration pattern and to reduce its
amplitude significantly by the use of an auxiliary mass on a spring tuned to the
frequency of the excitation.When the auxiliary mass system has as little damping
as possible, it is called a dynamic absorber.

2. If it is impossible to incorporate damping into a structure that vibrates excessively,
it may be possible to provide the damping in an auxiliary system attached to the
structure. When used in this manner, the auxiliary mass system is one form of a
damper. (Other forms may be incorporated as an integral part of the system.) The
names damped absorber or auxiliary mass damper are given to this type of system.

It is sometimes useful to analyze the auxiliary mass system in terms of its electri-
cal analog.

FORMS OF DYNAMIC ABSORBERS AND

AUXILIARY MASS DAMPERS

In its simplest form, as applied to a single degree-of-freedom system, the character
of the auxiliary mass system is the same as that of the primary system. Thus a tor-

6.1
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sional system has a torsionally con-
nected auxiliary mass, a linear system
has a linear-spring connected mass, and
a pendulum has an auxiliary pendulum.
Examples of undamped auxiliary mass
systems attached to single degree-of-
freedom systems are shown in Figs. 6.1
and 6.2; examples of damped auxiliary
mass systems are shown in Figs. 6.3 and
6.4. With multiple degree-of-freedom
systems the attachment of the auxiliary
masses is not as conventional as with the
single degree-of-freedom system. For

example, consider the two degree-of-freedom system shown in Fig. 6.5A consisting
of two masses m1 and m2 on a rigid, massless bar. A dynamic absorber of the type
shown in Fig. 6.5B is effective for the vertical translational motion; however, if the
auxiliary masses are on cantilever beams mounted on the rigid bar, as shown in Fig.
6.5C, the absorber can be made effective for both vertical translational motion and
rotational motion about an axis normal to the page.

WAYS OF EXPRESSING THE EFFECTS OF

AUXILIARY MASS SYSTEMS

Suppose a linear auxiliary mass system, consisting of one or more masses, springs,
and dampers, is attached to a vibrating primary system.The reaction back on the pri-

mary system is proportional to the
amplitude of motion at the point of
attachment. It is a function of the fre-
quency of excitation and of the masses,
spring stiffnesses, and damping con-
stants of the auxiliary mass system. If
there is no damping in the auxiliary mass
system, the reaction forces are either in
phase or 180° out of phase with the dis-
placement and the acceleration at the
point of attachment. However, where
there is damping in the auxiliary system,
the reaction has a component that is 90°
out of phase with the acceleration and
the displacement.

Since the reaction is proportional to
the amplitude of motion, it is possible to
express the properties of the auxiliary
mass system in terms of the motion at
the point of attachment. This can be
done in three ways: (1) the ratio of the
reaction force to the displacement at
the point of attachment, (2) the ratio of
the reaction force to the velocity at the

6.2 CHAPTER SIX

FIGURE 6.1 Dynamic vibration absorbers in
pendulum form (A) and linear form (B).

FIGURE 6.2 Typical dynamic vibration ab-
sorbers. The principal and auxiliary systems
vibrate in torsion in the arrangement at (A); the
auxiliary system is in the form of masses and
beams at (B).

8434_Harris_06_b.qxd  09/20/2001  11:26 AM  Page 6.2



point of attachment, or (3) the ratio of
the reaction force to the acceleration at
the point of attachment. The first ratio
can be considered equivalent to a spring
whose stiffness changes with frequency.
The second ratio can be considered
equivalent to a damper; at any fre-
quency it is equal in magnitude to the
force-displacement ratio divided by the
angular frequency. The phase angle
between the force and the velocity is 90°
from the phase angle between the force
and the displacement. This force-
velocity ratio is called the mechanical

impedance Z of the auxiliary system. The third ratio corresponds to a mass and is
designated equivalent mass meq. The equivalent mass of a system is −1/ω2 that of the
equivalent spring keq of the system.

DYNAMIC VIBRATION ABSORBERS AND AUXILIARY MASS DAMPERS 6.3

FIGURE 6.3 Damped auxiliary mass systems
corresponding to the undamped vibration ab-
sorbers shown in Fig. 6.1.

FIGURE 6.4 Typical damped auxiliary mass
systems. In the torsional system at (A), damping
is provided by relative motion of the flywheels J,
Ja. In the antiroll tanks for ships shown at (B),
water flows from one tank to the other and
damping is provided by a constriction in the con-
necting pipe.

FIGURE 6.5 Application of a dynamic ab-
sorber to reduce the vibration of the spring-
mounted bar at (A) in both vertical translational
and rotational modes. The linear mass-spring
system at (B) is effective for only translational
motion, whereas the cantilever beams at (C) are
effective for rotational as well as translational
motion.
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Because of the phase relations between the force and the displacement, veloc-
ity, and acceleration at the point of connection, it is customary to represent the
ratios as complex quantities. Thus Z = keq/jω = jωmeq. Most dynamic analyses of
mechanical systems are made on purely reactive systems, i.e., systems having
masses and stiffnesses only, and no damping. The effects of auxiliary mass systems
are most easily understood if the effect of the auxiliary system is represented as a
reactive subsystem. For this reason, and because the hypothetical addition of a
mass to a system is often more easily comprehended than the addition of a spring,
the effects of auxiliary mass systems are treated in terms of the equivalent masses
in this chapter, i.e., in terms of the ratio of the force exerted by the auxiliary sys-
tem upon the primary system to the acceleration at the point of attachment of the
auxiliary system.

THE INFLUENCE OF A SIMPLE AUXILIARY MASS

SYSTEM UPON A VIBRATING SYSTEM

The magnitude of the equivalent mass of
a simple auxiliary mass system, consist-
ing of a mass ma, spring ka, and viscous
damper ca, can be determined readily by
evaluating the forces exerted by such a
system upon a foundation vibrating at a
frequency f = ω/2π. The system with its
assumed constants and displacements is
shown in Fig. 6.6A. The spring and damp-
ing forces acting on m are shown in Fig.
6.6B, and the equation of motion is

(−ka xr − ca jωxr)ejωt = −ma(x0 + xr)ω2ejωt

Solving for xr,

xr = (6.1)

The force acting on the foundation is

Fejωt = (ka + jcaω)xrejωt

Eliminating xr from the preceding equations,

F = x0 (6.2)

Since the force exerted by an equivalent mass meq rigidly attached to the moving
foundation is F = meqω2x0:

meq = ma (6.3)

Equation (6.3) can be written in terms of nondimensional quantities:

ka + jcaω��
ka + jcaω − maω2

(ka + jcaω)maω2

��
−maω2 + jcaω + ka

maω2x0��
−maω2 + jcaω + ka

6.4 CHAPTER SIX

FIGURE 6.6 Auxiliary mass damper. The ar-
rangement of the damper is shown at (A), and
the forces acting on the mass are indicated at (B).
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meq = ma (6.4)

where βa = , a tuning parameter

ωa
2 = , the natural frequency of the auxiliary system

ζ = , a damping parameter

cca = 2�k�am�a�, critical damping of the auxiliary system

Equation (6.4) can be divided into the following real and imaginary components:

meq = ma − jma (6.5)

The real and imaginary parts of meq are shown in Fig. 6.7A and B, respectively. If
there is no damping, ζ = 0 and

meq = ma (6.6)

If βa = 1 in Eq. (6.6), meq becomes infinite and a finite force produces no displace-
ment.Thus, the auxiliary mass enforces a point of no motion (i.e., a node) at its point
of attachment.

This concept can be applied to reduce the amplitude of the forced vibration of
a single degree-of-freedom system by attaching a damped absorber.1,2 A sketch of
the system with a damped auxiliary mass system is shown in Fig. 6.8A. In the
equivalent system shown in Fig. 6.8B, there is no force acting on the mass m but
instead the support is given a motion uejωt. The equations for the system of Fig.
6.8B are similar to those for the system of Fig. 6.8A with the value ku substituted
for F. The amplitude of forced vibration of a single degree-of-freedom system, Eq.
(2.24), is

x0 =

The effect of the auxiliary mass system is to increase the mass m of the primary sys-
tem by the equivalent mass of the auxiliary system as given by Eq. (6.4):

F/kx0 =
1 − �m + ma �

Substituting µ = ma/m, the mass ratio, δst = F/k, the static deflection of the spring of
the primary system, and β = �m�ω�2/�k�, the ratio of the forcing frequency to the natu-
ral frequency of the primary system, and writing in dimensionless form,

=

The amplitude of motion of the primary mass, without regard to phase, is

(1 − βa
2) + 2ζβa j

������
(1 − βa

2) + 2ζβa j − β2[(1 − βa
2) + 2ζβa j + µ(1 + 2ζβa j)]

x0�
δst

(1 + 2ζβa j)
��
(1 − βa

2) + 2ζβa j
ω2

�
k

F/k
��
1 − mω2/k

1
�
1 − βa

2

2ζβa
3

��
(1 − βa

2)2 + (2ζβa)2

(1 − βa
2) + (2ζβa)2

��
(1 − βa

2)2 + (2ζβa)2

ca�
cca

ka�
ma

ω
�
ωa

1 + 2ζβa j
��
(1 − βa

2) + 2ζβa j
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FIGURE 6.7 Equivalent mass meq of the auxiliary-mass system shown in Fig. 6.6. The real part of
the equivalent mass is shown at (A) and the imaginary part at (B).
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= � �1/2
(6.7)

If ζ = 0 (no damping), then

= (6.8)

If βa = 1, x0 = 0; that is, the vibration of the
primary system is eliminated entirely
when the auxiliary system is undamped
and is tuned to the forcing frequency.

THE DYNAMIC ABSORBER

If the auxiliary mass system has no
damping and is tuned to the forcing fre-
quency, it acts as a dynamic absorber
and enforces a node at its point of
attachment. The auxiliary mass must be
sufficiently large so that it will not have
an excessive amplitude.3 For a dynamic
absorber attached to the primary system
at the point where the excitation is
introduced, the required mass of the
auxiliary body is easily determined.
Since the primary mass is motionless,
the force exerted by the absorber, when

the amplitude of motion of the auxiliary mass is u0, is equal and of opposite sign to
the exciting force F. Hence

F = maω2u0 (6.9)

Since the frequency is known, the mass and amplitude of motion necessary to
neutralize a given excitation force are determined by Eq. (6.9). The spring stiffness
in the auxiliary system is determined by the requirement that the auxiliary system be
tuned to the frequency of the exciting force:

ka = maω2 (6.10)

Although the concept of tuning a dynamic absorber appears simple, practical
considerations make it difficult to tune any system exactly. When the auxiliary mass
is small relative to the mass of the primary system, its effectiveness depends upon
accurate tuning. If the tuning is incorrect, the addition of the auxiliary mass may
bring the composite system (primary and auxiliary systems) into resonance with the
exciting force.

Consider the natural frequencies of the composite system.The natural frequency
of the primary system is ω0 = �k�/m�. With this relation, Eq. (6.8) in which the damp-
ing is zero (ζ = 0) becomes

= 1 − ω2/ωa
2

����
(1 − ω2/ωa

2)(1 − ω2/ω0
2) − (ω2/ω0

2)µ
x0�
δst

1 − βa
2

���
(1 − βa

2)(1 − β2) − β2µ
x0�
δst

(1 − βa
2)2 + (2ζβa)2

������
[(1 − βa

2)(1 − β2) − β2µ]2 + (2ζβa)2[1 − β2 − β2µ]2

x0�
δst
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FIGURE 6.8 Schematic diagram of auxiliary
mass ma coupled by a spring ka and viscous
damper ca to a primary system k, m. The primary
system is excited by the force F at (A), or alter-
natively by the foundation motion u at (B).
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At resonance the denominator is zero and ω is designated ωn:

(ωn
2 − ωa

2)(ωn
2 − ω0

2) − ωn
2ωa

2µ = 0 (6.11)

The natural frequencies are found from the roots ωn
2 of Eq. (6.11):

ωn
2 = ± �� �2

+ ωa
2ω0

2µ (6.12)

This last relation may be represented by Mohr’s circle, Fig. 6.9.
Since the absorber is nominally tuned to the frequency of the excitation, the root

ωn2
2 that is closer to the forcing frequency is of interest.The ratio ωn2/ωa is a measure of

the sensitivity of the tuning required to avoid resonance. This is given as a function of
µ for various ratios of ω0/ωa in Fig. 6.10. Dynamic absorbers are most generally used
when the primary system without the absorber is nearly in resonance with the excitation.
If the natural frequency of the primary system is less than the forcing frequency, it is
preferable to tune the dynamic absorber to a frequency slightly lower than the forcing
frequency to avoid the resonance that lies above the natural frequency of the primary
system. Likewise if the natural frequency of the primary system is above the forcing
frequency, it is well to tune the damper to a frequency slightly greater than the forc-
ing frequency. Figure 6.10 shows that the tuning for a primary system with high natu-
ral frequency is more sensitive than that for a primary system with low natural
frequency. Mohr’s circle of Fig. 6.9 provides a useful graphical representation.

ωa
2(1 + µ) − ω0

2

��
2

ωa
2(1 + µ) + ω0

2

��
2

6.8 CHAPTER SIX

FIGURE 6.9 Representation of the natural
frequencies ωn of the composite system by
Mohr’s circle. The circle is constructed on the
diameter located by the natural frequencies ω0,
ωa of the primary and auxiliary systems, respec-
tively. The natural frequencies of the composite
system are indicated by the intercept of the cir-
cle with the horizontal axis.

FIGURE 6.10 Curves showing effect of mass
ratio ma/m on the natural frequencies ωn of the
composite system, for several ratios of the natu-
ral frequency ωa of the auxiliary system to the
natural frequency ω0 of the primary system.
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Where the natural frequency of the composite system is nearly equal to the tuned
frequency of the absorber, the amplitude of motion of the primary mass at reso-
nance is much smaller than that of the absorber. Consequently, the motion of the
primary mass does not become large even at resonance; but the motion of the
absorber, unless limited by damping, may become so large that failure occurs.

The use of the dynamic absorber is not restricted to single degree-of-freedom sys-
tems or to locations in simple systems where the exciting forces act. However,

dynamic absorbers are most effective if
located where the excitation force acts.
For example, consider a dynamic ab-
sorber that is attached to the spring in
the simple system shown in Fig. 6.11.
When the absorber is tuned so that
�k�a/�m�a� = ω, the equivalent mass is infi-
nite at its point of attachment and en-
forces a node at point A. If the stiffness
of the spring between A and the mass m
is k1, then the force F′ exerted by the
absorber to enforce the node is equal to
that exerted by a system composed of
the mass m and the spring k1 attached to
a fixed foundation at A and acted upon
by the force Fejωt. The force F ′ is

F ′ =

Thus the amplitude of motion of the auxiliary mass is

u0 = × (6.13)

The amplitude of motion of the primary mass is

x = 	1 − 
−1
(6.14)

Hence, an absorber attached to the spring is not as effective as one attached to the
body where the force is acting. It is possible for the primary system to come into res-
onance about the new node at A.

AUXILIARY MASS DAMPERS

In general, the dynamic absorber is effective only for a system that is subjected to a
constant frequency excitation. In the special case of a pendulum absorber (discussed
later in this chapter), it is effective for an excitation that is a constant multiple of a
rotating shaft speed. When excited at frequencies other than the frequency to which
it is tuned, the absorber acts as an attached mass of positive value at frequencies
below the tuned frequency and of negative value at frequencies above the tuned fre-
quency. It introduces an additional degree-of-freedom and an additional natural fre-
quency into the primary system.

mω2

�
k1

F
�
k1

1
�
maω2

F
��
1 − (mω2/k1)

F
��
1 − (mω2/k1)
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FIGURE 6.11 Dynamic absorber attached to
the spring of the primary system. The analysis
shows that this is not as effective as if it were
attached to the rigid body on which the force acts.
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In a multiple degree-of-freedom system, the introduction of an auxiliary mass
system tends to lower those original natural frequencies of the primary system that
are below the tuned frequency of the auxiliary system. This is because the auxiliary
mass system adds a positive equivalent mass at frequencies below the tuned fre-
quency. The original natural frequencies of the primary system that are higher than
the tuned frequency of the auxiliary system are raised by adding the auxiliary mass
system, because the equivalent mass of the auxiliary system is negative.A new natu-
ral mode of vibration corresponding to the vibration of the auxiliary mass system
against the primary system is injected between the displaced initial natural frequen-
cies of the primary system. Because the equivalent mass of the auxiliary mass system
is large only at frequencies near the tuned frequency, those frequencies of the pri-
mary system that are closest to the tuned frequency are most strongly influenced by
the auxiliary mass system. The addition of damping in the auxiliary mass system can
be effective in reducing the amplitudes of motion of the primary system at the natu-
ral frequencies. For this reason auxiliary mass dampers are used quite commonly to
reduce over-all vibration stresses and amplitudes.

Studies of the effects of a damped auxiliary mass system upon the amplitude of
motion of an undamped, single degree-of-freedom system1–5 have been applied to a
multimass system.6,7 In analyzing dampers utilizing auxiliary masses, it is desirable to
consider a composite system in which the characteristics of both the primary and
auxiliary systems are fixed. This composite system is excited by a harmonic force of
varying frequency. It is desirable to express the tuned frequency of the auxiliary
mass system in terms of the natural frequency of the primary system rather than the
ratio βa of the excitation frequency ω to the tuned frequency ωa of the auxiliary sys-
tem. Defining a new ratio α,

α = =

Then Eq. (6.7) becomes

= � �1/2
(6.15)

This equation is plotted in Fig. 6.12. Note that all curves pass through two points A,
B on the graph, independent of the damping parameter ζ.These points are known as
fixed points. Their locations are independent of the value of ζ if the ratio of the coef-
ficient of ζ2 to the term independent of ζ is the same in both numerator and denom-
inator of Eq. (6.15):

= (6.16)

This equation is satisfied if

(2αβ)2 = 0

+ = 0

− = 0

The first two solutions are trivial. The third yields the equation

(1 − β2 − β2µ)
���
(α2 − β2)(1 − β2) − α2β2µ

1
�
α2 − β2

(1 − β2 − β2µ)
���
(α2 − β2)(1 − β2) − α2β2µ

1
�
α2 − β2

2αβ(1 − β2 − β2µ)2

���
[(α2 − β2)(1 − β2) − α2β2µ]2

(2αβ)2

��
(α2 − β2)2

(α2 − β2)2 + (2ζαβ)2

������
[(α2 − β2)(1 − β2) − α2β2µ]2 + (2ζαβ)2(1 − β2 − β2µ)2

x0�
δst

β
�
βa

ωa�
ω0
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β4	1 + 
 − β2(1 + α2 + α2µ) + α2 = 0 (6.17)

The solution of this equation gives two values of β, designated βc, one corresponding
to each fixed point.

The amplitude of motion at each fixed point may be found by substituting each
value of βc given by Eq. (6.17) into Eq. (6.15). Since the amplitude is independent of
ζ, the value that gives the simplest calculation (namely, ζ = ∞) can be used for the cal-
culation:

�
c

= � �1/2
(6.18)

For the auxiliary mass damper to be most effective in limiting the value of x0/δst

over a full range of excitation frequencies, it is necessary to select the spring and
damping constants of the system as given by the parameters α and ζ, respectively, so
that the amplitude x0 of the primary mass is a minimum. First consider the influence
of the ratio α. As α is varied, the values of βc computed from Eq. (6.17) are substi-
tuted in Eq. (6.18) to obtain values of x0/δst for the fixed points A and B. The opti-
mum value of α is that for which the amplitude x0 at A is equal to that at B.

Let the two roots of Eq. (6.17) be β1
2 and β2

2, where β1
2 is less than 1 and β2

2 is
greater than 1. When x0/δst has the same value for both β1 and β2 in Eq. (6.18),

β1
2 + β2

2 = 2
�
1 + µ

1
��
(1 − βc

2 − βc
2µ)2

x0�
δst

µ
�
2
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FIGURE 6.12 Curves for auxiliary mass damper showing amplitude of
vibration of mass of primary system, as given by Eq. (6.15), as a function of the
ratio of forcing frequency ω to natural frequency of primary system ω = �k�/m�.
The mass ratio ma/m = 0.05, and the natural frequency ωa of the auxiliary mass
system is equal to the natural frequency ω0 of the primary system. Curves are
included for several values of damping in the auxiliary system.
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In an equation having unity for the coefficient of its highest power, the sum of the
roots is equal to the coefficient of the second term with its sign changed:

β1
2 + β2

2 =

From the two preceding equations, the optimum tuning (i.e., that required to give
the same amplitude of motion at both fixed points) is obtained:

αopt = (6.19)

where α is defined by the equation preceding Eq. (6.15).
If the effect of the damping is considered, it is possible to choose a value of the

damping parameter ζ that will make the fixed points nearly the points of greatest
amplitude of the motion. Consider Fig. 6.13, which represents the curves defining the
motion of a single degree-of-freedom system to which an ideally tuned damped
vibration absorber is attached (Fig. 6.8). The solid curves (1) represent the response
of a system fitted with an undamped absorber. Curve 2 represents infinite damping
of the auxiliary system. Curves 3 have horizontal tangents at the fixed points A and
B, respectively. Since it is difficult to determine the required damping from maxima
at the fixed points, the assumption is made that an optimum damping gives the same
value of x0/δst at a convenient point between A and B as at these fixed points. First
find the values of β at A and B. This is done by solving Eq. (6.17) with the values of
α as determined by Eq. (6.19) substituted:

β4 − + = 0
2

��
(2 + µ)(1 + µ)2

2β2

�
1 + µ

1
�
1 + µ

1 + α2 + α2µ
��

1 + µ/2
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FIGURE 6.13 Curves similar to Fig. 6.12 but with optimum tuning. Curves 1
apply to an undamped absorber, curve 2 represents infinite damping in the aux-
iliary system, and curves 3 have horizontal tangents at the fixed points A and B.

8434_Harris_06_b.qxd  09/20/2001  11:26 AM  Page 6.12



Solving for β to obtain the abscissas at the fixed points,

β2 = �	1 ± 
 (6.20)

A convenient value for β lying between the two fixed points A and B is defined by

βl
2 = (6.21)

The frequency corresponding to this frequency ratio βl is the natural frequency of
the composite system when the damping is infinite; it is called the locked fre-
quency.7 The value of x0/δst at the fixed points is found by substituting Eq. (6.20) into
Eq. (6.18):

at fixed point = �1 + (6.22)

An approximate value for the maximum damping is obtained by solving for the
value of ζ in Eq. (6.15) that gives a value of x0/δst = �1� +� 2�/µ� when βl

2 (the locked
frequency) is given by Eq. (6.21) and α has the optimum value given by Eq. (6.19).
This gives the following value for the optimum damping parameter:

ζopt = � (6.23)

It is possible to find the value of ζ2 that makes the fixed point A a maximum on
the x0/δst vs. β plot, Fig. 6.13, and also to find the value of ζ2 that makes the point B a
maximum. The average of the two values so obtained indicates optimum damping:4

ζopt = � (6.24)

Optimum Damping for an Auxiliary Mass Absorber Connected to the Pri-
mary System with Damping Only. In general, the most effective damping is
obtained where the auxiliary mass damping system includes a spring in its connec-
tion to the primary system. However, such a design requires a calculation of the opti-
mum stiffness of the spring. Sometimes it is more expedient to add an oversize mass,
coupled only by damping to the primary system, than it is to compute the optimum
system. However, if use is made of such a simplified damper by taking it from a list
of standard dampers and applying it with a minimum of calculations, the stock
dampers should be as efficient as the application will permit.

In computing the optimum damping characteristic for an auxiliary mass
absorber, attached to a single degree-of-freedom system by damping only, from the
relations that have been developed, note in Eq. (6.4) that ζ = ∞ and βa = ∞ when k =
0.Then α = β/βa = 0. However, the product ζα = ζβ/βa is finite; thus, substituting α = 0
but retaining the product ζα in Eq. (6.15),

= � (6.25)

The value of x0/δst is independent of ζα where the ratio of the coefficient of ζα to
the term independent of ζα in the numerator is the same as the corresponding ratio
in the denominator:

β2 + 4(ζα)2

����
β2(1 − β2)2 + 4(ζα)2[1 − β2(1 + µ)]2

x0�
δst

3µ
�
8(1 + µ)3

µ
�
2(1 + µ)

2
�
µ

x0�
δst

1
�
1 + µ

µ
�
2 + µ

1
�
1 + µ
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=

The solution of this equation for β gives the fixed points

β2 = 0 and β2 = (6.26)

The amplitude of motion of the primary mass where β2 = 2/(2 + µ) is

= (6.27)

Curves showing the motion of the mass of a primary system fitted with an auxiliary
mass system connected by damping only are given in Fig. 6.14.The optimum damp-
ing is that which makes the maximum amplitude occur at the fixed point B. By
finding the value of ζα that makes the slope of x0/δst versus β equal to zero at β2 =
2/(2 + µ), the optimum damping is defined by

(ζα)opt = � (6.28)

The values for the amplitude of vibration of the primary mass, the relative amplitude
between the primary and auxiliary masses, and the optimum damping constants are
given in Figs. 6.15 to 6.17 as functions of the mass ratio µ = ma/m.

1
��
2(2 + µ)(1 + µ)

2 + µ
�

µ
x0�
δst

2
�
2 + µ

4[1 − β2(1 + µ)]2

��
β2(1 − β2)2

4
�
β2
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FIGURE 6.14 Curves similar to Fig. 6.12 for system having auxiliary mass
coupled by damping only. Several values of damping are included.
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DYNAMIC VIBRATION ABSORBERS AND AUXILIARY MASS DAMPERS 6.15

FIGURE 6.15 Displacement amplitude of the primary mass as a function
of the size of the auxiliary mass: (a) auxiliary system coupled only by
Coulomb friction (α = 0) with optimum damping; (b) auxiliary system cou-
pled only by viscous damping (α = 0) of optimum value; (c) auxiliary system
coupled by spring and damper tuned to frequency of primary system (α =
1) with optimum damping; (d) auxiliary system coupled by spring and
damper with optimum tuning [α = 1/(1 + µ)] and optimum damping.

FIGURE 6.16 Relative displacement amplitude between the primary
mass and the auxiliary mass as a function of the size of the auxiliary mass:
(a) auxiliary system coupled by spring and damper with optimum tuning
[α = 1/(1 + µ)] and optimum damping; (b) auxiliary system coupled only by
viscous damping (α = 0) of optimum value; (c) auxiliary system coupled by
spring and damper tuned to frequency of primary system (α = 1) with opti-
mum damping.
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The Use of Auxiliary Mass Absorbers for Vibration Energy Dissipation.
When a complicated mass-spring system is analyzed for possible vibration troubles,
it is customary to compute the natural frequencies of the several modes of vibration
of the system. The vibration amplitudes and stresses are estimated by making an
energy balance between the energy input from the various exciting forces and the
energy dissipated in the system and external reactions. From this point of view, it is
desirable to know how much energy is dissipated in auxiliary mass systems and what
value the damping constant should have in an auxiliary mass system of limited size
to give maximum energy absorption. This is not the best criterion for determining
the optimum damping because it neglects the effects of damping upon the mode
shapes and the frequencies of the system, but it is generally adequate when com-
pared with the other uncertainties of the calculations. Methods of designing
dampers for torsional systems are given in Chap. 38.

Optimum Viscous Damping to Give Large Energy Absorption in an Auxiliary
Mass Absorber.8 Suppose the amplitude of motion of the primary system is unaf-
fected by the auxiliary mass system which is attached to it. All energy absorption
occurs in the damping element of the auxiliary mass system and is obtained by inte-
grating the differential work done in the damper over a vibration cycle. The force
exerted by damping is cẋr (the subscripts a are dropped), where xr is the relative
motion and the increment of work is cẋr dxr = cẋr

2dt. If xr = xr 0 cos ωt, the work done
over a cycle is

V = � cω2xr 0
2sin2 ωt dt = πcxr 0

2ω (6.29)

For a damper attached to a support moving in harmonic motion of amplitude x0,
the relative motion xr is given by Eq. (6.1). The amplitude of relative motion is

6.16 CHAPTER SIX

FIGURE 6.17 Curves showing damping required in auxiliary mass systems
to minimize vibration amplitude of primary system: (a) auxiliary mass cou-
pled by viscous damping only (α = 0); (b) auxiliary system coupled by spring
and damper tuned to frequency of primary system (α = 1); (c) auxiliary sys-
tem coupled by spring and damper with optimum tuning [α = 1/(1 + µ)].The
ordinate of the curves is ζα, where ζ is the fraction of critical damping in the
auxiliary system [Eq. (6.4)] and α is the tuning parameter [Eq. (6.15)].
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xr 0 = =

Substituting the above value of xr0 in Eq. (6.29) and integrating,

V = = (6.30)

Equation (6.30) can be used to find the tuning and the damping that gives the max-
imum energy dissipation when the amplitude of the forcing motion remains con-
stant. Placing ∂V/∂βa = 0, the optimum value of βa for given values of ζ is found from

(βa)2
opt = (2ζ2 − 1) ± 2 �1� −� ζ�2�+� ζ�4� (6.31)

Placing ∂V/∂ζ = 0, the optimum value of ζ for a given value of βa is

ζopt = (6.32)

Where k = 0, the optimum damping is determined most conveniently by setting
∂V/∂c = 0, using the dimensional form of Eq. (6.30), and determining c for maximum
energy absorption:

copt = mω (6.33)

Auxiliary Mass Damper Using Coulomb Friction Damping.9 Dampers relying
on Coulomb friction (i.e., friction whose force is constant) have been widely used.A
damper relying on dry friction and connected to its primary system with a spring is
too complicated to be analyzed or to be adjusted by experiment. For this reason, a
damper with Coulomb friction has been used with only friction damping connecting
the seismic mass (usually in a torsional application) to the primary system.1,2,9

Because the motion is irregular, it is necessary to use energy methods of analysis.
The analysis given here applies to the case of linear vibration. By analogy, the appli-
cation to torsional or other vibration can be made easily (see Table 2.1 for analogous
parameters).

Consider the system shown in Fig.
6.18. It consists of a mass resting on
wheels that provide no resistance to
motion and are connected through a
friction damper to a wall that is moving
sinusoidally. The friction damper con-
sists of two friction facings that are held
on opposite sides of a plate by a spring
that can be adjusted to give a desired
clamping force.The maximum force that
can be transmitted through each inter-
face of the damper is the product of the

normal force and the coefficient of friction; the maximum total force for the damper
is the summation over the number of interfaces.

Consider the velocity diagrams shown in Fig. 6.19A, B, and C. In these diagrams
the velocity of the moving wall, ẋ = x0ω sin ωt, is shown by curve 1; the velocity u̇ of
the mass is shown by curve 2.The force exerted by the damper when slipping occurs
is Fs. When Fs ≥ mü, the mass moves sinusoidally with the wall. When Fs < mü, slip-

1 − βa
2

�
2βa

πx0
2mω2(2ζβa)βa

2

��
(1 − βa

2)2 + (2ζβa)2

πcωx0
2m2ω4

��
(k − mω2)2 + c2ω2

βa
2x0���

�(1� −� β�a
2�)2� +� (�2�ζβ�a)�2�

mω2x0���
�(k� −� m�ω�2)�2�+� c�2ω�2�
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FIGURE 6.18 Schematic diagram of auxiliary
mass absorber with Coulomb friction damping.
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ping occurs in the damper and the mass is accelerated at a constant rate. Since a con-
stant acceleration produces a uniform change in velocity, the velocity of the mass
when the damper is slipping is shown by straight lines.The relative velocity between
the wall and the mass is shown by the vertical shading.

Figure 6.19A applies to a damper with a low friction force. The damper slips con-
tinuously. In Fig. 6.19B the velocities resulting from a larger friction force are shown.
Slipping disappears for certain portions of the cycle. Where the wall and the mass
have the same velocity, their accelerations also are equal. Slipping occurs when the
force transmitted by the damper is not large enough to keep the mass accelerating
with the wall. Since at the breakaway point the accelerations of the wall and mass
are equal, their velocity-time curves have the same slope; i.e., the curves are tangent
at this point. In Fig. 6.19C, the damping force is so large that the mass follows the
wall for a considerable portion of the cycle and slips only where its acceleration
becomes greater than the value of Fs/m. A slight increase in the clamping force or in
the coefficient of friction locks the mass to the wall; then there is no relative motion
and no damping.

Because of the nature of the damping force, the damping provided by the friction
damper can be computed most practically in terms of energy. If the friction force
exerted through the damper is Fs, the energy dissipated by the damper is the prod-
uct of the friction force and the total relative motion between the mass and the mov-
ing wall.The time reference is taken at the moment when the auxiliary mass m has a
zero velocity and is being accelerated to a positive velocity, Fig. 6.19A. Let the period
of the vibratory motion of the wall be τ = 2π/ω, where ω is the angular frequency of
the wall motion. By symmetry, the points of no slippage in the damper occur at times

6.18 CHAPTER SIX

FIGURE 6.19 Velocity-time diagrams for motion of wall (curve 1) and mass (curve 2) of Fig.
6.18. The conditions for a small damping force are shown at (A), for an intermediate damping
force at (B), and for a large damping force at (C). The relative velocity between the wall and the
mass is indicated by vertical shading.
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−τ/4, τ/4, and 3τ/4. Let the time when the velocity of the wall is zero be −t0; then the
velocity of the wall ẋ is

ẋ = +x0ω sin ω(t + t0)

The velocity u̇ of the mass for −τ/4 < t < τ/4 is

u̇ = üt = t

The velocities of the wall and the mass are equal at time t = τ/4:

x0ω sin ω 	 + t0
 =

Since ωτ/4 = π/2, sin ω(τ/4 + t0) = cos ωt0. Therefore

cos ωt0 =

The relative velocity between the moving wall and the mass is ẋ − u̇, and the total rel-
ative motion is the integral of the relative velocity over a cycle. Note that the area
between the two curves for the second half of the cycle is the same as for the first.
Hence, the work V per cycle is

V = 2 τ/4

−τ/4
Fs(ẋ − u̇) dt = 4Fsx0 �1 − 	 
2

(6.34)

Optimum damping occurs when the work per cycle is a maximum. It can be deter-
mined by setting the derivative of V with respect to Fs in Eq. (6.34) equal to zero and
solving for Fs:

(Fs)opt = mω2x0 (6.35)

Energy absorption per cycle with optimum damping is, from Eq. (6.34),

Vopt = mω2x0
2 (6.36)

A comparison of the effectiveness of the Coulomb friction damper with other types
is given in Fig. 6.15.

EFFECT OF NONLINEARITY IN THE SPRING OF

AN AUXILIARY MASS DAMPER

It is possible to extend the range of frequency over which a dynamic absorber is effec-
tive by using a nonlinear spring.10–12 When a nonlinear spring is used, the natural fre-
quency of the absorber is a function of the amplitude of vibration; it increases or
decreases, depending upon whether the spring stiffness increases or decreases with
deflection. Figure 6.20A shows a typical response curve for a system with increasing
spring stiffness; Fig. 6.20B illustrates types of systems having increasing spring stiff-
ness and shows typical force-deflection curves. Figure 6.21A shows a typical response
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curve for a system of decreasing spring stiffness; Fig. 6.21B illustrates types of systems
having decreasing stiffnesses and shows typical force-deflection curves.

To compute the equivalent mass at a given frequency when a nonlinear spring is
used, it is necessary to use a trial-and-error procedure. By the methods given in
Chap. 4, compute the natural frequency of the auxiliary mass system, assuming the
point of attachment fixed, as a function of the amplitude of motion of the auxiliary
mass. This will result in a curve similar to the dotted curves in Figs. 6.20A and 6.21A.
At the given frequency, compute βa in Eq. (6.4) in terms of the tuned frequency of
the absorber at zero amplitude. (The tuned frequency will change with amplitude
because the spring constant changes.) With this value of βa compute the equivalent
mass from Eq. (6.6). With this mass in the system, compute the amplitude of motion
x0 of the primary mass to which the auxiliary system is attached [Eq. (6.7)] and the
amplitude of the relative motion xr 0 = v2(1 − v2)x0. Using this value of xr 0, ascertain
the corresponding value of resonance frequency of the system from the computed
curve, and compute the new value of βa. Repeat the process until the value of βa

remains unchanged upon repeated calculation.
A dynamic absorber having a nonlinear characteristic can be used to introduce

nonlinearity into a resonant system. This can be useful in the case where a machine
passes through a resonance rapidly as the speed is increased but slowly as the speed is
decreased. In bringing this machine up to speed, there is a natural frequency that
comes into strong resonance, giving a critical speed. A strongly nonlinear dynamic
absorber tuned at low amplitudes to the optimum frequency for the damped absorber

6.20 CHAPTER SIX

FIGURE 6.20 Auxiliary mass damper with
nonlinear spring having stiffness that increases
as deflection increases. The response to forced
vibration and the natural frequency are shown
at (A). Several arrangements of nonlinear sys-
tems with the corresponding force-deflection
curves are shown at (B).

FIGURE 6.21 Auxiliary mass damper with
nonlinear spring having stiffness that decreases
as deflection increases. The response to forced
vibration and the natural frequency are shown
at (A). Two arrangements of nonlinear systems
with the corresponding force-deflection curves
are shown at (B).
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can be used to reduce the effects of the critical speed.Two resonant peaks will be intro-
duced, as shown on curve 1 of Fig. 6.13. By making the dynamic absorber nonlinear, so
that the stiffness becomes greater as the amplitude of vibration is increased, the peaks
are bent over to provide the response curve shown in Fig. 6.22. In starting, the machine
is accelerated through the two critical speeds so fast that a resonance is unable to build
up. In coasting to a stop, there would be ample time for significant amplitudes to build
up if the nonlinearity did not exist. Because of the nonlinearity, the amplitude of vibra-
tion as a function of speed (since β is proportional to speed) follows the path A, B, C,
D, E, F, G and never reaches the extreme amplitudes H1 and H2.

MULTIMASS ABSORBERS

In general, only one mass is used in a dynamic absorber. However, it is possible to
provide a dynamic absorber that is effective for two or more frequencies by attach-
ing an auxiliary mass system that resonates at the frequencies that are objectionable.
The principle that would make such a dynamic absorber effective is utilized in the
design of the elastic system of a ship’s propulsion plant driven by independent high-
pressure and low-pressure turbines. By making the frequencies of the two branches
about the reduction gear identical, the gear becomes a node for one of the resonant
modes. Then it is impossible to excite the mode of vibration where one turbine
branch vibrates against the other as a result of excitation transmitted by the pro-
peller shaft to that node.

DISTRIBUTED MASS ABSORBERS

It is possible to use distributed masses as vibration dampers. Consider an undamped
rod of distributed mass and elasticity attached to a foundation that vibrates the rod

DYNAMIC VIBRATION ABSORBERS AND AUXILIARY MASS DAMPERS 6.21

FIGURE 6.22 Motion of the primary mass, as a function of forcing fre-
quency, in a system having a nonlinear dynamic absorber whose natural fre-
quency increases with amplitude. The mass of the absorber is 0.25 times the
mass of the primary system (µ = 0.25).
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axially, as shown in Fig. 6.23. The differential equation for the motion of this rod is
derived in Chap. 7. The values of the constants are set by the boundary conditions:

Stress = E = 0 where x = l
(6.37)

u = u0 cos ωt where x = 0

The solution of the equation of motion is

u = u0 cos ωt 	cos � x + tan � l sin � x

(6.38)

= u0 cos ωt

where E is the modulus of elasticity and γ is the weight density of the material.When
x = 0, the force F on the foundation is

F = SE �
0

= SEu0 � 	tan � l
 (6.39)

where S is the cross-sectional area of the bar. It is apparent that as the argument of
the tangent has successive values of π/2, 3π/2, 5π/2, . . . , the force exerted on the
foundation becomes infinite. The distributed mass acts as a dynamic absorber
enforcing a node at its point of attachment. By tuning the mass so that

� l = or l = � (6.40)

the distributed mass acts as a dynamic absorber for not only the fundamental fre-
quency ω/2π but also for the third, fifth, seventh, . . . harmonics of the fundamental.

The above solution neglects damping. It is possible to consider the effect of
damping by including a damping term in the differential equation. The stress in an
element is assumed to be the sum of a deformation stress and a stress related to the
velocity of strain:

σ = E� + µ (6.41)

where ε = ∂u/∂x is the strain. Then the
differential equation becomes

E + µ = (6.42)

Since the absorber is excited by a founda-
tion moving with a frequency f = ω/2π,
u may be expressed as Ru1ejωt and the par-
tial differential equation can be written as
the ordinary linear differential equation

E + jωµ + = 0

This equation may be written
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FIGURE 6.23 Elastic body with distributed
mass used as auxiliary mass damper.
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	1 + 
 + u1 = 0 (6.43)

Since Eq. (6.43) is a second-order linear differential equation, the solution may be
written

u = A1eβ1x + A2eβ 2x (6.44)

where β1 and β2 are the two roots of the equation

β2 = (6.45)

For small values of µ, by a binomial expansion of the denominator,

±β = � + j� ω (6.46)

where µ is defined by Eq. (6.41).
The boundary conditions to be met by the damper are:

At x = 0: u = u0 therefore, A1 + A2 = u0

(6.47)
At x = l: σ = (E + jωµ) = 0 therefore, A1eβl − A2e−βl = 0

Solving Eqs. (6.47) for A1 and A2 and substituting the result in Eq. (6.44),

u = u0 (6.48)

The force exerted on the foundation by the damper is

F(x = 0) = Sσ(x = 0) = − Su0(E + jωµ) β tanh βl (6.49)

where S is the cross-section area of the bar.When the complex value of β as given in
Eq. (6.46) is substituted in Eq. (6.49), the following value for the dynamic force
exerted on the foundation is obtained:

F(x = 0)
=
	1 + 
 sin 2	� ωl
 + sinh 	 � ωl


SE� ωu0 cos 2	� ωl
 + cosh 	 � ωl


+ j
sin 2	� ωl
 − 	1 + 
 sinh 	 � 


(6.50)

cos 2	� ωl
 + cosh 	 � ωl

A plot of the real and imaginary values of F(x = 0)/SE � ωu0 is given in Fig. 6.24 for

zero damping and for a damping coefficient µω/E = 0.1 as a function of a tuning

γ
�
Eg

γ
�
Eg

µω
�
E

γ
�
Eg

γ
�
Eg

µω
�
E

µ2ω2

�
2E2

γ
�
Eg

µω
�
2E

γ
�
Eg

µω
�
E

γ
�
Eg

γ
�
Eg

γ
�
Eg

µω
�
E

µω
�
2E

γ
�
Eg

µ2ω2

�
2E2

cosh β(l − x)
��

cosh βl

∂u
�
∂x

γ
�
Eg

µω2

�
E

γ
�
Eg

1
�
2

−(γ/Eg)ω2

��
1 + (jµω/E)

γω2

�
Eg

d 2u1�
dx2

µωj
�

E

DYNAMIC VIBRATION ABSORBERS AND AUXILIARY MASS DAMPERS 6.23

8434_Harris_06_b.qxd  09/20/2001  11:26 AM  Page 6.23



parameter �γ/�E�g�(ω�l)�. Damping decreases the effectiveness of the distributed mass
damper substantially, particularly for the higher modes.

Use of a distributed mass as a vibration absorber is practical only at very high fre-
quency; otherwise, too long a length is required.

PRACTICAL APPLICATIONS OF AUXILIARY MASS

DAMPERS AND ABSORBERS TO SINGLE

DEGREE-OF-FREEDOM SYSTEMS

THE DYNAMIC ABSORBER

The dynamic absorber, because of its tuning, can be used to eliminate vibration only
where the frequency of the vibration is constant. Many pieces of equipment to which
it is applied are operated by alternating current. So that it can be used for time keep-
ing, the frequency of this alternating current is held remarkably constant. For this
reason, most applications of dynamic absorbers are made to mechanisms that oper-
ate in synchronism from an ac power supply.

An application of a dynamic absorber to the pedestal of an ac generator having
considerable vibration is shown in Fig. 6.25, where the relative sizes of absorber and
pedestal are shown approximately to scale. In this case, the application is made to a
complicated structure and the mass of the absorber is much less than that of the pri-
mary system; however, since the frequency of the excitation is constant, the dynamic
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FIGURE 6.24 Real and imaginary components of the force applied to a vibrating body by the dis-
tributed mass damper shown in Fig. 6.23. These relations are given mathematically by Eq. (6.50), and
the terms are defined in connection with Eq. (6.38). The curves are for a value of the damping coeffi-
cient µω/E = 0.1, where µ is defined by Eq. (6.41).
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absorber reduces the vibration. When
the mass ratio is small, it is important
that the absorber be accurately tuned
and that the damping be small. In this
case, the excitation was the unbalance in
the turbine rotor which was elastically
connected to the pedestal through the
flexibility of the shaft. If the absorber
were ideally effective, there would be no
forces at the frequency of the shaft
speed; therefore, there would be no dis-
placements from the pedestal where the
force is neutralized through the remain-
der of the structure.

The dynamic absorber has been
applied to the electric clipper shown in
Fig. 6.26. The structure consisting of the

cutter blade and its driving mechanism is actuated by the magnetic field at a fre-
quency of 120 Hz, as a result of the 60-Hz ac power supply. The forces and torques
required to move the blade are balanced by reactions on the housing, causing it to
vibrate.The dynamic absorber tuned to a frequency of 120 Hz enforces a node at the
location of its mass. Since this is approximately the center-of-gravity of the assembly
of the cutter and its driving mechanism, the absorber effectively neutralizes the
unbalanced force. The moment caused by the rotation of the moving parts is still
unbalanced. A second very small dynamic absorber placed in the handle of the clip-

per could enforce a node at the handle
and substantially eliminate all vibration.
The design of these absorbers is simple
after the unbalanced forces and torques
generated by the cutter mechanism are
computed. The sum of the inertia forces
generated by the two absorbers, m1x1ω2

+ m2x2ω2 (where m1 and x1 are the mass
and amplitude of motion of the first
absorber, m2 and x2 are the correspond-
ing values for the second absorber, and

ω = 240π), must equal the unbalanced force generated by the clipper mechanism.
The torque generated by the two absorbers must balance the torque of the mecha-
nism. Since the value of ω2 is known, the values of m1x1 and m2x2 can be determined.
Weights that fit into the available space with adequate room to move are chosen,
and a spring is designed of such stiffness that the natural frequency is 120 Hz.

Because of the desirable balancing properties of the simple dynamic absorber
and the constancy of frequency of ac power, it might be expected that devices oper-
ating at a frequency of 120 Hz would be used more widely. However, their applica-
tion is limited because the frequency of vibration is too high to allow large
amplitudes of motion.

REDUCTION OF ROLL OF SHIPS BY AUXILIARY TANKS

An interesting application of auxiliary mass absorbers is found in the auxiliary tanks
used to reduce the rolling of ships,1,13 as shown in Fig. 6.27.When a ship is heeled, the
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FIGURE 6.25 Application of a dynamic ab-
sorber to the bearing pedestal of an ac generator.

FIGURE 6.26 Application of a dynamic
absorber to a hair clipper.
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restoring moment krφ acting on it is pro-
portional to the angle of heel (or roll).
This restoring moment acts to return the
ship (and the water that moves with it)
to its equilibrium position. If Is repre-
sents the polar moment of inertia of the
ship and its entrained water, the differ-
ential equation for the rolling motion of
the ship is

Is φ̈ + krφ = Ms (6.51)

where Ms represents the rolling moments
exerted on the ship, usually by waves.

To reduce rolling of the ship, auxil-
iary wing tanks connected by pipes are
used. The water flowing from one tank
to another has a natural frequency that
is determined by the length and cross-
sectional area of the tube connecting the

tanks. The damping is controlled by restricting the flow of water, either with a valve
S in the line that allows air to flow between the tanks (Fig. 6.27) or with a valve V in
the water line. Since the tanks occupy valuable space, the mass ratio of the water in
the tanks to the ship is small. Fortunately, the excitation from waves generally is not
large relative to the restoring moments, and roll becomes objectionable only
because the normal damping of a ship in rolling motion is not very large. The use of
antirolling tanks in the German luxury liners Bremen and Europa reduced the max-
imum roll from 15 to 5°.

REDUCTION OF ROLL OF SHIPS BY GYROSCOPES

A large gyroscope may be used to re-
duce roll in ships, as shown in Fig.
6.28.1,14 In response to the velocity of
roll of a ship, the gyroscope precesses in
the plane of symmetry of the ship. By
braking this precession, energy can be
dissipated and the roll reduced. The
torque exerted by the gyroscope is pro-
portional to the rate of change of the
angular momentum about an axis per-
pendicular to the torque. Letting I rep-
resent the polar moment of inertia of
the gyroscope about its spin axis and θ̇
the angular velocity of precession of the
gyroscope, then the equation of motion
of the ship is

Is φ̈ + krφ + IΩθ̇ = Ms (6.52)

Assume that the gyroscope has (1) a moment of inertia about the precession axis
of Ig, (2) a weight of W, and (3) that its center-of-gravity is below the gimbal axis (as
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FIGURE 6.27 Cross section of ship equipped
with antiroll tanks. The flow of water from one
tank to the other tends to counteract rolling of
the ship.

FIGURE 6.28 Application of a gyroscope to a
ship to reduce roll.
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it must be for the gyro to come to equilibrium in a working position) a distance a, as
shown in Fig. 6.28. Then the equation of motion of the gyroscope is

Igθ̈ + Waθ + cθ̇ − IΩφ̇ = 0 (6.53)

where Ω is the spin velocity of the gyroscope. From Eq. (6.53), for a roll frequency of
ω, the angle of precession of the gyroscope is

θ = (6.54)

The torque exerted on the ship is

IΩθ̇ = (6.55)

The equivalent moment of inertia of the gyroscope system in its reaction on the ship is

(6.56)

By analogy with the steps of Eqs. (6.2) through (6.7), it follows that

= � (6.57)

where the parameters are defined in terms of ship and gyro constants as follows:

βg = β = ζ = µ = ψst =

Because IΩ can be made large by using a large gyro rotor and spinning it at a high
speed, and Wa can be made small by choice of a design, the value of µ can be made
quite large even though Is is large. In one experimental ship, µ = 20 was obtained.
Even with this large value of µ, the precession angle of the gyroscope would become
very large for optimum damping. Therefore it is necessary to use much more damp-
ing than optimum. Gyro stabilizers were used on the Italian ship Conte di Savoia;
they are sometimes installed on yachts.

Both antirolling tanks and gyro stabilizers are more effective if they are active
rather than passive. Activated dampers are considered below.

AUXILIARY MASS DAMPERS APPLIED TO

ROTATING MACHINERY

An important industrial use of auxiliary mass systems is to neutralize the unbalance
of centrifugal machinery.A common application is the balance ring in the spin dryer
of home washing machines. The operation of such a balancer is dependent upon the
basket of the washer rotating at a speed greater than the natural frequency of its
support.The balance ring is attached to the washing machine basket concentric with
its axis of rotation, as shown in Fig. 6.29.

Consider the washing machine basket shown in Fig. 6.29. When its center-of-
gravity does not coincide with its axis of rotation and it is rotating at a speed lower

Ms�
kr

(IΩ)2

�
WaIs

c
��
2 �W�a�Ig�

ω
�
�k�r /�Is�

ω
�
�W�a�/I�g�

(1 − βg
2)2 + (2ζβg)2

�����
[(1 − βg

2)(1 − β2) − β2µ]2 + (2ζβg)2(1 − β2)2

φ
�
φst

IΩ2

��
−Igω2 + Wa + cjω

−(IΩ)2ω2φ
��
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jIΩωφ
��
−Igω2 + Wa − jcω
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than its critical speed (corresponding to
the natural frequency in rocking motion
about the spherical seat), the centrifugal
force tends to pull the rotational axis in
the direction of the unbalance. This
effect increases with an increase in rota-
tional speed until the critical speed is
reached. At this speed the amplitude
would become infinite if it were not for
the damping in the system. Above the
critical speed, the phase position of the
axis of rotation relative to the center-of-
gravity shifts so that the basket tends to
rotate about its center-of-gravity with
the flexibly supported bearing moving in
a circle about an axis through the center-

of-gravity. The relative positions of the bearing center and the center-of-gravity are
shown in Fig. 6.30A and B.

Since the balance ring is circular with a smooth inner surface, any weights or fluids
contained in the ring can be acted upon only by forces directed radially.When the ring
is rotated about a vertical axis, the weights or fluids will move within the ring in such a
manner as to be concentrated on the side farthest from the axis of rotation. If this con-

centration occurs below the natural fre-
quency (Fig. 6.30A), the weights tend to
move further from the axis and the result-
ant center-of-gravity is displaced so as to
give a greater eccentricity. The points A
and G rotate about the axis O at the fre-
quency ω. The initial eccentricity of the
center-of-gravity of the washer basket
and its load from the axis of rotation is
represented by e, and ρ is the elastic dis-
placement of this center of rotation due
to the centrifugal force. Where the off-
center rotating weight is W, the unbal-
anced force is (W/g)(ρ + e)ω2 [where ρ =
e/(1 − β2) and β2 = ω2/ωn

2 < 1] and acts in
the direction from A to G.

If the displacement of the weights or
fluids in the balance ring occurs above
the natural frequency, the center-of-
gravity tends to move closer to the
dynamic location of the axis.The action in
this case is shown in Fig. 6.30B. Then the
points A and G rotate about O at the fre-

quency ω. The unbalanced force is (W/g)(ρ + e)ω2 [where ρ = e/(1 − β2) and β2 =
ω2/ωn

2 > 1]. This gives a negative force that acts in a direction from G to A. Thus the
eccentricity is brought toward zero and the rotor is automatically balanced. Because it
is necessary to pass through the critical speed in bringing the rotor up to speed and in
stopping it, it is desirable to heavily damp the balancing elements, either fluid or
weights.

In practical applications, the balancing elements can take several forms. The ear-
liest form consisted of two or more spheres or cylinders free to move in a race con-
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FIGURE 6.29 Schematic diagram showing
location of balance ring on basket of a spin dryer.

FIGURE 6.30 Diagram in plane normal to
axis of rotation of spin dryer in Fig. 6.29. Rela-
tive positions of axes when rotating speed is less
than natural frequency are shown at (A); corre-
sponding diagram for rotation speed greater
than natural frequency is shown at (B).
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centric with the axis of the rotor, as
shown in Fig. 6.31A. A later modifica-
tion consists of three annular discs that
rotate about an enlarged shaft concen-
tric with the axis, as indicated in Fig.
6.31B. These are contained in a sealed
compartment with oil for lubrication
and damping. A fluid type of damper is
shown in Fig. 6.31C, the fluid usually
being a high-density viscous material.
With proper damping, mercury would
be excellent, but it is too expensive.
Therefore a more viscous, high-density
halogenated fluid is used.

The balancers must be of sufficient
weight and operate at such a radius that
the product of their weight and the max-
imum eccentricity they can attain is
equivalent to the unbalanced moment
of the load. This requirement makes the
use of the spheres or cylinders difficult
because they cannot be made large; it
makes the annular plates large because
they are limited in the amount of eccen-
tricity that can be obtained.

In a cylindrical volume 24 in. (61 cm)
in diameter and 2 in. (5 cm) thick, seven
spheres 2 in. (5 cm) in diameter can neu-
tralize 98.6 lb-in. (114 kg-cm) of unbal-
ance; three cylinders 4 in. (10 cm) in
diameter by 2 in. (5 cm) thick can neu-
tralize 255 lb-in. (295 kg-cm); three
annular discs, each 5⁄8 in. (1.6 cm) thick
with an outside diameter of 19.55 in. (50
cm) and an inside diameter of 10.45 in.
(26.5 cm) [the optimum for a center post

6 in. (15.2 cm) in diameter], can neutralize 250 lb-in. (290 kg-cm); and half of a 2-in.
(5-cm) diameter torus filled with fluid of density 0.2 lb/in3 (5.5 gram/cm3) can neu-
tralize 609 lb-in. (700 kg-cm). Only the fluid-filled torus would be initially balanced.

AUXILIARY MASS DAMPERS APPLIED TO

TORSIONAL VIBRATION

Dampers and absorbers are used widely for the control of torsional vibration of
internal-combustion engines. The most common absorber is the viscous-damped,
untuned auxiliary mass unit shown in Fig. 6.32. The device is comprised of a cylin-
drical housing carrying an inertia mass that is free to rotate. There is a preset clear-
ance between the housing and the inertia mass that is filled with a silicone oil of
proper viscosity. Silicone oil is used because of its high viscosity index; i.e., its viscos-
ity changes relatively little with temperature.With the inertia mass and the damping
medium contained, the housing is seal-welded to provide a leakproof and simple
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FIGURE 6.31 Examples of balancing means
for rotating machinery: (A) spheres (or cylin-
ders) in a race; (B) annular discs rotating on
shaft; (C) damping fluid in torus.

8434_Harris_06_b.qxd  09/20/2001  11:26 AM  Page 6.29



absorber. However, the silicone oil has
poor boundary lubricating properties
and if decomposed by a local hot spot
(such as might be caused by a reduced
clearance at some particular spot), the
decomposed damping fluid is abrasive.

Because of the simplicity of this un-
tuned damper, it is commonly used in
preference to the more effective tuned
absorber. However, it is possible to use
the same construction methods for a
tuned damper, as shown in Fig. 6.33. It is
also possible to mount the standard
damper with the housing for the un-
sprung inertia mass attached to the main

mass by a spring, as shown in Fig. 6.34. If the viscosity of the oil and the dimensions of
the masses and the clearance spaces are known, the damping effects of the dampers
shown in Figs. 6.32 and 6.34 can be computed directly in terms of the equations previ-
ously developed. The damper in Fig. 6.34 can be analyzed by treating the spring and
housing as additional elements in the main system and the untuned mass as a viscous
damped auxiliary mass. If the inertia of the housing is negligible, the inertia mass is
effectively connected to the main mass through a spring and a dashpot in series. The
two elements in series can be represented by a complex spring constant equal to

=

Where there is no damping in parallel with the spring, Eq. (6.3) becomes

meq = km/(k − mω2)

Substituting the complex value of the spring constant, the effective mass is

meq = � � (6.58)
m

���
−mω2 + cjkω/(k + cjω)

ckjω
�
k + cjω

kcjω
�
k + cjω

1
��
(1/jcω) + (1/k)
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FIGURE 6.32 Untuned auxiliary mass damper
with viscous damping. The application to a tor-
sional system is shown at (A), and the linear ana-
log at (B).

FIGURE 6.33 Tuned auxiliary mass damper
with viscous damping. The application to a tor-
sional system is shown at (A), and the linear ana-
log at (B).

FIGURE 6.34 Auxiliary mass damper with
viscous damping and spring-mounted housing.
The application to a torsional system is shown at
(A), and the linear analog at (B).
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In terms of the nondimensional parameters defined in Eq. (6.4):

meq = m + j (6.59)

Before the advent of silicone oil with
its chemical stability and relatively con-
stant viscosity over service temperature
conditions, the damper most commonly
used for absorbing torsional vibra-
tion energy was the dry friction or Lan-
chester damper shown in Fig. 6.35. The
damping is determined by the spring
tension and the coefficient of friction at
the sliding interfaces. Its optimum value
is determined by the equation for a tor-
sional system analogous to Eq. (6.35) for
a linear system:

(Ts)opt = Iω2θ0 (6.60)

where Ts is the slipping torque, I is the moment of inertia of the flywheels, and θ0 is
the amplitude of angular motion of the primary system. The dry-friction-based Lan-
chester damper requires frequent adjustment, as the braking material wears, to
maintain a constant braking force.

It is possible to use torque-transmitting couplings that can absorb vibration
energy, as the spring elements for tuned dampers. The Bibby coupling (Fig. 6.36) is
used in this manner. Since the stiffness of this coupling is nonlinear, the optimum
tuning of such an absorber is secured for only one amplitude of motion.

A discussion of dampers and of their application to engine systems is given in
Chap. 38.

DYNAMIC ABSORBERS TUNED TO ORDERS OF

VIBRATION RATHER THAN CONSTANT

FREQUENCIES

In the torsional vibration of rotating machinery, it is generally found that exciting
torques and forces occur at the same frequency as the rotational speed or at multi-
ples of this frequency.The ratio of the frequency of vibration to the rotational speed
is called the order of the vibration q. Thus a power plant driving a four-bladed pro-
peller may have a torsional vibration whose frequency is 4 times the rotational speed
of the drive shaft; sometimes it may have a second torsional vibration whose fre-
quency is 8 times the rotational speed. These are called the fourth-order and eighth-
order torsional vibrations.

If a dynamic absorber in the form of a pendulum acting in a centrifugal field is
used, then its natural frequency increases linearly with speed. Therefore it can be
used to neutralize an order of vibration.15–19

Consider a pendulum of length l and of mass m attached at a distance R from the
center of a rotating shaft, as shown in Fig. 6.37. Since the pendulum is excited by tor-
sional vibration in the shaft, let the radius R be rotating at a constant speed Ω with a

�2�
�

π

−2ζβa
3m

���
βa

4 − (2ζβa)2(1 − βa
2)

(2ζβa)2(1 − βa
2)

���
βa

4 − (2ζβa)2(1 − βa
2)

DYNAMIC VIBRATION ABSORBERS AND AUXILIARY MASS DAMPERS 6.31

FIGURE 6.35 Schematic cross section through
Lanchester damper.
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superposed vibration θ = θ0 cos qΩt, where q represents the order of the vibration.
Then the angle of R with respect to any desired reference is Ωt + θ0 cos qΩt. The
angle of the pendulum with respect to the radius R is defined as ψ = ψ0 cos qΩt, as
shown by Fig. 6.37.

The acceleration acting on the mass m at position B is most easily ascertained by
considering the change in velocity during a short increment of time ∆t. The compo-
nents of velocity of the mass m at time t are shown graphically in Fig. 6.38A; at time
t + ∆t, the corresponding velocities are shown in Fig. 6.38B. The change in velocity
during the time interval ∆t is shown in Fig. 6.38C. Since the acceleration is the change
in velocity per unit of time, the accelerations along and perpendicular to l are:

Acceleration along l:

(6.61)

Acceleration perpendicular to l:

(6.62)

Only the force −F, directed along the pendulum, acts on the mass m. Therefore the
equations of motion are

−F = −ml(Ω + θ̇ + ψ̇)2 − mR(Ω + θ̇)2 cos ψ + Rθ̈ sin ψ
(6.63)

0 = ml(θ̈ +ψ̈) + mR(Ω + θ̇)2 sin ψ + mRθ̈ cos ψ̇

Assuming that ψ and θ are small, Eqs. (6.63) simplify to

l(θ̈ + ψ̈) ∆t + R(Ω + θ̇)2 ∆t sin ψ + Rθ̈ ∆t cos ψ
�����

∆t

−l(Ω + θ̇ + ψ̇2) ∆t − R(Ω + θ̇)2 ∆t cos ψ + Rθ̈ ∆t sin ψ
������

∆t
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FIGURE 6.36 Coupling used as elastic and
damping element in auxiliary mass damper for
torsional vibration. The torque is transmitted by
an undulating strip of thin steel interposed
between the teeth on opposite hubs. The stiff-
ness of the strip is nonlinear, increasing as
torque increases. Oil pumped between the strip
and teeth dissipates energy.

FIGURE 6.37 Schematic diagram of pendu-
lum absorber.
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Ft = m(R + l)Ω2

(6.64)
l(θ̈ + ψ̈) + RΩ2ψ + Rθ̈ = 0

The second of Eqs. (6.64) upon substitu-
tion of θ = θ0 cos qΩt and ψ = ψ0 cos qΩt
yields

= =

(6.65)

The torque M exerted at point 0 by the
force F is

M = RF sin ψ = RFψ when ψ is small

From Eqs. (6.64) and (6.65), when ψ is
small,

M = (6.66)

If a flywheel having a moment of iner-
tia I is accelerated by a shaft having an
amplitude of angular vibratory motion θ0

and a frequency qΩ, the torque ampli-
tude exerted on the shaft is I(qΩ)2θ0.
Therefore, the equivalent moment of
inertia Ieq of the pendulum is

Ieq = = (6.67)

When

= q2 (6.68)

the equivalent inertia is infinite and the pendulum acts as a dynamic absorber by
enforcing a node at its point of attachment.

Where the pendulum is damped, the equivalent moment of inertia is given by an
equation analogous to Eqs. (6.4) and (6.5):

Ieq = m(R + l)2

= m(R + l)2 � − � (6.69)

where υ2 = q2l/R and ζ = (c/2mΩ)�l/�R�.
When the pendulum is attached to a single degree-of-freedom system as is shown

in Fig. 6.39, the amplitude of motion θa of the flywheel of inertia I is given, by anal-
ogy to Eq. (6.7), as

2ζυ3j
��
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1 − υ2 + (2ζυ)2

��
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��
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��
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FIGURE 6.38 Velocity vectors for the pendu-
lum absorber: (A) velocities at time t; (B) veloc-
ities at time t + ∆t; (C) change in velocities during
time increment �t.
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= � (6.70)

where 2ζυ =

µp =

βp =

θst =

The pendulum tends to detune when the amplitude of motion of the pendulum is
large, thereby introducing harmonics of the torque that it neutralizes.17 Suppose the
shaft rotates at a constant speed Ω, i.e., θ0 = 0, and consider the torque exerted on the
shaft as m moves through a large amplitude ψ0 about its equilibrium position. Equa-
tions (6.63) become

F = ml(Ω + ψ̇)2 + mRΩ2 cos ψ
(6.71)

lψ̈ + RΩ2 sin ψ = 0

A solution for the second of Eqs. (6.71) is

ψ̇ = � �co�s�ψ� −� c�o�s�ψ�0� (6.72)

The solution of Eq. (6.72) involves elliptic integrals and is given approximately by

ψ = ψ0 sin ωt

where ω = � Ω

and F(ψ0/2, π/2) is an elliptic function of the first kind whose value may be obtained
from tables.

Since ω/Ω = q (the order of the disturbance), the tuning of the damper will be
changed for large angles and becomes

q2 = 	 

2

(6.73)

The value of q2l/R = υ2 used in Eqs. (6.69) and (6.70) is given in Fig. 6.40 as a function
of the amplitude of the pendulum.

Since the force exerted by the mass m is directed along the rod connecting it to
the pivot A (Fig. 6.37), the reactive torque on the shaft is

M = FR sin ψ

= mR2Ω2� 	1 + 

2

sin ψ + sin ψ cos ψ�
= mR2Ω2(A1 sin qΩt + A2 sin 2qΩt + A3 sin 3qΩt + . . .) (6.74)
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The values of the fundamental torque corresponding to the tuned frequency and
to the second and third harmonics of this tuned frequency are given in Fig. 6.41 as a
function of the angle of swing of the pendulum, for a typical installation. In this case,
the pendulum is tuned to the 41⁄2 order of vibration. (The 41⁄2 order of vibration is one
whose frequency is 41⁄2 times the rotational frequency and 9 times the fundamental
frequency. The latter is called the half order and occurs at half of the rotational fre-
quency. This is common in four-cycle engines.)

Two types of pendulum absorber are used. The one most commonly used is
shown in Fig. 6.42. The counterweight, which also is used to balance rotating forces
in the engine, is suspended from a hub carried by the crankshaft by pins that act
through holes with clearance, Fig. 6.42A. By suspending the pendulum from two
pins, the pendulum when oscillating does not rotate but rather moves as shown in
Fig. 6.42B. Since it is not subjected to angular acceleration, it may be treated as a
particle located at its center-of-gravity. Referring to Fig. 6.42A and B, the expres-
sion for acceleration [Eqs. (6.61) and (6.62)] and the equations of motion [Eqs.
(6.63)] apply if

R = H1 + H2

(6.75)
l = − Db

where H1 = distance from center of rotation to center of holes in crank hub
H2 = distance from center of holes in pendulum to center-of-gravity of pen-

dulum
Dc = diameter of hole in crank hub
Dp = diameter of hole in pendulum
Db = diameter of pin

In practice, difficulty arises from the wear of the holes and the pin. Moreover, the
motion on the pins generally is small and the loads due to centrifugal forces are large
so that fretting is a problem. Because the radius of motion of the pendulum is short,

Dc + Dp�
2
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FIGURE 6.39 Application of pendulum ab-
sorber to a rotational single degree-of-freedom
system.

FIGURE 6.40 Tuning function for a pendulum
absorber used in Eqs. (6.69) and (6.70).
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only a small amount of wear can be tolerated. Hardened pins and bushings are used
to reduce the wear.

The pendulum is most easily designed if it is recognized that the inertia torques
generated by the pendulum must neutralize the forcing torques. Thus

mω2lψ0R = M (6.76)

The radii l and R are set by the design of the crank and the order of vibration to be
neutralized. The original motion ψ0 is generally limited to a small angle, approxi-
mately 20°. It is probable that the most stringent condition is at the lowest operating
speed, although the absorber may be required only to avoid difficulty at some par-
ticular critical speed. Knowing the excitation M, it is possible to compute the
required mass of the pendulum weight.

A second type of pendulum absorber is a cylinder that rolls in a hole in a coun-
terweight, as shown in Fig. 6.43. In this type, the radius of the pendulum corre-
sponds to the difference in the radii of the hole and of the cylinder. It is found, by
observing tests and checking the tuning of actual systems using cylindrical pendu-
lums, that the weight rotates with a uniform angular velocity. Therefore the tuning
is independent of the moments of inertia of the cylinder. It is common to allow a
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FIGURE 6.41 Harmonic components of
torque generated by a pendulum absorber as a
function of its angle of swing. The torque is
expressed by the parameters used in Eq. (6.74).

FIGURE 6.42 Bifilar type of pendulum ab-
sorber. The mechanical arrangement is shown at
(A), and a schematic diagram at (B).
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larger amplitude of motion with the absorber of Fig. 6.43 than with the absorber of
Fig. 6.40.

Applications of pendulum absorbers to torsional-vibration problems are given in
Chap. 38.

PENDULUM ABSORBER FOR LINEAR VIBRATION

The principle of the pendulum absorber can be applied to linear vibration as well as
to torsional vibration.To neutralize linear vibration, pendulums are rotated about an
axis parallel to the direction of vibration, as shown in Fig. 6.44. This can be accom-
plished with an absorber mounted on the moving body. Two or more pendulums are
used so that centrifugal forces are balanced. Free rotational movement of each pen-
dulum in the plane of the axis allows the axial forces to be neutralized. The pendu-
lum assembly must rotate about the axis at some submultiple of the frequency of
vibration. The size of the absorber is determined by the condition that the compo-
nents of the inertia forces of the weights in the axial direction [Σmω2rθ] must bal-
ance the exciting forces. This device can be applied where the vibration is generated
by the action of rotating members but the magnitude of the vibratory forces is
uncertain. A discussion of this absorber, including the influence of moments of iner-
tia and damping of the pendulum, together with some applications to the elimina-
tion of vibration in special locations on a ship, is given in Ref. 20.

APPLICATIONS OF DAMPERS TO MULTIPLE

DEGREE-OF-FREEDOM SYSTEMS

Auxiliary mass dampers as applied to systems of several degrees-of-freedom can be
represented most effectively by equivalent masses or moments of inertia, as deter-
mined by Eq. (6.5) or Eq. (6.6). The choice of proper damping constants is more dif-
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FIGURE 6.43 Roller type of pendulum ab-
sorber.

FIGURE 6.44 Application of pendulum
absorbers to counteract linear vibration.
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ficult. For the case of torsional vibration, the practical problems of designing
dampers and selecting the proper damping are considered in Chap. 38.

There are many applications of dampers to vibrating structures that illustrate
the use of different types of auxiliary mass damper. One such application has been
to ships.21 These absorbers had low damping and were designed to be filled with
water so that they could be tuned to the objectionable frequencies. In one case, the
absorber was located near the propeller (the source of excitation) and when prop-
erly tuned was found to be effective in reducing the resonant vibration of the ship.
In another case, the absorber was located on an upper deck but was not as effec-
tive. It enforced a node at its point of attachment but, because of the flexibility
between the upper deck and the bottom of the ship, there was appreciable motion
in the vicinity of the propeller and vibratory energy was fed to the ship’s structure.
To operate properly, the absorbers must be closely tuned and the propeller speed
closely maintained. Because the natural frequencies of the ship vary with the types
of loading, it is not sufficient to install a fixed frequency absorber that is effective
at only one natural frequency of the hull, corresponding to a particular loading
condition.

An auxiliary mass absorber has been applied to the reduction of vibration in a
heavy building that vibrated at a low frequency under the excitation of a number of
looms.22 The frequency of the looms was substantially constant. However, the mag-
nitude of the excitation was variable as the looms came into and out of phase. The
dynamic absorber, consisting of a heavy weight hung as a pendulum, was tuned to
the frequency of excitation. Because the frequency was low and the forces large, the
absorber was quite large. However, it was effective in reducing the amplitude of
vibration in the building and was relatively simple to construct.

ACTIVATED VIBRATION ABSORBERS

The cost and space that can be allotted to ship antirolling devices are limited.There-
fore it is desirable to activate the absorbers so that their full capacity is used for
small amplitudes as well as large.Activated dampers can be made to deliver as large
restoring forces for small amplitudes of motion of the primary body as they would
be required to deliver if the motions were large. For example, the gyrostabilizer that
is used in the ship is precessed by a motor through its full effective range, in the case
of small angles as well as large. Thus, it introduces a restoring torque that is much
larger than would be introduced by the normal damped precession.14 In the same
manner the water in antiroll tanks is always pumped to the tank where it will intro-
duce the maximum torque to counteract the roll. By pumping, much larger quanti-
ties of water can be transferred and larger damping moments obtained than can be
obtained by controlled gravity flows.

Devices for damping the roll are desirable for ships. It has been common practice
to install bilge keels (long fins which extend into the water) in steel ships. Some ships
are now fitted with activated, retractable hydrofoils located at the bilge at the maxi-
mum beam. Both these devices are effective only when the ship is in motion and add
to the resistance of the ship.

Activated vibration absorbers are essentially servomechanisms designed to
maintain some desired steady state. Steam and gas turbine speed governors, wicket
gate controls for frequency regulation in water turbines, and temperature control
equipment can be considered as special forms of activated vibration absorbers.23
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THE USE OF AUXILIARY MASS DEVICES TO

REDUCE TRANSIENT AND SELF-EXCITED

VIBRATIONS

Where the vibration is self-excited or caused by repeated impact, it is necessary to
have sufficient damping to prevent a serious build-up of vibration amplitude. This
damping, which need not always be large, may be provided by a loosely coupled aux-
iliary mass.A simple application of this type is the ring fitted to the interior of a gear,
as shown in Fig. 6.45. By fitting this ring with the proper small clearance so that rel-
ative motion occurs between it and the gear, it is possible to obtain enough energy
dissipation to damp the high-frequency, low-energy vibration that causes the gear to
ring. The rubbery coatings applied to large, thin-metal panels such as automobile
doors to give them a solid rather than a “tinny” sound depend for their effectiveness
on a proper balance of mass, elasticity, and damping (see Chap. 37).

Another application where auxiliary
mass dampers are useful is in the pre-
vention of fatigue failures in turbines.
At the high-pressure end of an impulse
turbine, steam or hot gas is admitted
through only a few nozzles. Conse-
quently, as the blade passes the nozzle it
is given an impulse by the steam and set
into vibration at its natural frequency. It
is a characteristic of alloy steels that they
have very little internal damping at high
operating temperature. For this reason
the free vibration persists with only a
slightly diminished amplitude until the
blade again is subjected to the steam im-
pulse. Some of these second impulses
will be out of phase with the motion of
the blade and will reduce its amplitude;
however, successive impulses may in-
crease the amplitude on subsequent

passes until failure occurs. Damping can be increased by placing a number of loose
wires in a cylindrical hole cut in the blade in a radial direction. The damping of a
number of these wires has been computed in terms of the geometry of the applica-
tion (number of wires, density of wires, size of the hole, radius of the blade, rotational
speed, etc.) and the amplitude of vibration.24 These computations show reasonable
agreement with experimental results.

An auxiliary mass has been used to damp the cutting tool chatter set up in a bor-
ing bar.25 Because of the characteristics of the metal-cutting process or of some cou-
pling between motions of the tool parallel and perpendicular to the work face, it is
sometimes found that a self-excited vibration is initiated at the natural frequency of
the cutter system. Since the self-excitation energy is low, the vibration usually is ini-
tiated only if the damping is small. Chatter of the tool is most common in long,
poorly supported tools, such as boring bars (see Chap. 40). To eliminate this chatter,
a loose auxiliary mass is incorporated in the boring bar, as shown in Fig. 6.46. This
may be air-damped or fluid-damped. Since the excitation is at the natural frequency
of the tool, the damping should be such that the tool vibrates with a minimum ampli-
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FIGURE 6.45 Application of auxiliary mass
damper to deaden noise in gear.
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tude at this frequency. The damping
requirement can be estimated by substi-
tuting β = 1 in Eq. (6.25),

= � (6.77)

The optimum value of the parameter
(ζα) is infinity. Thus when the frequency
of excitation is constant, a greater reduc-

tion in amplitude can be obtained by a shift in natural frequency than by damping.
However, such a shift cannot be attained because the frequency of the excitation
always coincides with the natural frequency of the complete system. Instead, a bet-
ter technique is to determine the damping that gives the maximum decrement of the
free vibration.

Let the boring bar and damper be represented by a single degree-of-freedom sys-
tem with a damper mass coupled to the main mass by viscous damping, as shown in
Fig. 6.47A. The forces acting on the masses are shown in Fig. 6.47B. The equations of
motion are

−kx1 − cẋ1 + cẋ2 = m1 ẍ1
(6.78)

cẋ1 − cẋ2 = m2 ẍ2

Substituting x = Aest, the resulting frequency equation is

s3 + s2 + s + = 0 (6.79)

Where chatter occurs, this equation has
three roots, one real and two complex.
The complex roots correspond to decay-
ing free vibrations. Let the roots be as
follows:

α1, α2 + jβ, α2 − jβ

The value of β determines the frequency
of the free vibration, and the value of α2

determines the decrement (rate of
decrease of amplitude) of the free vibra-
tion. The decrement α2 is of primary
interest; it is most easily found from the
conditions that when the coefficient of s3

is unity, (1) the sum of the roots is equal
to the negative of the coefficient of s2,
(2) the sum of the products of the roots
taken two at a time is the negative of the
coefficient of s, and (3) the product of
the roots is the negative of the constant
term. The equations thus obtained are

α1 + 2α2 = − (6.80)
c(1 + µ)
�

µm1

kc
�
m1m2

k
�
m1

c(m1 + m2)��
m1m2

1 + 4(ζα)2

��
4(ζα)2µ2

x0�
δst
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FIGURE 6.46 Application of auxiliary mass
damper to reduce chatter in boring bar.

FIGURE 6.47 Schematic diagram of damper
shown in Fig. 6.46. The arrangement is shown at
(A), and the forces acting on the boring bar and
auxiliary mass are shown at (B).
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2α1α2 + α2
2 + β2 = −ωn

2 (6.81)

α1(α2
2 + β2) = −ωn

2 (6.82)

where ωn
2 = k/m1 and µ = m2/m1. It is not practical to find the optimum damping by

solving these equations for α2 and then setting the derivative of α2 with respect to c
equal to zero. However, it is possible to find the optimum damping by the following
process. Eliminate (α2

2 + β2) between Eqs. (6.81) and (6.82) to obtain

2α1
2α2 = ωn

2 	 − α1
 (6.83)

Substituting the value of α1 from Eq. (6.80) in Eq. (6.83),

2α2�2α2 + �2
= + ωn

2�2α2 + � (6.84)

To find the damping that gives the maximum decrement, differentiate with respect
to c and set dα2/dc = 0:

2α2�2α2 + � = 1⁄2ωn
2 (6.85)

Solving Eqs. (6.84) and (6.85) simultaneously,

copt = (6.86)

(α2)opt = − (6.87)

These values may be obtained by proper choice of clearance between the auxil-
iary mass and the hole in which it is located.Air damping is preferable to oil because
it requires less clearance. Therefore the plug is not immobilized by the centrifugal
forces that, with the rotating boring bar, become larger as the clearance is increased.

(2 + µ)ωn��
4(1 + µ)1/2

µ2m1ωn��
2(1 + µ)3/2

2 + µ
�
1 + µ

c(1 + µ)
�

µm1

c(1 + µ)
�

µm1

cωn
2

�
µm1

c(1 + µ)
�

µm1

c
�
µm1

c
�
m1µ
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FIGURE 6.48 Application of auxiliary mass to spring-mounted table to reduce vibration of table.
(Macinante.26)
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In precision measurements, it is necessary to isolate the instruments from effects
of shock and vibration in the earth and to damp any oscillations that might be gen-
erated in the measuring instruments. A heavy spring-mounted table fitted with a
heavy auxiliary mass that is attached to the table by a spring and submerged in an oil
bath (Fig. 6.48) has proved to be effective.26 In this example the table has a top sur-
face of 131⁄2 in. (34 cm) by 131⁄2 in. (34 cm) and a height of 6 in. (15 cm). Each auxiliary
mass weighs about 70 lb (32 kg).The springs for both the primary table and the aux-
iliary system are designed to give a natural frequency between 2 and 4 Hz in both the
horizontal and vertical directions. By trying different fluids in the bath, suitable
damping may be obtained experimentally.
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CHAPTER 7
VIBRATION OF SYSTEMS

HAVING DISTRIBUTED MASS
AND ELASTICITY

William F. Stokey

INTRODUCTION

Preceding chapters consider the vibration of lumped parameter systems; i.e., systems
that are idealized as rigid masses joined by massless springs and dampers. Many
engineering problems are solved by analyses based on ideal models of an actual sys-
tem, giving answers that are useful though approximate. In general, more accurate
results are obtained by increasing the number of masses, springs, and dampers; i.e.,
by increasing the number of degrees-of-freedom. As the number of degrees-of-
freedom is increased without limit, the concept of the system with distributed mass
and elasticity is formed. This chapter discusses the free and forced vibration of such
systems. Types of systems include rods vibrating in torsional modes and in tension-
compression modes, and beams and plates vibrating in flexural modes. Particular
attention is given to the calculation of the natural frequencies of such systems for
further use in other analyses. Numerous charts and tables are included to define in
readily available form the natural frequencies of systems commonly encountered in
engineering practice.

FREE VIBRATION

Degrees-of-Freedom. Systems for which the mass and elastic parts are lumped
are characterized by a finite number of degrees-of-freedom. In physical systems, all
elastic members have mass, and all masses have some elasticity; thus, all real systems
have distributed parameters. In making an analysis, it is often assumed that real sys-
tems have their parameters lumped. For example, in the analysis of a system consist-
ing of a mass and a spring, it is commonly assumed that the mass of the spring is
negligible so that its only effect is to exert a force between the mass and the support
to which the spring is attached, and that the mass is perfectly rigid so that it does not

7.1
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deform and exert any elastic force.The effect of the mass of the spring on the motion
of the system may be considered in an approximate way, while still maintaining the
assumption of one degree-of-freedom, by assuming that the spring moves so that the
deflection of each of its elements can be described by a single parameter. A com-
monly used assumption is that the deflection of each section of the spring is propor-
tional to its distance from the support, so that if the deflection of the mass is given,
the deflection of any part of the spring is defined. For the exact solution of the prob-
lem, even though the mass is considered to be perfectly rigid, it is necessary to con-
sider that the deformation of the spring can occur in any manner consistent with the
requirements of physical continuity.

Systems with distributed parameters are characterized by having an infinite num-
ber of degrees-of-freedom. For example, if an initially straight beam deflects later-
ally, it may be necessary to give the deflection of each section along the beam in
order to define completely the configuration. For vibrating systems, the coordinates
usually are defined in such a way that the deflections of the various parts of the sys-
tem from the equilibrium position are given.

Natural Frequencies and Normal Modes of Vibration. The number of natural
frequencies of vibration of any system is equal to the number of degrees-of-
freedom; thus, any system having distributed parameters has an infinite number of
natural frequencies. At a given time, such a system usually vibrates with appreciable
amplitude at only a limited number of frequencies, often at only one. With each nat-
ural frequency is associated a shape, called the normal or natural mode, which is
assumed by the system during free vibration at the frequency. For example, when a
uniform beam with simply supported or hinged ends vibrates laterally at its lowest
or fundamental natural frequency, it assumes the shape of a half sine wave; this is a
normal mode of vibration.When vibrating in this manner, the beam behaves as a sys-
tem with a single degree-of-freedom, since its configuration at any time can be
defined by giving the deflection of the center of the beam. When any linear system,
i.e., one in which the elastic restoring force is proportional to the deflection, executes
free vibration in a single natural mode, each element of the system except those at
the supports and nodes executes simple harmonic motion about its equilibrium posi-
tion.All possible free vibration of any linear system is made up of superposed vibra-
tions in the normal modes at the corresponding natural frequencies. The total
motion at any point of the system is the sum of the motions resulting from the vibra-
tion in the respective modes.

There are always nodal points, lines, or surfaces, i.e., points which do not move, in
each of the normal modes of vibration of any system. For the fundamental mode,
which corresponds to the lowest natural frequency, the supported or fixed points of
the system usually are the only nodal points; for other modes, there are additional
nodes. In the modes of vibration corresponding to the higher natural frequencies of
some systems, the nodes often assume complicated patterns. In certain problems
involving forced vibrations, it may be necessary to know what the nodal patterns are,
since a particular mode usually will not be excited by a force acting at a nodal point.
Nodal lines are shown in some of the tables.

Methods of Solution. The complete solution of the problem of free vibration of
any system would require the determination of all the natural frequencies and of the
mode shape associated with each. In practice, it often is necessary to know only a few
of the natural frequencies, and sometimes only one. Usually the lowest frequencies
are the most important. The exact mode shape is of secondary importance in many
problems. This is fortunate, since some procedures for finding natural frequencies

7.2 CHAPTER SEVEN

8434_Harris_07_b.qxd  09/20/2001  11:24 AM  Page 7.2



involve assuming a mode shape from which an approximation to the natural fre-
quency can be found.

Classical Method. The fundamental method of solving any vibration problem
is to set up one or more equations of motion by the application of Newton’s second
law of motion. For a system having a finite number of degrees-of-freedom, this pro-
cedure gives one or more ordinary differential equations. For systems having dis-
tributed parameters partial differential equations are obtained. Exact solutions of
the equations are possible for only a relatively few configurations. For most prob-
lems other means of solution must be employed.

Rayleigh’s and Ritz’s Methods. For many elastic bodies, Rayleigh’s method is
useful in finding an approximation to the fundamental natural frequency. While it is
possible to use the method to estimate some of the higher natural frequencies, the
accuracy often is poor; thus, the method is most useful for finding the fundamental
frequency. When any elastic system without damping vibrates in its fundamental
normal mode, each part of the system executes simple harmonic motion about its
equilibrium position. For example, in lateral vibration of a beam the motion can be
expressed as y = X(x) sin ωnt where X is a function only of the distance along the
length of the beam. For lateral vibration of a plate, the motion can be expressed as w
= W(x,y) sin ωnt where x and y are the coordinates in the plane of the plate. The
equations show that when the deflection from equilibrium is a maximum, all parts of
the body are motionless. At that time all the energy associated with the vibration is
in the form of elastic strain energy.When the body is passing through its equilibrium
position, none of the vibrational energy is in the form of strain energy so that all of
it is in the form of kinetic energy. For conservation of energy, the strain energy in the
position of maximum deflection must equal the kinetic energy when passing through
the equilibrium position. Rayleigh’s method of finding the natural frequency is to
compute these maximum energies, equate them, and solve for the frequency. When
the kinetic-energy term is evaluated, the frequency always appears as a factor. For-
mulas for finding the strain and kinetic energies of rods, beams, and plates are given
in Table 7.1.

If the deflection of the body during vibration is known exactly, Rayleigh’s
method gives the true natural frequency. Usually the exact deflection is not known,
since its determination involves the solution of the vibration problem by the classi-
cal method. If the classical solution is available, the natural frequency is included in
it, and nothing is gained by applying Rayleigh’s method. In many problems for which
the classical solution is not available, a good approximation to the deflection can be
assumed on the basis of physical reasoning. If the strain and kinetic energies are
computed using such an assumed shape, an approximate value for the natural fre-
quency is found.The correctness of the approximate frequency depends on how well
the assumed shape approximates the true shape.

In selecting a function to represent the shape of a beam or a plate, it is desirable
to satisfy as many of the boundary conditions as possible. For a beam or plate sup-
ported at a boundary, the assumed function must be zero at that boundary; if the
boundary is built in, the first derivative of the function must be zero. For a free
boundary, if the conditions associated with bending moment and shear can be sat-
isfied, better accuracy usually results. It can be shown2 that the frequency that is
found by using any shape except the correct shape always is higher than the actual
frequency. Therefore, if more than one calculation is made, using different
assumed shapes, the lowest computed frequency is closest to the actual frequency
of the system.

In many problems for which a classical solution would be possible, the work
involved is excessive. Often a satisfactory answer to such a problem can be obtained
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by the application of Rayleigh’s method. In this chapter several examples are worked
using both the classical method and Rayleigh’s method. In all, Rayleigh’s method gives
a good approximation to the correct result with relatively little work. Many other
examples of solutions to problems by Rayleigh’s method are in the literature.3–5

Ritz’s method is a refinement of Rayleigh’s method. A better approximation of
the fundamental natural frequency can be obtained by its use, and approximations
of higher natural frequencies can be found. In using Ritz’s method, the deflections
which are assumed in computing the energies are expressed as functions with one or
more undetermined parameters; these parameters are adjusted to make the com-
puted frequency a minimum. Ritz’s method has been used extensively for the deter-
mination of the natural frequencies of plates of various shapes and is discussed in
the section on the lateral vibrations of plates.

Lumped Parameters. A procedure that is useful in many problems for finding
approximations to both the natural frequencies and the mode shapes is to reduce the
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TABLE 7.1 Strain and Kinetic Energies of Uniform Rods, Beams, and Plates

Kinetic energy T

Member Strain energy V General Maximum*

Rod in tension
or compression

�l

0 � �
2

dx �l

0 � �
2

dx �l

0
V 2 dx

Rod in torsion �l

0 � �
2

dx �l

0 � �
2

dx �l

0
Φ2 dx

Beam in bending �l

0 � �
2

dx �l

0 � �
2

dx �l

0
Y 2 dx

�
S
� �� + �

2

Rectangular plate − 2(1 − µ) � �
S
� � �

2

dx dy �
S
�W 2 dx dyin bending1

− � �
2

�� dx dy

Circular plate
(deflection 

πD �a

0 �� + �
2

�a

0 � �
2

r dr �a

0
W 2r drsymmetrical 

− 2(1 − µ) � r drabout center)1

u = longitudinal deflection of cross section of rod S = area of cross section
φ = angle of twist of cross section of rod Ip = polar moment of inertia
y = lateral deflection of beam I = moment of inertia of beam
w = lateral deflection of plate γ = weight density

Capitals denote values at extreme deflection E = modulus of elasticity
for simple harmonic motion. G = modulus of rigidity

l = length of rod or beam µ = Poisson’s ratio
a = radius of circular plate D = Eh3/12(1 − µ2)
h = thickness of beam or plate

* This is the maximum kinetic energy in simple harmonic motion.
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system with distributed parameters to one having a finite number of degrees-of-
freedom. This is done by lumping the parameters for each small region into an
equivalent mass and elastic element. Several formalized procedures for doing this
and for analyzing the resulting systems are described in Chap. 28. If a system consists
of a rigid mass supported by a single flexible member whose mass is not negligible,
the elastic part of the system sometimes can be treated as an equivalent spring; i.e.,
some of its mass is lumped with the rigid mass. Formulas for several systems of this
kind are given in Table 7.2.

Orthogonality. It is shown in Chap. 2 that the normal modes of vibration of a sys-
tem having a finite number of degrees-of-freedom are orthogonal to each other. For
a system of masses and springs having n degrees-of-freedom, if the coordinate sys-
tem is selected in such a way that X1 represents the amplitude of motion of the first
mass, X2 that of the second mass, etc., the orthogonality relations are expressed by 
(n − 1) equations as follows:

m1X1
aX1

b + m2X2
aX2

b + ⋅⋅⋅ =  	
n

i = 1
miXi

aXi
b = 0 [a ≠ b]

VIBRATION OF SYSTEMS HAVING DISTRIBUTED MASS AND ELASTICITY 7.5

TABLE 7.2 Approximate Formulas for Natural Frequencies of Systems Hav-
ing Both Concentrated and Distributed Mass
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where X1
a represents the amplitude of the first mass when vibrating only in the ath

mode, X1
b the amplitude of the first mass when vibrating only in the bth mode, etc.

For a body such as a uniform beam whose parameters are distributed only length-
wise, i.e., in the X direction, the orthogonality between two normal modes is
expressed by

�l

0
ρφa(x)φb(x) dx = 0 [a ≠ b] (7.1)

where φa(x) represents the deflection in the ath normal mode, φb(x) the deflection in
the bth normal mode, and ρ the density.

For a system, such as a uniform plate, in which the parameters are distributed in
two dimensions, the orthogonality condition is

�
A
� ρφa(x,y)φb(x,y) dx dy = 0 [a ≠ b] (7.2)

LONGITUDINAL AND TORSIONAL VIBRATIONS 

OF UNIFORM CIRCULAR RODS

Equations of Motion. A circular rod having a uniform cross section can exe-
cute longitudinal, torsional, or lateral vibrations, either individually or in any combi-
nation.The equations of motion for longitudinal and torsional vibrations are similar
in form, and the solutions are discussed together. The lateral vibration of a beam
having a uniform cross section is considered separately.

In analyzing the longitudinal vibration of a rod, only the motion of the rod in the
longitudinal direction is considered.There is some lateral motion because longitudi-
nal stresses induce lateral strains; however, if the rod is fairly long compared to its
diameter, this motion has a minor effect.

Consider a uniform circular rod, Fig. 7.1A. The element of length dx, which is
formed by passing two parallel planes A–A and B–B normal to the axis of the rod, is
shown in Fig. 7.1B. When the rod executes only longitudinal vibration, the force act-
ing on the face A–A is F, and that on face B–B is F + (∂F/∂x) dx. The net force acting
to the right must equal the product of the mass of the element (γ/g)S dx and its accel-
eration ∂2u/∂t2, where γ is the weight density, S the area of the cross section, and u the
longitudinal displacement of the element during the vibration:

�F + dx� − F = dx = � � S dx or = (7.3)
∂2u
�
∂t 2

γS
�
g

∂F
�
∂x

∂2u
�
∂t 2

γ
�
g

∂F
�
∂x

∂F
�
∂x
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FIGURE 7.1 (A) Rod executing longitudinal or torsional vibration. (B) Forces acting on ele-
ment during longitudinal vibration. (C) Moments acting on element during torsional vibration.
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This equation is solved by expressing the force F in terms of the displacement. The
elastic strain at any section is ∂u/∂x, and the stress is E∂u/∂x. The force F is the prod-
uct of the stress and the area, or F = ES ∂u/∂x, and ∂F/∂x = ES ∂2u/∂x2. Equation (7.3)
becomes Eu″ = γ/gü, where u″ = ∂2u/∂x2 and ü = ∂2u/∂t2. Substituting a2 = Eg/γ,

a2u″ = ü (7.4)

The equation governing the torsional vibration of the circular rod is derived by
equating the net torque acting on the element, Fig. 7.1C, to the product of the
moment of inertia J and the angular acceleration φ̈, φ being the angular displacement
of the section. The torque on the section A–A is M and that on section B–B is 
M + (∂M/∂x) dx. By an analysis similar to that for the longitudinal vibration, letting
b2 = Gg/γ,

b2φ″ = φ̈ (7.5)

Solution of Equations of Motion. Since Eqs. (7.4) and (7.5) are of the same form,
the solutions are the same except for the meaning of a and b. The solution of Eq. (7.5)
is of the form φ = X(x)T(t) in which X is a function of x only and T is a function of t
only. Substituting this in Eq. (7.5) gives b2X″T = XT̈. By separating the variables,6

T = A cos (ωnt + θ)

X = C sin + D cos 
(7.6)

The natural frequency ωn can have infinitely many values, so that the complete solu-
tion of Eq. (7.5) is, combining the constants,

φ = 	
n = ∞

n = 1
�Cn sin + Dn cos � cos (ωnt + θn) (7.7)

The constants Cn and Dn are determined by the end conditions of the rod and by the
initial conditions of the vibration. For a built-in or clamped end of a rod in torsion,
φ = 0 and X = 0 because the angular deflection must be zero. The torque at any sec-
tion of the shaft is given by M = (GIp)φ′, where GIp is the torsional rigidity of the
shaft; thus, for a free end, φ′ = 0 and X′ = 0. For the longitudinal vibration of a rod,
the boundary conditions are essentially the same; i.e., for a built-in end the displace-
ment is zero (u = 0) and for a free end the stress is zero (u′ = 0).

EXAMPLE 7.1. The natural frequencies of the torsional vibration of a circular
steel rod of 2-in. diameter and 24-in. length, having the left end built in and the right
end free, are to be determined.

SOLUTION. The built-in end at the left gives the condition X = 0 at x = 0 so that
D = 0 in Eq. (7.6).The free end at the right gives the condition X′ = 0 at x = l. For each
mode of vibration, Eq. (7.6) is cos ωnl/b = 0 from which ωnl/b = π/2, 3π/2, 5π/2,
. . . . Since b2 = Gg/γ, the natural frequencies for the torsional vibration are

ωn = 
� , 
� , 
� , . . . rad/sec

For steel, G = 11.5 × 106 lb/in.2 and γ = 0.28 lb/in.3 The fundamental natural fre-
quency is

ωn = 
� = 8240 rad/sec = 1311 Hz(11.5 × 106)(386)
��

0.28
π

�
2(24)

Gg
�

γ
5π
�
2l

Gg
�

γ
3π
�
2l

Gg
�

γ
π
�
2l

ωnx�
b

ωnx�
b

ωnx�
b

ωnx�
b
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The remaining frequencies are 3, 5, 7, etc., times ωn.
Since Eq. (7.4), which governs longitudinal vibration of the bar, is of the same

form as Eq. (7.5), which governs torsional vibration, the solution for longitudinal
vibration is the same as Eq. (7.7) with u substituted for φ and a = �Eg/γ substituted
for b. The natural frequencies of a uniform rod having one end built in and one end
free are obtained by substituting a for b in the frequency equations found above in
Example 7.1:

ωn = 
�, 
�, 
�, ⋅⋅⋅

The frequencies of the longitudinal vibration are independent of the lateral dimen-
sions of the bar, so that these results apply to uniform noncircular bars. Equation
(7.5) for torsional vibration is valid only for circular cross sections.

Torsional Vibrations of Circular Rods with Discs Attached. An important
type of system is that in which a rod which may twist has mounted on it one or more
rigid discs or members that can be considered as the equivalents of discs. Many sys-
tems can be approximated by such configurations. If the moment of inertia of the
rod is small compared to the moments of inertia of the discs, the mass of the rod may
be neglected and the system considered to have a finite number of degrees-of-
freedom. Then the methods described in Chaps. 2 and 38 are applicable. Even if the
moment of inertia of the rod is not negligible, it usually may be lumped with the
moment of inertia of the disc. For a shaft having a single disc attached, the formula
in Table 7.2 gives a close approximation to the true frequency.

The exact solution of the problem requires that the effect of the distributed mass
of the rod be considered. Usually it can be assumed that the discs are rigid enough
that their elasticity can be neglected; only such systems are considered. Equation
(7.5) and its solution, Eq. (7.7), apply to the shaft where the constants are deter-
mined by the end conditions. If there are more than two discs, the section of shaft
between each pair of discs must be considered separately; there are two constants
for each section. The constants are determined from the following conditions:

1. For a disc at an end of the shaft, the torque of the shaft at the disc is equal to the
product of the moment of inertia of the disc and its angular acceleration.

2. Where a disc is between two sections of shaft, the angular deflection at the end of
each section adjoining the disc is the same; the difference between the torques in
the two sections is equal to the product of the moment of inertia of the disc and
its angular acceleration.

EXAMPLE 7.2. The fundamental fre-
quency of vibration of the system shown
in Fig. 7.2 is to be calculated and the
result compared with the frequency
obtained by considering that each half
of the system is a simple shaft-disc sys-
tem with the end of the shaft fixed. The
system consists of a steel shaft 24 in. long
and 4 in. in diameter having attached to
it at each end a rigid steel disc 12 in. in
diameter and 2 in. thick. For the approx-
imation, add one-third of the moment of

Eg
�

γ
5π
�
2l

Eg
�

γ
3π
�
2l

Eg
�

γ
π
�
2l
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FIGURE 7.2 Rod with disc attached at each
end.
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inertia of half the shaft to that of the disc (Table 7.2). (Because of symmetry, the cen-
ter of the shaft is a nodal point; i.e., it does not move. Thus, each half of the system
can be considered as a rod-disc system.)

EXACT SOLUTION. The boundary conditions are: at x = 0, M = GIpφ′ = I1φ̈ ; at x = l,
M = GIφ′ = − I2φ̈, where I1 and I2 are the moments of inertia of the discs.The signs are
opposite for the two boundary conditions because, if the shaft is twisted in a certain
direction, it will tend to accelerate the disc at the left end in one direction and the
disc at the right end in the other. In the present example, I1 = I2; however, the solu-
tion is carried out in general terms.

Using Eq. (7.7), the following is obtained for each value of n:

φ′ = �C cos − D sin � cos (ωnt + θ)

φ̈ = ωn
2 �C sin + D cos � [− cos (ωnt + θ)]

The boundary conditions give the following:

GIp C = −ωn
2DI1 or C = − D

GIp �C cos − D sin � = ωn
2I2 �C sin + D cos �

These two equations can be combined to give

− GIp � cos + sin � = ωn
2I2 �− sin + cos �

The preceding equation can be reduced to

tan αn = (7.8)

where αn = (ωnl)/b, c = I1/Is, d = I2/Is, and Is is the polar moment of inertia of the shaft
as a rigid body. There is a value for X in Eq. (7.6) corresponding to each root of Eq.
(7.8) so that Eq. (7.7) becomes

θ = 	
n = ∞

n = 1
An �cos − cαn sin � cos (ωnt + θn)

For a circular disc or shaft, I = 1⁄2mr 2 where m is the total mass; thus c = d = (D4/d4)(h/l)
= 6.75. Equation (7.8) becomes (45.56αn

2 − 1) tan αn = 13.5αn, the lowest root of which
is αn = 0.538. The natural frequency is ωn = 0.538 
�Gg/γ l2 rad/sec.

APPROXIMATE SOLUTION. From Table 7.2, the approximate formula is

ωn = � �1/2
where kr =

For the present problem where the center of the shaft is a node, the values of
moment of inertia Is and torsional spring constant for half the shaft must be used:

1⁄2 Is = and kr = 2 � �G
�
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From the previous solution:

I1 = 6.75Is I1 + � � = [2(6.75) + 0.333]

Substituting these values into the frequency equation and simplifying gives

ωn = 0.538 
�
In this example, the approximate solution is correct to at least three significant

figures. For larger values of Is/I, poorer accuracy can be expected.
For steel, G = 11.5 × 106 lb/in.2 and γ = 0.28 lb/in.3; thus

ωn = 0.538 
� = 0.538 × 5245 = 2822 rad/sec = 449 Hz

Longitudinal Vibration of a Rod with Mass Attached. The natural frequencies
of the longitudinal vibration of a uniform rod having rigid masses attached to it can
be solved in a manner similar to that used for a rod in torsion with discs attached.
Equation (7.4) applies to this system; its solution is the same as Eq. (7.7) with a sub-
stituted for b. For each value of n,

u = �Cn sin + Dn cos � cos (ωnt + θ)

In Fig. 7.3, the rod of length l is fixed at x = 0 and has a mass m2 attached at x = l. The
boundary conditions are: at x = 0, u = 0 and at x = l, SEu′ = − m2ü. The latter expresses
the condition that the force in the bar equals the product of the mass and its accel-
eration at the end with the mass attached. The sign is negative because the force is
tensile or positive when the acceleration of the mass is negative. From the first
boundary condition, Dn = 0. The second boundary condition gives

Cn cos = m2ωn
2Cn sin 

from which

= tan 

Since a2 = Eg/γ, this can be written

= tan 

where m1 is the mass of the rod. This
equation can be applied to a simple
mass-spring system by using the relation
that the constant k of a spring is equiva-
lent to SE/l for the rod, so that l/a =
(m1/k)1/2, where m1 is the mass of the
spring:

= ωn 
� tan ωn 
� (7.9)
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FIGURE 7.3 Rod, with mass attached to end,
executing longitudinal vibration.
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Rayleigh’s Method. An accurate approximation to the fundamental natural
frequency of this system can be found by using Rayleigh’s method. The motion of
the mass can be expressed as um = u0 sin ωt. If it is assumed that the deflection u at
each section of the rod is proportional to its distance from the fixed end, u = u0(x/l)
sin ωnt. Using this relation in the appropriate equation from Table 7.1, the strain
energy V of the rod at maximum deflection is

V = �l

0
� �2

dx = �l

0
� �2

dx =

The maximum kinetic energy T of the rod is

T = �l

0
Vmax

2 dx = �l

0
�ωnu0 �2

dx = ωn
2u0

2

The maximum kinetic energy of the mass is Tm = m2ωn
2u0

2/2. Equating the total max-
imum kinetic energy T + Tm to the maximum strain energy V gives

ωn = � �1/2

where m1 = Sγ l/g is the mass of the rod. Letting SE/l = k,

ωn = 
� (7.10)

This formula is included in Table 7.2. The other formulas in that table are also based
on analyses by the Rayleigh method.

EXAMPLE 7.3. The natural frequency of a simple mass-spring system for which
the weight of the spring is equal to the weight of the mass is to be calculated and
compared to the result obtained by using Eq. (7.10).

SOLUTION. For m1/m2 = l, the lowest root of Eq. (7.9) is ωn �m/k = 0.860. When
m2 = m1,

ωn = 0.860 
�
Using the approximate equation,

ωn = 
� = 0.866 
�
LATERAL VIBRATION OF STRAIGHT BEAMS

Natural Frequencies from Nomograph. For many practical purposes the natu-
ral frequencies of uniform beams of steel, aluminum, and magnesium can be deter-
mined with sufficient accuracy by the use of the nomograph, Fig. 7.4. This
nomograph applies to many conditions of support and several types of load. Figure
7.4A indicates the procedure for using the nomograph.

Classical Solution. In the derivation of the necessary equation, use is made of
the relation

EI = M (7.11)
d 2y
�
dx2
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FIGURE 7.4 Nomograph for determining fundamental natural frequencies of beams. From the
point on the starting line which corresponds to the loading and support conditions for the beam, a
straight line is drawn to the proper point on the length line. (If the length appears on the left side of
this line, subsequent readings on all lines are made to the left; and if the length appears to the right,
subsequent readings are made to the right.) From the intersection of this line with pivot line A, a
straight line is drawn to the moment of inertia line; from the intersection of this line with pivot line B,
a straight line is drawn to the weight line. (For concentrated loads, the weight is that of the load; for uni-
formly distributed loads, the weight is the total load on the beam, including the weight of the beam.)
The natural frequency is read where the last line crosses the natural frequency line. (J. J. Kerley.7)
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This equation relates the curvature of the beam to the bending moment at each sec-
tion of the beam. This equation is based upon the assumptions that the material is
homogeneous, isotropic, and obeys Hooke’s law and that the beam is straight and of
uniform cross section.The equation is valid for small deflections only and for beams
that are long compared to cross-sectional dimensions since the effects of shear
deflection are neglected.The effects of shear deflection and rotation of the cross sec-
tions are considered later.

The equation of motion for lateral vibration of the beam shown in Fig. 7.5A is
found by considering the forces acting on the element, Fig. 7.5B, which is formed by
passing two parallel planes A–A and B–B through the beam normal to the longitu-
dinal axis.The vertical elastic shear force acting on section A–A is V, and that on sec-
tion B–B is V + (∂V/∂x) dx. Shear forces acting as shown are considered to be
positive. The total vertical elastic shear force at each section of the beam is com-
posed of two parts: that caused by the static load including the weight of the beam

VIBRATION OF SYSTEMS HAVING DISTRIBUTED MASS AND ELASTICITY 7.13

FIGURE 7.4A Example of use of Fig. 7.4. The natural frequency of the steel
beam is 105 Hz and that of the aluminum beam is 280 Hz. (J. J. Kerley.7)

FIGURE 7.5 (A) Beam executing lateral vibration. (B) Ele-
ment of beam showing shear forces and bending moments.

8434_Harris_07_b.qxd  09/20/2001  11:24 AM  Page 7.13



and that caused by the vibration.The part of the shear force caused by the static load
exactly balances the load, so that these forces need not be considered in deriving the
equation for the vibration if all deflections are measured from the position of equi-
librium of the beam under the static load. The sum of the remaining vertical forces
acting on the element must equal the product of the mass of the element Sγ/g dx and
the acceleration ∂2y/∂t2 in the lateral direction: V + (∂V/∂x) dx − V = (∂V/∂x) dx =
− (Sγ/g)(∂2y/∂t2) dx, or

= − (7.12)

If moments are taken about point 0 of the element in Fig. 7.5B, V dx = (∂M/∂x) dx
and V = ∂M/∂x. Other terms contain differentials of higher order and can be neg-
lected. Substituting this in Eq. (7.12) gives −∂2M/∂x2 = (Sγ/g)(∂2y/∂t2). Substituting
Eq. (7.11) gives

− �EI � = (7.13)

Equation (7.13) is the basic equation for the lateral vibration of beams.The solution
of this equation, if EI is constant, is of the form y = X(x) [cos(ωnt + θ)], in which X is
a function of x only. Substituting

κ 4 = (7.14)

and dividing Eq. (7.13) by cos (ωnt + θ):

= κ 4X (7.15)

where X is any function whose fourth derivative is equal to a constant multiplied by
the function itself.The following functions satisfy the required conditions and repre-
sent the solution of the equation:

X = A1 sin κx + A2 cos κx + A3 sinh κx + A4 cosh κx

The solution can also be expressed in terms of exponential functions, but the
trigonometric and hyperbolic functions usually are more convenient to use.

For beams having various support conditions, the constants A1, A2, A3, and A4 are
found from the end conditions. In finding the solutions, it is convenient to write the
equation in the following form in which two of the constants are zero for each of the
usual boundary conditions:

X = A (cos κx + cosh κx) + B(cos κx − cosh κx)

+ C(sin κx + sinh κx) + D(sin κx − sinh κx) (7.16)

In applying the end conditions, the following relations are used where primes indi-
cate successive derivatives with respect to x:

The deflection is proportional to X and is zero at any rigid support.
The slope is proportional to X′ and is zero at any built-in end.
The moment is proportional to X″ and is zero at any free or hinged end.
The shear is proportional to X′′′ and is zero at any free end.

d4X
�
dx4

ωn
2γS

�
EIg

∂2y
�
∂t2

γS
�
g

∂2y
�
∂x2

∂2

�
∂x2

∂2y
�
∂t2

γS
�
g

∂V
�
∂x

7.14 CHAPTER SEVEN

8434_Harris_07_b.qxd  09/20/2001  11:24 AM  Page 7.14



The required derivatives are:

X′ = κ[A(− sin κx + sinh κx) + B(− sin κx − sinh κx)

+ C(cos κx + cosh κx) + D(cos κx − cosh κx)]

X″ = κ2[A(− cos κx + cosh κx) + B(− cos κx − cosh κx)

+ C(− sin κx + sinh κx) + D(− sin κx − sinh κx)]

X″′ = κ3[A(sin κx + sinh κx) + B(sin κx − sinh κx)

+ C(− cos κx + cosh κx) + D(− cos κx − cosh κx)]

For the usual end conditions, two of the constants are zero, and there remain two equa-
tions containing two constants.These can be combined to give an equation which con-
tains only the frequency as an unknown. Using the frequency, one of the unknown
constants can be found in terms of the other. There always is one undetermined con-
stant, which can be evaluated only if the amplitude of the vibration is known.

EXAMPLE 7.4. The natural frequen-
cies and modes of vibration of the rect-
angular steel beam shown in Fig. 7.6 are
to be determined and the fundamental
frequency compared with that obtained
from Fig. 7.4. The beam is 24 in. long, 2
in. wide, and 1⁄4 in. thick, with the left end
built in and the right end free.

SOLUTION. The boundary conditions
are: at x = 0, X = 0, and X′ = 0; at x = l,
X″ = 0, and X″′ = 0. The first condition

requires that A = 0 since the other constants are multiplied by zero at x = 0. The sec-
ond condition requires that C = 0. From the third and fourth conditions, the following
equations are obtained:

0 = B(− cos κl − cosh κl) + D(− sin κl − sinh κl)

0 = B(sin κl − sinh κl) + D(− cos κl − cosh κl)

Solving each of these for the ratio D/B and equating, or making use of the mathe-
matical condition that for a solution the determinant of the two equations must van-
ish, the following equation results:

= − = (7.17)

Equation (7.17) reduces to cos κl cosh κl = −1. The values of κl which satisfy this
equation can be found by consulting tables of hyperbolic and trigonometric func-
tions. The first five are: κ1l = 1.875, κ2 l = 4.694, κ3l = 7.855, κ4l = 10.996, and 
κ5l = 14.137. The corresponding frequencies of vibration are found by substituting
the length of the beam to find each κ and then solving Eq. (7.14) for ωn:

ωn = κn
2 
�

For the rectangular section, I = bh3/12 = 1/384 in.4 and S = bh = 0.5 in.2 For steel,
E = 30 × 106 lb/in.2 and γ = 0.28 lb/in.3 Using these values,

EIg
�
�S

sin κl − sinh κl
��
cos κl + cosh κl

cos κl + cosh κl
��
sin κl + sinh κl

D
�
B

VIBRATION OF SYSTEMS HAVING DISTRIBUTED MASS AND ELASTICITY 7.15

FIGURE 7.6 First mode of vibration of beam
with left end clamped and right end free.
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ω1 = 
� = 89.6 rad/sec = 14.26 Hz

The remaining frequencies can be found by using the other values of κ. Using Fig.
7.4, the fundamental frequency is found to be about 12 Hz.

To find the mode shapes, the ratio D/B is found by substituting the appropriate
values of κl in Eq. (7.17). For the first mode:

cosh 1.875 = 3.33710 sinh 1.875 = 3.18373

cos 1.875 = −0.29953 sin 1.875 = 0.95409

Therefore, D/B = −0.73410. The equation for the first mode of vibration becomes

y = B1[(cos κx − cosh κx) − 0.73410 (sin κx − sinh κx)] cos (ω1t + θ1)

in which B1 is determined by the amplitude of vibration in the first mode. A similar
equation can be obtained for each of the modes of vibration; all possible free vibra-
tion of the beam can be expressed by taking the sum of these equations.

Frequencies and Shapes of Beams. Table 7.3 gives the information necessary
for finding the natural frequencies and normal modes of vibration of uniform beams
having various boundary conditions. The various constants in the table were deter-
mined by computations similar to those used in Example 7.4. The table includes (1)
diagrams showing the modal shapes including node locations, (2) the boundary con-
ditions, (3) the frequency equation that results from using the boundary conditions
in Eq. (7.16), (4) the constants that become zero in Eq. (7.16), (5) the values of κl
from which the natural frequencies can be computed by using Eq. (7.14), and (6) the
ratio of the nonzero constants in Eq. (7.16). By the use of the constants in this table,
the equation of motion for any normal mode can be written. There always is a con-
stant which is determined by the amplitude of vibration.

Values of characteristic functions representing the deflections of beams, at 50
equal intervals, for the first five modes of vibration have been tabulated.8 Functions
are given for beams having various boundary conditions, and the first three deriva-
tives of the functions are also tabulated.

Rayleigh’s Method. This method is useful for finding approximate values of the
fundamental natural frequencies of beams. In applying Rayleigh’s method, a suit-
able function is assumed for the deflection, and the maximum strain and kinetic
energies are calculated, using the equations in Table 7.1. These energies are equated
and solved for the frequency. The function used to represent the shape must satisfy
the boundary conditions associated with deflection and slope at the supports. Best
accuracy is obtained if other boundary conditions are also satisfied.The equation for
the static deflection of the beam under a uniform load is a suitable function,
although a simpler function often gives satisfactory results with less numerical work.

EXAMPLE 7.5. The fundamental natural frequency of the cantilever beam in
Example 7.4 is to be calculated using Rayleigh’s method.

SOLUTION. The assumed deflection Y = (a/3l4)[x4 − 4x3l + 6x2l2] is the static
deflection of a cantilever beam under uniform load and having the deflection Y = a
at x = l. This deflection satisfies the conditions that the deflection Y and the slope Y′
be zero at x = 0.Also, at x = l,Y″ which is proportional to the moment and Y″′ which
is proportional to the shear are zero. The second derivative of the function is Y″ =
(4a/l4)[x2 − 2xl + l2]. Using this in the expression from Table 7.1, the maximum strain
energy is

(30 × 106)(386)
��
(0.28)(384)(0.5)

(1.875)2

�
(24)2
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TABLE 7.3 Natural Frequencies and Normal Modes of Uniform Beams
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V = �l

0
� �2

dx =

The maximum kinetic energy is

T = �l

0
Y 2 dx =

Equating the two energies and solving for the frequency,

ωn = 
�× = 
�
The exact frequency as found in Example 7.4 is (3.516/l2) �EIg/γS; thus, Rayleigh’s
method gives good accuracy in this example.

If the deflection is assumed to be Y = a[1 − cos (πx/2l)], the calculated frequency
is (3.66/l2)�EIg/γS. This is less accurate, but the calculations are considerably
shorter. With this function, the same boundary conditions at x = 0 are satisfied; how-
ever, at x = l, Y″ = 0, but Y″′ does not equal zero. Thus, the condition of zero shear at
the free end is not satisfied. The trigonometric function would not be expected to
give as good accuracy as the static deflection relation used in the example, although
for most practical purposes the result would be satisfactory.

Effects of Rotary Motion and Shearing Force. In the preceding analysis of the
lateral vibration of beams it has been assumed that each element of the beam moves
only in the lateral direction. If each plane section that is initially normal to the axis
of the beam remains plane and normal to the axis, as assumed in simple beam the-
ory, then each section rotates slightly in addition to its lateral motion when the beam
deflects.9 When a beam vibrates, there must be forces to cause this rotation, and for
a complete analysis these forces must be considered. The effect of this rotation is
small except when the curvature of the beam is large relative to its thickness; this is
true either for a beam that is short relative to its thickness or for a long beam vibrat-
ing in a higher mode so that the nodal points are close together.

Another factor that affects the lateral vibration of a beam is the lateral shear
force. In Eq. (7.11) only the deflection associated with the bending stress in the
beam is included. In any beam except one subject only to pure bending, a deflec-
tion due to the shear stress in the beam occurs. The exact solution of the beam
vibration problem requires that this deflection be considered. The analysis of
beam vibration including both the effects of rotation of the cross section and the
shear deflection is called the Timoshenko beam theory. The following equation
governs such vibration:10

a2 + − ρ2 �1 + � + ρ2 = 0 (7.18)

where a2 = EIg/Sγ, E = modulus of elasticity, G = modulus of rigidity, and ρ = �I/S,
the radius of gyration; κ = Fs/GSβ, Fs being the total lateral shear force at any sec-
tion and β the angle which a cross section makes with the axis of the beam because
of shear deformation. Under the assumptions made in the usual elementary beam
theory, κ is 2⁄3 for a beam with a rectangular cross section and 3⁄4 for a circular beam.
More refined analysis shows11 that, for the present purposes, κ = 5⁄6 and 9⁄10 are more
accurate values for rectangular and circular cross sections, respectively. Using a
solution of the form y = C sin (nπx/l) cos ωnt, which satisfies the necessary end con-

∂4y
�
∂t4

γ
�
gκG

∂4y
�
∂x2∂t2

E
�
κG

∂2y
�
∂t2

∂4y
�
∂x4

EIg
�
γS

3.530
�

l 2

EIg
�
γSl4

162
�
13

ωn
2γSla2

�
g

52
�
405

ωn
2γS

�
2g

EIa2

�
l 3

8
�
5

d 2Y
�
dx2

EI
�
2
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ditions, the following frequency equation is obtained for beams with both ends sim-
ply supported:

a2 − ωn
2 − ωn

2 − ωn
2 + ωn

4 = 0 (7.18a)

If it is assumed that nr/l << 1, Eq. (7.18a) reduces to

ωn = �1 − � �2 �1 + �� (7.18b)

When nr/l < 0.08, the approximate equation gives less than 5 percent error in the fre-
quency.11

Values of the ratio of ωn to the natural frequency uncorrected for the effects of
rotation and shear have been plotted,11 using Eq. (7.18a) for three values of E/κG,
and are shown in Fig. 7.7.

For a cantilever beam the frequency equation is quite complicated. For E/κG =
3.20, corresponding approximately to the value for rectangular steel or aluminum
beams, the curves in Fig. 7.8 show the effects of rotation and shear on the natural fre-
quencies of the first six modes of vibration.

EXAMPLE 7.6. The first two natural frequencies of a rectangular steel beam 40 in.
long, 2 in. wide, and 6 in. thick, having simply supported ends, are to be computed with
and without including the effects of rotation of the cross sections and shear deflection.

SOLUTION. For steel E = 30 × 106 lb/in.2, G = 11.5 × 106 lb/in.2, and for a rect-
angular cross section κ = 5⁄6; thus E/κG = 3.13. For a rectangular beam ρ = h/12 where

E
�
κG

ρ
�
l

π2n2

�
2

aπ2

�
(l/n)2

ρ2γ
�
gκG

E
�
κG

n2π2ρ2

�
l 2

n2π2ρ2

�
l 2

n4π4

�
l4
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FIGURE 7.7 Influence of shear force and rotary motion on natural frequencies
of simply supported beams.The curves relate the corrected frequency to that given
by Eq. (7.14). (J. G. Sutherland and L. E. Goodman.11)
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h is the thickness; thus ρ/l = 6/(40 �12) = 0.0433. The approximate frequency equa-
tion, Eq. (7.18b), becomes

ωn = �1 − (0.0433n)2(1 + 3.13)�
= (1 − 0.038n2)

Letting ω0 = aπ2/(l/n)2 be the uncorrected frequency obtained by neglecting the
effect of n in Eq. (7.18b):

For n = 1: = 1 − 0.038 = 0.962

For n = 2: = 1 − 0.152 = 0.848

Comparing these results with Fig. 7.7, using the curve for E/κG = 3.00, the calculated
frequency for the first mode agrees with the curve as closely as the curve can be
read. For the second mode, the curve gives ωn/ω0 = 0.91; therefore the approximate
equation for the second mode is not very accurate.The uncorrected frequencies are,
since I/S = ρ2 = h2/12,

For n = 1: ω0 = 
� = 
� = 2170 rad/sec = 345 Hz(30 × 106)(36)386
��

(12)(0.28)
π2

�
(40)2

EIg
�
Sγ

π2

�
l 2

ωn�
ω0

ωn�
ω0

aπ2

�
(l/n)2

π2

�
2

aπ2

�
(l/n)2
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FIGURE 7.8 Influence of shear force and rotary motion on natural frequen-
cies of uniform cantilever beams (E/κG = 3.20). The curves relate the corrected
frequency to that given by Eq. (7.14). (J. G. Sutherland and L. E. Goodman.11)
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For n = 2: ω0 = 345 × 4 = 1380 Hz

The frequencies corrected for rotation and shear, using the value from Fig. 7.7 for
correction of the second mode, are:

For n = 1: fn = 345 × 0.962 = 332 Hz

For n = 2: fn = 1380 × 0.91 = 1256 Hz

Effect of Axial Loads. When an axial tensile or compressive load acts on a beam,
the natural frequencies are different from those for the same beam without such
load. The natural frequencies for a beam with hinged ends, as determined by an
energy analysis, assuming that the axial force F remains constant, are12

ωn = 
� 
�1 ± = ω0 
�1 ±

where α2 = Fl2/EIπ2, n is the mode number, ω0 is the natural frequency of the beam
with no axial force applied, and the other symbols are defined in Table 7.1. The plus
sign is for a tensile force and the minus sign for a compressive force.

For a cantilever beam with a constant axial force F applied at the free end, the
natural frequency is found by an energy analysis13 to be [1 + 5⁄14(Fl 2/EI)]1/2 times the
natural frequency of the beam without the force applied. If a uniform axial force is
applied along the beam, the effect is the same as if about seven-twentieths of the
total force were applied at the free end of the beam.

If the amplitude of vibration is large, an axial force may be induced in the beam
by the supports. For example, if both ends of a beam are hinged but the supports are
rigid enough so that they cannot move axially, a tensile force is induced as the beam
deflects. The force is not proportional to the deflection; therefore, the vibration is of
the type characteristic of nonlinear systems in which the natural frequency depends
on the amplitude of vibration. The natural frequency of a beam having immovable
hinged ends is given in the following table where the axial force is zero at zero
deflection of the beam14 and where x0 is the amplitude of vibration, I the moment of
inertia, and S the area of the cross section; ω0 is the natural frequency of the unre-
strained bar.

0 0.1 0.2 0.4 0.6 0.8

1 1.0008 1.0038 1.015 1.038 1.058

1.0 1.5 2 3 4 5

1.089 1.190 1.316 1.626 1.976 2.35

Beams Having Variable Cross Sections. The natural frequencies for beams of
several shapes having cross sections that can be expressed as functions of the dis-
tance along the beam have been calculated.15 The results are shown in Table 7.4. In
the analysis, Eq. (7.13) was used, with EI considered to be variable.

ωn�
ω0

x0�
�I/S

ωn�
ω0

x0�
�I/S

α2

�
n2

α2

�
n2

EIg
�
Sγ

π2n2

�
l 2
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TABLE 7.4 Natural Frequencies of Variable-Section Steel Beams (J. N. Macduff and R. P.
Felgar.16, 17)

fn = natural frequency, Hz l = beam length, in.
ρ = �I/S = radius of gyration, in. n = mode number
h = depth of beam, in. b = width of beam, in.

For materials other than steel: fn = fns 
�
E = modulus of elasticity, lb/in.2

γ = density, lb/in.3

Terms with subscripts refer to steel
Terms without subscripts refer to other material

Eγs�
Esγ

7.22
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Rayleigh’s or Ritz’s method can be used to find approximate values for the fre-
quencies of such beams. The frequency equation becomes, using the equations in
Table 7.1, and letting Y(x) be the assumed deflection,

ωn
2 =

where I = I(x) is the moment of inertia of the cross section and S = S(x) is the area of
the cross section. Examples of the calculations are in the literature.18 If the values of
I(x) and S(x) cannot be defined analytically, the beam may be divided into two or
more sections, for each of which I and S can be approximated by an equation. The
strain and kinetic energies of each section may be computed separately, using an
appropriate function for the deflection, and the total energies for the beam found by
adding the values for the individual sections.

Continuous Beams on Multiple Supports. In finding the natural frequencies of
a beam on multiple supports, the section between each pair of supports is considered
as a separate beam with its origin at the left support of the section. Equation (7.16)
applies to each section. Since the deflection is zero at the origin of each section,
A = 0 and the equation reduces to

X = B(cos κx − cosh κx) + C(sin κx + sinh κx) + D(sin κx − sinh κx)

There is one such equation for each section, and the necessary end conditions are as
follows:

1. At each end of the beam the usual boundary conditions are applicable, depend-
ing on the type of support.

2. At each intermediate support the deflection is zero. Since the beam is continuous,
the slope and the moment just to the left and to the right of the support are the
same.

General equations can be developed for finding the frequency for any number of
spans.19,20 Table 7.5 gives constants for finding the natural frequencies of uniform
continuous beams on uniformly spaced supports for several combinations of end
supports.

Beams with Partly Clamped Ends. For a beam in which the slope at each end is
proportional to the moment, the following empirical equation gives the natural fre-
quency:21

fn = f0 �n + � �� �n + � ��
where f0 is the frequency of the same beam with simply supported ends and n is the
mode number. The parameters βL = kLl/EI and βR = kRl/EI are coefficients in which
kL and kR are stiffnesses of the supports as given by kL = ML/θL, where ML is the
moment and θL the angle at the left end, and kR = MR/θR, where MR is the moment
and θR the angle at the right end.The error is less than 2 percent except for bars hav-
ing one end completely or nearly clamped (β > 10) and the other end completely or
nearly hinged (β < 0.9).

βR�
5n + βR

1
�
2

βL�
5n + βL

1
�
2

�l

0 I (d 2Y/dx2)2 dx
���l
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SY 2 dx
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TABLE 7.5 Natural Frequencies of Continuous Uniform Steel* Beams (J. N. Macduff and
R. P. Felgar.16, 17)

* For materials other than steel, use equation at bottom of Table 7.4.
fn = natural frequency, Hz n = mode number
ρ = �I/S = radius of gyration, in. N = number of spans
l = span length, in.
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LATERAL VIBRATION OF BEAMS WITH MASSES ATTACHED

The use of Fig. 7.4 is a convenient method of estimating the natural frequencies of
beams with added loads.

Exact Solution. If the masses attached to the beam are considered to be rigid
so that they exert no elastic forces, and if it is assumed that the attachment is such
that the bending of the beam is not restrained, Eqs. (7.13) and (7.16) apply. The sec-
tion of the beam between each two masses, and between each support and the adja-
cent mass, must be considered individually. The constants in Eq. (7.16) are different
for each section. There are 4N constants, N being the number of sections into which
the beam is divided. Each support supplies two boundary conditions. Additional
conditions are provided by:

1. The deflection at the location of each mass is the same for both sections adjacent
to the mass.

2. The slope at each mass is the same for each section adjacent thereto.
3. The change in the lateral elastic shear force in the beam, at the location of each

mass, is equal to the product of the mass and its acceleration ÿ.
4. The change of moment in the beam, at each mass, is equal to the product of the

moment of inertia of the mass and its angular acceleration (∂2/∂t2)(∂y/∂x).

Setting up the necessary equations is not difficult, but their solution is a lengthy
process for all but the simplest configurations. Even the solution of the problem of a
beam with hinged ends supporting a mass with negligible moment of inertia located
anywhere except at the center of the beam is fairly long. If the mass is at the center
of the beam, the solution is relatively simple because of symmetry and is illustrated
to show how the result compares with that obtained by Rayleigh’s method.

Rayleigh’s Method. Rayleigh’s method offers a practical method of obtaining a
fairly accurate solution of the problem, even when more than one mass is added. In
carrying out the solution, the kinetic energy of the masses is added to that of the
beam. The strain and kinetic energies of a uniform beam are given in Table 7.1. The
kinetic energy of the ith mass is (mi/2)ωn

2Y2(xi), where Y(xi) is the value of the ampli-
tude at the location of mass. Equating the maximum strain energy to the total maxi-
mum kinetic energy of the beam and masses, the frequency equation becomes

ωn
2 =

EI �l

0
(Y″)2 dx

(7.19)
�l

0
Y 2 dx + 	

n

i = 1
miY 2(xi)

where Y(x) is the maximum deflection. If Y(x) were known exactly, this equation
would give the correct frequency; however, since Y is not known, a shape must be
assumed. This may be either the mode shape of the unloaded beam or a polynomial
that satisfies the necessary boundary conditions, such as the equation for the static
deflection under a load.

Beam as Spring. A method for obtaining the natural frequency of a beam with
a single mass mounted on it is to consider the beam to act as a spring, the stiffness
of which is found by using simple beam theory. The equation ωn = �k/m is used.
Best accuracy is obtained by considering m to be made up of the attached mass plus
some portion of the mass of the beam. The fraction of the beam mass to be used
depends on the type of beam. The equations for simply supported and cantilevered
beams with masses attached are given in Table 7.2.

γS
�
g
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EXAMPLE 7.7. The fundamental nat-
ural frequencies of a beam with hinged
ends 24 in. long, 2 in. wide, and 1⁄4 in. thick
having a mass m attached at the center
(Fig. 7.9) are to be calculated by each of
the three methods, and the results com-
pared for ratios of mass to beam mass of
1, 5, and 25. The result is to be compared
with the frequency from Fig. 7.4.

EXACT SOLUTION. Because of sym-
metry, only the section of the beam to
the left of the mass has to be considered
in carrying out the exact solution. The
boundary conditions for the left end are:
at x = 0, X = 0, and X″ = 0. The shear
force just to the left of the mass is nega-

tive at maximum deflection (Fig. 7.9B) and is Fs = − EIX″′; to the right of the mass,
because of symmetry, the shear force has the same magnitude with opposite sign.
The difference between the shear forces on the two sides of the mass must equal the
product of the mass and its acceleration. For the condition of maximum deflection,

2EIX″′ = mÿmax (7.20)

where X″′ and ÿmax must be evaluated at x = l/2. Because of symmetry the slope at the
center is zero. Using the solution y = X cos ωnt and ÿmax = −ωn

2X, Eq. (7.20) becomes

2EIX″′ = −mωn
2X (7.21)

The first boundary condition makes A = 0 in Eq. (7.16) and the second condition
makes B = 0. For simplicity, the part of the equation that remains is written

X = C sin κx + D sinh κx (7.22)

Using this in Eq. (7.20) gives

2EI �− Cκ 3 cos + Dκ 3 cosh � = −mωn
2 �C sin + D sinh � (7.23)

The slope at the center is zero. Differentiating Eq. (7.22) and substituting x = l/2,

κ �C cos + D cosh � = 0 (7.24)

Solving Eqs. (7.23) and (7.24) for the ratio C/D and equating, the following fre-
quency equation is obtained:

2 = �tan − tanh �
where mb = γSl/g is the total mass of the beam. The lowest roots for the specified
ratios m/mb are as follows:

m/mb 1 5 25

κl/2 1.1916 0.8599 0.5857
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FIGURE 7.9 (A) Beam having simply sup-
ported ends with mass attached at center. (B)
Forces exerted on mass, at extreme deflection,
by shear stresses in beam.
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The corresponding natural frequencies are found from Eq. (7.14) and are tabulated,
with the results obtained by the other methods, at the end of the example.

Solution by Rayleigh’s Method. For the solution by Rayleigh’s method it is
assumed that Y = B sin (πx/l). This is the fundamental mode for the unloaded beam
(Table 7.3). The terms in Eq. (7.19) become

�l

0
(Y″)2 dx = B2 � �4 �l

0
sin2 dx = B2 � �4

�l

0
Y 2 dx = B2 �l

0
sin2 dx = B2

Y 2(x1) = B2

Substituting these terms, Eq. (7.19) becomes

ωn = 
� = 
�
The frequencies for the specified values of m/mb are tabulated at the end of the
example. Note that if m = 0, the frequency is exactly correct, as can be seen from
Table 7.3. This is to be expected since, if no mass is added, the assumed shape is the
true shape.

Lumped Parameter Solution. Using the appropriate equation from Table 7.2,
the natural frequency is

ωn = 
�
Since mb = γSl/g, this becomes

ωn = 
�
�
Comparison of Results. The results for each method can be expressed as a

coefficient α multiplied by �EIg/Sγl4. The values of α for the specified values by
m/mb for the three methods of solution are:

m/mb 1 5 25

Exact 5.680 2.957 1.372
Rayleigh 5.698 2.976 1.382
Spring 5.657 2.954 1.372

The results obtained by all the methods agree closely. For large values of m/mb the
third method gives very accurate results.

Numerical Calculations. For steel, E = 30 × 106 lb/in.2, γ = 0.28 lb/in.3; for a rect-
angular beam, I = bh3/12 = 1/384 in.4 and S = bh = 1⁄2 in.2. The fundamental frequency
using the value of α for the exact solution when m/mb = 1 is

ω1 = 
� = 
� = 145 rad/sec = 23 Hz(30 × 106)(386)
��
(0.5)(384)(0.28)

5.680
�
576

EIg
�
Sγ

α
�
l2

EIg
�
Sγl4

48
��
(m/mb) + 0.5

48EI
��
l 3(m + 0.5mb)

EIg
�
Sγl4

π2

��
�1 + 2m/mb

EIB2(l/2)(π/l)4

��
(SγB2l/2g) + mB2

l
�
2

πx
�

l

π
�
l

l
�
2

πx
�

l
π
�
l
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Other frequencies can be found by using
the other values of α. Nearly the same
result is obtained by using Fig. 7.4, if half
the mass of the beam is added to the
additional mass.

LATERAL VIBRATION 

OF PLATES

General Theory of Bending of Rect-
angular Plates. For small deflections
of an initially flat plate of uniform thick-

ness (Fig. 7.10) made of homogeneous isotropic material and subjected to normal
and shear forces in the plane of the plate, the following equation relates the lateral
deflection w to the lateral loading:22

D∇4w = D � + 2 + � = P + Nx + 2Nxy + Ny

(7.25)

where D = Eh3/12(1 − µ2) is the plate stiffness, h being the plate thickness and µ Pois-
son’s ratio. The parameter P is the loading intensity, Nx the normal loading in the X
direction per unit of length, Ny the normal loading in the Y direction, and Nxy the
shear load parallel to the plate surface in the X and Y directions.

The bending moments and shearing forces are related to the deflection w by the
following equations:23

M1x = − D � + µ � M1y = − D � + µ �
T1xy = D(1 − µ) (7.26)

S1x = −D� + � S1y = −D� + �
As shown in Fig. 7.10, M1x and M1y are the bending moments per unit of length on the
faces normal to the X and Y directions, respectively, T1xy is the twisting or warping
moment on these faces, and S1x, S1y are the shearing forces per unit of length normal
to the plate surface.

The boundary conditions that must be satisfied by an edge parallel to the X axis,
for example, are as follows:
Built-in edge:

w = 0 = 0

Simply supported edge:

w = 0 M1y = −D � + µ � = 0
∂2w
�
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∂2w
�
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FIGURE 7.10 Element of plate showing bend-
ing moments, normal forces, and shear forces.
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Free edge:

M1y = −D � + µ � = 0 T1xy = 0 S1y = 0

which together give

� + (2 − µ) � = 0

Similar equations can be written for other edges. The strains caused by the bend-
ing of the plate are

�x = −z �y = −z γxy = 2z (7.27)

where z is the distance from the center plane of the plate.
Hooke’s law may be expressed by the following equations:

�x = (σx − µσy) σx = (�x + µ�y)

�y = (σy − µσx) σy = (�y + µ�x) (7.28)

γxy = τxy = Gγxy

Substituting the expressions giving the strains in terms of the deflections, the fol-
lowing equations are obtained for the bending stresses in terms of the lateral
deflection:

σx = − � + µ � = z

σy = − � + µ � = z (7.29)

τxy = 2G z = z

Table 7.6 gives values of maximum deflection and bending moment at several points
in plates which have various shapes and conditions of support and which are sub-
jected to uniform lateral pressure. The results are all based on the assumption that
the deflections are small and that there are no loads in the plane of the plate. The
bending stresses are found by the use of Eqs. (7.29). Bending moments and deflec-
tions for many other types of load are in the literature.22

The stresses caused by loads in the plane of the plate are found by assuming that
the stress is uniform through the plate thickness. The total stress at any point in the
plate is the sum of the stresses caused by bending and by the loading in the plane of
the plate.

For plates in which the lateral deflection is large compared to the plate thickness
but small compared to the other dimensions, Eq. (7.25) is valid. However, additional
equations must be introduced because the forces Nx, Ny, and Nxy depend not only on
the initial loading of the plate but also upon the stretching of the plate due to the
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TABLE 7.6 Maximum Deflection and Bending Moments in Uniformly Loaded Plates under
Static Conditions
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bending. The equations of equilibrium for the X and Y directions in the plane of the
plate are

+ = 0 + = 0 (7.30)

It can be shown27 that the strain components are given by

�x = + � �2
�y = + � �2

γxy = + +
(7.31)

where u is the displacement in the X direction and v is the displacement in the Y
direction. By differentiating and combining these expressions, the following relation
is obtained:

+ − = � �2
− (7.32)

If it is assumed that the stresses caused by the forces in the plane of the plate are uni-
formly distributed through the thickness, Hooke’s law, Eqs. (7.28), can be expressed:

�x = (Nx − µNy) �y = (Ny − µNx) γxy = Nxy (7.33)

The equilibrium equations are satisfied by a stress function φ which is defined as
follows:

Nx = h Ny = h Nxy = −h (7.34)

If these are substituted into Eqs. (7.33) and the resulting expressions substituted
into Eq. (7.32), the following equation is obtained:

+ 2 + = E �� �2
− � (7.35)

A second equation is obtained by substituting Eqs. (7.34) in Eq. (7.25):

D∇4w = P + h � − 2 + � (7.36)

Equations (7.35) and (7.36), with the boundary conditions, determine φ and w, from
which the stresses can be computed. General solutions to this set of equations are
not known, but some approximate solutions can be found in the literature.28

Free Lateral Vibrations of Rectangular Plates. In Eq. (7.25), the terms on the
left are equal to the sum of the rates of change of the forces per unit of length in the
X and Y directions where such forces are exerted by shear stresses caused by bend-
ing normal to the plane of the plate. For a rectangular element with dimensions dx
and dy, the net force exerted normal to the plane of the plate by these stresses is 
D∇4w dx dy. The last three terms on the right-hand side of Eq. (7.25) give the net
force normal to the plane of the plate, per unit of length, which is caused by the forces
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acting in the plane of the plate. The net force caused by these forces on an element
with dimensions dx and dy is (Nx ∂2w/∂x2 + 2Nxy ∂2w/∂x ∂y + Ny ∂2w/∂y2) dx dy. As in
the corresponding beam problem, the forces in a vibrating plate consist of two parts:
(1) that which balances the static load P including the weight of the plate and (2) that
which is induced by the vibration.The first part is always in equilibrium with the load
and together with the load can be omitted from the equation of motion if the deflec-
tion is taken from the position of static equilibrium. The force exerted normal to the
plane of the plate by the bending stresses must equal the sum of the force exerted
normal to the plate by the loads acting in the plane of the plate; i.e., the product of the
mass of the element (γh/g) dx dy and its acceleration ẅ. The term involving the accel-
eration of the element is negative, because when the bending force is positive the
acceleration is in the negative direction. The equation of motion is

D∇4w = − hẅ + �Nx + 2Nxy + Ny � (7.37)

This equation is valid only if the magnitudes of the forces in the plane of the plate
are constant during the vibration. For many problems these forces are negligible and
the term in parentheses can be omitted.

When a system vibrates in a natural mode, all parts execute simple harmonic
motion about the equilibrium position; therefore, the solution of Eq. (7.37) can be
written as w = AW(x,y) cos (wnt + θ) in which W is a function of x and y only. Substi-
tuting this in Eq. (7.37) and dividing through by A cos (wnt + θ) gives

D∇4W = W + �Nx + 2Nxy + Ny � (7.38)

The function W must satisfy Eq. (7.38) as well as the necessary boundary conditions.
The solution of the problem of the lateral vibration of a rectangular plate with all

edges simply supported is relatively simple; in general, other combinations of edge
conditions require the use of other methods of solution. These are discussed later.

EXAMPLE 7.8. The natural frequencies and normal modes of small vibration of
a rectangular plate of length a, width b, and thickness h are to be calculated. All
edges are hinged and subjected to unchanging normal forces Nx and Ny.

SOLUTION. The following equation, in which m and n may be any integers, satis-
fies the necessary boundary conditions:

W = A sin sin (7.39)

Substituting the necessary derivatives into Eq. (7.38),

D �� �4
+ 2 � �2 � �2

+ � �4� π4 sin sin 

= sin sin − π2 �Nx � �2
+ Ny � �2� sin sin 

Solving for �n
2,

�n
2 = �π4D�� �2

+ � �2�2
+ π2 �Nx � �2

+ Ny � �2�� (7.40)

By using integral values of m and n, the various frequencies are obtained from Eq.
(7.40) and the corresponding normal modes from Eq. (7.39). For each mode, m and
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n represent the number of half sine waves in the X and Y directions, respectively. In
each mode there are m − 1 evenly spaced nodal lines parallel to the Y axis, and n − 1
parallel to the X axis.

Rayleigh’s and Ritz’s Methods. The modes of vibration of a rectangular plate
with all edges simply supported are such that the deflection of each section of the
plate parallel to an edge is of the same form as the deflection of a beam with both
ends simply supported. In general, this does not hold true for other combinations of
edge conditions. For example, the vibration of a rectangular plate with all edges built
in does not occur in such a way that each section parallel to an edge has the same
shape as does a beam with both ends built in. A function that is made up using the
mode shapes of beams with built-in ends obviously satisfies the conditions of zero
deflection and slope at all edges, but it cannot be made to satisfy Eq. (7.38).

The mode shapes of beams give logical functions with which to formulate shapes
for determining the natural frequencies, for plates having various edge conditions,
by the Rayleigh or Ritz methods. By using a single mode function in Rayleigh’s
method an approximate frequency can be determined. This can be improved by
using more than one of the modal shapes and using Ritz’s method as discussed
below.

The strain energy of bending and the kinetic energy for plates are given in Table
7.1. Finding the maximum values of the energies, equating them, and solving for �n

2

gives the following frequency equation:

Vmax�n
2 =

�
A
� W 2 dx dy

(7.41)

where V is the strain energy.
In applying the Rayleigh method, a function W is assumed that satisfies the nec-

essary boundary conditions of the plate. An example of the calculations is given in
the section on circular plates. If the shape assumed is exactly the correct one, Eq.
(7.41) gives the exact frequency. In general, the correct shape is not known and a
frequency greater than the natural frequency is obtained. The Ritz method involves
assuming W to be of the form W = a1W1(x,y) + a2W2(x,y) + . . . in which W1, W2, . . . all
satisfy the boundary conditions, and a1, a2, . . . are adjusted to give a minimum fre-
quency. Reference 29 is an extensive compilation, with references to sources, of cal-
culated and experimental results for plates of many shapes. Some examples are cited
in the following sections.

Square, Rectangular, and Skew Rectangular Plates. Tables of the functions
necessary for the determination of the natural frequencies of rectangular plates by
the use of the Ritz method are available,30 these having been derived by using the
modal shapes of beams having end conditions corresponding to the edge condi-
tions of the plates. Information is included from which the complete shapes of the
vibrational modes can be determined. Frequencies and nodal patterns for several
modes of vibration of square plates having three sets of boundary conditions are
shown in Table 7.7. By the use of functions which represent the natural modes of
beams, the frequencies and nodal patterns for rectangular and skew cantilever
plates have been determined31 and are shown in Table 7.8. Comparison of calcu-
lated frequencies with experimentally determined values shows good agreement.
Natural frequencies of rectangular plates having other boundary conditions are
given in Table 7.9.

γh
�
2g
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Triangular and Trapezoidal Plates. Nodal patterns and natural frequencies for
triangular plates have been determined33 by the use of functions derived from the
mode shapes of beams, and are shown in Table 7.10. Certain of these have been com-
pared with experimental values and the agreement is excellent. Natural frequencies
and nodal patterns have been determined experimentally for six modes of vibration
of a number of cantilevered triangular plates34 and for the first six modes of can-
tilevered trapezoidal plates derived by trimming the tips of triangular plates parallel
to the clamped edge.35 These triangular and trapezoidal shapes approximate the
shapes of various delta wings for aircraft and of fins for missiles.

Circular Plates. The solution of the problem of small lateral vibration of circular
plates is obtained by transforming Eq. (7.38) to polar coordinates and finding the
solution that satisfies the necessary boundary conditions of the resulting equation.
Omitting the terms involving forces in the plane of the plate,36

� + + � � + + � = κ 4W (7.42)
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TABLE 7.7 Natural Frequencies and Nodal Lines of Square Plates with Various Edge Con-
ditions (After D. Young.29)
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The solution of Eq. (7.42) is36

W = A cos (nθ − β)[Jn(κr) + λJn(iκr)] (7.43)

where Jn is a Bessel function of the first kind. When cos (nθ − β) = 0, a mode having
a nodal system of n diameters, symmetrically distributed, is obtained. The term in

VIBRATION OF SYSTEMS HAVING DISTRIBUTED MASS AND ELASTICITY 7.35

TABLE 7.8 Natural Frequencies and Nodal Lines of Cantilevered Rectangular and Skew
Rectangular Plates (µ = 0.3)* (M. V. Barton.30)

* For terminology, see Table 7.7.

8434_Harris_07_b.qxd  09/20/2001  11:24 AM  Page 7.35



brackets represents modes having concentric nodal circles. The values of κ and λ
are determined by the boundary conditions, which are, for radially symmetrical
vibration:
Simply supported edge:

W = 0 M1r = D � + � = 0

Fixed edge:

W = 0 = 0
dW
�
dr

dW
�
dr

µ
�
a

d 2W
�
dr2
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TABLE 7.9 Natural Frequencies of Rectangular Plates (R. F. S. Hearman.32)
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Free edge:

M1r = D � + � = 0 � + � = 0

EXAMPLE 7.9. The steel diaphragm of a radio earphone has an unsupported
diameter of 2.0 in. and is 0.008 in. thick. Assuming that the edge is fixed, the lowest
three frequencies for the free vibration in which only nodal circles occur are to be
calculated, using the exact method and the Rayleigh and Ritz methods.

EXACT SOLUTION. In this example n = 0, which makes cos (nθ − β) = 1; thus, Eq.
(7.43) becomes

W = A[J0(κr) + λI0(κr)]

where J0(iκr) = I0(κr) and I0 is a modified Bessel function of the first kind.
At the boundary where r = a,

= Aκ[−J1(κa) + λI1(κa)] = 0 −J1(κa) + λI1(κa) = 0

The deflection at r = a is also zero:
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TABLE 7.10 Natural Frequencies and
Nodal Lines of Triangular Plates (B. W.
Anderson.33)
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J0(κa) + λI0(κa) = 0

The frequency equation becomes

λ = = −

The first three roots of the frequency equation are: κa = 3.196, 6.306, 9.44. The cor-
responding natural frequencies are, from Eq. (7.42),

ωn = 
� 
� 
�
For steel, E = 30 × 106 lb/in.2, γ = 0.28 lb/in.3, and µ = 0.28. Hence

D = = = 1.38 lb-in.

Thus, the lowest natural frequency is

ω1 = 10.21 
� = 4960 rad/sec = 790 Hz

The second frequency is 3070 Hz, and the third is 6880 Hz.
SOLUTION BY RAYLEIGH’S METHOD. The equations for strain and kinetic ener-

gies are given in Table 7.1.The strain energy for a plate with clamped edges becomes

V = πD �a

0
� + �2

r dr

The maximum kinetic energy is

T = �a

0
W 2r dr

An expression of the form W = a1 [1 − (r/a)2]2, which satisfies the conditions of zero
deflection and slope at the boundary, is used. The first two derivatives are ∂W/∂r =
a1(−4r/a2 + 4r 3/a4) and ∂2W/∂r 2 = a1(−4/a2 + 12r 2/a4). Using these values in the equa-
tions for strain and kinetic energy, V = 32πDa1

2/3a2 and T = ωn
2πγha2a1

2/10g. Equat-
ing these values and solving for the frequency,

ωn = 
� = 
�
This is somewhat higher than the exact frequency.

SOLUTION BY RITZ’S METHOD. Using an expression for the deflection of the form

W = a1[1 − (r/a)2]2 + a2[1 − (r/a)2]3

and applying the Ritz method, the following values are obtained for the first two
frequencies:

ω1 = 
� ω2 = 
�
The details of the calculations giving this result are in the literature.37 The first fre-
quency agrees with the exact answer to four significant figures, while the second fre-
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quency is somewhat high. A closer approximation to the second frequency and
approximations of the higher frequencies could be obtained by using additional
terms in the deflection equation.

The frequencies of modes having n nodal diameters are:37

n = 1: ω1 = 
�
n = 2: ω2 = 
�
For a plate with its center fixed and edge free, and having m nodal circles, the fre-
quencies are:38

m 0 1 2 3

ωna2/
� 3.75 20.91 60.68 119.7

Stretching of Middle Plane. In the usual analysis of plates, it is assumed that the
deflection of the plate is so small that there is no stretching of the middle plane. If
such stretching occurs, it affects the natural frequency.Whether it occurs depends on
the conditions of support of the plate, the amplitude of vibration, and possibly other
conditions. In a plate with its edges built in, a relatively small deflection causes a sig-
nificant stretching.The effect of stretching is not proportional to the deflection; thus,
the elastic restoring force is not a linear function of deflection. The natural fre-
quency is not independent of amplitude but becomes higher with increasing ampli-
tudes. If a plate is subjected to a pressure on one side, so that the vibration occurs
about a deflected position, the effect of stretching may be appreciable. The effect of
stretching in rectangular plates with immovable hinged supports has been dis-
cussed.39 The effect of the amplitude on the natural frequency is shown in Fig. 7.11;
the effect on the total stress in the plate is shown in Fig. 7.12. The natural frequency
increases rapidly as the amplitude of vibration increases.

Rotational Motion and Shearing Forces. In the foregoing analysis, only the
motion of each element of the plate in the direction normal to the plane of the
plate is considered. There is also rotation of each element, and there is a deflection
associated with the lateral shearing forces in the plate. The effects of these factors
becomes significant if the curvature of the plate is large relative to its thickness,
i.e., for a plate in which the thickness is large compared to the lateral dimensions
or when the plate is vibrating in a mode for which the nodal lines are close
together. These effects have been analyzed for rectangular plates40 and for circular
plates.41

Complete Circular Rings. Equations have been derived42,43 for the natural fre-
quencies of complete circular rings for which the radius is large compared to the
thickness of the ring in the radial direction. Such rings can execute several types of
free vibration, which are shown in Table 7.11 with the formulas for the natural fre-
quencies.
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TRANSFER MATRIX METHOD

In some assemblies which consist of various types of elements, e.g., beam segments,
the solution for each element may be known. The transfer matrix method44,45 is a
procedure by means of which the solution for such elements can be combined to
yield a frequency equation for the assembly. The associated mode shapes can then
be determined. The method is an extension to distributed systems of the Holzer
method, described in Chap. 38, in which torsional problems are solved by dividing

an assembly into lumped masses and
elastic elements, and of the Myklestad
method,46 in which a similar procedure
is applied to beam problems. The
method has been used47 to find the nat-
ural frequencies and mode shapes of
the internals of a nuclear reactor by
modeling the various elements of the
system as beam segments.

The method will be illustrated by set-
ting up the frequency equation for a can-
tilever beam, Fig. 7.13, composed of
three segments, each of which has uni-
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FIGURE 7.11 Influence of amplitude on
period of vibration of uniform rectangular
plates with immovable hinged edges. The aspect
ratio r is the ratio of width to length of the plate.
(H. Chu and G. Herrmann.39)

FIGURE 7.12 Influence of amplitude on max-
imum total stress in rectangular plates with
immovable hinged edges. The aspect ratio r is
the ratio of width to length of the plate. (H. Chu
and G. Herrmann.39)

FIGURE 7.13 Cantilever beam made up of
three segments having different section proper-
ties.
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form section properties. Only the effects of bending will be considered, but the
method can be extended to include other effects, such as shear deformation and
rotary motion of the cross section.45 Application to other geometries is described in
Ref. 45.

Depending on the type of element being considered, the values of appropriate
parameters must be expressed at certain sections of the piece in terms of their val-
ues at other sections. In the beam problem, the deflection and its first three deriva-
tives must be used.

Transfer Matrices. Two types of transfer matrix are used. One, which for the
beam problem is called the R matrix (after Lord Rayleigh44), yields the values of the
parameters at the right end of a uniform segment of the beam in terms of their val-
ues at the left end of the segment. The other type of transfer matrix is the point
matrix, which yields the values of the parameters just to the right of a joint between
segments in terms of their values just to the left of the joint.
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As can be seen by looking at the successive derivatives, the coefficients in Eq.
(7.16) are equal to the following, where the subscript 0 indicates the value of the
indicated parameter at the left end of the beam:

A = C = B = D =

Using the following notation, X and its derivatives at the right end of a beam seg-
ment can be expressed, by the matrix equation, in terms of the values at the left end
of the segment. The subscript n refers to the number of the segment being consid-
ered, the subscript l to the left end of the segment and the subscript r to the right end.

C0n =

S1n =

C2n =

S3n =

where κn takes the value shown in Eq. (7.14) with the appropriate values of the
parameters for the segment and ln is the length of the segment.

�
X

� �
C0n S1n C2n S3n

� �
X

�X′ κn
4S3n C0n S1n C2n X′

X″
=

κn
4C2n κn

4S3n C0n S1n X″
X″′ rn κn

4S1n κn
4C2n κn

4S3n C0n X″′ ln

or xrn = RnXln, where the boldface capital letter denotes a square matrix and the
boldface lowercase letters denote column matrices. Matrix operations are discussed
in Chap. 28.

At a section where two segments of a beam are joined, the deflection, the slope, the
bending moment, and the shear must be the same on the two sides of the joint. Since
M = EI ⋅ X″ and V = EI ⋅ X″′, the point transfer matrix for such a joint is as follows,
where the subscript jn refers to the joint to the right of the nth segment of the beam:

�
X

� �
1 0 0 0

� �
X

�X′ 0 1 0 0 X′
X″

=
0 0 (EI)l/(EI)r 0 X″

X″′ rjn 0 0 0 (EI)l/(EI)r X″′ ljn

or xrjn = Jnxljn.
The Frequency Equation. For the cantilever beam shown in Fig. 7.13, the coef-

ficients relating the values of X and its derivatives at the right end of the beam to
their values at the left end are found by successively multiplying the appropriate R
and J matrices, as follows:

xr3 = R3J2R2J1R1xl1

−(sin κnln − sinh κnln)���
2κn

3

−(cos κnln − cosh κnln)���
2κn

2

sin κnln + sinh κnln��
2κn

cos κnln + cosh κnln���
2

−X0″′
�

2κ 3

−X0″�
2κ 2

X0′�
2κ

X0�
2
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Carrying out the multiplication of the square R and J matrices and calling the result-
ing matrix P yields

�
X

� �
P11 P12 P13 P14

� �
X

�X′ P21 P22 P23 P24 X′
X″

=
P31 P32 P33 P34 X″

X″′ r3 P41 P42 P43 P44 X″′ l1

The boundary conditions at the fixed left end of the cantilever beam are X = X′ = 0.
Using these and performing the multiplication of P by xl1 yields the following:

Xr3 = P13Xl1″ + P14Xl1″′

Xr3′ = P23Xl1″ + P24Xl1″′

Xr3″ = P33Xl1″ + P34Xl1″′

Xr3″′ = P43Xl1″ + P44Xl1″′

(7.44)

The boundary conditions for the free right end of the beam are X″ = X″′ = 0. Using
these in the last two equations results in two simultaneous homogeneous equations,
so that the following determinant, which is the frequency equation, results:

� P33 P34 � = 0P43 P44

It can be seen that for a beam consisting of only one segment, this determinant yields
a result which is equivalent to Eq. (7.17).

While in theory it would be possible to multiply the successive R and J matrices
and obtain the P matrix in literal form, so that the transcendental frequency equa-
tion could be written, the process, in all but the simplest problems, would be long and
time-consuming.A more practicable procedure is to perform the necessary multipli-
cations with numbers, using a digital computer, and finding the roots by trial and
error.

Mode Shapes. Either of the last two equations of Eq. (7.44) may be used to find
the ratio Xl1″/Xl1″′. These are used in Eq. (7.16), with κ = κ1 to find the shape of the
first segment. By the use of the R and J matrices the values of the coefficients in Eq.
(7.16) are found for each of the other segments.

With intermediate rigid supports or pinned connections, numerical difficulties
occur in the solution of the frequency equation. These difficulties are eliminated by
the use of delta matrices, the elements of which are combinations of the elements of
the R matrix.These delta matrices, for various cases, are tabulated in Refs. 44 and 45.

In Ref. 47 transfer matrices are developed and used for structures which consist,
in part, of beams that are parallel to each other.

FORCED VIBRATION

CLASSICAL SOLUTION

The classical method of analyzing the forced vibration that results when an elastic
system is subjected to a fluctuating load is to set up the equation of motion by the
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application of Newton’s second law. During the vibration, each element of the sys-
tem is subjected to elastic forces corresponding to those experienced during free
vibration; in addition, some of the elements are subjected to the disturbing force.
The equation which governs the forced vibration of a system can be obtained by
adding the disturbing force to the equation for free vibration. For example, in Eq.
(7.13) for the free vibration of a uniform beam, the term on the left is due to the
elastic forces in the beam. If a force F (x,t) is applied to the beam, the equation of
motion is obtained by adding this force to Eq. (7.13), which becomes, after rear-
ranging terms,

EI + = F (x,t)

where EI is a constant. The solution of this equation gives the motion that results
from the force F. For example, consider the motion of a beam with hinged ends sub-
jected to a sinusoidally varying force acting at its center. The solution is obtained by
representing the concentrated force at the center by its Fourier series:

EIy″″ + ÿ = �sin − sin + sin ⋅⋅⋅� sin ωt

= 	
n = ∞

n = 1
�sin sin � sin ωt (7.45)

where sin (nπ/2), which appears in each term of the series, makes the nth term posi-
tive, negative, or zero. The solution of Eq. (7.45) is

y = 	
n = ∞

n = 1
�An sin sin ωnt + Bn sin cos ωnt

+ sin sin sin ωt� (7.46)

The first two terms of Eq. (7.46) are the values of y which make the left side of
Eq. (7.45) equal to zero.They are obtained in exactly the same way as in the solution
of the free-vibration problem and represent the free vibration of the beam.The con-
stants are determined by the initial conditions; in any real beam, damping causes the
free vibration to die out. The third term of Eq. (7.46) is the value of y which makes
the left-hand side of Eq. (7.45) equal the right-hand side; this can be verified by sub-
stitution. The third term represents the forced vibration. From Table 7.3, κnl = nπ for
a beam with hinged ends; then from Eq. (7.14), ωn

2 = n4π4EIg/Sγl4. The term repre-
senting the forced vibration in Eq. (7.46) can be written, after rearranging terms,

y = 	
n = ∞

n = 1
sin sin ωt (7.47)

From Table 7.3 and Eq. (7.16), it is evident that this deflection curve has the same
shape as the nth normal mode of vibration of the beam since, for free vibration of a
beam with hinged ends, Xn = 2C sin κx = sin (nπx/l).

The equation for the deflection of a beam under a distributed static load F(x) can
be obtained by replacing −(γS/g)ÿ with F in Eq. (7.12); then Eq. (7.13) becomes

ys″″ = (7.48)
F(x)
�

EI

nπx
�

l
sin (nπ/2)

��
ωn

2[1 − (ω/ωn)2]
2Fg
�
Sγl

nπx
�

l
2Fg/Sγl

���
(nπ/l)4(EIg/Sγ) − ω2

nπ
�
2

nπx
�

l
nπx
�

l

nπx
�

l
nπ
�
2

2F
�

l

5πx
�

l
3πx
�

l
πx
�

l
2F
�

l
γS
�
g

∂2y
�
∂t2

γS
�
g

∂4y
�
∂x4
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where EI is a constant. For a static loading F(x) = 2F/l sin nπ/2 sin nπx/l correspon-
ding to the nth term of the Fourier series in Eq. (7.45), Eq. (7.48) becomes ysn″″ =
2F/EIl sin nπ/2 sin nπx/l. The solution of this equation is

ysn = � �4
sin sin 

Using the relation ωn
2 = n4π4EIg/Sγ l4, this can be written

ysn = sin sin 

Thus, the nth term of Eq. (7.47) can be written

yn = ysn sin ωt

Thus, the amplitude of the forced vibration is equal to the static deflection under
the Fourier component of the load multiplied by the “amplification factor” 1/[1 −
(ω/ωn)2]. This is the same as the relation that exists, for a system having a single
degree-of-freedom, between the static deflection under a load F and the amplitude
under a fluctuating load F sin ωt. Therefore, insofar as each mode alone is con-
cerned, the beam behaves as a system having a single degree-of-freedom. If the
beam is subjected to a force fluctuating at a single frequency, the amplification fac-
tor is small except when the frequency of the forcing force is near the natural fre-
quency of a mode. For all even values of n, sin (nπ/2) = 0; thus, the even-numbered
modes are not excited by a force acting at the center, which is a node for those
modes. The distribution of the static load that causes the same pattern of deflec-
tion as the beam assumes during each mode of vibration has the same form as the
deflection of the beam. This result applies to other beams since a comparison of
Eqs. (7.15) and (7.48) shows that if a static load F = (ωn

2γS/g)y is applied to any
beam, it will cause the same deflection as occurs during the free vibration in the
nth mode.

The results for the simply supported beam are typical of those which are
obtained for all systems having distributed mass and elasticity. Vibration of such a
system at resonance is excited by a force which fluctuates at the natural frequency of
a mode, since nearly any such force has a component of the shape necessary to excite
the vibration. Even if the force acts at a nodal point of the mode, vibration may be
excited because of coupling between the modes.

METHOD OF VIRTUAL WORK

Another method of analyzing forced vibration is by the use of the theorem of virtual
work and D’Alembert’s principle. The theorem of virtual work states that when any
elastic body is in equilibrium, the total work done by all external forces during any
virtual displacement equals the increase in the elastic energy stored in the body. A
virtual displacement is an arbitrary small displacement that is compatible with the
geometry of the body and which satisfies the boundary conditions.

In applying the principle of work to forced vibration of elastic bodies, the prob-
lem is made into one of equilibrium by the application of D’Alembert’s principle.
This permits a problem in dynamics to be considered as one of statics by adding to
the equation of static equilibrium an “inertia force” which, for each part of the body,

1
��
1 − (ω/ωn)2

nπ
�
2

nπx
�

l
2Fg
�
ωn

2Sγl

nπx
�

l
nπ
�
2

l
�
nπ

2F
�
EIl

VIBRATION OF SYSTEMS HAVING DISTRIBUTED MASS AND ELASTICITY 7.45

8434_Harris_07_b.qxd  09/20/2001  11:24 AM  Page 7.45



is equal to the product of the mass and the acceleration. Using this principle, the the-
orem of virtual work can be expressed in the following equation:

∆V = ∆(FI + FE) (7.49)

in which V is the elastic strain energy in the body, FI is the inertia force, FE is the
external disturbing force, and ∆ indicates the change of the quantity when the body
undergoes a virtual displacement. The various quantities can be found separately.

For example, consider the motion of a uniform beam having hinged ends with a
sinusoidally varying force acting at the center, and compare the result with the solu-
tion obtained by the classical method. All possible motions of any beam can be rep-
resented by a series of the form

y = q1X1 + q2X2 + q3X3 + ⋅⋅⋅ = 	
n = ∞

n = 1
qnXn (7.50)

in which the X’s are functions representing displacements in the normal modes of
vibration and the q’s are coefficients which are functions of time.The determination
of the values of qn is the problem to be solved. For a beam having hinged ends, Eq.
(7.50) becomes

y = 	
n = ∞

n = 1
qn sin (7.51)

This is evident by using the values of κnl from Table 7.3 in Eq. (7.16). A virtual dis-
placement, being any arbitrary small displacement, can be assumed to be

∆y = ∆qmXm = ∆qm sin 

The elastic strain energy of bending of the beam is

V = �l

0
� �2

dx = 	
n = ∞

n = 1
qn

2 �l

0
� �sin ��2

dx

= 	
n = ∞

n = 1
qn

2 � �4 �l

0
�sin �2

dx = 	
n = ∞

n = 1
qn

2 � �4

For the virtual displacement, the change of elastic energy is

∆V = ∆qm = (nπ)4qm∆qm = (κnl)4qm∆qm

The value of the inertia force at each section is

FI = − ÿ = − 	
n = ∞

n = 1
sin 

The work done by this force during the virtual displacement ∆y is

∆FI = FI ∆y = − 	
n = ∞

n = 1
∆qm �l

0
sin sin dx

= − ∆qm
d 2qm�
dt 2

γSl
�
2g

mπx
�

l
nπx
�

l
d 2qn�
dt2

γS
�
g

nπx
�

l
d 2qn�
dt 2

γS
�
g

γS
�
g

EI
�
2l 3

EI
�
2l 3

∂V
�
∂qm

l
�
2

nπ
�

l
EI
�
2

nπx
�

l
nπ
�

l
EI
�
2

nπx
�

l
∂2

�
∂x2

EI
�
2

∂2y
�
∂x2

EI
�
2

mπx
�

l

nπx
�

l
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The orthogonality relation of Eq. (7.1) is used here, making the integral vanish when
n = m. For a disturbing force FE, the work done during the virtual displacement is

∆FE = FE ∆y = F(Xm)x = c ∆qm

in which (Xm)x = c is the value of Xm at the point of application of the load. Substitut-
ing the terms into Eq. (7.49),

q̈m + (κml)4qm = F(Xm)x = c

Rearranging terms and letting EI/Sγ = a2,

q̈m + κm
4a2qm = F(Xm)x = c (7.52)

If FE is a force which varies sinusoidally with time at any point x = c,

F (Xm)x = c = F̄ sin sin ωt

and Eq. (7.52) becomes

q̈m + κm
4a2qm = sin sin ωt

The solution of this equation is

qm = Am sin κm
2at + Bm cos κm

2at + sin ωt

Since κm
2a = ωm,

qm = Am sin ωmt + Bm cos ωmt + sin ωt

when the force acts at the center c/l = 1⁄2. Substituting the corresponding values of q
in Eq. (7.51), the solution is identical to Eq. (7.46), which was obtained by the classi-
cal method.

VIBRATION RESULTING FROM MOTION OF SUPPORT

When the supports of an elastic body are
vibrated by some external force, forced
vibration may be induced in the body.48

For example, consider the motion that
results in a uniform beam, Fig. 7.14, when
the supports are moved through a sinu-
soidally varying displacement (y)x = 0, l =
Y0 sin ωt. Although Eq. (7.13) was devel-
oped for the free vibration of beams, it is
applicable to the present problem
because there is no force acting on any

section of the beam except the elastic force associated with the bending of the beam.
If a solution of the form y = X(x) sin ωt is assumed and substituted into Eq. (7.13):

sin (mπc/l)
��

ωm
2 − ω2

2F̄g
�
γSl

sin (mπc/l)
��
κm

4a2 − ω2

2F̄g
�
γSl

mπc
�

l
2gF̄
�
γSl

mπc
�

l

2g
�
γSl

EI
�
2l 3

γSl
�
2g
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FIGURE 7.14 Simply supported beam under-
going sinusoidal motion induced by sinusoidal
motion of the supports.
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X″″ = X (7.53)

This equation is the same as Eq. (7.15) except that the natural frequency ωn
2 is

replaced by the forcing frequency ω2. The solution of Eq. (7.53) is the same except
that κ is replaced by κ′ = (ω2γS/EIg)1/4:

X = A1 sin κ′x + A2 cos κ′x + A3 sinh κ′x + A4 cosh κ′x (7.54)

The solution of the problem is completed by finding the constants, which are deter-
mined by the boundary conditions. Certain boundary conditions are associated with
the supports of the beam and are the same as occur in the solution of the problem of
free vibration. Additional conditions are supplied by the displacement through
which the supports are forced. For example, if the supports of a beam having hinged
ends are moved sinusoidally, the boundary conditions are: at x = 0 and x = l, X″ = 0,
since the moment exerted by a hinged end is zero, and X = Y0, since the amplitude of
vibration is prescribed at each end. By the use of these boundary conditions, Eq.
(7.54) becomes

X = �tan sin κ′x + cos κ′x − tanh sinh κ′x + cosh κ′x� (7.55)

The motion is defined by y = X sin ωt. For all values of κ′, each of the coefficients
except the first in Eq. (7.55) is finite. The tangent term becomes infinite if κ′l = nπ,
for odd values of n. The condition for the amplitude to become infinite is ω = ωn

because κ′/κ = ω2/ωn
2 and, for natural vibration of a beam with hinged ends, κnl = nπ.

Thus, if the supports of an elastic body are vibrated at a frequency close to a natural
frequency of the system, vibration at resonance occurs.

DAMPING

The effect of damping on forced vibration can be discussed only qualitatively.
Damping usually decreases the amplitude of vibration, as it does in systems having
a single degree-of-freedom. In some systems, it may cause coupling between modes,
so that motion in a mode of vibration that normally would not be excited by a cer-
tain disturbing force may be induced.
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CHAPTER 8
TRANSIENT RESPONSE TO

STEP AND PULSE 
FUNCTIONS*

Robert S. Ayre

INTRODUCTION

In analyses involving shock and transient vibration, it is essential in most instances
to begin with the time-history of a quantity that describes a motion, usually dis-
placement, velocity, or acceleration. The method of reducing the time-history
depends upon the purpose for which the reduced data will be used. When the pur-
pose is to compare shock motions, to design equipment to withstand shock, or to
formulate a laboratory test as means to simulate an environmental condition, the
response spectrum is found to be a useful concept. This concept in data reduction is
discussed in Chap. 23, and its application to environmental conditions is discussed in
Chap. 24.

This chapter deals briefly with methods of analysis for obtaining the response
spectrum from the time-history, and includes in graphical form certain significant
spectra for various regular step- and pulse-type excitations.The usual concept of the
response spectrum is based upon the single degree-of-freedom system, usually con-
sidered linear and undamped, although useful information sometimes can be
obtained by introducing nonlinearity or damping.The single degree-of-freedom sys-
tem is considered to be subjected to the shock or transient vibration, and its
response determined.

The response spectrum is a graphical presentation of a selected quantity in the
response taken with reference to a quantity in the excitation. It is plotted as a func-
tion of a dimensionless parameter that includes the natural period of the responding
system and a significant period of the excitation. The excitation may be defined in
terms of various physical quantities, and the response spectrum likewise may depict
various characteristics of the response.

8.1

* Chapter 8 is based on Chaps. 3 and 4 of “Engineering Vibrations,” by L. S. Jacobsen and R. S. Ayre,
McGraw-Hill Book Company, Inc., 1958.
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LINEAR, UNDAMPED, SINGLE 

DEGREE-OF-FREEDOM SYSTEMS

DIFFERENTIAL EQUATION OF MOTION

It is assumed that the system is linear and undamped. The excitation, which is a
known function of time alone, may be a force function F(t) acting directly on the
mass of the system (Fig. 8.1A) or it may be a ground motion, i.e., foundation or base
motion, acting on the spring anchorage. The ground motion may be expressed as a
ground displacement function u(t) (Fig. 8.1B). In many cases, however, it is more
useful to express it as a ground acceleration function ü(t) (Fig. 8.1C).

The differential equation of motion, written in terms of each of the types of exci-
tation, is given in Eqs. (8.1a), (8.1b), and (8.1c).

mẍ = −kx + F(t) or + x = (8.1a)

mẍ = −k[x − u(t)] or + x = u(t) (8.1b)

m[δ̈x + ü(t)] = −kδx or + δx = − (8.1c)

where x is the displacement (absolute
displacement) of the mass relative to a
fixed reference and δx is the displace-
ment relative to a moving anchorage or
ground. These displacements are related
to the ground displacement by x = u + δx.
Similarly, the accelerations are related
by ẍ = ü + δ̈x.

Furthermore, if Eq. (8.1b) is differen-
tiated twice with respect to time, a dif-
ferential equation is obtained in which
ground acceleration ü(t) is the excitation
and the absolute acceleration ẍ of the
mass m is the variable. The equation is

+ ẍ = ü(t) (8.1d)

If Eq. (8.1d) is treated as a second-order
equation in ẍ as the dependent variable,
it is of the same general form as Eqs.
(8.1a), (8.1b), and (8.1c).

Occasionally, the excitation is known
in terms of ground velocity u̇(t). Differ-
entiating Eq. (8.1b) once with respect to
time, the following second-order equa-
tion in ẋ is obtained:

+ ẋ = u̇(t) (8.1e)
d 2ẋ
�
dt 2

m
�
k

d 2ẍ
�
dt 2

m
�
k

mü(t)
�

k
mδ̈x�

k

mẍ
�

k

F(t)
�

k
mẍ
�

k
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FIGURE 8.1 Simple oscillator acted upon by
known excitation functions of time: (A) force
F(t), (B) ground displacement u(t), (C) ground
acceleration ü(t).

8434_Harris_08_b.qxd  09/20/2001  11:19 AM  Page 8.2



The analogy represented by Eqs. (8.1b), (8.1d), and (8.1e) may be extended fur-
ther since it is generally possible to differentiate Eq. (8.1b) any number of times n:

� � + � � = � � (t) (8.1f )

This is of the same general form as the preceding equations if it is considered to be
a second-order equation in (dnx/dtn) as the response variable, with (dnu/dtn) (t), a
known function of time, as the excitation.

ALTERNATE FORMS OF THE EXCITATION AND OF THE RESPONSE

The foregoing equations are alike, mathematically, and a solution in terms of one of
them may be applied to any of the others by making simple substitutions.Therefore,
the equations may be expressed in the single general form:

ν̈ + ν = ξ(t) (8.2)

where ν and ξ are the response and the excitation, respectively, at time t.
A general notation (ν and ξ) is desirable in the presentation of response func-

tions and response spectra for general use. However, in the discussion of examples
of solution, it sometimes is preferable to use more specific notations. Both types of
notation are used in this chapter. For ready reference, the alternate forms of the
excitation and the response are given in Table 8.1 where ωn

2 = k/m.

METHODS OF SOLUTION OF THE DIFFERENTIAL EQUATION

A brief review of four methods of solution is given in the following sections.

Classical Solution. The complete solution of the linear differential equation of
motion consists of the sum of the particular integral x1 and the complementary func-
tion x2, that is, x = x1 + x2. Since the differential equation is of second order, two con-

m
�
k

dnu
�
dtn

dnx
�
dtn

dnx
�
dtn

d 2

�
dt 2

m
�
k
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TABLE 8.1 Alternate Forms of Excitation and Response in Eq. (8.2)

Excitation ξ(t) Response ν

Force Absolute displacement x

Ground displacement u(t) Absolute displacement x

Ground acceleration Relative displacement δx

Ground acceleration ü(t) Absolute acceleration ẍ

Ground velocity u̇(t) Absolute velocity ẋ

nth derivative of (t) nth derivative of 
ground displacement absolute displacement

dnx
�
dtn

dnu
�
dtn

−ü(t)
�

ωn
2

F(t)
�

k
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stants of integration are involved. They appear in the complementary function and
are evaluated from a knowledge of the initial conditions.

Example 8.1: Versed-sine Force Pulse. In this case the differential equation of
motion, applicable for the duration of the pulse, is

+ x = �1 − cos � [0 ≤ t ≤ τ] (8.3a)

where, in terms of the general notation, the excitation function ξ(t) is

ξ(t) � = �1 − cos �
and the response ν is displacement x. The maximum value of the pulse excitation
force is Fp.

The particular integral (particular solution) for Eq. (8.3a) is of the form

x1 = M + N cos (8.3b)

By substitution of the particular solution into the differential equation, the required
values of the coefficients M and N are found.

The complementary function is

x2 = A cos ωnt + B sin ωnt (8.3c)

where A and B are the constants of integration. Combining x2 and the explicit form
of x1 gives the complete solution:

x = x1 + x2 = �1 − + cos � + A cos ωnt + B sin ωnt (8.3d)

If it is assumed that the system is initially at rest, x = 0 and ẋ = 0 at t = 0, and the
constants of integration are

A = − and B = 0 (8.3e)

The complete solution takes the following form:

ν � x = �1 − + cos − cos ωnt� (8.3f )

If other starting conditions had been assumed, A and B would have been differ-
ent from the values given by Eqs. (8.3e). It may be shown that if the starting condi-
tions are general, namely, x = x0 and ẋ = x0 at t = 0, it is necessary to superimpose on
the complete solution already found, Eq. (8.3f), only the following additional terms:

x0 cos ωnt + sin ωnt (8.3g)

For values of time equal to or greater than τ, the differential equation is

mẍ + kx = 0 [τ ≤ t] (8.4a)

and the complete solution is given by the complementary function alone. However,
the constants of integration must be redetermined from the known conditions of the
system at time t = τ. The solution is

ẋ0�
ωn

2πt
�

τ
τ2

�
T 2

τ2

�
T 2

Fp /2k
�
1 − τ2/T 2

Fp /2k
�
1 − τ2/T 2

2πt
�

τ
τ2

�
T 2

τ2

�
T 2

Fp /2k
�
1 − τ2/T 2

2πt
�

τ

2πt
�

τ
1
�
2

Fp
�
k

F(t)
�

k

2πt
�

τ
1
�
2

Fp
�
k

mẍ
�

k

8.4 CHAPTER EIGHT

8434_Harris_08_b.qxd  09/20/2001  11:19 AM  Page 8.4



ν � x = sin ωn �t − � [τ ≤ t] (8.4b)

The additional terms given by expressions (8.3g) may be superimposed on this solu-
tion if the conditions at time t = 0 are general.

Duhamel’s Integral. The use of Du-
hamel’s integral (convolution integral or
superposition integral) is a well-known
approach to the solution of transient
vibration problems in linear systems. Its
development7 is based on the superposi-
tion of the responses of the system to a
sequence of impulses.

A general excitation function is
shown in Fig. 8.2, where F(t) is a known
force function of time, the variable of
integration is tv between the limits of
integration 0 and t, and the elemental

impulse is F(tv) dtv. It may be shown that the complete solution of the differential
equation is

x = �x0 − �t

0
F(tv) sin ωntv dtv� cos ωnt + � + �t

0
F(tv) cos ωntv dtv� sin ωnt

(8.5)

where x0 and ẋ0 are the initial conditions of the system at zero time.
Example 8.2: Half-cycle Sine, Ground Displacement Pulse. Consider the fol-

lowing excitation:

ξ(t) � u(t) = �up sin [0 ≤ t ≤ τ]

0 [τ ≤ t]

The maximum value of the excitation displacement is up. Assume that the system is
initially at rest, so that x0 = ẋ0 = 0. Expressing the excitation function in terms of the
variable of integration tv, Eq. (8.5) may be rewritten for this particular case in the fol-
lowing form:

x = � − cos ωnt �t

0
sin sin ωntv dtv + sin ωnt �t

0
sin cos ωntv dtv�

(8.6a)

Equation (8.6a) may be reduced, by evaluation of the integrals, to

ν � x = �sin − sin ωnt� [0 ≤ t ≤ τ] (8.6b)

where T = 2π/ωn is the natural period of the responding system.
For the second era of time, where τ ≤ t, it is convenient to choose a new time vari-

able t′ = t − τ. Noting that u(t) = 0 for τ ≤ t, and that for continuity in the system
response the initial conditions for the second era must equal the closing conditions
for the first era, it is found from Eq. (8.5) that the response for the second era is

T
�
2τ

πt
�τ

up
��
1 − T2/4τ2

πtv
�τ

πtv
�τ

kup
�
mωn

πt
�
τ

1
�
mωn

ẍ0�
ωn

1
�
mωn

τ
�
2

sin (πτ/T)
��
1 − τ2/T 2

Fp
�
k
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FIGURE 8.2 General excitation and the ele-
mental impulse.
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x = xτ cos ωnt′ + sin ωnt′ (8.7a)

where xτ and ẋτ are the displacement and velocity of the system at time t = τ and
hence at t′ = 0. Equation (8.7a) may be rewritten in the following form:

ν � x = up sin ωn �t − � [τ ≤ t] (8.7b)

Phase-Plane Graphical Method. Several numerical and graphical methods,18, 23 all
related in general but differing considerably in the details of procedure, are available
for the solution of linear transient vibration problems. Of these methods, the phase-

plane graphical method is one of the
most useful. The procedure is basically
very simple, it gives a clear physical pic-
ture of the response of the system, and it
may be applied readily to some classes of
nonlinear systems.3, 5, 6, 8, 13, 15, 21, 22

In Fig. 8.3 a general excitation in
terms of ground displacement is repre-
sented, approximately, by a sequence of
finite steps. The ith step has the total
height ui, where ui is constant for the
duration of the step. The differential
equation of motion and its complete
solution, applying for the duration of the
step, are

+ x = ui [ti − 1 ≤ t ≤ ti] (8.8a)

x − ui = (xi − 1 − ui) cos ωn(t − ti − 1) + sin ωn(t − ti − 1) (8.8b)

where xi − 1 and ẋi − 1 are the displacement and velocity of the system at time ti − 1;
consequently, they are the initial conditions for the ith step. The system velocity
(divided by ωn) during the ith step is

= − (xi − 1 − ui) sin ωn(t − ti − 1) + cos ωn(t − ti − 1) (8.8c)

Squaring Eqs. (8.8b) and (8.8c) and adding them,

� �2
+ (x − ui)2 = � �2

+ (xi − 1 − ui)2 (8.8d)

This is the equation of a circle in a rectangular system of coordinates ẋ/ωn, x. The
center is at 0, ui; and the radius is

Ri = �� �2
+ (xi − 1 − ui)2�1/2

(8.8e)

The solution for Eq. (8.8a) for the ith step may be shown, as in Fig. 8.4, to be the
arc of the circle of radius Ri and center 0, ui, subtended by the angle ωn(ti − ti − 1) and
starting at the point ẋi − 1/ωn, xi − 1.Time is positive in the counterclockwise direction.

ẋi − 1�
ωn

ẋi − 1�
ωn

ẋ
�
ωn

ẋi − 1�
ωn

ẋ
�
ωn

ẋi − 1�
ωn

mẍ
�

k

τ
�
2

(T/τ) cos (πτ/T)
��

(T 2/4τ2) − 1

ẋτ�
ωn
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FIGURE 8.3 General excitation approxi-
mated by a sequence of finite rectangular steps.
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Example 8.3: Application to a
General Pulse Excitation. Figure 8.5
shows an application of the method for
the general excitation u(t) represented
by seven steps in the time-displacement
plane. Upon choice of the step heights ui

and durations (ti − ti − 1), the arc-center
locations can be projected onto the X
axis in the phase-plane and the arc
angles ωn(ti − ti − 1) can be computed.The
graphical construction of the sequence
of circular arcs, the phase trajectory, is
then carried out, using the system condi-
tions at zero time (in this example, 0,0)
as the starting point.

Projection of the system displace-
ments from the phase-plane into the
time-displacement plane at once deter-
mines the time-displacement response

curve. The time-velocity response can also be determined by projection as shown.
The velocities and displacements at particular instants of time can be found directly
from the phase trajectory coordinates without the necessity for drawing the time-
response curves. Furthermore, the times of occurrence and the magnitudes of all the
maxima also can be obtained directly from the phase trajectory.

Good accuracy is obtainable by using reasonable care in the graphical construc-
tion and in the choice of the steps representing the excitation. Usually, the time inter-
vals should not be longer than about one-fourth the natural period of the system.22

The Laplace Transformation. The Laplace transformation provides a powerful
tool for the solution of linear differential equations. The following discussion of the
technique of its application is limited to the differential equation of the type apply-
ing to the undamped linear oscillator. Application to the linear oscillator with vis-
cous damping is illustrated in a later part of this chapter.

Definitions. The Laplace transform F(s) of a known function f(t), where t > 0, is
defined by

F(s) = �∞

0
e−stf(t)dt (8.9a)

where s is a complex variable. The transformation is abbreviated as

F(s) = L[f(t)] (8.9b)

The limitations on the function f(t) are not discussed here. For the conditions
for existence of L[f(t)], for complete accounts of the technique of application, and
for extensive tables of function-transform pairs, the references should be con-
sulted.16, 17

General Steps in Solution of the Differential Equation. In the solution of a
differential equation by Laplace transformation, the first step is to transform the dif-
ferential equation, in the variable t, into an algebraic equation in the complex vari-
able s. Then, the algebraic equation is solved, and the solution of the differential
equation is determined by an inverse transformation of the solution of the algebraic
equation. The process of inverse Laplace transformation is symbolized by

TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.7

FIGURE 8.4 Graphical representation in the
phase-plane of the solution for the ith step.
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L
−1[F(s)] = f(t) (8.10)

Tables of Function-Transform Pairs. The processes symbolized by Eqs. (8.9b)
and (8.10) are facilitated by the use of tables of function-transform pairs.Table 8.2 is
a brief example. Transforms for general operations, such as differentiation, are
included as well as transforms of explicit functions.

In general, the transforms of the explicit functions can be obtained by carrying
out the integration indicated by the definition of the Laplace transformation. For
example:

For f(t) = 1:

F(s) = �∞

0
e−stdt = − e−st�

∞

0
= 1

�
s

1
�
s

8.8 CHAPTER EIGHT

FIGURE 8.5 Example of phase-plane graphical solution.2
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TABLE 8.2 Pairs of Functions f(t) and Laplace Transforms F(s)

8.9
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Transformation of the Differential Equation. The differential equation for the
undamped linear oscillator is given in general form by

ν̈ + ν = ξ(t) (8.11)

Applying the operational transforms (items 1 and 3, Table 8.2), Eq. (8.11) is trans-
formed to

s2Fr(s) − sf(0) − f′(0) + Fr(s) = Fe(s) (8.12a)

where Fr(s) = the transform of the unknown response ν(t),
sometimes called the response transform

s2Fr(s) − sf(0) − f′(0) = the transform of the second derivative of ν(t)
f(0) and f′(0) = the known initial values of ν and ν̇, i.e., ν0 and ν̇0

Fe(s) = the transform of the known excitation function ξ(t),
written Fe(s) = L[ξ(t)], sometimes called the driving 
transform

It should be noted that the initial conditions of the system are explicit in Eq. (8.12a).
The Subsidiary Equation. Solving Eq. (8.12a) for Fr(s),

Fr(s) = (8.12b)

This is known as the subsidiary equation of the differential equation. The first two
terms of the transform derive from the initial conditions of the system, and the third
term derives from the excitation.

Inverse Transformation. In order to determine the response function ν(t),
which is the solution of the differential equation, an inverse transformation is per-
formed on the subsidiary equation. The entire operation, applied explicitly to the
solution of Eq. (8.11), may be abbreviated as follows:

ν(t) = L
−1[Fr(s)] = L

−1� � (8.13)

Example 8.4: Rectangular Step Excitation. In this case ξ(t) = ξc for 0 ≤ t (Fig.
8.6A). The Laplace transform Fe(s) of the excitation is, from item 7 of Table 8.2,

L[ξc] = ξc L[1] = ξc

Assume that the starting conditions are general, that is, ν = ν0 and ν̇ = ν̇0 at t = 0. Sub-
stituting the transform and the starting conditions into Eq. (8.13), the following is
obtained:

ν(t) = L
−1 � � (8.14a)

The foregoing may be rewritten as three separate inverse transforms:

ν(t) = ν0L
−1 � � + ν̇0 L

−1 � � + ξcωn
2
L

−1 � � (8.14b)

The inverse transforms in Eq. (8.14b) are evaluated by use of items 19, 12 and 13,
respectively, in Table 8.2. Thus, the time-response function is given explicitly by

1
��
s(s2 + ωn

2)
1

�
s2 + ωn

2

s
�
s2 + ωn

2

sν0 + ν̇0 + ω2
nξc(1/s)

���
s2 + ω2

n

1
�
s

sν0 + ν̇0 + ωn
2
L[ξ(t)]

���
s2 + ωn

2

sf(0) + f ′(0) + ωn
2Fe(s)

���
s2 + ωn

2

1
�
ω2

n

1
�
ω2

n

1
�
ω2

n

1
�
ω2

n
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ν(t) = ν0 cos ωnt + sin ωnt + ξc(1 − cos ωnt) (8.14c)

The first two terms are the same as the starting condition response terms given by
expressions (8.20a). The third term agrees with the response function shown by Eq.
(8.22), derived for the case of a start from rest.

Example 8.5: Rectangular Pulse Excitation. The excitation function, Fig.
8.6B, is given by

ξ(t) = �ξp for 0 ≤ t ≤ τ
0 for τ ≤ t

For simplicity, assume a start from rest, i.e., ν0 = 0 and ν̇0 = 0 when t = 0.
During the first time interval, 0 ≤ t ≤ τ, the response function is of the same form as

Eq. (8.14c) except that, with the assumed start from rest, the first two terms are zero.
During the second interval, τ ≤ t, the transform of the excitation is obtained by

applying the delayed-function transform (item 6, Table 8.2) and the transform for
the rectangular step function (item 7) with the following result:

ν̇0�
ωn

TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.11

FIGURE 8.6 Excitation functions in examples of use of the
Laplace transform: (A) rectangular step, (B) rectangular pulse, (C)
step with constant-slope front, (D) sine pulse, and (E) step with
exponential asymptotic rise.
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Fe(s) = L[ξ(t)] = ξp � − �
This is the transform of an excitation consisting of a rectangular step of height − ξp

starting at time t = τ, superimposed on the rectangular step of height + ξp starting at
time t = 0.

Substituting for L[ξ(t)] in Eq. (8.13),

ν(t) = ξpωn
2 �L

−1 � � − L
−1 � �	 (8.15a)

The first inverse transform in Eq. (8.15a) is the same as the third one in Eq. (8.14b)
and is evaluated by use of item 13 in Table 8.2. However, the second inverse trans-
form requires the use of items 6 and 13. The function-transform pair given by item 6
indicates that when t < b the inverse transform in question is zero, and when t > b the
inverse transform is evaluated by replacing t by t − b (in this particular case, by t − τ).
The result is as follows:

ν(t) = ξpωn
2 � (1 − cos ωnt) − [1 − cos ωn(t − τ)]	

= 2ξp sin sin ωn �t − � [τ ≤ t] (8.15b)

Theorem on the Transform of Functions Shifted in the Original (t) Plane. In
Example 8.5, use is made of the theorem on the transform of functions shifted in 
the original plane. The theorem (item 6 in Table 8.2) is known variously as the 
second shifting theorem, the theorem on the transform of delayed functions, and 
the time-displacement theorem. In determining the transform of the excitation, the
theorem provides for shifting, i.e., displacing the excitation or a component of the
excitation in the positive direction along the time axis.This suggests the term delayed
function. Examples of the shifting of component parts of the excitation appear in
Fig. 8.6B, 8.6C, and 8.6D. Use of the theorem also is necessary in determining, by
means of inverse transformation, the response following the delay in the excitation.
Further illustration of the use of the theorem is shown by the next two examples.

Example 8.6: Step Function with Constant-slope Front. The excitation func-
tion (Fig. 8.6C) is expressed as follows:

ξ(t) = �ξc [0 ≤ t ≤ τ]

ξc [τ ≤ t]

Assume that ν0 = 0 and ν̇0 = 0.
The driving transforms for the first and second time intervals are

L[ξ(t)] = �ξc [0 ≤ t ≤ τ]

ξc � − � [τ ≤ t]

The transform for the second interval is the transform of a negative constant slope
excitation, − ξc(t − τ)/τ, starting at t = τ, superimposed on the transform for the posi-
tive constant slope excitation, + ξct/τ, starting at t = 0.

e−sτ

�
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1
�
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1
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1
�
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1
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�
τ
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�
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�
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ωn

2

1
�
ωn

2

e−sτ
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Substituting the transforms and starting conditions into Eq. (8.13), the responses
for the two time eras, in terms of the transformations, are

ν(t) = �ξc L
−1 � � [0 ≤ t ≤ τ]

(8.16a)

ξc �L
−1 � � − L

−1 � �	 [τ ≤ t]

Evaluation of the inverse transforms by reference to Table 8.2 [item 14 for the first
of Eqs. (8.16a), items 6 and 14 for the second] leads to the following:

ν(t) = �ξc (ωnt − sin ωnt) [0 ≤ t ≤ τ]

ξc � (ωnt − sin ωnt) − [ωn(t − τ) − sin ωn(t − τ)]	 [τ ≤ t]

Simplifying,

ν(t) = �ξc (ωnt − sin ωnt) [0 ≤ t ≤ τ]

ξc�1 + sin cos ωn �t − �� [τ ≤ t]

(8.16b)

Example 8.7: Half-cycle Sine Pulse. The excitation function (Fig. 8.6D) is

ξ(t) = �ξp sin [0 ≤ t ≤ τ]

0 [τ ≤ t]

Let the system start from rest. The driving transforms are

L[ξ(t)] = �ξp [0 ≤ t ≤ τ]

ξp � + � [τ ≤ t]

The driving transform for the second interval is the transform of a sine wave of pos-
itive amplitude ξp and frequency π/τ starting at time t = τ, superimposed on the trans-
form of a sine wave of the same amplitude and frequency starting at time t = 0.

By substitution of the driving transforms and the starting conditions into Eq.
(8.13), the following are found:

ν(t) = �ξp ωn
2
L

−1 � ⋅ � [0 ≤ t ≤ τ]
(8.17a)

ξp ωn
2 �L

−1 � ⋅ � + L
−1 � ⋅ �	 [τ ≤ t]

1
�
s2 + ωn

2
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�
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1
�
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2

1
�
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π
�
τ

1
�
s2 + ωn

2

1
�
s2 + π2/τ2

π
�
τ

e−sτ

�
s2 + π2/τ2

1
�
s2 + π2/τ2

π
�
τ

1
�
s2 + π2/τ2

π
�
τ

πt
�
τ

τ
�
2

ωnτ�
2

2 
�
ωnτ

1
�
ωnτ

1
�
ωn

3

1
�
ωn

3

ωn
2

�
τ

1
�
ωn

3

ωn
2

�
τ
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��
s2 (s2 + ωn

2)
1

��
s2(s2 + ωn
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ωn

2

�
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1
��
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ωn

2

�
τ
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Determining the inverse transforms from Table 8.2 [item 17 for the first of Eqs.
(8.17a), items 6 and 17 for the second]:

ν(t) =

ξp ωn
2 [0 ≤ t ≤ τ]

ξp ωn
2 �

+ � [τ ≤ t]

Simplifying,

ν(t) =
ξp �sin − sin ωnt� [0 ≤ t ≤ τ]

ξp sin ωn �t − � [τ ≤ t]
(8.17b)

where T = 2π/ωn is the natural period of the responding system. Equations (8.17b)
are equivalent to Eqs. (8.6b) and (8.7b) derived previously by the use of Duhamel’s
integral.

Example 8.8: Exponential Asymptotic Step. The excitation function (Fig.
8.6E) is

ξ(t) = ξf (1 − e−at) [0 ≤ t]

Assume that the system starts from rest. The driving transform is

L[ξ(t)] = ξf � − � = ξf a

It is found by Eq. (8.13) that

ν(t) = ξfaωn
2
L

−1 � � [0 ≤ t] (8.18a)

It frequently happens that the inverse transform is not readily found in an avail-
able table of transforms. Using the above case as an example, the function of s in
Eq. (8.18a) is first expanded in partial fractions; then the inverse transforms are
sought, thus:

= + + + (8.18b)

where j = 
−�1�

κ1 = � �
s = 0

=

κ2 = � �
s = −a

=

κ3 = � �
s = −jωn

= 1
��
−2ωn

2(a − jωn)
1

��
s(s + a) (s − jωn)

1
��
− a(a2 + ωn

2)
1

��
s(s + jωn) (s − jωn)

1
�
aωn

2

1
���
(s + a)(s + jωn) (s − jωn)

κ4�
s − jωn

κ3�
s + jωn

κ2�
s + a

κ1�
s

1
��
s(s + a)(s2 + ωn

2)

1
��
s(s + a)(s2 + ωn

2)

1
�
s(s + a)

1
�
s + a

1
�
s

τ
�
2

(T/τ) cos (πτ/T)
��

(T 2/4τ2) − 1

T
�
2τ

πt
�
τ

1
��
1 − T 2/4τ2

ωn sin [π(t − τ)/τ] − (π/τ) sin ωn (t − τ)
�����

(πωn/τ) (ωn
2 − π2/τ2)

ωn sin (πt/τ) − (π/τ) sin ωnt���
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�
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κ4 = � �
s = +jωn

=

Consequently, Eq. (8.18a) may be rewritten in the following expanded form:

ν(t) = ξf�L
−1� � − L

−1 � � − ⋅

L
−1� � − L

−1 � �	 (8.18c)

The inverse transforms may now be found readily (items 7 and 9, Table 8.2):

ν(t) = ξf �1 − e−at − e−jωnt − e jωnt�
Rewriting,

ν(t) = ξf �1 − �
Making use of the relations, cos z = (1⁄2)(e jz + e−jz) and sin z = −j(1⁄2) (e jz − e−jz), the
equation for ν(t) may be expressed as follows:

ν(t) = ξf �1 − � (8.18d)

Partial Fraction Expansion of F(s). The partial fraction expansion of Fr(s),
illustrated for a particular case in Eq. (8.18b), is a necessary part of the technique of
solution. In general Fr(s), expressed by the subsidiary equation (8.12b) and involved
in the inverse transformation, Eqs. (8.10) and (8.13), is a quotient of two polynomi-
als in s, thus

Fr(s) = (8.19)

The purpose of the expansion of Fr(s) is to divide it into simple parts, the inverse
transforms of which may be determined readily. The general procedure of the
expansion is to factor B(s) and then to rewrite Fr(s) in partial fractions.16, 17

INITIAL CONDITIONS OF THE SYSTEM

In all the solutions for response presented in this chapter, unless otherwise stated, it
is assumed that the initial conditions (ν0 and ν̇0) of the system are both zero. Other
starting conditions may be accounted for merely by superimposing on the time-
response functions given the additional terms

ν0 cos ωnt + sin ωnt (8.20a)

These terms are the complete solution of the homogeneous differential equation,
mν̈/k + ν = 0. They represent the free vibration resulting from the initial conditions.

The two terms in Eq. (8.20a) may be expressed by either one of the following
combined forms:

ν̇0�
ωn

A(s)
�
B(s)

(a/ωn)[sin ωnt + (a/ωn) cos ωnt] + e−at

����
1 + a2/ωn

2

ωn
2e−at + a21⁄2(e jωnt + e−jωnt) − ajωn

1⁄2(e jωnt − e−jωnt)
�����

a2 + ωn
2

a
��
2(a + jωn)

a
��
2(a − jωn)

ωn
2

�
a2 + ωn

2

1
�
s − jωn

a
��
2(a + jωn)

1
�
s + jωn

a
��
2(a − jωn)

1
�
s + a

ωn
2

�
a2 + ωn

2

1
�
s

1
��
−2ωn

2(a + jωn)
1

��
s(s + a) (s + jωn)
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�ν0
2 + � �2

sin (ωnt + θ1) where tan θ1 = (8.20b)

�ν0
2 + � �2 cos (ωnt − θ2) where tan θ2 = (8.20c)

where �ν0
2 + � �2

is the resultant amplitude and θ1 or θ2 is the phase angle of the

initial-condition free vibration.

PRINCIPLE OF SUPERPOSITION

When the system is linear, the principle of superposition may be employed. Any
number of component excitation functions may be superimposed to obtain a pre-
scribed total excitation function, and the corresponding component response func-
tions may be superimposed to arrive at the total response function. However, the
superposition must be carried out on a time basis and with complete regard for alge-
braic sign. The superposition of maximum component responses, disregarding time,
may lead to completely erroneous results. For example, the response functions given
by Eqs. (8.31) to (8.34) are defined completely with regard to time and algebraic
sign, and may be superimposed for any combination of the excitation functions from
which they have been derived.

COMPILATION OF RESPONSE FUNCTIONS AND

RESPONSE SPECTRA; SINGLE DEGREE-OF-

FREEDOM, LINEAR, UNDAMPED SYSTEMS

STEP-TYPE EXCITATION FUNCTIONS

Constant-Force Excitation (Simple Step in Force). The excitation is a constant
force applied to the mass at zero time, ξ(t) � F(t)/k = Fc /k. Substituting this excita-
tion for F(t)/k in Eq. (8.1a) and solving for the absolute displacement x,

x = (1 − cos ωnt) (8.21a)

Constant-Displacement Excitation (Simple Step in Displacement). The exci-
tation is a constant displacement of the ground which occurs at zero time, ξ(t) � u(t)
= uc. Substituting for u(t) in Eq. (8.1b) and solving for the absolute displacement x,

x = uc(1 − cos ωnt) (8.21b)

Constant-Acceleration Excitation (Simple Step in Acceleration). The excita-
tion is an instantaneous change in the ground acceleration at zero time, from zero to
a constant value ü(t) = üc. The excitation is thus

ξ(t) � −müc /k = − üc/ωn
2

Fc�
k

ν̇0�
ωn

ν̇0�
ν0ωn

ν̇0�
ωn

ν0ωn�
ν̇0

ν̇0�
ωn
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Substituting in Eq. (8.1c) and solving for the relative displacement δx,

δx = (1 − cos ωnt) (8.21c)

When the excitation is defined by a function of acceleration ü(t), it is often con-
venient to express the response in terms of the absolute acceleration ẍ of the system.
The force acting on the mass in Fig. 8.1C is −k δx; the acceleration ẍ is thus −k δx/m
or −δxωn

2. Substituting δx = −ẍ/ωn
2 in Eq. (8.21c),

ẍ = üc(1 − cos ωnt) (8.21d)

The same result is obtained by letting ξ(t) � ü(t) = üc in Eq. (8.1d) and solving for ẍ.
Equation (8.21d) is similar to Eq. (8.21b) with acceleration instead of displacement
on both sides of the equation. This analogy generally applies in step- and pulse-type
excitations.

The absolute displacement of the mass can be obtained by integrating Eq. (8.21d)
twice with respect to time, taking as initial conditions x = ẋ = 0 when t = 0,

x = � − (1 − cos ωnt)� (8.21e)

Equation (8.21e) also may be obtained from the relation x = u + δx, noting that in this
case u(t) = üct2/2.

Constant-Velocity Excitation (Simple Step in Velocity). This excitation, when
expressed in terms of ground or spring anchorage motion, is equivalent to prescrib-
ing, at zero time, an instantaneous change in the ground velocity from zero to a con-
stant value u̇c. The excitation is ξ(t) � u(t) = u̇ct, and the solution for the differential
equation of Eq. (8.1b) is

x = (ωnt − sin ωnt) (8.21f )

For the velocity of the mass,

ẋ = u̇c(1 − cos ωnt) (8.21g)

The result of Eq. (8.21g) could have been obtained directly by letting ξ(t) � u̇(t) = u̇c

in Eq. (8.1e) and solving for the velocity response ẋ.

General Step Excitation. A comparison of Eqs. (8.21a), (8.21b), (8.21c), (8.21d),
and (8.21g) with Table 8.1 reveals that the response ν and the excitation ξ are related
in a common manner. This may be expressed as follows:

ν = ξc(1 − cos ωnt) (8.22)

where ξc indicates a constant value of the excitation. The excitation and response of
the system are shown in Fig. 8.7.

Absolute Displacement Response to Velocity-Step and Acceleration-Step
Excitations. The absolute displacement responses to the velocity-step and the
acceleration-step excitations are given by Eqs. (8.21f ) and (8.21e) and are shown in
Figs. 8.8 and 8.9, respectively.The comparative effects of displacement-step, velocity-
step, and acceleration-step excitations, in terms of absolute displacement response,
may be seen by comparing Figs. 8.7 to 8.9.

u̇c�
ωn

ωn
2t2

�
2

üc�
ωn

2

−üc�
ωn
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In the case of the velocity-step excitation, the velocity of the system is always pos-
itive, except at t = 0, T, 2T, . . . , when it is zero. Similarly, an acceleration-step excita-
tion results in system acceleration that is always positive, except at t = 0, T, 2T, . . . ,
when it is zero. The natural period of the responding system is T = 2π/ωn.

Response Maxima. In the response of a system to step or pulse excitation, the
maximum value of the response often is of considerable physical significance. Sev-

eral kinds of maxima are important.
One of these is the residual response
amplitude, which is the amplitude of the
free vibration about the final position of
the excitation as a base. This is desig-
nated νR, and for the response given by
Eq. (8.22):

νR = ±ξc (8.22a)

Another maximum is the maximax
response, which is the greatest of the
maxima of ν attained at any time during
the response. In general, it is of the same
sign as the excitation. For the response
given by Eq. (8.22), the maximax
response νM is

νM = 2ξc (8.22b)

Asymptotic Step. In the exponential function ξ(t) = ξf (1 − e−at), the maximum
value ξf of the excitation is approached asymptotically. This excitation may be
defined alternatively by ξ(t) = (Ff /k)(1 − e−at); uf(1 − e−at); (−üf /ωn

2)(1 − e−at); etc. (see
Table 8.1). Substituting the excitation ξ(t) = ξf(1 − e−at) in Eq. (8.2), the response ν is

ν = ξf �1 − � (8.23a)

The excitation and the response of the system are shown in Fig. 8.10. For large val-
ues of the exponent at, the motion is nearly simple harmonic. The residual ampli-

(a/ωn) [sin ωnt + (a/ωn) cos ωnt] + e−at

����
1 + a2/ωn

2
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FIGURE 8.7 Time response to a simple step
excitation (general notation).

FIGURE 8.8 Time-displacement response to
a constant-velocity excitation (simple step in
velocity).

FIGURE 8.9 Time-displacement response to a
constant-acceleration excitation (simple step in
acceleration).
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tude, relative to the final position of equilibrium, approaches the following value
asymptotically.

νR → ξf (8.23b)

The maximax response νM = νR + ξf is plotted against ωn/a to give the response spec-
trum in Fig. 8.11.

Step-type Functions Having Finite
Rise Time. Many step-type excitation
functions rise to the constant maximum
value ξc of the excitation in a finite
length of time τ, called the rise time.
Three such functions and their first
three time derivatives are shown in Fig.
8.12. The step having a cycloidal front is
the only one of the three that does not
include an infinite third derivative; i.e., if
the step is a ground displacement, it
does not have an infinite rate of change
of ground acceleration (infinite “jerk”).

The excitation functions and the expressions for maximax response are given by
the following equations:

Constant-slope front:

ξ(t) = �ξc [0 ≤ t ≤ τ]

ξc [τ ≤ t]
(8.24a)

= 1 +  sin  (8.24b)

Versed-sine front:

ξ(t) = � �1 − cos � [0 ≤ t ≤ τ]

ξc [τ ≤ t]
(8.25a)

= 1 +  cos  (8.25b)
πτ
�
T

1
��
(4τ2/T 2) − 1

νM�
ξc

πt
�
τ

ξc�
2

πτ
�
T

T
�
πτ

νM�
ξc

t
�
τ

1
��

1� +� ω�n

2�/a�2�
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FIGURE 8.10 Time response to an exponentially asymptotic step for
the particular case ωn/a = 2.

FIGURE 8.11 Spectrum for maximax response
resulting from exponentially asymptotic step
excitation.
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Cycloidal front:

ξ(t) = � � − sin � [0 ≤ t ≤ τ]

ξc [τ ≤ t]
(8.26a)

= 1 +  sin  (8.26b)

where T = 2π/ωn is the natural period of the responding system.
In the case of step-type excitations, the maximax response occurs after the exci-

tation has reached its constant maximum value ξc and is related to the residual
response amplitude by

νM = νR + ξc (8.27)

Figure 8.13 shows the spectra of maximax response versus step rise time τ
expressed relative to the natural period T of the responding system. In Fig. 8.13A the
comparison is based on equal rise times, and in Fig. 8.13B it relates to equal maxi-
mum slopes of the step fronts. The residual response amplitude has values of zero

πτ
�
T

T
��
πτ(1 − τ2/T 2 )

νM�
ξc

2πt
�

τ
2πt
�

τ
ξc�
2π
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FIGURE 8.12 Three step-type excitation functions and their first three time derivatives. (Jacobsen
and Ayre.22)
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(νM/ξc = 1) in all three cases; for example, the step excitation having a constant-slope
front results in zero residual amplitude at τ/T = 1, 2, 3,. . . .

A Family of Exponential Step Functions Having Finite Rise Time. The inset
diagram in Fig. 8.14 shows and Eqs. (8.28a) define a family of step functions having
fronts which rise exponentially to the constant maximum ξc in the rise time τ. Two
limiting cases of vertically fronted steps are included in the family: When a → − ∞,
the vertical front occurs at t = 0; when a → + ∞, the vertical front occurs at t = τ. An

TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.21

FIGURE 8.13 Spectra of maximax response resulting from the step excitation functions of Fig.
8.12. (A) For step functions having equal rise time τ. (B) For step functions having equal maximum
slope ξc/τa. (Jacobsen and Ayre.22)
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intermediate case has a constant-slope front (a = 0). The maximax responses are
given by Eq. (8.28b) and by the response spectra in Fig. 8.14. The values of the max-
imax response are independent of the sign of the parameter a.

ξ(t) = �ξc [0 ≤ t ≤ τ]

ξc [τ ≤ t]
(8.28a)

= 1 +  � �1/2 (8.28b)

where T is the natural period of the responding system.
There are zeroes of residual response amplitude (νM/ξc = 1) at finite values of τ/T

only for the constant-slope front (a = 0). Each of the step functions represented in
Fig. 8.13 results in zeroes of residual response amplitude, and each function has anti-
symmetry with respect to the half-rise time τ/2. This is of interest in the selection of
cam and control-function shapes, where one of the criteria of choice may be mini-
mum residual amplitude of vibration of the driven system.

PULSE-TYPE EXCITATION FUNCTIONS

The Simple Impulse. If the duration τ of the pulse is short relative to the natural
period T of the system, the response of the system may be determined by equating
the impulse J, i.e., the force-time integral, to the momentum mẋJ:

J = �τ

0
F(t) dt = mẋJ (8.29a)

1 − 2ea cos (2πτ/T) + e2a

���
a2 + 4π2τ2/T 2

a
�
1 − ea

νM�
ξc

1 − eat/τ

�
1 − ea
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FIGURE 8.14 Spectra of maximax response for a family of step functions having exponential
fronts, including the vertical fronts a → ± ∞, and the constant-slope front a = 0, as special cases. (Jacob-
sen and Ayre.22)
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Thus, it is found that the impulsive velocity ẋJ is equal to J/m. Consequently, the
velocity-time response is given by ẋ = ẋJ cos ωnt = (J/m) cos ωnt. The displacement-
time response is obtained by integration, assuming a start from rest,

x = xJ sin ωnt

where

xJ = = ωn �τ

0
(8.29b)

The impulse concept, used for determining the response to a short-duration force
pulse, may be generalized in terms of ν and ξ by referring to Table 8.1. The general-
ized impulsive response is

ν = νJ sin ωnt (8.30a)

where the amplitude is

νJ = ωn �τ

0
ξ(t) dt (8.30b)

The impulsive response amplitude νJ and the generalized impulse k �τ

0
ξ(t) dt are

used in comparing the effects of various pulse shapes when the pulse durations are
short.

Symmetrical Pulses. In the following discussion a comparison is made of the
responses caused by single symmetrical pulses of rectangular, half-cycle sine, versed-
sine, and triangular shapes. The excitation functions and the time-response equa-
tions are given by Eqs. (8.31) to (8.34). Note that the residual response amplitude
factors are set in brackets and are identified by the time interval τ ≤ t.

Rectangular:

ξ(t) = ξp

ν = ξp(1 − cos ωnt)
	 [0 ≤ t ≤ τ] (8.31a)

ξ(t) = 0

ν = ξp �2 sin � sin ωn �t − �	 [τ ≤ t] (8.31b)

Half-cycle sine:

ξ(t) = ξp sin 	ν = �sin − sin ωnt�
[0 ≤ t ≤ τ] (8.32a)

ξ(t) = 0

ν = ξp � � sin ωn �t − �	 [τ ≤ t] (8.32b)τ
�
2

(T/τ) cos (πτ/T)
��

(T 2/4τ2) − 1

T
�
2τ

πt
�
τ

ξp
��
1 − T 2/4τ2

πt
�
τ

τ
�
2

πτ
�
T

F(t) dt
�

k
J

�
mωn
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Versed-sine:

ξ(t) = �1 − cos �
ν = �1 − + cos − cos ωnt�

[0 ≤ t ≤ τ] (8.33a)

ξ(t) = 0

ν = ξp � � sin ωn �t − �	 [τ ≤ t] (8.33b)

Triangular:

ξ(t) = 2ξp

�0 ≤ t ≤ � (8.34a)

ν = 2ξp� − �
ξ(t) = 2ξp �1 − �

� ≤ t ≤ τ� (8.34b)

ν = 2ξp �1 − − + �
ξ(t) = 0

ν = ξp �2 � sin ωn(t − τ/2)
[τ ≤ t] (8.34c)

where T is the natural period of the responding system.
Equal Maximum Height of Pulse as Basis of Comparison. Examples of time

response, for six different values of τ/T, are shown separately for the rectangular,
half-cycle sine, and versed-sine pulses in Fig. 8.15, and for the triangular pulse in Fig.
8.22B. The basis of comparison is equal maximum height of excitation pulse ξp.

Residual Response Amplitude and Maximax Response. The spectra of maxi-
max response νM and residual response amplitude νR are given in Fig. 8.16 by (A) for
the rectangular pulse, by (B) for the sine pulse, and by (C) for the versed-sine pulse.
The maximax response may occur either within the duration of the pulse or after the
pulse function has dropped to zero. In the latter case the maximax response is equal
to the residual response amplitude. In general, the maximax response is given by the
residual response amplitude only in the case of short-duration pulses; for example,
see the case τ/T = 1⁄4 in Fig. 8.15 where T is the natural period of the responding sys-
tem. The response spectra for the triangular pulse appear in Fig. 8.24.

Maximax Relative Displacement When the Excitation Is Ground Displace-
ment. When the excitation ξ(t) is given as ground displacement u(t), the response ν
is the absolute displacement x of the mass (Table 8.1). It is of practical importance in
the investigation of the maximax distortion or stress in the elastic element to know
the maximax value of the relative displacement. In this case the relative displace-
ment is a derived quantity obtained by taking the difference between the response
and the excitation, that is, x − u or, in terms of the general notation, ν − ξ.

If the excitation is given as ground acceleration, the response is determined
directly as relative displacement and is designated δx (Table 8.1).To avoid confusion,
relative displacement determined as a derived quantity, as described in the first case

sin2 (πτ/2T)
��

πτ/2T

sin ωn(t − τ/2)
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π
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2π
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τ
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τ
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τ
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FIGURE 8.15 Time response curves resulting from single pulses of (A) rect-
angular, (B) half-cycle sine, and (C) versed-sine shapes.19
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FIGURE 8.16 Spectra of maximax response, residual response amplitude, and maximax rela-
tive response resulting from single pulses of (A) rectangular, (B) half-cycle sine, and (C) versed-
sine shapes.19 The spectra are shown on another basis in Fig. 8.18.
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above, is designated by x − u; relative displacement determined directly as the
response variable (second case above) is designated by δx. The distinction is made
readily in the general notation by use of the symbols ν − ξ and ν, respectively, for rel-
ative response and for response.The maximax values are designated (ν − ξ)M and νM,
respectively.

The maximax relative response may occur either within the duration of the pulse
or during the residual vibration era (τ ≤ t). In the latter case the maximax relative
response is equal to the residual response amplitude. This explains the discontinu-
ities which occur in the spectra of maximax relative response shown in Fig. 8.16 and
elsewhere.

The meaning of the relative response ν − ξ may be clarified further by a study of
the time-response and time-excitation curves shown in Fig. 8.15.

Equal Area of Pulse as Basis of Comparison. In the preceding section on the
comparison of responses resulting from pulse excitation, the pulses are assumed of
equal maximum height. Under some conditions, particularly if the pulse duration is
short relative to the natural period of the system, it may be more useful to make the
comparison on the basis of equal pulse area; i.e., equal impulse (equal time integral).

The areas for the pulses of maximum height ξp and duration τ are as follows: rect-
angle, ξpτ; half-cycle sine, (2/π)ξpτ; versed-sine (1⁄2)ξpτ; triangle, (1⁄2)ξpτ. Using the area
of the triangular pulse as the basis of comparison, and requiring that the areas of the
other pulses be equal to it, it is found that the pulse heights, in terms of the height ξp0

of the reference triangular pulse, must be as follows: rectangle, (1⁄2)ξp0; half-cycle sine,
(π/4)ξp0; versed-sine, ξp0.

Figure 8.17 shows the time responses, for four values of τ/T, redrawn on the basis
of equal pulse area as the criterion for comparison. Note that the response reference
is the constant ξp0, which is the height of the triangular pulse. To show a direct com-
parison, the response curves for the various pulses are superimposed on each other.
For the shortest duration shown, τ/T = 1⁄4, the response curves are nearly alike. Note
that the responses to two different rectangular pulses are shown, one of duration τ
and height ξp0/2, the other of duration τ/2 and height ξp0, both of area ξp0τ/2.

The response spectra, plotted on the basis of equal pulse area, appear in Fig. 8.18.
The residual response spectra are shown altogether in (A), the maximax response
spectra in (B), and the spectra of maximax relative response in (C).

Since the pulse area is ξp0τ/2, the generalized impulse is kξp0τ/2, and the amplitude
of vibration of the system computed on the basis of the generalized impulse theory,
Eq. (8.30b), is given by

νJ = ωnξp0 = π ξp0 (8.35)

A comparison of this straight-line function with the response spectra in Fig. 8.18B
shows that for values of τ/T less than one-fourth the shape of the symmetrical pulse is
of little concern.

Family of Exponential, Symmetrical Pulses. A continuous variation in shape
of pulse may be investigated by means of the family of pulses represented by Eqs.
(8.36a) and shown in the inset diagram in Fig. 8.19A:

ξp �0 ≤ t ≤ �
ξ(t) =

ξp � ≤ t ≤ τ� (8.36a)

0 [τ ≤ t]

τ
�
2

1 − e2a(1 − t/τ)

��
1 − ea

τ
�
2

1 − e2at/τ
�

1 − ea

τ
�
T

τ
�
2
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FIGURE 8.17 Time response to various symmetrical pulses having equal pulse area, for four
different values of τ/T. (Jacobsen and Ayre.22)
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FIGURE 8.18 Response spectra for various symmetrical pulses having equal pulse area: (A) residual
response amplitude, (B) maximax response, and (C) maximax relative response. (Jacobsen and Ayre.22)
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FIGURE 8.19 Spectra for residual response amplitude for a family of exponential, symmetrical
pulses: (A) pulses having equal height; (B) pulses having equal area. (Jacobsen and Ayre.22)
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The family includes the following special cases:

a → − ∞: rectangle of height ξp and duration τ
a = 0: triangle of height ξp and duration τ
a → + ∞: spike of height ξp and having zero area

The residual response amplitude of vibration of the system is

= � � (8.36b)

where T is the natural period of the responding system. Figure 8.19A shows the spec-
tra for residual response amplitude for seven values of the parameter a, compared on
the basis of equal pulse height. The zero-area spike (a → + ∞) results in zero response.

The area of the general pulse of height ξp is

Ap = ξp � � (8.36c)

If a comparison is to be drawn on the basis of equal pulse area using the area ξp0τ/2
of the triangular pulse as the reference, the height ξpa of the general pulse is

ξpa = ξp0 � � (8.36d)

The residual response amplitude spectra, based on the equal-pulse-area criterion,
are shown in Fig. 8.19B. The case a → + ∞ is equivalent to a generalized impulse of
value kξp0τ/2 and results in the straight-line spectrum given by Eq. (8.35).

Symmetrical Pulses Having a Rest Period of Constant Height. In the inset dia-
grams of Fig. 8.20 each pulse consists of a rise, a central rest period or “dwell” having
constant height, and a decay. The expressions for the pulse rise functions may be
obtained from Eqs. (8.24a), (8.25a), and (8.26a) by substituting τ/2 for τ. The pulse
decay functions are available from symmetry.

If the rest period is long enough for the maximax displacement of the system to
be reached during the duration τr of the pulse rest, the maximax may be obtained
from Eqs. (8.24b), (8.25b), and (8.26b) and, consequently, from Fig. 8.13. The substi-
tution of τ/2 for τ is necessary.

Equations (8.37) to (8.39) give the residual response amplitudes. The spectra
computed from these equations are shown in Fig. 8.20.

Constant-slope rise and decay:

= �1 − cos + cos − cos + cos �1/2

(8.37)
Versed-sine rise and decay:

= �1 + cos − cos − cos − cos �1/2

(8.38)
Cycloidal rise and decay:

= �cos − cos � (8.39)
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T
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T
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FIGURE 8.20 Residual response amplitude spectra for three families of symmetrical pulses
having a central rest period of constant height and of duration τr. Note that the abscissa is τ/T,
where τ is the sum of the rise time and the decay time. (A) Constant-slope rise and decay. (B)
Versed-sine rise and decay. (C) Cycloidal rise and decay. (Jacobsen and Ayre.22)
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Note that τ in the abscissa is the sum of the rise time and the decay time and is not
the total duration of the pulse. Attached to each spectrum is a set of values of τr /T
where T is the natural period of the responding system.

When τr /T = 1, 2, 3, . . . , the residual response amplitude is equal to that for the
case τr = 0, and the spectrum starts at the origin. If τr /T = 1⁄2, 3⁄2, 5⁄2, . . . , the spectrum
has the maximum value 2.00 at τ/T = 0. The envelopes of the spectra are of the same
forms as the residual-response-amplitude spectra for the related step functions; see
the spectra for [(νM/ξc) − 1] in Fig. 8.13A. In certain cases, for example, at τ/T = 2, 4,
6, . . . , in Fig. 8.20A, νR/ξp = 0 for all values of τr /T.

Unsymmetrical Pulses. Pulses having only slight asymmetry may often be repre-
sented adequately by symmetrical forms. However, if there is considerable asymme-
try, resulting in appreciable steepening of either the rise or the decay, it is necessary
to introduce a parameter which defines the skewing of the pulse.

The ratio of the rise time to the pulse period is called the skewing constant, σ =
t1/τ. There are three special cases:

σ = 0:The pulse has an instantaneous (vertical) rise, followed by a decay having the
duration τ.This case may be used as an elementary representation of a blast pulse.

σ = 1⁄2: The pulse may be symmetrical.

σ = 1: The pulse has an instantaneous decay, preceded by a rise having the dura-
tion τ.

Triangular Pulse Family. The effect of asymmetry in pulse shape is shown
readily by means of the family of triangular pulses (Fig. 8.21). Equations (8.40) give
the excitation and the time response.

Rise era: 0 ≤ t ≤ t1

TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.33

FIGURE 8.21 General triangular pulse.
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ξ(t) = ξp

ν = ξp � − sin ωnt�
(8.40a)

Decay era: 0 ≤ t′ ≤ t2, where t′ = t − t1

ξ(t) = ξp�1 − �
ν = ξp �1 − + �1 + 4 sin2 �1/2

sin (ωnt′ + θ′)�
(8.40b)

where

tan θ′ =

Residual-vibration era: 0 ≤ t″, where t″ = t − τ = t − t1 − t2

ξ(t) = 0

ν = ξp � � sin2 + sin2 − sin2 ��1/2

sin (ωnt″ + θR)

(8.40c)

where

tan θR =

For the special cases σ = 0, 1⁄2, and 1, the time responses for six values of τ/T are
shown in Fig. 8.22, where T is the natural period of the responding system. Some of
the curves are superposed in Fig. 8.23 for easier comparison. The response spectra
appear in Fig. 8.24. The straight-line spectrum νJ/ξp for the amplitude of response
based on the impulse theory also is shown in Fig. 8.24A. In the two cases of extreme
skewing, σ = 0 and σ = 1, the residual amplitudes are equal and are given by Eq.
(8.41a). For the symmetrical case, σ = 1⁄2, νR is given by Eq. (8.41b).

σ = 0 and 1: = �1 − sin + � �2
sin2 �1/2

(8.41a)

σ = 1⁄2: = 2 (8.41b)

The residual response amplitudes for other cases of skewness may be determined
from the amplitude term in Eqs. (8.40c); they are shown by the response spectra in
Fig. 8.25. The residual response amplitudes resulting from single pulses that are mir-
ror images of each other in time are equal. In general, the phase angles for the resid-
ual vibrations are unequal.

Note that in the cases σ = 0 and σ = 1 for vertical rise and vertical decay, respec-
tively, there are no zeroes of residual amplitude, except for the trivial case, τ/T = 0.

The family of triangular pulses is particularly advantageous for investigating the
effect of varying the skewness, because both criteria of comparison, equal pulse
height and equal pulse area, are satisfied simultaneously.

sin2 (πτ/2T)
��

πτ/2T
νR�
ξp

πτ
�
T

T
�
πτ

2πτ
�

T
T
�
πτ

νR�
ξp

(τ/t2) sin (2πt2/T) − sin (2πτ/T)
����
(τ/t2) cos (2πt2/T) − cos (2πτ/T) − t1/t2

πτ
�
T

πt2�
T

τ
�
t2

πt1�
T

τ
�
t1

T
�
t2

T
�
t1

1
�
π

sin (2πt1/T)
��
cos (2πt1/T) − τ/t2

πt1�
T

τ
�
t1

t2�
t1

T
�
2πt2

t′
�
t2

t′
�
t2

T
�
2πt1

t
�
t1

t
�
t1

8.34 CHAPTER EIGHT

8434_Harris_08_b.qxd  09/20/2001  11:20 AM  Page 8.34



TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.35

FIGURE 8.22 Time response curves resulting from single pulses of three different triangular
shapes: (A) vertical rise (elementary blast pulse), (B) symmetrical, and (C) vertical decay.19
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FIGURE 8.23 Time response curves of Fig. 8.22 superposed, for four values of τ/T. (Jacobsen and
Ayre.22)
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FIGURE 8.24 Response spectra for three types of triangular pulse: (A) Residual response ampli-
tude. (B) Maximax response. (C) Maximax relative response. (Jacobsen and Ayre.22)
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Various Pulses Having Vertical Rise or Vertical Decay. Figure 8.26 shows the
spectra of residual response amplitude plotted on the basis of equal pulse area. The
rectangular pulse is included for comparison. The expressions for residual response
amplitude for the rectangular and the triangular pulses are given by Eqs. (8.31b) and
(8.41a), and for the quarter-cycle sine and the half-cycle versed-sine pulses by Eqs.
(8.42) and (8.43).

Quarter-cycle “sine”:

�
sin for vertical decay

ξ(t) = ξp or [0 ≤ t ≤ τ]

cos for vertical rise

ξ(t) = 0 [τ ≤ t]

= �1 + − sin �1/2
(8.42)

Half-cycle “versed-sine”:

�1 − cos � for vertical decay

ξ(t) = ξp or [0 ≤ t ≤ τ]

�1 + cos � for vertical rise

ξ(t) = 0 [τ ≤ t]

= �1 + �1 − �2
− 2 �1 − � ⋅ cos �1/2

(8.43)
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FIGURE 8.25 Spectra for residual response amplitude for a family of triangular pulses of vary-
ing skewness. (Jacobsen and Ayre.22)
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where T is the natural period of the responding system.
Note again that the residual response amplitudes, caused by single pulses that are

mirror images in time, are equal. Furthermore, it is seen that the unsymmetrical
pulses, having either vertical rise or vertical decay, result in no zeroes of residual
response amplitude, except in the trivial case τ/T = 0.

Exponential Pulses of Finite Duration, Having Vertical Rise or Vertical Decay.
Families of exponential pulses having either a vertical rise or a vertical decay, as
shown in the inset diagrams in Fig. 8.27, can be formed by Eqs. (8.44a) and (8.44b).

Vertical rise with exponential decay:

ξ(t) = �ξp � � [0 ≤ t ≤ τ]

0 [τ ≤ t]
(8.44a)

Exponential rise with vertical decay:

ξ(t) = �ξp � � [0 ≤ t ≤ τ]

0 [τ ≤ t]
(8.44b)

Residual response amplitude for either form of pulse:

= � 	
1/2

(8.44c)

When a = 0, the pulses are triangular with vertical rise or vertical decay. If a →
+ ∞ or − ∞, the pulses approach the shape of a zero-area spike or of a rectangle,
respectively. The spectra for residual response amplitude, plotted on the basis of
equal pulse height, are shown in Fig. 8.27.

[(2πτ/T)(1 − ea)/a + sin (2πτ/T)]2 + [1 − cos (2πτ/T)]2

������
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FIGURE 8.26 Spectra for residual response amplitude for various unsymmetrical pulses having
either vertical rise or vertical decay. Comparison on the basis of equal pulse area.19
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Figure 8.28 shows the spectra of residual response amplitude in greater detail for
the range in which the parameter a is limited to positive values. This group of pulses
is of interest in studying the effects of a simple form of blast pulse, in which the peak
height and the duration are constant but the rate of decay is varied.

The areas of the pulses of equal height ξp, and the heights of the pulses of equal
area ξp0τ/2 are the same as for the symmetrical exponential pulses [see Eqs. (8.36c)
and (8.36d)]. If the spectra in Fig. 8.28 are redrawn, using equal pulse area as the cri-
terion for comparison, they appear as in Fig. 8.29. The limiting pulse case a → + ∞
represents a generalized impulse of value kξp0τ/2.The asymptotic values of the spec-
tra are equal to the peak heights of the equal area pulses and are given by

→ as → ∞ (8.44d)

Exponential Pulses of Infinite Duration. Five different cases are included as
follows:

1. The excitation function, consisting of a vertical rise followed by an exponen-
tial decay, is

ξ(t) = ξpe−at [0 ≤ t] (8.45a)

It is shown in Fig. 8.30. The response time equation for the system is

ν = ξp (8.45b)

and the asymptotic value of the residual amplitude is given by

(a/ωn) sin ωnt − cos ωnt + e−at

����
1 + a2/ωn

2

τ
�
T

a(1 − ea)
��
2 (1 − ea + a)

νR�
ξp0
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FIGURE 8.27 Spectra for residual response amplitude for unsymmetrical exponential pulses hav-
ing either vertical rise or vertical decay. Comparison on the basis of equal pulse height.19
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→ (8.45c)

The maximax response is the first maximum of ν. The time response, for the partic-
ular case ωn/a = 2, and the response spectra are shown in Figs. 8.31 and 8.32, respec-
tively.

2. The difference of two exponential functions, of the type of Eq. (8.45a), results
in the pulse given by Eq. (8.46a):

ξ(t) = ξ0(e−bt − e−at)

a > b [0 ≤ t] (8.46a)

The shape of the pulse is shown in Fig. 8.33. Note that ξ0 is the ordinate of each of the
exponential functions at t = 0; it is not the pulse maximum. The asymptotic residual
response amplitude is

νR → ξ0 (8.46b)

3. The product of the exponential function e−at by time results in the excitation
given by Eq. (8.47a) and shown in Fig. 8.34.

ξ(t) = C0te−at (8.47a)

where C0 is a constant. The peak height of the pulse ξp is equal to C0 /ae, and occurs
at the time t1 = 1/a. Equations (8.47b) and (8.47c) give the time response and the
asymptotic residual response amplitude:

(b/ωn) − (a/ωn)���
[(1 + a2/ωn

2)(1 + b2/ωn
2)]1/2

1
��

1� +� a�2/�ω�n

2�
νR�
ξp
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FIGURE 8.28 Spectra for residual response amplitude for a family of simple blast pulses, the same
family shown in Fig. 8.27 but limited to positive values of the exponential decay parameter a. Com-
parison on the basis of equal pulse height. (These spectra also apply to mirror-image pulses having
vertical decay.) (Jacobsen and Ayre.22)
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FIGURE 8.29 Spectra for residual response amplitude for the family of simple blast pulses shown
in Fig. 8.28, compared on the basis of equal pulse area. (Jacobsen and Ayre.22)
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ν = ξp �� + �1 + � ωnt� e−at − cos ωnt − �1 − � sin ωnt	
(8.47b)

→ (8.47c)

The maximum value of νR occurs in the case a/ωn = 1, and is given by

(νR)max = ξpe/2 = 1.36ξp

Both of the excitation functions
described by Eqs. (8.46a) and (8.47a)
include finite times of rise to the pulse
peak. These rise times are dependent on
the exponential decay constants.

4. The rise time may be made indepen-
dent of the decay by inserting a separate
rise function before the decay function,
as in Fig. 8.35, where a straight-line rise
precedes the exponential decay. The
response-time equations are as follows:

e
��
(a/ωn) + (ωn/a)

νR�
ξp

a2

�
ωn

2

2a
�
ωn

a2

�
ωn

2
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�
ωn

ae/ωn��
(1 + a2/ωn

2)2
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FIGURE 8.30 Pulse consisting of vertical
rise followed by exponential decay of infinite
duration.

FIGURE 8.31 Time response to the pulse hav-
ing a vertical rise and an exponential decay of
infinite duration (Fig. 8.30), for the particular
case ωn/a = 2.

FIGURE 8.32 Spectra for maximax response
and for asymptotic residual response amplitude,
for the pulse shown in Fig. 8.30.

FIGURE 8.33 Pulse formed by taking the dif-
ference of two exponentially decaying functions.

FIGURE 8.34 Pulse formed by taking the
product of an exponentially decaying function
by time.
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Pulse rise era:

ν = ξp [0 ≤ t ≤ t1] (8.48a)

Pulse decay era:

ν = ξp � + � − � cos ωnt′

+ � + � sin ωnt′� (8.48b)

where t′ = t − t1 and 0 ≤ t′.
5. Another form of pulse, which is a more complete representation of a blast

pulse since it includes the possibility of a negative phase of pressure,14 is shown in
Fig. 8.36. It consists of a straight-line rise, followed by an exponential decay through
the positive phase, into the negative phase, finally becoming asymptotic to the time
axis. The rise time is t1 and the duration of the positive phase is t1 + t2.

Unsymmetrical Exponential Pulses with Central Peak. An interesting family
of unsymmetrical pulses may be formed by using Eqs. (8.36a) and changing the sign
of the exponent of e in both the numerator and the denominator of the second of the
equations. The resulting family consists of pulses whose maxima occur at the mid-
period time and which satisfy simultaneously both criteria for comparison (equal
pulse height and equal pulse area).

Figure 8.37 shows the spectra of residual response amplitude and, in the inset dia-
grams, the pulse shapes.The limiting cases are the symmetrical triangle of duration τ
and height ξp, and the rectangles of duration τ/2 and height ξp. All pulses in the fam-
ily have the area ξpτ/2. Zeroes of residual response amplitude occur for all values of
a, at even integer values of τ/T. The residual response amplitude is

= ⋅

� �1/2

(8.49)
cosh 2a − cosh a − (1 − cosh a) cos (2πτ/T) + (1 − cosh 2a) cos (πτ/T)
��������

1 + a2T 2/π2τ2
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��
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2
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2
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2
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2

ωnt − sin ωnt��
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FIGURE 8.35 Pulse formed by a straight-line
rise followed by an exponential decay asymp-
totic to the time axis.

FIGURE 8.36 Pulse formed by a straight-line
rise followed by a continuous exponential
decay through positive and negative phases.
(Frankland.14)
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Pulses which are mirror images of each other in time result in equal residual
amplitudes.

Skewed Versed-sine Pulse. By taking the product of a decaying exponential and
the versed-sine function, a family of pulses with varying skewness is obtained.13, 22

The family is described by the following equation:

ξ(t) = �ξp (1 − cos 2πt/τ) [0 ≤ t ≤ τ]

0 [τ ≤ t]
(8.50)

These pulses are of particular interest when the excitation is a ground displace-
ment function because they have continuity in both velocity and displacement; thus,
they do not involve theoretically infinite accelerations of the ground. When the
skewing constant σ equals one-half, the pulse is the symmetrical versed sine. When 
σ → 0, the front of the pulse approaches a straight line with infinite slope, and the
pulse area approaches zero.

The spectra of residual response amplitude and of maximax relative response,
plotted on the basis of equal pulse height, are shown in Fig. 8.38 for several values of
σ. The residual response amplitude spectra are reasonably good approximations to
the spectra of maximax relative response except at the lower values of τ/T.

Figure 8.39 compares the residual response amplitude spectra on the basis of
equal pulse area. The required pulse heights, for a constant pulse area of ξp0τ/2, are
shown in the inset diagram. On this basis, the pulse for σ → 0 represents a general-
ized impulse of value kξp0τ/2.

e2π(σ−t/τ) cot πσ
��

1 − cos 2πσ

TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.45

FIGURE 8.37 Spectra of residual response amplitude for a family of unsymmetrical exponential
pulses of equal area and equal maximum height, having the pulse peak at the mid-period time.
(Jacobsen and Ayre.22)
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Full-cycle Pulses (Force-Time Integral = 0). The residual response amplitude
spectra for three groups of full-cycle pulses are shown as follows: in Fig. 8.40 for the
rectangular, the sinusoidal, and the symmetrical triangular pulses; in Fig. 8.41 for
three types of pulse involving sine and cosine functions; and in Fig. 8.42 for three
forms of triangular pulse. The pulse shapes are shown in the inset diagrams. Expres-
sions for the residual response amplitudes are given in Eqs. (8.51) to (8.53).

Full-cycle rectangular pulse:

= 2 sin �2 sin � (8.51)
πτ
�
T

πτ
�
T

νR�
ξp

8.46 CHAPTER EIGHT

FIGURE 8.38 Response spectra for the skewed versed-sine pulse, compared on the basis of equal
pulse height: (A) Residual response amplitude. (B) Maximax relative response. (Jacobsen and Ayre.22)
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Full-cycle “sinusoidal” pulses:
Symmetrical half cycles

= 2 sin � cos � (8.52a)

Vertical front and vertical ending

= cos (8.52b)

Vertical jump at mid-cycle

= �1 − sin � (8.52c)

Full-cycle triangular pulses:
Symmetrical half cycles

= 2 sin � sin2 � (8.53a)
πτ
�
2T

4T
�
πτ

πτ
�
T

νR�
ξp

2πτ
�

T
T
�
4τ

2
��
1 − T 2/16τ2

νR�
ξp

2πτ
�

T
2

��
1 − T 2/16τ2

νR�
ξp

πτ
�
T

T/τ
��
(T 2/4τ2) − 1

πτ
�
T

νR�
ξp
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FIGURE 8.39 Spectra of residual response amplitude for the skewed versed-sine pulse, compared
on the basis of equal pulse area.19
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Vertical front and vertical ending

= 2� sin − cos � (8.53b)

Vertical jump at mid-cycle

= 2 �1 − sin � (8.53c)

In the case of full-cycle pulses having symmetrical half cycles, note that the resid-
ual response amplitude equals the residual response amplitude of the symmetrical
one-half-cycle pulse of the same shape, multiplied by the dimensionless residual
response amplitude function 2 sin(πτ/T) for the single rectangular pulse. Compare
the bracketed functions in Eqs. (8.51), (8.52a), and (8.53a) with the bracketed func-
tions in Eqs. (8.31b), (8.32b), and (8.34c), respectively.

2πτ
�

T
T

�
2πτ

νR�
ξp

2πτ
�

T
2πτ
�

T
T

�
2πτ

νR�
ξp

8.48 CHAPTER EIGHT

FIGURE 8.40 Spectra of residual response amplitude for three types of full-cycle pulses. Each half
cycle is symmetrical.19
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SUMMARY OF TRANSIENT RESPONSE SPECTRA FOR THE SINGLE

DEGREE-OF-FREEDOM, LINEAR, UNDAMPED SYSTEM

Initial Conditions. The following conclusions are based on the assumption that
the system is initially at rest.

Step-type Excitations
1. The maximax response νM occurs after the step has risen (monotonically) to full

value (τ ≤ t, where τ is the step rise time). It is equal to the residual response
amplitude plus the constant step height (νM = νR + ξc).

2. The extreme values of the ratio of maximax response to step height νM/ξc are 1
and 2. When the ratio of step rise time to system natural period τ/T approaches
zero, the step approaches the simple rectangular step in shape and νM/ξc

approaches the upper extreme of 2. If τ/T approaches infinity, the step loses the
character of a dynamic excitation; consequently, the inertia forces of the system
approach zero and νM/ξc approaches the lower extreme of 1.

TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.49

FIGURE 8.41 Spectra of residual response amplitude for three types of full-cycle “sinusoidal”
pulses.19
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3. For some particular shapes of step rise, νM/ξc is equal to 1 at certain finite values
of τ/T. For example, for the step having a constant-slope rise, νM/ξc = 1 when τ/T =
1, 2, 3,. . . . The lowest values of τ/T = (τ/T)min, for which νM/ξc = 1, are, for three
shapes of step rise: constant-slope, 1.0; versed-sine, 1.5; cycloidal, 2.0. The lowest
possible value of (τ/T)min is 1.

4. In the case of step-type excitations, when νM/ξc = 1 the residual response ampli-
tude νR is zero. Sometimes it is of practical importance in the design of cams and
dynamic control functions to achieve the smallest possible residual response.

Single-Pulse Excitations
1. When the ratio τ/T of pulse duration to system natural period is less than 1⁄2, the

time shapes of certain types of equal area pulses are of secondary significance in
determining the maxima of system response [maximax response νM, maximax rel-
ative response (ν − ξ)M, and residual response amplitude νR]. If τ/T is less than 1⁄4,
the pulse shape is of little consequence in almost all cases and the system
response can be determined to a fair approximation by use of the simple impulse
theory. If τ/T is larger than 1⁄2, the pulse shape may be of great significance.

2. The maximum value of maximax response for a given shape of pulse, (νM)max,
usually occurs at a value of the period ratio τ/T between 1⁄2 and 1. The maximum
value of the ratio of maximax response to the reference excitation, (νM)max/ξp, is
usually between 1.5 and 1.8.

8.50 CHAPTER EIGHT

FIGURE 8.42 Spectra of residual response amplitude for three types of full-cycle triangular pulses.19
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3. If the pulse has a vertical rise, νM is the first maximum occurring, and (νM)max is an
asymptotic value approaching 2ξp as τ/T approaches infinity. In the special case of
the rectangular pulse, (νM)max is equal to 2ξp and occurs at values of τ/T equal to
or greater than 1⁄2.

4. If the pulse has a vertical decay, (νM)max is equal to the maximum value (νR)max of
the residual response amplitude.

5. The maximum value (νR)max of the residual response amplitude, for a given shape
of pulse, often is a reasonably good approximation to (νM)max, except if the pulse
has a steep rise followed by a decay. A few examples are shown in Table 8.3. Fur-
thermore, if (νM)max and (νR)max for a given pulse shape are approximately equal
in magnitude, they occur at values of τ/T not greatly different from each other.

6. Pulse shapes that are mirror images of each other in time result in equal values of
residual response amplitude.

7. The residual response amplitude νR generally has zero values for certain finite
values of τ/T. However, if the pulse has either a vertical rise or a vertical decay,
but not both, there are no zero values except the trivial one at τ/T = 0. In the case
of the rectangular pulse, νR = 0 when τ/T = 1, 2, 3,. . . . For several shapes of pulse
the values of (τ/T)min (lowest values of τ/T for which νR = 0) are as follows: rect-
angular, 1.0; sine, 1.5; versed-sine, 2.0; symmetrical triangle, 2.0. The lowest possi-
ble value of (τ/T)min is 1.

8. In the formulation of pulse as well as of step-type excitations, it may be of practi-
cal consequence for the residual response to be as small as possible; hence, atten-
tion is devoted to the case, νR = 0.

TABLE 8.3 Comparison of Greatest Values of
Maximax Response and Residual Response
Amplitude

Pulse shape (νM)max/(νR)max

Symmetrical:
Rectangular 1.00
Sine 1.04
Versed sine 1.05
Triangular 1.06

Vertical-decay pulses 1.00

Vertical-rise pulses:
Rectangular 1.00
Triangular 1.60
Asymptotic exponential decay 2.00

SINGLE DEGREE-OF-FREEDOM LINEAR SYSTEM

WITH DAMPING

The calculation of the effects of damping on transient response may be laborious. If
the investigation is an extensive one, use should be made of an analog computer.

TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.51
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DAMPING FORCES PROPORTIONAL TO VELOCITY 

(VISCOUS DAMPING)

In the case of steady forced vibration, even very small values of the viscous damping
coefficient have great effect in limiting the system response at or near resonance. If
the excitation is of the single step- or pulse-type, however, the effect of damping on
the maximax response may be of relatively less importance, unless the system is
highly damped.

For example, in a system under steady sinusoidal excitation at resonance, a ten-
fold increase in the fraction of critical damping c/cc from 0.01 to 0.1 results in a the-
oretical tenfold decrease in the magnification factor from 50 to 5. In the case of the
same system, initially at rest and acted upon by a half-cycle sine pulse of “resonant
duration” τ = T/2, the same increase in the damping coefficient results in a decrease
in the maximax response of only about 9 percent.

Half-cycle Sine Pulse Excitation. Figure 8.43 shows the spectra of maximax
response for a viscously damped system excited by a half-cycle sine pulse.12 The sys-
tem is initially at rest. The results apply to the cases indicated by the following dif-
ferential equations of motion:

+ + x = sin (8.54a)

+ + x = up sin (8.54b)

+ + δx = sin (8.54c)

and in general

+ + ν = ξp sin (8.54d)

where 0 ≤ t ≤ τ.

πt
�
τ

cν̇
�
k

mν̈
�

k
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�τ

−müp
�
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�
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mẍ
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FIGURE 8.43 Spectra of maximax response for a viscously damped single
degree-of-freedom system acted upon by a half-cycle sine pulse. (R. D. Mindlin,
F. W. Stubner, and H. L. Cooper.23)
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For values of t greater than τ, the excitation is zero. The distinctions among these
cases may be determined by referring to Table 8.1. The fraction of critical damping
c/cc in Fig. 8.43 is the ratio of the damping coefficient c to the critical damping coef-
ficient cc = 
2�m�k�. The damping coefficient must be defined in terms of the velocity
(ẋ, δ̇x,ν̇) appropriate to each case. For c/cc = 0, the response spectrum is the same as
the spectrum for maximax response shown for the undamped system in Fig. 8.16B.

Other Forms of Excitation; Methods. Qualitative estimates of the effects of vis-
cous damping in the case of other forms of step or pulse excitation may be made by
the use of Fig. 8.43 and of the appropriate spectrum for the undamped response to
the excitation in question.

Quantitative calculations may be effected by extending the methods described
for the undamped system. If the excitation is of general form, given either numeri-
cally or graphically, the phase-plane-delta21, 22 method described in a later section of
this chapter may be used to advantage. Of the analytical methods, the Laplace trans-
formation is probably the most useful.A brief discussion of its application to the vis-
cously damped system follows.

Laplace Transformation. The differential equation to be solved is

+ + ν = ξ(t) (8.55a)

Rewriting Eq. (8.55a),

+ + ν = ξ(t) (8.55b)

where ζ = c/cc and ωn
2 = k/m.

Applying the operation transforms of Table 8.2 to Eq. (8.55b), the following alge-
braic equation is obtained:

[s2Fr(s) − sf(0) − f ′(0)] + [sFr(s) − f(0)] + Fr(s) = Fe(s) (8.56a)

The subsidiary equation is

Fr(s) = (8.56b)

where the initial conditions f(0) and f ′(0) are to be expressed as ν0 and ̇ν0, respectively.
By performing an inverse transformation of Eq. (8.56b), the response is deter-

mined in the following operational form:

ν(t) = L
−1[Fr(s)]

= L
−1� � (8.57)

Example 8.9: Rectangular Step Excitation. Assume that the damping is less
than critical (ζ < 1), that the system starts from rest (ν0 = ν̇0 = 0), and that the system
is acted upon by the rectangular step excitation: ξ(t) = ξc for 0 ≤ t. The transform of
the excitation is given by

Fe(s) = L[ξ(t)] = L[ξc] = ξc
1
�
s

(s + 2ζωn)ν0 + ν̇0 + ωn
2Fe(s)

���
s2 + 2ζωns + ωn

2

(s + 2ζωn)f(0) + f ′(0) + ωn
2Fe(s)

����
s2 + 2ζωns + ωn

2

2ζ
�
ωn

1
�
ωn

2

2ζν̇
�
ωn

ν̈
�
ωn

2

cν̇
�
k

mν̈
�

k
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Substituting for ν0, ν̇0 and Fe(s) in Eq. (8.57), the following equation is obtained:

ν(t) = L
−1[Fr(s)] = ξcωn

2
L

−1 � � (8.58a)

Rewriting,

ν(t) = ξcωn
2
L

−1 � � (8.58b)

where j = 
−�1�.
To determine the inverse transform L −1[Fr(s)], it may be necessary to expand Fr(s)

in partial fractions as explained previously. However, in this particular example the
transform pair is available in Table 8.2 (see item 16).Thus, it is found readily that ν(t)
is given by the following:

ν(t) = ξcωn
2� + � (8.59a)

where a = ωn(ζ − j 
1� −� ζ�2�) and b = ωn(ζ + j 
1� −� ζ�2�). By using the relations, cos z =
(1⁄2) (ejz + e−jz) and sin z = −(1⁄2)j(ejz − e−jz), Eq. (8.59a) may be expressed in terms of
cosine and sine functions:

ν(t) = ξc �1 − e−ζωnt �cos ωdt + sin ωdt�� [ζ < 1] (8.59b)

where the damped natural frequency ωd = ωn 
1� −� ζ�2�.
If the damping is negligible, ζ → 0 and Eq. (8.59b) reduces to the form of Eq.

(8.22) previously derived for the case of zero damping:

ν(t) = ξc(1 − cos ωnt) [ζ = 0] (8.22)

CONSTANT (COULOMB) DAMPING FORCES; 

PHASE-PLANE METHOD

The phase-plane method is particularly well suited to the solving of transient
response problems involving Coulomb damping forces.21, 22 The problem is truly a
stepwise linear one, provided the usual assumptions regarding Coulomb friction are
valid. For example, the differential equation of motion for the case of ground dis-
placement excitation is

mẍ ± Ff + kx = ku(t) (8.60a)

where Ff is the Coulomb friction force. In Eq. (8.60b) the friction force has been
moved to the right side of the equation and the equation has been divided by the
spring constant k:

+ x = u(t) � (8.60b)

The effect of friction can be taken into account readily in the construction of the
phase trajectory by modifying the ordinates of the stepwise excitation by amounts
equal to �Ff /k. The quantity Ff /k is the Coulomb friction “displacement,” and is
equal to one-fourth the decay in amplitude in each cycle of a free vibration under the

Ff�
k

mẍ
�

k

ζ
�

1� −� ζ�2�

be−at − ae−bt

��
ab(a − b)

1
�
ab

1
�����
s[s + ωn(ζ − j
1� −� ζ�2�)] [s + ωn(ζ + j
1� −� ζ�2�)]

1
��
s(s2 + 2ζωns + ωn

2)
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influence of Coulomb friction. The algebraic sign of the friction term changes when
the velocity changes sign. When the friction term is placed on the right-hand side of
the differential equation, it must have a negative sign when the velocity is positive.

Example 8.10: Free Vibration. Figure 8.44 shows an example of free vibration
with the initial conditions x = x0 and ẋ = 0. The locations of the arc centers of the
phase trajectory alternate each half cycle from +Ff /k to − Ff /k.

Example 8.11: General Transient Excitation. A general stepwise excitation
u(t) and the response x of a system under the influence of a friction force Ff are
shown in Fig. 8.45. The case of zero friction is also shown. The initial conditions are 
x = 0, ẋ = 0. The arc centers are located at ordinates of u(t) �Ff /k. During the third
step in the excitation, the velocity of the system changes sign from positive to nega-
tive (at t = t2′); consequently, the friction displacement must also change sign, but
from negative to positive.

SINGLE DEGREE-OF-FREEDOM 

NONLINEAR SYSTEMS

PHASE-PLANE-DELTA METHOD

The transient response of damped linear systems and of nonlinear systems of con-
siderable complexity can be determined by the phase-plane-delta method.21, 22

Assume that the differential equation of motion of the system is

mẍ = G(x,ẋ,t) (8.61a)

TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.55

FIGURE 8.44 Example of phase-plane solution of free vibration with Coulomb friction2;
the natural frequency is ωn = 
k�/m�.
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where G(x,ẋ,t) is a general function of x, ẋ, and t to any powers. The coefficient of ẍ
is constant, either inherently or by a suitable division.

In Eq. (8.61a) the general function may be replaced by another general function
minus a linear, constant-coefficient, restoring force term:

G(x,ẋ,t) = g(x,ẋ,t) − kx

By moving the linear term kx to the left side of the differential equation, dividing
through by m, and letting k/m = ωn

2, the following equation is obtained:

ẍ + ωn
2x = ωn

2δ (8.61b)

where the operative displacement δ is given by

δ = g(x,ẋ,t) (8.61c)

The separation of the kx term from the G function does not require that the kx term
exist physically. Such a term can be separated by first adding to the G function the
fictitious terms, +kx − kx.

With the differential equation of motion in the δ form, Eq. (8.61b), the response
problem can now be solved readily by stepwise linearization. The left side of the
equation represents a simple, undamped, linear oscillator. Implicit in the δ function
on the right side of the equation are the nonlinear restoration terms, the linear or
nonlinear dissipation terms, and the excitation function.

If the δ function is held constant at a value δ for an interval of time ∆t, the
response of the linear oscillator in the phase-plane is an arc of a circle, with its cen-
ter on the X axis at δ and subtended by an angle equal to ωn ∆t. The graphical con-
struction may be similar in general appearance to the examples already shown for
linear systems in Figs. 8.5, 8.44, and 8.45. Since in the general case the δ function
involves the dependent variables, it is necessary to estimate, before constructing

1
�
k
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FIGURE 8.45 Example of phase-plane solution for a general transient excitation with Coulomb
friction in the system.2

8434_Harris_08_b.qxd  09/20/2001  11:20 AM  Page 8.56



each step, appropriate average values of the system displacement and/or velocity to
be expected during the step. In some cases, more than one trial may be required
before suitable accuracy is obtained.

Many examples of solution for various types of systems are available in the liter-
ature.3, 5, 6, 8, 13, 15, 20–22

MULTIPLE DEGREE-OF-FREEDOM, LINEAR,

UNDAMPED SYSTEMS

Some of the transient response analyses, presented for the single degree-of-freedom
system, are in complete enough form that they can be employed in determining the
responses of linear, undamped, multiple degree-of-freedom systems. This can be
done by the use of normal (principal) coordinates. A system of normal coordinates
is a system of generalized coordinates chosen in such a way that vibration in each
normal mode involves only one coordinate, a normal coordinate. The differential
equations of motion, when written in normal coordinates, are all independent of
each other. Each differential equation is related to a particular normal mode and
involves only one coordinate. The differential equations are of the same general

form as the differential equation of
motion for the single degree-of-freedom
system. The response of the system in
terms of the physical coordinates, for
example, displacement or stress at vari-
ous locations in the system, is deter-
mined by superposition of the normal
coordinate responses.

Example 8.12: Sine Force Pulse
Acting on a Simple Beam. Consider
the flexural vibration of a prismatic bar
with simply supported ends, Fig. 8.46. A
sine-pulse concentrated force Fp sin
(πt/τ) is applied to the beam at a distance
c from the left end (origin of coordi-
nates). Assume that the beam is initially

at rest.The displacement response of the beam, during the time of action of the pulse,
is given by the following series:

y = �
i = ∞

i = 1
sin sin � �sin − sin ωit�� [0 ≤ t ≤ τ]

(8.62a)

where i = 1, 2, 3, . . .; Ti = = �� = , sec

A comparison of Eqs. (8.62a) and (8.32a) shows that the time function [sin (πt/τ) −
(Ti /2τ) sin ωit] for the ith term in the beam-response series is of exactly the same
form as the time function [sin (πt/τ) − (T/2τ) sin ωnt] in the response of the single
degree-of-freedom system. Furthermore, the magnification factors 1/(1 − Ti

2/4τ2)
and 1/(1 − T 2/4τ2) in the two equations have identical forms.
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FIGURE 8.46 Simply supported beam loaded
by a concentrated force sine pulse of half-cycle
duration.
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Following the end of the pulse, beginning at t = τ, the vibration of the beam is
expressed by

y = �
i = ∞

i = 1
sin sin � sin ωi�t − �� [τ ≤ t]

(8.62b)

A comparison of Eqs. (8.62b) and (8.32b) leads to the same conclusion as found
above for the time era 0 ≤ t ≤ τ.

Excitation and Displacement at Mid-span. As a specific case, consider the
displacement at mid-span when the excitation is applied at mid-span (c = x = l/2).
The even-numbered terms of the series now are all zero and the series take the fol-
lowing forms:

yl/2 = �
∞

i = 1,3,5, . . . � �sin − sin ωit�� [0 ≤ t ≤ τ]

(8.63a)

yl/2 = �
∞

i = 1,3,5, . . . � sin ωi �t − �� [τ ≤ t] (8.63b)

Assume, for example, that the pulse period τ equals two-tenths of the fundamen-
tal natural period of the beam (τ/T1 = 0.2). It is found from Fig. 8.16B, by using an
abscissa value of 0.2, that the maximax response in the fundamental mode (i = 1)
occurs in the residual vibration era (τ ≤ t). The value of the corresponding ordinate
is 0.75. Consequently, the maximax response for i = 1 is 0.75 (2Fpl 3/π4EI).

In order to determine the maximax for the third mode (i = 3), an abscissa value of
τ/Ti = i2τ/T1 = 32 × 0.2 = 1.8, is used. It is found that the maximax is greater than the
residual amplitude and consequently that it occurs during the time era 0 ≤ t ≤ τ. The
value of the corresponding ordinate is 1.36; however, this must be multiplied by 1⁄34,
as indicated by the series. The maximax for i = 3 is thus 0.017 (2Fpl 3/π4EI).

The maximax for i = 5 also occurs in the time era 0 ≤ t ≤ τ and the ordinate may
be estimated to be about 1.1. Multiplying by 1⁄54, it is found that the maximax for i = 5
is approximately 0.002 (2Fpl 3/π4EI), a negligible quantity when compared with the
maximax value for i = 1.

To find the maximax total response to a reasonable approximation, it is necessary
to sum on a time basis several terms of the series. In the particular example above,
the maximax total response occurs in the residual vibration era and a reasonably
accurate value can be obtained by considering only the first term (i = 1) in the series,
Eq. (8.63b).

GENERAL INVESTIGATION OF TRANSIENTS

An extensive (and efficient) investigation of transient response in multiple
degree-of-freedom systems requires the use of an automatic computer. In some of
the simpler cases, however, it is feasible to employ numerical or graphical methods.
For example, the phase-plane method may be applied to multiple degree-of-
freedom linear systems1, 2 through the use of normal coordinates. This involves
independent phase-planes having the coordinates qi and qi/ωi, where qi is the ith
normal coordinate.

τ
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CHAPTER 9
EFFECTS OF IMPACT

ON STRUCTURES

W. H. Hoppmann II

INTRODUCTION

This chapter discusses a particular phenomenon in the general field of shock and
vibration usually referred to as impact.1 An impact occurs when two or more bodies
collide.An important characteristic of an impact is the generation of relatively large
forces at points of contact for relatively short periods of time. Such forces sometimes
are referred to as impulse-type forces.

Three general classes of impact are considered in this chapter: (1) impact
between spheres or other rigid bodies, where a body is considered to be rigid if its
dimensions are large relative to the wavelengths of the elastic stress waves in the
body; (2) impact of a rigid body against a beam or plate that remains substantially
elastic during the impact; and (3) impact involving yielding of structures.

DIRECT CENTRAL IMPACT OF TWO SPHERES

The elementary analysis of the central impact of two bodies is based upon an exper-
imental observation of Newton.2 According to that observation, the relative velocity
of two bodies after impact is in constant ratio to their relative velocity before impact
and is in the opposite direction. This constant ratio is the coefficient of restitution;
usually it is designated by e.3

Let u̇ and ẋ be the components of velocity along a common line of motion of the
two bodies before impact, and u̇′ and ẋ′ the component velocities of the bodies in the
same direction after impact. Then, by the observation of Newton,

u̇′ − ẋ′ = − e(u̇ − ẋ) (9.1)

Now suppose that a smooth sphere of mass mu and velocity u̇ collides with
another smooth sphere having the mass mx and velocity ẋ moving in the same direc-
tion. Let the coefficient of restitution be e, and let u̇′ and ẋ′ be the velocities of the
two spheres, respectively, after impact. Figure 9.1 shows the condition of the two

9.1
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spheres just before collision. The only force acting on the spheres during impact is
the force at the point of contact, acting along the line through the centers of the
spheres.

According to the law of conservation
of linear momentum:

muu̇′ + mxẋ′ = muu̇ + mxẋ (9.2)

Solving Eqs. (9.1) and (9.2) for the two
unknowns, the velocities u̇′ and ẋ′ after
impact,

u̇′ =

ẋ′ = (9.3)

This analysis yields the resultant velocities for the two spheres on the basis of an
experimental law and the principle of the conservation of momentum, without any
specific reference to the force of contact F. A similar result is obtained for a ballistic
pendulum used to measure the muzzle velocity of a bullet. A bullet of mass mu and
velocity u̇ is fired into a block of wood of mass mx which is at rest initially and finally
assumes a velocity ẋ′ after the impact. Using only the principle of the conservation
of momentum,

u̇ = (9.4)

No knowledge of the complicated pattern of force acting on the bullet and the pen-
dulum during the embedding process is required.

These simple facts are introductory to the more complicated problem involving
the vibration of at least one of the colliding bodies, as discussed in a later section.

HERTZ THEORY OF IMPACT 

OF TWO SOLID SPHERES

The theory of two solid elastic spheres which collide with one another is based upon
the results of an investigation of two elastic bodies pressed against one another
under purely statical conditions.4 For these static conditions, the relations between
the sum of the displacements at the point of contact in the direction of the common
line of motion and the resultant total pressure have been derived. The sum of these
displacements is equal to the relative approach of the centers of the spheres, assum-
ing that the spheres act as rigid bodies except for elastic compression at the point of
contact.The relative approach varies as the two-thirds power of the total pressure; a
formula is given for the time of duration of the contact.4 The theory is valid only if
the duration of contact is long in comparison with the period of the fundamental
mode of vibration of either sphere.

The range of validity of the Hertz theory is related to the possibility of exciting
vibration in the spheres.5 The dimensionless ratio of the maximum kinetic energy of

(mu + mx)ẋ′
��

mu

(muu̇ + mxẋ) + emu(u̇ − ẋ)
���

mu + mx

(muu̇ + mxẋ) − emx(u̇ − ẋ)
���

mu + mx

9.2 CHAPTER NINE

FIGURE 9.1 Positions of two solid spheres at
instant of central impact.
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vibration to the sum of the kinetic energies of the two spheres just before collision is
approximately

R = (9.5)

where u̇ − ẋ = relative velocity of approach, in./sec
E = Young’s modulus of elasticity, assumed to be the same for each

sphere, lb/in.2

ρ = density of each sphere, lb-sec2/in.4

�E�/ρ� = approximate velocity of propagation of dilatational waves, in./sec

The ratio R usually is a very small quantity; thus, the theory of impact set forth by
Eq. (9.5) has wide application because vibration is not generated in the spheres to an
appreciable degree under ordinary conditions. The energy of the colliding spheres
remains translational, and the velocities after impact are deducible from the princi-
ples of energy and of momentum. The important point of plastic deformation at the
point of contact is discussed in a later section.

Formulas for force between the spheres, the radius of the circular area of contact,
and the relative approach of the centers of the spheres, all as functions of time, can
be determined for any two given spheres.6

IMPACT OF A SOLID SPHERE 

ON AN ELASTIC PLATE

An extension of the Hertz theory of impact to include the effect of vibration of one
of the colliding bodies involves a study of the transverse impact of a solid sphere
upon an infinitely extended plate.7 The plate has the role of the vibrating body. The
coefficient of restitution is an important element in any analysis of the motion ensu-
ing after the collision of two bodies.

The analysis is based on the assumption that the principal elastic waves of impor-
tance are flexural waves of half-period equal to the duration of impact. Let 2h and 2D
be the thickness of plate and diameter of sphere, respectively; ρ1, ρ2 their densities; E1,
E2 their Young’s moduli; ν1, ν2 their values of Poisson’s ratio; and τH the duration of
impact. The velocity c of long flexural waves of wavelength λ in the plate is given by

c2 = (9.6)

The radius a of the circle on the plate over which the disturbance has spread at
the termination of impact is given by

a = cτH = (9.7)

Combining Eqs. (9.6) and (9.7),

a2 = πτHh �� (9.8)
E1��

3ρ1(1 − ν1
2)

λ
�
2

E1��
ρ1(1 − ν1

2)
h2

�
λ2

4π2

�
3

u̇ − ẋ
�
�E�/ρ�

1
�
50
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The next step is to find the kinetic and potential energies of the wave motion of
the plate. The kinetic energy may be determined from the transverse velocity of the
plate at each point over the circle of radius a covered by the wave. Figure 9.2 shows
an approximate distribution of velocity over the circle of radius a at the end of
impact.8 The direction of the impact also is shown. The kinetic energy in the wave at
the end of impact is

T = �a

0

1⁄2 ⋅ 2h ⋅ ρ1 ⋅ 2πR ⋅ ẇ2dR (9.9)

where ẇ is the transverse velocity at distance R from the origin. As an approxima-
tion it is assumed that the sum of the potential energy and the kinetic energy in the

wave is 2T. With considerable effort
these energies can be calculated in terms
of the motion of the plate, although the
calculation may be laborious.

The impulse in the plate produced by
the colliding body is

J = �a

0

1⁄2 ⋅ 2h ⋅ ρ1 ⋅ 2πR  ⋅ ẇ dr (9.10)

The integration should be carried out
with due regard to the sign of velocity. If
mu is the mass of colliding body, u̇ its
velocity before impact, and e the coeffi-
cient of restitution, the following rela-
tions are obtained on the assumption
that the energy is conserved:

1⁄2 muu̇2(1 − e2) = 2T (9.11)

muu̇(1 + e) = J (9.12)

Equation (9.11) represents the energy lost to the moving sphere as a result of impact
and Eq. (9.12) represents the change in momentum of the sphere.

The coefficient of restitution e is determined by evaluating the integrals for T and
J and substituting their values in Eq. (9.12). The necessary integrations can be per-
formed by taking the function for transverse velocity in Fig. 9.2 as arcs of sine curves.
The resultant expression for e is

e = (9.13)

where a, the radius of the deformed region, is given by Eq. (9.8) and τH, the time of
contact between sphere and plate, is given by Hertz’s theory of impact to a first
approximation.4 The mass of the sphere is mu; the mass of the plate is assumed to be
infinite. Large discrepancies between theory and experiment occur when the diam-
eter of the sphere is large compared with the thickness of the plate. The duration of
impact τH is

hρ1a2 − 0.56mu��
hρ1a2 + 0.56mu

9.4 CHAPTER NINE

FIGURE 9.2 Distribution of transverse veloc-
ities in plate as a result of impact by a moving
body. (After Lamb8.)
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τH = 2.94 

where α = � ν1
2 � + 	 mu
2/5

Rs

−1/5

(9.14)

The radius of the striking sphere is Rs and its velocity before impact is u̇. Subscripts
1 and 2 represent the properties of the sphere and plate, respectively.The value of τH

may be substituted in Eq. (9.8) above.
Experimental results verify the theory when the limitations of the theory are not

violated. The velocity of impact must be sufficiently small to avoid plastic deforma-
tion.When the collision involves steel on steel, the velocity usually must be less than
1 ft/sec. However, useful engineering results can be obtained with this approach
even though plastic deformation does occur locally.9, 10

TRANSVERSE IMPACT OF A MASS ON A BEAM

If F(t) is the force acting between the sphere and the beam during contact, the dis-
tance traveled by the sphere in time t after collision is11

u̇t − �t

0
F(tv) (t − tv) dtv (9.15)

where u̇ = velocity of sphere before collision (beam assumed to be at rest initially)
mu = mass of solid sphere

The beam is assumed to be at rest initially.
For example, the deflection of a simply supported beam under force F(tv) at its

center is

�
∞

1,3,5 . . .
�t

0
F(tv) dtv (9.16)

where mb = one-half of mass of beam
ωn = angular frequency of the nth mode of vibration

Equation (9.16) represents the transverse vibration of a beam.While the present case
is only for direct central impact, the cases for noncentral impact depend only on the
corresponding solution for transverse vibration. Oblique impact also is treated readily.

The expression for the relative approach of the sphere and beam, i.e., penetration
of beam by sphere, is11

α = κ1F(t)2 ⁄ 3 (9.17)

where κ1 is a constant depending on the elastic and geometrical properties of the
sphere and the beam at the point of contact, and α is given by Eq. (9.14). Conse-
quently, the equation that defines the problem is

α = K1F 2/3 = u̇t − �t

0
F(tv)(t − tv) dtv − �

∞

1,3,5
�t

0
F(tv) dtv (9.18)

sin ωn(t − tv)��
ωn

1
�
mb

1
�
mu

sin ωn(t − tv)��
ωn

1
�
mb

1
�
mu

1 − ν2
2

�
E2

1 − ν1
2

�
E1

15
�
16

α
�
u̇
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Equation (9.18) has been solved numerically for two specific problems by subdi-
viding the time interval 0 to t into small elements and calculating, step by step, the
displacements of the sphere.11 The results are not general but rather apply only to
the cases of beam and sphere.

For the impact of a mass on a beam, the sum of the kinetic and the potential ener-
gies may be expressed in terms of the unknown contact force.12 Also, the impulse
integral J in terms of the contact force may be expressed as

J = �t

0
F(t) dt = muu̇(1 + e) (9.19)

A satisfactory approximation to F(t) is defined in terms of a normalized force �F:

F(t) = muu̇(1 + e) �F(t) (9.20)

Thus, from Eqs. (9.19) and (9.20),

�t

0
�F dt = 1 (9.21)

The value of this integral is independent of the shape of F(t). The normalized force
is defined such that its maximum value equals the maximum value of the correspon-
ding normalized Hertz force.12 To perform the necessary integrations, a suitable
function for defining F(t) is chosen as follows:

�F(t) = sin t [0 < t < τL]

�F(t) = 0 [|t| > τL]

(9.22)

Results for particular problems solved in this manner agree well with those obtained
for the same problems by the numerical solution of the exact integral equation.12

To apply these results to a specific beam impact problem, it is necessary to
express the deflection equation for the beam in terms of known quantities. One of
these quantities is the coefficient of restitution; a formula must be provided for its
determination in terms of known functions. This is given by Eq. (9.31).

IMPACT OF A RIGID BODY ON A DAMPED

ELASTICALLY SUPPORTED BEAM

For the more general case of impact of a rigid body on a damped, elastically sup-
ported beam, it is assumed that there is external damping, damping determined by
the Stokes’ law of stress-strain, and an elastic support attached to the beam along its
length in such a manner that resistance is proportional to deflection.13 The differen-
tial equation for the deflection of the beam is

EI + c1I + c2 + kw + ρS = F(x,t) (9.23)

where w = deflection, in.
E = Young’s modulus, lb/in.2

I = moment of inertia for cross section (constant), in.4

∂2w
�
∂t2

∂w
�
∂t

∂5w
�
∂x4 ∂t

∂4w
�
∂x4

π
�
τL

π
�
2τL
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c1 = internal damping coefficient, lb/in.2-sec (Stokes’ law)
c2 = external damping coefficient, lb/in.2-sec
k = foundation modulus, lb/in.2

ρ = density, lb-sec2/in.4

S = area of cross section (constant), in.2

= acceleration, in./sec2

t = time, sec
F(x,t) = driving force per unit length of beam, lb/in.

For example, to illustrate the application of specific boundary conditions, con-
sider a simply supported beam of length l. The moments and deflections must van-
ish at the ends. The beam is assumed undeflected and at rest just before impact, and
central impact is assumed although with some additional computation this restric-
tion may be dropped. The solution may be written as follows:

w(x,t) = �
∞

sin sin 

× �t

0
e−δn

(t − τ) sin ��ω�n
2�−� δ�n

2� ⋅ (t − τ)
 F1(τ) dτ
(9.24)

where e = base of natural logarithms

δn = damping numbers = �ri + re	
ri =

re =

ωn = angular frequencies

m = 1⁄2ρAl

A satisfactory analytical expression for the contact force F1(t), a particularization
of F(x,t) in Eq. (9.23), must be developed. Although F1(t) is assumed to act at the
center of the beam, the methods apply with only minor alterations if the impact
occurs at any other point of the beam.

One of the conditions which the contact force must satisfy is that its time integral
for the duration of impact equal the change in momentum of the striking body. The
change of momentum is

mż − mż′ = mż �1 − 	 (9.25)

where m = mass of rigid body, lb-sec2/in.
ż = velocity of rigid body just before collision, in./sec
ż′ = velocity of rigid body just after collision, in./sec

When the velocity of the beam is zero, Eq. (9.1) may be written

ż′
�
ż

c2�
ρS

c1I�
ρS

n4π4

�
l4

1
�
2

1
�
�ω�n

2�−� δ�n
2�

1
�
m

nπ
�
2

nπx
�

l

∂2w
�
∂t2
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e = − (9.26)

Equation (9.26) may be written

mż �1 − 	 = mż(1 + e) (9.27)

From the equivalence of impulse and momentum:

�τ0

0
F1(t) dt = mż(1 + e) (9.28)

where τ0 is the time of contact.
It can then be shown13 that the impact force may be written

F1(t) = mż(1 + e) sin [0 < t < τL]

F1 = 0 [t > τL]

(9.29)

It can be shown further13 that

τL = 3.28 � ⋅ 

1⁄5

(9.30)

where R = radius of sphere, in.
ν = Poisson’s ratio

The time interval τL is a special value of the time of contact T0. It agrees well with
experimental results.

The coefficient of restitution e is13

e =
1 − �

∞

1
Φn − �

∞

1
Ψn

(9.31)
1 + �

∞

1
Φn + �

∞

1
Ψn

where m = mass of sphere
mb = half mass of beam

The functions Φn and Ψn are given in the form of curves in Figs. 9.3 and 9.4; the sym-
bol βn = δn/ωn represents fractional damping and Qn = ωnτL/2π is a dimensionless fre-
quency where ωn = angular frequency of nth mode of vibration of undamped vibration
of beam, rad/sec, and τL = length of time the sinusoidal pulse is assumed to act on
beam [see Eq. (9.30)]. If damping is neglected, the functions Ψn vanish from Eq. (9.31).

The above theory may be generalized to apply to the response of plates to
impact. The deflection equation of a plate subjected to a force applied at a point is
required. The various energy distributions at the end of impact are arrived at in a
manner analogous to that for the beam.

The theory has been applied to columns and continuous beams14, 15 and also could
be applied to transverse impact on a ring. Measurement of the force of impact illus-
trates the large number of modes of vibration that can be excited by an impact.16, 17, 22

m
�
mb

m
�
mb

m
�
mb

m
�
mb

(1 − ν2)
�

E2

m2

�
żR

nπt
�
τL

π
�
2τL

ż′
�
ż

ż′
�
ż
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Principal qualitative results of the foregoing analysis are:

1. Impacts by bodies of relatively small mass moving with low velocities develop
significant bending strains in beams.

2. External damping of the type assumed above has a rapidly decreasing effect on
reducing deflection and strain as the number of the mode increases.

3. Internal damping of the viscous type here assumed reduces deflection and strain
appreciably in the higher modes. For a sufficiently high mode number, the vibra-
tion becomes aperiodic.

4. Increasing the modulus for an elastic foundation reduces the energy absorbed by
the structure from the colliding body.

EFFECTS OF IMPACT ON STRUCTURES 9.9

FIGURE 9.3 Energy functions Φn used with Eq. (9.31) to deter-
mine the coefficient of restitution from the impact of a rigid body
on a damped elastically supported beam.

FIGURE 9.4 Dissipative (damping) functions Ψn used with Eq.
(9.31) to determine the coefficient of restitution from the impact of
a rigid body on a damped elastically supported beam.
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5. Impacts from collision produce sharp initial rises in strain which are little influ-
enced by damping.

6. Because of result 5, the fatigue problem for machines and structures, in which the
impact conditions are repeated many times, can be serious. Ordinary damping
affords little protection.

7. The structure seldom can be treated as a single degree-of-freedom system with
any degree of reliability in predicting strain.13, 19

LONGITUDINAL AND TORSIONAL 

IMPACT ON BARS

If a mass strikes the end of a long bar, the response may be investigated by means of
the Hertz contact theory.11 The normal modes of vibration must be known so the dis-
placement at each part of the bar can be calculated in terms of a contact force. In a
similar manner, the torsional vibration of a long bar can be studied, using the normal
modes of torsional vibration.

PLASTIC DEFORMATION RESULTING 

FROM IMPACT

Many problems of interest involve plastic deformation rather than elastic deforma-
tion as considered in the preceding analyses. Using the concept of the plastic hinge,
the large plastic deformation of beams under transverse impact23 and the plastic
deformation of free rings under concentrated dynamic loads24 have been studied. In
such analyses, the elastic portion of the vibration usually is neglected. To make fur-
ther progress in analyses of large deformations as a result of impact, a realistic the-
ory of material behavior in the plastic phase is required.

An attempt to solve the problem for the longitudinal impact on bars has been
made using the static engineering-type stress-strain curve as a part of the analysis.25

An extension of the work to transverse impact also was attempted.26

Figure 9.5 illustrates the impact of a large body m colliding axially with a long
rod. The body m has an initial velocity u̇ and is sufficiently large that the end of the
rod may be assumed to move with constant velocity u̇. At any time t a stress wave
will have moved into the bar a definite distance; by the condition of continuity (no
break in the material), the struck end of the bar will have moved a distance equal to
the total elongation of the end portion of the bar:

u̇t = � ⋅ l (9.32)

The velocity c of a stress wave is c = l/t, and Eq. (9.32) becomes

� = (9.33)

The stress and strain in an elastic material are related by Young’s modulus. Substi-
tuting for strain from Eq. (9.33),

u̇
�
c
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σ = � ⋅ E = E (9.34)

where u̇ = velocity of end of rod,
in./sec

l = distance stress wave trav-
els in time t, in.

t = time, sec
σ = stress, lb/in.2

� = strain (uniform), in./in.
E = Young’s modulus, lb/in.2

c = velocity of stress wave
(dilatational), in./sec

When the yield point of the material is exceeded, Eq. (9.34) is inapplicable.
Extensions of the analysis, however, lead to some results in the case of plastic defor-
mation.25 The differential equation for the elastic case is

E = ρ (9.35)

where u = displacement, in.
x = coordinate along rod, in.
t = time, sec

E = Young’s modulus, lb/in.2

ρ = mass density, lb-sec2/in.4

The velocity of the elastic dilatational wave obtained from Eq. (9.35) is

c = ��
The modulus E is the slope of the stress-strain curve in the initial linear elastic

region. Replacing E by ∂σ/∂� for the case in which plastic deformation occurs, the
slope of the static stress-stress curve can be determined at any value of the strain �.25

Equation (9.35) then becomes

= ρ (9.36)

Equation (9.36) is nonlinear; its general solution never has been obtained. For the
simple type of loading discussed above and an infinitely long bar, the theory predicts
a so-called critical velocity of impact because the velocities of the plastic waves are
much smaller than those for the elastic waves and approach zero as the strain is
indefinitely increased.25 Since the impact velocity u̇ is an independent quantity, it can
be made larger and larger while the wave velocities are less than the velocity for
elastic waves. Hence a point must be reached at which the continuity of the material
is violated. Experimental data illustrate this point.27

∂2u
�
∂t2

∂2u
�
∂x2

∂σ
�
∂�

E
�
ρ

∂2u
�
∂t2

∂2u
�
∂x2

u̇
�
c
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FIGURE 9.5 Longitudinal impact of moving
body on end of rod.
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ENERGY METHOD

Many problems in the design of machines and structures require knowledge of the
deformation of material in the plastic condition. In statical problems the method of
limit design28 may be used. In dynamics, the most useful corresponding concept is
less theoretical and may be termed the energy method; it is based upon the impact
test used for the investigation of brittleness in metals. Originally, the only purpose of
this test was to break a standard specimen as an index of brittleness or ductility. The
general method, using a tension specimen, may be used in studying the dynamic
resistance of materials.27 An axial force is applied along the length of the specimen
and causes the material to rupture ultimately. The energy of absorption is the total
amount of energy taken out of the loading system and transferred to the specimen
to cause the plastic deformation. The elastic energy and the specific mode of build-
up of stress to the final plastic state are ignored. Such an approach has value only to
the extent that the material has ductility. For example, in a long tension-type speci-
men of medium steel, the energy absorbed before neck-down and rupture is of the
order of 500 ft-lb per cubic inch of material. Thus, if the moving body in Fig. 9.5
weighs 200 lb and has an initial velocity of 80 ft/sec, it represents 20,000 ft-lb of
kinetic energy. If the tension bar subjected to the impact is 10 in. long and 0.5 in. in
diameter, it will absorb approximately 1,000 ft-lb of energy. Under these circum-
stances it will rupture. On the other hand, if the moving body m weighs only 50 lb
and has an initial velocity of 30 ft/sec, its kinetic energy is approximately 700 ft-lb
and the bar will not rupture.

If the tension specimen were severely notched at some point along its length, it
would no longer absorb 500 ft-lb per cubic inch to rupture.The material in the imme-
diate neighborhood of the notch would deform plastically; a break would occur at
the notch with the bulk of the material in the specimen stressed below the yield
stress for the material.A practical structural situation related to this problem occurs
when a butt weld is located at some point along an unnotched specimen. If the weld
is of good quality, the full energy absorption of the entire bar develops before rup-
ture; with a poor weld, the rupture occurs at the weld and practically no energy is
absorbed by the remainder of the material. This is an important consideration in
applying the energy method to design problems.
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CHAPTER 10
MECHANICAL IMPEDANCE

Elmer L. Hixson

INTRODUCTION

The mechanical impedance at a given point in a vibratory system is the ratio of the
sinusoidal force applied to the system at that point to the velocity at the same point.
For example, mechanical impedance is discussed in Chap. 6 as it relates to dynamic
absorbers and auxiliary mass dampers. In the following sections of this chapter, the
mechanical impedance of basic elements that make up vibratory systems is pre-
sented.This is followed by a discussion of combinations of these elements.Then, var-
ious mechanical circuit theorems are described. Such theorems can be used as an aid
in the modeling of mechanical circuits and in determining the response of vibratory
systems; they are the mechanical equivalents of well-known theorems employed in
the analysis of electric circuits. The measurement of mechanical impedance and
some applications are also given.

MECHANICAL IMPEDANCE OF VIBRATORY

SYSTEMS

The mechanical impedance Z of a system is the ratio of a sinusoidal driving force F
acting on the system to the resulting velocity v of the system. Its mechanical mobil-
ity � is the reciprocal of the mechanical impedance.

Consider a sinusoidal driving F that has a magnitude F0 and an angular fre-
quency ω:

F = F0 ejωt (10.1)

The application of this force to a linear mechanical system results in a velocity ν:

ν = ν0ej(ωt + φ) (10.2)

where ν0 is the magnitude of the velocity and φ is the phase angle between F and ν.
Then by definition, the mechanical impedance of the system Z (at the point of

application of the force) is given by

Z = F/ν (10.3)

10.1
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BASIC MECHANICAL ELEMENTS

The idealized mechanical systems considered in this chapter are considered to be
represented by combinations of basic mechanical elements assembled to form linear
mechanical systems. These basic elements are mechanical resistances (dampers),
springs, and masses. In general, the characteristics of real masses, springs, and
mechanical resistance elements differ from those of ideal elements in two respects:

1. A spring may have a nonlinear force-deflection characteristic; a mass may suffer
plastic deformation with motion; and the force presented by a resistance may not
be exactly proportional to velocity.

2. All materials have some mass; thus, a perfect spring or resistance cannot be
made. Some compliance or spring effect is inherent in all elements. Energy can
be dissipated in a system in several ways: friction, acoustic radiation, hysteresis,
etc. Such a loss can be represented as a resistive component of the element
impedance.

Mechanical Resistance (Damper). A mechanical resistance is a device in which
the relative velocity between the end points is proportional to the force applied to the
end points. Such a device can be represented by the dashpot of Fig. 10.1a, in which the
force resisting the extension (or compression) of the dashpot is the result of viscous
friction. An ideal resistance is assumed to be made of massless, infinitely rigid ele-
ments. The velocity of point A, v1, with respect to the velocity at point B, v2, is

v = (v1 − v2) = (10.4)

where c is a constant of proportionality
called the mechanical resistance or
damping constant. For there to be a rel-
ative velocity v as a result of force at A,
there must be an equal reaction force at
B. Thus, the transmitted force Fb is
equal to Fa. The velocities v1 and v2 are
measured with respect to the stationary
reference G; their difference is the rela-
tive velocity v between the end points
of the resistance.

With the sinusoidal force of Eq. (10.1)
applied to point A with point B attached
to a fixed (immovable) point, the veloc-
ity v1 is obtained from Eq. (10.4):

v1 = = v0ejωt (10.5)

Because c is a real number, the force
and velocity are said to be “in phase.”

The mechanical impedance of the
resistance is obtained by substituting
from Eqs. (10.1) and (10.5) in Eq. (10.3):

F0ejωt

�
c

Fa�
c

10.2 CHAPTER TEN

Fa Fb

v2v1

A B Gc

(a)

(c)

(b)

Fa Fb

v2v1

A B Gk

Fa m

v1

A
G

FIGURE 10.1 Schematic representations of
basic mechanical elements. (a) An ideal mechan-
ical resistance. (b) An ideal spring. (c) An ideal
mass.
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Zc = = c (10.6)

The mechanical impedance of a resistance is the value of its damping constant c.

Spring. A linear spring is a device for which the relative displacement between its
end points is proportional to the force applied. It is illustrated in Fig. 10.1b and can
be represented mathematically as follows:

x1 − x2 = (10.7)

where x1, x2 are displacements relative to the reference point G and k is the spring
stiffness. The stiffness k can be expressed alternately in terms of a compliance C =
1/k. The spring transmits the applied force, so that Fb = Fa.

With the force of Eq. (10.1) applied to point A and with point B fixed, the dis-
placement of point A is given by Eq. (10.7):

x1 = = x0ejωt

The displacement is thus sinusoidal and in phase with the force.The relative velocity
of the end connections is required for impedance calculations and is given by the dif-
ferentiation of x with respect to time:

ẋ = v = = F0ej(ωt + 90°) (10.8)

Substituting Eqs. (10.1) and (10.8) in Eq. (10.3), the impedance of the spring is

Zk = − (10.9)

Mass. In the ideal mass illustrated in Figs. 2.2 and 10.1c, the acceleration ẍ of the
rigid body is proportional to the applied force F:

ẍ1 = (10.10)

where m is the mass of the body. By Eq. (10.10), the force Fa is required to give the
mass the acceleration ẍ1, and the force Fb is transmitted to the reference G. When a
sinusoidal force is applied, Eq. (10.10) becomes

ẍ1 = (10.11)

The acceleration is sinusoidal and in phase with the applied force.
Integrating Eq. (10.11) to find velocity,

ẋ = v = F0ejωt

�
jωm

F0ejωt

�
m

Fa�
m

jk
�
ω

ω
�
k

jωF0ejωt

�
k

F0ejωt

�
k

Fa�
k

F
�
v
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The mechanical impedance of the mass is the ratio of F to v, so that

Zm = = jωm (10.12)

Thus, the impedance of a mass is an imaginary quantity that depends on the magni-
tude of the mass and on the frequency.

COMBINATIONS OF MECHANICAL ELEMENTS

In analyzing the properties of mechanical systems, it is often advantageous to com-
bine groups of basic mechanical elements into single impedances. Methods for cal-
culating the impedances of such combined elements are described in this section.An
extensive coverage of mechanical impedance theory and a table of combined ele-
ments is given in Ref. 1.

Parallel Elements. Consider the combination of elements shown in Fig. 10.2, a
spring and a mechanical resistance. They are said to be in parallel since the same
force is applied to both, and both are constrained to have the same relative veloci-
ties between their connections.The force Fc required to give the resistance the veloc-
ity v is found from Eqs. (10.3) and (10.6).

Fc = vZc = vc

The force required to give the spring this
same velocity is, from Eqs. (10.8) and
(10.9),

Fk = vZk =

The total force F is

F = Fc + Fk

Since Z = F/v,

Z = c − j 

Thus, the total mechanical impedance is the sum of the impedances of the two ele-
ments.

By extending this concept to any number of parallel elements, the driving force F
equals the sum of the resisting forces:

F = �
n

i = 1
vZi = v �

n

i = 1
Zi and Zp = �

n

i = 1
Zi (10.13)

where Zp is the total mechanical impedance of the parallel combination of the indi-
vidual elements Zi.

Since mobility is the reciprocal of impedance, when the properties of the parallel
elements are expressed as mobilities, the total mobility of the combination follows
from Eq. (10.13):

k
�
ω

vk
�
jω

F0ejωt

��
F0ejωt/jωm
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k

FIGURE 10.2 Schematic representation of a
parallel spring-resistance combination.
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= �
n

i = 1
(10.14)

Series Elements. In Fig. 10.3 a spring and damper are connected so that the
applied force passes through both elements to the inertial reference.Then the veloc-
ity v is the sum of vk and vc. This is a series combination of elements. The method for
determining the mechanical impedance of the combination follows.

Consider the more general case of three arbitrary impedances shown in Fig. 10.4.
Determine the impedance presented by the end of a number of series-connected
elements. Elements Z1 and Z2 must have no mass, since a mass always has one end
connected to a stationary inertial reference. However, the impedance Z3 may be a
mass. The relative velocities between the end connections of each element are indi-
cated by va, vb, and vc; the velocities of the connections with respect to the stationary
reference point G are indicated by v1, v2, and v3:

v3 = vc v2 = v3 + (v2 − v3) = vc + vb

v1 = v2 + (v1 − v2) = va + vb + vc

The impedance at point 1 is F/v1, and the force F is transmitted to all three elements.
The relative velocities are

va = vb = vc =

Thus, the total impedance is defined by

= = + +

Extending this principle to any number of massless series elements,

= �
n

i = 1
(10.15)

where Zs is the total mechanical imped-
ance of the elements Zi connected in
series.

Since mobility is the reciprocal of
impedance, the total mobility of series
connected elements (expressed as mobil-
ities) is

1
�
Zi

1
�
Zs

1
�
Z3

1
�
Z2

1
�
Z1

F/Z1 + F/Z2 + F/Z3���
F

1
�
Z

F
�
Z3

F
�
Z2

F
�
Z1

1
�
�i
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�p
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c
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k

FIGURE 10.3 Schematic representation of a series com-
bination of a spring and a damper.

1

F

2 3 G

Z1 Z2

v1

Z3

va vb vc

v2 v3

FIGURE 10.4 Generalized three-element sys-
tem of series-connected mechanical impedances.
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�s = �
n

i = 1
�i (10.16)

Using Eqs. (10.15) and (10.16), the mobility and impedance for Fig. 10.3 become:

� = 1/c + jω/k and Z = (ck/jω)/(c + k/jω)

MECHANICAL CIRCUIT THEOREMS

The following theorems are the mechanical analogs of theorems widely used in ana-
lyzing electric circuits. They are statements of basic principles (or combinations of
them) that apply to elements of mechanical systems. In all but Kirchhoff’s laws, these
theorems apply only to systems composed of linear, bilateral elements. A linear ele-
ment is one in which the magnitudes of the basic elements (c, k, and m) are constant,
regardless of the amplitude of motion of the system; a bilateral element is one in
which forces are transmitted equally well in either direction through its connections.

KIRCHHOFF’S LAWS

1. The sum of all the forces acting at a point (common connection of several ele-
ments) is zero:

�
n

i
Fi = 0 (at a point) (10.17)

This follows directly from the considerations leading to Eq. (10.13).
2. The sum of the relative velocities across the connections of series mechanical ele-

ments taken around a closed loop is zero:

�
n

i
vi = 0 (around a closed loop) (10.18)

This follows from the considerations leading to Eq. (10.14).

Kirchhoff’s laws apply to any system, even when the elements are not linear or
bilateral.

Example 10.1. Find the velocity of all the connection points and the forces act-
ing on the elements of the system shown in Fig. 10.5. The system contains two veloc-
ity generators v1 and v6.Their magnitudes are known, their frequencies are the same,
and they are 180° out-of-phase.

A. Using Eq. (10.17), write a force equation for each connection point except 
a and e.
At point b: F1 − F2 − F3 = 0. In terms of velocities and impedances:

(v1 − v2)Z1 − (v2 − v3)Z2 − (v2 − v4)Z4 = 0 (a)

At point c, the two series elements have the same force acting: F2 − F2 = 0. In terms
of velocities and impedances:

(v2 − v3)Z2 − (v3 − v4)Z3 = 0 (b)

At point d: F2 + F3 − F4 − F5 = 0. In terms of velocities and impedances:

10.6 CHAPTER TEN
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(v3 − v4)Z3 + (v2 − v4)Z4 − (v4 + v6)Z5 − (v4 − v5)Z6 = 0 (c)

Note that v6 is (+) because of the 180° phase relation to v1.
At point f: F5 − F5 = 0. In terms of velocities and impedances:

(v4 − v5)Z6 − v5Z7 = 0 (d)

Since v1 and v6 are known, the four unknown velocities v2, v3, v4, and v5 may be deter-
mined by solving the four simultaneous equations above. After the velocities are
obtained, the forces may be determined from the following:

F1 = (v1 − v2)Z1 F2 = (v2 − v3)Z2 = (v3 − v4)Z3

F3 = (v2 − v4)Z4 F4 = (v4 + v6)Z5

F5 = (v4 − v5)Z6 = v5Z7

B. The method of node forces. Equations (a) through (d) above can be rewritten
as follows:

v1Z1 = (Z1 + Z2 + Z3)v2 − Z2v3 − Z4v4 (a′ )

0 = −Z2v2 + (Z2 + Z3)v3 − Z3v4 (b′ )

0 = −Z4v2 − Z3v3 + (Z3 + Z4 + Z5 + Z6)v4 − Z6v5 (c′ )

−v6 Z5 = −Z6v4 + (Z6 + Z7)v5 (d′ )

These equations can be written by inspection of the schematic diagram by the follow-
ing rule: At each point with a common velocity (force node), equate the force generators
to the sum of the impedances attached to the node multiplied by the velocity of the node,
minus the impedances multiplied by the velocities of their other connection points.

When the equations are written so that the unknown velocities form columns, the
equations are in the proper form for a determinant solution for any of the
unknowns. Note that the determinant of the Z’s is symmetrical about the main diag-
onal. This condition always exists and provides a check for the correctness of the
equations.

C. Using Eq. (10.18), write a velocity equation in terms of force and mobility
around enough closed loops to include each element at least once. In Fig. 10.5, note
that

F3 = F1 − F2 and F5 = F1 − F4

MECHANICAL IMPEDANCE 10.7
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FIGURE 10.5 System of mechanical elements and vibration sources analyzed in Example 10.1 to
find the velocity of each connection and the force acting on each element.
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Around loop (1):

F2(�2 + �3) − (F1 − F2)�4 = 0 (e)

The minus sign preceding the second term results from going across the element 4 in
a direction opposite to the assumed force acting on it.

Around loop (2):

F4�5 − v6 − (F1 − F4)(�6 + �7) = 0 (f)

A summation of velocities from A to G along the upper path forms the following
closed loop:

v1 + F1�1 + F2(�2 + �3) + F4�5 − v6 = 0 (g)

Equations (e), (f ), and (g) then may be solved for the unknown forces F1, F2, and F4.
The other forces are F3 = F1 − F2 and F5 = F1 − F4. The velocities are:

v2 = v1 − F1�1 v3 = v2 − F2�2 v4 = v2 − F3�4 v5 = F5�7

When a system includes more than one source of vibration energy, a Kirchhoff’s
law analysis with impedance methods can be made only if all the sources are oper-
ating at the same frequency. This is the case because sinusoidal forces and velocities
can add as phasors only when their frequencies are identical. However, they may dif-
fer in magnitude and phase. Kirchhoff’s laws still hold for instantaneous values and
can be used to write the differential equations of motion for any system.

RECIPROCITY THEOREM

If a force generator operating at a particular frequency at some point (1) in a system
of linear bilateral elements produces a velocity at another point (2), the generator can
be removed from (1) and placed at (2); then the former velocity at (2) will exist at (1),
provided the impedances at all points in the system are unchanged. This theorem also
can be stated in terms of a vibration generator that produces a certain velocity at its
point of attachment (1), regardless of force required, and the force resulting on some
element at (2).

Reciprocity is an important characteristic of linear bilateral elements. It indicates
that a system of such elements can transmit energy equally well in both directions. It
further simplifies the calculation on two-way energy transmission systems since the
characteristics need be calculated for only one direction.

SUPERPOSITION THEOREM

If a mechanical system of linear bilateral elements includes more than one vibration
source, the force or velocity response at a point in the system can be determined by
adding the response to each source, taken one at a time (the other sources supplying
no energy but replaced by their internal impedances).

The internal impedance of a vibrational generator is that impedance presented at
its connection point when the generator is supplying no energy. This theorem finds
useful application in systems having several sources. A very important application
arises when the applied force is nonsinusoidal but can be represented by a Fourier

10.8 CHAPTER TEN
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series. Each term in the series can be considered a separate sinusoidal generator.The
response at any point in the system can be calculated for each generator by using the
impedance values at that frequency. Each response term becomes a term in the
Fourier series representation of the total response function.The over-all response as
a function of time then can be synthesized from the series.

Figure 10.6 illustrates an application of superposition. The velocities vc′ and vc″
can be determined by the methods of Example 10.1. Then the velocity vc is the sum
of vc′ and vc″.

THÉVENIN’S EQUIVALENT SYSTEM

If a mechanical system of linear bilateral elements contains vibration sources and
produces an output to a load at some point at any particular frequency, the whole sys-
tem can be represented at that frequency by a single constant-force generator Fc in par-
allel with a single impedance Zi connected to the load. Thévenin’s equivalent-system
representation for a physical system may be determined by the following experi-
mental procedure: Denote by Fc the force which is transmitted by the attachment
point of the system to an infinitely rigid fixed point; this is called the clamped force.
When the load connection is disconnected and perfectly free to move, a free veloc-
ity vf is measured.Then the parallel impedance Zi is Fc/vf.The impedance Zi also can
be determined by measuring the internal impedance of the system when no source

is supplying motional energy.
If the values of all the system ele-

ments in terms of ideal elements are
known, Fc and Zi may be determined
analytically. A great advantage is de-
rived from this representation in that
attention is focused on the characteris-
tics of a system at its output point and
not on the details of the elements of the
system.This allows an easy prediction of
the response when different loads are
attached to the output connection.After
a final load condition has been deter-
mined, the system may be analyzed in
detail for strength considerations.

NORTON’S EQUIVALENT

SYSTEM

A mechanical system of linear bilateral
elements having vibration sources and
an output connection may be represented
at any particular frequency by a single
constant-velocity generator vf in series
with an internal impedance Zi.

This is the series system counterpart
of Thévenin’s equivalent system where
vf is the free velocity and Zi is the
impedance as defined above. The same
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FIGURE 10.6 System of mechanical elements
including two force generators used to illustrate
the principle of superposition.
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advantages in analysis exist as with Thévenin’s parallel representation. The most
advantageous one depends upon the type of structure to be analyzed. In the experi-
mental determination of an equivalent system, it is usually easier to measure the free
velocity than the clamped force on large heavy structures, while the converse is true
for light structures. In any case, one representation is easily derived from the other.
When vf and Zi are determined, Fc = vfZi.

MECHANICAL 2-PORTS

Consider the “black box” shown in Fig. 10.7. It may have many elements between
terminals (ports) (1) and (2). The forces and velocities at the ports can be deter-
mined by the use of 2-port equations in terms of impedances and mobilities. The
impedance parameter equations are

F1 = Z11v1 + Z12v2 and F2 = Z21v1 + Z22v2

The Z parameters can be determined by measurements or from a known circuit
model. These parameters are defined as follows:

1. For v2 = 0 (port 2 clamped), Z11 = F1 /v1 and Z21 = F2 /v1.
2. For v1 = 0 (port 1 clamped), Z12 = F1 /v2 and Z22 = F2 /v2

The mobility parameter equations for this situation are as follows:

v1 = �11F1 + �12F2 and v2 = �12F1 + �22F2

These � parameters can be determined by measurement or from a model. The def-
initions are as follows:

1. For F2 = 0 (port 2 free), �11 = v1/F1 and �12 = v2/F1.
2. For F1 = 0 (port 1 free), �21 = v1/F2 and �22 = v2/F2.

Note that for large, massive structures, it may be difficult to clamp the ports to meas-
ure the impedance parameters. In this case, the mobility parameters requiring free
conditions may be more appropriate. Likewise, for very light structures, the imped-
ance parameters may be more appropriate. In any case, one set of parameters can be
determined from the other by matrix inversion.

10.10 CHAPTER TEN
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FIGURE 10.7 “Black box” representation of a me-
chanical system.

8434_Harris_10_b.qxd  09/20/2001  11:18 AM  Page 10.10



MECHANICAL IMPEDANCE MEASUREMENTS

AND APPLICATIONS

Measurements

Transducers (Chap. 12), instrumentation (Chap. 13), and spectrum analyzers (Chap.
14) are essential subjects related to impedance measurements. Some special consid-
erations are given here. The measurement of mechanical impedance involves the
application of a sinusoidal force and the measurement of the complex ratio of force
to the resulting velocity. Many combinations of transducers are capable of perform-
ing these measurements. However, the most effective method is to use an impedance
transducer such as that shown in Fig. 10.8.These devices are available from suppliers
of vibration-measuring sensors. As shown in Fig. 10.8, the force supplied by the
vibration exciter passes through a force sensor to the unknown Zx, and the motion is
measured by an accelerometer whose output is integrated to obtain velocity. The
accelerometer measures the true motion, but the force sensor measures the force
required to move the accelerometer and its mounting structure, as well as the force
to Zx. This extra mass is usually called the “mass below the force gage.” The imped-
ance is then as follows:

Zx = jω[Kf /Ka](ef /ea) − jωmo

where ef and ea are the force gage and accelerometer phasor potentials, Kf in volts/N
is the force gage sensitivity, Ka in volts/m/sec2 is the accelerometer sensitivity, and mo

is the mass below the force gage.The ratio Kf /Ka and mo can be determined by a cal-
ibration as follows:

1. With no attachment, Zx = 0. Then mo = [Kf /Ka] (ef /ea)0.
2. Attach a known mass, M. Then M + mo = [Kf /Ka] (ef /ea)1, mo = M/{[(ef /ea)0 /

(ef /ea)1] − 1}.
3. Thus [Kf /Ka] = mo/(ef /ea)0.

MECHANICAL IMPEDANCE 10.11

FIGURE 10.8 Device for the measurement of mechanical
impedance in which force and acceleration are measured.
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With the aid of a two-channel analyzer (see Chap. 14) or appropriate signal process-
ing software (see Chap. 22), forces such as sine-sweeps, broad bandwidth random
noise, or impacts can be used for these measurements. The Fourier transform of the
force and acceleration potentials will provide correct sinusoidal terms. The impact
method can be implemented with a hammer equipped with a force gage and
accelerometer, as detailed in Chap. 21.

APPLICATIONS

The impedance concept is widely used in the study of mechanical systems.2–4,6 Three
practical applications are presented here.

Application 1. Assume one wishes to determine the free motion at a point on a
structure that would be altered by the attachment of a sensor such as an accelerom-
eter. The procedure is illustrated in Fig. 10.9, and involves the following steps.

1. Turn off the source causing the vibration vf .

2. Measure the internal impedance Z0 at a point A over the expected frequency
range.

3. Attach the measuring device whose known impedance is Zm and measure vm.

4. Draw the Norton equivalent circuit at point A with Zm attached. Note that Z0 is
attached to the reference since it may be masslike.

5. Calculate the free velocity from

vf = vmZm /(Z0 + Zm)

Application 2. Assume one wishes to choose a vibration isolator between a
vibrating machine and a flexible structure. The criteria are to reduce the ratio of the
velocity of the structure to the free velocity of the machine below some desired
value, or to reduce the ratio of the force transmitted to the structure to the clapped
force of the machine below some desired value. The procedure is as follows:

1. Model the system as shown in Fig. 10.10, where Fcm is the clamped force and Zm is
the impedance at the attachment point. The structural impedance at the attach-
ment point is Zst and “Z” is a set of Z parameters of the isolator that satisfy

F1 = Z11v1 + Z12v2 and F2 = Z21v1 + Z22v2

10.12 CHAPTER TEN

FIGURE 10.9 Measurement of free motion.
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2. Add the source and structure to obtain

F1 = Fcm − Zmv1 and F2 = −Zstv2

The system equations then become

Fcm = (Z11 + Zm)v1 + Z12v2 and 0 = Z21v1 + (Z22 + Zst)v1

3. Solve for the force to the structure Fst = F2 from

Fst /Fcm = Z12Zst / [(Z11 + Zm)(Z22 + Zst) − Z12Z21]

This result follows from vst = Fst /Zst and vfm = Fcm /Zm.

4. The ratio of the velocity of the structure to the free velocity of the machine is
then given by

vst /vfm = Z21Zm / [(Z11 + Zm)(Z22 + Zst) − Z12Z21]

Typical vibration isolators can be modeled as shown in Fig. 10.11, where the Z
parameters are given by

Z11 = c + jωm1 + k /jω ; Z22 = c + jωm2 + k /jω ; Z12 = Z21 = c + k /jω

The values of c, k, m1, and m2 should be available from the manufacturer, or they can
be measured. Using the measured values of Zm and Zst, the transmissibilities of the
force and velocity can be computed from the expression above, and plots of these
functions versus frequency can be compared to the desired criteria.

Application 3. Assume one wishes to isolate a piece of equipment from a vibrat-
ing structure. The procedure is essentially the same as detailed in Application 2.

MECHANICAL IMPEDANCE 10.13

FIGURE 10.10 Vibration isolation application.
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FIGURE 10.11 Vibration isolator model.
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Specifically, measure the clamped force Fst, or the free velocity vst, of the structure.
Then in Fig. 10.10, replace the Fcm and Zm with Fst and Zst, and replace Zst with Zm.
Proceed to write the system 2-port equations and solve for the force or velocity
transmissibility.
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CHAPTER 11
STATISTICAL METHODS

FOR ANALYZING
VIBRATING SYSTEMS

Richard G. DeJong

INTRODUCTION

This chapter presents statistical methods for analyzing vibrating systems. Two situa-
tions often occur in which a statistical analysis is useful. The first occurs when the
excitation of a system appears to be random in time, in which case it is convenient to
describe the temporal response of the system statistically rather than deterministi-
cally. This form of analysis is called random vibration analysis1 and is presented in
the first half of this chapter. The second situation occurs when a system is compli-
cated enough that its resonant modes appear to be distributed randomly in fre-
quency, in which case it is convenient to describe the frequency response of the
system statistically rather than deterministically. This form of analysis2 is called sta-
tistical energy analysis (SEA) and is presented in the second half of this chapter.

In either situation the randomness need only appear to be so. For example, in
random vibration it may be that the excitation could be calculated exactly if enough
information were known. However, if the excitation is adequately described by sta-
tistical parameters (such as the mean value and variance), then a statistical analysis
of the system response is valid. Similarly, in a complicated system the modes can pre-
sumably be analyzed deterministically. However, if the modal distribution is ade-
quately described by statistical parameters, then a statistical energy analysis of the
system response is valid whether or not the excitation is random.

RANDOM VIBRATION ANALYSIS

A random vibration is one whose instantaneous value is not predictable with the
available information. Such vibration is generated, for example, by rocket engines,
turbulent flows, earthquakes, and motion over irregular surfaces.While the instanta-
neous vibration level is not predictable, it is possible to describe the vibration in sta-

11.1
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tistical terms, such as the probability distribution of the vibration amplitude, the
mean-square vibration level, and the average frequency spectrum.

A random process may be categorized as stationary (steady-state) or nonstation-
ary (transient). A stationary random process is one whose characteristics do not
change over time. For practical purposes a random vibration is stationary if the
mean-square amplitude and frequency spectrum remain constant over a specified
time period. A random vibration may be broad-band or narrow-band in its fre-
quency content. Figure 11.1 shows typical acceleration-time records from a system
with a mass resiliently mounted on a base subjected to steady, turbulent flow. The
base vibration is broad-band with a Gaussian (or normal) amplitude distribution.
The vibration of the mass is narrow-band (centered at the natural frequency of the
mounted system) but also has a Gaussian amplitude distribution. The peaks of the
narrow-band vibration have a distribution called the Rayleigh distribution.

Technically, the statistical measures of a random process must be averaged over
an ensemble (or assembly) of representative samples. For an arbitrary random vibra-
tion this means averaging over a set of independent realizations of the event. This is
illustrated in Fig. 11.2 where four vibration-time records from a point on an internal
combustion engine block are shown synchronized with the firing in a particular
cylinder. Due to uncontrollable variations in the system, the vibration is not deter-
ministically repeatable.The mean-square amplitude is also nonstationary.Therefore,
the statistical parameters of the vibration are time dependent and must be deter-
mined from the ensemble of samples from each record at a particular time.

For a stationary random process it may be possible to obtain equivalent ensem-
ble averages by sampling over time if each time record is representative of the entire
random process. Such a random process is called ergodic. However, not all station-
ary random processes are ergodic. For example, suppose it is desired to determine
the statistical parameters of the vibration levels of an aircraft fuselage during repre-
sentative in-flight conditions. On a particular flight the vibration levels may be suffi-
ciently stationary to obtain useful time averages. However, one flight is unlikely to
encompass all of the expected variations in the weather and other conditions that
affect the vibration levels. In this case it is necessary to combine the time averages
with an ensemble average over a number of different flight conditions which repre-
sent the entire range of possible conditions.

11.2 CHAPTER ELEVEN

FIGURE 11.1 (A) Example of a narrow-band random signal x(t) with a peak envelope xp.
(B) Example of a broad-band random signal y(t). Curves along the vertical axes give the
probability distributions for the instantaneous (solid lines) and peak (dashed line) values. (C)
Resiliently mounted mass m with stiffness k and viscous damper c. When the base is exposed
to a broad-band random vibration the mass will have a narrow-band random response.
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The first half of this chapter describes methods for determining the response of a
vibrating system subjected to random excitations. First, the statistical parameters
used in this analysis are presented. Next, the responses of single and multiple
degree-of-freedom systems to random excitations (stationary and nonstationary)
are analyzed. Then, the application of this analysis to failure prediction is summa-
rized. (More information on failure analysis is included in Chap. 34.)

STATISTICAL PARAMETERS OF RANDOM

VIBRATIONS*

PROBABILITY DISTRIBUTION FUNCTIONS

The fundamental statistical parameter of a random vibration is the probability dis-
tribution of the vibration amplitude x(t) as a function of time. (In general, x may rep-
resent the acceleration, velocity, displacement, stress, etc.) In Fig. 11.1 the amplitude

STATISTICAL METHODS FOR ANALYZING VIBRATING SYSTEMS 11.3

FIGURE 11.2 Ensemble of vibration responses (x1, x2, x3, x4) meas-
ured at a point on an internal combustion engine block and synchro-
nized with a particular cylinder firing. The amplitude at time t1 is a
random variable.

* See Chap. 22 for methods to determine these parameters from measured data.
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distribution of x is represented by the probability density function p(x).The function
p(x) is obtained from the probability that a particular sample xi(t1) has a value
between x and x + ∆x, represented by Prob[x ≤ xi(t1) < x + ∆x]. For a nonstationary
random process this probability is a function of the time t1.The probability density is
defined by

p(x,t1) � lim
∆x → 0

(11.1)

An alternate representation of the amplitude distribution is the cumulative
(probability) distribution function P(x), which is the probability that a particular
sample xi(t1) has a value less than or equal to x. The cumulative distribution is
defined by

P(x,t1) � Prob[xi(t1) ≤ x] = �x

−∞
p(x′,t1) dx′ (11.2)

Therefore, the probability density and cumulative distribution functions are related
as illustrated in Fig. 11.3. For most random processes the cumulative distribution
function is smooth and differentiable so that Eq. (11.2) can be rewritten as

p(x,t1) = P(x,t1) (11.3)
d

�
dx

Prob[x ≤ xi(t1) < x + ∆x]
���

∆x

11.4 CHAPTER ELEVEN

FIGURE 11.3 Examples of the probability distribu-
tions of a random variable x. (A) Cumulative (probabil-
ity) distribution function, P(x). (B) Probability density
function p(x).

Since by definition P(x) → 1 as x → ∞, the total area under p(x) is normalized to be
unity, or

P(∞,t1) = �∞

−∞
p(x,t1) dx = 1 (11.4)
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MEAN VALUE

The mean (or expected) value x�(�t�1�)� of x at time t1 is defined by the arithmetic aver-
age of all samples xi (t1):

x�(�t�1�)� � lim
N → ∞ �

N

i = 1
xi(t1) (11.5)

The mean value can be obtained from the probability density by

x�(�t�1�)� = �∞

−∞
xp(x,t1) dx (11.6)

If x(t) is stationary over time 0 ≤ t ≤ T, then the mean value can be approximated by
the time average:

x� � �T

0
x(t) dt (11.7)

where the approximation improves as T → ∞.

MEAN-SQUARE VALUE

The mean-square value x�2�(�t�1�)� is defined as the expected value of all samples xi
2(t1).

The mean-square value can be obtained from the probability density by

x�2�(�t�1�)� = �∞

−∞
x2 p(x,t1) dx (11.8)

If x(t) is stationary, then the mean-square value can be approximated by the time
average:

x�2� � �T

0
x2 (t) dt (11.9)

MOMENTS OF THE PROBABILITY DISTRIBUTION

The mean and mean-square values are called the first and second moments of p(x),
respectively. The nth moment of p(x) is then defined by

x�n�(�t�1�)� = �∞

−∞
xn p(x,t1) dx (11.10)

The variance σ2 (or square of the standard deviation σ) is the expected value of
the quantity (x − x�)2 and is evaluated by

σ2 = �∞

−∞
(x − x�)2 p(x) dx = x�2� − (x�)2 (11.11)

where the designation of the time dependence is omitted for clarity. The variance is
then the difference between the mean-square and the square of the mean value of x.

1
�
T

1
�
T

1
�
N
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For many random variables in vibration analysis the mean value is zero so that the
variance and mean-square values can be used interchangeably.

Higher-order moments are usually represented in terms of the normalized vari-
able z = (x − x�)/σ. The value of z is the number of standard deviations x is from the
mean. The normalized third moment is called the skewness a3:

a3 = �∞

−∞
� �

3

p(x) dx (11.12)

The normalized fourth moment is called the kurtosis a4:

a4 = �∞

−∞
� �

4

p(x) dx (11.13)

For a Gaussian distribution a3 = 0 and a4 = 3.

GAUSSIAN (NORMAL) DISTRIBUTION

The Gaussian distribution is important in random vibration analysis because it is so
frequently encountered. The Gaussian probability density function is given by

p(x) = e−1/2[(x − x�)/σ]2 (11.14)

One reason the Gaussian distribution is so common is the central limit theorem which
states that the sum of N random variables having an arbitrary distribution will
approach a Gaussian distribution as N → ∞. If a random vibration results from the
sum of a large number of random excitations, its distribution will tend to be Gaussian.

As a corollary to this, if a vibration response results from the product of a large
number of random variables, the logarithm of the vibration magnitude will be the
sum of the logarithm of the variables, and this sum will tend to have a Gaussian dis-
tribution. The vibration magnitude is then said to have a log-normal distribution.
This occurs in the vibration of complex machinery where the distribution of
responses over an ensemble of nominally identical units will tend to be log-normal.

One common model for the excitation of a random vibration is a sequence of
pulses with random amplitudes and random time spacing as illustrated in Fig. 11.4.
This model can represent, for example, the pressure pulses in the boundary layer of
a turbulent fluid flow or the sequence of stress pulses from an earthquake arriving at
some location after propagating through the earth’s stratified media. The response
of a system to this type of excitation can be thought of as a sum of the responses to
each pulse. The response of a system to a unit impulse is called the impulse response
h(t). The response to a sequence of pulses is then the sum of a sequence of impulse
responses appropriately scaled in amplitude and delayed in time. If the impulse
response is long compared to the average spacing between the pulses, then the
resulting system response will have a Gaussian distribution.

Broad-band, stationary random variables with Gaussian distributions are often
called white noise. Ideally, white noise has an equal contribution from all frequen-
cies. Practically, white noise is usually band-limited to the frequency range of inter-
est. However, a Gaussian distribution does not necessarily imply white noise. This
can be seen from Fig. 11.1 where the vibration response of the resiliently mounted
mass is Gaussian and narrow-band in frequency.

1
�
σ	2�π�

x − x��
σ

x − x��
σ
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CORRELATION FUNCTIONS

Correlation functions are used to describe the average relation between random
variables.The autocorrelation Rxx(τ) is the expected value of the product of two sam-
ples of xi(t) that are separated in time by τ. In general, the autocorrelation is a func-
tion of the time t1 of the first sample:

Rxx(τ,t1) = x�(�t�1�)�x�(�t�1��+��τ�)� (11.15)

By definition the autocorrelation at zero delay (τ = 0) is equal to the mean-square
value of the variable, and this is the maximum value of the autocorrelation function.

If x(t) is stationary over time 0 ≤ t ≤ 2T, the autocorrelation is independent of the
time of the first sample and is a function only of the absolute value of the delay τ.
Then, the autocorrelation function (for 0 ≤ τ ≤ T) can be approximated by the time
average:

Rxx(−τ) = Rxx(τ) � �T

0
x(t)x(t + τ) dt (11.16)

Comparing Eqs. (11.9) and (11.16) it follows that Rxx(0) = x�2�.
For a system excited by white noise the autocorrelation of a response variable

can be used to determine the frequency bandwidth of the system response function.
If white noise is filtered with an ideal bandpass filter having cut-off frequencies f1

and f2 (f1 < f2), the autocorrelation of the resulting band-limited random variable is
given by

Rxx(τ) = x�2� (11.17)
sin(2πf2τ) − sin(2πf1τ)
���

2π(f2 − f1)τ

1
�
T
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FIGURE 11.4 Example of the generation of broad-
band random vibration with a Gaussian probability dis-
tribution. (A) Sequences of excitation pulses p. (B)
System impulse response function h(t). (C) Resulting
system response amplitude x.
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If f1 = 0, the first zero crossing of the autocorrelation function occurs at a delay τ = 1/f2.
The average relation between two variables x(t) and y(t) is represented by the

cross-correlation Rxy (τ,t1) defined by

Rxy(τ,t1) = x�(�t�1�)�y�(�t�1��+��τ�)� (11.18)

For variables of a stationary process, the cross-correlation is a function only of the
delay τ. However, the maximum value does not necessarily occur at τ = 0. The cross-
correlation function can be approximated by the time average:

Rxy(τ) � �T

0
x(t)y(t + τ) dt (11.19)

POWER SPECTRAL DENSITY

The frequency content of a random variable x(t) is represented by the power spec-
tral density Wx(f), defined as the mean-square response of an ideal narrow-band fil-
ter to x(t), divided by the bandwidth ∆f of the filter in the limit as ∆f → 0 at frequency
f (Hz):

Wx( f ) = lim
∆f→0

(11.20)

This is illustrated in Fig. 22.5. By this definition the sum of the power spectral com-
ponents over the entire frequency range must equal the total mean-square value
of x:

x�2� = �∞

0
Wx( f ) df (11.21)

The term power is used because the dynamical power in a vibrating system is pro-
portional to the square of the vibration amplitude.

An alternate approach to the power spectral density of stationary variables uses
the Fourier series representation of x(t) over a finite time period 0 ≤ t ≤ T, defined in
Eq. (22.4) as

x(t) = x� + �
∞

n = 1
An cos(2πfnt) + �

∞

n = 1
Bn sin(2πfnt) (11.22)

where fn = n/T. The coefficients of the Fourier series are found by

An = �T

0
x(t)cos(2πfnt) dt

Bn = �T

0
x(t)sin(2πfnt) dt

(11.23)

Comparing this to Eq. (11.19), it follows that the coefficients of the Fourier series are
a measure of the correlation of x(t) with the cosine and sine waves at a particular 
frequency.

2
�
T

2
�
T

x� 2���f�
�∆f

1
�
T
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The relation between the Fourier series and the power spectral density can be
found by evaluating x�2� from Eq. (11.22):

x�2� = �T

0 
x� + �
∞

n = 1
[An cos(2πfnt) + Bnsin(2πfnt)]�

× 
x� +  �
∞

m = 1
[Amcos(2πfmt) + Bmsin(2πfmt)]�dt (11.24)

The integral over time cancels all cross terms in the product of the Fourier series
leaving only the squares of each term:

x�2� = �T

0 
(x�)2 +  �
∞

n = 1
[An

2cos2(2πfnt) + Bn
2sin2(2πfnt)]�dt

= (x�)2 + �
∞

n = 1
�An

2 + Bn
2 (11.25)

Each term in this series can be viewed as representing a component of the mean-
square value associated with a filter of bandwidth ∆f = 1/T. The power spectral den-
sity is then approximated by

Wx( fn) � �An
2 + Bn

2� (11.26)

Using a similar method the relation between Wx( f ) and Rxx(τ) can be found. Equa-
tion (11.24) can be used to evaluate Rxx(τ) by changing the factors fmt to fm(t + τ). The
time integration removes all terms except those of the form 1⁄2(An

2 + Bn
2)cos(2πfnτ).

The autocorrelation is then given by

Rx(τ) = (x�)2 + �
∞

n = 1
�An

2 + Bn
2�cos(2πfnτ)

= (x�)2 + �
∞

n = 1
Wx(fn)cos(2πfnτ)∆f (11.27)

In the limit as T → ∞, ∆f → 0 and the summation approaches the continuous
integral:

Rx(τ) = �∞

0
Wx( f )cos(2πfτ) df (11.28)

This is the Fourier cosine transform. The reciprocal relation is:

Wx( f ) = 4 �∞

0
Rx(τ)cos(2πfτ) dτ (11.29)

For transient random variables the power spectral density is a function of time.
However, if the power spectral density is integrated over the time duration of a tran-
sient x(t), an energy spectral density Ex(f) can be obtained representing the fre-
quency content of the total energy in x. Using the Fourier series approach, Ex(fn) =
TWx( fn). Alternately, the shock spectrum can be used to represent the frequency
content of a transient. The shock spectrum represents the peak amplitude response

1
�
2

T
�
2

1
�
2

1
�
T

1
�
T
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of a narrow-band resonance filter to a transient event (see Chap. 23). A statistical
method for estimating the shock spectrum is given in the next section.

RESPONSE OF A SINGLE DEGREE-OF-FREEDOM

SYSTEM

In this section the single degree-of-freedom resonator shown in Fig. 11.1 is analyzed
to obtain an expression for the mean-square response of the mass when the base is
subjected to a random vibration.The equation of motion for this system is derived in
Chap. 2 as

z̈ + ż + z = ÿ (11.30)

where z = x − y is the motion of the mass relative to the base. This equation is simi-
lar in form to the equation for a force excitation F(t) on the mass and a rigid base:

ẍ + ẋ + x = (11.31)

In general, the equations of this form can be solved using r for the response vari-
able and s for the source term. Defining

fn = �� = the natural frequency

ζ = = the critical damping ratio

(11.32)

gives:

r̈ + 4πζ fn ṙ + (2πfn)2r = s(t) (11.33)

With a sinusoidal acceleration source s(t) = S sin(2πft), the relative displacement
response of the system is given in terms of a frequency response function H( f ) with
a magnitude given as

1
|H( f )|2 = =

(2πfn)4
�1 − � �
2


2

+ �2ζ �
2

�
(11.34)

For a broad-band random source, if ζ << 1 so that |H(f)|2 is sharply peaked at 
f = fn and the source is stationary with a relatively smooth spectrum, as illustrated in
Fig. 11.5, then the mean-square response of the system is determined by the source
spectrum at f = fn times the area under the |H( f )|2 curve:

r�2� = Ws( fn)�∞

0
|H( f )|2 df = (11.35)

Ws( fn)��
8ζ(2πfn)3

f
�
fn

f
�
fn
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�
Ws( f )
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�
2	k�m�

k
�
m
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�
2π
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�
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�
m
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�
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�
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The resonance of the system acts as a narrow-band filter on the source spectrum as
is illustrated in Fig. 11.1. The vibration is essentially at frequency fn with a Gaussian
amplitude distribution.The mean-square acceleration and velocity levels are related
to the displacement response by �̈x2 = (2πfn)2 �̇x2 = (2πfn)4x�2�. The autocorrelation of the
stationary response is found to be

Rr(τ) = r�2� e−2πζfnτ�cos(2πfdt) + sin(2πfdt) (11.36)

where fd = fn 	1� −� ζ�2�.
The response of the resonator to a transient excitation can be analyzed for the

simple case where the source is suddenly turned on and remains stationary there-
after.3 The transient mean-square response starting from rest is then found to be (for
ζ << 1)

r�2�(t) = (1 − e−4πζfnt) (11.37)

The mean-square response grows to the steady-state value in the same way that a
first-order dynamic system responds to a step input.This is an important result, illus-
trating that the dynamical power in a vibrating system is transmitted according to
the simple first-order diffusion equation with a time constant τ = 1/(4πζfn).

This result can be used to estimate the shock spectrum of a transient random
excitation with a known time-dependent mean-square level s�2�(t,∆f ) in the frequency
band ∆f. The mean-square response of a resonator to this excitation can be found by
solving the following first-order differential equation either numerically or using the
Laplace transform method (see Chap. 8):

r�2�(t) + (4πζ fn)r�2�(t) = (11.38)

assuming fn is within the bandwidth ∆f.
For example, Fig. 11.6 shows the measured transient acceleration of a concrete

floor slab in a building with an operating punch press. As with many transient vibra-
tion time-histories, the smoothed mean-square level can be approximated by

�̈x2(t) = At e−βt (11.39)

�s2(t)
��
4∆f(2πfn)2

d
�
dt

Ws( fn)��
8ζ(2πfn)3

ζ
�
	1� −� ζ�2�
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FIGURE 11.5 Power spectral density W(f ) of the
response of a resonator with ζ << 1 excited by a broad-
band random source having the spectrum shown by the
dashed curve.
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where for this case A � 0.2g2/s and β � 35/s with ∆f � 80 Hz. The solution of Eq.
(11.38) with this form of excitation is given by

r�2�(t) = �  (11.40)

where α = 4πζfn. The undamped shock response is the maximum response level as 
α → 0, which is

r�2�max → (11.41)

The undamped shock response spectrum is the peak response as a function of fn

(see Chap. 23), which can be estimated with 95 percent certainty as the 2σ level
assuming a Gaussian distribution:

rpeak � 2��r�2�max = �� (11.42)

This result is plotted in Fig. 11.6D along with the exact calculation of the shock spec-
trum at 5-Hz intervals using a particular sample of the acceleration time-history.

RESPONSE OF MULTIPLE DEGREE-OF-FREEDOM

SYSTEMS

Real elastic systems have many degrees-of-freedom and, therefore, many modes of
resonance, as discussed in Chaps. 2 and 7. However, these normal modes ψn each

1
�
2πfnβ

A
�
∆f

A
��
4∆f(2πfn)2β2

t(α − β)e−βt + e−αt − e−β t

���
(α − β)2

A
��
4∆f(2πfn)2
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FIGURE 11.6 Transient response of a concrete floor slab with an operating punch press. (A) Mea-
sured acceleration signal. (B) Mean-square smoothed signal (solid curve) and curve fit (dashed
curve) using Eq. (11.39). (C) Measured energy spectral density. (D) Computed acceleration shock
response spectrum (symbols) and statistical estimate (dashed curve) using Eq. (11.42).
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respond as a simple resonator, and the total response of a system can be obtained by
summing the response of all of the modes (modal superposition):

r(υ,t) = �
n

qn(t)ψn(υ) (11.43)

where υ represents the spatial dimension(s) of the system.
If the damping in the system is distributed proportionately to the mass and stiff-

ness, the normal modes are uncoupled and each has an equation of motion in the
form of Eq. (11.33) with a source term given by

sn(t) = �s(υ,t)ψn(υ) dυ � ϕn ��s�2�(�υ�,�t�)� (11.44)

where ϕn is the modal participation factor of the source. The transfer function for
each mode will be of the form of Eq. (11.34) so that the resulting sum of the modal
responses gives

r�2� = �
n

(11.45)

If the damping is not distributed proportionately but is small (ζ << 1), the super-
position of normal modes gives approximately correct results. This is illustrated by
the two degree-of-freedom system shown in Fig. 11.7.An instrument housing (m1) is
resiliently mounted on a vibrating base. A dynamic vibration absorber (see Chap. 6)
is attached to suppress the vibration of the housing at frequency f2. Of interest here
is the broad-band response of the system when the base vibration has a uniform

ϕn
2ψn

2Ws(fn)��
8ζn(2πfn)3
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FIGURE 11.7 (A) Response of a two degree-of-freedom system to a base excitation x0. (B) Mean-
square relative displacement responses, y1 and y2, normalized to the response of m1 alone. Solid
curves are calculated using the modal summation of Eq. (11.45). Dashed curves are the exact calcu-
lations.
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acceleration spectral density Ẅx0.The equations for the relative responses y1 = x1 − x0

and y2 = x2 − x1 in symmetric, dimensionless form are

� 1 0 
 ÿ1� � 4πζ1 f1 −4πµζ2 f2 
 ẏ1�0 ÿ2

+
−4π ζ1 f1 (1 + µ) (2πf2)2 ẏ2

(2πf1)2 −µ(2πf2)2


 y1� 
−ẍ0� (11.46)+
−µ(2πf2)2 (1 + µ) (2πf2)2 y2

=
0

where µ = m2/m1, 2πfi = 	k�i/m�i� and 4πζi fi = ci/mi. The damping is symmetric only if 
ζ1 f2 = ζ2 f1.

Consider a specific example where µ = 0.04 and ζ1 = ζ2 = 0.05, so the damping is
not symmetric. Figure 11.7 shows the calculated values of the mean-square
responses y�1�2� and y�2�2� as a function of f2/f1. The amplitudes are plotted relative to the
mean-square response that m1 would have without the attached vibration absorber
y�1�o�2� as calculated using Eq. (11.35). The modal superposition calculation ignores the
small cross-coupling between the normal modes due to the nonsymmetric damping.
These results are compared to the exact solution for the two degree-of-freedom sys-
tem.1 The mean-square response of m1 is suppressed only when f2 � f1 and only by
about 4 dB.

EVALUATION OF FAILURE CRITERIA

Random vibration can contribute to the fatigue and failure of systems.The vibration
may contribute to the cyclical stress loading in a part of the system and accelerate
the accumulation of fatigue or crack growth leading to eventual failure. Or, the
vibration may increase the probability of exceeding the ultimate stress in a part of
the system during its operation leading to immediate failure. Chapter 34 describes
the analysis of failure mechanisms in more detail. This section presents methods to
estimate the distribution of system response levels resulting from random vibration
in forms that can be used in failure models. It is assumed that the stress levels
induced by the vibration are linearly related to the relative displacement levels y in
the system.

LEVEL CROSSINGS

The vibration responses of systems exposed to random excitations frequently have a
Gaussian distribution over time. This is true of both broad-band and narrow-band
vibration as illustrated in Fig. 11.1. Even if the excitation is not Gaussian, complex
systems with many modes of vibration contributing to the total response will, by the
central limit theorem, tend to have a Gaussian response distribution. The probabil-
ity that the vibration response y will exceed a limiting value yL is given by

P(y > yL) = �∞

yL

p(y)dy = erfc� � (11.47)
yL

�
	2�σy

1
�
2

µf2
2

�
f1

2

µf2
2

�
f1

2

µf2
2

�
f1

2

µf2
2

�
f1

2
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where y is assumed to have a Gaussian distribution with zero mean and variance σy
2.

The function erfc is the complimentary error function. For linear systems the distri-
bution of random vibration levels can be superimposed on the static (or slowly vary-
ing) stress levels.

This distribution can be used to obtain an estimate of the rate of occurrence v of
a particular level crossing. The inverse of this rate is the mean time between occur-
rences of this level crossing. For a broad-band random vibration the rate of crossing
the level y = a with a positive slope, denoted by va

+, is

va
+ = e

−
(11.48)

For a narrow-band vibration σẏ = 2πfnσy, so the level crossing rate is simply

va
+ = fne

−
(11.49)

Caution must be used when applying Eqs. (11.48) and (11.49) to values of |a| > 2σy.
While many vibration distributions may be adequately represented by a Gaussian
distribution in the range of ±2σ from the mean, there may be significant deviations
outside this range. This may cause significant errors in rate of crossing estimates for
extreme values. Therefore, the rate of crossing estimates are not that useful for esti-
mating the time to the first occurrence of a large stress resulting from a random
vibration.

CUMULATIVE DAMAGE

The rate of occurrence estimates are more useful in a cumulative damage model
which sums up the effects of repeated occurrences of excessive stress until a failure
criteria is met. Often these failure models are based on the number of occurrences
of peak levels in a cyclical loading pattern. This is true in the fatigue limit analysis
using S-N curves and also in the fracture mechanics analysis using exceedance
curves (see Chap. 34). For true white noise the peak levels have a Gaussian distribu-
tion. However, for band-limited Gaussian vibrations, the distribution of the peak
levels is more complicated. For broad-band random vibrations the probability den-
sity function of the absolute level of the displacement peaks is found to be approxi-
mated by the Poisson (exponential) distribution

p(|yP|) = e−|yP|/σy (11.50)

For narrow-band vibrations the probability density function of the peaks is found to
be approximated by the Rayleigh distribution (see Fig. 11.1)

p(|yP|) = e−yP/2σy (11.51)

These distributions of peak levels can be used with cyclical fatigue limit curves to
estimate a measure of the cumulative damage D. For example, if a material S-N
curve is approximated by N = cS−b (N equals the number of cycles to failure at a peak
stress level S) and the critical stress is a function of the vibration displacement S =

yP�
σy

2

1
�
σy

a2
�2σy

2

a2
�2σy

2σẏ
�σy

1
�
2π
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S(y), then the expected value of the accumulated damage over time by a random
vibration is

D�(�t�)� = v0
+t�∞

0
dyP (11.52)

where failure occurs around D(t) = 1. With this analysis there is not only a statistical
uncertainty due to variations in the material properties, but there is also an uncer-
tainty in the distribution of vibration cycles.The variance in the estimate of D(t) due
to this latter uncertainty is estimated to be

σD
2 � D�2 (b > 5) (11.53)

for the narrow-band vibration case.
For estimates of crack propagation in fracture mechanics, an exceedance diagram

is often used.The exceedance diagram plots the peak stress level as a function of the
number of cycles which exceed this stress level. The exceedance curve in a random
vibration is then found from the cumulative distribution function of the peak levels.
For a broad-band limited vibration,

P(|yP| > yL) = e− yL /σy (11.54)

and for a narrow-band vibration,

P(|yP| > yL) = e − y
L
2 / 2 σ

y
2

(11.55)

These probability functions are shown in the form of exceedance curves in Fig.
11.8 with the relative amplitude yP/σy plotted as a function of the logarithm of P. The
number of cycles N occurring in time t can be found by multiplying P by the appro-
priate value of v0

+t.

10(b − 5)/4

�
ζv0

+t

p(yP)
�
N(yP)
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FIGURE 11.8 Probability of exceedance functions for peaks in the
displacement response cycles of band-limited (dashed curve) and nar-
row-band (solid curve) random vibration.

STATISTICAL ENERGY ANALYSIS

Statistical energy analysis (SEA) models the vibration response of a complex system
as a statistical interaction between groups of modes associated with subsections of
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the system. While the theoretical development of SEA has its roots in the field of
random vibration, it does not require a random excitation for the statistical analysis.
Instead, SEA uses the random variation of modal responses in complex systems to
obtain statistical response predictions in terms of mean values and variances of the
responses. Theoretically, the statistical averaging is over ensembles of nominally
identical systems. However, in practice many systems have enough inherent com-
plexity that the variation in the response over frequency and location is adequately
represented by the ensemble statistics.

This is seen even in the relatively simple case of the distribution of bending
modes in a simply-supported rectangular flat plate (Fig. 11.9). The resonance fre-
quencies of the modes are given by

STATISTICAL METHODS FOR ANALYZING VIBRATING SYSTEMS 11.17

FIGURE 11.9 Mode count of a 2.6- × 2.4- × 0.01-meter
simply supported, steel plate. (A) Resonance frequen-
cies. (B) Distribution of resonance frequency spacings.

fm,n = � �hcL�� �
2

+� �
2

 (11.56)

where L1 and L2 are the length dimensions, h is the thickness, cL is the longitudinal
wave speed of the plate material, and m and n are integers. The resonance frequen-
cies are seen to follow approximately along a straight line. This slope of this line is
the average frequency spacing δ�f� (inverse of modal density per Hz) given by

δ�f� = (11.57)
hcL

�
	3�L1L2

n
�
L2

m
�
L1

π
�
4	3�
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One way to represent the variation in the actual resonant frequencies is to plot
the distribution in the frequency difference between two successive resonances,
which can be plotted as shown in Fig. 11.9B. This distribution appears to be Poisson.
Repeating this analysis for other plates with the same surface area, thickness, and
material (thus having the same δ�f� ), but with different values of L1 and L2, gives
essentially the same results. This indicates that one way of looking at the modes of
any one particular plate is to consider it as one realization from an ensemble of
plates having the same statistical distribution of resonances. SEA uses this model to
develop estimates of the vibration response of systems based on averages over the
ensemble of similar systems. However, since the modes are usually a function of 
the parameter ( fL/c), variations in the frequency f in a complex system often have
the same statistics as variations in L (dimensions) and c (material properties) in an
ensemble of similar systems.

The statistical model of a system is useful in a variety of applications. In the pre-
liminary design phase of a system SEA can be used to obtain quantitative estimates
of the vibration response even when all of the details of the design are not com-
pletely specified. This is because preliminary SEA estimates can be made using the
general characteristics of the system components (overall size, thickness, material
properties, etc.) without requiring the details of component shapes and attachments.

SEA is also useful in diagnosing vibration problems.The SEA model can be used
to identify the sources and transfer paths of the vibrational energy. When measured
data is available, SEA can help to interpret the data, and the measured data can be
used to improve the accuracy of a preliminary SEA model. Since the SEA model
gives quantitative predictions based on the physical properties of the system, it can
be used to evaluate the effectiveness of design modifications. It can also be used with
an optimization routine to search for improved design configurations.

SEA MODELING OF SYSTEMS

The statistical energy analysis (SEA) model of a complex system is based on the sta-
tistical analysis of the coupling between groups of resonant modes in subsections of
the system.The modal coupling is based on the analysis of two coupled resonators as
shown in Fig. 11.10.This is a more general case of the two degree-of-freedom system
analyzed for a random vibration (see Fig. 11.7). Here there are two distinct res-

11.18 CHAPTER ELEVEN

FIGURE 11.10 Two linear, coupled resonators, with dis-
placement y, mass m, stiffness k, damper c, and gyroscopic
parameter g.
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onators coupled by stiffness, inertial, and gyroscopic interactions (represented by kc ,
mc, and gc , respectively). If the two resonators are excited by different broad-band
force excitations, then the net power flow between them through the coupling is
given by

Π12 = −kc �y2 ẏ1 − gc�̇y2 ẏ1 + mc�ÿ2 ẏ1

= B (E1 − E2) (11.58)

where

B = [∆1 f2
4 + ∆2 f1

4 + f1 f2(∆1 f2
2 + ∆2 f1

2)]

+ [(γ 2 + 2µκ)(∆1 f2
2 + ∆2 f1

2) + κ2(∆1 + ∆2)]

Ei = (mi + mc /4)�̇yi
2

and

d = (1 − µ2)[(2π)2(f1
2 − f2

2)2 + (∆1 + ∆2)(∆1 f2
2 + ∆2 f1

2)]

∆i =

fi
2 =

µ = � �� �
−1/2

� �
−1/2

γ = gc� �
−1/2

� �
−1/2

κ = kc� �
−1/2

� �
−1/2

This result can be interpreted by defining the two individual uncoupled res-
onators as the subsystems that exist when one of the degrees-of-freedom is con-
strained to zero. For either uncoupled resonator the kinetic energy averaged over a
cycle, (m + mc /4)ẏ�i�2�/2, is equal to the average potential energy, (k + kc)y�i�2�/2. Equation
(11.58) can then be seen to state two important results: (1) the power flow is pro-
portional to the difference in the vibrational energies of the two resonators, and (2)
the coupling parameter B is positive definite and symmetrical so the system is recip-
rocal and power always flows from the more energetic resonator to the less ener-
getic one. As a corollary, when only one resonator is directly excited, the maximum
energy level of the second resonator is that of the first resonator.

It should be noted that this analysis is exact for a coupling of arbitrary strength as
long as there is no dissipation in the coupling. Even when there is dissipation in the
coupling, this analysis is approximately correct as long as the coupling forces due to

m2 + mc�
4

m1 + mc�
4

m2 + mc�
4

m1 + mc�
4

m2 + mc�
4

m1 + mc�
4

mc�
4
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the dissipation are small compared to the other coupling forces. In practice when
systems have interface damping at the connections between subsystems (such as in
bolted or spot welded joints), the associated damping can be split between subsys-
tems and the interface considered damping free.

As an example of how this analysis is extended to a distributed system, consider
the two coupled beams in Fig. 11.11A. The modes of the system can be obtained
from an eigenvalue solution of the complete system, or they can be obtained from a
coupled pair of equations for the individual (or uncoupled) straight beam subsys-
tems. The latter case leads to coupled mode equations similar to the ones used for
the two coupled resonators. However, in this case each mode in one beam subsystem
is coupled to all of the relevant modes in the other beam subsystem.The total power
flow between the two beam subsystems is then the sum of the individual mode-to-
mode power flows.

If the significant coupling is assumed to occur in a limited frequency range ∆f (a
good assumption for ζ << 1 and ∆f >> ζf ), then the average net power flow can be
found by averaging the value of B over ∆f and using average beam subsystem modal
energies in Eq. (11.58). This gives

Π12 = B�N1N2� − � (11.59)

with

B� = �µ2(2πf)2 + (γ2 + 2µκ) + 
where N1 and N2 are the number of modes in the two beam subsystems with reso-
nance frequencies in ∆f.

For either beam the total vibrational energy is Ei = mi ˙�y�i�2�, where mi is the total
mass of the beam and ˙�y�i�2� is the mean-square velocity averaged over space and time.
Equation (11.59) shows that the power flow between two distributed subsystems is
proportional to the difference in the average modal energies Ei /Ni, not the differ-
ence in the total energies (which are proportional to the vibration level).This means
it is possible for a thick beam with fewer resonant modes in a frequency band and a

κ2

�
(2πf)2

1
�
4∆f

E2�
N2

E1�
N1
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FIGURE 11.11 Modeling of distributed systems. (A) Two coupled beams. (B) SEA model of two
coupled subsystems with power flow Π.
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lower vibration level to be the source of power for a connected thinner beam with
more resonant modes and a higher vibration level.

A more useful form of Eq. (11.59) is obtained by defining a coupling loss factor
η12 � B�N2/(2πf ) (and by reciprocity η21 � N1η12/N2).The coupling loss factor is anal-
ogous to the damping loss factor for a subsystem defined by ηi = 2ζi. The coupling
loss factor is a measure of the rate of energy lost by a subsystem through coupling to
another subsystem, whereas the damping loss factor is a measure of the rate of
energy lost through dissipation. The average power flow is then given by

Π12 = 2πf(η12E1 − η21E2) (11.60)

Using the equivalent expression for the power dissipated in each subsystem,
Πi,diss = 2πfηiEi, along with the result from Eq. (11.38) for the transient response of a
resonator, the following set of equations can be written for the conservation of
energy between two coupled subsystems (Πin = Πout + dE/dt):

Π1,in = 2πf(η1 + η12)E1 − 2πfη21 E2 +

Π2,in = −2πfη12E1 + 2πf(η2 + η21)E2 +

(11.61)

where Πi,in is used to denote power supplied by external sources.The SEA block dia-
gram for this power flow model of two coupled subsystems is shown in Fig. 11.11B.
These equations are first-order differential equations for the diffusion of energy
between subsystems. They are in a form analogous to heat flow or fluid potential
flow problems. For steady-state problems the dE/dt terms are zero.

For narrow-band analysis, the SEA equations can be used to obtain averages in
the response of the system over frequency. In this case it is more convenient to use
the average frequency spacing between modes δ�f� = ∆f/N as the mode count in Eq.
(11.59). This gives

Π�1�2� = η12(E1δ�f�1� − E2δ�f�2�) (11.62)

The terms 2πEiδ�f�i� have units of power and are called the modal power potential.
The value of η12 is difficult to evaluate directly from B� in practice. Instead, indi-

rect methods are often used as described in the section “Coupling Loss Factors.”The
normalized variance in the value of η12 averaged over ∆f for edge-connected subsys-
tems is given by

=
1

(11.63)
πf� + � + ∆f� + �

The variance in the coupling depends primarily on the system modal overlap fac-
tor defined by MS = πf(η1/δ�f�1� + η2/δ�f�2�)/2, which is the ratio of the effective modal
bandwidth to the average modal frequency spacing.When the system modal overlap
factor is less than 1, the variance is larger than the square of the mean value, which
may be unacceptably large. This indicates why SEA models tend to converge better
with measured results at frequencies above where MS = 1.

1
�
δ�f�2�

1
�
δ�f�1�

η2
�
δ�f�2�

η1
�
δ�f�1�

ση12
2

�
η12

2

2πf
�
δ�f�1�

dE2�
dt

dE1�
dt

STATISTICAL METHODS FOR ANALYZING VIBRATING SYSTEMS 11.21

8434_Harris_11_b.qxd  09/20/2001  11:17 AM  Page 11.21



Note that the modal overlap in each uncoupled subsystem does not have to be
large in order for the variance in the coupling to be small. In fact the SEA model can
be used to evaluate the response of a single resonator mode attached to a vibrating
flat plate as illustrated in Fig. 11.12. The power flow equations in the form of Eq.

11.22 CHAPTER ELEVEN

FIGURE 11.12 Response of a resonator with vibration Vm, mounted on
a plate with vibration Vp. (A) Comparison of the measurement configura-
tion and the SEA model. (B) Comparison of the measured response and
the SEA predictions.

(11.59) are used.The uncoupled resonator has one mode at f2 = 	k�2/�m�2�, so N2 = 1.The
mean-square vibration velocity level of the plate in a frequency band ∆f encompass-
ing f2 is ·y1

2 = Wẏ1(f )∆f. The average number of plate modes resonating in this fre-
quency band is N1 = ∆f/δ�f�1�. The coupling loss factor is evaluated to be

η21 = (11.64)

Since Π12 = Π2,diss, the mean-square response of the resonator mass is given by

�̇y2
2 = (11.65)

Even if the resonator damping goes to zero, its maximum energy level is limited to
the average modal energy in the plate:

m2 �̇y2
2,max = m1Wẏ1( f )∆f (11.66)

If the resonator energy momentarily gets higher, it transmits the energy back into
the plate. Therefore, the plate acts both as a source of excitation and as a dissipator
of energy for the resonator. The effective loss factor for the resonator is η21 + η2.

f2Wẏ1( f )
�
η21 + η2

π
�
2

m2
�
m1

f2
�
δ�f�1�

π
�
2
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The frequency response function for the resonator can then be evaluated using
Eq. (11.34). Figure 11.12B compares this result with the measured narrow-band fre-
quency spectrum of a 0.1-kg mass attached to a 2.5-mm steel plate with a resilient
mounting having negligible damping and f2 = 85 Hz. The measured response of the
mass is multimodal since the resonator responds as a part of all of the modes of the
coupled system. However, the statistical average response curve accurately repre-
sents the multimodal response. The normalized variance of the narrow-band SEA
response calculation is estimated from Eq. (11.63) to be 0.5.

For larger systems the following procedure can be used to develop a complete
SEA model of the system response to an excitation:

1. Divide the system into a number of coupled subsystems.
2. Determine the mode counts and damping loss factors for the subsystems.
3. Determine the coupling factors between connected subsystems.
4. Determine the subsystem input powers from external sources.
5. Solve the energy equations to determine the subsystem response levels.

The steps in this procedure are described in the following sections of this chapter.
When used properly, the SEA model will calculate the distribution of vibration
response throughout a system as a result of an excitation. The response distribution
is calculated in terms of a mean value and a variance in the vibration response of
each subsystem averaged over time and the spatial extent of the subsystem.

MODE COUNTS

In this section the mode counts for a number of idealized subsystem types are given
in terms of the average frequency spacing δ�f� between modal resonances. Experi-
mental and numerical methods for determining the mode counts of more compli-
cated subsystems are also described.

The mode count is sometimes represented by the average number of modes, N or
∆N, resonating in a frequency band, and sometimes by the modal density, repre-
sented in cyclical frequency as n(f) = dN/df. These are related to the average fre-
quency spacing by

n( f ) = � (11.67)

For a one-dimensional subsystem, such as a straight beam or bar, with uniform mate-
rial and cross-sectional properties and with length L, the average frequency spacing
between the modal resonances is given by

δ�f� 1D = (11.68)

where cg is the energy group speed for the particular wave type being modeled.
For longitudinal waves cg is equal to the phase speed cL = 	E�/ρ�, where E is the

elastic (Young’s) modulus and ρ is the density of the material. For torsional waves cg

is equal to the phase speed cT = 	G�J/�ρ�Ip�, where G is the shear modulus of the mate-
rial, and J and Ip are the torsional moment of rigidity and polar area moment of iner-
tia, respectively, of the cross section. For beam bending waves (with wavelengths

cg
�
2L

∆N
�
∆f

1
�
δ�f�
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long compared to the beam thickness) the group speed is twice the bending phase
speed cB, or cg = 2cB = 2	2�π�fκ�cL�, where κ is the radius of gyration of the beam cross
section. For a beam of uniform thickness h, κ = h/	1�2�.

For a two-dimensional subsystem, such as a flat plate, with uniform thickness and
material properties and with surface area A, the average frequency spacing between
the modal resonances is given by

δ�f� 2D = (11.69)

where cp is the phase speed for the particular wave type being modeled. For plate
bending waves (with wavelengths long compared to the plate thickness) cg = 2cp =
2cB′ = 2	2�π�fκ�cL�′�, where κ is the radius of gyration, cL′ = 	E�/ρ�(1� −� µ�2)�, and µ is Poisson’s
ratio. For in-plane compression waves cg = cp = cL′. For in-plane shear waves cg = cp =
cS = 	G�/ρ�.

For a three-dimensional subsystem, such as an elastic solid, with uniform material
properties and with volume V, the average frequency spacing between the modal
resonances is given by

δ�f� 3D = (11.70)

where co is the ambient shear or compressional wave speed in the medium.
For more complicated subsystems the mode counts can be obtained in a number

of other ways. Generally, the mode counts only need to be determined within an
accuracy of 10 percent in order for any resulting error to be less than 1 dB in the
SEA model. For more complicated wave types, such as bending in thick beams or
plates, the formulas given above for δ�f� can be used with the correct values of cg and
cp obtained from the dispersion relation for the medium.

For more complicated geometries a numerical solution, such as a finite element
model, can be used to determine the eigenvalues of the subsystem. Then, the values
of δ�f� can be obtained using Eq. (11.67). In this case it is often necessary to average
the mode count over a number of particular geometric configurations or boundary
conditions in order to obtain an accurate estimate of the average modal spacing.

When a physical sample of the subsystem exists, experimental data can be used to
estimate or validate the mode count. For large modal spacing (small modal overlap)
the individual modes can sometimes be counted from a frequency response meas-
urement. However, this method usually undercounts the modes because some of
them may occur paired too closely together to be distinguished. An alternate exper-
imental procedure is to use the relation between the mode count and the average
mobility of a structure:

δ�f� = (11.71)

where m is the mass of the subsystem and G� is the average real part of the mechan-
ical mobility (ratio of velocity to force at a point excitation; see Chap. 10). As with
the numerical method, the experimental measurement should be averaged over a
variation in the boundary condition used to support the subsystem since no one
static support accurately represents the dynamic boundary condition the subsystem
sees when it is part of the full system. Also the measurement of G� should be aver-
aged over several excitation points.

1
�
4mG�
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3

�
4πf 2V
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�
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DAMPING LOSS FACTORS

In this section typical methods for determining the damping loss factor of subsys-
tems are given along with some typical values used in statistical energy analysis
(SEA) models of complex structures. The damping in SEA models is usually speci-
fied by the loss factor which is related to the critical damping ratio ζ and the quality
factor Q by

η = 2ζ = (11.72)

Chapters 36 and 37 describe the damping mechanisms in structural materials and
typical damping treatments. In complex structures the structural material damping is
usually small compared to the damping due to slippage at interfaces and added
damping treatments. Because the level of added damping is so strongly dependent
on the details of the application of a damping treatment, measurements are usually
needed to verify analytical calculations of damping levels.

One method to measure the damping of a subsystem is the decay rate method,
where the free decay in the vibration level is measured after all excitations are
turned off. The initial decay rate DR (in dB/sec) is proportional to the total loss fac-
tor for the subsystem:

η = (11.73)

If the subsystem is attached to other structures, the coupling loss factors will be
included in the total loss factor value. Therefore, the subsystem must be tested in a
decoupled state. On the other hand, if the connection interfaces provide significant
damping due to slippage, then these interfaces must be simulated in the damping test.

Another method of measuring the damping is the half-power bandwidth method
illustrated in Fig. 2.22. The width of a resonance ∆f in a frequency response meas-
urement is measured 3 dB down from the peak and the damping is determined by

η = (11.74)

As with other measurements of subsystem parameters, the damping measure-
ments must be averaged over multiple excitation points with a variety of boundary
conditions.

For preliminary SEA models an empirical database of damping values is useful
for initial estimates of the subsystem damping loss factors. Figure 11.13 is an illustra-
tion of the typical damping values measured in steel and aluminum machinery struc-
tures for different construction methods and different applied damping treatments.

The initial estimates of damping levels in a preliminary SEA model can be
improved if measurements of the spatial decay of the vibration levels in the system
are available. The spatial decay calculated in the SEA model is quite strongly
dependent on the damping values used.Therefore, an accurate estimate of the actual
damping can be obtained by comparing the SEA calculations to the measured spa-
tial decay (assuming the other model parameters are correct).

∆f
�
fn

DR
�
27.3f

1
�
Q
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COUPLING LOSS FACTORS

The coupling loss factor is a parameter unique to statistical energy analysis (SEA).
It is a measure of the rate of energy transfer between coupled modes. However, it is
related to the transmission coefficient τ in wave propagation. This can be illustrated
with the system shown in Fig. 11.14. For a wave incident on a junction in subsystem
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FIGURE 11.13 Empirical values for the damping loss factor η in steel and aluminum
machinery structures with different damping mechanisms (assumed to be efficiently
applied, but in less than ideal laboratory conditions).

FIGURE 11.14 Evaluation of the coupling loss fac-
tor using a wave transmission model for an incident
wave Vinc at a junction, resulting in a reflected wave
Vref and a transmitted wave Vtra.

1 with incident power Πinc, the power transmitted to subsystem 2, Πtra, is by definition
of the transmission coefficient τ12 given by

Πtra = τ12Πinc (11.75)

In addition, the junction reflects some power, Πref, back into subsystem 1 given by

Πref = (1 − τ12)Πinc (11.76)

assuming there is no power dissipated at the junction. The energy density in subsys-
tem 1 is given by E1′ = cg1

(Πinc + Πref). The corresponding SEA representation of the
system is
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Πtra = Π1 → 2 = 2πfη12E1 (11.77)

For a subsystem of length L1, δ�f�1� = cg1
/(2L1) and E1 = L1E1′. Solving for the coupling

loss factor gives

η12 = (11.78)

A more detailed analysis indicates that this result is valid for point connections in
a system with a modal overlap greater than 1. If the system has a constant modal 
frequency spacing δ�f�, then the Nth mode will occur at f = Nδ�f�. If the damping loss
factor is η, the system modal overlap is given by MS = πη f/(2δ�f� ). Then the 
modal overlap is greater than 1 for frequencies f > 2δ�f�/(πη) or for mode numbers 
N > 2/(πη). SEA is still valid below this frequency and mode number, but the vari-
ance of the model calculations (and in the measured frequency response functions)
becomes large.

For point-connected subsystems the transmission coefficient can be evaluated
from the junction impedances:4

τ12 = (11.79)

where Ri is the real part of the impedance Zi (ratio of force to velocity at a point
excitation) at the junction attachment point of subsystem i. When more than two
subsystems are connected at a common junction, the denominator of Eq. (11.79)
must include the sum of all impedances at the junction.

For subsystems with line and area junctions the analysis of the coupling loss fac-
tor is complicated by the distribution of angles of the waves incident on the junction.
However, approximate results have been worked out for many important cases. Eq.
(11.78) can be generalized for all cases as

η12 = (11.80)

where τ12(0) is the normal incidence transmission coefficient for waves traveling per-
pendicular to the junction, and I12 contains the result of an average over all angles of
incidence.

For line-connected plates the coupling loss factor between bending modes is
found using

I12 = � �
1/4

(11.81)

where Lj is the length of the junction and ki = 2πf/cBi is the wave number of the
modes in subsystem i.

When experimental verification of the evaluation of the coupling loss factor is
desired, measurements similar to those used for damping can be used. A decay rate
measurement of a subsystem connected to another (heavily damped) subsystem will
give a loss factor equal to the sum of the damping and coupling loss factor for the
first subsystem.Alternately, subsystem 1 can be excited alone and the spatially aver-
aged response levels of the two connected subsystems can be measured. Using 
Π12 = Π2,diss, the coupling loss factor is found from

k1
4k2

4

�
k1

4 + k2
4
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�
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��
2 − τ12(0)
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η12 = (11.82)

This result indicates a potential problem in determining the coupling loss factor
from measured results. If E2δ�f�2� � E1δ�f�1�, then taking the difference between their val-
ues in Eq. (11.82) will greatly magnify the experimental errors in determining the
parameters used in this formula. This indicates why it is mathematically unstable to
use measured levels in a multiple subsystem model to back calculate the coupling
loss factors. However, good results can be obtained for a single junction between two
subsystems if one is excited and the other is artificially damped in order to increase
difference between E1δ�f�1� and E2δ�f�2�. Figure 11.15 shows the results of an experimen-

η2E2
��
E1 − δ�f�2�E2/δ�f�1�
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FIGURE 11.15 Coupling loss factor η12 for point connected plates;
measured data with 95 percent confidence intervals; —— calculated values
using Eqs. (11.80) and (11.81).

tal validation of Eqs. (11.80) and (11.81) for the coupling loss factor between two
plates connected at a point. The experimental error is also included, which even in
this idealized laboratory environment is more than 50 percent. While the back cal-
culation of the coupling loss factors tends to be unstable, the forward calculation in
the SEA model is relatively insensitive to errors in the coupling loss factor values,
making the model fairly robust.

MODAL EXCITATIONS

The power put into subsystem modes by the system excitations is needed in order to
use the statistical energy analysis (SEA) model for calculations of absolute response
levels. The mode counts, damping, and coupling loss factors can be used to evaluate
relative transfer functions in the system for a unit input power. However, for actual
response-level calculations the modal input power from the actual excitation
sources must be calculated.

For a point force excitation F(t) the average power put into a system is

Πin = �F 2 G� (11.83)
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where G� is the average real part of the mobility at the excitation point. For a pre-
scribed point velocity source ẏ(t) the average power put into a system is

Πin = �̇y� 2� R� (11.84)

where R� is the average real part of the impedance at the excitation point.
The normalized variance in the input power due to variations in the mode shapes

and frequency response function of the system is approximated by

= (11.85)

where ∆f is the bandwidth of the excitation. For more complicated excitations the
input power can be estimated by measuring the response of a system to the excita-
tion and using the SEA model to back calculate the input power. Alternatively, the
measured response levels of the excited subsystem can be used as “source” levels,
and the power flow into the rest of the system can be evaluated using the SEA
model.

SYSTEM RESPONSE DISTRIBUTION

To solve for the distribution of vibrational energy in a system it is convenient to
rewrite Eq. (11.61) in symmetric form:

[B]{Φ} + [I]
 � = {Πin} (11.86)

where [I] is the identity matrix, {Φ} = 2π{E/δ�f� } is the vector of modal power poten-
tial, and [B] is the symmetric matrix of coupling and damping terms with off-
diagonal terms Bij = −f ηij/δ�f�i� and diagonal terms Bii = (f/δ�f�i�)(ηi + Σj ηij). This system
of equations can be solved using standard numerical methods. Solving for the values
of E gives a mean value estimate of the energy distribution.

The variance in E is more difficult to evaluate because it depends on the evalua-
tion of the inverse matrix [B]−1. If the variance of each term in [B] is small compared
to its mean-square value, then the variances in [B]−1 can be approximated by

[σB−1
2] � [(Bij

−1)2][σB
2][(Bij

−1)2] (11.87)

where the notation [(Bij
−1)2] refers to a matrix with the squares of the elements in

[B]−1, term for term.
The subsystem energy values can be converted to dynamic response quantities

using the relation E = mẏ2�. For a narrow-band vibration at frequency fc (which could
be a single one-third octave band response in a broad-band analysis) the displace-
ment response is �y2 � ẏ2��(2πfc)2 and the acceleration response is �ÿ2 � (2πfc)2 ẏ2�. The
relation between the vibration velocity response and the maximum dynamic strain
depends on the type of motion involved. For longitudinal motion the mean-square
strain is ��2� = ẏ2�/cL

2. For bending motion of a uniform beam or plate the maximum
strain is ��m�a�x�2� = 3ẏ2�/cL

2.

dE
�
dt

3δ�f�
�
πfη + ∆f

σΠin
2

�
Πin

2
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When the response values in a complex system are plotted on a logarithmic scale,
a surprising result occurs. The log-values are distributed with an approximately
Gaussian distribution over frequency. This is illustrated in Fig. 11.16 for a beam net-
work. The system frequency response function is computed numerically using a
transfer impedance model including bending and longitudinal and torsional motions

11.30 CHAPTER ELEVEN

FIGURE 11.16 Numerical calculation of the vibration response of a
four-beam network. (A) Normalized frequency response function for 
a point on beam 4. (B) Probability density function of log-levels,

Numerical data histogram, — Normal distribution.

in each of the four beam segments.A histogram of the computed response values on
the decibel scale compares very well with a Gaussian distribution. This result can be
explained by noting that the response value at any particular frequency results from
the product of a large number of quantities. Then the logarithm of the response
value will be the sum of a large number of terms. If the complexity in the system
causes the responses at different frequencies to be independent, then by the central
limit theorem the log-values will tend to have a Gaussian distribution. This means
that the mean-square response values will have a log-normal distribution.

The calculated mean values and variances in the SEA model can be converted to
the decibel scale as follows. If the mean-square velocity ẏ2� has a log-normal distribu-
tion with variance σẏ2

2, then the velocity level Lẏ � 10 log10( ẏ2/ẏref
2) has a normal dis-

tribution with a mean value and variance given by
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Lẏ = 10 log10� � − 5 log10�1 + 

σLẏ
2 = 43 log10�1 + 

(11.88)

Note that the mean of the decibel levels is not equal to the decibel level of the mean-
square value.

TRANSIENT (SHOCK) RESPONSE USING SEA

The statistical energy analysis (SEA) model can solve for the transient response of a
system using Eq. (11.61). The numerical solution methods for equations of this form
can be illustrated using the finite difference method. Given an initial energy state
E(0), the energy state at a short time later is approximated by

E(∆t) � E(0) + ∆t (11.89)

where dE/dt = Πin − Πout.This new energy distribution is then used to project forward
to the next time step, etc. The accuracy of the solution depends on the size of ∆t rel-
ative to the energy flow time constants in the system, (2πfη)−1. For the finite differ-
ence solution, using ∆t ≤ (6πfη)−1 usually provides accurate results.

dE
�
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σẏ2
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FIGURE 11.17 Transient response of an equipment shelf. (A) Experi-
mental structure showing the locations of the impact F and the accelera-
tion response a. (B) Comparison of the transient response of the structure;
— Measured data, - - - SEA model.
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An example of a transient analysis using SEA is shown in Fig. 11.17. The meas-
ured acceleration response of a shelf on an equipment rack for an impact at the leg
is shown along with the corresponding transient SEA solution of Eq. (11.61). The
energy level of the shelf builds up for the first 0.01 sec before beginning to decay.

Modeling the transient mean-square response with Eq. (11.39), the undamped
shock spectrum for this response signal can be estimated using Eq. (11.42). Alter-
nately, if a shock excitation is modeled as a time-dependent power input to the SEA
model, then the peak response spectrum of the system components can be estimated
directly from the maximum mean-square values in the transient SEA solution.
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CHAPTER 12
VIBRATION TRANSDUCERS

Anthony S. Chu

INTRODUCTION

This chapter on vibration transducers is the first in a group of seven chapters on the
measurement of shock and vibration. Chapter 13 describes typical instrumentation
used in making measurements with such devices; Chap. 15 covers the mounting of
vibration transducers and how they may be calibrated under field conditions; more
precise calibration under laboratory conditions is described in detail in Chap. 18.
The selection of vibration transducers is treated in Chaps. 15 and 16. This chapter
defines the terms and describes the general principles of piezoelectric and piezoresis-
tive transducers; it also sets forth the mathematical basis for the use of shock and vibra-
tion transducers and includes a brief description of piezoelectric accelerometers,
piezoresistive accelerometers, piezoelectric force and impedance gages, and piezoelec-
tric drivers, along with a review of their performance and characteristics. Finally, the
following various special types of transducers are considered: optical-electronic trans-
ducers, including laser Doppler vibrometers, displacement measurement systems,
fiber-optic reflective displacement sensors, electrodynamic (velocity coil) pickups, dif-
ferential-transformer pickups, servo accelerometers,and capacitance-type transducers.

Certain solid-state materials are electrically responsive to mechanical force; they
often are used as the mechanical-to-electrical transduction elements in shock and
vibration transducers. Generally exhibiting high elastic stiffness, these materials can
be divided into two categories: the self-generating type, in which electric charge is
generated as a direct result of applied force, and the passive-circuit type, in which
applied force causes a change in the electrical characteristics of the material.

A piezoelectric material is one which produces an electric charge proportional to
the stress applied to it, within its linear elastic range. Piezoelectric materials are of
the self-generating type. A piezoresistive material is one whose electrical resistance
depends upon applied force. Piezoresistive materials are of the passive-circuit type.

A transducer (sometimes called a pickup or sensor) is a device which converts
shock or vibratory motion into an optical, a mechanical, or, most commonly, an elec-
trical signal that is proportional to a parameter of the experienced motion.

A transducing element is the part of the transducer that accomplishes the conver-
sion of motion into the signal.

A measuring instrument or measuring system converts shock and vibratory
motion into an observable form that is directly proportional to a parameter of the

12.1
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experienced motion. It may consist of a transducer with transducing element, signal-
conditioning equipment, and device for displaying the signal. An instrument con-
tains all of these elements in one package, while a system utilizes separate packages.

An accelerometer is a transducer whose output is proportional to the acceleration
input. The output of a force gage is proportional to the force input; an impedance
gage contains both an accelerometer and a force gage.

CLASSIFICATION OF MOTION TRANSDUCERS

In principle, shock and vibration motions are measured with reference to a point
fixed in space by either of two fundamentally different types of transducers:

1. Fixed-reference transducer. One terminal of the transducer is attached to a
point that is fixed in space; the other terminal is attached (e.g., mechanically, elec-
trically, optically) to the point whose motion is to be measured.

2. Mass-spring transducer (seismic transducer). The only terminal is the base of a
mass-spring system; this base is attached at the point where the shock or vibra-
tion is to be measured.The motion at the point is inferred from the motion of the
mass relative to the base.

MASS-SPRING TRANSDUCERS (SEISMIC TRANSDUCERS)

In many applications, such as moving vehicles or missiles, it is impossible to establish
a fixed reference for shock and vibration measurements. Therefore, many transduc-
ers use the response of a mass-spring system to measure shock and vibration. A
mass-spring transducer is shown schematically in Fig. 12.1; it consists of a mass m
suspended from the transducer case a by a spring of stiffness k. The motion of the

mass within the case may be damped by
a viscous fluid or electric current, sym-
bolized by a dashpot with damping coef-
ficient c. It is desired to measure the
motion of the moving part whose dis-
placement with respect to fixed space is
indicated by u. When the transducer
case is attached to the moving part, the
transducer may be used to measure 
displacement, velocity, or acceleration,
depending on the portion of the fre-
quency range which is utilized and
whether the relative displacement or
relative velocity dδ/dt is sensed by the
transducing element. The typical re-
sponse of the mass-spring system is ana-
lyzed in the following paragraphs and
applied to the interpretation of trans-
ducer output.

Consider a transducer whose case
experiences a displacement motion u,

12.2 CHAPTER TWELVE

FIGURE 12.1 Mass-spring type of vibration-
measuring instrument consisting of a mass m
supported by spring k and viscous damper c. The
case a of the instrument is attached to the mov-
ing part whose vibratory motion u is to be meas-
ured. The motion u is inferred from the relative
motion δ between the mass m and the case a.1
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and let the relative displacement between the mass and the case be δ. Then the
motion of the mass with respect to a reference fixed in space is δ + u, and the force
causing its acceleration is m[d 2(δ + u)/dt 2].Thus, the force applied by the mass to the
spring and dashpot assembly is −m[d 2(δ + u)/dt 2]. The force applied by the spring is 
−kδ, and the force applied by the damper is −c(dδ/dt), where c is the damping coeffi-
cient. Adding all force terms and equating the sum to zero,

−m − c − kδ = 0 (12.1)

Equation (12.1) may be rearranged:

m + c + kδ = −m (12.2)

Assume that the motion u is sinusoidal, u = u0 cos ωt, where ω = 2πf is the angular
frequency in radians per second and f is expressed in cycles per second. Neglecting
transient terms, the response of the instrument is defined by δ = δ0 cos (ωt − θ); then
the solution of Eq. (12.2) is

ω2

=

�� − ω2�2
+ �ω �2

(12.3)

ω
θ = tan−1

− ω2

(12.4)

The undamped natural frequency fn of the instrument is the frequency at which

= ∞

when the damping is zero (c = 0), or the frequency at which θ = 90°. From Eqs. (12.3)
and (12.4), this occurs when the denominators are zero:

ωn = 2πfn = �� rad/sec (12.5)

Thus, a stiff spring and/or light mass produces an instrument with a high natural fre-
quency. A heavy mass and/or compliant spring produces an instrument with a low
natural frequency.

The damping in a transducer is specified as a fraction of critical damping. Critical
damping cc is the minimum level of damping that prevents a mass-spring transducer
from oscillating when excited by a step function or other transient. It is defined by

cc = 2 �k�m� (12.6)

Thus, the fraction of critical damping ζ is

ζ = = (12.7)

It is convenient to define the excitation frequency ω for a transducer in terms of
the undamped natural frequency ωn by using the dimensionless frequency ratio
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ω/ωn. Substituting this ratio and the relation defined by Eq. (12.7), Eqs. (12.3) and
(12.4) may be written

=
� �2

(12.8)

���1 − � �2	2�+ �2ζ �2

θ = tan−1

2ζ
(12.9)

1 − � �2

The response of the mass-spring transducer given by Eq. (12.8) may be expressed
in terms of the acceleration ü of the moving part by substituting ü0 = −u0ω2.Then the
ratio of the relative displacement amplitude δ0 between the mass m and transducer
case a to the impressed acceleration amplitude ü0 is

1= − ����1 − � �2	2�+ �2ζ �2	 (12.10)

The relation between δ0/u0 and the frequency ratio ω/ωn is shown graphically in
Fig. 12.2 for several values of the fraction of critical damping ζ. Corresponding
curves for δ0/ü0 are shown in Fig. 12.3. The phase angle θ defined by Eq. (12.9) is
shown graphically in Fig. 12.4, using the scale at the left side of the figure. Corre-
sponding phase angles between the relative displacement δ and the velocity u̇ and
acceleration ü are indicated by the scales at the right side of the figure.

ACCELERATION-MEASURING TRANSDUCERS

As indicated in Fig. 12.3, the relative displacement amplitude δ0 is directly propor-
tional to the acceleration amplitude ü0 = −u0ω2 of the sinusoidal vibration being
measured, at small values of the frequency ratio ω/ωn. Thus, when the natural fre-
quency ωn of the transducer is high, the transducer is an accelerometer. If the trans-
ducer is undamped, the response curve of Fig. 12.3 is substantially flat when ω/ωn <
0.2, approximately. Consequently, an undamped accelerometer can be used for the
measurement of acceleration when the vibration frequency does not exceed approx-
imately 20 percent of the natural frequency of the accelerometer.The range of meas-
urable frequency increases as the damping of the accelerometer is increased, up to
an optimum value of damping. When the fraction of critical damping is approxi-
mately 0.65, an accelerometer gives accurate results in the measurement of vibration
at frequencies as great as approximately 60 percent of the natural frequency of the
accelerometer.

As indicated in Fig. 12.3, the useful frequency range of an accelerometer
increases as its natural frequency ωn increases. However, the deflection of the spring
in an accelerometer is inversely proportional to the square of the natural frequency;
i.e., for a given value of ü0, the relative displacement is directly proportional to 1/ωn

2

[see Eq. (12.10)]. As a consequence, the electrical signal from the transducing ele-
ment may be very small, thereby requiring a large amplification to increase the sig-
nal to a level at which recording is feasible. For this reason, a compromise usually is
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made between high sensitivity and the highest attainable natural frequency, depend-
ing upon the desired application.

ACCELEROMETER REQUIREMENTS FOR SHOCK

High-Frequency Response. The capability of an accelerometer to measure
shock may be evaluated by observing the response of the accelerometer to acceler-
ation pulses. Ideally, the response of the accelerometer (i.e., the output of the trans-
ducing element) should correspond identically with the pulse. In general, this result
may be approached but not attained exactly. Three typical pulses and the corre-
sponding responses of accelerometers are shown in Fig. 12.5 to 12.7. The pulses are
shown in dashed lines. A sinusoidal pulse is shown in Fig. 12.5, a triangular pulse in
Fig. 12.6, and a rectangular pulse in Fig. 12.7. Curves of the response of the
accelerometer are shown in solid lines. For each of the three pulse shapes, the
response is given for ratios τn/τ of 1.014 and 0.203, where τ is the pulse duration and
τn = 1/fn is the natural period of the accelerometer.These response curves, computed
for the fraction of critical damping ζ = 0, 0.4, 0.7, and 1.0, indicate the following gen-
eral relationships:

1. The response of the accelerometer follows the pulse most faithfully when the
natural period of the accelerometer is smallest relative to the period of the pulse. For
example, the responses at A in Figs. 12.5 to 12.7 show considerable deviation

VIBRATION TRANSDUCERS 12.5

FIGURE 12.2 Displacement response δ0 /u0 of a mass-spring system sub-
jected to a sinusoidal displacement ü = u0 sin ωt. The fraction of critical damp-
ing ζ is indicated for each curve.
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FIGURE 12.4 Phase angle of a mass-spring transducer when used to
measure sinusoidal vibration. The phase angle θ on the left-hand scale
relates the relative displacement δ to the impressed displacement, as
defined by Eq. (12.9).The right-hand scales relate the relative displacement
δ to the impressed velocity and acceleration.

FIGURE 12.3 Relationship between the relative displacement amplitude δ0 of a mass-spring sys-
tem and the acceleration amplitude ü0 of the case. The fraction of critical damping ζ is indicated for
each response curve.
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FIGURE 12.5 Acceleration response to a half-sine pulse of accelera-
tion of duration τ (dashed curve) of a mass-spring transducer whose
natural period τn is equal to: (A) 1.014 times the duration of the pulse
and (B) 0.203 times the duration of the pulse. The fraction of critical
damping ζ is indicated for each response curve. (Levy and Kroll.1)

FIGURE 12.6 Acceleration response to a triangular pulse of acceler-
ation of duration τ (dashed curve) of a mass-spring transducer whose
natural period is equal to: (A) 1.014 times the duration of the pulse and
(B) 0.203 times the duration of the pulse. The fraction of critical damp-
ing ζ is indicated for each response curve. (Levy and Kroll.1)
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between the pulse and the response; this occurs when τn is approximately equal to τ.
However, when τn is small relative to τ (Figs. 12.5B to 12.7B), the deviation between
the pulse and the response is much smaller. If a shock is generated by metal-to-metal
impact or by a pyrotechnic device such as that described in Chap. 26, Part II, and the
response accelerometer is located in close proximity to the excitation source(s), the
initial pulses of acceleration may have an extremely fast rise time and high ampli-
tude. In such cases, any type of mass-spring accelerometer may not accurately follow
the leading wave front and characterize the shock inputs faithfully. For example,
measurements made in the near field of a high-g shock show that undamped
piezoresistive accelerometers having resonance above 1 MHz were excited at reso-
nance, thereby invalidating the measured responses. To avoid this effect, accelerom-
eters should be placed as far away as possible, or practical, from the source of
excitation. Other considerations related to accelerometer resonance are discussed
below in the sections on Zero Shift and Survivability.

2. Damping in the transducer reduces the response of the transducer at its own
natural frequency; i.e., it reduces the transient vibration superimposed upon the
pulse, which is sometimes referred to as ringing. Damping also reduces the maxi-
mum value of the response to a value lower than the actual pulse in the case of large
damping. For example, in some cases a fraction of critical damping ζ = 0.7 provides
an instrument response that does not reach the peak value of the acceleration pulse.

Low-Frequency Response. The measurement of shock requires that the
accelerometer and its associated equipment have good response at low frequencies
because pulses and other types of shock motions characteristically include low-
frequency components. Such pulses can be measured accurately only with an instru-
mentation system whose response is flat down to the lowest frequency of the
spectrum; in general, this lowest frequency is zero for pulses.

12.8 CHAPTER TWELVE

FIGURE 12.7 Acceleration response to a rectangular pulse of
acceleration of duration τ (dashed curve) of a mass-spring transducer
whose natural period τn is equal to: (A) 1.014 times the duration of
the pulse and (B) 0.203 times the duration of the pulse. The fraction
of critical damping ζ is indicated for each response curve. (Levy and
Kroll.1)
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The response of an instrumentation system is defined by a plot of output voltage
vs. excitation frequency. For purposes of shock measurement, the decrease in
response at low frequencies is significant. The decrease is defined quantitatively by
the frequency fc at which the response is down 3 dB or approximately 30 percent
below the flat response which exists at the higher frequencies. The distortion which
occurs in the measurement of a pulse is related to the frequency fc as illustrated in
Fig. 12.8.

VIBRATION TRANSDUCERS 12.9

FIGURE 12.8 Response of an accelerometer to a half-sine accelera-
tion pulse for RC time constants equal to τ, 5τ, 10τ, 50τ, and ∞, where τ is
equal to the duration of the half-sine pulse.1

This is particularly important when acceleration data are integrated to obtain
velocity, or integrated twice to obtain displacement. A small amount of undershoot
shown in Fig. 12.8 may cause a large error after integration.A dc-coupled accelerom-
eter (such as a piezoresistive accelerometer, described later in this chapter) is rec-
ommended for this type of application.

Zero Shift. Zero shift is the displacement of the zero-reference line of an
accelerometer after it has been exposed to a very intense shock. This is illustrated in
Fig. 12.9.The loss of zero reference and the apparent dc components in the time his-
tory cause a problem in peak-value determination and induce errors in shock
response spectrum calculations.Although the accelerometer is not the sole source of
zero shift, it is the main contributor.

All piezoelectric shock accelerometers, under extreme stress load (e.g., a sensing
element at resonance), will exhibit zero-shift phenomena due either to crystal
domain switching or to a sudden change in crystal preload condition.2 A mechanical
filter may be used to protect the crystal element(s) at the expense of a limitation in
bandwidth or possible nonlinearity.3 Piezoresistive shock accelerometers typically
produce negligible zero shift.

Survivability. Survivability is the ability of an accelerometer to withstand
intense shocks without affecting its performance. An accelerometer is usually rated
in terms of the maximum value of acceleration it can withstand. Accelerometers
used for shock measurements may have a range of well over many thousands of gs.
In piezoresistive accelerometers which are excited at resonance, the stress buildup
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due to high magnitudes of acceleration may lead to fracture of the internal compo-
nents. In contrast, piezoelectric accelerometers are more robust than their piezore-
sistive counterparts due to lower internal stress.

IMPORTANT CHARACTERISTICS OF

ACCELEROMETERS

SENSITIVITY

The sensitivity of a shock- and vibration-measuring instrument is the ratio of its elec-
trical output to its mechanical input.The output usually is expressed in terms of volt-
age per unit of displacement, velocity, or acceleration. This specification of
sensitivity is sufficient for instruments which generate their own voltage independ-
ent of an external voltage power source. However, the sensitivity of an instrument
requiring an external voltage usually is specified in terms of output voltage per unit
of voltage supplied to the instrument per unit of displacement, velocity, or accelera-
tion, e.g., millivolts per volt per g of acceleration. It is important to note the terms in
which the respective parameters are expressed, e.g., average, rms, or peak. The rela-
tion between these terms is shown in Fig. 12.10. Also see Table 1.3.

RESOLUTION

The resolution of a transducer is the smallest change in mechanical input (e.g., accel-
eration) for which a change in the electrical output is discernible.The resolution of an
accelerometer is a function of the transducing element and the mechanical design.

Recording equipment, indicating equipment, and other auxiliary equipment used
with accelerometers often establish the resolution of the overall measurement sys-

12.10 CHAPTER TWELVE

FIGURE 12.9 A time history of an accelerometer that has been exposed to
a pyrotechnic shock. Note that there is a shift in the baseline (i.e., the zero ref-
erence) of the accelerometer as a result of this shock; the shift may either be
positive or negative.
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tem. If the electrical output of an instru-
ment is indicated by a meter, the resolu-
tion may be established by the smallest
increment that can be read from the
meter. Resolution can be limited by
noise levels in the instrument or in the
system. In general, any signal change
smaller than the noise level will be
obscured by the noise, thus determining
the resolution of the system.

TRANSVERSE SENSITIVITY

If a transducer is subjected to vibration
of unit amplitude along its axis of maxi-
mum sensitivity, the amplitude of the
voltage output emax is the sensitivity. The
sensitivity eθ along the X axis, inclined at
an angle θ to the axis of emax, is eθ = emax

cos θ, as illustrated in Fig. 12.11. Simi-
larly, the sensitivity along the Y axis is 

et = emax sin θ. In general, the sensitive axis of a transducer is designated. Ideally, the
X axis would be designated the sensitive axis, and the angle θ would be zero. Practi-
cally, θ can be made only to approach zero because of manufacturing tolerances
and/or unpredictable variations in the characteristics of the transducing element.
Then the transverse sensitivity (cross-axis sensitivity) is expressed as the tangent of
the angle, i.e., the ratio of et to eθ:

= tan θ (12.11)

In practice, tan θ is between 0.01 and 0.05 and is expressed as a percentage. For
example, if tan θ = 0.05, the transducer is said to have a transverse sensitivity of 5 per-

cent. Figure 12.12 is a typical polar plot
of transverse sensitivity.

AMPLITUDE LINEARITY 

AND LIMITS

When the ratio of the electrical output
of a transducer to the mechanical input
(i.e., the sensitivity) remains constant
within specified limits, the transducer is
said to be “linear” within those limits, as
illustrated in Fig. 12.13. A transducer is
linear only over a certain range of
amplitude values. The lower end of this
range is determined by the electrical
noise of the measurement system.

The upper limit of linearity may be
imposed by the electrical characteristics

et�
eθ
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FIGURE 12.10 Relationships between aver-
age, rms, peak, and peak-to-peak values for a
simple sine wave. These values are used in speci-
fying sensitivities of shock and vibration trans-
ducers (e.g., peak millivolts per peak g, or rms
millivolts per peak-to-peak displacement).
These relationships do not hold true for other
than simple sine waves.

FIGURE 12.11 The designated sensitivity eθ

and cross-axis sensitivity et that result when the
axis of maximum sensitivity emax is not aligned
with the axis of eθ.
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of the transducing element and by the size or the fragility of the instrument. Gen-
erally, the greater the sensitivity of a transducer, the more nonlinear it will be. Sim-
ilarly, for very large acceleration values, the large forces produced by the spring of
the mass-spring system may exceed the yield strength of a part of the instrument,

causing nonlinear behavior or complete
failure.2

FREQUENCY RANGE

The operating frequency range is the
range over which the sensitivity of the
transducer does not vary more than a
stated percentage from the rated sensitiv-
ity.This range may be limited by the elec-
trical or mechanical characteristics of the
transducer or by its associated auxiliary
equipment. These limits can be added to
amplitude linearity limits to define com-
pletely the operating ranges of the instru-
ment, as illustrated in Fig. 12.14.

Low-Frequency Limit. The mechani-
cal response of a mass-spring transducer
does not impose a low-frequency limit
for an acceleration transducer because
the transducer responds to vibration
with frequencies less than the natural
frequency of the transducer.

12.12 CHAPTER TWELVE

FIGURE 12.12 Plot of transducer sensitivity
in all axes normal to the designated axis eθ plot-
ted according to axes shown in Fig. 12.11. Cross-
axis sensitivity reaches a maximum et along the
Y axis and a minimum value along the Z axis.

FIGURE 12.13 Typical plot of sensitivity as a
function of amplitude for a shock and vibration
transducer.The linear range is established by the
intersection of the sensitivity curve and the spec-
ified limits (dashed lines).

FIGURE 12.14 Linear operating range of a
transducer.Amplitude linearity limits are shown
as a combination of displacement and accelera-
tion values. The lower amplitude limits usually
are expressed in acceleration values as shown.
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In evaluating the low-frequency limit, it is necessary to consider the electrical
characteristics of both the transducer and the associated equipment. In general, a
transducing element that utilizes external power or a carrier voltage does not have a
lower frequency limit, whereas a self-generating transducing element is not opera-
tive at zero frequency. The frequency response of amplifiers and other circuit com-
ponents may limit the lowest usable frequency of an instrumentation system.

High-Frequency Limit. An acceleration transducer (accelerometer) has an upper
usable frequency limit because it responds to vibration whose frequency is less than

the natural frequency of the transducer.
The limit is a function of (1) the natural
frequency and (2) the damping of the
transducer, as discussed with reference
to Fig. 12.3. An attempt to use such a
transducer beyond this frequency limit
may result in distortion of the signal, as
illustrated in Fig. 12.15.

The upper frequency limit for slightly
damped vibration-measuring instru-
ments is important because these instru-
ments exaggerate the small amounts of
harmonic content that may be contained
in the motion, even when the operating
frequency is well within the operating
range of the instrument. The result of
exciting an undamped instrument at its
natural frequency may be to either dam-
age the instrument or obscure the de-

sired measurement. Figure 12.15 shows how a small amount of harmonic distortion
in the vibratory motion may be exaggerated by an undamped transducer.

Phase Shift. Phase shift is the time delay between the mechanical input and the
electrical output signal of the instrumentation system. Unless the phase-shift char-
acteristics of an instrumentation system meet certain requirements, a distortion may
be introduced that consists of the superposition of vibration at several different fre-
quencies. Consider first an accelerometer, for which the phase angle θ1 is given by
Fig. 12.4. If the accelerometer is undamped, θ1 = 0 for values of ω/ωn less than 1.0;
thus, the phase of the relative displacement δ is equal to that of the acceleration
being measured, for all values of frequency within the useful range of the accelerom-
eter. Therefore, an undamped accelerometer measures acceleration without distor-
tion of phase. If the fraction of critical damping ζ for the accelerometer is 0.65, the
phase angle θ1 increases approximately linearly with the frequency ratio ω/ωn within
the useful frequency range of the accelerometer.Then the expression for the relative
displacement may be written

δ = δ0 cos (ωt − θ) = δ0 cos (ωt − aω) = δ0 cos ω(t − a) (12.12)

where a is a constant. Thus, the relative motion δ of the instrument is displaced in
phase relative to the acceleration ü being measured; however, the increment along
the time axis is a constant independent of frequency. Consequently, the waveform of
the accelerometer output is undistorted but is delayed with respect to the waveform
of the vibration being measured. As indicated by Fig. 12.4, any value of damping in
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FIGURE 12.15 Distorted response (solid line)
of a lightly damped (ζ < 0.1) mass-spring ac-
celerometer to vibration (dashed line) containing
a small harmonic content of the small frequency
as the natural frequency of the accelerometer.
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an accelerometer other than ζ = 0 or ζ = 0.65 (approximately) results in a nonlinear
shift of phase with frequency and a consequent distortion of the waveform.

ENVIRONMENTAL EFFECTS

Temperature. The sensitivity, natural frequency, and damping of a transducer
may be affected by temperature.The specific effects produced depend on the type of
transducer and the details of its design.The sensitivity may increase or decrease with
temperature, or remain relatively constant. Figure 12.16 shows the variation of
damping with temperature for several different damping media. Either of two
methods may be employed to compensate for temperature effects.

1. The temperature of the pickup may be held constant by local heating or cooling.
2. The pickup characteristics may be measured as a function of temperature; if nec-

essary, the appropriate corrections can then be applied to the measured data.

Humidity. Humidity may affect the characteristics of certain types of vibration
instruments. In general, a transducer which operates at a high electrical impedance
is affected by humidity more than a transducer which operates at a low electrical
impedance. It usually is impractical to correct the measured data for humidity
effects. However, instruments that might otherwise be adversely affected by humid-
ity often are sealed hermetically to protect them from the effects of moisture.

Acoustic Noise. High-intensity sound waves often accompany high-amplitude
vibration. If the case of an accelerometer can be set into vibration by acoustic exci-
tation, error signals may result. In general, a well-designed accelerometer will not
produce a significant electrical response except at extremely high sound pressure
levels. Under such circumstances, it is likely that vibration levels also will be very
high, so that the error produced by the accelerometer’s exposure to acoustic noise
usually is not important.

12.14 CHAPTER TWELVE

FIGURE 12.16 Variation of damping with temperature for different
damping means. The ordinate indicates the fraction of critical damping ζ at
various temperatures assuming ζ = 1 at 70°F (21°C).
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Strain Sensitivity. An accelerometer may generate a spurious output when its case
is strained or distorted. Typically this occurs when the transducer mounting is not flat
against the surface to which it is attached, and so this effect is often called base-bend
sensitivity or strain sensitivity. It is usually reported in equivalent g per micro-
strain, where 1 microstrain is 1 × 10−6 inch per inch. The Instrument Society of Amer-
ica recommends a test procedure that determines strain sensitivity at 250 microstrain.4

An accelerometer with a sensing element which is tightly coupled to its base
tends to exhibit large strain sensitivity. An error due to strain sensitivity is most
likely to occur when the accelerometer is attached to a structure which is subject to
large amounts of flexure. In such cases, it is advisable to select an accelerometer with
low strain sensitivity.

PHYSICAL PROPERTIES

Size and weight of the transducer are very important considerations in many vibra-
tion and shock measurements.A large instrument may require a mounting structure
that will change the local vibration characteristics of the structure whose vibration is
being measured. Similarly, the added mass of the transducer may also produce sub-
stantial changes in the vibratory response of such a structure. Generally, the natural
frequency of a structure is lowered by the addition of mass; specifically, for a simple
spring-mass structure:

= �� (12.13)

where fn = natural frequency of structure
∆fn = change in natural frequency
m = mass of structure

∆m = increase in mass resulting from addition of transducer

In general, for a given type of transducing element, the sensitivity increases
approximately in proportion to the mass of the transducer. In most applications, it is
more important that the transducer be small in size than that it have high sensitivity
because amplification of the signal increases the output to a usable level.

Mass-spring-type transducers for the measurement of displacement usually are
larger and heavier than similar transducers for the measurement of acceleration. In
the former, the mass must remain substantially stationary in space while the instru-
ment case moves about it; this requirement does not exist with the latter.

For the measurement of shock and vibration in aircraft or missiles, the size and
weight of not only the transducer but also the auxiliary equipment are important. In
these applications, self-generating instruments that require no external power may
have a significant advantage.

PIEZOELECTRIC ACCELEROMETERS5

PRINCIPLE OF OPERATION

An accelerometer of the type shown in Fig. 12.17A is a linear seismic transducer uti-
lizing a piezoelectric element in such a way that an electric charge is produced which
is proportional to the applied acceleration. This “ideal” seismic piezoelectric trans-
ducer can be represented (over most of its frequency range) by the elements shown

m
�
m + ∆m

fn − ∆fn�
fn
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in Fig. 12.17B. A mass is supported on a linear spring which is fastened to the frame
of the instrument. The piezoelectric crystal which produces the charge acts as the
spring.Viscous damping between the mass and the frame is represented by the dash-
pot c. In Fig. 12.17C the frame is given an acceleration upward to a displacement of
u, thereby producing a compression in the spring equal to δ.The displacement of the
mass relative to the frame is dependent upon the applied acceleration of the frame,
the spring stiffness, the mass, and the viscous damping between the mass and the
frame, as indicated in Eq. (12.10) and illustrated in Fig. 12.3.

For frequencies far below the resonance frequency of the mass and spring, this
displacement is directly proportional to the acceleration of the frame and is inde-
pendent of frequency. At low frequencies, the phase angle of the relative displace-
ment δ, with respect to the applied acceleration, is proportional to frequency. As
indicated in Fig. 12.4, for low fractions of critical damping which are characteristic of
many piezoelectric accelerometers, the phase angle is proportional to frequency at
frequencies below 30 percent of the resonance frequency.

In Fig. 12.17, inertial force of the mass causes a mechanical strain in the piezo-
electric element, which produces an electric charge proportional to the stress and,
hence, proportional to the strain and acceleration. If the dielectric constant of the
piezoelectric material does not change with electric charge, the voltage generated is
also proportional to acceleration. Metallic electrodes are applied to the piezoelectric
element, and electrical leads are connected to the electrodes for measurement of the
electrical output of the piezoelectric element.

In the ideal seismic system shown in Fig. 12.17, the mass and the frame have infi-
nite stiffness, the spring has zero mass, and viscous damping exists only between the
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FIGURE 12.17 (A) Schematic diagram of a linear seismic piezoelectric
accelerometer. (B) A simplified representation of the accelerometer shown in
(A) which applies over most of the useful frequency range.A mass m rests on the
piezoelectric element, which acts as a spring having a spring constant k. The
damping in the system, represented by the dashpot, has a damping coefficient c.
(C) The frame is accelerated upward, producing a displacement u of the frame,
moving the mass from its initial position by an amount x, and compressing the
spring by an amount δ.

(B)

(A)

(C)
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mass and the frame. In practical piezoelectric accelerometers, these assumptions
cannot be fulfilled. For example, the mass may have as much compliance as the
piezoelectric element. In some seismic elements, the mass and spring are inherently
a single structure. Furthermore, in many practical designs where the frame is used to
hold the mass and piezoelectric element, distortion of the frame may produce
mechanical forces upon the seismic element. All these factors may change the per-
formance of the seismic system from those calculated using equations based on an
ideal system. In particular, the resonance frequency of the piezoelectric combination
may be substantially lower than that indicated by theory. Nevertheless, the equations
for an ideal system are useful both in design and application of piezoelectric
accelerometers.

Figure 12.18 shows a typical frequency response curve for a piezoelectric
accelerometer. In this illustration, the electrical output in millivolts per g accelera-
tion is plotted as a function of frequency. The resonance frequency is denoted by fn.
If the accelerometer is properly mounted on the device being tested, then the upper
frequency limit of the useful frequency range usually is taken to be fn/3 for a devia-
tion of 12 percent (1 dB) from the mean value of the response. For a deviation of 6
percent (0.5 dB) from the mean value, the upper frequency limit usually is taken to
be fn/5.As indicated in Fig. 12.1, the type of mounting can have a significant effect on
the value of fn.

The decrease in response at low frequencies (i.e., the “rolloff”) depends primarily
on the characteristics of the preamplifier that follows the accelerometer. The low-
frequency limit also is usually expressed in terms of the deviation from the mean
value of the response over the flat portion of the response curve, being the frequency
at which the response is either 12 percent (1 dB) or 6 percent (0.5 dB) below the
mean value.

VIBRATION TRANSDUCERS 12.17

FIGURE 12.18 Typical response curve for a piezoelectric accelerometer. The reso-
nance frequency is denoted by fn. The useful range depends on the acceptable devia-
tion from the mean value of the response over the “flat” portion of the response curve.
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PIEZOELECTRIC MATERIALS

A polarized ceramic called lead zirconate titanate (PZT) is most commonly used in
piezoelectric accelerometers. It is low in cost, high in sensitivity, and useful in the tem-
perature range from −180° to +550°F (−100° to +288°C). Polarized ceramics in the bis-
muth titanate family have substantially lower sensitivities than PZT, but they also have
more stable characteristics and are useful at temperatures as high as 1000°F (538°C).

Quartz, the single-crystal material most widely used in accelerometers, has a sub-
stantially lower sensitivity than polarized ceramics, but its characteristics are very
stable with time and temperature; it has high resistivity. Lithium niobate and tour-
maline are single-crystal materials that can be used in accelerometers at high tem-
peratures: lithium niobate up to at least 1200°F (649°C), and tourmaline up to at
least 1400°F (760°C). The upper limit of the useful range is usually set by the ther-
mal characteristics of the structural materials rather than by the characteristics of
these two crystalline materials.

Polarized polyvinylidene fluoride (PVDF), an engineering plastic similar to
Teflon, is used as the sensing element in some accelerometers. It is inexpensive, but
it is generally less stable with time and with temperature changes than ceramics or
single-crystal materials. In fact, because PVDF materials are highly pyroelectric,
they are used as thermal sensing devices.

TYPICAL PIEZOELECTRIC ACCELEROMETER CONSTRUCTIONS

Piezoelectric accelerometers utilize a variety of seismic element configurations.
Their methods of mounting are described in Chap. 15. See also Ref. 6. Most are con-
structed of polycrystalline ceramic piezoelectric materials because of their ease 
of manufacture, high piezoelectric sensitivity, and excellent time and temperature
stability. These seismic devices may be classified in two modes of operation:
compression- or shear-type accelerometers.

Compression-type Accelerometer. The compression-type seismic accelerome-
ter, in its simplest form, consists of a piezoelectric disc and a mass placed on a frame
as shown in Fig. 12.17. Motion in the direction indicated causes compressive (or ten-
sile) forces to act on the piezoelectric element, producing an electrical output pro-
portional to acceleration. In this example, the mass is cemented with a conductive
material to the piezoelectric element which, in turn, is cemented to the frame. The
components must be cemented firmly so as to avoid being separated from each

other by the applied acceleration.
In the typical commercial accelerom-

eter shown in Fig. 12.19, the mass is held
in place by means of a stud extending
from the frame through the ceramic.
Accelerometers of this design often use
quartz, tourmaline, or ferroelectric ce-
ramics as the sensing material.

This type of accelerometer must be
attached to the structure with care in
order to minimize distortion of the hous-
ing and base which can cause an electri-
cal output. See the section on Strain
Sensitivity.

12.18 CHAPTER TWELVE

FIGURE 12.19 A typical compression-type
piezoelectric accelerometer.The piezoelectric ele-
ment(s) must be preloaded (biased) to produce
an electrical output under both tension forces and
compression forces. (Courtesy of Endevco Corp.)
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The temperature characteristics of compression-type accelerometers have been
improved greatly in recent years; it is now possible to measure acceleration over a
temperature range of −425 to +1400°F (−254 to +760°C). This wider range has been
primarily a result of the use of two piezoelectric materials: tourmaline and lithium
niobate.

Shear-type Accelerometers. One shear-type accelerometer utilizes flat-plate
shear-sensing elements. Manufacturers preload these against a flattened post ele-
ment in several ways. Two methods are shown in Fig. 12.20. Accelerometers of this
style have low cross-axis response, excellent temperature characteristics, and negli-
gible output from strain sensitivity or base bending. The temperature range of the
bolted shear design can be from −425 to +1400°F (−254 to +760°C). The following
are typical specifications: sensitivity, 10 to 500 picocoulombs/g; acceleration range, 1
to 500g; resonance frequency, 25,000 Hz; useful frequency range, 3 to 5000 Hz; tem-
perature range, −425 to +1400°F (−254 to 760°C); transverse response, 3 percent.

Another shear-type accelerometer,
illustrated in Fig. 12.21, employs a cylin-
drically shaped piezoelectric element fit-
ted around a middle mounting post; a
loading ring (or mass) is cemented to the
outer diameter of the piezoelectric ele-
ment.The cylinder is made of ceramic and
is polarized along its length; the output
voltage of the accelerometer is taken
from its inner and outer walls.This type of
design can be made extremely small and
is generally known as an axially poled
shear-mode annular accelerometer.

Beam-type Accelerometers. The
beam-type accelerometer is a variation
of the compression-type accelerometer.

VIBRATION TRANSDUCERS 12.19

FIGURE 12.20 Piezoelectric accelerometers: (A) Delta-shear type. (Courtesy of Bruel & Kjaer.)
(B) Isoshear type. (Courtesy of Endevco Corp.)

(A) (B)

FIGURE 12.21 An annular shear accelerome-
ter.The piezoelectric element is cemented to the
post and mass. Electrical connections (not
shown) are made to the inner and outer diame-
ters of the piezoelectric element. (Courtesy of
Endevco Corp.)
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It is usually made from two piezoelectric plates which are rigidly bonded together to
form a beam supported at one end, as illustrated in Fig. 12.22.As the beam flexes, the
bottom element compresses, so that it increases in thickness. In contrast, the upper
element expands, so that it decreases in thickness. Accelerometers of this type gen-
erate high electrical output for their size, but are more fragile and have a lower res-
onance frequency than most other designs.

PHYSICAL CHARACTERISTICS OF PIEZOELECTRIC

ACCELEROMETERS

Shape, Size, and Weight. Commercially available piezoelectric accelerometers
usually are cylindrical in shape. They are available with both attached and detach-
able mounting studs at the bottom of the cylinder. A coaxial cable connector is pro-
vided at either the top or side of the housing.

Most commercially available piezoelectric accelerometers are relatively light in
weight, ranging from approximately 0.005 to 4.2 oz (0.14 to 120 grams). Usually, the
larger the accelerometer, the higher its sensitivity and the lower its resonance fre-
quency. The smallest units have a diameter of less than about 0.2 in. (5 mm); the
larger units have a diameter of about 1 in. (25.4 mm) and a height of about 1 in.
(25.4 mm).

12.20 CHAPTER TWELVE

FIGURE 12.22 Configurations of piezoelectric elements in a beam-type
accelerometer. (A) A series arrangement, in which the two elements have
opposing directions of polarization. (B) A parallel arrangement, in which
the two elements have the same direction of polarization.

(B)

(A)
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Resonance Frequency. The highest fundamental resonance frequency of an
accelerometer may be above 100,000 Hz. The higher the resonance frequency, the
lower will be the sensitivity and the more difficult it will be to provide mechanical
damping.

Damping. The amplification ratio of an accelerometer is defined as the ratio of
the sensitivity at its resonance frequency to the sensitivity in the frequency band in
which sensitivity is independent of frequency. This ratio depends on the amount of
damping in the seismic system; it decreases with increasing damping. Most piezo-
electric accelerometers are essentially undamped, having amplification ratios
between 20 and 100, or a fraction of critical damping less than 0.1.

ELECTRICAL CHARACTERISTICS OF PIEZOELECTRIC

ACCELEROMETERS

Dependence of Voltage Sensitivity on Shunt Capacitance. The sensitivity of an
accelerometer is defined as the electrical output per unit of applied acceleration. The
sensitivity of a piezoelectric accelerometer can be expressed as either a charge sensitiv-
ity q/ẍ or voltage sensitivity e/ẍ. Charge sensitivity usually is expressed in units of
coulombs generated per g of applied acceleration; voltage sensitivity usually is
expressed in volts per g (where g is the acceleration of gravity). Voltage sensitivity

often is expressed as open-circuit voltage
sensitivity, i.e., in terms of the voltage pro-
duced across the electrical terminals per
unit acceleration when the electrical load
impedance is infinitely high. Open-circuit
voltage sensitivity may be given either
with or without the connecting cable.

An electrical capacitance often is
placed across the output terminals of a
piezoelectric transducer. This added
capacitance (called shunt capacitance)
may result from the connection of an
electrical cable between the pickup and
other electrical equipment (all electrical
cables exhibit interlead capacitance).
The effect of shunt capacitance in reduc-
ing the sensitivity of a pickup is shown in
Fig. 12.23.

The charge equivalent circuits, with shunt capacitance CS, are shown in Fig.
12.23A. The charge sensitivity is not changed by addition of shunt capacitance. The
total capacitance CT of the pickup including shunt is given by

CT = CE + CS (12.14)

where CE is the capacitance of the transducer without shunt capacitance.
The voltage equivalent circuits are shown in Fig. 12.23B. With the shunt capaci-

tance CS, the total capacitance is given by Eq. (12.14) and the open-circuit voltage
sensitivity is given by

= (12.15)
1

�
CE + CS

qs�
ẍ

es�
ẍ

VIBRATION TRANSDUCERS 12.21

FIGURE 12.23 Equivalent circuits which in-
clude shunt capacitance across a piezoelectric
pickup. (A) Charge equivalent circuit. (B) Volt-
age equivalent circuit.

(A) (B)
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where qs /ẍ is the charge sensitivity.The voltage sensitivity without shunt capacitance
is given by

= (12.16)

Therefore, the effect of the shunt capacitance is to reduce the voltage sensitivity by
a factor

= (12.17)

Piezoelectric accelerometers are used with both voltage-sensing and charge-sensing
signal conditioners, although charge sensing is by far the most common because the
sensitivity does not change with external capacitance (up to a limit). These factors
are discussed in Chap. 13. In addition, electronic circuitry can be placed within the
case of the accelerometer, as discussed below.

LOW-IMPEDANCE PIEZOELECTRIC ACCELEROMETERS

CONTAINING INTERNAL ELECTRONICS

Piezoelectric accelerometers are available with simple electronic circuits internal to
their cases to provide signal amplification and low-impedance output. For example,
see the charge preamplifier circuit shown in Fig. 13.2. Some designs operate from
low-current dc voltage supplies and are designed to be intrinsically safe when cou-
pled by appropriate barrier circuits. Other designs have common power and signal
lines and use coaxial cables.

The principal advantages of piezoelectric accelerometers with integral electron-
ics are that they are relatively immune to cable-induced noise and spurious
response, they can be used with lower-cost cable, and they have a lower signal con-
ditioning cost. In the simplest case the power supply might consist of a battery, a
resistor, and a capacitor. Some such accelerometers provide a velocity or displace-
ment output. These advantages do not come without compromise.7 Because the
impedance-matching circuitry is built into the transducer, gain cannot be adjusted to
utilize the wide dynamic range of the basic transducer. Ambient temperature is lim-
ited to that which the circuit will withstand, and this is considerably lower than that
of the piezoelectric sensor itself. In order to retain the advantages of small size, the
integral electronics must be kept relatively simple.This precludes the use of multiple
filtering and dynamic overload protection and thus limits their application.

All other things being equal, the reliability factor (i.e., the mean time between
failures) of any accelerometer with internal electronics is lower than that of an
accelerometer with remote electronics, especially if the accelerometer is subject to
abnormal environmental conditions. However, if the environmental conditions are
fairly normal, accelerometers with internal electronics can provide excellent signal
fidelity and immunity from noise. Internal electronics provides a reduction in over-
all system noise level because it minimizes the cable capacitance between the sensor
and the signal conditioning electronics.

An accelerometer containing internal electronics that includes such additional
features as self-testing, self-identification, and calibration data storage is sometimes
referred to as a “smart accelerometer.” During normal operation of the smart sen-
sor, its output is an analog electrical signal. If such a transducer contains a built-in
digital identification chip, it can be designed to send out a digitized signal providing
such useful information as the calibration of the device and compensation coeffi-

CE�
CE + CS

es /ẍ�
e/ẍ

1
�
CE

qs�
ẍ

e
�
ẍ
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cients.8 Such a device is often called a mixed-mode smart sensor or a mixed-mode
analog smart transducer.

Velocity-Output Piezoelectric Devices. Piezoelectric accelerometers are avail-
able with internal electronic circuitry which integrates the output signal provided by
the accelerometer, thereby yielding a velocity or displacement output. These trans-
ducers have several advantages not possessed by ordinary velocity pickups. They are
smaller, have a wider frequency response, have no moving parts, and are relatively
unaffected by magnetic fields where measurements are made.

ACCELERATION-AMPLITUDE CHARACTERISTICS

Amplitude Range. Piezoelectric accelerometers are generally useful for the meas-
urement of acceleration of magnitudes of from 10−6g to more than 105g. The lowest
value of acceleration which can be measured is approximately that which will produce
an output voltage equivalent to the electrical input noise of the coupling amplifier con-
nected to the accelerometer when the pickup is at rest. Over its useful operating range,
the output of a piezoelectric accelerometer is directly and continuously proportional
to the input acceleration. A single accelerometer often can be used to provide meas-
urements over a dynamic amplitude range of 90 dB or more, which is substantially
greater than the dynamic range of some of the associated transmission, recording, and
analysis equipment. Commercial accelerometers generally exhibit excellent linearity
of electrical output vs. input acceleration under normal usage.

At very high values of acceleration (depending upon the design characteristics of
the particular transducer), nonlinearity or damage may occur. For example, if the
dynamic forces exceed the biasing or clamping forces, the seismic element may
“chatter” or fracture, although such a fracture might not be observed in subsequent
low-level acceleration calibrations. High dynamic accelerations also may cause a
slight physical shift in position of the piezoelectric element in the accelerometer—
sometimes sufficient to cause a zero shift or change in sensitivity. The upper limit of
acceleration measurements depends upon the specific design and construction
details of the pickup and may vary considerably from one accelerometer to another,
even though the design is the same. It is not always possible to calculate the upper
acceleration limit of a pickup.Therefore one cannot assume linearity of acceleration
levels for which calibration data cannot be obtained.

EFFECTS OF TEMPERATURE

Temperature Range. Piezoelectric accelerometers are available which may be
used in the temperature range from −425°F (−254°C) to above +1400°F (+760°C)
without the aid of external cooling. The voltage sensitivity, charge sensitivity, capac-
itance, and frequency response depend upon the ambient temperature of the trans-
ducer. This temperature dependence is due primarily to variations in the
characteristics of the piezoelectric material, but it also may be due to variations in
the insulation resistance of cables and connectors—especially at high temperatures.

Effects of Temperature on Charge Sensitivity. The charge sensitivity of a
piezoelectric accelerometer is directly proportional to the d piezoelectric constant of
the material used in the piezoelectric element. The d constants of most piezoelectric
materials vary with temperature.
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8434_Harris_12_b.qxd  09/20/2001  11:15 AM  Page 12.23



Effects of Temperature on Voltage Sensitivity. The open-circuit voltage sensi-
tivity of an accelerometer is the ratio of its charge sensitivity to its total capacitance
(Cs + CE). Hence, the temperature variation in voltage sensitivity depends on the
temperature dependence of both charge sensitivity and capacitance. The voltage
sensitivity of most piezoelectric accelerometers decreases with temperature.

Effects of Transient Temperature Changes. A piezoelectric accelerometer that
is exposed to transient temperature changes may produce outputs as large as several
volts, even if the sensitivity of the accelerometer remains constant. These spurious
output voltages arise from

1. Differential thermal expansion of the piezoelectric elements and the structural
parts of the accelerometer, which may produce varying mechanical forces on the
piezoelectric elements, thereby producing an electrical output.

2. Generation of a charge in response to a change in temperature because the
piezoelectric material is inherently pyroelectric. In general, the charge generated
is proportional to the temperature change.

Such thermally generated transients tend to generate signals at low frequencies
because the accelerometer case acts as a thermal low-pass filter.Therefore, such spu-
rious signals often may be reduced significantly by adding thermal insulation around
the accelerometer to minimize the thermal changes and by electrical filtering of low-
frequency output signals from the accelerometer.

PIEZORESISTIVE ACCELEROMETERS

PRINCIPLE OF OPERATION

A piezoresistive accelerometer differs from the piezoelectric type in that it is not self-
generating. In this type of transducer a semiconductor material, usually silicon, is used
as the strain-sensing element. Such a material changes its resistivity in proportion to an
applied stress or strain. The equivalent electric circuit of a piezoresistive transducing
element is a variable resistor. Piezoresistive elements are almost always arranged in
pairs; a given acceleration places one element in tension and the other in compression.
This causes the resistance of one element to increase while the resistance of the other
decreases. Often two pairs are used and the four elements are connected electrically in
a Wheatstone-bridge circuit, as shown in Fig. 12.24B. When only one pair is used, it
forms half of a Wheatstone bridge, the other half being made up of fixed-value resis-
tors, either in the transducer or in the signal conditioning equipment.The use of trans-
ducing elements by pairs not only increases the sensitivity, but also cancels zero-output
errors due to temperature changes, which occur in each resistive element.

At one time, wire or foil strain gages were used exclusively as the transducing ele-
ments in resistive accelerometers. Now silicon elements are often used because of
their higher sensitivity. (Metallic gages made of foil or wire change their resistance
with strain because the dimensions change.The resistance of a piezoresistive material
changes because the material’s electrical nature changes.) Sensitivity is a function of
the gage factor; the gage factor is the ratio of the fractional change in resistance to the
fractional change in length that produced it. The gage factor of a typical wire or foil
strain gage is approximately 2.5; the gage factor of silicon is approximately 100.

A major advantage of piezoresistive accelerometers is that they have good fre-
quency response down to dc (0 Hz) along with a relatively good high-frequency
response.
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DESIGN PARAMETERS

Many different configurations are possible for an accelerometer of this type. For
purposes of illustration, the design parameters are considered for a piezoresistive
accelerometer which has a cantilever arrangement as shown in Fig. 12.24A. This uni-
formly stressed cantilever beam is loaded at its end with mass m. In this arrange-
ment, four identical piezoresistive elements are used—two on each side of the beam,
whose length is L in. These elements, whose resistance is R, form the active arms of
the balanced bridge shown in Fig. 12.24B. A change of length L of the beam pro-
duces a change in resistance R in each element.The gage factor K for each of the ele-
ments [defined by Eq. (17.1)] is

K = = (12.18)

where ε is the strain induced in the beam, expressed in inches/inch, at the surface
where the elements are cemented. If the resistances in the four arms of the bridge
are equal, then the ratio of the output voltage Eo of the bridge circuit to the input
voltage Ei is

= = �K (12.19)

TYPICAL PIEZORESISTIVE ACCELEROMETER CONSTRUCTIONS

Figure 12.25 shows three basic piezoresistive accelerometer designs which illustrate
several of the many types available for various applications.

Bending-Beam Type. This design approach is described by Fig. 12.25A. The
advantages of this type are simplicity and ruggedness. The disadvantage is relatively
low sensitivity for a given resonance frequency. The relatively lower sensitivity
results from the fact that much of the strain energy goes into the beam rather than
the strain gages attached to it.
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FIGURE 12.24 (A) Schematic drawing of a piezoresistive accelerometer of the cantilever-
beam type. Four piezoresistive elements are used—two are either cemented to each side of the
stressed beam or are diffused or ion implanted into a silicon beam. (B) The four piezoresistive
elements are connected in a bridge circuit as illustrated.

(A) (B)
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FIGURE 12.25 Three basic types of piezoresistive accelerometers. (A) Bending-beam type; the
strain elements are usually bonded to the beam. Such an arrangement has been implemented in a
micromachined accelerometer either by high-temperature diffusion of tension gages into the beam
or by ion implantation. (B) Stress-concentrated type; the thin section on the neutral axis acts as a
hinge of the seismic mass. Under dynamic conditions, the strain energy is concentrated in the piezore-
sistive gages. (C) Stress-concentrated micromachined type; the entire mechanism is etched from a
single crystal of silicon. The thin section on the neutral axis acts as a hinge; the pedestal serves as 
a mounting base. (D) An enlarged view of one corner of the accelerometer shown in (C), which has a
total thickness of 200 micrometers.

(D)

(C)

(A) (B)
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Stress-Concentrated Stopped and Damped Type. To provide higher sensitiv-
ities and resonance frequencies than are possible with the bending-beam type,
designs are provided which place most of the strain energy in the piezoresistive ele-
ments.This is described by Fig. 12.25B. This approach is used to provide sensitivities
more suitable for the measurement of acceleration below 100g.To provide environ-
mental shock resistance, overload stops are added. To provide wide frequency
response, damping is added by surrounding the mechanism with silicone oil. The
advantages of these designs are high sensitivity, broad frequency response for the
sensitivity, and over-range protection.The disadvantages are complexity and limited
temperature range. The high sensitivity results from the relatively large mass with
the strain energy mostly coupled into the strain gages. (The thin section on the neu-
tral axis acts as a hinge; it contributes very little stiffness.) The broad frequency
response results from the relatively high damping (0.7 times critical damping),
which allows the accelerometer to be used to frequencies nearer the resonance fre-
quency without excessive increase in sensitivity. The over-range protection is pro-
vided by stops which are designed to stop the motion of the mass before it
overstresses the gages. (Stops are omitted from Fig. 12.25B in the interest of clarity.)
Over-range protection is almost mandatory in sensitive piezoresistive accelerome-
ters; without it they would not survive ordinary shipping and handling.The viscosity
of the damping fluid does change with temperature; as a result, the damping coeffi-
cient changes significantly with temperature. The damping is at 0.7 times critical
only near room temperature.

Micromachined Type. The entire working mechanism (mass, spring, and sup-
port) of a micromachined-type accelerometer is etched from a single crystal of sili-
con, a process known as micromachining. This produces a very tiny and rugged
device, shown in Fig. 12.25C. The advantages of the micromachined type are very
small size, very high resonance frequency, ruggedness, and high range. Accelerome-
ters of such design are used to measure a wide range of accelerations, from below
10g to over 200,000g. No adhesive is required to bond a strain gage of this type to
the structure, which helps to make it a very stable device. For shock applications, see
the section on Survivability.

ELECTRICAL CHARACTERISTICS OF PIEZORESISTIVE

ACCELEROMETERS

Excitation. Piezoresistive transducers require an external power supply to provide
the necessary current or voltage excitation in order to operate. These energy sources
must be well regulated and stable since they may introduce sensitivity errors and sec-
ondary effects at the transducer which will result in error signals at the output.

Traditionally, the excitation has been provided by a battery or a constant voltage
supply. Other sources of excitation, such as constant current supplies or ac excitation
generators, may be used. The sensitivity and temperature response of a piezoresis-
tive transducer may depend on the kind of excitation applied.Therefore, it should be
operated in a system which provides the same source of excitation as used during
temperature compensation and calibration of the transducer. The most common
excitation source is 10 volts dc.

Sensitivity. The sensitivity of an accelerometer is defined as the ratio of its elec-
trical output to its mechanical input. Specifically, in the case of piezoresistive
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accelerometers, it is expressed as voltage
per unit of acceleration at the rated exci-
tation (i.e., mV/g or peak mV/peak g at
10 volts dc excitation).

Loading Effects. An equivalent cir-
cuit of a piezoresistive accelerometer,
for use when considering loading effects,

is shown in Fig. 12.26. Using the equivalent circuit and the measured output resist-
ance of the transducer, the effect of loading may be directly calculated:

EoL = Eo (12.20)

where Ro = output resistance of accelerometer, including cable resistance
Eo = sensitivity into an infinite load

EoL = loaded output sensitivity
RL = load resistance

Because the resistance of the strain-gage elements varies with temperature, output
resistance should be measured at the operating temperature.

Effect of Cable on Sensitivity. Long cables may result in the following effects:

1. A reduction in sensitivity because of resistance in the input wires. The fractional
reduction in sensitivity is equal to

(12.21)

where Ri is the input resistance of the transducer and Rci is the resistance of one
input (excitation) wire.This effect may be overcome by using remote sensing leads.

2. Signal attenuation resulting from resistance in the output wires. This fractional
reduction in signal is given by

(12.22)

where Rco is the resistance of one output wire between transducer and load.
3. Attenuation of the high-frequency components in the data signal as a result of

R-C filtering in the shielded instrument leads. The stray and distributed capaci-
tance present in the transducer and a short cable are such that any filtering
effect is negligible to frequencies well beyond the usable range of the
accelerometer. However, when long leads are connected between transducer
and readout equipment, the frequency response at higher frequencies may be
affected significantly.

Warmup Time. The excitation voltage across the piezoresistive elements causes
a current to flow through each element. The I 2R heating results in an increase in
temperature of the elements above ambient which slightly increases the resistance
of the elements. Differentials in this effect may cause the output voltage to vary
slightly with time until the temperature is stabilized. Therefore, resistance meas-
urements and shock and vibration data should not be taken until stabilization is
reached.

RL��
Ro + RL + 2Rco

Ri�
Ri + 2Rci

RL�
Ro + RL
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FIGURE 12.26 Loading effects on piezoresis-
tive accelerometers.
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Input and Output Resistance. For an equal-arm Wheatstone bridge, the input
and output resistances are equal. However, temperature-compensating and zero-
balance resistors may be internally connected in series with the input leads or in
series with the sensing elements. These additional resistors will usually result in
unequal input and output resistance. The resistance of piezoresistive transducers
varies with temperature much more than the resistance of metallic strain gages, usu-
ally having resistivity temperature coefficients between about 0.17 and 0.95 percent
per degree Celsius.

Zero Balance. Although the resistance elements in the bridge of a piezoresistive
accelerometer may be closely matched during manufacture, slight differences in
resistance will exist. These differences result in a small offset or residual dc voltage
at the output of the bridge. Circuitry within associated signal conditioning instru-
ments may provide compensation or adjustment of the electrical zero.

Insulation. The case of the accelerometer acts as a mechanical and electrical
shield for the sensing elements. Sometimes it is electrically insulated from the ele-
ments but connected to the shield of the cable. If the case is grounded at the struc-
ture, the shield of the connecting cable may be left floating and should be connected
to ground at the end farthest from the accelerometer. When connecting the cable
shield at the end away from the accelerometer, care must be taken to prevent
ground loops.

Thermal Sensitivity Shift. The sensitivity of a piezoresistive accelerometer
varies as a function of temperature. This change in the sensitivity is caused by
changes in the gage factor and resistance and is determined by the temperature
characteristics of the modulus of elasticity and piezoresistive coefficient of the sens-
ing elements. The sensitivity deviations are minimized by installing compensating
resistors in the bridge circuit within the accelerometer.

Thermal Zero Shift. Because of small differences in resistance change of the
sensing elements as a function of temperature, the bridge may become slightly
unbalanced when subjected to temperature changes. This unbalance produces small
changes in the dc voltage output of the bridge.Transducers are usually compensated
during manufacture to minimize the change in dc voltage output (zero balance) of
the accelerometer with temperature. Adjustment of external balancing circuitry
should not be necessary in most applications.

Damping. The frequency response characteristics of piezoresistive accelerome-
ters having damping near zero are similar to those obtained with piezoelectric
accelerometers. Viscous damping is provided in accelerometers having relatively
low resonance frequencies to increase the useful high-frequency range of the
accelerometer and to reduce the output at resonance. At room temperature this
damping is usually 0.7 of critical damping or less.With damping, the sensitivity of the
accelerometer is “flat” to greater than one-fifth of its resonance frequency.

The piezoresistive accelerometer using viscous damping is intended for use in a
limited temperature range, usually +20 to +200°F (−7 to +94°C).At high temperatures
the viscosity of the oil decreases, resulting in low damping; and at low temperatures
the viscosity increases, which causes high damping. Accordingly, the frequency
response characteristics change as a function of temperature.
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FORCE GAGES AND IMPEDANCE HEADS

MECHANICAL IMPEDANCE MEASUREMENT

Mechanical impedance measurements are made to relate the force applied to a
structure to the motion of a point on the structure. If the motion and force are
measured at the same point, the relationship is called the driving-point impedance;
otherwise it is called the transfer impedance. Any given point on a structure has six
degrees-of-freedom: translations along three orthogonal axes and rotations around
the axes, as explained in Chap. 2. A complete impedance measurement requires
measurement of all six excitation forces and response motions. In practice, rota-
tional forces and motions are rarely measured, and translational forces and motions
are measured in a single direction, usually normal to the surface of the structure
under test.

Mechanical impedance is the ratio of input force to resulting output velocity.
Mobility is the ratio of output velocity to input force, the reciprocal of mechanical
impedance. Dynamic stiffness is the ratio of input force to output displacement.
Receptance, or admittance, is the ratio of output displacement to input force, the
reciprocal of dynamic stiffness. Dynamic mass, or apparent mass, is the ratio of input
force to output acceleration.All of these quantities are complex and functions of fre-
quency. All are often loosely referred to as impedance measurements. They all
require the measurement of input force obtained with a force gage (an instrument
which produces an output proportional to the force applied through it). They also
require the measurement of output motion. This is usually accomplished with an
accelerometer; if velocity or displacement is the desired measure of motion, either
can be determined from the acceleration.

Impedance measurements usually are made for one of these reasons:

1. To determine the natural frequencies and mode shapes of a structure (see Chap.21)
2. To measure a specific property, such as stiffness or damping, of a material or

structure
3. To measure the dynamic properties of a structure in order to develop an analyti-

cal model of it

The input force (excitation) applied to a structure under test should be capable
of exciting the structure over the frequency range of interest.This excitation may be
either a vibratory force or a transient impulse force (shock). If vibration excitation
is used, the frequency is swept over the range of interest while the output motion
(response) is measured. If shock excitation is used, the transient input excitation and
resulting transient output response are measured.The frequency spectra of the input
and output are then calculated by Fourier analysis.

FORCE GAGES

A force gage measures the force which is being applied to a structural point. Force
gages used for impedance measurements invariably utilize piezoelectric transducing
elements. A piezoelectric force gage is, in principle, a very simple device. The trans-
ducing element generates an output charge or voltage proportional to the applied
force. Piezoelectric transducing elements are discussed in detail earlier in this chapter.
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TYPICAL FORCE-GAGE AND IMPEDANCE-HEAD CONSTRUCTIONS

Force Gages for Use with Vibration Excitation. Force gages for use with vibra-
tion excitation are designed with provision for attaching one end to the structure and
the other end to a force driver (vibration exciter).A thin film of oil or grease is often
used between the gage and the structure to improve the coupling at high frequencies.

Force Gages for Use with Shock Excitation. Force gages for use with shock
excitation are usually built into the head of a hammer. Excitation is provided by
striking the structure with the hammer. The hammer is often available with inter-
changeable faces of various materials to control the waveform of the shock pulse
generated. Hard materials produce a short-duration, high-amplitude shock with fast
rise and fall times; soft materials produce longer, lower-amplitude shocks with
slower rise and fall times. Short-duration shocks have a broad frequency spectrum
extending to high frequencies. Long-duration shocks have a narrower spectrum with
energy concentrated at lower frequencies.

Shock excitation by a hammer with a built-in force gage requires less equipment
than sinusoidal excitation and requires no special preparation of the structure.

Impedance Heads. Impedance heads combine a force gage and an accelerometer
in a single instrument. They are convenient for measuring driving-point impedance
because only a single instrument is required and the force gage and accelerometer
are mounted as nearly as possible at a single point.

FORCE-GAGE CHARACTERISTICS

Amplitude Response, Signal Conditioning, and Environmental Effects. The
amplitude response, signal conditioning requirements, and environmental effects asso-
ciated with force gages are the same as those associated with piezoelectric accelerom-
eters.They are described in detail earlier in this chapter.The sensitivity is expressed as
charge or voltage per unit of force, e.g., picocoulomb/newton or millivolt/lb.

Near a resonance, usually a point of particular interest, the input force may be
quite low; it is important that the force-gage sensitivity be high enough to provide
accurate readings, unobscured by noise.

Frequency Response. A force gage, unlike an accelerometer, does not have an
inertial mass attached to the transducing element. Nevertheless, the transducing ele-
ment is loaded by the mass of the output end of the force gage.This is called the end
dynamic mass. Therefore, it has a frequency response that is very similar to that of an
accelerometer, as described earlier in this chapter.

Effect of Mass Loading. The dynamic mass of a transducer (force gage,
accelerometer, or impedance head) affects the motion of the structure to which the
transducer is attached. Neglecting the effects of rotary inertia, the motion of the
structure with the transducer attached is given by

A = Ao (12.23)

where a = amplitude of motion with transducer attached
Ao = amplitude of motion without transducer attached

ms�
ms + mt
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ms = dynamic mass of structure at point of transducer attachment in direc-
tion of sensitive axis of transducer

mt = dynamic mass of the transducer in its sensitive direction

These are all complex quantities and functions of frequency. Near a resonance the
dynamic mass of the structure becomes very small; therefore, the mass of the trans-
ducer should be as small as possible.The American National Standards Institute rec-
ommends that the dynamic mass of the transducer be less than 10 times the dynamic
mass of the structure at resonance.

PIEZOELECTRIC EXCITERS (DRIVERS)

A piezoelectric element can be used as a vibration exciter if an ac signal is applied to
its electrical terminals. This is known as the converse piezoelectric effect. In contrast
to electrodynamic exciters, piezoelectric exciters are effective from well below 1000
Hz to as high as 60,000 Hz. Some commercially available piezoelectric exciters use
piezoelectric ceramic elements to provide the driving force. Other applications uti-
lize the piezoelectric effect in devices such as transducer calibrators, fuel injectors in
automobiles, ink pumps in impact printer assemblies, and drivers to provide the
antiphase motions for noise cancellation systems.

OPTICAL-ELECTRONIC TRANSDUCER SYSTEMS

LASER DOPPLER VIBROMETERS

The laser Doppler vibrometer (LDV) uses the Doppler shift of laser light which has
been backscattered from a vibrating test object to produce a real-time analog signal
output that is proportional to instantaneous velocity. The velocity measurement
range, typically between a minimum peak value of 0.5 micrometer per second and a
maximum peak value of 10 meters per second, is illustrated in Fig. 12.27.

An LDV is typically employed in an application where other accelerometers or
other types of conventional sensors cannot be used. LDVs’ main features are

� There are no transducer mounting or mass loading effects.
� There is no built-in transverse sensitivity or other environmental effects.
� They measure remotely from nearly any standoff distance.
� There is ultra-high spatial resolution with small measurement spot (5 to 100

micrometers typically).
� They can be easily fitted with fringe-counter electronics for producing absolute

calibration of dynamic displacement.
� The laser beam can be automatically scanned to produce full-field vibration pat-

tern images.

Caution must be exercised in the installation and calibration of laser Doppler
vibrometers (LDVs). In installing such an optical-electronic transducer system, care
must be given to the location unit relative to the location of the target; in many
applications, optical alignment can be difficult. Although absolute calibration of the
associated electronic system can be carried out, an absolute calibration of the opti-
cal system usually cannot be. Thus, the calibration is usually restricted to the range
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of the secondary standard accelerometer used, which is only a small portion of the
dynamic range of the LDV; the secondary standard accelerometer should be cali-
brated against a National Institute of Standards and Technology (NIST) traceable
reference, at least once a year, in compliance with MIL-STD-45662A. Since the
application of LDV technology is based on the reflection of coherent light scattered
by the target surface, ideally this surface should be flat relative to the wavelength of
the light used in the laser. If it is not, the nonuniform surface can result in spurious
reflectivity (resulting in noise) or complete loss of reflectivity (signal dropout).

Types of Laser Doppler Vibrometers Four types of laser Doppler vibrometers
are illustrated in Fig. 12.28.

Standard (Out of Plane). The standard LDV measures the vibrational compo-
nent vz(t) which lies along the laser beam.Triaxial measurements can be obtained by
approaching the same measurement point from three different directions.This is the
most common type of LDV system.

Scanning. An extension of the standard out-of-plane system, the scanning
LDV uses computer-controlled deflection mirrors to direct the laser to a user-
selected array of measurement points. The system automatically collects and
processes vibration data at each point; scales the data in standard displacement,
velocity, or acceleration engineering units; performs fast Fourier transform (FFT) or
other operations; and displays full-field vibration pattern images and animated
operational deflection shapes.

In-plane. A special optics probe emitting two crossed laser beams is directed at
normal incidence to the test surface and measures in-plane velocity. By rotating the
probe by 90°, vx(t) or vy(t) can be measured.

Rotational. Two parallel laser beams from an optics probe measure angular
vibration in units of degrees per second. Rotational systems are commonly used for
torsional vibration analysis.
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FIGURE 12.27 Typical operating range for a laser Doppler vibrometer.
(Courtesy of Polytec Pi, Inc.)
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DISPLACEMENT MEASUREMENT SYSTEM

The electro-optical displacement measurement system consists of an electro-optical
sensor and a servo-control unit designed to track the displacement of the motion of
a light-dark target. This target provides a light discontinuity in the intensity of
reflected light from an object. If such a light-dark discontinuity is not inherent to the
object under study, a light-dark target may be applied on the object.An image of the
light-dark target is formed by a lens on the photocathode of an image dissector pho-
tomultiplier tube, as shown in Fig. 12.29. The photocathode emits electrons in pro-
portion to the intensity of the light striking the tube, causing an electron image to be
generated in real time. The electron image is accelerated through a small aperture
that is centrally located within the phototube.The number of electrons that enter the
aperture constitute a small electric current that is directly proportional to the
amount of light striking the corresponding area on the photocathode. This signal
current is then amplified. As the light-dark target moves across the face of the pho-
totube, the output current changes from high (light) to low (dark). When the target
is exactly at the center of the tube, the output current represents half light and half
dark covering the aperture. If the target moves away from this position, the output
current changes. This change is detected by the control unit, which feeds a compen-
sation current back to the optical tracking head. The current that is needed for this
deflection is directly proportional to the distance that the image has moved away
from the center. Therefore it is a direct measure of displacement.
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FIGURE 12.28 The four basic types of laser Doppler vibrometer systems. (Courtesy of Poly-
tec Pi, Inc.)
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The displacement amplitudes that can be measured range from a few microme-
ters to several meters; the exact value is determined by the lens selected. Systems are
available which measure displacements in one, two, or three directions.

FIBER-OPTIC REFLECTIVE DISPLACEMENT SENSOR

A fiber-optic reflective displacement
sensor measures the amount of light
normal to, and vibrating along, the opti-
cal axis of the device. The amount of
reflected light is related to the distance
between the surface and the fiber-optic
transmitting/receiving element, as illus-
trated in Fig. 12.30. The sensor is com-
posed of two bundles of single optical
fibers. One of these bundles transmits
light to the reflecting target; the other
traps reflected light and transmits it to a
detector. The intensity of the detected
light depends on how far the reflecting
surface is from the fiber-optic probe.
Light is transmitted from the bundle of

fibers in a solid cone defined by a numerical aperture. Since the angle of reflection is
equal to the angle of incidence, the size of the spot that strikes the bundle after
reflection is twice the size of the spot that hits the target initially. As the distance
from the reflecting surface increases, the spot size increases as well. The amount of
reflected light is inversely proportional to the spot size. As the probe tip comes
closer to the reflecting target, there is a position in which the reflected light rays are
not coupled to the receiving fiber bundle. At the onset of this occurrence, a maxi-
mum forms which drops to zero as the reflecting surface contacts the probe. The
output-current sensitivity can be varied by using various optical configurations.

While sensitivities approaching 1 microinch are possible, such extreme sensitivi-
ties limit the corresponding dynamic range. If the sensor is used at a distance from the
reflecting target, a lens system is required in conjunction with a fiber-optic probe.
With available lenses, the instruments have displacement measurement ranges from
0 to 0.015 in. (0 to 0.38 mm) and 0 to 5.0 in. (0 to 12.7 cm). Resolution typically is bet-

VIBRATION TRANSDUCERS 12.35

FIGURE 12.30 Fiber-optic displacement sen-
sor. (Courtesy of EOTEC Corp.)

FIGURE 12.29 Image dissector tube of an electro-optical displacement meas-
urement system. (Courtesy of Optron Corp.)
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ter than one one-hundredth of the full-scale range. The sensor is sensitive to rotation
of the reflecting target. For rotations of ±3° or less, the error is less than ±3 percent.

ELECTRODYNAMIC TRANSDUCERS

ELECTRODYNAMIC (VELOCITY COIL) PICKUPS

The output voltage of the electrodynamic pickup is proportional to the relative veloc-
ity between the coil and the magnetic flux lines being cut by the coil. For this reason

it is commonly called a velocity coil. The
principle of operation of the device is
illustrated in Fig. 12.31. A magnet has an
annular gap in which a coil wound on a
hollow cylinder of nonmagnetic material
moves. Usually a permanent magnet is
used, although an electromagnet may be
used. The pickup also can be designed
with the coil stationary and the magnet
movable. The open-circuit voltage e gen-
erated in the coil is2,3

e = −Blv(10−8) volts

where B is the flux density in gausses; l is
the total length in centimeters of the conductor in the magnetic field; and v is the rel-
ative velocity in centimeters per second between the coil and magnetic field. The
magnetic field decreases sharply outside the space between the pole pieces; there-
fore, the length of coil wire outside the gap generates only a very small portion of the
total voltage.

One application of the electrodynamic principle is the velocity-type seismic
pickup. Usually the pickup is used only at frequencies above its natural frequency,
and it is not very useful at frequencies above several thousand hertz. The sensitivity
of most pickups of this type is quite high, particularly at low frequencies where their
output voltage is greater than that of many other types of pickups. The coil imped-
ance is low even at relatively high frequencies, so that the output voltage can be
measured directly with a high-impedance voltmeter. This type of pickup is designed
to measure quite large displacement amplitudes.

DIFFERENTIAL-TRANSFORMER PICKUPS

The output of a differential-transformer pickup depends on the mutual inductance
between a primary and a secondary coil.The basic components are shown in Fig. 12.32.
The pickup consists of a core of magnetic material, a primary coil, and two secondary
coils. As the core moves, a voltage is induced in the secondary coils. When the core is
exactly in the center, each secondary coil contains the same length of core. Therefore,
the mutual inductances of both secondary coils are equal in magnitude. However, they
are connected in series opposition, so that the output voltage is zero. As the core is
moved up or down, both the inductance and the induced voltage of one secondary coil
are increased while those of the other are decreased. The output voltage is the differ-
ence between these two induced voltages. In this type of transducer, the output volt-
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FIGURE 12.31 Principle of operation of an
electrodynamic pickup. The voltage e generated
in the coil is proportional to the velocity of the
coil relative to the magnet.
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age is proportional to the displacement of the core over an appreciable range. In prac-
tice, the output voltage at the carrier frequency of the primary current is not exactly
zero when the core is centered, and the output near the center position is not exactly
linear. When the core is vibrated, the output voltage is a carrier wave, modulated at a
frequency and amplitude corresponding to the motion of the core relative to the coils.

These pickups are used for very low frequency measurements.The sensitivity varies
with the carrier frequency of the current in the primary coil. The carrier frequency
should be at least 10 times the highest frequency of the motion to be measured. Since
this range is usually between 0 and 60 Hz, the carrier frequency is usually above 600 Hz.

SERVO ACCELEROMETER

A servo accelerometer, sometimes called a “force-balance accelerometer,” is an
accelerometer containing a seismically suspended mass which has a displacement
sensor (e.g., a capacitance-type transducer) attached to it. Such accelerometers can be
made very sensitive, some having threshold sensitivities of only a few micro-g. Excel-
lent amplitude linearity is attainable, usually on the order of a few hundredths of one
percent with peak acceleration amplitudes up to 50g. Typical frequency ranges are
from 0 to 500 Hz. Such devices are designed for use in applications with compara-
tively low acceleration levels and extremely low-frequency components. Servo
accelerometers typically are three to four times the size of an equivalent piezoelectric
accelerometer and are usually more costly than other types of accelerometers.

Such accelerometers are of two types: electrostatic or electromagnetic (where a
force is usually generated by a driving current through coils on the mass). The elec-
trostatic type usually has a smaller mass and usually is capable of sustaining higher
shocks. Unlike other direct-current response accelerometers whose bias stability
depends on the characteristics of the sensing elements, here the bias stability is pro-
vided by electronic feedback.
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FIGURE 12.32 Differential-transformer prin-
ciple. The inductance of the coils changes as the
core is moved. For constant input current ip to the
primary coil, the output voltage e is the differ-
ence of the voltages in the two secondary coils,
which are wound in series opposition. (Courtesy
of Automatic Timing and Controls, Inc.)
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CAPACITANCE-TYPE TRANSDUCERS

DISPLACEMENT TRANSDUCER (PROXIMITY PROBE)

The capacitance-type transducer is basically a displacement-sensitive device. Its out-
put is proportional to the change in capacitance between two plates caused by the
change of relative displacement between them as a result of the motion to be meas-
ured.Appropriate electronic equipment is used to generate a voltage corresponding
to the change in capacitance.

The capacitance-type displacement transducer’s main advantages are (1) its sim-
plicity in installation, (2) its negligible effect on the operation of the vibrating system
since it is a proximity-type pickup which adds no mass or restraints, (3) its extreme
sensitivity, (4) its wide displacement range, due to its low background noise, and (5)
its wide frequency range, which is limited only by the electric circuit used.

The capacitance-type transducer often is applied to a conducting surface of a
vibrating system by using this surface as the ground plate of the capacitor. In this
arrangement, the insulated plate of the capacitor should be supported on a rigid
structure close to the vibrating system. Figure 12.33A shows the construction of a
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FIGURE 12.33 Capacitance-type transducers and their application: (A) construction of typical
assembly, (B) gap length or spacing sensitive pickup for transverse vibration, (C) area sensitive
pickup for transverse vibration, (D) area sensitive pickup for axial vibration, and (E) area sensitive
pickup for torsional vibration.
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typical capacitance pickup; Fig. 12.33B, C, D, and E show a number of possible
methods of applying this type of transducer. In each of these, the metallic vibrating
system is the ground plate of the capacitor. Where the vibrating system at the point
of instrumentation is an electrical insulator, the surface can be made slightly con-
ducting and grounded by using a metallic paint or by rubbing the surface with
graphite.

The maximum operating temperature of the transducer is limited by the insula-
tion breakdown of the plate supports and leads. Bushings made of alumina are com-
mercially available and provide adequate insulation at temperatures as high as
2000°F (1093°C).

VARIABLE-CAPACITANCE-TYPE ACCELEROMETER

Silicon micromachined variable-capacitance technology is utilized to produce
miniaturized accelerometers suitable for measuring low-level accelerations (2g to
100g) and capable of withstanding high-level shocks (5000g to 20,000g).

Acceleration sensing is accomplished by using a half-bridge variable-capacitance
microsensor. The capacitance of one circuit element increases with applied acceler-
ation, while that of the other decreases. With the use of signal conditioning, the
accelerometer provides a linearized high-level output.

In the following example, the microsensor is fabricated in an array of three
micromachined single-crystal silicon wafers bonded together using an anodic
bonding process (see exploded view in Fig. 12.34). The top and bottom wafers con-

tain the fixed capacitor plates (the lid
and base, respectively), which are elec-
trically isolated from the middle wafer.
The middle wafer contains the inertial
mass, the suspension, and the support-
ing ringframe. The stiffness of the flex-
ure system is controlled by varying 
the shape, cross-sectional dimensions,
and number of suspension beams.
Damping is controlled by varying the
dimensions of grooves and orifices on
the parallel plates. Over-range protec-
tion is extended by adding overtravel
stops.

The full-scale displacement of the
seismic mass of the microsensor ele-
ment is slightly more than 10 micro-
inches. To detect minor capacitance
changes in the microsensor due to
acceleration, high-precision supporting
electronic circuits are required. One

approach applies a triangle wave to both capacitive elements of the microsensor.
This produces currents through the elements which are proportional to their
capacitances. A current detector and subtractor full-wave rectifies the currents
and outputs their difference. An operational amplifier then converts this current
difference to an output voltage signal. A high-level output is provided that is pro-
portional to input acceleration.
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FIGURE 12.34 Exploded view of silicon
micromachined variable-capacitance accelerom-
eter. (Courtesy of Endevco Corp.)
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CHAPTER 13
VIBRATION MEASUREMENT

INSTRUMENTATION

Robert B. Randall

INTRODUCTION

This chapter describes the principles of operation of typical instrumentation used in
the measurement of shock and vibration. It deals with the measurement of parame-
ters which characterize the total (broad-band) signal. Considerable reference is
made to Chaps. 22 and 23, which give the mathematical background for various sig-
nal descriptors. Some reference is also made to the digital techniques of Chap. 27.
Many of the techniques introduced here are applied in Chap. 16.

VIBRATION MEASUREMENT EQUIPMENT

Figure 13.1 shows a typical measurement system consisting of a preamplifier, a sig-
nal conditioner, a detector, and an indicating meter. Most or all of these elements
often are combined into a single unit called a vibration meter, which is described in a
following section.

The preamplifier is required to convert the very weak signal at high impedance
from a typical piezoelectric transducer into a voltage signal at low impedance, which
is less prone to the influence of external effects such as electromagnetic noise
pickup.The signal conditioner is used to limit the frequency range of the signal (pos-
sibly to integrate it from acceleration to velocity and/or displacement) and to pro-
vide extra amplification. The detector is used to extract from the signal, parameters
which characterize it, such as rms value, peak values, and crest factor. The so-called
dc or slowly varying signal from the detector can be viewed on a meter, graphically
recorded, or digitized and stored in a digital memory.

ACCELEROMETER PREAMPLIFIERS

Types of accelerometer preamplifiers include voltage preamplifiers, charge pream-
plifiers, and line-drive preamplifiers. Voltage preamplifiers now are little used
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because, as indicated in Chap. 12, the voltage sensitivity of an accelerometer plus a
cable is very dependent on the cable length. The sensitivity of the other two types is
virtually independent of cable length, and this is of considerable practical impor-
tance.

Figure 13.2 shows the equivalent circuit of a charge preamplifier with an
accelerometer and cable. The charge preamplifier consists of an operational ampli-
fier having an amplification A, back-coupled across a condenser Cf ; the input volt-
age to the amplifier is ei. The output voltage eo of this circuit can be expressed as

eo = eiA = (13.1)

which is proportional to the charge qa generated by the accelerometer. If A is very
large, then the capacitances Ca, Cc, and Ci become negligible in comparison with ACf

and the expression can be simplified to

qaA
���
Ca + Cc + Ci − Cf (A − 1)

13.2 CHAPTER THIRTEEN

FIGURE 13.1 A block diagram of a typical vibration measurement system.

FIGURE 13.2 Diagram of a charge amplifier with accelerometer and cable.
A = amplification of operational amplifier; Cf = shunt capacitance across ampli-
fier; Ca = accelerometer capacitance; Cc = cable capacitance; Ci = preamplifier
input capacitance; qa = charge generated by accelerometer; ei = amplifier input
voltage; eo = amplifier output voltage.
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eo ≈ − (13.2)

which is independent of the cable capacitance.
Although with a charge preamplifier the sensitivity is independent of cable

length, the noise pickup in the high-impedance circuit increases with cable length,
and so it is an advantage to have the preamplifier mounted as close to the transducer
as is practicable. The line-drive amplifier represents an excellent solution to this
problem, made possible by the development of miniaturized thick-film circuits. The
amplifier can thus be attached to or even included internally in the transducer. In
principle the initial amplifier can be of either charge or voltage type, but it can be
advantageous to have the option of separating the amplifier from the transducer by
a short length of cable, in which case the amplifier should be of the charge type. If the
output signal from the initial amplifier is used to modulate the current or voltage of
the power supply, then a single cable can be used both to power the amplifier and to
carry the signal; the modulation is converted to a voltage signal in the power supply
at the other end of this cable, which can be very long, e.g., up to a kilometer.

The output cable from a line-drive preamplifier is less subject to electromagnetic
noise pickup than the cable connecting the transducer to a charge preamplifier. On
the other hand, line-drive preamplifiers typically have some restriction of dynamic
range and frequency range in comparison with a high-quality general-purpose
charge preamplifier, and so reference should be made to the manufacturer’s specifi-
cations when this choice is being made. Another problem is that it is more difficult
to detect overload with an internal amplifier.

Signal Conditioners. A signal-conditioning section is often required to band-limit
the signal, possibly to integrate it (to velocity and/or displacement), and to adjust the
gain. High- and low-pass filters normally are required to remove extraneous low- and
high-frequency signals and to restrict the measurement to within the frequency range
of interest. For broad-band measurements the frequency range is often specified,
while for tape-recording and/or subsequent analysis the main reason for the restric-
tion in frequency range is to remove extraneous components which may dominate and
restrict the available dynamic range of the useful part of the signal. See also Chap. 17.

Examples of extraneous low-frequency signals (see Chap. 12) are thermal tran-
sient effects, triboelectric effects described in Chap. 15, and accelerometer base strain.
There may also be some low-frequency vibrations transmitted through the founda-
tions from external sources. At the high-frequency end, the accelerometer resonance
at least must be filtered out by an appropriate low-pass filter.This high- and low-pass
filtering does not affect the signal in the input amplifier, which must be able to cope
with the full dynamic range of the signal from the transducer. It is thus possible for a
preamplifier to overload even when the output signal is relatively small. Conse-
quently, it is important that the preamplifier indicates overload when it does occur.

Integration. Although an accelerometer, in general, is the best transducer to use, it
is often preferable to evaluate vibration in terms of velocity or displacement. Most
criteria for evaluating machine housing vibration (Chap. 16) are effectively constant-
velocity criteria, as are many criteria for evaluating the effects of vibration on build-
ings and on humans, at least within certain frequency ranges (Chaps. 24 and 42).
Some vibration criteria (e.g., for aircraft engines) are expressed in terms of displace-
ment. For rotating machines, it is sometimes desired to add the absolute displacement
of the bearing housing to the relative displacement of the shaft in its bearing (meas-
ured with proximity probes) to determine the absolute motion of the shaft in space.

qa
�
Cf
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Acceleration signals can be integrated electronically to obtain velocity and/or
displacement signals; an accelerometer plus integrator can produce a velocity signal
which is valid over a range of three decades (1000:1) in frequency—a capability
which generally is not possessed by velocity transducers. Moreover, simply by switch-
ing the lower limiting frequency (for valid integration) on the preamplifier, the three
decades can be moved by a further decade, without changing the transducer.

A typical sinusoidal vibration component may be represented by the phasor Ae jωt.

Integrating this once gives Aejωt, and thus integration corresponds in the frequency

domain to a division by jω. This is the same as a phase shift of −π/2 and an amplitude
weighting inversely proportional to frequency, and thus electronic integrating circuits
must have this property.

One of the simplest integrating circuits is a simple R-C circuit, as illustrated in
Fig. 13.3. If ei represents the input voltage, then the output voltage eo is given by

eo = ei (13.3)

which for high frequencies (ωRC >> 1) becomes

eo ≈ (13.4)

which represents an integration, apart from the scaling constant 1/RC.

The characteristic of Eq. (13.3) is shown in Fig. 13.4; it is that of a low-pass filter
with a slope of −20 dB/decade and a cutoff frequency fn = 1/(2πRC) (corresponding
to ωRC = 1).

The limits fL (below which no integration takes place) and fT (above which the
signal is integrated) can be taken as roughly a factor of 3 on either side of fn, for nor-
mal measurements where amplitude accuracy is most important.Where phase accu-
racy is important (e.g., to measure true peak values), the factor should be somewhat
greater. Modern integrators tend to use active filters with a more localized transition
between the region of no integration and the region of integration.

One situation where the choice of the low-frequency limit is important is in the
integration of impulsive signals, for example, in the determination of peak velocity
and displacement from an input acceleration pulse. Figure 13.5 shows the effect of
single and double integration on a 10-millisecond single-period sine burst, with both
1- and 10-Hz cutoff frequencies, in comparison with the true results. The deviations

ei�
jωRC

1
��
1 + jωRC

1
�
jω
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FIGURE 13.3 Electrical integration network of the simple 
R-C type.
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depend to some extent on the actual amplitude and phase characteristics of the inte-
grator, but the following values can be used as a rough guide to select the integrator
cutoff frequency fT:

For single integration (acceleration to velocity),

fT < (13.5)

For double integration (acceleration to displacement),

fT < (13.6)

where tp is the time from the start of the pulse to the measured peak. For the case
shown in Fig. 13.5, these values of fT are <6.7 Hz and <2 Hz, respectively.

DETECTORS

Detectors are used to extract parameters which characterize a signal, such as arith-
metic average, mean-square, and root-mean-square (rms) values, as defined in Chap.
22. The arithmetic average value is the simplest to measure, using a full-wave recti-
fier to obtain the instantaneous magnitude and a smoothing circuit to obtain the
average. However, even though there is a fixed (though different) relationship
between average and rms values for sinusoidal and Gaussian random signals (Chap.
22), the relationship varies considerably for complex signals and, in particular, is
affected considerably by phase relationships. Since mean-square and rms values are
independent of phase relationships, they are usually preferred as signal descriptors
for stationary signals; where an average detector is used, it is usually as an approxi-
mation of an rms detector.

Mean-square values have the advantage that they are directly additive when two
signals are added together (in particular different frequency bands or components),

1
�
50tp

1
�
30tp
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FIGURE 13.4 Frequency characteristic of the circuit shown in Fig. 13.3. fT = lower frequency
limit for true integration; fL = upper frequency limit for no integration.
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while rms values have the advantage that they have the same dimensions and units
as the original signal.Thus, a “true rms” detector must include a squaring section and
averager to obtain the mean-square value, followed by a square-root extractor.

Squaring. One of the earliest true rms detectors, the Wahrman detector,1 used a
piecewise linear approximation to the parabola representing true squaring. For
moderate signal values, the errors for the piecewise linear circuit are quite small, but
past the last breakpoint on the curve the deviation becomes progressively larger.
The breakpoints are dimensioned for a typical rms level, and the errors are thus
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FIGURE 13.5 Integration and double integration of a 10-millisecond
acceleration pulse using lower frequency limits of 1 and 10 Hz, respectively.
(A) Input acceleration signal. (B) Velocity signal resulting from a single
integration with different cutoff frequencies compared with ideal integra-
tion. (C) Displacement signal resulting from a double integration compared
with ideal integration.
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greatest for relatively large instantaneous values, which are characteristic of signals
with a high crest factor (ratio of peak to rms value). The higher the crest factor, the
larger the number of breakpoints required.As an example, four breakpoints give an
accuracy within 1⁄2 dB for crest factors up to 5. Thus, for accurate results, this type of
detector must be specified with respect to both dynamic range and crest factor.

Later designs of analog squaring circuits, so-called log-mean-square or lms detec-
tors, make use of the logarithmic characteristic of certain diodes to achieve squaring
by doubling the logarithmic value of the rectified signal. This type generally has no
limitation on crest factor other than that given by the dynamic range. In a similar
manner, digital instruments achieve true squaring and are limited only by the
dynamic range of the detector.

Averaging. The definition of mean-square value given in Eq. (22.1) assumes a
uniform weighting for the whole of the averaging time T. In practice, for measure-
ments on continuous signals, it is often desired to have a running average, giving at
any time the average value over the previous T seconds. It is extremely difficult to
achieve a linearly weighted running average, and so recourse is usually made to two
alternatives:

1. Exponentially weighted running average. This is achieved by an R-C smoothing
circuit in most analog instruments, and also by exponential averaging in digital
instruments such as FFT analyzers.

2. Linearly weighted average over a fixed time period of length T. The result is
available only at the end of each period and is usually held until processed fur-
ther, and so new incoming data may be lost.

The averaging process acts as a low-pass filter to remove high-frequency ripple
components and leave the slowly varying dc or average value. Figure 13.6 compares
the low-pass filter characteristics of exponential and linear averaging and demon-
strates that they are equivalent for the case where T = 2RC (where RC is the time
constant of the exponential decay). This low-pass filtration in the frequency domain
corresponds to a convolution in the time domain with the impulse response of the
averaging circuit. The two impulse responses (reversed in time because of the con-
volution) are compared in Fig. 13.7 for the same case where T = 2RC. When scaled
to give the same result on stationary signals (same area under the curve), the peak
output for exponential averaging is twice that for linear averaging.Account must be
taken of this in the analysis of impulses.

A method of checking the effective averaging time of an exponential averager is
to remove the excitation and measure the rate of decay of the output. This will be
4.34 dB per RC time constant, or 8.7 dB per averaging time T. This does not apply to
FFT analyzers operating above their real-time frequency, in the same way that the
effective linear averaging time is then less than the time required to obtain the result.

Peak Detectors. In some cases it is desired to measure the true peak values of the
original signal (for example, to avoid overloading a tape recorder). Peak detectors
are available which capture the highest value encountered and either hold it until
reset or have it decay slowly enough that the eye can read the peak value from a
meter. Care should be taken to distinguish between maximum positive peak, maxi-
mum negative peak, maximum peak (positive or negative), and peak-to-peak values
(Fig. 13.8). Care should also be taken to distinguish between true peak values and
what is roughly referred to as peak-to-peak shaft vibration, which is often assumed
to be sinusoidal and is measured with an average detector.
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Crest Factor. The crest factor is the ratio of peak to rms value.The maximum peak
(positive or negative) should be used. It is meaningful only where peak values are
reasonably uniform and repeatable from one signal sample to another.The crest fac-
tor yields a measure of the spikiness of a signal and is often used to characterize sig-
nals containing repetitive impulses in addition to a lower-level continuous signal.
Examples of such vibration signals are those from reciprocating machines and those
produced by localized faults in gears and rolling element bearings.

Kurtosis. Kurtosis, a statistical parameter akin to the mean and mean-square val-
ues, is defined in Eq. (11.13) as2

a4 � ��

��
��x �

�

x̄
��

4

p(x)dx (13.7)

using the terminology of Chap. 11.
For signals with zero mean value �ξ, a practical estimator for this can be ex-

pressed as

�T

0
ξ4(t) dt

(13.8)
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FIGURE 13.6 Comparison of linear averaging (over time T) with exponential averaging (time con-
stant RC) in the frequency domain for the case where T = 2RC. The low-pass filter characteristics
have the same asymptotic curves and the same bandwidth B = 1/T = 1/2RC.
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Because of the fourth power, considerable weight is given to large amplitude values,
and the kurtosis thus is a good indicator of the spikiness of the signal. Because it
takes the whole signal into account, rather than just isolated peaks, it generally gives
a more stable value than the crest factor, but this must be weighed against the more
complicated measurement procedure. Kurtosis is normally calculated digitally, but
can be measured by a more complex version of the log-mean-square detector
described above.

VIBRATION MEASUREMENT INSTRUMENTATION 13.9

FIGURE 13.7 Comparison of linear averaging (over time T) with
exponential averaging (time constant RC) in the time domain for the
case where T = 2RC. The weighting curves represent the impulse-
response functions reversed in time.

FIGURE 13.8 Illustration of various peak values.
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Envelope Detectors. Many machine vibration signals of interest contain repeti-
tive high-frequency bursts, as a result of exciting high-frequency resonances at regu-
lar intervals. Direct frequency analysis of the signal does not always give much
information on the repetition frequencies, in particular when the resonances excited
are at very high frequencies. These repetition frequencies are, however, easily meas-
urable in the envelope signal illustrated in Fig. 13.9. Quite often, the signal is first
bandpass-filtered in a frequency region dominated by the repetitive bursts (i.e., one
of the regions containing resonances which are excited and where the extraneous
background signal is low).

The true envelope signal can be obtained using a peak detector with a decay time
constant set sufficiently short so that it is able to follow the relatively slow variations
in the (rectified) signal envelope. If the signal is first passed through a bandpass fil-
ter, it will have a roughly sinusoidal form with slowly varying amplitude and there
will be a fixed ratio of peak to (short-term) rms or average value, in which case an
rms or average detector can be used instead of the peak detector. Moreover, where
a frequency analysis of the signal is to be obtained with an FFT analyzer, it is not nec-
essary to apply a smoothing circuit, as the antialiasing filters (described below) will
automatically remove high-frequency ripple components in the rectified signal.Thus,
a tunable bandpass filter of, say, one-third-octave bandwidth, followed by a full-wave
rectifier, can be used as an envelope detector in cases where it is primarily the burst
repetition frequencies which are of interest. It is shown in Chap. 14 that envelope sig-
nals can also be calculated by Hilbert transform techniques in an FFT analyzer. In
most cases it is advantageous to analyze the square of the envelope signal,4 in which
case a squaring circuit can replace the rectifier.

VIBRATION METERS

Vibration meters are instruments which receive a signal from a vibration transducer
and process it so as to give an indication of relevant vibration parameters. They are
sometimes made specifically to meet certain standards, for example, ISO 2372 on
“Vibration Severity of Rotating Machines” or ISO 2631 on “Human Vibration.” In
these cases, the requirements are specified in the relevant standard; the discussion
here is aimed at more general-purpose vibration meters.

For measurements on most rotating machines, a frequency range of 10 Hz to 10
kHz is desirable. The lower limit includes the shaft speed for all machines operating
over 600 rpm and any subharmonic components such as oil whirl for higher-speed

13.10 CHAPTER THIRTEEN

FIGURE 13.9 Illustration of the envelope signal for an impulsive signal containing repetitive
high-frequency bursts.
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plain bearing machines where such effects are most prevalent. The upper frequency
of 10 kHz includes tooth-meshing frequencies and their harmonics in gearboxes,
bladepassing frequencies in most bladed machines, and resonance frequencies typi-
cally excited by rolling element bearing faults.

It can be advantageous to be able to choose a number of upper and lower limiting
frequencies within the overall range. For example, restriction of the upper frequency
to 1 kHz allows measurements in accordance with ISO 2372 previously cited. For spe-
cial purposes, it may be necessary to go to frequencies lower than 10 Hz, for example,
in measurements on slow-speed machines and on bridges and other structures. It is
possible to cover a total range of 1 Hz to 10 kHz with one accelerometer; if the meter
is able to accept a range of transducers, its own frequency range can be even wider.

If restriction is to be made to one vibration parameter, then velocity usually is the
best choice, as most machine vibration signals have a roughly uniform velocity spec-
trum, so that an increase at any frequency has a roughly equal chance of influencing
overall vibration levels.

It is also desirable to be able to measure acceleration and displacement; changes
at low frequency reflect themselves primarily in the displacement value, while
changes at high frequency have the most effect on the acceleration value.

In addition to the measurement of rms levels in each of the vibration parameters,
it is of advantage to be able to measure some parameter indicating the spikiness of
the signal, such as peak values (and hence crest factor), kurtosis, spike energy, or
shock-pulse value. Finally, it is useful if the meter has an ac output, to allow the sig-
nal to be fed to an oscilloscope, a tape recorder, or headphones. In the absence of
frequency analysis, the human ear can discern a great deal about the characteristics
of a signal, and this setup provides an excellent stethoscope. The ac signal should
preferably be of selected parameter (acceleration, velocity, or displacement); the fre-
quency range should be restricted as little as possible.

TAPE RECORDERS

The most widely used recording techniques for instrumentation tape recorders are
direct recording, frequency-modulation (FM) recording, and digital recording. The
first two are often combined in one recorder and are thus discussed together, while
the latter is discussed separately.

Analog Recorders. In direct recording, the signal amplitude is reflected directly
in the local degree of magnetization of the tape, while in FM recording the ampli-
tude information is contained in the deviation of the frequency of a carrier tone
from its nominal value. Thus, the degree of magnetization of the tape is less critical
for FM recording, and the recorded blips are normally saturated. Hence, one of the
advantages of FM recording is that the recorded signals are less susceptible to
change due to poor storage conditions (heat, light, and stray magnetic fields). On the
other hand, since the carrier frequency is typically 3 to 5 times higher than the max-
imum signal frequency in FM recording, tape speeds (and hence tape quantities
used) must be 3 to 5 times greater for a given frequency range.

The major difference between the two techniques is in their ability to record low-
frequency signals. Since on playback of direct recordings it is the rate of change of
tape magnetization which is detected, this technique cannot record down to dc; a
typical lower frequency limit is 25 Hz. In contrast, FM recording can record down to
dc; a dc signal is simply represented by a constant deviation of the carrier frequency.

Since on playback of direct recordings it is necessary to integrate the detected
signal and compensate for other effects such as tape magnetic properties, this is usu-
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ally done by equalization networks designed primarily to provide amplitude linear-
ity; phase linearity is poor.Thus, the actual form of signals is likely to be modified by
direct recording; peak values cannot be relied upon. The phase linearity of FM
recording is excellent for all except the highest part of the frequency range, where
the effects of the required low-pass filter become significant.

One of the most important characteristics of a tape recorder is its dynamic range,
since the tape recorder is likely to be the element in the measurement chain whose
dynamic range is restricted the most. The dynamic range usually is expressed in
terms of a signal-to-noise ratio, which is typically 40 dB for FM recording and up to
50 dB for direct recording. These figures can be somewhat misleading, however, as
the noise referred to is a total figure over the entire frequency range and has less
influence in a narrow-band analysis. After narrow-band analysis, the noise level for
FM recording typically is more than 60 dB below full scale, as compared with 70 to
90 dB for the digitization noise in a modern frequency analyzer.

Table 13.1 includes a summary of the most important features of FM and direct
recording. Some recorders are able to record using both techniques, in which case the
heads normally are optimized for FM and the signal-to-noise ratio for direct record-
ing is reduced somewhat. The most important addition provided by direct recording
is the possibility of recording considerably higher frequencies, typically 50 to 100 kHz.

Both techniques are limited by the accuracy of the tape transport system, and
small variations in tape orientation and speed give rise to “wow” and “flutter.”

TABLE 13.1 Comparison of Recording Techniques

Direct FM DAT

Dynamic range (typical, narrow-band) 70 dB 60 dB 80 dB
Lower frequency limit (typical) 25 Hz dc dc
Upper frequency limit (typical) 50 kHz 10 kHz 20 kHz
Amplitude stability Acceptable Excellent Excellent
Phase linearity Poor Good Excellent
Preservation of recorded information Acceptable Good Excellent

Digital Recorders. Instrumentation recorders are available based on the pulse-
code modulation (PCM) principle. These have been developed from digital audio-
tape (DAT) recorders and have many characteristics in common. A typical DAT
cassette can record, for 2 hours, two channels to 20,000 Hz, four channels to 10,000
Hz, or more channels with correspondingly lower frequency ranges. Double-speed
versions give twice the number of channels for the same frequency range, but half
the total recording time. For two-channel recording, the overall sampling rate is 96
kHz (48 kHz per channel), each sample being 16 bits, or 2 bytes, so that the overall
amount of data stored on one DAT cassette is well over 1 gigabyte. Newer designs
have a storage capacity of at least 25 gigabytes and allow recording of up to 32 chan-
nels with full 20-kHz frequency range. The problems of wow and flutter are largely
eliminated by digital recorders because the sampling frequency during recording
and playback is not directly tied to tape or rotating-head speed and can be made
extremely accurate. Dynamic range is dependent primarily on the number of bits
used in digitization but typically matches that of digital signal analyzers, giving
approximately 20 dB more than typical analog recorders. Phase matching between
channels is within a fraction of a degree over a very wide frequency range, meaning
that signal reproduction is almost perfect.
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As with any digital processing, the signal to be recorded must not contain any fre-
quency components above half the sampling frequency.After sampling, it is not pos-
sible to determine whether this condition has been satisfied, and so it is normally
necessary to filter the signals to be recorded with a very steep “antialiasing” filter.
This is typically a 7-pole elliptic filter with cutoff frequency at 40 percent of the sam-
pling frequency and a roll-off of 120 dB per octave. Less steep filters can be used to
reduce the phase distortion effects in the vicinity of the cutoff frequency, but the cut-
off frequency must then be reduced accordingly. To avoid further distortion, it is
common to use digital interpolation techniques to increase the sample rate on play-
back, thus permitting the use of much “gentler” filters to smooth the output from the
digital-to-analog converters.

Table 13.1 compares all three recording techniques.

DIGITAL SIGNAL PROCESSING

Computer software programs are commercially available which provide for signal
processing using digital techniques, for example: FFT analysis, digital filtering, and
optimization. One means of obtaining data in digital form is by using a digital tape
recorder (described in the previous section) in which a digital output is obtained by
bypassing the digital-to-analog converter contained in the recorder. Digital fre-
quency analysis is discussed more fully in Chaps. 14 and 27.This section discusses the
conversion of continuous analog signals which are converted into digital form using
analog-to-digital converters; it also describes some of the differences between ana-
log signal processing and digital signal processing.

ANALOG-TO-DIGITAL CONVERTERS

Analog-to-digital (A/D) converters serve to convert a continuous signal into a
sequence of digital numbers representing the instantaneous value of the signal at
specified time increments. Under certain conditions, it is possible to regain the orig-
inal analog signal by the reverse process, using a digital-to-analog (D/A) converter,
as discussed later. The time increments are normally uniform, i.e., they represent a
constant sampling frequency; in other cases, they may be on some other basis such as
uniform increments of shaft rotation (e.g., in the case of “order tracking,” as dis-
cussed in Chap. 14).

The quality of the digitized signal depends on a number of factors, such as the
accuracy of the sample intervals, the number of bits used in the digital representa-
tion, the linearity of the analog amplifiers with which the signal has been processed,
and the quality of the low-pass filtering of the signal prior to the A/D conversion.
Each of these factors is discussed later.

The first step in the A/D conversion process is the sample-and-hold circuit that
samples the instantaneous value of the analog signal at the instant of each pulse of
the sampling clock, and holds that analog voltage constant until the A/D conversion
process is complete and it is reset. The accuracy of the sample spacing depends not
only on the accuracy of the sample clock, but also on the acquisition time of the
sample-and-hold circuit, but for the frequency range of typical vibration signals,
both of these potential errors are negligible in high-quality A/D converters. For mul-
tiple channel conversion, it is common to use a single A/D converter multiplexing
between channels, but even though it is possible to compensate for time delay
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between channels, it is desirable to use synchronized sample-and-hold circuits which
sample all channels simultaneously, even if the A/D conversion is done sequentially.

The output of an A/D converter is a binary integer number with 2N possible val-
ues, where N is the number of bits. Depending on whether a sign bit is used, these can
range from zero to (2N − 1) or −2N − 1 to (2N − 1 − 1).The possible dynamic range of the
digitized signal is thus heavily dependent on the number of bits used and is com-
monly taken to be 6 dB for each bit (each added bit giving a doubling of the number
of possible levels and a doubling of the ratio of the maximum-to-minimum value).
For averaged spectral results, the dynamic range can be increased somewhat by a
process of adding “dither,” a very low level random noise whose average spectrum is
outside the dynamic range of the measurement system. When dither is added to a
signal lower than the least significant bit (which otherwise would not register) it
causes the latter to be set part of the time and thus gives an averaged result smaller
than the least significant bit (note that the data should be converted from integer to
floating point prior to the averaging process). On the other hand, the actual dynamic
range of the measurement may be limited by factors other than the least significant
bit, such as the noise level in the analog parts of the system, or the linearity of the lat-
ter. For example, it is not uncommon to have a 12-bit A/D converter (which should
give a 72-dB dynamic range) with a linearity specification of 0.05% of full scale, this
corresponding to a possible bias error of −66 dB with respect to full scale. Note that
a bias error of this sort affects all values in the same way, and thus has a much greater
effect than a random error of the same magnitude as is the case when several values
of the same order are added together (e.g., when converting from constant band-
width to constant percentage bandwidth spectra, which is done in some spectrum
analyzers).

ANTIALIASING FILTERS

Discrete sampling in the time domain (i.e., multiplication by a train of unit impulse
functions) corresponds in the frequency domain to a periodic repetition of the spec-
trum with a periodic spacing equal to the sampling frequency, as illustrated in Fig.
13.10. If the original signal does not contain any frequency components above half
the sampling frequency fs (i.e., outside the range from minus to plus fs/2), this peri-
odic repetition does not result in any loss of information and can in principle be
removed again by low-pass filtering, as shown in Fig. 13.10B. If the sampling fre-
quency is less than twice the highest frequency component in the signal, the periodic
repetition of the spectrum gives mixing of the overlapped portions (known as alias-
ing), and it is no longer possible to separate them completely, as shown in Fig.
13.10C. Thus if it is desired to obtain correct frequency spectra, or to return to ana-
log form via a D/A converter, it is absolutely necessary to ensure that the analog sig-
nal does not contain frequency components above fs/2, and this is achieved by the
use of appropriate low-pass filters, so-called antialiasing filters. As explained in
Chap. 14, such filters have very steep characteristics (e.g., 120 dB/octave). Their
application makes it possible to use up to 80 percent of the theoretically available
spectrum (i.e., up to fs/2), but they result in considerable phase distortion in the vicin-
ity of the cutoff frequency.

Low-pass filters also change the waveform, as illustrated in Fig. 13.11 for the out-
put of a square-wave generator (giving rise to uneven rectangular pulses so that all
harmonics are produced). In Fig. 13.11A and B, a proper antialiasing filter has been
used, so that the spectrum is correct, but the waveform has bursts at the beginning of
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FIGURE 13.10 (A) Spectrum of a continuous band-
limited signal with maximum frequency fc. (B) Spectrum of
digitized signal with sampling frequency fs > 2fc. (C) Spec-
trum of digitized signal with sampling frequency fs < 2fc; the
hatched area indicates aliased components.

FIGURE 13.11 Effect time signals and spectra of antialiasing filters. (A) Time signal with filter.
(B) Spectrum with filter. (C) Time signal without filter. (D) Spectrum without filter.
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each level section. These can be interpreted either as the step-response of the low-
pass filters or as the removal of the high-frequency components (the so-called Gibbs
phenomenon). In Fig. 13.11C and D, no antialiasing filter has been used, and even
though the waveform appears more like a square wave, the spectrum is now incor-
rect and contains aliasing components. This leads to the conclusion that where the
sole purpose is to evaluate digitized waveforms, an antialiasing filter is not desirable,
but where any treatment of the digitized signal is carried out (such as frequency
analysis, digital filtering, or reconstruction of a signal by use of a D/A converter),
antialiasing filters are absolutely necessary.

DIGITAL-TO-ANALOG CONVERSION

It is evident from Fig. 13.10 that in removing high-frequency components of the peri-
odic spectrum of a sampled function, the low-pass filters which are used should be of
the same quality as the original antialiasing filter prior to digitization. Furthermore,
a D/A converter cannot produce true unit impulses, and it is usual that the converted
voltage corresponding to each sample is carried over as a constant value in the sam-
ple interval.This is the equivalent of a convolution with a rectangular pulse of length
∆t (equal to 1/fs), so that the spectrum is multiplied by a (sin x)/x function with its
first zero at fs, as illustrated in Fig. 13.12.The gain factor at 0.50 fs is 2/π (−3.9 dB), and
at 0.39 fs (the normal range of an FFT spectrum) it is −2.3 dB. The effect of this fac-
tor, and the need for a very steep low-pass filter, can be reduced considerably by
increasing the sampling rate (by digital interpolation) before D/A conversion, and
this is commonly done where sufficiently fast hardware is available.
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FIGURE 13.12 D/A conversion with constant voltage between samples. (A) Digitized time sig-
nal and its amplitude spectrum. (B) Rectangular pulse length ∆t (equal to 1/fs) and its amplitude
spectrum. (C) Convolution of (A) and (B) and the resulting amplitude spectrum.
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DIGITAL PROCESSING

Once the signal has been obtained in digital form using proper antialiasing filters,
many of the operations (described above and in Chaps. 14 and 27) can be carried out
digitally.3 For example, acceleration signals can be integrated to obtain velocity using
numerical integration directly in the time domain or if so desired, jω operations in
the frequency domain (where it can be combined with bandpass filtering). Each
integration corresponds to a division by jω of the Fourier spectrum (this applies only
to ac-coupled signals).
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CHAPTER 14
VIBRATION ANALYZERS

AND THEIR USE

Robert B. Randall

INTRODUCTION

This chapter deals primarily with frequency analysis, but a number of related analy-
sis techniques—namely, synchronous averaging, cepstrum analysis, and Hilbert
transform techniques—are considered.

With the increase in availability of signal processing packages, virtually all of the
techniques discussed, and a large number of others, can now be directly pro-
grammed by the user on a general purpose computer (see Chap. 27), but dedicated
analyzers still have a number of advantages, as follows:

� Dedicated hardware for preprocessing signals before they are actually stored in
the analyzer’s memory. This includes real-time zoom with decimation to a lower
sampling frequency (vastly reducing the amount of data to be stored), real-time
digital resampling for order analysis, and even something as trivial as real-time
triggering. If the data only has to be processed after the occurrence of some event
that can be used as a trigger, the latter can avoid the storage and postprocessing of
vast amounts of useless data.

� Fractional octave digital filter analyzers decimate the sampling frequency of low-
frequency signal components as part of their operation. If the equivalent analysis
over three frequency decades were to be carried out by postprocessing of an already
digitized signal, approximately one million samples would be required to obtain a
single one-twelfth-octave spectrum with sufficient averaging for a random signal.

� Dedicated analyzers are more likely to provide error-free results in terms of cor-
rect scaling as rms spectra, power spectra, power spectral density, or energy spec-
tral density, while compensating for the data windows used. They also often
indicate if insufficient averaging has been used for random signals, etc.

Most frequency analysis is now done digitally, using the FFT (fast Fourier trans-
form) for constant bandwidth analysis on a linear frequency scale, and recursive dig-
ital filters for constant percentage bandwidth (fractional octave) analysis on a
logarithmic frequency scale; since the latter behave essentially in the same way as
analog filters, the chapter starts with a general discussion of filters and their use for

14.1
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frequency analysis, and later covers FFT analysis.Although spectrum analysis can be
done in other ways, such as autoregressive (AR) analysis, moving average (MA)
analysis, and their combination (ARMA analysis), these methods are not yet incor-
porated in spectrum analyzers, and so have not been treated in this chapter.

ELECTRICAL FILTERS

An ideal bandpass filter is a circuit which transmits that part of the input signal
within its passband and completely attenuates components at all other frequencies.
Practical filters differ slightly from the ideal, as discussed below. An analysis may be
performed over a frequency range either by using a single filter with a tunable cen-
ter frequency which is swept over the entire frequency range or by using banks of
fixed filters having contiguous (or overlapping) passbands.

For general vibration analysis it used to be common to use tunable filters whose
center frequency was either tuned by hand or synchronized with the X position of
the pen on a graphic recorder so that the spectrum was plotted automatically by
sweeping the center frequency over the desired frequency range. Alternatively, the
center frequency could be synchronized with an external signal, e.g., a trigger pulse
once per revolution of a shaft, in which case the filter became a tracking filter which
could be used to filter out the component corresponding to a designated harmonic,
or multiple, of the synchronizing signal.

In the past, banks of filters with fixed center frequencies, each with its own detec-
tor, were widely used for parallel analysis of all frequency bands in real time. This
arrangement is costly, however, and has largely been superseded by digital filter ana-
lyzers (described in the following section). If real-time analysis is not required, a
less-expensive alternative is to switch the output of each filter in turn to a single
detector and record the outputs sequentially on paper or on a display.The individual
filters can then also share many components, which are selected in appropriate com-
binations by the switching process. Sequentially stepped fixed filters are typically
used for relatively broad-band analysis and are rarely used with less than one-third-
octave bandwidth. This type of analysis finds most application in acoustics and in
studies of the effects of vibration on humans (Chap. 42).

Digital Filters. Digital filters (in particular, recursive digital filters) are devices
which process a continuous digitized signal and provide another signal as an output
which is filtered in some way with respect to the original. The relationship between
the output and input samples can be expressed as a difference equation (in general,
involving previous output and input values) with properties similar to those of a dif-
ferential equation which might describe an analog filter. Figure 14.1 shows a typical
two-pole section used in a one-third-octave digital filter analyzer (three of these are
cascaded to give six-pole filtration).

Two ways of changing the properties of a given digital filter circuit such as that
shown in Fig. 14.1 are:

1. For a given sampling frequency, the characteristics can be changed by changing
the coefficients of the difference equation. (In the circuit of Fig. 14.1 there are
three, effectively defining the resonance frequency, damping, and scaling.)

2. For given coefficients, the filter characteristic is defined only with respect to the
sampling frequency. Thus, halving the sampling frequency will halve the cutoff
frequencies, center frequencies, and bandwidths; consequently, the constant-
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percentage characteristics are maintained one octave lower in frequency. For this
reason, digital filters are well adapted to constant-percentage bandwidth analysis
on a logarithmic (i.e., octave-based) frequency scale.

Thus, the 3 one-third-octave characteristics within each octave are generated by
changing coefficients, while the various octaves are covered by repetitively halving
the sampling frequency. Every time the sampling frequency is halved, it means that
only half the number of samples must be processed in a given time; the total num-
ber of samples for all octaves lower than the highest is (1⁄2 + 1⁄4 + 1⁄8 + ⋅⋅⋅), which in the
limit is the same as the number in the highest octave. By being able to calculate
twice as fast as is necessary for the upper octave alone, it is possible to cover any
number of lower octaves in real time. This is the other reason why digital filters are
so well adapted to real-time constant-percentage bandwidth analysis over a wide
frequency range.

Filter Properties. Figure 14.2 illustrates what is meant by the 3-dB bandwidth and
the effective noise bandwidth, the first being most relevant when separating discrete
frequencies, and the second when dealing with random signals. For filters having
good selectivity (i.e., having steep filter flanks), there is not a great difference
between the two values, and so in the following discussion no distinction is made
between them.

The response time TR of a filter of bandwidth B is on the order of 1/B, as illus-
trated in Fig. 14.3, and thus the delay introduced by the filter is also on this order.
This relationship can be expressed in the form

BTR ≈ 1 (14.1)

which is most applicable to constant-bandwidth filters, or in the form

bnr ≈ 1 (14.2)

VIBRATION ANALYZERS AND THEIR USE 14.3

FIGURE 14.1 Block diagram of a typical two-pole digital filter section, consisting
of multipliers, adders, and delay units. H0, B1, and B2 are constants by which the
appropriate signal sample is multiplied. Z−1 indicates a delay of one sample interval
before the following operation.
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where b = B/f0 = relative bandwidth
nr = f0TR = number of periods of frequency f0 in time TR

f0 = center frequency of filter

This form is more applicable to constant-percentage bandwidth filters. Thus, the
response time of a 10-Hz bandwidth filter is approximately 100 milliseconds, while
the response time of a 1 percent bandwidth filter is approximately 100 periods. Fig-
ure 14.3 also illustrates that the effective length of the impulse TE is also approxi-
mately 1/B, while to integrate all of the energy contained in the filter impulse
response it is necessary to integrate over at least 3TR.

14.4 CHAPTER FOURTEEN

FIGURE 14.3 Typical filter impulse response.
TR = filter-response time (≈1/B); TE = effective
duration of the impulse (≈1/B); B = bandwidth.

FIGURE 14.2 Bandwidth definitions for a practical filter
characteristic. The 3-dB bandwidth is the width at the 3-dB
(half-power) points. The effective noise bandwidth is the width
of an ideal filter with the same area as the (hatched) area under
the practical filter characteristic on an amplitude squared
(power) scale.
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Choice of Bandwidth and Frequency Scale. In general it is found that analysis
time is governed by expressions of the type BT ≥ K, where K is a constant [see, for
example, Eq. (14.1)] and T is the time required for each measurement with band-
width B. Thus, it is important to choose the maximum bandwidth which is consistent
with obtaining an adequate resolution, because not only is the analysis time per
bandwidth proportional to 1/B but so is the number of bandwidths required to cover
a given frequency range—a squared effect.

It is difficult to give precise rules for the selection of filter bandwidth, but the fol-
lowing discussion provides some general guidelines: For stationary deterministic
and, in particular, periodic signals containing equally spaced discrete frequency
components, the aim is to separate adjacent components; this can best be done using
a constant bandwidth on a linear frequency scale. The bandwidth should, for exam-
ple, be chosen as one-fifth to one-third of the minimum expected spacing (e.g., the
lowest shaft speed, or its half-order if this is to be expected) (see Fig. 14.4A). For sta-

VIBRATION ANALYZERS AND THEIR USE 14.5

FIGURE 14.4 Choice of filter bandwidth B for different types of signals.
(A) Discrete frequency signals—harmonic spacing fh. (B) Stationary ran-
dom and impulsive signals.
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tionary random or transient signals, the shape of the spectrum will most likely be
determined by resonances in the transmission path between the source and the
pickup, and the bandwidth B should be chosen so that it is about one-third of the
bandwidth Br of the narrowest resonance peak (Fig. 14.4B). For constant damping
these tend to have a constant Q or constant-percentage bandwidth character, and
thus constant-percentage bandwidth on a logarithmic frequency scale often is most
appropriate.

A linear frequency scale is normally used together with a constant bandwidth,
while a logarithmic frequency scale is normally used together with a constant-
percentage bandwidth, as each combination gives uniform resolution along the
scale. A logarithmic scale may be selected in order to cover a wide frequency range,
and then a constant-percentage bandwidth is virtually obligatory. A logarithmic fre-
quency scale may, however, occasionally be chosen in conjunction with a constant
bandwidth (though over a limited frequency range) in order to demonstrate a rela-
tionship which is linear on log-log scales (e.g., conversions between acceleration,
velocity, and displacement).

Choice of Amplitude Scale. Externally measured vibrations, on a machine casing
for example, are almost always the result of internal forces acting on a structure whose
frequency response function modifies the result. Because the structural response func-
tions vary over a very wide dynamic range, it is almost always an advantage to depict
the vibration spectra on a logarithmic amplitude axis. This applies particularly when
the vibration measurements are used as an indicator of machine condition (and thus,
internal forces and stresses) since the largest vibration components by no means nec-
essarily represent the largest stresses. Even where the vibration is of direct interest
itself, in vibration measurements on humans, the amplitude axis should be logarithmic
because this is the way the body perceives the vibration level.

It is a matter of personal choice (though sometimes dictated by standards)
whether the logarithmic axes are scaled directly in linear units or in logarithmic units
expressed in decibels (dB) relative to a reference value. Another aspect to be con-
sidered is dynamic range. The signal from an accelerometer (plus preamplifier) can
very easily have a valid dynamic range of 120 dB (and more than 60 dB over three
frequency decades when integrated to velocity). The only way to utilize this wide
range of information is on a logarithmic amplitude axis. Figure 14.5 illustrates both
these considerations; it shows spectra measured at two different points on the same
gearbox (and representing the same internal condition) on both logarithmic and lin-
ear amplitude axes.The logarithmic representations of the two spectra are quite sim-
ilar, while the linear representations are not only different but hide a number of
components which could be important.

An exception where a linear amplitude scale usually is preferable to a logarith-
mic scale is in the analysis of relative displacement signals, measured using proxim-
ity probes, for the following reasons: (1) The parameter being measured is directly of
interest for comparison with the results of rotor dynamic and bearing hydrodynamic
calculations. (2) The dynamic range achievable with relative shaft vibration meas-
urements (as limited by mechanical and electrical runout) does not justify or neces-
sitate depiction on a logarithmic axis.

Analysis Speed. There are three basic elements in a filter analyzer which can give
rise to significant delays and thus influence the speed of analysis.

The filter introduces a delay on the same order as its response time TR (see Fig.
14.3). This is most likely to dominate in the analysis of stationary deterministic sig-
nals, where the filter contains only one discrete frequency component at a time and
only a short averaging time is required.

14.6 CHAPTER FOURTEEN
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VIBRATION ANALYZERS AND THEIR USE 14.7

FIGURE 14.5 Comparison of rms logarithmic and rms linear amplitude scales for
the depiction of vibration velocity spectra from two measurement points [(A) and
(B)] on the same gearbox (thus representing the same internal condition). The log-
arithmic representations in terms of velocity level are similar and show all com-
ponents of interest. The linear spectra in terms of velocity amplitude are quite
different, and both hide many components which could be important.
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The detector introduces a delay on the same order as the averaging time TA. The
choice of averaging time depends on the type of signal being analyzed, namely, sta-
tionary deterministic (discrete frequency) or stationary random.

Choice of Averaging Time. For deterministic signals, made up entirely of discrete
frequency components, the minimum averaging time required when there is only
one component in the filter passband (e.g., for a one-third-octave filter containing
the first, second, or third harmonic of shaft speed) comprises three periods of this
frequency. However, since a result is obtained only after the filter response time
(1/B) the averaging time should be set at least equal to this for exponential averag-
ing, or double that value for linear averaging. When a filter contains two to five dis-
crete frequencies (e.g., a one-third-octave filter in the range from the fourth to the
twentieth harmonic of shaft speed) there will possibly be a beat frequency equal to
the difference between adjacent components (i.e., the shaft speed), and an averaging
time five times the beat period (reciprocal of the beat frequency) will be required to
smooth the result. In theory, the same applies with more components in the pass-
band (e.g., a one-third-octave filter at higher frequencies), but the bandpassed signal
will then resemble a pseudo-random signal, and can be treated as a truly random sig-
nal for analysis. If a single frequency component dominates a higher frequency band
(e.g., a gearmesh frequency without sidebands), it is possible to revert to the require-
ment given above for a single component.

For random signals, it is necessary to limit the standard deviation of the error to
an acceptable value. The standard deviation of the error is given by the formula:

ε = (14.3)

where B is the filter bandwidth, and TA the averaging time.This error corresponds to
approximately 1 dB when the BTA product is 16. To halve the error, the averaging
time must be increased by a factor of 4, etc.

Table 14.1 summarizes the above information; further detailed information is
given in Ref. 7.

Scaling and Calibration for Stationary Signals. Scaling is the process of deter-
mining the correct units for the Y axis of a frequency analysis, while calibration is the
process of setting and confirming the numerical values along the axis. In the most
general case, spectra can be scaled in terms of mean-square or rms values at each fre-
quency (or, strictly speaking, for each filter band). For signals dominated by discrete
frequency components, with no more than one component per filter band, this yields
the mean-square or rms value of each component.

1
��
2���BTA
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TABLE 14.1 Choice of Averaging Time for Filter Analysis of Stationary Signals

Signal type

Deterministic— Deterministic— Deterministic—
1 component 2–5 components >5 components

in band in band in band Random*

Averaging time TA TA > 3/f1 + TA > 5/fbeat + TA > 16/B
Exponential TA > 1/B TA > 1/B Treat as random Ditto
Linear TA > 2/B TA > 2/B Ditto

Legend: f1 = single frequency in band, fbeat = minimum beat frequency in band, B = filter bandwidth.
* for error s.d. ≈ 1 dB.
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A spectrum of mean-square values is known as a power spectrum since physical
power often is related to the mean-square value of parameters such as voltage, cur-
rent, force, pressure, and velocity.

For random signals, the power spectrum values vary with the bandwidth but can
be normalized to a power spectral density W(f ) by dividing by the bandwidth. The
results then are independent of the analysis bandwidth, provided the latter is nar-
rower than the width of peaks in the spectrum being analyzed (e.g., following Fig.
14.4B). As examples, power spectral density is expressed in g 2 per hertz when the
input signal is expressed in gs acceleration, and in volts squared per hertz when the
input signal is in volts.

The concept of power spectral density is meaningless in connection with discrete
frequency components (with infinitely narrow bandwidth); it can be applied only to
the random parts of signals containing mixtures of discrete frequency and random
components. Nevertheless, it is possible to calibrate a power spectral density scale
using a discrete frequency calibration signal. For example, when analyzing a 1g sinu-
soidal signal with a 10-Hz analyzer bandwidth, the height of the discrete frequency
peak may be labeled 12g 2/10 Hz = 0.1g 2/Hz.

For constant-bandwidth analysis, the scaling thus achieved is valid for all fre-
quencies; for constant-percentage bandwidth analysis, the bandwidth and power
spectral density scaling vary with frequency. On log-log axes, it is possible to draw
straight lines representing constant power spectral density, which slope upwards at
10 dB per frequency decade from the calibration point.

Real-Time Digital Filter Analysis of Transient Signals. Suppose a digital filter
analyzer has a constant-percentage bandwidth (e.g., one-third-octave or one-
twelfth-octave) and covers a frequency range of three or four decades. Because the
bandwidth varies with frequency, the filter output signal also varies greatly. At low
frequencies (where B is small) the filter output resembles its impulse response, with
a length dominated by the filter response time TR. At high frequencies (where TR is
short) the filter output signal follows the input more closely and has a length domi-
nated by TI, the duration of the input impulse.

This is illustrated in Fig. 14.6, which traces the path of a typical impulsive signal
(an N-wave) through the complete analysis system of filter, squarer, and averager
for both a narrow-band (low-frequency) and a broad-band (high-frequency) filter.

VIBRATION ANALYZERS AND THEIR USE 14.9

FIGURE 14.6 Passage of a transient signal through an analyzer comprising a filter,
squarer, and averager (alternatively running linear averaging and exponential averaging).
The dotted curves represent the averager impulse responses. RC is the time constant for
exponential averaging. ε is the error in peak response. (A) With a wide-band filter. (B) With
a narrow-band filter.
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FIGURE 14.7 Transient analysis of a sonic boom (length 218 milliseconds)
using a one-third-octave digital filter analyzer. TA = selected averaging time.
The dotted curve (TA = 8 sec) has been raised 12 dB to compensate for the
longer averaging time.

The averaging time TA must always satisfy

TA ≥ TI + 3TR (14.4)

Thus the averaging time is determined by the lowest frequency to be analyzed.
The ideal solution would be running linear integration [with TA selected using Eq.
(14.4)] followed by a maximum-hold circuit (which retains the maximum value
experienced). The output of such a running linear averager is shown in Fig. 14.6.
Note that during the time the entire filter output is contained within the averag-
ing time TA, the averager output provides the correct result, which is held by the
maximum-hold circuit. However, a running linear average is very difficult to
achieve, and normally it is necessary to choose between fixed linear averaging
and running exponential averaging.

The problem with fixed linear averaging is that it must be started just before the
arrival of the impulse and thus cannot be triggered from the signal itself (unless use
is made of a delay line before the analyzer). It is, however, possible to record the sig-
nal first and then insert a trigger signal (for example, on another channel of a tape
recorder).

In order to extract all the information from a given signal, it may be necessary to
make the total analysis in two passes. For example, Fig. 14.7 shows the analysis of a
220-millisecond N-wave (the pressure signal from a sonic boom). For an averaging
time TA = 0.5 sec, the spectrum is valid only down to about 50 Hz, but it includes fre-
quency components up to 5 kHz. This illustration also shows an analysis of the same
signal using TA = 8 sec; this is valid down to about 1.6 Hz. However, as a result of this
longer averaging time, there is a 12-dB loss of dynamic range, and so all the fre-
quency components above 500 Hz are lost. The result (with scaling adjusted by 12
dB) is given as a dotted line in Fig. 14.7; it shows that the two spectra are identical
over the mutually valid range.
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Where the analysis is carried out in real time on randomly occurring impulses,
exponential averaging may be used followed by a maximum-hold circuit, but then
there is the added complication that the averager leaks energy at a (maximum) rate
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of 8.7 dB per averaging time TA, and thus the total impulse duration must be short
with respect to TA. The error is less than 0.5 dB if

TA ≥ 10(TI + TR) (14.5)

Note that the peak output of an exponential averager is a factor of 2 (i.e., 3 dB)
higher than that of the equivalent linear averager (Figs. 13.7 and 14.6); thus the
equivalent averaging time to be used in converting from power to energy units is
TA/2 for exponential averaging and TA for linear averaging. Conversion from
energy to energy spectral density is valid only for that part of the spectrum where
the analyzer bandwidth is appreciably less than the signal bandwidth, although out-
side that range the results may be interpreted as the mean energy spectral density
in the band.

FFT ANALYZERS

FFT analyzers make use of the FFT (fast Fourier transform) algorithm to calculate
the spectra of blocks of data.The FFT algorithm is an efficient way of calculating the
discrete Fourier transform (DFT). As described in Chap. 22, this is a finite, discrete
approximation of the Fourier integral transform. The equations given there for the
DFT assume real-valued time signals [see Eqs. (22.26)]. The FFT algorithm makes
use of the following versions, which apply equally to real or complex time series:

X(m) = ∆t �
N − 1

n = 0
x(n ∆t) exp (−j2πm ∆f n ∆t) (14.6)

x(n) = ∆f �
N − 1

m = 0
X(m ∆f ) exp ( j2πm ∆f n ∆t) (14.7)

These equations give the spectrum values X(m) at the N discrete frequencies 
m ∆f and give the time series x(n) at the N discrete time points n ∆t.

Whereas the Fourier transform equations are infinite integrals of continuous
functions, the DFT equations are finite sums but otherwise have similar properties.
The function being transformed is multiplied by a rotating unit vector exp (±j2πm ∆f
n ∆t), which rotates (in discrete jumps for each increment of the time parameter n)
at a speed proportional to the frequency parameter m. The direct calculation of each
frequency component from Eq. (14.5) requires N complex multiplications and addi-
tions, and so to calculate the whole spectrum requires N 2 complex multiplications
and additions.

The FFT algorithm factors the equation in such a way that the same result is
achieved in roughly N log2 N operations.1 This represents a speedup by a factor of
more than 100 for the typical case where N = 1024 = 210. However, the properties of
the FFT result are the same as those of the DFT.

Inherent Properties of the DFT. Figure 14.8 graphically illustrates the differ-
ences between the DFT and the Fourier integral transform.

Because the spectrum is available only at discrete frequencies m ∆f (where m is
an integer), the time function is implicitly periodic (as for the Fourier series). The
periodic time

T = N ∆t = 1/∆f (14.8)
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8434_Harris_14_b.qxd  09/20/2001  11:11 AM  Page 14.11



where N = number of samples in time function and frequency spectrum
T = corresponding record length of time function
∆t = time sample spacing
∆f = frequency line spacing = 1/T

In an analogous manner, the discrete sampling of the time signal means that the
spectrum is implicitly periodic, with a period equal to the sampling frequency fs,
where

fs = N ∆f = 1/∆t (14.9)

Note from Fig. 14.8 that because of the periodicity of the spectrum, the latter half
(m = N/2 to N) actually represents the negative frequency components (m = −N/2 to
0). For real-valued time samples (the usual case), the negative frequency components
are determined in relation to the positive frequency components by the equation

14.12 CHAPTER FOURTEEN

FIGURE 14.8 Graphical comparison of (A) the Fourier trans-
form with (B) the discrete Fourier transform (DFT) (see text).
Note that for purposes of illustration, a function has been chosen
(Gaussian) which has the same form in both time and frequency
domains.
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X(−m) = X*(m) (14.10)

and the spectrum is said to be conjugate even.
In the usual case where the x(n) are real, it is only necessary to calculate the spec-

trum from m = 0 to N/2, and the transform size may be halved by one of the follow-
ing two procedures:

1. The N real samples are transformed as though representing N/2 complex values,
and that result is then manipulated to give the correct result.2

2. A zoom analysis (discussed in a later section) is performed which is centered on
the middle of the base-band range to achieve the same result.

Thus, most FFT analyzers produce a (complex) spectrum with a number of spectral
lines equal to half the number of (real) time samples transformed. To avoid the
effects of aliasing (see next section), not all the spectrum values calculated are valid,
and it is usual to display, say, 400 lines for a 1024-point transform or 800 lines for a
2048-point transform.

Aliasing. Aliasing is an effect introduced by the sampling of the time signal,
whereby high frequencies after sampling appear as lower ones (as with a strobo-
scope). The DFT algorithm of Eq. (14.6) cannot distinguish between a component
which rotates, say, seven-eighths of a revolution between samples and one which
rotates a negative one-eighth of a revolution.Aliasing is normally prevented by low-
pass filtering the time signal before sampling to exclude all frequencies above half
the sampling frequency (i.e., −N/2 < m < N/2). From Fig. 14.8 it will be seen that this
removes the ambiguity. In order to utilize up to 80 percent of the calculated spec-
trum components (e.g., 400 lines from 512 calculated), it is necessary to use very
steep antialiasing filters with a slope of about 120 dB/octave.

Normally, the user does not have to be concerned with aliasing because suitable
antialiasing filters automatically are applied by the analyzer. One situation where it
does have to be allowed for, however, is in tracking analysis (discussed in a follow-
ing section) where, for example, the sampling frequency varies in synchronism with
machine speed.

Leakage. Leakage is an effect whereby the power in a single frequency compo-
nent appears to leak into adjacent bands. It is caused by the finite length of the
record transformed (N samples) whenever the original signal is longer than this; the
DFT implicitly assumes that the data record transformed is one period of a periodic
signal, and the leakage depends on what is actually captured within the time window,
or data window.

Figure 14.9 illustrates this for three different sinusoidal signals. In (A) the data
window corresponds to an exact integer number of periods, and a periodic repetition
of this produces an infinitely long sinusoid with only one frequency. For (B) and (C)
(which have a slightly higher frequency) there is an extra half-period in the data
record, which gives a discontinuity where the ends are effectively joined into a loop,
and considerable leakage is apparent.The leakage would be somewhat less for inter-
mediate frequencies.The difference between the cases of Fig. 14.9B and C lies in the
phase of the signal, and other phases give an intermediate result.

When analyzing a long signal using the DFT, it can be considered to be multiplied
by a (rectangular) time window of length T, and its spectrum consequently is con-
volved with the Fourier spectrum of the rectangular time window,3 which thus acts
like a filter characteristic. The actual filter characteristic depends on how the result-
ing spectrum is sampled in the frequency domain, as illustrated in Fig. 14.10.

In practice, leakage may be counteracted:
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FIGURE 14.10 Frequency sampling of the continuous spectrum of a time-
limited sinusoid of length T. (A) Integer number of periods, side lobes sampled
at zero points (compare with Fig. 14.9A). (B) Half integer number of periods,
side lobes sampled at maxima (compare with Fig. 14.9B and C).
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FIGURE 14.9 Time-window effects when analyzing a sinusoidal signal in an FFT 
analyzer using rectangular weighting. (A) Integer number of periods, no discontinuity.
(B) and (C) Half integer number of periods but with different phase relationships, giv-
ing a different discontinuity when the ends are joined into a loop.
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1. By forcing the signal in the data window to correspond to an integer number of
periods of all important frequency components. This can be done in tracking
analysis (discussed in a later section) and in modal analysis measurements (Chap.
21), for example, where periodic excitation signals can be synchronized with the
analyzer cycle.

2. (For long transient signals) By increasing the length of the time window (for
example, by zooming) until the entire transient is contained within the data
record.

3. By applying a special time window which has better leakage characteristics than
the rectangular window already discussed.

Later sections deal with the choice of data windows for both stationary and tran-
sient signals.

Picket Fence Effect. The picket fence effect is a term used to describe the
effects of discrete sampling of the spectrum in the frequency domain. It has two
connotations:

1. It results in a nonuniform frequency weighting corresponding to a set of overlap-
ping filter characteristics, the tops of which have the appearance of a picket fence
(Fig. 14.11).

2. It is as though the spectrum is viewed through the slits in a picket fence, and thus
peak values are not necessarily observed.

One extreme example is in fact shown in
Fig. 14.10, where in (A) the side lobes
are completely missed, while in (B) the
side lobes are sampled at their maxima
and the peak value is missed.

The picket fence effect is not a
unique feature of FFT analysis; it occurs
whenever discrete fixed filters are used,
such as in normal one-third-octave
analysis. The maximum amplitude error
which can occur depends on the overlap
of the adjacent filter characteristics, and
this is one of the factors taken into
account in the following discussion on
the choice of data window.

Data Windows for Analysis of Stationary Signals. A data window is a weight-
ing function by which the data record is effectively multiplied before transforma-
tion. (It is sometimes more efficient to apply it by convolution in the frequency
domain.) The purpose of a data window is to minimize the effects of the disconti-
nuity which occurs when a section of continuous signal is joined into a loop.

For stationary signals, a good choice is the Hanning window (one period of a sine
squared function), which has a zero value and slope at each end and thus gives a grad-
ual transition over the discontinuity. In Fig. 14.12 it is compared with a rectangular
window, in both the time and frequency domains. Even though the main lobe (and thus
the bandwidth) of the frequency function is wider, the side lobes fall off much more
rapidly and the highest is at −32 dB, compared with −13.4 dB for the rectangular.

Other time-window functions may be chosen, usually with a trade-off between
the steepness of filter characteristic on the one hand and effective bandwidth on the
other. Table 14.2 compares the time windows most commonly used for stationary
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FIGURE 14.11 Illustration of the picket fence
effect. Each analysis line has a filter characteris-
tic associated with it which depends on the
weighting function used. If a frequency coincides
exactly with a line, it is indicated at its full level.
If it falls midway between two lines, it is repre-
sented in each at a lower level corresponding to
the point where the characteristics cross.
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TABLE 14.2 Properties of Various Data Windows

Side lobe Maximum
Highest side fall-off, Noise amplitude

Window type lobe, dB dB/decade bandwidth* error, dB

Rectangular −13.4 −20 1.00 3.9
Hanning −32 −60 1.50 1.4
Hamming −43 −20 1.36 1.8
Kaiser-Bessel −69 −20 1.80 1.0
Truncated Gaussian −69 −20 1.90 0.9
Flattop −93 0 3.70 <0.1

* Relative to line spacing.
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FIGURE 14.12 Comparison of rectangular and Hanning window functions of
length T seconds. Full line—rectangular weighting; dotted line—Hanning
weighting. The inset shows the weighting functions in the time domain.

signals, and Fig. 14.13 compares the effective filter characteristics of the most impor-
tant. The most highly selective window, giving the best separation of closely spaced
components of widely differing levels, is the Kaiser-Bessel window. On the other
hand, it is usually possible to separate closely spaced components by zooming, at the
expense of a slightly increased analysis time.

Another window, the flattop window, is designed specifically to minimize the
picket fence effect so that the correct level of sinusoidal components will be indi-
cated, independent of where their frequency falls with respect to the analysis lines.
This is particularly useful with calibration signals. Nonetheless, by taking account
of the distribution of samples around a spectrum peak, it is possible to compensate
for picket fence effects with other windows as well. Figure 14.14, which is specifi-
cally for the Hanning window, is a nomogram giving both amplitude and frequency
corrections, based on the decibel difference (∆dB) between the two highest sam-
ples around a peak. For stable single-frequency components this allows determi-
nation of the frequency to an accuracy of an order of magnitude better than the
line spacing.
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Data Windows for Analysis of Transient Signals. When using impulsive (e.g.,
hammer) excitation of structures for determining their frequency response char-
acteristics (e.g., see Chap. 21), it is common to use the following special data win-
dows:

1. A short rectangular window may be applied over the very short excitation im-
pulse in order to exclude noise from the remaining portion of the record.

2. An exponential window can be applied where the response is very long (i.e.,
lightly damped structures) to reduce the signal to practically zero at the end of
the record, and thus avoid discontinuities. The effect is the same as adding extra
damping which is very precisely known and can be subtracted from the measure-
ment results.A half-Hanning taper is often added to both the leading and trailing
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FIGURE 14.13 Comparison of worst-case filter characteristics for rectangular and other weight-
ing functions for an 80-dB dynamic range. (A) Rectangular. (B) Kaiser-Bessel. (C) Hanning. (D)
Flattop.
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edges of a short rectangular window, and to the leading edge of an exponential
window, to mitigate the effects of the discontinuities.

Zoom Analysis.4 Zoom analysis is the term given to a spectrum analysis having
increased resolution over a restricted part of the frequency range. The following are
two techniques used to generate zoom analyses.

1. Real-time zoom (illustrated in the block diagram of Fig. 14.15) is a zoom
process in which the entire signal is first modified to shift its frequency origin to the
center of the zoom range. Then it is passed through a low-pass filter (usually a digi-
tal filter in real time) which has a passband corresponding to the original zoom-band
(Fig. 14.16). Because of the low-pass filtration, the signal then can be resampled at a
lower sampling rate without aliasing, and the resampled signal processed by an FFT
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FIGURE 14.14 Picket fence corrections for Hanning weighting,
where ∆L = level correction, dB; ∆f = frequency correction; Hz; B =
line spacing, Hz; ∆dB = difference in decibels between the two highest
samples around a peak representing a discrete frequency component.
Three examples are shown: (A) Actual frequency coincides with cen-
ter line. (B) Actual frequency midway between two lines. (C) General
situation. Note that the frequency correction ∆f/B is almost linear.
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transform. The original frequency shift is accomplished by multiplying the incoming
signal by a unit vector (phasor) rotating at −f0 (thereby subtracting f0 from all fre-
quencies in it), and the modified time signal is thus complex. This is one situation
where the FFT transform of complex data is used. Figure 14.17 gives an example of
the use of zoom analysis to show that what appears in a baseband analysis to be the
second harmonic of shaft speed actually is dominated by twice the line frequency at
100 Hz and reveals that what appears to be a single-frequency component in a base-
band spectrum actually comprises a family of uniformly spaced components, the sec-
ond highest of which is the second harmonic of the shaft speed.

2. Nondestructive zoom is effectively a way of achieving a larger transform size
without modification of the original data record. For a typical case, data are first cap-
tured in a 10K (i.e., 10,240-point) buffer. Ten 1K records obtained by taking every
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FIGURE 14.15 Block diagram for real-time zoom with bandwidth B centered on frequency
f0. M is the zoom factor and also the factor by which the sampling frequency is reduced.

FIGURE 14.16 Principle of real-time zoom, using a low-pass filter to filter
out the portion of the original signal in the zoom-band of width B. Prior to
this, the frequency origin is shifted to frequency f0 (the desired center fre-
quency of the zoom-band) by multiplying the (digitized) time signal by e−j2πf0t.
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FIGURE 14.17 (A) Original baseband spectrum. (B) Shaded section of (A) zoomed by a factor of
64:1. Highest component at 100 Hz is twice the line frequency. Next highest component on the left is
twice the shaft rotational speed.

10th sample are transformed using a 1K (1024-point) FFT transform. Even though
this gives only 1024 frequency values per transform, the rest are generated by peri-
odic repetition (because of aliasing resulting from the undersampling). After com-
pensating the phase of the results for the small time shift of each of the undersampled
records, the entire spectrum of the 10K record can in principle be obtained by addi-
tion. In practice, only a part of the whole spectrum is normally obtained at any one
time in order to save on memory requirements, but the whole spectrum can be gen-
erated by repetitive operation on exactly the same data.As a result of the decreasing
cost of memory and the increasing flexibility of transform size in analyzers, non-
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destructive zoom has been effectively superseded by directly performing the larger-
size transform.

Real-time zoom has the advantage that the zoom factor obtainable is virtually
unlimited. A procedure is often employed (as illustrated in Fig. 14.15) whereby the
signal samples are repeatedly circulated around a loop containing a low-pass filter
which cuts off at one-half the previous maximum frequency, after which the sam-
pling frequency is halved by dropping every second sample. Each circulation dou-
bles the zoom factor and at the same time doubles the length of original signal
required to fill the transform buffer. It is this time requirement which places a limit
on the zoom factor, as well as on the stability of the signal itself. A zoom factor of 10
in a 400-line spectrum, for example, gives the equivalent of a 4000-line spectrum; a
finer resolution is not required to analyze the vibration spectrum of a machine
whose speed fluctuates by, say, 0.1 percent.

Real-time zoom suffers the disadvantage that the entire signal must be repro-
cessed to zoom in another band. This has two detrimental consequences:

1. For very narrow bandwidths (long record lengths), the analysis time is very long
for each zoom analysis.

2. There is no certainty that exactly the same signal is processed each time.

On the other hand, nondestructive zoom (or a large transform) has the advantage
that for zoom analysis in different bands, exactly the same data record is used.Thus it
is known, for example, that there will be an exact integer relationship between the
various harmonics of a periodic signal.This can be useful, as a typical example, in sep-
arating the various harmonics of shaft speed from those of line frequency, in induc-
tion motor vibrations. Furthermore, the long analysis time is required only once (to
fill the data buffer); further zoom analyses on the same record are limited only by the
calculation speed.

Nondestructive zoom suffers the disadvantage that the zoom factor is limited by
the size of the memory buffer in the analyzer. Where the memory buffer is 10 times
the normal transform size, for example, the zoom factor is equal to 10.

Thus, both types of zoom are advantageous for different purposes. Nondestruc-
tive zoom is probably best for diagnostic analysis of machine vibration signals,
whereas real-time zoom gives more flexibility in frequency response measurements
(system frequency response should not change even where the excitation signals
change). Real-time zoom also gives the possibility of very large zoom factors when
they are required.

In real-time zoom, it is only the preprocessing of the signal which has to be in real
time; the actual FFT analysis of the signal, once it is stored in the transform buffer,
does not have to be in real time.

ANALYSIS OF STATIONARY SIGNALS USING FFT

Equation (14.8) shows that for a single FFT transform, the product (bandwidth
times averaging time) BTA = 1, at least for rectangular weighting where B is equal to
the line spacing ∆f (Table 14.2). The same applies for any weighting function, the
increased bandwidth being exactly compensated by a corresponding decrease in
effective record length.5

For stationary deterministic signals, a single transform having a BTA product
equal to unity is theoretically adequate, although a small number of averages is
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sometimes performed if the signal is not completely stable. Figure 14.18 illustrates
the effect of averaging for a deterministic signal and demonstrates that the sinu-
soidal components are unaffected; the only effect is to smooth out the (nondeter-
ministic) noise at the base of the spectrum (Fig. 14.18B).
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FIGURE 14.18 Effect of averaging with a stationary deterministic signal. (A) Instantaneous
spectrum (average of 1). (B) The linear average of eight spectra.

For stationary random signals, the standard deviation of the result of averaging n
independent spectra is given by the equivalent of Eq. (14.3), or

ε = (14.11)

Figure 14.19 illustrates (A) an instantaneous spectrum, (B) the average of eight
spectra, and (C) the average of 128 spectra.The meaning of the standard error ε [Eq.
(14.11)] is illustrated in (B) and (C). Statistically, there is a 68 percent probability
that the actual error will be less than ε, a 95.5 percent probability that it will be less
than 2ε, and a 99.7 percent probability that it will be less than 3ε.

For rectangular (flat) weighting, independent spectra are those from nonoverlap-
ping time records; when other weighting functions are used, the situation is different.
For example, Fig. 14.20A illustrates the overall (power) weighting obtained when
Hanning windows are applied to contiguous records. Note that virtually half of the
incoming signal is excluded from the analysis, whereas a 50 percent overlapping of

1
�
2 �n�
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consecutive records regains most of the lost information. Thus, when using window
functions similar to Hanning (as recommended for stationary signals), it is almost
always advantageous to average the results from 50 percent overlapping records. A
method for calculating the effective number of averages obtained in this way is given
in Ref. 6; for 50 percent overlapping Hanning windows the error is very small in
treating them as independent records.

Real-Time Analysis. An FFT analyzer is said to operate in real time when it is 
able to process all the incoming data, even though presentation of the results is
delayed by an amount corresponding to the calculation time. This implies that the
time taken to analyze a data record, Ta, is less than the time taken to collect the data
transformed, T. It also implies that the analysis process should not interrupt the con-
tinuous recording of data, so that recording can continue in one part of the memory
at the same time as analysis is being performed in another. T is inversely propor-
tional to the selected frequency range, and the highest frequency range for which Ta

is less than T is called the real-time frequency. This condition will ensure that all the
incoming data are analyzed only when rectangular weighting is used. With Hanning
weighting, for example, where 50 percent overlap analysis must be employed to ana-
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FIGURE 14.19 Effect of averaging with a stationary random signal. (A)
Instantaneous spectrum. (B) Average of eight spectra. (C) Average of 128
spectra.
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lyze all the data, the true real-time frequency will be halved, since twice as many
transforms must be performed for the same length of data record. In yet another
sense, the analysis is not truly real-time unless the overall weighting function is uni-
form. As illustrated in Fig. 14.20, the minimum overlap of Hanning windows to
achieve this is two-thirds, which reduces the true real-time frequency to one-third of
the commonly understood definition given above.

In practice, with stationary signals, there is no advantage to more than a 50 per-
cent overlap, since (1) statistical reliability is not significantly improved and (2) all
sections of the record are statistically equivalent, so that the overall weighting
function is not important. It can be important for nonstationary signals, such as
transients, as discussed below. For stationary signals, where any data missed are
statistically no different from the data analyzed, the only advantages of real-time
analysis are that (1) results with a given accuracy are obtained in the minimum
possible time and (2) maximum information is extracted from a record of limited
length.

FFT Analysis of Transients. Consider the use of FFT analysis when the entire
transient fits into the transform size T without loss of high-frequency information.
Figure 14.21 shows such an example where the duration of the transient is less than
the analyzer record length of 2048 samples (2K) in a frequency range which does not
exclude high-frequency information in the signal. Rectangular weighting should be
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FIGURE 14.20 Overall weighting functions for spectrum averaging with overlapping Hanning win-
dows. (A) Zero overlap (step length T). (B) 50 percent overlap (step length T/2). (C) 66.7 percent over-
lap (step length T/3). (D) 75 percent overlap (step length T/4). T is the record length for the FFT
transform.
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used in such a case, where the signal value is zero at each end, so that no discontinu-
ity arises from making the record into a loop (an inherent property of the FFT
process). Exponential weighting sometimes may be used to force the signal down to
zero at the end of the record, but the frequency spectrum will then include the
effects of the extra damping which this represents.

With rectangular weighting, the analysis bandwidth is equal to the line spacing
1/T, which is always less than the effective signal bandwidth. Conversion of the
results to energy spectral density, therefore, is valid in most practical situations.
Some analyzers provide the results in terms of energy spectral density, but if the
results are available only in terms of power (U2), they must be multiplied by the
time T corresponding to the record length to convert them to energy and divided by
the bandwidth 1/T to convert them to energy spectral density, expressed in engi-
neering units squared times seconds per hertz. Altogether, this represents a multi-
plication by T 2.

Where a transient is longer than the normal transform size T, it can be analyzed
in one of the following ways:

1. Zoom FFT (see Zoom Analysis, above, for background information). A
suitable zoom factor is chosen such that the transform length (1/∆f ) is greater than
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FIGURE 14.21 Example of an FFT analysis of a short transient signal. (A) Time signal of length 2048
samples (2K) corresponding to 250 milliseconds (T = 250 milliseconds). (B) 800-line FFT spectrum with
bandwidth B = ∆f = 4 Hz (rectangular weighting). Scaling on left is in rms units. Scaling on right is con-
verted to energy spectral density (ESD) by multiplying mean-square values by T 2.
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FIGURE 14.22 Analysis of a long transient signal using nondestructive zoom
FFT. (A) Envelope of time signal of length 10,240 samples (10K) corresponding
to 2 seconds (T = 2 seconds). (B) 4000-line composite zoom spectrum with
bandwidth B = ∆f = 0.5 Hz (flat weighting). Scaling on right is converted to
energy spectral density (ESD).

the duration of the transient. Thus in the case of nondestructive zoom, the entire
transient can be recorded in the long memory and the entire narrow-band spectrum
can be obtained by repetitive analysis in contiguous zoom-bands. In the case of real-
time zoom, analysis in more than one zoom-band requires that the transient be
recorded in an external medium and played back for each zoom analysis. Rec-
tangular weighting should be used (thus B = ∆f ) and energy spectral density (as
above) is always valid using a value of T corresponding to the zoom record length
(1/B). The narrow bandwidth may give a restriction of dynamic range of the result.
Figure 14.22 shows a typical energy spectrum, obtained by repetitive nondestructive
zoom analysis; the same result would be obtained from a single large transform.

2. Scan averaging. When the entire transient is stored in digital form in a long
memory (as for nondestructive zoom), it is possible to obtain its spectrum by scanning
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a short time window (e.g., a Hanning window) of length T over the entire record; this
is done in overlapping steps, and the results are averaged.As already demonstrated for
stationary signals (Fig. 14.20), this procedure yields a result with uniform weighting for
step lengths T/3 and T/4. The same applies to step lengths T/5, T/6, etc., but there is a
slight difference with respect to the overall weighting function for the different step
lengths. Figure 14.23 illustrates the overall time weighting function for different step
lengths T/n (where n is an integer greater than 2) and shows the length of the uniform
section (within which the entire transient should ideally be located) and the effective
length Teff by which power units should be multiplied to convert them to energy. For a
conversion to energy spectral density to be valid, the width of spectrum peaks must be
somewhat greater than the analysis bandwidth; this can be seen by inspection of the
analysis results. For example, for the Hanning window, the bandwidth B is 1.5 times the
line spacing ∆f (see Table 14.2), and so spectrum peaks should have a 3-dB bandwidth
of more than five lines.
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FIGURE 14.23 Overall weighting function for scan averaging of a transient. (A)
Overlapping Hanning windows of length T with definition of parameters m and n.
(B) Overall weighting function with indication of Teff and Tflat in terms of T, m, and
n. Teff is the effective length of the time window for conversion of power to energy
units. Tflat is the length of the section with uniform weighting within which the tran-
sient ideally should be located.

Even though the broader bandwidth obtained by scan averaging may result in a
loss of spectrum detail, it provides considerable improvement in the dynamic range
of the result. Figure 14.24 (using scan averaging) illustrates these points for the same
signal as Fig. 14.22 (using zoom).The spectrum obtained by scan averaging generally
has 12 dB more dynamic range than that obtained by zoom (with factor 10), but the
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FIGURE 14.24 Analysis of a long transient by scan averaging (same signal as Fig. 14.22).
The energy spectral density (ESD) scaling on the right can be compared with that in Fig. 14.22,
although the peaks are not valid because of insufficient resolution.

level of peaks does not differ by this amount; this confirms that their resolution is
not sufficient to allow scaling in terms of energy spectral density.

To obtain Fig. 14.24, scan averaging with a step length of T/4 was used (an over-
lap of successive records of 75 percent). Even though a step length of T/3 (overlap of
66.7 percent) is theoretically more efficient, T/4 is usually more convenient because
the number of samples in T generally is a power of 2.

ANALYSIS OF NONSTATIONARY SIGNALS

A typical nonstationary signal results from measurements made during a machine
run-up or coast-down (here, the primary cause of the nonstationary signal is a change
in shaft speed). The signal can be analyzed by dividing it up into a series of short
quasi-stationary time periods (often overlapping), in each of which the speed is
roughly constant. The length of the time window used to select a portion of the con-
tinuous signal may have to be chosen so as to ensure this.The simplest way to analyze
a nonstationary signal of this type is to use a tracking filter tuned to a specific har-
monic of shaft speed and to record the results vs. rpm of the machine. If a phase meter
is inserted between the filtered signal and the tracking signal, it is possible to record
phase as well as amplitude against rpm to give what is called a Bode plot.8

Using an FFT analyzer, the behavior of several harmonics may be studied simul-
taneously. One way to do this, using an FFT analyzer having a long memory, is with
a simple scan analysis; a short Hanning window is scanned through the record (as for
a scan average), and successive instantaneous spectra (from each window position)
are viewed on the display screen. The speed of the scan may be changed by varying
the step length; this is one situation (in contrast to scan averaging) where very short
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step lengths may be of advantage, for example, in slowing down the passage through
a resonance.

A highly effective method of representing such a scan analysis is by a “water-
fall,” or “cascade,” plot as shown in Fig. 14.25 (which represents a typical machine
run-up). As indicated, the third dimension of such a three-dimensional plot can be
either time or rpm; for a simple scan analysis it usually is time, but if the spectra are
spaced at equal intervals of rpm, a number of advantages result. Harmonically
related components (whose bases follow radial lines) then can be separated easily
from constant-frequency components (e.g., related to line frequency or resonances)
whose bases follow lines parallel with the rpm axis. Such a cascade plot, with rpm as
the third axis, is sometimes referred to as a Campbell diagram, although strictly
speaking a Campbell diagram has a vertical frequency axis, a horizontal rpm axis,
and a signal amplitude represented as the diameter of a circle (or square) centered
on the appropriate point in the diagram.
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FIGURE 14.25 Three-dimensional spectral map or waterfall plot, showing how spectra change with
shaft rpm or time.

Ideally, each of the spectra in a cascade plot such as Fig. 14.25 should be obtained
with constant shaft speed at the respective rpm. This is sometimes possible, for
example, during the very slow start-up of a large steam turbine, but usually each
spectrum is a windowed section of a continuously varying signal with a small speed
change within the window length. Consequently, the peak corresponding to each
harmonic is not always localized in one analysis line; in particular, the higher har-
monics are likely to be spread over progressively more lines.Thus, the height of each
peak cannot be used directly as a measure of the strength of each component; it
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would be necessary to integrate over the whole of a distributed peak to measure the
total power contained in it.

A way of overcoming this problem is to use tracking analysis, where the sampling
rate of the FFT analyzer is related directly to shaft speed. A frequency multiplier
may be used to produce a sampling frequency signal (controlling the A/D converter
of the analyzer) which is a specified multiple of the shaft speed.

Figure 14.26 illustrates the basic principles. Figure 14.26B shows a hypothetical
signal produced by a rotating shaft during a run-up (in practice, the amplitude nor-
mally also would vary with shaft speed). Figure 14.26A shows the samples obtained
by sampling the signal value at a constant sampling frequency (as for normal fre-
quency analysis) and the spectrum resulting from FFT analysis of these samples. The
spectral peak is seen to spread over a number of lines corresponding to the speed
change along the time record. Figure 14.26C shows the samples obtained by sampling
the signal a fixed number of times per shaft revolution (in this case, eight). The sam-
ples are indistinguishable from those obtained from normal analysis of a constant-
frequency component, and thus the frequency spectrum is concentrated in one line.
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FIGURE 14.26 Analysis of a fundamental component which is increasing in frequency.
(A) Data record resulting from a uniform sampling rate, and its spectrum, which spreads
over a frequency band corresponding to the speed change. (B) The original time signal. (C)
Data record resulting from sampling eight times per fundamental cycle, and its spectrum,
which is concentrated in one analysis line.

A frequency multiplier, based on a phase-locked loop, suffers from the disadvan-
tage of a finite response time, so that it cannot keep up if the speed is changing rap-
idly. A better alternative, offered by some analyzers, is based on digital resampling
(interpolation) of each record in line with the simultaneously measured tachometer
signal.

When the sampling frequency varies with shaft speed, however, special pre-
cautions must be taken to avoid problems with aliasing. One possibility is to use a
tracking low-pass filter with a cutoff frequency suitably less than half the sampling
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frequency. Because of the difficulty of obtaining a tracking filter having a very steep
roll-off (e.g., 120 dB/octave), it is often simpler to choose one of a series of filters
with a fixed cutoff frequency, depending on the current shaft speed. Such a series of
filters (in, for example, a 2, 5, 10 sequence) often is available in the analyzer to
determine the normal frequency ranges. Taking the case of a 400-line analyzer, for
example, all 400 lines in the measured spectrum are valid when the sampling fre-
quency is appropriate to the selected filter (Fig. 14.27A). If the sampling frequency
is higher than the ideal for a given filter, the upper part of the spectrum is affected
by the filter (Fig. 14.27B). If it is lower, the upper part of the spectrum may be con-
taminated by aliasing components (Fig. 14.27C). Nevertheless, by arranging for the
selection of the optimum filter at all times (either manually or automatically), at
least 60 percent of the measured spectrum (i.e., in this case 240 lines) is always
valid. The analysis parameters can be selected so that the desired number of har-
monics is contained within this range, based on the fact that the line number in the
spectrum of a given component is equal to the number of periods it represents in
the data record of length N samples. If, for example, the 30th harmonic is to be
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FIGURE 14.27 Effect of sampling frequency on the validity of spectral components,
assuming an FFT analyzer with 400 lines and 80-dB dynamic range. fs = sampling fre-
quency. fN = Nyquist folding frequency = fs/2. (A) Normal situation with optimum choice
of sampling frequency for the low-pass filter. (B) Situation with increased sampling fre-
quency. The upper lines in the spectrum are influenced by the low-pass filter. (C) Situa-
tion with decreased sampling frequency. The upper lines in the spectrum are influenced
by aliasing components folded around fN (double cross-hatched area).
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FIGURE 14.28 Use of a fixed low-pass filter to prevent aliasing when tracking with an FFT
analyzer employing zoom to analyze in a lower-frequency band. For illustration purposes, the
sampling frequency at maximum shaft speed has been made four times greater than that appro-
priate to the analog LP filter. The shaft speed range could be made proportionally greater by
increasing this factor. (A) Situation at maximum shaft speed. All harmonics of interest must be
contained in the display range. (B) Situation at one-fourth maximum shaft speed. The analog fil-
ter characteristics overlap, but are well separated from the display range. (C) Situation at three-
sixteenths maximum shaft speed. The aliasing range almost intrudes on the display range.

located in line no. 240, the fundamental must be in line no. 8; there must be eight
periods of the fundamental component along the data record. Where the data
record contains 1024 samples (i.e., N = 1024), the sampling frequency must then be
128 times the shaft speed; thus a frequency multiplier with a multiplication factor of
128 should be used in this specific case.

For FFT analyzers with zoom, a simpler approach can be used, as illustrated in
Fig. 14.28. An analog low-pass filter is applied to the signal with a cutoff frequency
corresponding to the highest required harmonic at maximum shaft speed. However,
a frequency multiplying factor is chosen so as to make the sampling frequency, say,
10 or 20 times this cutoff frequency (instead of the normal 2.56). The spectrum then
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is obtained by zooming in a range corresponding to the highest required harmonic.
As shown in Fig. 14.28, the shaft speed (and thus the sampling frequency) can then
be varied over a wide range, without aliasing components affecting the measure-
ment results. A somewhat similar procedure is used in conjunction with the digital
resampling technique mentioned above. By using four times oversampling, a maxi-
mum speed range of 5.92:1 can be accommodated without changing the decimation
rate (i.e., the proportion of samples retained after digital filtration), but an even
wider range can be covered, at the expense of small “glitches” at the junctions, if the
decimation rate is allowed to change.

Figure 14.29 shows the results of tracking FFT analysis on a large turbogenerator.
It was made using nondestructive zoom with zoom factor 10. A frequency multiply-
ing factor of 256 was used, giving 40 periods of the fundamental component in the
10K (10,240-point) memory of the FFT analyzer. The fundamental is thus located in
line no. 40 of the 400-line zoom spectrum. Because the harmonics coincide exactly
with analysis lines, rectangular weighting could have been used in place of the Han-
ning weighting actually used (all harmonics have exact integer numbers of periods
along the record length); Hanning weighting can, however, be advantageous for non-
synchronous components such as constant-frequency components. Such a compo-
nent at 150 Hz (initially coinciding with the third harmonic of shaft speed) is shown
in Fig. 14.29. Constant-frequency components follow a hyperbolic locus in cascade
plots employing order tracking.
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FIGURE 14.29 Tracking FFT analysis of the rundown of a large turbogenerator. The superim-
posed hyperbolic curve represents a fixed-frequency component at 150 Hz.
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RELATED ANALYSIS TECHNIQUES

Signal analysis techniques other than those described above, which are useful as an
adjunct to frequency analysis, include synchronous averaging, cepstrum analysis, and
Hilbert transform techniques.

Synchronous Averaging (Signal Enhancement). Synchronous averaging is an
averaging of digitized time records, the start of which is defined by a repetitive trig-
ger signal. One example of such a trigger signal is a once-per-revolution synchroniz-
ing pulse from a rotating shaft. This process serves to enhance the repetitive part of
the signal (whose period coincides with that of the trigger signal) with respect to
nonsynchronous effects. That part of the signal which repeats each time adds
directly, in proportion to the number of averages, n. The nonsynchronous compo-
nents, both random noise and periodic signals with a different period, add like noise,
with random phase; the amplitude increase is in proportion to �––n . The overall
improvement in the signal-to-noise rms ratio is thus �––n , resulting in an improve-
ment of 10 log10 n dB, i.e., 10 dB for 10 averages, 20 dB for 100, 30 dB for 1000.

Figure 14.30 shows the application of synchronous averaging to vibration signals
from similar gearboxes in good and faulty condition. Figure 14.30A shows the
enhanced time signal (120 averages) for the gear on the output shaft. The signal is
fairly uniform and gives evidence of periodicity corresponding to the tooth-meshing.
Figure 14.30B is a similarly enhanced time signal for a faulty gear; a localized defect
on the gear is revealed. By way of comparison, Fig. 14.30C shows a single time
record, without enhancement, for the same signal as in Fig. 14.30B; neither the
tooth-meshing effect nor the fault is readily seen.

For best results, synchronous averaging should be combined with tracking. Where
there is no synchronization between the digital sampling and the (analog) trigger sig-
nal, an uncertainty of up to one sample spacing can occur between successive digitized
records.This represents a phase change of 360° at the sampling frequency, and approx-
imately 140° at the highest valid frequency component in the signal, even with per-
fectly stable speed. Where speed varies, an additional phase shift occurs; for example,
a speed fluctuation of 0.1 percent would cause a shift of one sample spacing at the end
of a typical 1024-sample record.The use of tracking analysis (generating the sampling
frequency from the synchronizing signal) reduces both effects to a minimum.

Cepstrum Analysis. Originally the cepstrum was defined as the power spectrum of
the logarithmic power spectrum.9 A number of other terms commonly found in the
cepstrum literature (and with an equivalent meaning in the cepstrum domain) are
derived in an analogous way, e.g., cepstrum from spectrum, quefrency from frequency,
rahmonic from harmonic. The distinguishing feature of the cepstrum is not just that it
is a spectrum of a spectrum, but rather that it is the spectrum of a spectrum on a loga-
rithmic amplitude axis; by comparison, the autocorrelation function [see Eq. (22.21)] is
the inverse Fourier transform of the power spectrum without logarithmic conversion.

Most commonly, the power cepstrum is defined as the inverse Fourier transform
of the logarithmic power spectrum,10 which differs primarily from the original defi-
nition in that the result of the second Fourier transformation is not modified by
obtaining the amplitude squared at each quefrency; it is thus reversible back to the
logarithmic spectrum. Another type of cepstrum, the complex cepstrum, discussed
below, is reversible to a time signal.

Figure 14.31, the analysis of a vibration signal from a faulty bearing, shows the
advantage of the power cepstrum over the autocorrelation function. In Fig. 14.31A,
the same power spectrum is depicted on both linear and logarithmic amplitude axes;
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in (B) and (C) the autocorrelation and cepstrum, respectively, are shown. In (C), the
use of the logarithmic power spectrum reveals the existence of a family of harmon-
ics which are concealed in the linear depiction. The presence of the family of har-
monics is made evident by a corresponding series of rahmonics in the cepstrum
(denoted ➀, ➁, etc.), but is not detected in the autocorrelation function. The que-
frency axis of the cepstrum is a time axis, most closely related to the X axis of the
autocorrelation function (i.e., time delay or periodic time rather than absolute time).
The reciprocal of the quefrency of any component gives the equivalent frequency
spacing in the spectrum, not the absolute frequency.

Most of the applications of the power cepstrum derive from its ability to detect a
periodic structure in the spectrum, for example, families of uniformly spaced har-
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FIGURE 14.30 Use of signal enhancement in gear fault diagnosis. (A)
Enhanced signal (120 averages) for a gear in normal condition. (B)
Enhanced signal (120 averages) for a similar gear with a local fault. (C) Sec-
tion of raw signal corresponding to (B).

8434_Harris_14_b.qxd  09/20/2001  11:12 AM  Page 14.35



monics and/or sidebands. The application of the cepstrum to the diagnosis of faults
in gears and rolling element bearings is discussed in Chap. 16 and Ref. 11.

To obtain a distinct peak in the cepstrum, a reasonable number of the members
of the corresponding harmonic or sideband family must be present (although the
fundamental may be absent). These uniformly spaced components must be ade-
quately resolved in the spectrum. As a guide, the spacing of components to be
detected should be a minimum of eight lines in the original spectrum. For this rea-
son, it is often advantageous to perform a cepstrum analysis on a spectrum obtained
by zoom FFT. In this case it is desirable to use a slightly modified definition of the
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FIGURE 14.31 Effect of linear vs. logarithmic amplitude scale in power
spectrum. (A) Power spectrum on linear scale (lower curve) and logarith-
mic scale (upper curve). (B) Autocorrelation function (obtained from linear
representation). (C) Cepstrum (obtained from logarithmic representa-
tion)—➀, ➁, etc., are rahmonics corresponding to harmonic series in spec-
trum (4.85 milliseconds equivalent to 1/206 Hz). The harmonics result from
a fault in a bearing.
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cepstrum corresponding to the amplitude of the analytic signal.11 (See the next sec-
tion on Hilbert Transform Techniques.)

The complex cepstrum10,12 (referred to above) is defined as the inverse Fourier
transform of the complex logarithm of the complex spectrum. Despite its name, it is
a real-valued function of time, differing from the power cepstrum primarily in that it
uses phase as well as logarithmic amplitude information at each frequency in the
spectrum. It is thus reversible to a time function (from which the complex spectrum
is obtained by direct Fourier transformation).

Measured vibration signals generally represent a combination of source and
transmission path effects; for example, internal forces in a machine (the source
effect) act on a structure whose properties may be described by a frequency
response function between the point of application and the measurement point (the
transmission path effect). As shown in Refs. 10 and 12, the source and transmission
path effects are convolved in the time signals, multiplicative in the spectra, and addi-
tive in the logarithmic spectra and in the cepstra (both power cepstra and complex
cepstra). In the cepstra, they quite often separate into different regions, which in
principle allows a separation of source and transmission path effects in an externally
measured signal.13

Figure 14.32 shows an example of an internal cylinder pressure signal in a diesel
engine, derived from an externally measured vibration acceleration signal making
use of cepstrum techniques to generate the inverse filter.14
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FIGURE 14.32 Diesel engine cylinder pressure sig-
nal, derived from an externally measured vibration-
acceleration signal using cepstrum techniques. (From
R. H. Lyon and A. Ordubadi.14)

Reference 15 gives similar results for the tooth-mesh signal in a gearbox and also
shows that a frequency response function derived by windowing in the cepstrum of
an output signal compares favorably with a direct measurement (which requires
measurement of both an input and an output signal).

Hilbert Transform Techniques. The Hilbert transform is the relationship
between the real and imaginary parts of the Fourier transform of a one-sided sig-
nal.16 An example is a causal signal such as the impulse response of a vibratory sys-
tem (a causal signal is one whose value is zero for negative time). The real and
imaginary parts of the frequency response (the Fourier transform of the impulse
response) are related by the Hilbert transform; thus, only one part need be known—
the other can be calculated.
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Analogously, the time function obtained by an inverse Fourier transformation of
a one-sided spectrum (positive frequencies only) is complex, but the imaginary part
is the Hilbert transform of the real part. Such a complex time signal is known as an
analytic signal.

An analytic signal can be thought of as a rotating vector (or phasor) described by
the formula A(t)e j φ(t) whose amplitude A(t) and rotational speed ω(t) = dφ(t)/dt, in gen-
eral, vary with time. Analytic signals are useful in vibration studies to describe modu-
lated signals. For example, a phase-coherent signal [Eq. (22.3)] can be represented as
the real part of an analytic signal, in which case the imaginary part can be obtained by
a Hilbert transform.Therefore, from a measured time signal,a(t), it is possible to obtain
the amplitude and phase (or frequency) modulation components from the relationship

A(t)e j φ(t) = a(t) + jã(t) (14.12)

where ã(t) is the Hilbert transform of a(t).
The Hilbert transform may be evaluated directly from the equation

ã(t) = �∞

−∞
a(τ) dτ (14.13)

but it can be more readily evaluated by a phase shift in the frequency domain, in par-
ticular in an FFT analyzer.16 An alternative way of generating analytic signals using
an FFT analyzer is by an inverse Fourier transformation of the equivalent one-sided
spectrum formed from the spectrum of the real part only. The time signals resulting
from the real-time zoom process (described above) automatically have the same
amplitude function A(t) as the equivalent bandpass-filtered analytic signal, since
they are obtained from the positive frequency components only (Fig. 14.16).The fre-
quency-shifting operation affects only the phase function e j φ(t).

The major applications of Hilbert transform techniques in vibration studies
involve either amplitude demodulation or phase demodulation.

Amplitude Demodulation. Figure 14.33 shows the analytic signal for the case
of single-frequency amplitude modulation of a higher-frequency carrier component.
The imaginary part is the Hilbert transform of the real part; this manifests itself as a
90° phase lag.The amplitude function is the envelope of both the real and imaginary
parts and represents the modulating signal plus a dc offset. The phase function is a
linear function of time (whose slope represents the speed of rotation, or frequency,
of the carrier component); it is, however, shown modulo 2π, as is conventional.

One area of application of amplitude demodulation where it is advantageous to
view the signal envelope rather than the time signal itself is in the interpretation of
such oscillating time functions as autocorrelation and crosscorrelation functions
(see Chap. 22). Figure 14.3418 shows a typical case where peaks indicating time
delays are difficult to identify in a crosscorrelation function as defined in Eq. (22.48),
because of the oscillating nature of the basic function (Fig. 14.34A). The peaks are
much more easily seen in the envelope or magnitude of the analytic signal (Fig.
14.34B). Another advantage of the analytic signal is that its magnitude can be dis-
played on a logarithmic axis; this allows low-level peaks to be detected and converts
exponential decays to straight lines.18

Another area of application of amplitude demodulation is in envelope analysis
(discussed in Chap. 13 in the section on Envelope Detectors). In particular, when the
signal is to be bandpass-filtered before forming the envelope, this can be done by
real-time zoom in the appropriate passband. Figure 14.35 shows an example from
the same vibration source as was analyzed in Fig. 14.31. Figure 14.35A shows a typi-
cal envelope signal obtained from zooming in a 1600-Hz band centered at 3 kHz.

1
�
t − τ

1
�
π
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FIGURE 14.33 Analytic signal for simple amplitude modulation. (A) Analytic signal a(t) +
jã(t) = A(t)ejφ(t). (B) Real part a(t). (C) Imaginary part ã(t). (D) Amplitude A(t). (E) Phase φ(t).

FIGURE 14.34 Example of a crosscorrelation function expressed as follows:18 (A) The real part of an
analytic signal, i.e., the normal definition [Eq. (22.48)]. (B) The amplitude of the analytic signal. The
peaks corresponding to time delays are more easily seen in this representation. The signal was obtained
by bandpass filtering (using FFT zoom) in the frequency range from 512 to 13,312 Hz.
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The spectrum of Fig. 14.31A shows that this frequency range is dominated by the
harmonic family which results from a fault in a bearing. Consequently, the corre-
sponding envelope signal (Fig. 14.35A) indicates a series of bursts with the same
period, 4.85 milliseconds (compare with the cepstrum of Fig. 14.31C). Figure 14.35B
shows the average spectrum of a number of such envelope signals; this gives a fur-
ther indication that the dominant periodicity is 206 Hz.

Phase Demodulation. For a purely phase-modulated signal, the amplitude
function A(t) is constant and the phase function φ(t) is given by the sum of a carrier
component of constant frequency fc and the modulation signal φm(t). Thus

φ(t) = 2πfct + φm(t) (14.14)
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FIGURE 14.35 Envelope analysis using Hilbert transform techniques. (A) Typical
envelope signal showing bursts with a period of 4.85 milliseconds from a fault in a ball
bearing. (B) Average spectrum of the envelope signal showing corresponding harmonics
of 206 Hz. Signal obtained by bandpass filtering (using FFT zoom) in the frequency range
from 2200 to 3800 Hz (compare with Fig. 14.31A, which shows a baseband analysis of this
same signal).
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Real-time zoom analysis centered on frequency f0 subtracts this frequency from all
components in the signal; consequently, by zooming at the carrier frequency fc, only
the modulation signal φm(t) remains. In general it is possible to zoom exactly at the
carrier frequency only when the latter is made to coincide exactly with an analysis
line (for example, by employing order tracking). Otherwise, the small difference in
frequency gives a residual slope to the phase signal.

Figure 14.36 shows an example of the application of this technique to the meas-
urement of gear transmission error.19 This can be obtained as the difference in tor-
sional vibration (i.e., phase modulation) of the two gears in mesh, after appropriate
compensation for the gear ratio (in this particular case the ratio is unity). The tor-
sional vibrations were measured by demodulating the output signals from optical
encoders attached to each shaft. The encoders give 16,000 pulses per revolution, but
this was divided down to 4000 for the results shown here (and for the zoom demod-
ulation technique even further decimation would be possible). The result obtained
by zoom demodulation, including digital tracking, was produced by an advanced
FFT analyzer, and is compared with a result obtained using a 100-MHz clock to time
the intervals between pulses and thus measure phase modulation somewhat more
directly. The two results are virtually identical, and are accurate to within a few arc-
seconds. Similar methods have been used to detect cracks in gears by amplitude and
phase demodulation of the tooth-meshing signal.20
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FIGURE 14.36 Gear dynamic transmission error measured using the zoom demodulation tech-
nique compared with direct measurement by timing the intervals between shaft encoder pulses.19

Measurements were made with two 32-tooth gears, although the method is not limited to unity-ratio
gears. Note the periodic repetition once per revolution of the gears (200 milliseconds) and the higher-
frequency component corresponding to tooth-meshing.
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CHAPTER 15
MEASUREMENT TECHNIQUES

Cyril M. Harris

INTRODUCTION

Earlier chapters describe equipment used in vibration measurements. For example,
detailed information concerning transducers, their characteristics, and how these
characteristics are influenced by environmental factors is given in Chap. 12.The var-
ious measurement system components and the characteristics which determine their
selection are described in Chaps. 13 and 14.The use of such measurement systems in
vibration problems may involve only one or two engineers as in monitoring the con-
dition of machinery in a factory (Chap. 16), in some problems in modal testing
(Chap. 21), in measurements in building structures (Chap. 24), in measuring tor-
sional vibration in reciprocating and rotating engines (Chap. 38), and in the balanc-
ing of rotating machinery (Chap. 39). In contrast, in the aerospace industry, some
measurement problems are so complex that teams of engineers and several divisions
of the company may be involved. Yet all these examples share certain basic meas-
urement procedures. It is these basic procedures (rather than measurement details,
which vary from problem to problem) that are considered here. Thus, this chapter
includes a general discussion of (1) planning measurements to achieve stated objec-
tives, (2) selecting the type of measurements which should be made to achieve these
objectives, (3) selecting transducers, (4) mounting transducers, (5) mounting cable
and wiring (including shielding and grounding), (6) selecting techniques for the field
calibration of the overall measurement system, (7) collecting and logging the data
obtained, and (8) conducting a measurement error analysis.

The best method of analyzing the vibration measurement data, once they have
been acquired, depends on a number of factors, including the quantity of data to be
processed, the objectives of the measurements, test criteria, specifications, and the
accuracy required. These factors are discussed in Chaps. 14, 20, 22, 23, 27, and 28.

MEASUREMENT PLANNING

Careful pretest planning (and, in the case of a complex measurement program,
detailed documentation) can save much time in making measurements and in ensur-
ing that the most useful information is obtained from the test data. In many cases, as

15.1
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in environmental testing, measurement procedures are contained in test specifica-
tions to ensure that a specification or legal requirement has been met. In other cases
(as in balancing rotating machinery), measurement procedures are outlined in detail
in national or international standards. In general, the first step in planning is to
define the purpose of the test and to define what is to be measured. Planning should
start with a clear definition of the test objectives, including the required accuracy
and reliability. The second step is to define those non-equipment-related factors
which influence the selection of measurement equipment and measurement tech-
niques.These include availability of trained personnel; cost considerations; length of
time available for measurements; scheduling considerations; and available tech-
niques for data analysis, validation, and presentation.

Next, the various factors listed in Table 15.1 should be considered. For example,
it is important to have some estimate of the characteristics of the motion to be meas-
ured—e.g., its frequency range, amplitude, dynamic range, duration, and principal
direction of motion. Such information is needed to provide the basis for the opti-
mum selection of measurement equipment. Yet often very little is known about the
characteristics of the motion to be measured. Previous experience may provide a
guide in estimating signal characteristics. Where this is not available, preliminary
measurements may be carried out to obtain information which serves as a guide for
further measurements. For example, suppose preliminary measurements show a fre-
quency spectrum having considerable content in the region of the lowest frequency
measured. This would indicate that the instrumentation capability should be
extended to a somewhat lower frequency in subsequent measurements.Thus an iter-
ative process often takes place in a shock and vibration measurement program. To
speed this process, it is helpful to employ equipment whose characteristics cover a
wide range and which has considerable flexibility. Failure to take this feedback
process into account can sometimes result in the acquisition of meaningless test
results. For example, a measurement program was carried out by one organization
over a period of many weeks.The objective was to correlate building vibration data,
measured in the organization’s own laboratories, with the acceptability of these lab-
oratories as sites for ultrasensitive galvanometers and other motion-sensitive equip-
ment. No correlation was found, and the entire measurement program was a waste
of time, for two reasons: (a) The measurements were made with equipment with a
frequency limit which was not sufficiently low, so that important spectral compo-
nents of building vibration could not be measured. (b) Measurements were made
only in the vertical direction, whereas it was the horizontal component which was
dominant and which made certain laboratory areas unacceptable for the location of
vibration-sensitive equipment.

Many of the various factors, listed in Table 15.1, which should be considered in
planning instrumentation for shock and vibration measurements are discussed in
earlier chapters and are cross-referenced, rather than repeated, here. For example,
Chap. 12 discusses the effects of environmental conditions on transducer character-
istics; Chap. 13 describes various components which follow the transducer in a meas-
urement system (such as preamplifiers, signal conditioners, filters, analyzers, and
recorders). Chapter 14 describes the selection of the appropriate analyzer band-
width, frequency scale, amplitude scale, selection of data windows, etc.

Before making measurements, it is usually important to establish a measurement
protocol—the more complex the measurements to be made, the more formal and
detailed the measurement protocol should be. It is also important to make an error
analysis, i.e., (a) to estimate the error introduced into the data acquisition and analy-
sis by each individual item of equipment, and (b) to determine the total error by cal-
culating the square root of the sum of the squares of the individual errors. For
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TABLE 15.1 Factors Which Are Important Considerations in the Selection of Measurement
Equipment and Measurement Techniques for Mechanical Shock and Vibration Measurements

Parameter to be measured

Acceleration Strain
Velocity Force
Displacement Mechanical impedance

Characteristics of motion to be measured

Frequency range Direction of motion
Amplitude range Transient characteristics
Phase Duration

Environmental conditions

Temperature (ambient and transient) Magnetic and radio-frequency fields
Humidity Corrosive and abrasive media
Ambient pressure Nuclear radiation
Acoustic noise Sustained acceleration

Transducer characteristics (see Chap. 12)

Electrical characteristics (sensitivity, resolution, cross-axis sensitivity, amplitude linearity,
dynamic range, frequency response, phase response, effects of environment on the transducer)

Physical characteristics (e.g., size and mass)
Self-generating or auxiliary power required
Electrically grounded to case, or isolated
Self-contained amplifier

Transducer mountings and locations of mountings

Effect of mounting on transducer characteristics
Effect of mounting on vibratory characteristics of item under test
Number of measurement locations
Space availability for measurement locations
Availability of well-regulated power, free of voltage spikes
Ease of installation
Possibility of mounting misalignment with respect to intended direction of measurement

System components (preamplifiers, signal conditioners, filters, analyzers) (see Chaps. 13 and 14)

Electrical characteristics (e.g., input and output impedances)
Power availability
Noise interference (shielding, avoidance of ground loops)
Number of channels required for measurement and recording: maximum duration of 

measurements, tape storage requirements
Possible requirement for real-time information

Method of data transmission

Coaxial cable
Twisted pair of wires
Telemetry (channels assigned)
Optical fiber

Recording equipment (see Chap. 13)

Recording-time capability
Electrical characteristics (e.g., signal-to-noise ratio)
Portability; power requirements
Correlation between recorded information and physical phenomena
Redundancy to minimize the risk of loss of vital information
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example, such an analysis may discover that an individual item of equipment is pri-
marily responsible for introducing a significant total error, suggesting that perhaps it
should be replaced. Furthermore, such a determination will indicate whether the total
error is within the bounds of acceptability, thereby avoiding useless measurements.

SELECTION OF THE PARAMETER 

TO BE MEASURED

Often, the selection of the parameter to be measured (displacement, velocity, accel-
eration, or strain) is predetermined by specifications or by standards. When this is
not the case, it is often helpful to apply the considerations given in Table 15.2 or to
apply the flattest spectrum rule described in Chap. 16.According to this rule, the best
motion parameter to use is the one whose spectrum is closest to being uniform (i.e.,
the one having the flattest spectrum). This is important for two reasons: If the spec-
trum is relatively flat, then (1) an increase at any frequency has a roughly even
chance of influencing overall vibration levels, and (2) minimum demands are placed
on the required dynamic range of the equipment which follows the transducer. For
example, Fig. 16.2 shows two spectra obtained under identical conditions—one a
velocity spectrum, the other a displacement spectrum. The spectrum obtained using
a velocity transducer is the more uniform of the two; therefore, velocity would be the
appropriate motion parameter to select.

SELECTING THE TRANSDUCER

In selecting the transducer best suited for a given measurement, the various factors
listed in Table 15.1 must be taken into consideration, particularly those under
Parameter to Be Measured, Characteristics of Motion to Be Measured, Environmen-
tal Conditions, and Transducer Characteristics. Each of these factors (as well as cost
and availability) influences the selection process. If consideration of different factors
leads to recommendations which are in opposition, then the relative importance of
each factor must be determined and a decision made on this basis. For example, con-
sider two factors which enter into the selection of a piezoelectric accelerometer, sen-
sitivity and mass. Sensitivity considerations would suggest that a transducer of large
size be selected since transducer sensitivity generally increases with size (and there-
fore with mass) for an accelerometer of this type. In contrast, mass considerations
would suggest that a transducer of small size be selected in order to minimize the
mass loading on the test item; a small size is advantageous since, as Eq. (12.13) indi-
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TABLE 15.1 Factors Which Are Important Considerations in the Selection of Measurement
Equipment and Measurement Techniques for Mechanical Shock and Vibration Measurements
(Continued)

Field calibration

Transducers
Over-all measurement system

Data analysis, presentation, and validation

Manual or automatic (Chap. 14); computer (Chaps. 22, 23, 27, and 28)
Type of presentation required
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cates, the natural frequency of a structure is lowered by the addition of mass. There-
fore in this case one should choose the most sensitive transducer (and therefore the
largest size) which produces no significant mass loading. In special cases, even the
smallest transducer may result in an unacceptable load. Then one of the devices
described in Chap. 12 which make no contact with the test surface may be selected.

Consider another example. Suppose a specification requires that vibration dis-
placement be measured. It is reasonable to assume that a displacement transducer
(such as the one described in Chap. 12) should be chosen since (depending on the
frequency spectrum) such a selection could yield the highest signal-to-noise ratio.
On the other hand, in many measurement problems it is more convenient and
equally satisfactory to select an accelerometer having a wide dynamic range and to
employ an electric circuit which obtains displacement by double integration of the
signal from the transducer’s output.

TRANSDUCER MOUNTINGS

Various methods of mounting a transducer on a test surface include (1) screwing the
transducer to the test surface by means of a threaded stud, (2) cementing the trans-
ducer to the test surface, (3) mounting the transducer on the test surface by means

MEASUREMENT TECHNIQUES 15.5

TABLE 15.2 A Guide for the Selection of the Parameter to Be Measured

Acceleration measurements

Used at high frequencies where acceleration measurements provide the highest signal outputs
Used where forces, loads, and stresses must be analyzed—where force is proportional to

acceleration (which is not always the case)
Used where a transducer of small size and small mass is required, since accelerometers 

usually are somewhat smaller than velocity or displacement pickups

Velocity measurements

Used where vibration measurements are to be correlated with acoustic measurements since
sound pressure is proportional to the velocity of the vibrating surface

Used at intermediate frequencies where displacement measurements yield transducer 
outputs which may be too small to measure conveniently

Used extensively in measurements on machinery where the velocity spectrum usually is more
uniform than either the displacement or acceleration spectra

Used where vibration measurements on resonant structures are to be correlated with modal 
stress, since modal stress is proportional to modal velocity at resonance frequencies

Displacement measurements

Used where amplitude of displacement is particularly important—e.g., where vibrating parts 
must not touch or where displacement beyond a given value results in equipment damage

Used where the magnitude of the displacement may be an indication of stresses to be analyzed
Used at low frequencies, where the output of accelerometers or velocity pickups may be too 

small for useful measurement
Used to measure relative motion between rotating bodies and structure of a machine

Strain measurements

Used where a portion of the specimen being tested undergoes an appreciable variation in 
strain caused by vibration—usually limited to low frequencies
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of a layer of wax, (4) attaching the transducer to a ferromagnetic surface by means
of a permanent magnet, (5) mounting the transducer on a bracket which, in turn, is
mounted on the test surface, and (6) holding the transducer against the test surface
by hand. Several of these mounting techniques are illustrated in Fig. 15.1, and their
frequency response characteristics are shown in Fig. 15.2. Two types of mechanical
brackets are illustrated in Fig. 15.3.

The method of mounting affects the resonance frequency and, hence, the useful fre-
quency range of the transducer.Therefore it is important to ensure that the frequency
response is adequate before measurements are taken. Each of the above methods of
mounting has its advantages and disadvantages. The appropriate choice for a given
measurement problem depends on a number of factors, including the following:

Effect of the mounting on the useful frequency range of the transducer
Effect of mass loading of the transducer mounting on the test surface
Maximum level of vibration the mounting can withstand
Maximum operating temperature
Measurement accuracy
Repeatability of measurements (Can the transducer be remounted at exactly the
same position with the same orientation?)
Stability of the mounting with time
Requirement that the test surface not be damaged by screw holes
Requirement for electrical insulation of the transducer
Time required for preparation of test surface
Time required to prepare mounting
Time required to remove mounting
Difficulty in cleaning the transducer after removal from test surface
Difficulty in cleaning test surface after transducer removed
Skill required to prepare mounting
Cost of mounting
Environmental problems (dirt, dust, oil, moisture)

For example, the above “requirement for electrical insulation of the transducer”
would be a major consideration in the selection of a method of mounting if the insu-
lation so obtained would result in the breaking of a ground loop, as explained in a
following section.

Stud Mounting. Figure 15.1A illustrates a typical stud-mounted transducer; the
transducer is fixed to the test surface by means of a threaded metal screw. One
method of insulating the stud-mounted transducer from the test surface is shown in
Fig. 15.1B. The metal stud is replaced with one which is fabricated of insulating
material, and a mica washer is inserted between the transducer and the test surface.
Other manufacturers employ a threaded, insulated stud with a flange made of the
same material; the flange, midway along the length of the stud, serves as the base for
the accelerometer. The entire base of the transducer should be in intimate contact
with the test surface.The mounting stud must be of the correct length, incorporating
a flange to prevent “bottoming” of the stud which may result in strain-induced
errors.
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FIGURE 15.1 Various methods of mounting a transducer on a test surface: (A) Stud mounting; transducer
screws directly to the surface by a threaded stud. (B) Same as (A) but with a transducer insulated from test sur-
face by use of stud fabricated of insulating material and by a mica washer between the surface and transducer.
(C) Cement mounting of a transducer; the cement bonds the transducer directly to the surface. (D) Similar to
(C), but here cement bonds the surface to a cementing stud screwed into the transducer. (E) Transducer
mounted to surface by means of double-sided adhesive tape or disc. (F ) Transducer mounted to surface by
means of a magnet. (Courtesy of Brüel & Kjaer.)
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FIGURE 15.2 Frequency-response curves for the same piezoelectric accelerometer mounted by the different
methods illustrated in Fig. 15.1: (A) stud mounting; (B) cement mounting; (C) double-sided adhesive mounting;
(D) magnetic mounting. (Courtesy of Brüel & Kjaer.)
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Where stud mounting is practical, it is the best type to use for the following reasons:

1. It provides the highest resonance frequency (up to 100 kHz) of any of the mount-
ing techniques and, therefore, the widest possible measurement frequency range
(up to 50 kHz).

2. It permits measurements at very high vibration levels without the loosening of
the transducer from the test surface.

3. It does not reduce the maximum permissible operating temperature at which
measurements can be made.

4. It permits accurate and reproducible results since the measurement position can
always be duplicated.

In preparing a stud mounting, the test
surface must be drilled and tapped.
A standard 10-32 thread is widely
used. (Also see International Standards
Organisation Standard ISO 1101.) Dis-
tortion of the transducer as mounted
may produce strains that affect the
transducer’s response. Therefore, it is
important (1) to ensure that the test sur-
face is very flat (which can be done by
grinding or lapping), (2) to prevent the
mounting stud from bottoming in the
transducer case—this can lead to strain,

and (3) to screw the stud into the hole in the test surface, and then the accelerome-
ter onto the stud using a torque wrench to ensure repeatability in installation of the
transducers and to prevent thread damage; use the torque recommended by the
transducer’s manufacturer. The application of a silicone grease (such as Dow-
Corning DC-4) or a light machine oil between the transducer and the test surface
usually provides better response at high frequencies—say, above 2000 Hz.The upper
temperature limit for the stud mounting of Fig. 15.1A is limited only by the
accelerometer, but with the mica washer insert shown in Fig. 15.1B, the upper limit
may be as low as 480°F (250°C).

Figure 15.2A shows response curves for a stud-mounted accelerometer for the
following conditions: ➀ spanner tight, which has the highest resonance frequency, ➁
finger tight, ➂ mounted with a mica washer to provide electrical insulation between
the transducer and the vibrating surface, and ➃ mounted on a somewhat thinner
mica washer—which results in a higher resonance frequency than for ➂.

Cement Mountings. A cement is a substance that bonds two surfaces together
when the cement hardens; it acts as an adhesive.Where it is not possible to use a stud
mounting, a transducer can be bonded to a clean test surface by means of a thin layer
of cement (for example, a cyanoacrylate, dental cement, or epoxy cement), as shown
in Fig. 15.1C. If the test surface is not flat and a miniature accelerometer is used, it
is not difficult to build up a layer of dental cement around the accelerometer so as
to provide firm attachment for the accelerometer. In mounting the transducer, it
should be pressed firmly against the flat, smooth surface to ensure that the adhe-
sive layer is thin; excess adhesive around the perimeter should then be removed
immediately.

The cement method of mounting a transducer provides excellent frequency
response, as shown in Fig. 15.2B for three conditions: ➀ accelerometer cemented
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FIGURE 15.3 Two types of mounting brack-
ets. In this example, a velocity-type transducer is
shown; the arrows indicate the direction of
sensed motion.
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directly to test surface, ➁ accelerometer cemented with a “soft” adhesive (not rec-
ommended), and ➂ accelerometer with a cementing stud which is cemented to the
surface with a hard cement.

This type of mounting may be used at high levels of vibration if the cementing
surfaces are carefully prepared, following the manufacturer’s instructions. Cement
mounting may or may not provide electrical insulation; if insulation is required, the
electrical resistance between the transducer and the test surface should be checked
with an ohmmeter.The maximum temperature at which measurements can be made
is limited by the physical characteristics of the cement employed—usually about
176°F (80°C), although some cements such as 3M Cyanolite 303 have an upper limit
as high as 390°F (200°C). At room temperature, it has the best coupling characteris-
tics over a wide frequency range. This type of mounting has good stability with time.
Where a transducer has been attached to a surface by the use of a cement, exercise
considerable caution in removing the transducer from the surface to avoid damag-
ing it; application of a solvent to soften the cement is strongly recommended.

Methyl cyanoacrylate cements [such as Eastman Kodak 910 (no longer available
from Eastman, but obtainable as a somewhat similar generic substitute, often with
poorer characteristics), 3M Cyanolite 101, and Permabond 747] dry much more rap-
idly than epoxy cements and therefore require less time to mount a transducer.They
may be removed easily and the surface cleaned with a solvent such as acetone.
Removal of epoxy from the test surface and from the transducer may be time-
consuming. In fact, the epoxy bond may be so good that the transducer can be dam-
aged in removing it from the test surface. When encased in epoxy, an accelerometer
may be subject to considerable strain, which will significantly alter its characteristics.
On the other hand, unless the cemented surfaces are very smooth, an epoxy can pro-
vide a superior bond since it will fill in a rough surface far better than a cyanoacry-
late cement. With either bonding agent, the surfaces must be very clean before
application of the cement. This mounting technique is not recommended for condi-
tions of prolonged high humidity or for pyroshock measurements.

Commercial adhesives are obtainable for use in very hot or in very cold environ-
ments. For cryogenic applications, a two-component epoxy resin, room-temperature-
cured, is available that is effective down to −200ºC and is able to withstand cryogenic
thermal shock without cracking. For use at very high temperatures (up to 700ºC)
ceramic-based adhesives are available that are effective, but require so high a curing
temperature that their use is usually restricted to high-temperature applications.
Several epoxy resins are commercially available that are cured at room temperature
and can operate at temperatures as high as 260ºC.2

Wax Mounting. Beeswax or a petroleum-based petrowax may be used to attach
a transducer to a flat test surface. If the bonding layer is thin (say, no greater than 0.2
mm), it is possible to obtain a resonance frequency almost as high as that for the stud
mounting, but if the test surface is not smooth, a thicker wax layer is required and
the resonance frequency will be reduced. If the mating surfaces are very clean and
free from moisture, the transducer can be mounted fairly easily, although some prac-
tice may be required. The transducer can be removed rapidly with a naphtha-type
solvent. Disadvantages include the possibility of disattachment of the transducer at
high vibration levels, a temperature limitation because of the relatively low melting
point of wax, and poor long-time stability of the mounting. The maximum tempera-
ture at which measurements can be made with this mounting technique is usually
about 100°F (40°C).

Adhesive-Tape Mounting. An adhesive is a substance used to bond two surfaces
together. The adhesive is usually applied to a tape or disc. In such application, this
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term is often used as a synonym for the word “cement.” An adhesive film may be
used to mount a small transducer on a flat, clean test surface—usually by means of a
double-sided adhesive tape. Double-sided adhesive discs are supplied by some
transducer manufacturers.This mounting technique, illustrated in Fig. 15.1E, is rapid
and easy to apply. Furthermore, such a mounting has the advantage of providing
electrical insulation between the transducer and the test surface, and it does not
require the drilling of a hole in the test surface; it is particularly applicable for use
with a transducer having no tapped hole in its base. Such adhesives can provide
secure attachment over a limited temperature range, usually below 200°F (95°C). In
preparing an adhesive mounting, it is important to clean both the accelerometer and
the test surface so that the adhesive will adhere firmly. When this is done, the fre-
quency response can be fairly good, as illustrated in Fig. 15.2C, but not as good as
with a wax mounting.

Another method of mounting is to use a cementing stud which is threaded into
the transducer; the flat side of the stud is then cemented to the test surface as shown
in Fig. 15.1D. This is a useful technique where repeated measurements at the same
point are required. The transducer may be removed for measurements elsewhere,
but the cementing stud is left in place. This provides assurance that future measure-
ments will be made at precisely the same point.

Magnetic Mounting. With magnetic mounting, illustrated in Fig. 15.1F, a perma-
nent magnet attaches the transducer to the test surface, which must be ferromag-
netic, flat, free from dirt particles, and reasonably smooth. Magnetic mounting is
useful in measuring low acceleration levels. The transducer can be attached to the
test surface easily and moved quickly from one measurement point to another. For
example, in a condition-monitoring system (described in Chap. 16) it can be used to
determine a suitable measurement location for a transducer to be mounted per-
manently on a large rotating machine. In a heavy machine of this type, the added
mass of the magnet is not important, but in other problems, the additional mass
loading on the test surface may make the use of magnetic mounting unacceptable.
Furthermore, if the acceleration levels are sufficiently high, as in impact testing, the
magnet may become loosened momentarily. This can result in an inaccurate read-
ing and possibly a slight change in the position of the transducer, which would also
change the reading. The frequency response for this type of mounting is fair, as
shown in Fig. 15.2D, but not as good as with the wax mounting. The magnet, often
available from the transducer’s manufacturer, usually is attached to the transducer
by means of (1) a projecting screw on the magnet, which is threaded into the base
of the transducer, or (2) a machine screw, one end of which is threaded into the
transducer and the other end into the magnet. Application of a light machine oil or
silicone grease usually improves the frequency response above about 2,000 Hz.The
maximum temperature at which measurements can be made with this mounting
technique is usually about 300°F (150°C). In attaching a magnetically mounted
transducer to a test surface, the magnetic force that pulls the assembly toward the
surface may sometimes be sufficiently high to result in a high level of mechanical
shock at the time of contact, causing damage to the sensing elements or its internal
electronics.

Mounting Blocks or Brackets. Physical conditions may make it impractical to
mount a transducer by any of the above methods. In such cases, a mounting bracket
or block that has been especially prepared for use on the test surface may be
employed. For example, if the structural surface is rounded, a solid mounting block
can be fabricated which is rounded to this same contour on one side and flat on the
other side for mounting the transducer. A mounting block also may be useful where
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the surface is subject to structural bending; in this case, two accelerometers selected
to have the same characteristics may be attached to the mounting block to measure
bending-induced rotation. The effect of the mass of the mounting block is consid-
ered in Eq. (15.1).Two types of mounting brackets are illustrated in Fig. 15.3. Instead
of using a triaxial accelerometer, sometimes it is more convenient to mount three
transducers on a single block having sensitivities in three orthogonal directions.Any
such mounting must couple the transducer to the test surface so that the transducer
accurately follows the motion of the surface to which it is attached.This requires that
the effective stiffness of the transducer mounting be high so that the mounting does
not deflect under the inertial load of the transducer mass. This is not a problem in
many transducer installations.

Mounting brackets may have resonance frequencies which are below 2,000 Hz
and have little damping. Under such conditions, their use may result in significant
measurement error as a result of resonant amplification or because of attenuation of
vibration in the mounting. This is illustrated in Fig. 15.4, which shows the frequency
response of a transducer mounted on brackets which are identical in geometry but
which are fabricated from different materials. Note that a change in material from
(A) steel to (B) a phenolic plastic halves the resonance frequency of the mounting.
A change in the method of attachment, from (B) screw mounting to (C) an epoxy
resin adhesive bond, significantly increases the frequency of the mounting reso-
nance.Although these results are not of a general nature, they show that such minor
variations in the transducer mounting may produce significant changes in the output
characteristics of the transducer. It is good practice to calibrate an accelerometer in
combination with its mounting block.

Hand-held Transducer. A transducer which is held against the test surface by
hand provides the poorest performance of any of the techniques described here, but
it sometimes can be useful in making a rapid survey of a test surface because the
measurement location can be changed more rapidly than with any other method of
mounting. Usually, a rod (called a probe), which is threaded at one end, is screwed
into the transducer; the other end has a tip that is pressed against the test surface.
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FIGURE 15.4 Relative frequency response of a
velocity transducer mounted on three brackets which
have identical geometry but are fabricated of differ-
ent materials: (A) steel bracket, screw mounted, (B)
cloth-reinforced phenolic plastic bracket, screw
mounted, and (C) same as (B) but attached with
epoxy resin adhesive.
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The frequency response is highly restricted—about 20 to 1,000 Hz; furthermore this
technique should not be employed for accelerations greater than 1g.Thus, this tech-
nique is used when measurement accuracy is not essential, e.g., in finding the nodal
points on a vibrating surface.

Mass-Loading. The effect of the mounting on the accuracy of measurement can
be estimated roughly if it is assumed that the combination of the transducer (having
a mass m) and the mounting (having a stiffness k) behaves as a simple spring-mass
system driven at the spring end of the system. Then the acceleration of the trans-
ducer ẍ is given by

ẍ = ü (15.1)

where ü is the acceleration of the test item, and f is its frequency of vibration. If the
acceleration of the transducer is to be within 10 percent of the acceleration of 
the test item, then from Eq. (15.1), k must have a value at least 10 times greater than
the term m(2πf )2. Since the undamped natural frequency fn of the transducer-
mounting system is given by fn = 1⁄2π(k/m)1/2, the value of the natural frequency of the
system must be at least 10 times the frequency of vibration of the test item—espe-
cially for the measurement of transients.

Alternatively, the unloaded dynamic environment at the mounting point can be
calculated from the measured dynamic environment using the mechanical imped-
ance ratio given by Eq. (3.4) of Ref. 2.

FIELD CALIBRATION TECHNIQUES

TRANSDUCERS

Various methods of calibrating transducers are described in Chap. 18. If a transducer
is to be used under unusual temperature conditions, it is important to perform the
calibration in the temperature range in which it will operate. Of these, the following
are particularly convenient for use in the field.

Comparison Method. This is a rapid and convenient method of obtaining the
sensitivity of a transducer. It is one of the most commonly used calibration tech-
niques. Calibration is obtained by a direct comparison of the output generated when
the transducer is attached to a vibration exciter with the output generated by a sec-
ondary standard transducer which is attached to the same vibration exciter and
which is subject to precisely the same motion. The two transducers are mounted
back to back, as illustrated in Fig. 18.3. Calibration by this method is limited to the
frequency and amplitude ranges for which the secondary standard has been cali-
brated and for which the vibration exciter has adequate rectilinear motion. The sec-
ondary standard accelerometer should be calibrated against a National Institute of
Standards and Technology (NIST) traceable reference, at least once a year, in com-
pliance with MIL-STD-45662A.

Free-fall Calibration Method. The gravimetric free-fall calibration method
(sometimes called a drop test) is a simple and rapid method of calibrating motion
and force sensors.The transducer under test is allowed to fall freely for an instant of

k
��
k + m(2πf )2
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time under the influence of gravity; the peak signal then is measured for an acceler-
ation of gravity having a value of 1g. This technique is illustrated in Fig. 18.5.

Earth’s Gravitational Field Method. In the following technique (sometimes
called the “inversion method” of calibration), the sensitive axis of the transducer is
first aligned vertically in one direction of the earth’s gravitational field, as shown in
Fig. 15.5A. Then it is inverted so that its sensitive axis is aligned in the opposite direc-
tion, as shown in Fig. 15.5B. The transducer output is observed for a 2g change in
acceleration, as shown in Fig. 15.5C. This method is limited in application to
accelerometers having sensitivity down to 0 Hz; it is not recommended for calibra-
tion of accelerometers having significant transverse sensitivity.
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FIGURE 15.5 Gravitational field method (inversion test) for cal-
ibrating an accelerometer having useful sensitivity down to 0 Hz.
Inversion of the accelerometer, initially aligned in one direction, as
in (A), to the opposite direction, as in (B), produces a change in
acceleration of 2g. The transducer output for this change is meas-
ured in (C). (Courtesy of Quixote Measurement Dynamics, Inc.)

OVERALL SYSTEM

Calibration of a complete vibration measurement system usually is referred to as
overall calibration or end-to-end calibration. It is good practice to perform such a cal-
ibration at periodic intervals—particularly both before and after an extensive series
of measurements. In such a calibration, the amplitude characteristics, phase charac-
teristics, and linearity of the overall system are determined when the transducer is
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subject to a known acceleration, velocity, or displacement, for example, by means of
a field calibrator.

Field Calibrator. This is a portable device on which a transducer can be mounted
and subjected to a known acceleration, velocity, or displacement at a fixed fre-
quency. Such an instrument (essentially a small, portable, battery-powered shaker)
provides a convenient means for calibrating a transducer in the field and/or cali-
brating the overall vibration measurement system. For example, the hand-held
device shown in Fig. 15.6 can be used to calibrate a transducer weighing up to 85
grams at a frequency of 79.6 Hz. This device is furnished with an internal oscillator
and a stable, built-in reference accelerometer in a feedback loop controlling the
electrodynamic exciter; the exciter subjects the transducer under test to a constant
rms acceleration amplitude of 1g.
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FIGURE 15.6 A hand-held vibration calibrator especially designed for
field application. (Courtesy PCB Piezotronics, Inc.)

Combining Characteristics of Individual Components. When it is not possible
to subject the transducer to a known acceleration, velocity, or displacement, the
overall characteristics sometimes are determined by combining the characteristics
of the individual components of the system, as described below, or the system is cal-
ibrated employing a simulated transducer output [see Voltage Substitution Method
of Calibration below, and Calibration of Auxiliary Circuits (Chap. 18)].

There may be a significant electrical signal at the output of a measurement sys-
tem though no signal is supplied by the transducer to the input; such electrical sig-
nals, which represent noise, (1) may result from a coupling between circuits in the
measurement system with power circuits, (2) may be generated by vibration-
sensitive elements (such as cable) other than the transducer, or (3) may be the result
of improper selection of system components, or the improper setting of one or more
of these components, so that the signal-to-noise ratio that the overall system is capa-
ble of attaining is not achieved.

Where a single component of a measurement system is the source of noise, it can
sometimes be located by using an oscilloscope which is first connected to the trans-
ducer output with no vibration applied. Then the oscilloscope connection is moved,
component by component, through the measurement system until the noise is
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observed. Another approach is to short-circuit the signal path at various points in
the system (where this is practical), one at a time, until the system electrical noise
disappears. Usually this pinpoints the source as the component next nearest the
transducer from the last short circuit.

Spurious mechanical sources and acoustic noise sources must be eliminated or
controlled if they result in noise in the measurement system. Spurious resonances in
the response of the overall system may result from improper seating of the trans-
ducer on the test surface or from resonances in the transducer mounting. It is often
very useful to excite the transducer-mounting system by giving it a blow and then to
observe the transducer’s output—look for resonances other than the resonance fre-
quency of the transducer.The other resonance frequencies which appear may be due
to (1) resonances in the test specimen or (2) resonances in the transducer mounting.
Loose mountings usually produce “noisy” signals and may produce audible buzzing
sounds. Often it is difficult to determine the difference between resonances in the
mounting and resonances in the item under test. If serious doubt exists, the test
should be repeated with a different mounting or a different measurement location
for the transducer. If the resonance frequencies are identical for the new mounting,
the resonances are probably due to the test specimen, and the original mounting
probably was satisfactory.

Combining Calibration Characteristics of a Measurement System’s Compo-
nents. An overall system can be calibrated by combining the measured electrical
characteristics of all components in the measurement system from one end to the
other. Obtaining a system calibration in this way circumvents the difficulties of pre-
cise field calibration, but it requires that each element in the system be calibrated in
the laboratory with extreme care and that the effects of the source and load imped-
ances be completely accounted for. Thus, a system calibration is subject to the sum
of the experimental errors introduced by the calibration of each element, in addition
to any errors resulting from improper simulation of, or accounting for, loading
effects. In general, the calibration of each element is performed before the 
system is assembled, and so this method is subject to error resulting from (1) unde-
tected damage to components between calibration and use and/or (2) improper con-
nections, misidentifications, or confusion in polarity.

Voltage Substitution Method of Calibration. A suitable simulated transducer
for use in field checkout must duplicate the electrical outputs of the actual trans-
ducer for the various vibration conditions to be simulated.The simulated transducer
must either (1) reproduce the electrical voltage- or current-generating characteris-
tics of the actual transducer and have the same output impedance or (2) duplicate
the electrical quantity generated by the actual transducer when connected to its
load. Failure to meet these conditions will result in a different loading of the actual
and simulated transducers and will probably cause calibration errors. It is important
that the simulated transducer have the same electrical grounding configuration as
the actual transducer; otherwise, electric-circuit noise and cross talk* will not be rep-
resented accurately when the simulated transducer is in use.

Typical examples of circuits which simulate transducers are shown in Fig. 15.7.
The simulated transducer introduces an electrical signal into the measurement sys-
tem, thereby simulating the response of the actual transducer.

15.16 CHAPTER FIFTEEN

*Cross talk is the output of one measurement channel when a signal is applied to another measurement
channel. Cross talk can be distinguished from other electrical disturbances because it is a function of the
applied signal in the other measurement channel and disappears when this applied signal is removed.
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FIGURE 15.7 Electrical schematic diagrams of some common types of transducers and typical circuits used to
simulate them during field calibration.Terminals labeled A and B are the signal lead connections to which either
the transducer or the simulated transducer is connected.
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CABLE AND WIRING CONSIDERATIONS

The method of data transmission between a transducer and the electronic instru-
mentation which follows it depends on the complexity of the problem. In general,
cable is used for most problems, but the aerospace industry often relies on telemetry
for data transmission. Many types of cable are available. The choice of a suitable
cable depends primarily on the particular application, the transducer, the cable
length, whether the transducer is followed by a voltage amplifier or charge amplifier,
and environmental conditions. For example, cable jackets may be made of silicone
rubber having a useful temperature range from −100 to 500°F (−73 to 260°C), of
polyvinylchloride having a useful range from −65 to 175°F (−54 to 79°C), or of fused
Teflon having a useful range from −450 to 500°F (−268 to 260°C). Special-purpose
cables are available that can be used at much higher temperatures. In general, cable
should be as light and flexible as possible—consistent with other requirements. The
effect of the shunt capacitance of the cable following the transducer on the sensitiv-
ity of the transducer depends on the type of amplifier connected to the cable. If a
voltage amplifier is used, there is a reduction in sensitivity of the transducer, given
by Eq. (12.17). In contrast, when a charge amplifier is used, the effect of the shunt
capacitance of the cable in reducing the sensitivity of the transducer is negligible, as
shown in Eq. (13.2) (although the noise pickup in the high-impedance circuit
increases with cable length).

In the audio-frequency range, the series inductance L and the shunt leakage G
of short, good-quality cables are negligibly small in comparison with other param-
eters and may be neglected. Figure 15.8A shows the equivalent low-frequency
representation of a cable with distributed constants. For most purposes the simpler
lumped-constant configuration of Fig. 15.8B is a sufficiently accurate representa-
tion. The quantities Rc and Cc are the total resistance of the conductors and the
total capacitance between them, respectively. Values for a typical coaxial cable
having a Teflon dielectric are Rc = 0.01 ohm/ft (0.03 ohm/m) and Cc = 29 pF/ft
(88 pF/m).

The normal characteristic impedance of about 50 ohms for such cable has no sig-
nificance in most measurement problems, where cables usually are relatively short.
The open-circuit input impedance of the cable is almost exclusively capacitative.
When terminated, it takes on the impedance of the load, modified by the series and
shunt parameters.

In general, cables should be treated with the same care given transducers in
shock and vibration measurement systems. The following are based on recommen-
dations given in Ref. 1; they represent good engineering practice.
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FIGURE 15.8 Successive approximations in the representation of a short, high-
quality transmission line at audio frequencies. (A) Distributed constant configuration
neglecting series inductance and shunt leakage. (B) Lumped-constant configuration.
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1. Attach a coaxial cable to a transducer by turning the connector nut onto the
threads of the transducer (not vice versa) to avoid damage to the pins.

2. Avoid cable whip by tying down the cable at a point near the transducer and at
regular intervals to avoid induced cable noise.

3. Screw the cable connection to the tightness specified by the manufacturer.
4. Loop the cable near the connector in a high-humidity environment, to allow con-

densation to drip off before reaching the connector.
5. Clean the cable connector before use (e.g., acetone or chlorothene) to remove

contamination as a result of handling; the contamination can create a low imped-
ance between the signal path and ground.

6. Check electrical continuity of cable conductors and shield if intermittent signals
are observed. Then, flex the cable—especially near the connector—and observe
if the signal is affected by flexing.

7. Select cables that are light and flexible enough to avoid loading the transducer
and/or the structure under test, or exerting a force on the transducer.

8. Avoid twisting the cable when it is connected to the transducer.
9. Move the cable back and forth to determine if such movement generates unac-

ceptable electrical noise; if so, tie the cable more securely or replace the cable.

CABLE NOISE GENERATION

When two dissimilar substances are rubbed together, they become oppositely
charged—a phenomenon known as triboelectricity, illustrated in Fig. 15.9. Thus a
charge may be generated when a cable is flexed, bent, struck, squeezed, or otherwise

distorted, for then such friction takes
place between the dielectric and the
outer shield or between the dielectric
and the center conductor.3 A charge is
generated across the cable capacitance
so that a voltage appears across the ter-
mination of the cable.

Another mechanism by which noise
may be induced in the cable results from
the change in capacitance of the cable
when it is flexed. If the transducer pro-
duces a charge across the cable, the
change in capacitance results in a volt-

age change across the output of the cable, appearing as noise at the input of a volt-
age amplifier; it will not produce a similar change if a charge amplifier is used.

Suppose the dielectric surfaces within the cable are coated so that an electrical
leakage path is provided along the dielectric surface. Then if the cable shield is sep-
arated from the outer surface of the dielectric, the charges flow along the surface to
the nearest point of contact of the dielectric and shield; without this leakage path,
the charges would flow to the terminating impedance, where they would give rise to
a noise signal. Such coatings are provided in low-noise cables which are available
commercially. Cables of this type are capable of withstanding considerable abuse
before becoming noisy. Usually they are tested by the manufacturer continuously
along their lengths to assure meeting the low-noise characteristics. It is important in
fitting such a cable with a connector, or in splicing such a cable, that no conducting
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FIGURE 15.9 A section of cable during dis-
tortion, showing how separation of triboelectric
charge leads to the production of cable noise
across the termination resistance. (After T. T.
Perls.3)
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material be allowed to form a leakage path between the conductors. Carbon tetra-
chloride and xylene are satisfactory solvents and cleaning agents.

NOISE-SUPPRESSION TECHNIQUES

Under certain conditions of use and environment, spurious signals (noise) may be
induced in wiring and cables in a measurement system. Then there will be signals at
the termination of the system that were not present in the transducer output.

Electrical noise may be generated by motion of some parts of the wiring because
of variation in contact resistance in connectors, because of changes in geometry of
the wiring, or because of voltages induced by motion through, or changes in, the
electrostatic fields or magnetic fields which may be present. No cable should carry
wiring both for data transmission and for electrical power; all electrical power wiring
should be twisted pair. In general, such electrical noise will be reduced if the cable is
securely fastened to the structure at frequent intervals and if connectors are pro-
vided with mechanical locks and strain-relief loops in their cables. Precautions taken
to avoid interference usually include the use of shielding, cables which are only as
long as necessary, and proper grounding. Cable jackets must be selected that will not
deteriorate under the measurement environment. In addition, the use of a trans-
ducer containing an internal amplifier (described in Chap. 12) can provide advan-
tages in noise suppression.

Shielding. A change in the electric field or a change in the magnetic field around a
circuit or cable may induce a voltage within it and thus be a source of electrical noise.
Such electrical interference can be avoided by completely surrounding the circuit or
cable with a conductive surface which keeps the space within it free of external elec-
trostatic or magnetic fields.This is called shielding. Protection against changes in each
type of field is different.

Electrostatic Shields. Electrostatic shields provide a conducting surface for the
termination of electrostatic lines of flux. Stranded braid, mesh, and screens of good
electrical conductors such as copper or aluminum are good electrostatic shields.
Most shielded cables use copper braid as the outer conductor and electrostatic
shield. A good magnetic shield is also a good electrostatic shield, but the converse is
not true. For installations where cable lengths are especially long, where impedances
are high, or where noise interference is highly objectionable, double-shielded cable
is sometimes used. In this type of cable, a second shielding braid is woven over the
cable jacket, electrically insulating it from the inner shield; the inner braid furnishes
additional shielding against electrostatic fields which penetrate the first shield. The
shields should be connected to ground at one point only, as explained below under
Grounding; Avoiding Ground Loops.

Magnetic Shields. Magnetic shields are effective partly because of the short cir-
cuiting of magnetic lines of flux by low-reluctance paths and partly because of the
cancellation resulting from opposing fields set up by eddy currents. Accordingly,
they are made from high-permeability materials such as Permalloy, are as thick as
possible, and contain a minimum of joints, holes, etc.

Magnetic fields associated with current-carrying power lines, electronic equip-
ment, and power transformers are among the most troublesome sources of magnetic
interference in instrumentation setups—chiefly at the frequency of the power line
and its harmonics. Since these fields attenuate rapidly with distance from the source,
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the most practical solution for this type of interference usually is to keep the signal
cables as far from the power source as possible.

Grounding; Avoiding Ground Loops. A circuit is said to be grounded when
one terminal of the circuit is connected to the “earth.” Grounding removes the
potential difference between that side of the circuit and earth, and the variable
stray capacitances which tend to induce voltages in “floating” (i.e., ungrounded)
systems. Water pipes make good ground connections because of their intimate con-
tact with the earth.

Ground loops are formed when a common connection in a system is grounded
at more than one point, as illustrated in Fig. 15.10, where the cable shield is
grounded at both ends. Since it is unlikely that the two grounds will be at a common
potential, their potential difference, egnd, will be the source of circulating currents in

MEASUREMENT TECHNIQUES 15.21

FIGURE 15.11 (A) A ground loop formed when the “low” sides of both the
transducer and the amplifier are connected to their respective cases, which are
grounded. (B) The ground loop shown in (A) is broken by isolating the case of
the transducer from ground.

FIGURE 15.10 Ground loop in a system as a
result of grounding the cable shield at two points.
Then, the input signal e1 is modulated by the poten-
tial difference egnd which develops between these
two points.

the ground loop.Then a signal produced by the transducer will be modulated by the
potential egnd, thereby introducing noise in the measurement system. Such a condi-
tion may occur when one end of a cable is connected to one side of the electrical
output of a transducer that has been grounded to the transducer’s housing and the
other end of the cable is connected to a voltage amplifier or signal conditioner
which is also grounded (usually to the case of the instrument). Then, a ground loop
will be formed. Such a condition must be avoided by grounding the circuit at only
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one point. Thus the circuit shown in Fig. 15.11A will result in noise because of the
ground loop, but by insulating the transducer as shown in Fig. 15.11B the ground
loop has been broken.

DATA SHEETS FOR LOGGING TEST

INFORMATION

When data are acquired in the field, measurement conditions may be far from ideal;
environmental conditions may be unfavorable, and the time available for measure-
ments may be extremely limited.Therefore it is good practice to prepare data sheets
that are relatively simple and that require a minimum amount of writing; for exam-
ple, use multiple-choice entries. The data sheets should include sufficient informa-
tion so that someone else, at a later time, could duplicate the measurement setup on
the basis of information supplied by the data sheets. If there are any anomalies that
occur during the test, they should be duly noted. In general, the following informa-
tion should be included:

Basic data concerning the test measurements:

� Date, times, and duration of test.
� Identification of test by test number.
� Identification of equipment, machine, or device under test.
� Conditions of operation during the measurement.
� Any anomalies in operation and their times of occurrence.
� Location of test, using diagram where appropriate.
� Environmental conditions during test; note anomalies where appropriate.
� Persons participating in the test.

Equipment, including transducers, cables, signal conditions, data recorders, telemeter:

� Type.
� Manufacturer, model number, and serial number.
� Transducer sensitivity, exact location, orientation, and type of mounting.
� Signal conditioner and amplifier gain and attenuator settings; note any changes in

these settings during the test.
� Filter settings, if any.
� Recorder speed, number of tracks, tape speed, gain settings; note any changes in

these settings during the test.

Calibration information:

� Transducer calibration.
� Overall system (end-to-end) calibration of system.
� Phase of output signal relative to input signal.
� Any changes in calibration between pretest and posttest conditions.
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CHAPTER 16
CONDITION MONITORING

OF MACHINERY

Joëlle Courrech

Ronald L. Eshleman

INTRODUCTION

Condition monitoring of machinery is the measurement of various parameters
related to the mechanical condition of the machinery (such as vibration, bearing
temperature, oil pressure, oil debris, and performance), which makes it possible to
determine whether the machinery is in good or bad mechanical condition. If the
mechanical condition is bad, then condition monitoring makes it possible to deter-
mine the cause of the problem.1,2

Condition monitoring is used in conjunction with predictive maintenance, i.e.,
maintenance of machinery based on an indication that a problem is about to occur.
In many plants predictive maintenance is replacing run-to-breakdown maintenance
and preventive maintenance (in which mechanical parts are replaced periodically at
fixed time intervals regardless of the machinery’s mechanical condition). Predictive
maintenance of machinery:

� Avoids unexpected catastrophic breakdowns with expensive or dangerous conse-
quences.

� Reduces the number of overhauls on machines to a minimum, thereby reducing
maintenance costs.

� Eliminates unnecessary interventions with the consequent risk of introducing
faults on smoothly operating machines.

� Allows spare parts to be ordered in time and thus eliminates costly inventories.

� Reduces the intervention time, thereby minimizing production loss. Because the
fault to be repaired is known in advance, overhauls can be scheduled when most
convenient.

This chapter describes the use of vibration measurements for monitoring the
condition of machinery. Vibration is the parameter which can be used to predict

16.1
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the broadest range of faults in machinery most successfully. This description
includes:

� Selection of an appropriate type of monitoring system (permanent or periodic)

� Establishment of a condition monitoring program

� Fault detection

� Spectrum interpretation and fault diagnosis

� Special analysis techniques

� Trend analysis

� The use of computers in condition monitoring programs.

TYPES OF CONDITION MONITORING SYSTEMS

Condition monitoring systems are of two types: periodic and permanent. In a peri-
odic monitoring system (also called an off-line condition monitoring system),
machinery vibration is measured (or recorded and later analyzed) at selected time
intervals in the field; then an analysis is made either in the field or in the laboratory.
Advanced analysis techniques usually are required for fault diagnosis and trend
analysis. Intermittent monitoring provides information at a very early stage about
incipient failure and usually is used where (1) very early warning of faults is
required, (2) advanced diagnostics are required, (3) measurements must be made at
many locations on a machine, and (4) machines are complex.

In a permanent monitoring system (also called an on-line condition monitoring
system), machinery vibration is measured continuously at selected points of the
machine and is constantly compared with acceptable levels of vibration.The princi-
pal function of a permanent condition monitoring system is to protect one or more
machines by providing a warning that the machine is operating improperly and/or
to shut the machine down when a preset safety limit is exceeded, thereby avoiding
catastrophic failure and destruction. The measurement system may be permanent
(as in parallel acquisition systems where one transducer and one measurement
chain are used for each measurement point), or it may be quasi-permanent (as in
multiplexed systems where one transducer is used for each measurement point but
the rest of the measurement chain is shared between a few points with a multiplex-
ing interval of a few seconds).

In a permanent monitoring system, transducers are mounted permanently at
each selected measurement point. For this reason, such a system can be very costly,
so it is usually used only in critical applications where: (1) no personnel are available
to perform measurements (offshore, remote pumping stations, etc.), (2) it is neces-
sary to stop the machine before a breakdown occurs in order to avoid a catastrophic
accident, (3) an instantaneous fault may occur that requires machine shutdown, and
(4) the environment (explosive, toxic, or high-temperature) does not permit the
human involvement required by intermittent measurements.

Before a permanent monitoring system is selected, preliminary measurements
should be made periodically over a period of time to become acquainted with the
vibration characteristics of the machine. This procedure will make it possible to
select the most appropriate vibration measurement parameter, frequency range, and
normal alarm and trip levels.
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ESTABLISHING A CONDITION MONITORING

PROGRAM

A condition monitoring program may be established to check the satisfactory oper-
ation of a single machine or, more usually, it is established to check the operation of
a number of machines, perhaps all the machines in an entire plant. The following
steps are usually considered in the establishment of such a program, depending on
the type of machine and impact of failure of operation machines might have.

Step 1. Determine the type of condition monitoring system, described in the pre-
ceding section, that best meets the needs of the plant.

Step 2. Make a list of all of the machines to be monitored (see, for example, Table
16.1), based on the importance of these machines in the production line.

Step 3. Tabulate the characteristics of the machines that are important in conduct-
ing vibration analyses of the machines of step 2. These characteristics are associated
with machine construction such as the natural frequencies of shafts, casings, and
pedestals, and operational and defect responses. A tabulation of machine frequen-
cies is important because fault analysis is conducted (Table 16.2) by matching
machine frequencies to measured frequencies appearing in a spectrum. The follow-
ing machine characteristics provide the necessary information for fault analysis.

� Shaft rotational speeds, bearing defect frequencies, number of teeth in gears, num-
ber of vanes and blades in pumps and fans, number of motor poles, and number of
stator slots and rotor bars.

� Vibratory forces such as misalignment, mass unbalance, and reciprocating masses.
� Vibration responses due to process changes, such as temperature and pressure.
� Fault responses associated with specific machine types, such as motors, pumps, and

fans.
� Sensitivity to instability in components, such as fluid film bearings and seals due to

wear and clearance.
� Loads or changes in operating conditions.
� Effects of mass unbalance, misalignment, distortion, and other malfunction/defect

excitations on vibration response.

CONDITION MONITORING OF MACHINERY 16.3

TABLE 16.1 Machinery Classification for Monitoring

Machinery classification Result of failure

Critical Unexpected shutdown or failure causes significant
production loss.

Interrupts production Unexpected shutdown or failure causes minor
interruptions in production.

Causes inconvenience Inconvenience in operation, but no interruption
in production.

Noncritical Production is not affected by failure.
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Step 4. Select the most appropriate vibration measurement parameter. When an
accelerometer is employed as the sensing device in a condition monitoring system,
the resulting acceleration signal can be electronically integrated to obtain velocity or
displacement, so any one of these three parameters may be used in measurements.
The appropriate parameter may be selected by application of the following simple
rule: Use the parameter which provides the “flattest” spectrum. The flattest spectrum
requires the least dynamic range from the instrumentation which follows the trans-
ducer. For example, Fig. 16.1 shows a velocity spectrum and a displacement spectrum
obtained under identical conditions. The dynamic range (i.e., the range from the
highest to the lowest signal level) required to measure the displacement spectrum is
much larger than the range for the velocity spectrum; it may even exceed the avail-
able dynamic range of the instrumentation. Therefore, according to this rule, veloc-
ity measurements should be selected.

The flattest spectrum rule applies only to the frequency range of interest. There-
fore, the parameter selection, to some extent, depends on the type of machine and
the type of faults considered.

Step 5. Select one of the following vibration pickups that will best meet the require-
ments of step 4.

Displacement Transducer. A displacement transducer is a transducer that con-
verts an input mechanical displacement into an electrical output that is proportional
to the input displacement. Displacement transducer of the eddy-current type
(described in Chap. 12), which have noncontacting probes, are commonly used to
measure the relative motion between a shaft and its bearings. This information can
be related directly to physical values such as mechanical clearance or oil-film thick-
ness, e.g., it can give an indication of incipient rubbing. Shaft vibration provides
information about the current condition of a machine and is principally used in per-
manent monitoring systems, which immediately shut the machine down in the event
of trouble. The use of displacement transducers is essential in machinery having
journal bearings. However, proximity probe transducers (1) usually are difficult to
calibrate absolutely, (2) have limited dynamic range because of the influence of elec-
trical and mechanical runout on the shaft, and (3) have a limited high-frequency
range.

Accelerometers and Velocity Pickup. Pickups of this type, described in Chap.
12, are usually lightweight and rugged. They are always used for detecting faults
which occur at high frequencies (say, above 1000 Hz), for example, to detect rolling-
element bearing deterioration or gearbox wear. Acceleration measurements of
bearing vibration will provide very early warning of incipient faults in a machine.

16.4 CHAPTER SIXTEEN

FIGURE 16.1 Displacement and velocity spectra
obtained under identical conditions. The velocity spec-
trum requires a smaller dynamic range of the equipment
which follows the transducer. Therefore, it is preferable.
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Step 6. Select the measurement locations. When a periodic (off-line) monitoring
system is employed, the number of points at which measurements are made is lim-
ited only by the requirement for keeping measurement time to a minimum. As a
general rule, bearing vibration measurements are made in the radial direction on
each accessible bearing, and in the axial direction on thrust bearings. It is not usually
necessary to measure bearing vibration in both the horizontal and the vertical direc-
tion, since both measurements give the same information regarding the forces
within the machine; this information is merely transmitted through two different
transmission paths. This applies for detecting developing faults. It will later be seen,
however, that in order subsequently to diagnose the origin of the impending fault,
measurements in both the horizontal and the vertical direction may give valuable
information.When measuring shaft vibrations with permanently mounted proximity
transducers, it is convenient to use two probes on each bearing, located at 90° from
each other, thereby providing an indication of the orbit of the shaft within the bear-
ing. Axial displacement transducers, programmed to shut the machine down on pre-
set levels, are mounted where a thrust measurement will protect the machine
rotating parts, such as blades, from rubbing the stationary casing due to fault-
induced axial forces.

When a permanent (on-line) monitoring system is employed using a seismic
pickup, the number of measurement points usually is minimized for reasons of
economy. Selection must be made following a study of the vibration spectra of dif-
ferent bearings in order to locate those points where all significant components
related to the different expected faults are transmitted at measurable vibration
levels if full spectrum comparison is performed. If only broadband measurements
are monitored, then a further requirement is that all frequency components
related to the expected faults must be of approximately the same level within the
selected frequency range. Otherwise, measurements must be made in selected fre-
quency bands.

Step 7. Select the time interval between measurements. The selection of the time
interval between measurements requires knowledge of the specific machine. Some
machines develop faults quickly, and others run trouble-free for years. A compro-
mise must be found between the safety of the system and the time taken for meas-
urements and analysis. Measurements should be made frequently in the initial stages
of a condition monitoring program to ensure that the vibration levels measured are
stable and that no fault is already developing.When a significant change is detected,
the time interval between measurements should be reduced sufficiently so as not to
risk a breakdown before the next measurement. The trend curve will help in deter-
mining when the next measurement should be performed.

Step 8. Establish an optimum sequence of data acquisition. The sequence in which
data acquired in a condition monitoring program must be planned so that the data
are acquired efficiently. For example, the data collection may be planned on the
basis of plant layout, on the type of data required, or on the sequence of components
in the machine train, from driver to driven components.

FAULT DETECTION IN ROTATING MACHINERY

It is highly desirable to be able to detect all types of faults likely to occur during the
operation of rotating machinery. Such faults range from vibrations at very low fre-
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quencies (subsynchronous components indicating looseness, oil whirl, faulty belt
drive, etc.) to vibrations at very high frequencies (tooth-meshing frequencies, blade-
passing frequencies, frequencies of structural resonances excited by faulty rolling-
element bearings, etc.). Such detection should be applicable to the complete range of
machines in a plant, which operate from very low to very high speed. This requires
the selection of equipment and analysis techniques which cover a very broad fre-
quency range.

Measurements of absolute vibration levels of bearings provide no indication of
the machine’s condition, since they are influenced by the transmission path
between the force and the measurement point, which may amplify some frequen-
cies and attenuate others. Bearing vibration levels change from one measurement
point to another on a given machine, since the transmission paths are different; they
also change for the same reason from machine to machine for measurements made
at the same measurement point.3 Therefore, in estimating the condition of a
machine, it is essential to monitor changes in vibration from a reference value
established when the machine was known to be in good condition. Changes are
expressed as a ratio or, more commonly, as a change of level, i.e., the logarithm of a
ratio, in decibels.

The objective of condition monitoring of a machine is to predict a fault well in
advance of its occurrence. Therefore, a measurement of the overall vibration level
will not provide successful prediction because the highest vibration component
within the overall frequency range will dominate the measurement. This is illus-
trated in Fig. 16.2, which shows an example where overall measurements of the
vibration velocity resulted in an incorrect prediction with an overestimate of the
lead time. The early detection of faults in machinery can be made successfully only
by comparison with a reference spectrum. This section compares types of spectrum
analysis for this purpose.

Condition monitoring techniques employed during transient operating condi-
tions of the machine (i.e., when the machine is running up to full speed or slowing
down from full speed) differ significantly from the techniques employed during
steady-state operating conditions. Therefore it is essential that a careful investiga-
tion be carried out to ensure that the condition monitoring technique selected is
appropriate for the conditions of measurement.

FALSE ALARMS

Changes in machinery vibration may result from a number of causes which are not
necessarily related to the deterioration of the machine. For example, a change in
speed of the machine or a change in the load on the machine usually greatly modi-
fies the relative amplitudes of the different components of vibration at a fixed trans-
ducer location or modifies the relative pattern of vibration at different locations.
Depending on the criteria used for fault detection, such changes may result in a false
indication of deterioration of the machine. Appropriate selection of the technique
employed can avoid such false alarms.

HOW SPECTRUM CHANGES ARE RELATED 

TO THE CONDITION OF A MACHINE

To obtain information about changes in condition of a machine, vibration spectra
should be compared only for similar operating conditions. The influence of operat-
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ing condition of the machine (such as machine speed, load, and temperature) on the
vibration parameter being measured varies greatly for different types of machines.
Speed changes of up to 10 per cent usually can be compensated for, and spectra can
be compared. If the speed changes are greater than this value, the operating condi-
tion of the machine should be considered to be different and a new reference spec-
trum used as a basis of comparison. The reference spectrum need not be measured
when the machine is new (after allowing for a run-in period). The reference spec-

CONDITION MONITORING OF MACHINERY 16.7

FIGURE 16.2 Trend analysis performed on an overall
measurement and on an individual component. (A) The
velocity spectrum of vibration measured on a gearbox after
installation. Note the high amplitude of the 480-Hz compo-
nent, dominating the reference spectrum. (B) The velocity
spectrum 3 months later. Note the dramatic increase in the
121-Hz component, which corresponds to the output shaft
speed of the gearbox. (C) Curves comparing the increase in
the 121-Hz component in the velocity spectrum; the
increase in overall velocity in the band from 10 to 1000 Hz
indicates a developing fault.
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trum can be determined at any time during the life of a machine provided the vibra-
tions are stable, since a stable spectrum is a sign of stable operation of the machine.
The principal difficulty is to establish when changes in the spectrum are sufficiently
large to warrant stopping the machine.

Most national and international standards for the measurement of bearing vibra-
tion do not consider frequency spectra; instead, they give values for vibration
changes of the rms value of the velocity amplitude from 10 to 1000 Hz (or 10,000 Hz)
for machines in good and bad condition. These ratios have successfully been trans-
posed to characteristic components in the vibration spectrum such as unbalance or
frequency. Usually, a change in the bearing vibration amplitude (measured in terms
of acceleration, velocity, or displacement) on any characteristic component from the
spectrum by a factor of 2 to 2.5 (6 to 8 dB in vibration level) is considered significant;
a change by a factor of 8 to 10 (18 to 20 dB in vibration level) is considered critical,
unless specified otherwise by the manufacturer. Limits for shaft vibration measure-
ments, giving the relative motion of the shaft inside the bearing, directly relate to
physical bearing clearance in the machine.The required time interval between meas-
urements varies greatly from one machine to another and depends directly on the
expected mean time between failure and the deterioration rate of the expected fail-
ures; therefore, measurements should be made more frequently as soon as incipient
deterioration is noticed.

Successful fault detection in machinery is the first step toward a successful condi-
tion monitoring program. Early recognition of deterioration is the key to valuable
fault diagnosis and efficient trend analysis. Consequently, this phase of condition
monitoring should not be neglected, although sometimes it may seem tedious.

SPECTRUM INTERPRETATION 

AND FAULT DIAGNOSIS

Commercially available fast Fourier transform analyzers provide a suitable tool for
spectrum interpretation. They provide constant bandwidth (on a linear frequency
scale), and, by means of zoom or extended lines of resolution, they also provide very
high resolution in any frequency range of interest.This permits (1) early recognition
and separation of harmonic patterns or sideband patterns and (2) separation of
closely spaced individual components. Fast Fourier transform analyzers also may
provide diagnostic tools such as synchronous time averaging, cepstrum analysis,
and/or use of the Hilbert transform for amplitude and phase demodulation (see
Chap. 13).

Table 16.2 classifies different types of faults and indicates at which frequency the
faults are displayed in a vibration spectrum.Although such a table is of considerable
help in spectrum interpretation, any such simplified presentation must be used with
care, as illustrated by the examples considered below. The various faults can be clas-
sified according to their spectral components, as follows.

SUBSYNCHRONOUS COMPONENTS

Subsynchronous components of vibration (at frequencies below the rotational
speed of the machine) usually occur where sleeve bearings are used. The most com-
mon are the vibrations due to oil whirl, hysteresis whirl, resonant whirl, or mechani-
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cal looseness. These types of instability and nonlinear behavior are described in
detail in Ref. 4. Figure 16.3 shows a spectrum measured on the journal bearing of a
centrifugal compressor with mechanical looseness. A characteristic pattern of half-
order harmonics of rotation speed can be clearly seen. Figure 16.4 shows a spectrum
of the journal bearing of a pump in which a developing oil whirl shows up clearly at
21 Hz (42 percent of the rotation speed) and its second harmonic.

Both examples clearly indicate how the use of a linear frequency scale facilitates
the diagnosis of the fault by providing a clear indication of the different types of
harmonic patterns. High resolution is required to separate a half-order harmonic
component due to looseness (exactly 50 percent of rotation speed) from a compo-
nent due to oil whirl (42 to 48 percent of rotation speed).

LOW HARMONICS OF ROTATIONAL SPEED

Low harmonics of the rotational speed are generated by shaft unbalance, misalign-
ment, and eccentricity, as well as cracks in shafts and bent shafts.These various faults
may be difficult to distinguish, since they are mechanically related. A bad coupling
may result in misalignment. A bent shaft results in unbalance. Even a well-known
and well-defined fault such as unbalance may give misleading vibration components.
The exciting fault due to eccentric masses is a centrifugal force (thus radial) rotating
at the shaft speed and is therefore expected to result in a component in the vibration
spectrum at the machine speed and in the radial direction. However, dynamic unbal-
ance may also result in a rocking motion and consequently in vibration in both radial
and axial directions. In the same way, if there is a nonlinear transmission path from
the point where the force is applied to the point of measurement, a rise in the har-
monics of the rotation speed can be observed in the vibration spectrum, due to dis-
tortion of the signal.

The phase relationship between bearings provides essential information for dif-
ferentiating these various types of faults. As an example, unbalance will generate a
rotating force, and therefore the phase relationship between bearings can be
expected to be identical in both horizontal and vertical directions (in the absence of
resonances). For mass unbalance, the phase difference between a vertical and hori-
zontal transducer is 90° on the same bearing. Misalignment, however, does not cre-
ate a rotating force, and thus the phase relationship between bearings in both
vertical and horizontal directions can be vastly different.

HARMONICS OF THE POWER LINE FREQUENCY

Vibrational components, which are related to the frequency of the power line or
variable frequency drive, or to the difference between the synchronous frequency
and the rotational speed, occur in electric machines such as induction motors or gen-
erators.These vibrations are due to electromagnetically induced forces.These forces,
which occur in the case of a malfunction in the electric machine, are related to the air
gap between the rotor and the stator and to the current. The faults on the electric
machine are due either to the stator (called stationary faults) or to the rotor (called
rotating faults). They may originate from either a variation in the air gap or a varia-
tion in the current. Table 16.3 summarizes how these various faults show up in the
low-frequency range of the vibration spectrum.5

Figure 16.5 shows a vibration signal measured on the rolling-element bearing of
an asynchronous electric motor. By zooming in the region of the high-level 100-Hz

CONDITION MONITORING OF MACHINERY 16.9
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TABLE 16.2 A Vibration Troubleshooting Chart

Frequency of dominant vibration,
Nature of fault Hz = rpm/60 Direction Remarks

Rotating members out of 1 × rpm Radial A common cause of excess vibration in machinery
balance

Misalignment and bent Usually 1 × rpm Radial A common fault
shaft Often 2 × rpm and

Sometimes 3 and 4 × rpm axial

Impact rates for the individual Uneven vibration levels, often with shocks
bearing component

Damaged rolling element Also vibrations at high Radial Impact Rates f (Hz):
bearings (ball, roller, frequencies (2 to 60 kHz) often and For Outer Race Defect
etc.) related to radial resonances in axial

bearings f(Hz) = fr�1 − cos β�
For Inner Race Defect

f(Hz) = fr�1 + cos β�
For Ball Defect

f(Hz) = fr�1 − � cos β�2�
n = number of balls or rollers
fr = relative rps between inner and outer races

Journal bearings loose in Subharmonics of shaft rpm, Primarily Looseness may only develop at operating speed
housing exactly 1⁄2 or 1⁄3 × rpm radial and temperature (e.g., turbomachines)

BD
�
PD

PD
�
BD

BD
�
PD

n
�
2

BD
�
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n
�
2

1
6
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0



1
6
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1

Oil-film whirl or whip in Slightly less than half shaft speed Primarily Applicable to high-speed (e.g., turbo) machines
journal bearings (42 to 48 percent) radial

Hysteresis whirl Shaft critical speed Primarily Vibrations excited when passing through critical
radial shaft speed are maintained at higher shaft

speeds. Can sometimes be cured by tightening
the rotor components.

Damaged or worn gears Tooth-meshing frequencies (shaft Radial Sidebands around tooth-meshing frequencies
rpm × number of teeth) and and indicate modulation (e.g., eccentricity) at
harmonics axial frequency corresponding to sideband spacings.

Normally only detectable with very narrow-
band analysis and cepstrum analysis.

Mechanical looseness 2 × rpm Also sub- and interharmonics, as for loose
journal bearings

Faulty belt drive 1, 2, 3, and 4 × rpm of belt Radial The precise problem can usually be identified
visually with the help of a stroboscope

Unbalanced reciprocating 1 × rpm and/or multiples for Primarily
forces and couples higher-order unbalance radial

Increased turbulence Blade & vane passing frequencies Radial An increased level indicates increased turbulence
and harmonics and

axial

Electrically induced 1 × rpm or 2 times line Radial Should disappear when power turned off
vibrations frequency and

axial
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FIGURE 16.4 Spectrum analysis showing component due to oil whirl at 42
percent of the rotation speed measured on the journal bearing of a pump.

16.12

FIGURE 16.3 Acceleration spectra of a journal bearing on a centrifugal compressor. (A) Com-
pressor in good condition. Before shutdown, the vibration pattern is normal with few harmonics of
the compressor’s rotation speed and broadband noise at higher frequencies due to inherent turbu-
lences. (B) Compressor with looseness in the journal bearing. After shutdown, the higher-order har-
monics have an increased amplitude, and the presence of half-order harmonics can be observed.
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component (i.e., twice the line frequency in Europe), this component can be diag-
nosed as the pole-passing frequency of 100 Hz and not the 2 × rotation speed at
99.6 Hz which could have been an indication of a faulty alignment. This demon-
strates the value of being able to zoom to the frequency region containing the
component of interest. The zoom or extended lines of resolution provides suffi-
cient resolution to separate closely spaced components. It is of no help in analyz-
ing synchronous machines or generators, since the rotation speed and the line
(mains) frequency are identical. In such a case, the machine should be permitted to
coast to a stop. When the power is cut, electrically induced components of vibra-
tion disappear, and the harmonics of the rotation speed gradually decrease in fre-
quency and amplitude.

Vibration forces resulting from an effective variation of the reluctance in the
magnetic circuit as a function of the rate of the stator and rotor slot passing will be

CONDITION MONITORING OF MACHINERY 16.13

TABLE 16.3 “Rotating” and “Stationary” Magnetically Induced Vibrations 
in Induction Motors

Type of Symptomatic frequency Typical cause

problem of vibration Air-gap variations Current variations

Stationary 2 × line frequency Static eccentricity, Stator winding faults
weakness of stator 
support

Rotating 1 × rpm with 2 × slip- Dynamic eccentricity, Broken or cracked 
frequency sidebands bent rotor, loose rotor rotor bar(s) or shorted 

bar(s) rotor laminations

FIGURE 16.5 Spectrum analysis employing zoom frequency analysis around the 100-Hz compo-
nent, measured on the rolling-element bearing of an asynchronous electric motor. Note the simulta-
neous presence of the pole-passing frequency (100 Hz) and the second harmonic of rotation speed
(99.6 Hz). A lesser resolution would not permit a separation.
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present even in a motor which is in good condition.These vibrations occur at the slot
harmonics given by the following equation:

fslot = Rsfrot ± kfline

where fslot = slot passing frequency
Rs = number of rotor slots
frot = rotating speed

k = zero or even number
fline = power line frequency

The vibration components at low frequency differentiate between stator problems
and rotor problems.They do not, however, indicate whether the faults originate from
variations in air gaps or current. The components at the slot harmonics, on the other
hand, will behave differently depending on whether the fault originates from an air
gap or current variation as indicated in Table 16.4.

Figure 16.6 shows that by using a zoom around slot harmonics, sidebands can be
observed at twice the slip frequency, thereby permitting the diagnosis of broken
rotor bars. For a four-pole motor, sidebands occur at four times the slip frequency.

As an alternative to using signal analysis of vibration, signal analysis of the motor
current may be used to monitor certain types of problems. It is a more direct meas-
urement for all electrical problems and, with the help of algorithms, makes it possi-
ble, for example, to determine with a certain amount of accuracy the number of
broken rotor bars. Reference 6 mentions that mechanical phenomena such as worn
gears, tooth wear, and steam packing degradation (in motor-operated valves) can be
detected as well. It also mentions the applicability of this technique to dc motors.

HIGHER HARMONICS OF THE ROTATIONAL SPEED

Higher harmonics of the rotational speed typically occur where characteristic fre-
quencies are an integral multiple of the rotational speed of the machine, for example,
in the case of gearboxes, compressors, and turbines, where vibration occurs in multi-
ples of the number of teeth, blades, lobes, etc. An increase in components, such as
tooth-meshing frequencies or blade-passing frequencies, indicates deterioration act-
ing on all teeth or blades, e.g., as uniform wear or increased turbulences, respectively.

“Ghost components” sometimes are observed in vibration spectra obtained from
measurements on gearboxes; these components appear as tooth-meshing frequen-
cies, but at frequencies where no gear in the gearbox has the corresponding number
of teeth. Such components arise from faults on the gear-cutting equipment which
have been transmitted to the new gear. Being geometrical faults, they are not load-
sensitive, nor do they increase with wear; rather, as the gear’s surface wears, they
tend to decrease with time. The frequencies of the components are an integral mul-
tiple of the number of teeth on the index wheel and therefore appear as harmonics
of the speed of rotation of the faulty gear.

SIDEBAND PATTERNS DUE TO MODULATION

Modulations, frequently seen in vibration measurements on gearboxes, are caused
by eccentricities, varying gear-tooth spacing, pitch errors, varying load, etc. Such
modulations manifest themselves as families of sidebands around the gear-tooth-
meshing frequency with a frequency spacing equal to the modulating frequency
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TABLE 16.4 Troubleshooting Guide of Induction Motor Vibrations

Static eccentricity 2 × line frequency and components Can result from poor internal alignment,
at ω × [nRs(1 − s)/p ± k1] Radial bearing wear, or from local stator heating 

(vibration worsens as motor heats up).

Weakness/looseness Referred to as “loose iron.”
of stator support,
unbalanced phase Difficult to differentiate between this group 
resistance or coil sides 2 × line frequency Radial using only vibration analysis, but they will

Shorted stator also be apparent at no load as well as on load.
laminations/turns

Loose stator laminations 2 × line frequency and components Can have high amplitude but not usually destructive.
spaced by 2 × line frequency at Radial The high-frequency components may be similar 
around 1 kHz to static eccentricity.

Dynamic eccentricity 1 × rpm with 2 × slip-frequency Can result from rotor bow, rotor runout, or from 
sidebands and components at Radial local rotor heating (vibration worsens as motor 
ω × [((nRs ± ke) × (1 − s)/p) ± k1] heats up).

Broken or cracked rotor bar 1 × rpm with 2 × slip-frequency The slip sidebands may be low level, requir-
Loose rotor bar sidebands and components Radial ing a large dynamic range as well as fre-
Shorted rotor laminations similar to those given above for quency selectivity in measuring instrumen-
Poor end-ring joints dynamic eccentricity with addition tation. Typical spectra show that these components in 

of 2 × slip-frequency sidebands the region of the principal vibration slot harmonics 
around slot harmonics also have slip-frequency sidebands.
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(e.g., the rotation speed of the faulty gear in the case of an eccentric gear). Figure
16.7A shows the distribution of the sidebands for such a condition. Any gear in a
gearbox can be a source of modulation. In order to distinguish all possible sidebands,
the analysis must be carried out with sufficient resolution to detect sidebands with a
spacing equal to even the lowest rotational speed inside the gearbox, and therefore
the zoom feature is indispensable.

Local faults, such as cracked or broken gear teeth, also appear as a family of side-
bands with a spacing equal to the rotation speed of the faulty gear, as this induces a
change in tooth deflection, during meshing, once per revolution. The sidebands
shown in Fig. 16.7B are low in level and cover a broad frequency range. Very often
the influence of the transmission path will modify the shape of the sideband pattern
and does not permit a precise diagnosis.7 Local faults are best detected in the time
waveform of Fig. 16.7B.9 Similarly, sidebands at the rotational speed and slip fre-
quency are quite common in patterns for asynchronous machines.

HARMONIC PATTERNS NOT HARMONICALLY RELATED 

TO THE ROTATIONAL SPEED

Harmonic patterns which are not harmonically related to the speed of rotation typ-
ically appear where there are local faults in rolling-element bearings.9,10 A local fault
produces an impulse having a repetition rate equal to the characteristic frequencies
of the bearing: ball-passing frequency for the outer raceway, ball-passing frequency
for the inner raceway, and twice the ball-spin frequency (see Table 16.2). Such faults
appear as a series of harmonics separated by the impact frequency with an ampli-

16.16 CHAPTER SIXTEEN

FIGURE 16.6 Zoom spectrum centered around the second principal vibration slot harmonic,
showing 2 × slip-frequency sidebands on the component at this frequency.
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tude proportional to the spectrum of the single impulse. As illustrated in Fig. 16.8,
such an impact tends to excite bearing defect frequencies or excite structural reso-
nances in the frequency range covered, and the harmonic patterns around these 
resonances thus are emphasized. This provides two methods of detecting rolling-
element bearing faults: (1) by finding the fundamental of the impact rate in the low-
frequency range; and (2) by finding the harmonic pattern at the impact frequency in
the high-frequency range, where resonances are excited; this may be difficult be-
cause speed fluctuations tend to smear these components.

SPECIAL ANALYSIS TECHNIQUES

Table 16.5 summarizes the applications of the various analysis techniques described
below.

ENVELOPE DETECTION

Envelope detection (envelope detectors are discussed in Chap. 13) is particularly
useful for fault diagnosis in machinery, since it permits elimination of the signal
resulting from background vibration and concentrates the analysis in the frequency
range placing the greatest emphasis on the harmonic pattern of the impact fre-
quency—a resonance of the structure excited by the impulse. This can be done by
either analog or digital means.11 Figure 16.9 illustrates the analog process.The signal
is first bandpass-filtered around the frequency range where a significant broadband
increase has been detected, as illustrated in Fig. 16.9B and D (usually one or more
resonances between 2 and 20,000 Hz have been excited). The filtered signal (which

CONDITION MONITORING OF MACHINERY 16.17

FIGURE 16.7 Distribution of sideband patterns for distributed and local faults on a
gear. (A) In the case of a distributed fault, sidebands have a high level and are grouped
around the tooth-meshing frequency and harmonics with a spacing equal to the speed of
the faulty gear. The time waveform (lower) shows bursts of energy where the fault passes
through the gear meshing area. (B) In the case of a local fault (such as a cracked or broken
tooth), the sidebands have a low level and expand widely over a large frequency range.
However, the time waveform shows definite evidence of a chipped tooth. (Eshleman.8)
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FIGURE 16.8 Effect of a local fault in a rolling-element bearing. (A) In the time domain, there is a repeated
impact having a period T. (B) In the frequency domain, the repeated impact results in a line spectrum containing
multiple bearing frequencies with impact rate (1/T1) sidebands, where (1/T1) is the operating speed of the unit.
(Eshleman.8)
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CONDITION MONITORING OF MACHINERY 16.19

now contains only the ringing of the selected resonance excited by the repetitive
impacts, Fig. 16.9C) is rectified and analyzed once again in a low-frequency range in
order to determine the repetition frequency of the impacts, as shown in Fig. 16.9E
and F.

The advantages of envelope detection are as follows:

1. The use of bandpass filters eliminates background noise resulting from other
vibration sources (for example, from unbalance or gear vibration). All that
remains is the repetition rate of the impacts exciting the structural resonance,
possibly amplitude-modulated.

2. High-frequency analysis is not required, since only the envelope of the signal is of
importance, not the signal itself, which can extend upward to hundreds of kilohertz.

3. Diagnosis is possible, since the impact frequencies are determined and can be
related to a specific source (ball-passing frequency for the outer raceway, ball-

TABLE 16.5 Typical Applications of the Various Analysis Techniques

Technique Application Fault/machine

Zoom Separation of closely Electrical machines, gearboxes,
spaced components turbines

Improvement of signal-to-
noise ratio, separation of 
resonances from pure tones

Phase Operational deflection shapes
Detection of developing cracks 

in shafts
Balancing

Time signal Waveform visualization for Rubbing, impacts, clipping,
identification of distortion cracked teeth

Cepstrum Identification and separation Rolling elements bearing,
of families of harmonics bladed machines, gearboxes

Identification and separation 
of families of sidebands

Envelope analysis Amplitude demodulation Rolling element bearing,
Observation of a low-frequency electrical machines,

amplitude modulation happening gearboxes
at high frequency

Dynamic crest Calculation of high-pass filtered Faults in low-speed machines
factor signals

Synchronous time Improving signal-to-noise ratio Electrical machines,
averaging Waveform analysis reciprocating machines,

Separating effects of adjacent gearboxes, etc.
machines

Separating effects of different 
shafts

Separating electrically and 
mechanically induced vibrations

Impact testing Resonance testing Foundations, bearings,
couplings, gears

Scan analysis Analysis of nonstationary signals Fast run-up/coast down
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FIGURE 16.9 Principle of analog envelope detection applied to
the analysis of impacts due to rolling-element bearing faults. (A)
Unfiltered time signal. (B) The corresponding spectrum in the fre-
quency domain. (The dotted spectrum represents the reference
spectrum before the fault developed. Note the broadband
increase due to excitation of a resonance by the bearing fault.) (C)
Frequency spectrum after application of a bandpass filter in range
where the change caused by a ball-bearing fault has been
detected. (D) Time signal which corresponds with C; contains ring-
ing of a resonance which is excited periodically. (E) Envelope of
time signal from D. (F) Low-frequency analysis of the envelope
from E, yielding the impact rate due to the fault.

passing frequency for the inner raceway, ball-spin frequency, fundamental train
frequency, or some other source of repetitive impacts, for example, a cracked
gear tooth).

Figure 16.10A and B shows the acceleration spectra from 0 to 25 kHz of a good
bearing and a faulty bearing. Note that the spectrum is noticeably higher on the
good bearing than on the faulty one, which confirms that comparative measure-
ments should not be made between different measurement points or different
machines. Absolute vibration levels do not provide a satisfactory indication of the
condition of a machine; only changes in level are relevant. Any simple method of
bearing fault detection such as shock pulse measurement, spike energy, kurtosis, or
crest factor was difficult to use on this specific machine, because a forced-lubrication
system gave repetitive pulses at a frequency of 5.4 Hz, independent of the rotating
speed, which dominated the whole vibration signal. Figure 16.10C and D shows the
analysis of the envelopes on the good and the faulty bearings obtained after zoom-
ing around 5400 Hz with an 800-Hz frequency span. The only noticeable pattern on
the good bearing comes from the forced lubrication system. In contrast, the result of
the envelope analysis on the faulty bearings shows a complex pattern, and frequency
information is absolutely necessary to confirm whether or not there is a ball-bearing
fault. The following frequencies appear: 5.4 Hz (the repetition rate of the forced
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lubrication system on the actual bearing, and its harmonics), 6.4 Hz (the repetition
range of the forced lubrication system on adjacent bearings, and its harmonics), and
15.43 Hz (the ball-passing frequency for an outer raceway defect, and its harmonics).

APPLICATION OF CEPSTRUM ANALYSIS

The use of cepstrum analysis (explained in more detail in Chap. 13) is particularly
advantageous for detecting periodicities in the power spectrum (e.g., harmonics and
sideband patterns), since it provides a precise measure of the frequency spacing
between components.10,11 Figure 16.11 shows the spectrum and the corresponding
cepstrum analysis of a measurement made on an auxiliary gearbox driving a gener-
ator on a gas-turbine-driven oil pump. As a fault on one of the bearing develops, the
first rahmonic appears and then increases at a quefrency equal to the reciprocal of
the spacing in the frequency spectrum which corresponds to an outer raceway defect
in one of the bearings. Another advantage of cepstrum analysis is that one compo-
nent in the cepstrum represents the global “power” content of a whole family of har-
monics or sidebands, and this value is practically independent of extraneous factors
such as machine-load condition, selection of measurement location, and phasing
between amplitude and phase modulation.

Figure 16.12 shows the evolution in terms of time of two different frequency com-
ponents in the spectra of Fig. 16.11. Figure 16.12A represents the evolution of the
harmonic component at 7640 Hz, which shows a clear ascending slope, and also the
evolution of the harmonic component at 5620 Hz, which shows a rather horizontal
slope. Figure 16.12B represents the changes on the first rahmonic in the cepstrum
and shows the effective evolution of the fault corresponding to a steep increase fol-
lowed by stabilization as is typical for a spall in a rolling-element bearing.

CONDITION MONITORING OF MACHINERY 16.21

FIGURE 16.10 (A) Acceleration spectrum of a good bearing in the frequency
range from 0 to 25 kHz. (B) Acceleration spectrum of a faulty bearing in the fre-
quency range from 0 to 25 kHz. (C) Envelope spectrum in 100-Hz range of the sig-
nal in A; the zoom analysis is centered at 5408 Hz and has a frequency span of 800
Hz. (D) Envelope spectrum in 100-Hz range of the signal in B; the zoom analysis
is centered at 5408 Hz and has a frequency span of 800 Hz.
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FIGURE 16.11 Analyses of vibration of an auxiliary gearbox before and after the devel-
opment of a fault on one of the bearings.10 (A) Spectrum analysis; (B) the corresponding
cepstrum analysis.

Envelope detection and cepstrum analysis make it possible to determine the fre-
quencies involved precisely and are thus useful for condition monitoring of indus-
trial machines. They permit a reliable diagnosis of defects. Also, cepstrum analysis
appears to be an invaluable condition-related parameter for following fault devel-
opment (e.g., those that develop in rolling-element bearings) that shows up as a fam-
ily of harmonics or sidebands.

The use of post-processing techniques makes it possible to manipulate the cep-
strum, for instance, by removing selected parts of the cepstrum and then transform-
ing the cepstrum back to the frequency and/or time domain. For example, such
manipulations make it possible (1) to evaluate the size of a spall in a rolling element
bearing and (2) to reconstitute the transfer function between the input force and the
vibration response without measuring the input function.11,12

APPLICATION OF GATED VIBRATION ANALYSIS 

ON RECIPROCATING MACHINES

Vibration signals from reciprocating machines (such as diesel engines, reciprocating
compressors, hydraulic pumps, and gas engines) differ from those of rotating
machines in that they are not stationary. Instead, they consist of short impulses
which occur at different points in time for different events (valves opening and clos-
ing, piston slap, combustion, etc.) and are repeated with the same timing for each
new machine cycle. If these signals are averaged over a longer period of time, as is
common practice in the analysis of rotating machines, these individual events would
be averaged out so that changes would go undetected.

In reciprocating machines, different events will excite different resonances of a
structure; the resulting frequencies that are generated provide valuable diagnostic
information. Timing provides equally valuable information because the time when an
event occurs may be related to what is actually happening in the cycle of the engine.
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In gated vibration analysis, the vibration signal is analyzed at various angles of
the crankshaft in order to cover a complete cycle of the machine in a three-
dimensional plot.13 The analyzer is triggered by a once-per-cycle trigger signal; then
the delay after triggering is shifted to provide adequate overlap; this procedure con-
tinues until a complete cycle is covered. Note that each spectrum represents actually
an average over many machine cycles for one time delay. This process averages any
differences between machine cycles.

An alternative to gated vibration analysis is gated sound intensity analysis, which
is more suited to noise control and quality checks.14

TREND ANALYSIS

Trend analysis makes use of graphs of a condition-related parameter versus time
(date or running hours) to determine when the parameter is likely to exceed a given
limit.The goal of a successful condition monitoring program is to predict the time of
an expected breakdown well in advance of its occurrence in order to shut down the
machine in ample time, to order spare parts, and thereby to minimize the shutdown
time. Since all vibration criteria indicate that equal changes on a log scale corre-

CONDITION MONITORING OF MACHINERY 16.23

FIGURE 16.12 (A) Development of the fault illustrated in Fig. 16.13, using the har-
monic at 7640 Hz and the harmonic at 5620 Hz as the parameter. (B) The correspon-
ding trend curve using the cepstrum component as the parameter, showing a smooth
evolution.10
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spond to equal changes in severity, data for a trend analysis should be plotted on a
logarithmic scale in decibels. A linear trend on a logarithmic scale is found occa-
sionally, but the actual trend may follow another course; for example, when the fault
feeds back on the rate of deterioration (e.g., gear wear), the trend, when plotted on
a logarithmic scale, may then be exponential. In some cases the fault changes sud-
denly in finite steps (for example, a spall caused by gradual subsurface fatigue), mak-
ing it very difficult to extrapolate to determine the date of the shutdown. To ensure
accurate trend analysis, the following precautions should be taken:

1. Determine a trend based on measurements of a parameter directly related to a
specific type of fault—not on measurements of overall levels.

2. Diagnose faults before attempting to interpret a trend curve in order to (a) select
the appropriate parameter for the type of fault which is being monitored (for
example, the parameter may be the level of an individual component, of a cep-
strum component, or of a selected frequency range) and (b) observe critically the
results of the trend analysis so as to determine if the linear or exponential inter-
polation is adequate.

3. Keep in mind that the best estimate of the lead time will be obtained by employ-
ing a trend of the most recent measurements.

USE OF COMPUTERS IN CONDITION

MONITORING PROGRAMS

Computers can be of great help in a condition monitoring program in handling, fil-
ing, and storing data and in performing tedious computations such as spectrum
comparison and trend analysis.A condition monitoring system which incorporates a
computer includes:

1. A recording device for storing the analog or digital time signals or frequency
spectra. In a permanently installed monitoring system, the analog time signal is
directly connected to the following items.

2. An analyzer with both fast Fourier transform (FFT) narrowband analysis and
advanced diagnostic techniques (zoom, cepstrum) for diagnostics.

3. A computer and appropriate software which provide (a) management of the
measurement program, including route mapping, storage of reference spectra/
cepstra, and new spectra/cepstra; (b) a comparison of spectra and a printout of
significant changes; and (c) trend analysis of any chosen parameter (individual
component or overall level in a given frequency range). In a permanent monitor-
ing system, the complete process (i.e., a new analysis) is performed automatically
at a predetermined rate, which is adjusted as the fault develops.
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CHAPTER 17
STRAIN-GAGE

INSTRUMENTATION

Earl J. Wilson

INTRODUCTION

A strain-sensitive material is one whose electrical resistance is proportional to the
instantaneous spatial-average strain over its surface. Such materials are of two
types: metallic (i.e., foil or wire) or semiconductor (described in Chap. 12 under
Piezoresistive Accelerometers). When such a material is stretched, its length in-
creases and its cross-section decreases; consequently, there is an increase in its elec-
trical resistance. This change in resistance is a measure of its mechanical motion.
Thus, a strain gage is a device which uses change in electrical resistance to measure
strain.

The resistance strain gage may be employed in shock or vibration instrumenta-
tion in either of two ways. The strain gage may be the active element in a commer-
cial or special-purpose transducer or pickup, or it may be bonded directly to a
critical area on a vibrating member. Both of these applications are considered in this
chapter, together with a discussion of strain-gage types and characteristics, cements
and bonding techniques, circuitry for signal enhancement and temperature compen-
sation, and related aspects of strain-gage technology.

The electrical resistance strain gage discussed in this chapter is basically a 
piece of very thin foil or fine wire which exhibits a change in resistance propor-
tional to the mechanical strain imposed on it. In order to handle such a delicate 
filament, it is either mounted on, encapsulated in, or bonded to some type of car-
rier material and is known as the bonded strain gage. Bonded strain gages are
available in a wide range of sizes and resistances. Unbonded strain gages, where
the wire is free, are rarely used because of their limited frequency range and lack
of sensitivity.

The strain gage is used universally by stress analysts in the experimental deter-
mination of stresses. Since strain always accompanies vibration, the strain gage or
the principle by which it works is broadly applicable in the field of shock and vibra-
tion measurement. Here it serves to determine not only the magnitude of the strains
produced by the shock or vibration, but also the entire time-history of the event, no
matter how great the frequency of the phenomenon.

17.1
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BASIC STRAIN-GAGE THEORY AND PROPERTIES

The relationship between resistance change and strain in the foil or wire used in
strain-gage construction can be expressed as

=

or K = (17.1)

where K is defined as the gage factor of the foil or wire, ∆R is the resistance change due
to strain, R is the initial resistance, ∆L is the change in length, L is the original length
of the wire or foil, and ∆L/L is the unit strain to which the wire or foil is subjected.

Not all materials exhibit this strain-sensitivity effect, and different materials have
different gage factors. Filament materials in common use in strain gages are Con-
stantan (Ni 0.45, Cu 0.55), which has a gage factor of approximately +2.0; Iso-elastic
(Ni 0.36, Cu 0.08, Fe 0.52, and Mo 0.005), which has a gage factor of about +3.5; and
modified Karma (Ni 0.75, Cr 0.20, plus additions), which has a gage factor of +2.1.

STRAIN-GAGE CONSTRUCTION

Most strain gages are of foil construction, illustrated in Fig. 17.1, although fine-wire
strain gages are used for special purposes, such as at high temperatures. Foil strain
gages are usually made by a printed-circuit process.

Since the foil used in a strain gage must be very fine or thin to have a sufficiently
high electrical resistance (usually between 60 and 350 ohms), it is difficult to handle.

For example, the foil used in gages is
often about 0.1 mil in thickness. Some
use has been made of wire filaments in
strain gages, but this type of gage is sel-
dom used except in special or high-
temperature applications. In order to
handle this foil, it must be provided with
a carrier medium or backing material,
usually a piece of paper, plastic, or
epoxy. The backing material performs
another very important function in addi-
tion to providing ease of handling and
simplicity of application. The cement

provides so much lateral resistance to the foil that it can be shortened significantly
without buckling; then compressive as well as tensile strains can be measured. Lead
wires or connection terminals are often provided on foil gages, as illustrated in the
typical foil gage shown in Fig. 17.1.A protective coating, recommended or supplied by
the manufacturer, is usually applied over the strain gage, especially where the lead
wires are attached.

TRANSVERSE SENSITIVITY

Because of its construction, a portion of the foil in each gage lies in the transverse
direction and will respond to transverse strain.1 Therefore the gage factor K of a

∆R/R
�
∆L/L

∆R
�
R

1
�
K

∆L
�
L
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FIGURE 17.1 Typical construction of a foil
strain gage.
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gage* is always slightly smaller than the gage factor of the material of which it is
fabricated. One of the desirable features of foil-type gages is their low transverse
sensitivity. In this case, the gage consists of a flat foil grid; a sufficiently large
amount of the foil is left at the ends of each strand to reduce the transverse sensi-
tivity of the gage to one-half the value for wire gages for some types and to essen-
tially zero for others.

TEMPERATURE EFFECTS

The effects of temperature on the gage factor of several alloys are illustrated in Figs.
17.2 and 17.3. When a bonded strain gage is used in measurements, any change in
resistance in the strain-gage measurement system is interpreted as resulting from 
a strain. If thermal expansion is not induced, then this change will result from a
mechanical strain. However, if thermal expansion is induced, then there will be a
change in resistance resulting from the mechanical strain, and in addition, there will
be a change in resistance resulting from the response of the strain gage to changes in
temperature. The strain indication which results from such a temperature effect is
known as an “apparent strain.” Figure 17.3 shows typical apparent strain for three
commonly used alloys. This effect is usually negligible in the measurement of
dynamic strains, since the readout instrument associated with the strain gage usually
does not respond to static or slow changes in its resistance. However, in the meas-
urement of static strains, the effects of temperature represent the largest potential
source of error and require some form of temperature compensation.2 It is therefore
important to know the temperature at which a strain gage is used.

STRAIN-GAGE INSTRUMENTATION 17.3

FIGURE 17.2 Typical variation in the gage factor of strain-gage alloys as a function of
temperature.

* In determining the gage factor of the gage, it is assumed that the gage is mounted on a material having a
Poisson’s ratio of 0.285 and subjected to uniaxial stress in the direction of the gage axis.
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STRAIN-GAGE CLASSIFICATIONS

Strain gages are classified in several ways. One classification cites the purpose for
which the gage is to be used, that is, for static or dynamic strain measurement. Static
gages are often made up with Constantan foil (a copper-nickel alloy), which has 
a minimum change of resistance with temperature. Dynamic strain gages occasion-
ally are made up with Iso-elastic foil (iron-nickel-chrome alloy), which provides a
greater gage factor than Constantan. Another common alloy used in strain gages is
Karma, an alloy primarily of nickel and chrome. The dynamic gages, while having a
much greater resistance change for a given strain than the static gages, also are much
more sensitive to changes in temperature. They are used only where the phenome-
non to be measured is so short in time duration that no temperature change of any
consequence can occur during the time of measurement. Gages also are available for
the measurement of very large strains (up to 20 percent) occurring in the plastic
region of the material, as distinguished from the more common gages which are used
to measure elastic strains (up to 1 percent).

STRAIN-GAGE SELECTION CONSIDERATIONS

In the case of shock measurements, a transient may be applied to the structure that
is under investigation only once, or it may be repetitive. Shock is of very short time
duration, and the problem of temperature compensation is nonexistent because in
most cases the temperature does not have time to change during the impact. For this
reason a dynamic-type gage usually can be employed for the measurement of shock.
This type of gage has the advantage of a higher gage factor than the static gage, and
so it will provide the greatest possible electrical signal for a given strain.

17.4 CHAPTER SEVENTEEN

FIGURE 17.3 Typical apparent strain for three alloys commonly used in strain gages. These
data are based on an instrument gage factor of 2.00.
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For vibration measurement, the type of gage selected is dependent on the kind of
information desired. If only the frequency of vibration and the magnitude of the
cyclic stresses are desired, dynamic-type gages can be used since temperature
changes will not affect the results obtained unless the temperature fluctuates at the
same rate as the stress. If, however, a measurement of the static or slowly varying
component of the stress is also to be determined (i.e., if the absolute values of the
stresses are desired), a static-type gage must be employed. Since changes in temper-
ature will affect the gage reading, temperature compensation must be incorporated
to obtain true values of stress.

Gage selection is dependent on the space limitation and steepness of strain gradi-
ent in any region. The strain gage indicates the average strain over the length of the
gage; in a region of steep strain gradient, this indicated value may be much less than
the maximum strain.The shorter the gage used in such a region, the closer is the gage
indication to the maximum strain (Fig. 17.4). However, two possible objectives must
be considered quite carefully in selecting a gage for a particular installation: (1) the

determination of the frequency of vibra-
tion, or comparison of relative ampli-
tudes and frequencies with different
conditions of excitation, and (2) the
determination of the maximum stress
pattern resulting from the vibration set
up. In the first case there is considerable
freedom with regard to the location of
the gage on the structure, and therefore
with the selection of the gage itself. In
the second case severe restrictions exist
in regard to the region of application of
the gage and its possible dimensions. In
general, very short gage-length gages are
more difficult to apply properly. There-
fore it is desirable to employ gage
lengths of 1⁄4 in. whenever possible. When
the actual magnitude of the maximum
stress resulting from shock or vibration is
to be determined, a much more compli-
cated system of gages must be employed.
A single gage can be used in only the
very limited case where a stress exists in
one direction only, and that direction
must be known. If stresses exist in sev-
eral directions, or if the direction of a
singly existing stress is unknown, a
strain-gage rosette consisting of three or
more gages must be employed.3

PHYSICAL ENVIRONMENT

The physical environment of the applied gage is an important factor which must be
considered in gage selection and protective treatment. Temperature, pressure, humid-
ity, oil, corrosive acid, abrasive action, and possible electromagnetic, neutron, and radi-
ation fields are conditions which affect the choice of gage and its required protection.

STRAIN-GAGE INSTRUMENTATION 17.5

FIGURE 17.4 Effect of gage length on indi-
cated strain in the presence of a severe strain
gradient. The shorter gage on the right indicates
a higher strain. An infinitesimal gage length
would be necessary to indicate the peak strain.
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If high temperatures (up to 500°F or 260°C) are to be encountered, a Bakelite or other
high-temperature-type gage must be selected. If even higher temperatures must be
withstood, a ceramic-type gage should be employed. Gages of this sort are used at
temperatures as high as 2000°F (1100°C). If the temperature never exceeds 200°F
(95°C), however, any type of gage can be used.

ACCURACY CONSIDERATIONS

Gages must be selected with regard to the desired precision of the results. If only the
frequency of the vibration or the duration of a shock wave is required, almost any
gage, properly chosen for the temperature and humidity conditions to be encoun-
tered, gives quite satisfactory results. However, if the magnitude of the stresses pro-
duced is to be determined in addition, then considerable care must be exercised to
select the proper gage to obtain the desired results. Not only must the gage be the
proper one to portray the encountered strain faithfully, but precautions must be
taken to install the gage correctly.

The testing “environment” can affect strain-gage accuracy in many ways. Magne-
tostrictive effects,4 hydrostatic pressure,5 nuclear radiation,6 and high humidity are
examples of conditions that may cause large strain-gage errors. Creep, drift, and
fatigue life in the gages themselves may be important. In most normal environments
these errors are either small or undetectable. Whenever unusual or harsh environ-
ments are encountered, it is wise to consult the strain-gage manufacturer to obtain
recommendations for gage systems and estimates of expected accuracies.

BONDING TECHNIQUES

The proper functioning of a strain gage is completely dependent on the bond
which holds it to the structure undergoing test. If the bond does not faithfully
transmit the strain from the test piece to the wire or foil of the gage, the results
obtained cannot be accurate. Failure to bond over even a minute area of the gage
will result in incorrect strain indications. The greatest weakness in the entire tech-
nique of strain measurement by means of wire or foil gages is in the bonding of the
gage to the test piece. Usually, the manufacturer of the strain gages will recom-
mend cements which are compatible with their use and will provide instructions
for their proper installation.

In order to achieve a good bond, it is essential that the surface to which the gage
is bonded be chemically clean. Various cements used for this purpose are described
in Chap. 15. It is advisable to protect the bonded strain gage with a coating recom-
mended by the manufacturer for the environment in which the strain gage is to
operate.

STRAIN-GAGE MEASUREMENTS

The resistance strain gage,7 because of its inherent linearity, very small mass, wide
frequency response (from zero to more than 100,000 Hz), general versatility, and
ease of installation in a variety of applications, is an ideal sensitive component for
electrical transducers for use in shock and vibration instrumentation.8 The Wheat-

17.6 CHAPTER SEVENTEEN

8434_Harris_17_b.qxd  09/20/2001  12:15 PM  Page 17.6



stone bridge circuit, described in a subsequent section, can be used to extend the ver-
satility of the strain gage to still broader applications by performing mathematical
operations on the strain-gage output signals. The combination of these two devices
can be used effectively for the measurement of acceleration, displacement, force,
torque, pressure, and similar mechanical variables. Other useful attributes include
the capacity for separation of forces and moments, vector resolution of forces and
accelerations, and cancellation of undesired vector components.

The usual technique for employing a strain gage as a transducing element is to
attach the gage to some form of mechanical member which is loaded or deformed in
such a manner as to produce a signal in the strain gage proportional to the variable
being measured. The mechanical member can be utilized in tension, compression,
bending, torsion, or any combination of these. All strain-gage-actuated transducers
can be considered as either force- or torque-measuring instruments.Any mechanical
variable which can be predictably manifested as a force or a couple can be instru-
mented with strain gages.

There are a number of precautions which should be observed in the design and
construction of custom-made strain-gage transducers.9 First, the elastic member on
which the strain gage is to be mounted should be characterized by very low mechan-
ical hysteresis and should have a high ratio of proportional limit to modulus of elas-
ticity (i.e., as large an elastic strain as possible). Although aluminum, bronze, and
other metals are often employed for this purpose, steel is the most common mate-
rial. An alloy steel such as SAE 4340, heat-treated to a hardness of RC 40, will ordi-
narily function very satisfactorily.

The physical form of the elastic member and the location of the strain gages
thereon are not subject to specific recommendation, but vary with the special
requirements of each individual instrumentation task. When no such requirements
exist, a standard commercial transducer ordinarily should be used. In general, the
shape of the member should be such as to (1) allow adequate space for mounting
strain gages (preferably in regions of zero or near-zero strain gradient), (2) provide
the desired natural frequency, (3) produce a strain in the gages which is great enough
at low values of the measured variable to result in an output signal readily subject to
accurate indication or recording, and not so great as to cause nonlinearities or
abbreviated gage life at peak load values, (4) provide temperature compensation
and/or signal augmentation (as described in a subsequent section) whenever feasi-
ble, and (5) allow for simplicity of machining, ease of gage attachment and wiring,
and, if necessary, protection of the gages.

The strain gages should be cemented to the elastic member with the usual care
and cleanliness necessary in all strain-gage applications, special attention being
given to minimizing the bulk of the installation if the added mass is significant to the
frequency response of the instrument. Other considerations vital to successful
strain-gage-application technique are described elsewhere in this chapter.

DISPLACEMENT MEASUREMENT

Measurement of displacement with strain gages can be accomplished by exploiting
the fact that the deflection of a beam or other loaded mechanical member is ordi-
narily proportional to the strain at every point in the member as long as all strains
are within the elastic limit.

For small displacements at low frequencies, a cantilever beam arranged as shown
in Fig. 17.5 can be employed. The beam should be mounted with sufficient preload
on the moving surface that continuous contact at the maximum operating frequency

STRAIN-GAGE INSTRUMENTATION 17.7
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is assured. In the case of higher-frequency applications, the beam can be held in con-
tact with the moving surface magnetically or by a fork or yoke arrangement, as illus-
trated in Fig. 17.6. It is necessary to make certain that the measuring beam will not
affect the displacement to be instrumented, and that no natural mode of vibration of
the beam itself will be excited.10

17.8 CHAPTER SEVENTEEN

FIGURE 17.6 Displacement transducer designed for continuous, posi-
tive contact with moving object.

FIGURE 17.5 Strain gages mounted on a cantilever beam for
displacement measurement produce electrical signals propor-
tional to cam motion.

The measurable displacement magnitude can be increased above that for the can-
tilever beam by employing other schemes, such as the “clip gage” shown in Fig. 17.7.
This gage is constructed by bonding strain gages to the upper and lower sides of a
piece of channel-shaped spring steel, as shown in Fig. 17.7. The assembly is then
clipped or otherwise mounted on the test specimen so that the legs deflect as the spec-
imen is strained, thus straining the backbone of the clip gage to a greater or lesser
extent. Any desired reduction in strain magnitude can be obtained in this manner by
merely altering the proportions of the clip gage. Unfortunately, the maximum allow-
able frequency generally decreases as the displacement amplitude increases, since
stiffness and natural frequency tend to change together. Displacement also can be
measured through the use of the relative motion of a seismically mounted mass of
much lower natural frequency than the applied frequency.

VELOCITY

Velocities can be measured directly with strain-gage transducers only by producing
a force such as viscous damping or hydro- or aerodynamic drag force which is
uniquely related to velocity. Velocity indication also can be obtained with strain
gages by differentiation of a displacement function or integration of an accelera-
tion function. In either case, the transducer-design considerations correspond to
those for force measurement described in the following section.
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FORCE MEASUREMENT

The principle of force measurement with
strain-gage-actuated transducers is very
similar to that for displacement.9 The
procedure consists of placing a strain-
gage-instrumented elastic member in se-
ries with the force to be measured. The
strain in the transducer, and thus the out-
put signal, is proportional to the force if
all stresses are kept within the elastic
limit. The proportionality constant be-
tween strain and force must be obtained
by calibration if precise results are de-
sired. Otherwise, tolerances on the gage
factor of the strain gage, and uncertainty
as to the elastic properties of the instru-
mented member, can produce errors of 5
percent or greater—even for transducer
configurations with readily calculable
strain distributions.

Figure 17.8 illustrates a common form
of force transducer, the cantilever beam.
Strain gages are mounted on the top and

bottom of the beam, producing double sensitivity (output) and virtually complete
temperature compensation. While this type of transducer is probably best suited to
static or quasi-static measurements such as reaction forces, it also can be used very
successfully for many shock and vibration problems as long as the natural frequency
of the beam is higher than the frequency of the force being measured. The ring gage
(Fig. 17.9) can be categorized with the cantilever beam, and is equally applicable to
static or dynamic force measurement within the limitations imposed by its compara-
tively low natural frequency.

For most dynamic force-instrumentation problems a small compression or tension
member (Fig. 17.10) is ordinarily employed. If the load is characterized by alternation
between compression and tension, the transducer must be designed for a rigid, integral

connection, with no backlash or clear-
ance. This can be accomplished by em-
ploying threaded ends with lock nuts for
joining the transducer to the remainder
of the assembly. In many problems in-
volving machine parts or other mechan-
ical components it is possible to measure
loads by applying strain gages to the ma-
chine member itself, necessitating cali-
bration of the member to determine the
relationship between force and strain.

PRESSURE

In hydraulic and aerodynamic devices, pressure fluctuations are often associated
with vibration phenomena—either as cause or effect. Strain-gage transducers are
widely used in such situations.11

STRAIN-GAGE INSTRUMENTATION 17.9

FIGURE 17.8 Cantilever force-measuring
transducer, consisting of beam with load applied
at free end. Gage strain is a linear function of the
force if the proportional limit is not exceeded.

FIGURE 17.7 Clip gage for instrumenting
large displacements. Proportions of clip gage are
designed to keep strain well within the propor-
tional limit of the material.
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Pressure pickups based on strain gages are commonly one of three principal
types: piston, diaphragm, or tube. In the piston type the pressure acts against a freely
movable flat surface (which may be either a piston or a diaphragm), the motion of
which is inhibited by an elastic member instrumented with strain gages to measure
the force (Fig. 17.11).

Diaphragm-type pressure transducers, shown in Fig. 17.12, have the strain gages
applied directly to the back surface of the diaphragm so that diaphragm strain is a
measure of pressure.12 The simplest form of pressure transducer to construct is the
tube type, shown in Fig. 17.13. In this type, strain gages are applied to the outer surface
of a tube which has the fluid pressure acting on its inner surface. It is sometimes nec-
essary to thin the wall of the tube or to use a longitudinally crimped tube in order to
increase the strain magnitude to a measurable level. As a convenient alternative, the
Bourdon tube in a conventional mechanical pressure gage can serve as the transduc-
ing element if strain gages are attached to it.The compressibility of the fluid contained
in the tube must be considered for its effect on the frequency response of this type of
unit. Pressure pickups should be calibrated statically, and preferably dynamically, prior
to use.

17.10 CHAPTER SEVENTEEN

FIGURE 17.10 Widely used commercial form of axial force transducer for large loads.

FIGURE 17.9 Ring gage for force measurement. This type of gage provides sensitive axial load
measurement without undue loss of rigidity or ruggedness.
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ACCELERATION

At one time, wire or foil strain gages were used as the transducing elements in resis-
tive accelerometers. Now silicon elements are usually used because of their higher
sensitivity. See Piezoresistive Accelerometers, Chap. 12.

STRAIN-GAGE CIRCUITRY AND

INSTRUMENTATION

In order to study the detailed cyclical nature of vibration problems or the transient
phenomena commonly associated with mechanical shock, it is usually necessary to
obtain some form of meter output or graphical record of the events. To produce an
output voltage proportional to resistance change requires (1) electrical amplification,
since the output of a resistance strain gage usually is only in the range from 10 to 

1000 microvolts, and (2) a stable, well-
regulated source of electric current, or
excitation. These two factors are of pri-
mary importance in determining the
nature of the electrical instrumentation
system which can be used satisfactorily
with the resistance strain gage.

A signal conditioner, described in
Chap. 13, limits the bandwidth of a signal
from a transducer so as to restrict the 
signal to within the frequency range of
interest, usually removing extraneous
components which may otherwise domi-
nate and restrict the available dynamic
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FIGURE 17.13 Readily made pressure trans-
ducer consisting of length of tubing with strain
gages attached. Dilation of the tube with pres-
sure creates strain in gages.

FIGURE 17.11 Piston-type pressure trans-
ducer with diaphragm seal for piston. Pressure
load on piston head is sensed by strain gages on
supporting column.

FIGURE 17.12 Pressure pickup whose output
is a function of diaphragm strain. As diaphragm
deforms under pressure, strain is transmitted to
gage to produce electrical signal.
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range of the useful part of the signal; a signal conditioner may integrate the signal (to
velocity and/or displacement). A signal conditioner also supplies power to a strain
gage, since such a transducer is not self-generating. To avoid the possibility of the
pickup of background noise, the length of cables between the transducer and signal
conditioner should be minimized.

There are many circuit arrangements for supplying a strain gage with excitation
current and obtaining a signal corresponding to deformation of the gage. Each of
these types of circuits has its relative advantages and disadvantages—for example,
with respect to sensitivity, temperature compensation, signal enhancement, and ease
of operation. Such considerations are further discussed in detail in Refs. 6 and 13.
Two of the most common arrangements are the potentiometer circuit and the
Wheatstone bridge circuit.

POTENTIOMETER CIRCUIT

Figure 17.14, known as the potentiometer circuit (sometimes called a half-bridge cir-
cuit), is the simplest circuit arrangement for supplying a strain gage with excitation
current and obtaining a signal corresponding to deformation of the gage. In this cir-
cuit, the resistor RB (called the ballast resistor) is of relatively high value to maintain
the current flow in the circuit relatively constant and independent of small changes
in resistance of the strain gage RG.The current is supplied by the dc electrical source
e. Here, the output signal from the potentiometer circuit, resulting from a variation
in the resistance of the strain gage, is designated as eo.

This circuit is well suited to the instrumentation of dynamic or fluctuating strains,
but is totally unsuited for the measurement of static strains or the static component of
a combined static and dynamic strain.Therefore, in dynamic applications, it is common
practice to block the direct current, i.e., the steady-state (zero-strain) portion of the
output voltage, so that only the fluctuating component is measured. This is done by
inserting a capacitor C between the potentiometer circuit output and the input of the
following amplifier, as illustrated in Fig. 17.15. An ac signal, representing the alterna-
tions in the strain to which the gage is subjected, is transmitted through the capacitor.
Any influences in addition to strain that may modify the resistance of the strain gage
(for example, temperature changes) also produce output voltages in this circuit. Since
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FIGURE 17.14 Potentiometer circuit for
dynamic strain signals. Nearly constant current
through the circuit, combined with varying gage
resistance, produces output signal.

FIGURE 17.15 Overall arrangement of cir-
cuits for instrumenting dynamic strain. Signal
from gage is taken to ac amplifier through iso-
lating capacitor.
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the capacitor coupling to the amplifier is essentially a high-pass filter, temperature-
induced output voltage changes are attenuated severely unless the frequency of such
changes is high enough to be of the same order of magnitude as the alternating strain.
Fortunately, most temperature changes which may affect strain gages occur too slowly
to be carried through this circuit arrangement.

WHEATSTONE BRIDGE

In the potentiometer circuit it is necessary to block the dc component of the output
voltage with a capacitor before feeding the signal to the input of an amplifier. The
same effect can be achieved by suppressing the dc component of the signal by con-
necting two potentiometer circuits in parallel and taking the output signal from cor-
responding points in the two branches of the resulting network, as shown in Fig. 17.16.
This circuit arrangement is generally referred to as a Wheatstone bridge, and repre-
sents one of the most precise methods known for measuring (or comparing) resist-

ances. Advantages of the Wheatstone
bridge over the potentiometer circuit are
(1) much greater flexibility in circuit
arrangements for signal augmentation,
temperature compensation, and cancel-
lation or separation of variables, (2)
capacity for accurately indicating com-
bined static and dynamic strains, and (3)
virtually complete freedom from error
due to resistive changes in the conduc-
tors connecting the supply voltage to the
network. As an example of the signifi-
cance of the last point, consider the
effect of the contact resistance variations
which might occur in a set of slip rings
being used in conjunction with a test of
torsional vibration in a rotating shaft.

SELECTION OF INSTRUMENTS FOR STRAIN MEASUREMENT

The output voltage from a strain-gage potentiometer circuit or Wheatstone bridge
is, for elastic strain magnitudes in metals, very small. Electrical amplification is
required to bring the signal to a level where it can be used conveniently for indica-
tion or recording.13 To assure satisfactory performance and precision, the entire
instrument system, from power supply to recording instrument, should be consid-
ered as a unit. Figure 17.17 illustrates in block form the basic elements of a strain-
gage instrumentation system.The criteria for selecting the individual components of
such a system are fixed by the nature of the strain being studied, the type of infor-
mation required from the system, and the mutual compatibility of the various system
components. Consideration should be given to the required frequency response, the
input and output impedances of the units in the system, the signal amplitudes being
dealt with, and the accuracy of measurement desired. In general, it is safe to assume
that the strain gage will respond to considerably higher frequencies than any
mechanical device to which it may be attached. In the case of small members vibrat-
ing at high frequencies, the limitation is more apt to arise from the change in mass
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FIGURE 17.16 Wheatstone-bridge circuit for
static and dynamic strain measurement.
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due to the presence of the gage and its lead wires. The lead wires must be firmly
attached to the gage.

Commercial instruments for use with strain gages usually combine several if not
all of the components of Fig. 17.17 into a single unit. The limitations of such devices
should be investigated prior to purchase. For example, the instrument may include
an alternating-frequency source of power for the Wheatstone bridge. This can lead
to difficulties in the measurement of high-frequency strains. The frequency of the
strain being measured (which will modulate the power supply in the bridge circuit)
is limited to approximately 10 to 20 percent of the carrier frequency. If the carrier
frequency is high enough to overcome this objection, the capacitive unbalance and
pickup in the strain-gage leads is apt to be excessive.

Strain-gage measurements made in the presence of an intense magnetic field
present a special problem since the gage resistance may change as a result of the
imposed magnetic field.
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FIGURE 17.17 Block diagram of basic elements of strain-gage instrumentation
system.
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CHAPTER 18
CALIBRATION OF PICKUPS

M. Roman Serbyn

Jeffrey Dosch

INTRODUCTION

This chapter describes various methods of calibrating shock and vibration transduc-
ers, commonly called vibration pickups. The objective of calibrating a transducer is
to determine its sensitivity or calibration factor, as defined below. The chapter is
divided into three major parts which discuss comparison methods of calibration,
absolute methods of calibration, and calibration methods which employ high accel-
eration and shock. Field calibration techniques are described in Chap. 15.

PICKUP SENSITIVITY, CALIBRATION FACTOR,

AND FREQUENCY RESPONSE

As defined in Chap. 12, the sensitivity of a vibration pickup is the ratio of electrical
output to mechanical input applied along a specified axis.1–3 The sensitivity of all
pickups is a function of frequency, containing both amplitude and phase informa-
tion, as illustrated in Fig. 18.1, and therefore is usually a complex quantity. If the sen-
sitivity is practically independent of frequency over a range of frequencies, the value
of its magnitude is referred to as the calibration factor for that range, but it is speci-
fied at a discrete frequency.The phase component of the sensitivity function likewise
has a constant value in that range of frequencies, usually equal to zero or 180°, but it
may also be proportional to frequency, as explained in Chap. 12.

The frequency response of a pickup is shown by plotting the magnitude and phase
components of its sensitivity versus frequency. This information is usually presented
relative to the value of sensitivity at a reference frequency within the flat range. A
preferred frequency, internationally accepted, is 160 Hz.

Displacements are usually expressed as single-amplitude (peak) or double-
amplitude (peak-to-peak) values, while velocities are usually expressed as peak,
root-mean-square (rms), or average values. Acceleration and force generally are
expressed as peak or rms values. The electrical output of the vibration pickup may
be expressed as peak, rms, or average value.The sensitivity magnitude or calibration
factor are commonly stated in similarly expressed values, i.e., the numerator and

18.1
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denominator are both peak or both rms values. Examples of typical sensitivity spec-
ifications for an accelerometer: 2 pC per m/sec2, 10 millivolts/m/sec2, 5 milliV/g
(where C is the symbol for coulomb, V is the symbol for volt, and g is the accelera-
tion of gravity). For some special applications it may be desirable to express the sen-
sitivity in mixed values, such as rms voltage per peak acceleration.

CALIBRATION TRACEABILITY

In calibrating an instrument, one measures the instrument’s error relative to a refer-
ence which is traceable to the national standard of a country.A calibration is said to be
traceable5 to a national or international standard if it can be related to the standard
through an unbroken chain of comparisons—all having stated uncertainties. In the
U.S.A., for example, national vibration standards are maintained at the National Insti-
tute of Standards and Technology in Gaithersburg, Maryland. A number of other
national metrology laboratories having known capabilities for maintaining national
vibration standards are listed in Table 18.1. Countries whose national laboratories do
not provide a national vibration standard may belong to a regional international asso-
ciation, such as NORAMET (North American Metrology Cooperation), EUROMET
(European Metrology Cooperation), or OIML (Organization for Legal Metrology)
that can assist transducer manufacturers in setting up steps necessary for establishing
traceability to a national standard.

Vendors of transducers must be able to show that calibrations of their instru-
ments are traceable to a national standard by means of calibration reports stating
the value(s) of sensitivity, measurement uncertainty, environmental conditions, and
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FIGURE 18.1 Pickup amplitude and phase response as functions of frequency. (After M. Ser-
ridge and T.R. Licht.4)
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identification of the standard(s) used in the calibration procedure. Depending on
the application, there may be one or more links to the national standard.

Primary and Secondary Standards. Primary standards,6,7 maintained at national
metrology institutes, are derived from absolute measurements8 of the transducer’s
sensitivity, measured in terms of seven basic units. For example, the absolute meas-
urement of “speed” must be made in terms of measurements of distance or distance
and time, not by a speedometer. Thus the word absolute implies nothing about preci-
sion or accuracy. An example of a laboratory setup for the calibration of primary-
standard accelerometers, derived from absolute measurements, is shown in Fig.
18.2.9 A vibration exciter generates sinusoidal motion which is measured by a

CALIBRATION OF PICKUPS 18.3

TABLE 18.1 National Standards Laboratories Responsible for the Calibration 
of Vibration Pickups

Institution Laboratory Location Country

CSIRO Natl. Measurement Laboratory Lindfield Australia
INMETRO Laboratório de Vibrações Rio de Janeiro Brazil
NRC-CNRC Inst. Natl. Meas. Stds. Ottawa Canada
NIM Vibrations Laboratory Beijing China
CMU Primary Stds. of Kinematics Prague Czech Repub.
B&K Danish Prim. Lab. for Acoustics Naerum Denmark
BNM CEA/CESTA Belin-Beliet France
PTB Fachlabor. Beschleunigung Braunschweig Germany
IMGC Sezione Meccanica Torino Italy
NRLM Mechanical Metrology Dept. Tsukuba Japan
KSRI Division of Appl. Metrology Daedeog Danji Rep. of Korea
NMC SIRIM Berhad Malaysia
CENAM Div. Acustica y Vibraciones Queretaro Mexico
DSIR Measurement Stds. Laboratory Lower Hutt New Zealand
VNIIM Mendeleyev Inst. for Metrology St. Petersburg Russia
ITRI Center for Measurement Stds. Hsinchu Taiwan
NIST Manufacturing Metrology Div. Gaithersburg U.S.A.

AIRBORNE
ACCELERATION EXCITER

INTERFEROMETER

INDICATING
INSTRUMENT
(STANDARD)

SIGNAL-
PROCESSING

SYSTEM

DUMMY
MASS

LASER

LIGHT
DETECTOR

ACCELEROMETER
STANDARD

FIGURE 18.2 Primary (absolute) calibration of an accelerometer standard using laser interferom-
etry. (After von Martens.9)
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Michelson interferometer (described later in this chapter). The vibration is applied
to the base of the standard accelerometer whose output is measured. A dummy
mass, mounted on its top surface, simulates the conditions when this standard
accelerometer is used to calibrate a secondary standard10 accelerometer by the com-
parison method described in the next section. Secondary standards (also referred to
as transfer standards or working standards) are maintained at various government
laboratories and industrial laboratories.A secondary standard accelerometer may be
calibrated either from absolute measurements or from a comparison with a primary
standard accelerometer. Such secondary standards are usually used for purposes of
comparisons of calibrations between laboratories or for checking production and
field units.

COMPARISON METHODS OF CALIBRATION

A rapid and convenient method of measuring the sensitivity of a vibration pickup to
be tested is by direct comparison of the pickup’s electrical output with that of a sec-
ond pickup (used as a “reference” standard) that has been calibrated by one of the
methods described in this chapter. A comparison method is used in most shock and
vibration laboratories, which periodically send their standards to a primary stan-
dards laboratory for recalibration. This procedure should be followed on a yearly
basis in order to establish a history of the accuracy and quality of its reference stan-
dard pickup.

In this method of calibration the two
pickups usually are mounted back-to-
back on a vibration exciter as shown in
Fig. 18.3. It is essential to ensure that
each pickup experiences the same
motion. Any angular rotation of the
table should be small to avoid any dif-
ference in excitation between the two
pickup locations. The error due to rota-
tion may be reduced by carefully locat-
ing the pickups firmly on opposite faces
with the center-of-gravity of the pickups
located at the center of the table. Rela-
tive differences in pickup excitation may
be observed by reversing the pickup
locations and observing if the voltage
ratio is the same for both positions.

Calibration by the comparison method is limited to the range of frequencies and
amplitudes for which the reference standard pickup has been previously calibrated.
If both pickups are linear, the sensitivity of the test pickup can be calculated in both
magnitude and phase from

St = Sr (18.1)

where St = sensitivity of test pickup
Sr = sensitivity of reference standard pickup
et = output voltage from test pickup
er = output voltage from reference standard pickup

et�
er
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FIGURE 18.3 Comparison method of calibra-
tion: Pickup 2 is calibrated against Pickup 1 (the
reference standard).The two pickups may be ex-
cited by any of the means described in this chap-
ter. (After ANSI Standard S2.2-1959, R 1997.1)
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Several calibration methods described below are variations on the implementation
of Eq. (18.1); they differ mainly in the manner of vibration excitation.

USING THE COMPARISON METHOD

A simple and convenient way of performing a comparison calibration is to fix the
test pickup and reference standard pickup so they experience identical motion, as in
Fig. 18.3.Then, set the frequency of the vibration exciter at a desired value, adjust the
amplitude of vibration of the vibration exciter to a desired value, and then compare
the electrical outputs of the pickups. Often, instead of making a comparison at a
fixed frequency, a graphical plot of the sensitivity versus frequency is obtained by
incorporating a swept-frequency signal generator in the calibration system.

RANDOM-EXCITATION-TRANSFER-FUNCTION METHOD

The use of random-vibration-excitation and transfer-function analysis techniques
can provide quick and accurate comparison calibrations.11 The reference standard
pickup and the test pickup are mounted back-to-back on a suitable vibration exciter.
Their outputs are usually fed into a spectrum analyzer through a pair of low-pass
(antialiasing) filters. The bandwidth of the random signal which drives the exciter is
determined by settings of the analyzer.

This method provides a nearly continuous calibration over a desired frequency
spectrum, with the resulting sensitivity function having both amplitude and phase
information. Since purely sinusoidal motion is not a requirement as in the other cal-
ibration methods, this lessens the requirements for the power amplifier and exciter
to maintain low values of harmonic distortion. A very useful measure of process
quality is obtained by computing the input-output coherence function, which
requires knowledge of the input and output power spectra, the cross-power spec-
trum, and the transfer function.

CALIBRATION BY ABSOLUTE METHODS

RECIPROCITY METHOD

The reciprocity calibration method is an absolute means for calibrating vibration
exciters that have a velocity coil or reference accelerometer.This method relates the
pickup sensitivity to measurements of voltage ratio, resistance, frequency, and mass.
For this method to be applicable, it is necessary that the vibration exciter system be
linear (e.g., that the displacement, velocity, acceleration, and current in the driver
coil each increase linearly with force and driver-coil voltage). The reciprocity
method is used chiefly with electrodynamic exciters12 but also with piezoelectric
vibration exciters.13

The reciprocity method generally is applied only under controlled laboratory
conditions. Many precautions must be taken, and the process is usually time-
consuming. Several variations of the basic approach have been developed at
national standards laboratories.14,15 The method described here has been used at the
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National Institute of Standards and Technology.16–19 The method consists of two 
laboratory experiments:

1. The measurement of the transfer admittance between the exciter’s driver coil
and the attached velocity coil or accelerometer.

2. The measurement of the voltage ratio of the open-circuit velocity coil or
accelerometer and the driving coil while the exciter is driven by a second exter-
nal exciter. The use of a piezoelectric accelerometer is assumed here. The electri-
cal connections for the transfer admittance and voltage ratio measurements are
shown in Fig. 18.4.

18.6 CHAPTER EIGHTEEN

FIGURE 18.4 Transfer-admittance and voltage-ratio-measurement circuit connections
for the reciprocity calibration method in the Levy-Bouche realization.14

The relationship defining the transfer admittance is

Y = (18.2)

where Y = transfer admittance
e12 = voltage generated in standard accelerometer and amplifier

I = current in driver coil

and the bold letters denote phasor (complex) quantities.The current is determined by
measuring the voltage drop across a standard resistor.The phase, ψY, of Y is measured
with a phase meter having an uncertainty of �0.1° or better. Transfer admittance
measurements are made with a series of masses attached, one at a time, to the table

I
�
e12
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of the exciter.Also, a zero-load transfer admittance measurement is made before and
after attaching each mass. This zero-load measurement is denoted by Y0. Using the
measured values of Y and Y0, graphs of the real and imaginary values of the ratio

Tn = (18.3)

are plotted versus Mn for each frequency, where Mn is the value of the mass attached
to the table.The zero intercepts, Ji and Jr, of the resulting nominally straight lines and
their slopes, Qi and Qr, are computed by a weighted least-squares method.12 The val-
ues of Y0 used in the calculations are obtained by averaging the values of the Y0

measurements before and after each measurement of Y using different masses.
These computed values are used in determining the sensitivity of the standard.

The ratio of two voltages, measured while the exciter is driven with an external
exciter, is given by

R = (18.4)

where e14 = voltage generated in standard accelerometer and amplifier, and e15 =
open-circuit voltage in driving coil.

After R, Jr, Ji, Qr, and Qi have been determined for a number of frequencies, f, the
sensitivity of the exciter is calculated from the following relationship:12

S = � �1/2�1 + � (18.5)

where j = unit imaginary vector
J = Jr + jJi

Q = Qr + jQi

M =

The sensitivity of the exciter is, therefore, determined from the measured quantities
Q, J, T, and f and from the masses Mn which are attached to the exciter table. The
sensitivity as computed from Eq. (18.5) has the units of volts per meter per second
squared if the values of the measurements are in the SI system. If the masses Mn are
not in kilograms, appropriate conversion factors must be applied to the quantities J,
Q, and M. A commonly used engineering formula,12 with the mass expressed in
pounds and the sensitivity in millivolts per g, is

S = 2635 � �1/2
(18.6)

which also assumes that MQ/J � 1, a condition usually satisfied in practice but which
should be verified experimentally.The use of a computer greatly facilitates the appli-
cation of the reciprocity calibration process.

Assuming the errors to be uncorrelated, a typical estimate of uncertainty
expected from a reciprocity calibration method is ±0.5 percent in the frequency
range 100 to 1000 Hz. This is a twofold improvement over the earlier systems.18,19

The critical component in a reciprocity-based calibration system is the vibration
exciter. Electrodynamic exciters utilizing an air bearing are generally superior to
other types, for this application.

RJ
�
jf

J(Y − Y0)��
1 − Q(Y − Y0)

MQ
�

J
RJ
�
j2πf

e14�
e15

Mn�
Y − Y0
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CALIBRATION USING THE EARTH’S GRAVITATIONAL FIELD

The earth’s gravitational field provides a convenient means of applying a small con-
stant acceleration to a vibration pickup. It is particularly useful in calibrating
accelerometers whose frequency range extends down to 0 Hz. A 2g change in accel-
eration may be obtained by first aligning the sensitivity axis of the transducer in one
direction of the earth’s gravitational field, as shown in Fig. 15.5A, and then inverting
it so the sensitive axis is aligned in the opposite direction.This method of calibration
is particularly useful in field work.

Accelerations in the 1–10g range can be generated by several methods, which have
been largely replaced by the structural gravimetric calibrator described in the next sec-
tion. In the tilting-support calibrator1 the pickup is fastened to one end of an arm
attached to a platform. The arm may be set at any angle between 0° and 180° relative
to the vertical, thus yielding different values of acceleration.The pendulum calibrator1

generates transient accelerations as great as 10g for a duration of about one second. In
the rotating-table calibrator20,21 the disk on which the test pickup is mounted rotates at
a uniform angular rate about a horizontal axis in such a way that the pickup’s axis of
sensitivity rotates in a vertical plane.This method makes it possible to obtain both the
static and dynamic responses of the pickup in the same test setup.

Structural-Gravimetric Calibration. This technique provides a simple, robust, and
low-cost method of calibrating pickups.22,23 The structural-gravimetric-calibration (SGC)
method is applicable over a broad frequency range because it relies on a quartz force
transducer as the reference pickup and the behavior of the simplest of structures (i.e., a
mass behaving as a rigid body). It references the acceleration of gravity and allows the
measurement of sensitivity magnitude and phase. The results of calibration using this
method agree within a fraction of 1 percent with those obtained by laser interferometry
and reciprocity methods.The following steps are the procedure of SGC method:

Step 1. Determine the acceleration sensitivity Sr of the reference force transducer.
Mount the reference force transducer, reference mass (can be built-in or external),
and the test pickup to be calibrated on a drop-test fixture, as shown in Fig. 18.5. (For
use at higher frequencies it is important to make the reference mass small in size in
order to satisfy the rigid-body assumption.) Then subject the mass and the two pick-
ups to a free fall of 1g by striking the junction of line, which causes the line to relax
momentarily and impart a step-function gravitational acceleration to the assembly
by allowing it to fall freely. Measure the output of the reference force transducer, eg;
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FIGURE 18.5 Gravimetric free-fall calibrator for scaling reference force gage. (After D. Corelli
and R. W. Lally.22)
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in order to reduce the effect of measurement noise, curve fitting may be used to esti-
mate the step value. Equation (18.7) shows how the sensitivity of the reference force
transducer is related to the other parameters of the system.

Sr � SrfM � M � (18.7)

where Sr = acceleration sensitivity of the reference force transducer, in mV/ms�2

Srf = force sensitivity of the reference force transducer, in mV/N
M = total mass on the force transducer, in kg
eg = output of the force transducer, in mV
g = acceleration of free fall due to gravity, in ms�2

Note that eg is numerically equal to Sr expressed in mV/g.
Step 2. Measure the voltage ratio et /er . Remove the reference force transducer,

reference mass, and the pickup being calibrated from the drop-test fixture; then
mount them on the vibration exciter, as shown in Fig. 18.6. By measuring the trans-
fer function et /er (i.e., the ratio of the voltage output of the signal conditioner from
the test pickup to the voltage output of the signal conditioner from the reference
force transducer, shown in Fig. 18.6) the frequency response of the test pickup can be

eg
�
g

eg
�
gM
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FIGURE 18.6 System configuration for frequency response calibration by measuring acceleration-
to-force ratio.

measured over 0.1 to 100,000 Hz, depending upon frequency range of the vibration
exciter and signal-to-noise ratio of the system. For use at low frequencies, the dis-
charge time constant of the reference force transducer should be ten times greater
than that of the test pickup.

Step 3. Calculate the sensitivity St of the test pickup. If the reference force trans-
ducer and the test pickup are linear, the acceleration sensitivity of the test pickup St,
expressed in the same units as Sr, can be calculated from Eq. 18.1. If either velocity
or displacement sensitivity of the test pickup is required, it can be obtained by divid-
ing the acceleration sensitivity by 2�f or (2�f )2, respectively.

CENTRIFUGE CALIBRATOR

A centrifuge provides a convenient means of applying constant acceleration to a
pickup. Simple centrifuges can be obtained readily for acceleration levels up to 100g
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and can be custom-made for use at much higher values because of the light load
requirement by this application.They are particularly useful in calibrating rectilinear
accelerometers whose frequency range extends down to 0 Hz and whose sensitivity to
rotation is negligible. Centrifuges are mounted so as to rotate about a vertical axis.
Cable leads from the pickup, as well as power leads, usually are brought to the table
of the centrifuge through specially selected low-noise slip rings and brushes.

To perform a calibration, the accelerometer is mounted on the centrifuge with its
axis of sensitivity carefully aligned along a radius of the circle of rotation. If the cen-
trifuge rotates with an angular velocity of ω rad/sec, the acceleration a acting on the
pickup is

a = ω2r (18.8)

where r is the distance from the center-of-gravity of the mass element of the pickup
to the axis of rotation. If the exact location of the center-of-gravity of the mass in the
pickup is not known, the pickup is mounted with its positive sensing axis first out-
ward and then inward; then the average response is compared with the average
acceleration acting on the pickup as computed from Eq. (18.8) where r is taken as
the mean of the radii to a given point on the pickup case. The calibration factor is
determined by plotting the output e of the pickup as a function of the acceleration a
given by Eq. (18.8) for successive values of ω and then determining the slope of the
straight line fitted through the data.

INTERFEROMETER CALIBRATORS

A primary (absolute) method of calibrating an accelerometer using standard laser
interferometry is shown in Fig. 18.2.All systems in the following category of calibra-
tors consist of three stages: modulation, interference, and demodulation. The differ-
ences are in the specific type of interferometer that is used (for example, a
Michelson or Mach-Zehnder) and in the type of signal processing, which is usually
dictated by the nature of the vibration. The vibratory displacement to be measured
modulates one of the beams of the interferometer and is consequently encoded in
the output signal of the photodetector in both magnitude and phase.

Figure 18.7 shows the principle of operation of the Michelson interferometer.
One of the mirrors, D in Fig. 18.7A, is attached to the plate on which the device to be
calibrated is mounted. Before exciting vibrations, it is necessary to obtain an inter-
ference pattern similar to that shown in Fig. 18.7B. The relationship underlying the
illustrations to be presented is the classical interference formula for the time aver-
age intensity I of the light impinging on the photodetector surface.24,25

I = A + B cos 4πδ/λ (18.9)

where A and B are system constants depending on the transfer function of the detec-
tor, the intensities of the interfering beams, and alignment of the interferometer.The
vibration information is contained in the quantity δ, 2δ being the optical-path differ-
ence of the interfering beams. The absoluteness of the measurement comes from λ,
the wavelength of the illumination, in terms of which the magnitude of vibratory dis-
placement is expressed. Velocity and acceleration values are obtained from dis-
placement measurements by differentiation with respect to time.

Fringe-Counting Interferometer. An optical interferometer is a natural instru-
ment for measuring vibration displacement.The Michelson and Fizeau interferome-
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ters are the most popular configurations. A modified Michelson interferometer is
shown in Fig. 18.8.26 A corner cube reflector is mounted on the vibration-exciter
table. A helium-neon laser is used as a source of illumination. The photodiode and
its amplifier must have sufficient bandwidth (as high as 10 MHz) to accommodate
the Doppler frequency shift associated with high velocities. An electrical pulse is
generated by the photodiode for each optical fringe passing it. The vibratory dis-
placement amplitude is directly proportional to the number of fringes per vibration
cycle. The peak acceleration can be calculated from

a = (18.10)

where λ = wavelength of light
ν = number of fringes per vibration cycle
f = vibration frequency

Interferometric fringe counting is useful for vibration-displacement measurement in
the lower frequency ranges, perhaps to several hundred hertz depending on the
characteristics of the vibration exciter.27,28 At the low end of the frequency spectrum,
conventional procedures and commercially available equipment are not able to
meet all the present requirements. Low signal-to-noise ratios, cross-axis components
of motion, and zero-drifts are some of the problems usually encountered. In re-
sponse to those restrictions an electrodynamic exciter for the frequency range 0.01
to 20 Hz has been developed.29 It features a maximum displacement amplitude of 0.5
meter, a transverse sensitivity less than 0.01 percent, and a maximum uncorrected
distortion of 2 percent. These characteristics have been achieved by means of a spe-
cially designed air bearing, an electro-optic control, and a suitable foundation.

Figure 18.9 shows the main components of a computer-controlled low-frequency
calibration system which employs this exciter. Its functions are (1) generation of sinu-
soidal vibrations, (2) measurement of rms and peak values of voltage and charge, (3)
measurement of displacement magnitude and phase response, and (4) control of non-
linear distortion and zero correction for the moving element inside a tubelike mag-
net. Position of the moving element is measured by a fringe-counting interferometer.
Uncertainties in accelerometer calibrations using this system have been reduced to
about 0.25 to 0.5 percent, depending on frequency and vibration amplitude.

λνπ2f 2

�
2
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FIGURE 18.7 The principle of operation of a Michelson interferometer: (A) Optical system.
(B) Observed interference pattern. (C) Variation of the light intensity along the X axis.

(A) (C)

(B)
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Fringe-Disappearance Interferometer. The phenomenon of the interference
band disappearance in an optical interferometer can be used to establish a precisely
known amplitude of motion. Figure 18.7 shows the principle of operation of the
Michelson interferometer employed in this technique. One of the mirrors D, in Fig.
18.7A, is attached to the mounting plate of the calibrator. Before exciting vibrations
it is necessary to obtain an interference pattern similar to that shown in Fig. 18.7B.

When the mirror D vibrates sinusoidally30 with a frequency f and a peak dis-
placement amplitude d, the time average of the light intensity I at position x, meas-
ured from a point midway between two dark bands, is given by

I = A + BJ0 � � cos � � (18.11)

where J0 = zero-order Bessel function of the first kind
A and B = constants of measuring system

h = distance between fringes, as shown in Fig. 18.11B and C

For certain values of the argument, the Bessel function of zero order is zero; then the
fringe pattern disappears and a constant illumination intensity A is present. Elec-
tronic methods for more precisely establishing the fringe disappearance value of the
vibratory displacement have been successfully used at the National Institute of Stan-
dards and Technology17,31 and elsewhere. The latter method has been fully auto-
mated using a desktop computer.

The use of piezoelectric exciters is common for high-frequency calibration of
accelerometers.32 They provide pistonlike motion of relatively high amplitude and

2πx
�

h
4πd
�

λ
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FIGURE 18.8 Typical laboratory setup for interferometric measurement of vibratory
displacement by fringe counting. (After R. S. Koyanagi.26)
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FIGURE 18.9 Simplified block diagram of a low-frequency vibration standard. (After H. J. von Martens.29)
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18.14 CHAPTER EIGHTEEN

are structurally stiff at the lower frequencies where displacement noise is bother-
some. When electrodynamic exciters are used with fringe disappearance methods, it
is generally necessary to stiffen the armature suspensions to reduce the background
displacement noise.

Signal-Nulling Interferometer. This method, although mathematically similar to
fringe disappearance, relies on finding the nulls in the fundamental frequency compo-
nent of the signal from a photodetector.17,25,33 The instrumentation is, therefore, quite
different, except for the interferometer. One successful arrangement is shown in Fig.
18.10. Laboratory environmental restrictions are much more severe for this method.

FIGURE 18.10 Interferometric measurement of displacement d as given by
J1(4πd/λ) = 0.

The interferometer apparatus should be well-isolated to ensure stability of the pho-
todetector signals.Air currents in the room may contribute to noise problems by phys-
ically moving the interferometer components and by changing the refractive index of
the air.An active method of stabilization has also been successfully employed.34

To make displacement amplitude measurements, a wave analyzer tuned to the
frequency of vibration can be used to filter the photodetector signal.The filtered sig-
nal amplitude will pass through nulls as the vibration amplitude is increased, accord-
ing to the following relationship:

I = 2BJ1� � (18.12)

where J1 is the first-order Bessel function of the first kind, and the other terms are as
previously defined. The signal nulls may be established using a wave analyzer. The
null amplitude will generally be 60 dB below the maximum signal level of the pho-
todetector output.

The accelerometer output may be measured by an accurate voltmeter at the
same time that the nulls are obtained. The sensitivity is then calculated by dividing
the output voltage by the displacement. Because the filtered output of the photode-
tector is a replica of the vibrational displacement, a phase calibration of the pickup
can also be obtained with this arrangement.

4πd
�

λ
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CALIBRATION OF PICKUPS 18.15

Heterodyne Interferometer. A homodyne interferometer is an interferometer in
which interfering light beams are created from the same beam by a process of beam
splitting. All illumination is at the same optical frequency. In contrast, in the hetero-
dyne interferometer,35 light from a laser-beam source containing two components,
each with a unique polarization, is separated into (1) a measurement beam and (2) a
reference beam by a polarized beam splitter. When the mounting surface of the
device under test is stationary, the interference pattern impinging on the photode-
tector produces a signal of varying intensity at the beat frequency of the two beams.
When surface moves, the frequency of the measurement beam is shifted because of
the Doppler effect, but that of the reference beam remains undisturbed. Thus, the
photodetector output can be regarded as a carrier that is frequency modulated by
the velocity waveform of the motion.

The main advantages of the heterodyne interferometer are greater measurement
stability and lower noise susceptibility. Both advantages occur because displacement
information is carried on ac waveforms; hence, a change in the average value of
beam intensity cannot be interpreted as motion. Digitization and subsequent phase
demodulation of the interferometer output reduce measurement uncertainties.36

This can yield significant improvements in calibration results at high frequencies,
where the magnitude of displacement typically is only a few nanometers. As in the
case of homodyning, variations of the heterodyning technique have been developed
to meet specific needs of calibration laboratories. Reference 37 describes an
accelerometer calibration system, applicable in the frequency range from 1 mHz to
25 kHz and at vibration amplitudes from 1 nanometer to 10 meters. The method
requires the acquisition of instantaneous position data as a function of the phase
angle of the vibration signal and the use of Fourier analysis.

HIGH-ACCELERATION METHODS 

OF CALIBRATION

Some applications in shock or vibration measurement require that high amplitudes
be determined accurately. To ensure that the pickups used in such applications meet
certain performance criteria, calibrations must be made at these high amplitudes.
The following methods are available for calibrating pickups subject to accelerations
in excess of several hundred g.

SINUSOIDAL-EXCITATION METHODS

The use of a metal bar, excited at its fundamental resonance frequency, to apply
sinusoidal accelerations for calibration purposes has several advantages: (1) an
inherently constant frequency, (2) very large amplitudes of acceleration (as much as
4000g, and (3) low waveform distortion. A disadvantage of this type of calibrator is
that calibration is limited to the resonance frequencies of the metal bar.

The bar can be supported at its nodal points, and the pickup to be calibrated can
be mounted at its mid-length location. The bar can be energized by a small electro-
magnet or can be self-excited. Acceleration amplitudes of several thousand g can
thus be obtained at frequencies ranging from several hundred to several thousand
hertz.The bar also may be calibrated by clamping it at its midpoint and mounting the
pickup at one end.38 The displacement at the point of attachment of the pickup can be
measured optically since displacements encountered are adequately large.
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The resonant-bar calibrator shown
in Fig. 18.11 is limited in amplitude 
primarily by the fatigue resistance of
the bar.38 Accelerations as much as
500g have been attained using alu-
minum bars without special designs.
Peak accelerations as large as 4000g
have been attained using tempered
vanadium steel bar. The bar is mounted
at its mid-length on a conventional
electrodynamic exciter. The acceler-
ometer being calibrated is mounted at
one end of the bar, and an equivalent
balance weight is mounted at the oppo-
site end in the same relative position.

Axial resonances of long rods have
been used to generate motion for accu-
rate calibration of vibration pickups
over a frequency range from about 1 

to 20 kHz and at accelerations up to 12,000g.39,40 The use of axially driven rods has
an advantage over the beams discussed above in that no bending or lateral motion
is present. This minimizes errors from the pickup response to such unwanted
modes and also from the direct measurement of the displacement having nonrec-
tilinear motion.

SHOCK-EXCITATION METHODS

There are several methods by which a sudden velocity change may be applied to
pickups designed for high-frequency acceleration measurement, for example, the
ballistic pendulum, drop-test, and drop-ball calibrators, described below. Any
method which generates a reproducible velocity change as function of time can be
used to obtain the calibration factor.1 Impact techniques can be employed to
obtain calibrations over an amplitude range from a few g to over 100,000g. An
example of the latter is the Hopkinson bar, in which the test pickup is mounted at
one end and stress pulses are generated by an air gun firing projectiles impacting
at the other end, described below.

An accurate determination of shock performance of an accelerometer depends
not only upon the mechanical and electrical characteristics of the test pickup but
also upon the characteristics of the instrumentation and recording equipment. It is
often best to perform system calibrations to determine the linearity of the test
pickup as well as the linearity of the recording instrumentation in the range of
intended use. Several of the following methods make use of the fact that the veloc-
ity change during a transient pulse is equal to the time integral of acceleration:

v = �t2

t1

a dt (18.13)

where the initial or final velocity is taken as reference zero, and the integration is
performed to or from the time at which the velocity is constant. If the output closely
resembles a half-sine pulse, the area is equal to approximately 2h(t2 − t1)/π, where h
is the height of the pulse, and (t2 − t1) is its width.

FIGURE 18.11 Resonant-bar calibrator with
the pickup mounted at end and a counterbalanc-
ing weight at the other. (After E. I. Feder and 
A. M. Gillen.38)
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CALIBRATION OF PICKUPS 18.17

In this section, several methods for applying known velocity changes v to a
pickup are presented. The voltage output e and the acceleration a of the test pickup
are related by the following linear relationship:

S = (18.14)

where S is the pickup calibration factor.
After Eq. (18.14) is substituted into Eq. (18.13), the calibration factor for the test

pickup can be expressed as

S = (18.15)

where

A = �t2

t1

e dt (18.16)

the area under the acceleration-versus-time curve.
The calibration factor assumes that no significant spectral energy exists beyond

the frequency region in which the test pickup has nominally constant complex sensi-
tivity (uniform magnitude and phase response as functions of frequency). In general,
this assumption becomes less valid with decreasing pulse duration resulting in
increasing bandwidth in the excitation signal.

Sometimes it is convenient to express acceleration as a multiple of g. The corre-
sponding calibration factor S1 is in volts per g:

S1 = = (18.17)

In either case, the integrals representing A and v must first be evaluated. The lin-
ear range of a pickup is determined by noting the magnitude of the velocity change
v at which the calibration factor S or S1 begins to deviate from a constant value. The
minimum pulse duration is similarly found by shortening the pulse duration and not-
ing when S changes appreciably from previous values.

Hopkinson Bar Calibrator. An apparatus called a Hopkinson bar41–43 provides
very high levels of acceleration for use in the calibration and acceptance testing of
shock accelerometers. As shown in Fig. 18.12, a controlled-velocity projectile strikes
one end of the bar, at x = 0; a strain gage is placed at the middle of the bar, at x = L/2;
and the accelerometer under test is mounted at the other end of the bar, at x = L.
When the projectile strikes the bar, a strain wave is initiated at x = 0.This wave trav-
els along the bar, producing a large acceleration at the accelerometer. The duration
and shape of the strain wave can be controlled by varying the geometry and mate-

Ag
�

v
e

�
(a/g)

A
�
v

e
�
a

FIGURE 18.12 A Hopkinson bar, showing a projectile striking the bar at x = 0; a strain gage
mounted on the bar at x = L/2; and the accelerometer under test is attached to the bar at x = L.
Impact of the projectile on the bar generates a strain wave which travels down the bar.
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rial of the projectile. And, to a limited extent, the duration of the pulse can be con-
trolled by placing a piece of soft metal or rubber on the bar at the position where the
projectile strikes the bar, x = 0. The acceleration at the accelerometer may be deter-
mined from equations given in Ref. 43, using measured values of strain.

Ballistic Pendulum Calibrator. A ballistic pendulum calibrator provides a means
for applying a sudden velocity change to a test pickup.The calibrator consists of two
masses which are suspended by wires or metal ribbons. These ribbons restrict the
motion of the masses to a common vertical plane.44 This arrangement, shown in Fig.
18.13, maintains horizontal alignment of the principal axes of the masses in the
direction parallel to the direction of motion at impact. The velocity attained by the
anvil mass as the result of the sudden impact is determined.

18.18 CHAPTER EIGHTEEN

FIGURE 18.13 Components arrangement of the ballistic pendu-
lum with photodetector and light grating to determine the anvil-
velocity change during impact. (After R.W. Conrad and I.Vigness.44)

The accelerometer to be calibrated is mounted to an adapter which attaches to the
forward face of the anvil.The hammer is raised to a predetermined height and held in
the release position by a solenoid-actuated clamp. Since the anvil is at rest prior to
impact, it is necessary to record the measurement of the change in velocity of anvil
and transient waveform on a calibrated time base. One method of measurement of
velocity change is performed by focusing a light beam through a grating attached to
the anvil, as shown in Fig. 18.13. The slots modulate the light beam intensity, thus
varying the photodetector output, which is recorded with the pickup output. Since the
distance between grating lines is known, the velocity of the anvil is calculated directly,
assuming that the velocity is essentially constant over the distance between succes-
sive grating lines.The velocity of the anvil in each case is determined directly; the time
relation between initiation of the velocity and the pulse at the output of the pickup is
obtained by recording both signals on the same time base. The most frequently used
method infers the anvil velocity from its vertical rise by measuring the maximum hor-
izontal displacement and making use of the geometry of the pendulum system.

The duration of the pulse, which is the time during which the hammer and anvil
are in contact, can be varied within close limits.13 In Fig. 18.13 the hammer nosepiece
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is a disc with a raised spherical surface. It develops a contact time of 0.55 millisecond.
For larger periods, ranging up to 1 millisecond, the stiffness of the nosepiece is
decreased by bolting a hollow ring between it and the hammer. A pulse longer than
1 millisecond may be obtained by placing various compliant materials, such as lead,
between the contacting surfaces.

Drop-Test Calibrator. In the drop-test
calibrator, shown in Fig. 18.14, the test
pickup is attached to the hammer using a
suitable adapter plate. An impact is pro-
duced as the guided hammer falls under
the influence of gravity and strikes the
fixed anvil. To determine the velocity
change, measurement is made of the time
required for a contactor to pass over a
known region just prior to and after
impact.The pickup output and the contac-
tor indicator are recorded simultaneously
in conjunction with a calibrated time base.
The velocity change also may be deter-
mined by measuring the height h1 of ham-
mer drop before rebound and the height
h2 of hammer rise after rebound.The total
velocity is calculated from the following
relationship:

v = (2gh1)1/2 + (2gh2)1/2 (18.18)

A total velocity change of 40 ft/sec (12.2
meters/sec) is typical.

Drop-Ball Shock Calibrator. Figure
18.15 shows a drop-ball shock calibra-
tor.12,45 The accelerometer is mounted on
an anvil which is held in position by a
magnet assembly. A large steel ball is

dropped from the top of the calibrator, striking the anvil.The anvil (and mounted test
pickup) are accelerated in a short free-flight path. A cushion catches the anvil and
accelerometer. Shortly after impact, the anvil passes through an optical timing gate of
a known distance. From this the velocity after impact can be calculated. Acceleration
amplitudes and pulse durations can be varied by selecting the mass of the anvil, mass
of the impacting ball, and resilient pads on top of the anvil where the ball strikes. Com-
mon accelerations and durations are 100g at 33 milliseconds, 500g at 1 millisecond,
1000g at 1 millisecond, 5000g at 2 milliseconds, and 10,000g at 0.1 millisecond.45 With
experience and care, shock calibrations can be performed with an uncertainty of about
±5 percent.

INTEGRATION OF ACCELEROMETER OUTPUT

Change-of-velocity methods for calibrating an accelerometer at higher accelerations
than obtainable by the methods discussed above have been developed using spe-
cially modified ballistic pendulums, air guns, inclined troughs, and other devices.

CALIBRATION OF PICKUPS 18.19

FIGURE 18.14 Component of a conventional
drop tester used to apply a sudden velocity
change to a vibration pickup. (After R. W. Con-
rad and I. Vigness.44)
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Regardless of the device employed to generate the mechanical acceleration or the
method used to determine the change of velocity, it is necessary to compare the
measured velocity and the velocity derived from the integral of the acceleration
waveform as described by Eq. (18.13). Electronic digitizers can be used to capture
the waveform and produce a recording. Care must be exercised in selecting the time
at which the acceleration waveform is considered complete, and its integral should
be compared with the velocity.The calibration factor for the test pickup is computed
from Eq. (18.15) or (18.17).

IMPACT-FORCE SHOCK CALIBRATOR

The impact-force shock calibrator has a free-fall carriage and a quartz load cell. The
accelerometer to be calibrated is mounted onto the top of the carriage, as shown in
Fig. 18.16. The carriage is suspended about 1⁄2 to 1 meter above the load cell and
allowed to fall freely onto the cell.46 The carriage’s path is guided by a plastic tube.
Cushion pads are attached at the top of the load cell to lengthen the impulse duration
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FIGURE 18.15 Diagram of a drop-ball shock calibrator. The accelerometer
being calibrated is mounted on an anvil which is held in place by a small mag-
net. (After R. R. Bouche.45)
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and to shape the pulse.Approximate haversines are generated by this calibrator.The
outputs of the accelerometer and load cell are fed to two nominally identical charge
amplifiers or power units. The outputs from load cell and test accelerometer are
recorded or measured on a storage-type oscilloscope or peak-holding meters.

During impact, the voltage produced at the output of the accelerometer, ea(t), is

ea(t) = a(t)SaHa (18.19)

where a(t) = acceleration
Sa = calibration factor for accelerometer

Ha = gain of charge amplifier or power unit

The output of load cell ef(t) is

ef(t) = F(t)SfHf (18.20)

where F(t) = force
Sf = calibration factor for load cell

Hf = gain of charge amplifier or power unit

By using the relationship F(t) = ma(t), where m is the falling mass, and combining
Eqs. (18.19) and (18.20),

= (18.21)

and hence

Sa = Sf (18.22)

When calculating the mass, it is necessary to know the mass of the carriage,
accelerometer, mounting stud, cable connector, and a short portion of the accel-

ea(t) Hf m
��
ef(t) Hag

a(t)SaHa��
ma(t)SfHf

ea(t)
�
ef(t)
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FIGURE 18.16 Impact-force calibrator with auxiliary instruments.
(After W. P. Kistler.46)
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erometer cable. Experience has shown that for small coaxial cables, a length of about
2 to 4 cm is correct. Calibrations by this method can be accomplished with uncer-
tainties generally between ±2 to ±5 percent.

FOURIER-TRANSFORM SHOCK CALIBRATION

The above calibration methods yield the approximate magnitude of the sensitivity
function for the accelerometer being tested. For shock standards and other critical
applications, more information may be required, for example, the accelerometer’s
sensitivity, both in magnitude and phase, as a function of frequency.47–50 The equip-
ment required for obtaining this information usually consists of a mechanical-
shock-generating machine and a two-channel signal analyzer, in addition to the
accelerometer being tested and a reference accelerometer. For a typical applica-
tion, a signal analyzer with 12-bit resolution and 5 MHz sampling rate is adequate.
The calibration results are obtained from the complex ratios of the output of the
test accelerometer to that of the standard accelerometer (see Chap. 14, FFT Ana-
lyzers). The magnitude and phase of these ratios represent the sensitivity of the
test accelerometer relative to the standard.

The range of usable frequencies is limited by the pulse shape and duration, sam-
pling rate, and analyzer capability. Figure 18.17 shows a typical half-sine shock pulse

whose spectral content is predominantly
below about 2 kHz, but pulses of shorter
duration contain sufficient energy up to
10 kHz, and even 30 kHz.50 An important
advantage of the spectral methods over
the time-domain methods is that they do
not require the waveform or pulse to be
smooth and clean. Modern signal pro-
cessing equipment has made it possible
to calibrate shock accelerometers at
amplitudes approaching 1 megameter
per second2 by using the FFT method
with a Hopkinson bar,50 shown in Fig.
18.12. The uncertainties in this type of
calibration can be as low as 1 percent.51,52

VIBRATION EXCITERS USED FOR CALIBRATION

A vibration exciter that is suitable for calibration of vibration pickups should provide:

� Distortion-free sinusoidal motion
� True rectilinear motion in a direction normal to the vibration-table surface without

the presence of any other motion
� A table that is rigid for all design loads at all operating frequencies
� A table that remains at ambient temperature and does not provide either a source

or sink for heat regardless of the ambient temperature
� A table whose mounting area is free from electromagnetic disturbances

18.22 CHAPTER EIGHTEEN

FIGURE 18.17 A typical half-sine shock pulse
generated by a pneumatic shock machine.
Deceleration amplitude is 900g and pulse dura-
tion is 1 millisecond. (After J. D. Ramboz and 
C. Federman.47)
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� Stepless variation of frequency and amplitude of motion within specified limits,
which is easily adjustable

ELECTRODYNAMIC EXCITERS

Electrodynamic exciters, described in Chap. 25, satisfactorily meet the requirements
of the ideal calibrator, providing a constant-force (acceleration) output with little
distortion over a rather wide frequency range from 1 to 10,000 Hz.53 Ordinarily, to
cover this frequency range, more than one exciter is required. Specially designed
machines featuring long strokes for very low frequencies or ultralight moving ele-
ments for very high frequencies are commercially available. One national standards
laboratory has a custom-built vibration exciter that has a low-frequency limit of 20
mHz.29 This machine employs a special air bearing, real-time electro-optic control,
and a suitable foundation.

A shaker system for the calibration of accelerometer sensitivity has been devel-
oped at the National Institute of Standards and Technology54,55 with the goal of
reducing the inherent uncertainties in the absolute measurements of accelerometer
sensitivity. The shaker has dual retractable magnets equipped with optical ports to
allow laser-beam access to the surface upon which the accelerometer is mounted
and the one opposite to it. The purpose of the optical ports is to enable interfero-
metric measurement of the surface displacement.The moving element of the shaker
is physically compact for directional stability and good high-frequency response. At
each end it is equipped with nominally identical coils and axially oriented mounting
tables.The driving and sensing coils are located on the same moving element so that
a separate shaker external to the calibration shaker is not needed when a reciproc-
ity calibration is performed.The dual-coil feature eliminates complications resulting
from mutual mechanical coupling between two separate shakers. Minimal distortion
and cross-action motion were two of the most important design requirements of this
vibration generator. These parameters are essential for the validity of the assump-
tions underlying the theory of electromechanical reciprocity.

PIEZOELECTRIC EXCITERS

The piezoelectric exciter (see Fig. 25.9 and Chap. 12) offers a number of advantages
in the calibration of vibration pickups, particularly at high frequencies. Calibration is
impracticable at low frequencies because of inherently small displacements in this
frequency range. A design which has been used at the National Institute of Stan-
dards and Technology for many years is described in Ref. 32.

MECHANICAL EXCITERS

Rectilinear motion can be produced by mechanical exciter systems of the type
described in Chap. 25 under Direct-Drive Mechanical Vibration Machine. Their
usable frequency range is from few hertz to less than 100 Hz. Despite their relatively
low cost, mechanical exciters are no longer used for high-quality calibrations of trans-
ducers because of their appreciable waveform distortion and background noise.

For generating vibratory motion at discrete frequencies (below 5 Hz), a linear
oscillator can be employed. Reference 56 describes a calibrator consisting of a
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spring-supported table which is guided vertically by air bearings. Its advantages are
a clean waveform, resulting from free vibration, and large rectilinear displacement
with little damping, made possible by use of air bearings.

CALIBRATION OF TRANSVERSE SENSITIVITY

The characteristics of a vibration pickup may be such that an extraneous output volt-
age is generated as a result of vibration which is in a direction at right angles to the
axis of designated sensitivity of the pickup.This effect, illustrated in Fig. 12.11, results
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FIGURE 18.18 Transverse sensitivity of a piezoelectric accelerometer to vibration in the plane normal
to the sensitive axis.57
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in the axis of maximum sensitivity not being aligned with the axis of designated sen-
sitivity.As indicated in Eq. (12.11), the cross-axis or transverse sensitivity of a pickup
is expressed as the tangent of an angle, i.e., the ratio of the output resulting from the
transverse motion divided by the output resulting from motion in the direction of
designated sensitivity. This ratio varies with the azimuth angle in the transverse
plane, as shown in Fig. 12.12, and also with frequency. In practice, tan θ has a value
between 0.01 and 0.05 and is expressed as a percentage. Figure 18.18 presents a typ-
ical result of a transverse-sensitivity calibration.57

Knowledge of the transverse sensitivity is vitally important in making accurate
vibration measurements, particularly at higher frequencies (i.e., at frequencies
approaching the mounted resonance frequency of the pickup). Figure 18.19 shows
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FIGURE 18.19 The relative response of an accelerometer to main-axis and transverse-axis
vibrations.4

the relative responses of an accelerometer to main-axis and transverse-axis vibra-
tion. It is noteworthy that the transverse resonance frequency is lower than the usu-
ally specified mounted resonance frequency.

A direct measurement of the transverse sensitivity of a pickup requires a vibra-
tion exciter capable of pure unidirectional motion at the frequencies of interest.This
usually means that any cross-axis motion of the mounting table should be less than
2 percent of the main-axis motion.12 Resonance beam exciters1 and air-bearing shak-
ers53 have been used for this purpose.

The resonant-beam method,58 used by many testing laboratories to provide the
sensitivity of a transducer automatically (in both magnitude and direction) yields a
plot of its sensitivity versus angle (similar to the one shown in Fig. 18.18). The
accelerometer under test is mounted at the free end of a circular-section steel beam
which is cantilevered from a massive base. Motion of the accelerometer is generated
by exciting the beam near resonance in its first bending mode, providing a large-
amplitude vibration at the free end of the beam, typically at a frequency between
300 and 800 Hz. A pair of vibration exciters, and associated electronic equipment,
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permits the beam to be excited in any desired direction. Thus the transverse sensi-
tivity may be obtained at any angle without reorientation of the accelerometer.

Another method for obtaining the transverse sensitivity of a pickup is by use of
the impulse technique similar to that used in modal analysis (Chap. 21). An impulse
is generated by the impact of a hammer against a suspended mass on which the test
pickup is mounted. A force gage is mounted on the hammer, as illustrated in Fig.
18.20. From the characteristics of the force gage and its output when it strikes against
the suspended mass, from the output signal of the test pickup, and from the magni-
tude of the suspended mass, the transverse sensitivity of the accelerometer under
test Sta may be calculated according to a procedure described in Ref. 57, using the
following formula:

Sta = mSf � � (18.23)

where m = the mass of the suspended rigid block
Sf = the sensitivity of the force gage
ea = the output of the accelerometer under test
ef = the output of the force gage
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CHAPTER 19
SHOCK AND VIBRATION

STANDARDS

David J. Evans

Henry C. Pusey

INTRODUCTION

This chapter is concerned with shock and vibration standards covering (1) terminol-
ogy; (2) use and calibration of transducers and instrumentation; (3) shock and vibra-
tion generators; (4) structures and structural systems; (5) vehicles including
land-based, airborne, and ocean-going; (6) machines and machinery including test-
ing, condition monitoring, diagnostics, prognostics, and balancing; (7) human expo-
sure to shock and vibration; and (8) testing. These topics may be covered by
international, regional, or national documents that are issued as either standards or
recommended practices. The dominant international consensus standards bodies
concerned with shock and vibration are the International Organization for Stan-
dardization (ISO) and the International Electrotechnical Commission (IEC). The
U.S. members of ISO and IEC are the American National Standards Institute
(ANSI) and the United States National Committee of the International Elec-
trotechnical Commission (USNC/IEC), respectively.The USNC/IEC is a committee
of ANSI. Examples of regional standards bodies are the European Committee for
Standardization (CEN) and the European Committee for Electrotechnical Stan-
dardization (CENELEC). Within the U.S.A., ANSI standards are developed by
standards committees following the accredited standards procedures of ANSI.
These national committees also often furnish the expert members from the U.S.A. to
working groups within ISO and IEC. The national standards committees are typi-
cally sponsored by professional societies that have an interest in particular areas of
standardization work. Within the U.S.A., additional national consensus standards
bodies exist, such as the American Society for Testing and Materials (ASTM), that
develop standards by consensus of the members of their society.

19.1
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STANDARDS ORGANIZATIONS 

AND COMMITTEES

ISO technical committee (TC) 108 (Mechanical Vibration and Shock) and its six
subcommittees (SCs) are predominantly responsible for any international standards
activity related to shock and vibration. TC 108 and its subcommittees maintain
numerous liaisons with other technical committees and subcommittees within ISO
and IEC, including ISO TC 20 (Aircraft and Space Vehicles), ISO TC 43 (Acoustics),
ISO TC 45 (Rubber and Rubber Products), ISO TC 159 (Ergonomics), IEC TC 2
(Rotating Machinery), IEC TC 5 (Steam Turbines), and IEC TC 87 (Ultrasonics).

The subcommittees of TC 108 also maintain liaisons with other organizations out-
side of ISO and IEC that are interested in their work. IEC TC 104 is responsible for
standards activities related to environmental testing, including testing using shock and
vibration. The primary counterpart to ISO TC 108 within the U.S.A. is ANSI-
accredited standards committee S2 (Mechanical Vibration and Shock), which holds
the U.S.Technical Advisory Group (TAG) for ISO TC 108 and all of its subcommittees
except TC 108/SC 4 on human exposure to shock and vibration. The U.S. counterpart
to ISO TC 108/SC 4 on human exposure to shock and vibration is ANSI-accredited
standards committee S3 (Bioacoustics), which holds the U.S.TAG for ISO TC 108/SC
4. The ANSI-accredited standards committees S2 and S3 and their U.S. TAGs are
administered by the Acoustical Society of America Committee on Standards
(ASACOS) and the Acoustical Society of America (ASA) Standards Secretariat.The
U.S. TAG for IEC TC 104 is administered and managed by the Electronic Industries
Alliance (EIA) Corporate Engineering Department.The activities of CEN TC 231 on
shock and vibration are reported to ISO TC 108. Much of the standardization work of
CEN TC 231 is related to the EU (European Union) Machinery Directive(s).

STANDARDS ACTIVITIES

The various international standards activities related to shock and vibration are
summarized in Table 19.1 and discussed in the following sections.

Terminology. Documents on standardized terminology of all aspects of TC 108
and its six subcommittees are coordinated under TC 108. This vocabulary is con-
tained in ISO document ISO 2041. ISO 2041 has been adopted by ANSI under the
Nationally Adopted International Standard (NAIS) ANSI S2.1.

Use and Calibration of Transducers and Instrumentation. The use and calibra-
tion of shock and vibration transducers and instrumentation, including standardized
calibration methods, measuring instrumentation for human response to vibration, and
vibration condition monitoring transducers and instrumentation, is assigned to ISO
TC 108/SC 3 (Use and Calibration of Vibration and Shock Measuring Instrumenta-
tion). TC 108/SC 3 maintains a liaison with the International Organization of Legal
Metrology (OIML). Numerous standards on calibration are contained in the ISO 5347
series of standards, as well as in the ISO 16063 series of standards.The ANSI standard
on methods of calibration of shock and vibration transducers is ANSI S2.2. The ISO
standard on measuring instrumentation for human response to vibration is ISO 8041.
The Instrumentation, Systems, and Automation Society (ISA) administers a number
of standards committees, one of which is SP37 on specifications and tests for sensors

8434_Harris_19_b.qxd  09/20/2001  12:12 PM  Page 19.2



SHOCK AND VIBRATION STANDARDS 19.3

and transducers used in measurement and control. SP37 has a number of subcommit-
tees that involve transducers used in shock and vibration measurements, e.g., strain
gages, accelerometers, servo-accelerometers, and force transducers. SP37.20 is a sepa-
rate subcommittee of SP37 devoted specifically to vibration transducers.

Shock and Vibration Generators. ISO TC 108/SC 6 (Vibration and Shock Gen-
erating Systems) has been assigned standards activities related to systems for the
generation of shock and vibration and their terminology. TC 108/SC 6 maintains a
liaison with IEC TC 104. IEC TC 104 (Environmental Conditions, Classification, and
Methods of Test) is concerned with standardized environmental testing, of which
shock and vibration are only two of several variables defining a test environment.
ANSI has a number of standards related to the specification of the performance of
shock- and vibration-testing machines, as well as standards covering the perform-
ance characteristics of these machines.

Structures and Structural Systems. ISO TC 108 (Mechanical Vibration and
Shock) and TC 108/SC 2 (Measurement and Evaluation of Mechanical Vibration

TABLE 19.1 Summary of International Standards Activities

Document Responsible Related
Category series ISO TC/SC documents

Vocabulary ISO 2041 TC 108 ANSI S2.1

Mobility ISO 7626 TC 108 ANSI S2.31–34

Isolators ISO 2017 TC 108 ANSI S2.8

Balancing ISO 1940 TC 108/SC 1 ANSI S2.19,
S2.42, and S2.43

Balancing machines ISO 2953 TC 108/SC 1 ANSI S2.38

Machines/machinery ISO 7919 and TC 108/SC 2 ANSI S2.13,
10816 S2.40, and S2.41

Vehicles ISO 8002 TC 108/SC 2

Ships ISO 4867, TC 108/SC 2 ANSI S2.16 and
4868, 6954, S2.25;
and 10055 MIL-STD-167

Buildings ISO 4866 and TC 108/SC 2 ANSI S2.47
8569

Calibration ISO 5347 and TC 108/SC 3 ANSI S2.2
16063

Human response ISO 8041 TC 108/SC 3

Human exposure ISO 2631, TC 108/SC 4 ANSI S3.18,
5349, 6897, S3.29, and S3.34
8727, and 13090

Generating systems ISO 5344, TC 108/SC 6 ANSI S2.5,
6070, and 8626 S2.45, S2.48,

and S2.58

Shock machines ISO 8568 TC 108 ANSI S2.3,
S2.14, and S2.15
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and Shock as Applied to Machines,Vehicles, and Structures) both have items in their
program of work related to stationary structures or structural systems. Guidelines
on building vibration are contained in ISO 4866 and ANSI S2.47. Work on condition
monitoring and assessment of structures and structural systems is ongoing in TC 108.

Vehicles. This comprises a very broad area of standardization with a small, but
important, portion of it directly related to shock and vibration. ISO TC 108/SC 2
(Measurement and Evaluation of Mechanical Vibration and Shock as Applied to
Machines, Vehicles, and Structures) is involved with the vibration of ships, and ISO
4867, 4868, and 6954 specifically address the measurement and reporting of vibra-
tion onboard ships. Much of the U.S. participation in this work is contributed by
members of the Society of Naval Architects and Marine Engineers (SNAME). ANSI
S2.16 covers the measurement and acceptance criteria for the vibratory noise of
shipboard equipment, and ANSI S2.25 covers the evaluation and reporting of hull
and superstructure vibration in ships. ISO TC 108/SC 2 is also involved with vibra-
tion of land-based vehicles, and ISO 8002, 8608, and 10326 are specifically related to
the evaluation and reporting of the vibration associated with either land-based vehi-
cles or road surface profiles. ISO TC 20 (Aircraft and Space Vehicles) is involved
with standards related to aerospace vehicles in general, and a number of ISO tech-
nical committees exist that generally cover specific types of land-based vehicles, e.g.,
construction, agricultural, and off-road vehicles.The U.S.TAG for ISO TC 20 and the
U.S. TAGs for many of the ISO technical committees on land-based vehicles in gen-
eral are administered by the Society of Automotive Engineers (SAE).The CEN doc-
ument CEN EN 1032 on testing mobile machinery has been published, and work is
ongoing within CEN TC 231 with respect to testing mobile machinery to determine
whole-body vibration and vibration emission values. CEN TC 231 maintains liaisons
with CEN TC 144 and CEN TC 151 on tractors and agricultural machines, and con-
struction equipment, respectively.

Machines and Machinery. Standardization related to the shock and vibration of
machines and machinery including balancing, condition monitoring, diagnostics,
prognostics, and testing is within the program of work of ISO TC 108/SC 1 (Balanc-
ing, Including Balancing Machines), ISO TC 108/SC 2 (Measurement and Evalua-
tion of Mechanical Vibration and Shock as Applied to Machines, Vehicles, and
Structures), and ISO TC 108/SC 5 (Condition Monitoring and Diagnostics of
Machines). Numerous ISO and ANSI standards exist on balancing, balancing
machines, balancing terminology, balance quality, and the measurement and evalua-
tion of mechanical vibration related to various classes of rotating and reciprocating
machinery. The National Electrical Manufacturers Association (NEMA), American
Petroleum Institute (API), Compressed Air and Gas Institute, and Hydraulic Insti-
tute publish standards on motors, generators, turbines, pumps, and compressors that
may contain parts that are related to shock and vibration of these machines. ISO TC
108/SC 1 maintains liaisons with ISO TC 14 (Shafts for Machinery and Accessories)
and ISO TC 39 (Machine Tools). TC 108/SC 2 maintains liaisons with more than a
dozen different ISO and IEC technical committees and subcommittees including
IEC TC 104. TC 108/SC 5 maintains a liaison with IEC TC 2 (Rotating Machinery).
ISO TC 118/SC 3 (Pneumatic Tools and Machines) maintains liaisons with ISO TC
108/SC 2 and TC 108/SC 4. CEN TC 231 has a number of published standards related
to the vibration of hand-held power tools, as well as guidance on safety standards
related to vibration. An additional program of work within CEN TC 231 pertains to
the vibration of a variety of hand-held power tools, e.g., grinders, drills and rotary
hammers, chipping and riveting hammers, and hammers for construction.
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Human Exposure to Shock and Vibration. The program of work on human
exposure to shock and vibration is assigned to ISO TC 108/SC 4 (Human Exposure
to Mechanical Vibration and Shock). ISO TC 108/SC 4 maintains liaisons with about
a dozen ISO technical committees and subcommittees including ISO TC 43
(Acoustics), as well as with other organizations such as the European Committee of
Associations of Manufacturers of Agricultural Machinery (CEMA), the Interna-
tional Maritime Organization (IMO), and the International Union of Railways
(UIC). There are a number of ISO and ANSI standards on exposure to whole-body
and hand-arm vibration including standards covering occupants of fixed-structures,
single shocks, guidance on safety aspects of tests and experiments, transmissibility of
gloves and resilient materials, and terminology. (See Chap. 42.)

Testing. Numerous standards and handbooks that cover shock and vibration test-
ing have been issued by ISO and IEC, as well as agencies of the U.S. government, in
particular the National Aeronautics and Space Administration (NASA) and the
Department of Defense (DoD). Although NASA and DoD standards and hand-
books are concerned primarily with aerospace vehicles and military hardware, many
are sufficiently general to have broad applications to commercial structures, vehi-
cles, and equipment.

International Standards. While IEC TC 104 (Environmental Conditions, Clas-
sification, and Methods of Test) has work programs devoted to a number of envi-
ronmental variables such as temperature and relative humidity, a portion of the
work is directed toward testing using shock and vibration. Specifically, a number of
documents in the IEC 60068-2 series of documents cover sinusoidal vibration,
broadband random vibration, shock, drop and topple, free fall, and bump testing.
ASTM publishes standards that address using shock and vibration to test unpack-
aged manufactured products, packaging systems, shipping containers, and materials.
ISO 8568 addresses shock testing machines. ISO TC 108 has a work item on the
analysis of the mechanical properties of visco-elastic materials using vibration, and
there are a number of ANSI-approved standards published on measuring the
mechanical properties of visco-elastic materials using vibration.

NASA Standards and Handbooks. NASA has issued three standards (STD)
and two handbooks (HDBK) related to shock and vibration testing that are
approved for NASA-wide application to launch vehicles and payloads. Descriptions
of the scopes of these publications follow. All of these publications are available via
the World Wide Web (www) at standards.nasa.gov.

The term vibroacoustics is defined as an environment induced by high-intensity
acoustic noise associated with various segments of the flight profile (see Chap. 29,
Part III of this Handbook). It manifests itself throughout the launch vehicle and pay-
load structure in the form of transmitted acoustic excitation and as structure-borne
random vibration. The NASA standard NASA-STD-7001, “Payload Vibroacoustic
Test Criteria,” specifically addresses the acoustic and random vibration environ-
ments and test levels associated with vibroacoustics.

Selected environmental exposure tests are contained in NASA-STD-7002, “Pay-
load Test Requirements.” This standard includes tests that are generally regarded as
the most critical and the ones having the highest cost and schedule impact.The stan-
dard also includes functional demonstration tests necessary to verify the capability
of the hardware to perform its intended function, with and without environmental
exposure. Test levels, factors, margins, durations, and other parameters are specified
where appropriate. In some cases, these specifications are expressed statistically or
are described by reference to other NASA standards.

NASA-STD-7003, “Pyroshock Test Criteria,” provides a consistent methodology
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for developing pyroshock test criteria for NASA spacecraft, payload, and launch
vehicle hardware during all test phases of the verification process.Various aspects of
pyroshock testing are discussed, including test environments, methods and facilities,
test margins and number of exposures, control tolerances (when applicable), data
acquisition and analysis, test tailoring, dynamic analysis, and prediction techniques
for pyroshock environments.

The NASA handbook NASA-HDBK-7004, “Force Limited Vibration Testing,”
establishes a methodology for conducting force-limited vibration tests for all NASA
flight projects.The methodology in the handbook may be followed by those desiring
to use force limiting without having to conduct an extensive literature search or
research and development effort before conducting the test.A monograph on force-
limited vibration testing is available for reference and is recommended for those
needing more detailed technical information (NASA-RP-1403).

NASA-HDBK-7005, “Dynamic Environmental Criteria,” summarizes proce-
dures for deriving design and test criteria for space vehicles exposed to a wide range
of shock and vibration environments. Included in this handbook are detailed discus-
sions of the machines and procedures approved by NASA for the shock and vibra-
tion testing of spacecraft and their components. Many of these machines and
procedures are equally applicable to the testing of commercial hardware.

DoD Standards. Despite a significant effort to modify or eliminate military
(MIL) standards and specifications in favor of commercial standards, a considerable
group of MIL standards still remain. In many cases, MIL standards are unique in
application and scope and, in some cases, more useful than similar commercial stan-
dards. A specific case in point is MIL-STD-810, “Environmental Engineering Con-
siderations and Laboratory Tests,” now in its “F” revision. This document covers
most environments, including shock and vibration. Through its many revisions, the
scope of the document has expanded to include new environments and most ground
and air platforms. Its principal contribution to product design engineering is its
emphasis on test tailoring, introduced in the “D” revision and expanded with later
revisions. This test concept is not emphasized in any commercial specification and
allows MIL-STD-810 to be used for both defense and commercial applications, and
for both U.S. and non-U.S. test programs.

Several useful MIL standards that include shock and vibration requirements 
are maintained and available. The most widely used are the latest revisions of 
MIL-STD-1540 and MIL-HDBK-340 on space vehicle shock and vibration, MIL-
STD-901D on Navy shock, MIL-STD-781 on reliability, and MIL-STD-167 on ship
vibration (parts of this standard have been, or are in the process of being, converted
to ANSI or ISO standards). Nearly all of these standards can be located at the Doc-
ument Automation and Production Service DoD Single Stock Point (DoDSSP)
web site. A complete collection of DoD specifications and standards is indexed in
the Acquisition Streamlining and Standardization Information System (ASSIST),
which is managed by the DoDSSP. The ASSIST Shopping Wizard web site provides
the capability to request DoD standardization documents over the Internet. Users
may place orders for documents in paper and CD-ROM formats by establishing a
customer account with the DoDSSP. The U.S. Government Printing Office allows
the purchase of a variety of DoD and other U.S. Government Agency publications.
A catalog of government periodicals and subscription services is available from the
Superintendent of Documents, U.S. Government Printing Office. Most DoD stan-
dardization documents can also be obtained by contacting the controlling military
service. In the case of MIL-STD-810, for example, the controlling military service is
the U.S. Army.
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STANDARDS-DEVELOPING ORGANIZATIONS

AND SOURCES

Some societies and organizations involved in the production of standards are given
below. Sources for catalogs of standards and for purchasing standards are also given.
A significant amount of information concerning standards development, meetings,
organizations, catalogs, and procurement is readily available via the World Wide
Web (www) at the uniform resource locators (URLs) listed below. This list, while
extensive, is not intended to be all inclusive.

Acoustical Society of America (ASA)
Standards Secretariat
35 Pinelawn Road, Suite 114E
Melville, NY 11747 USA
Telephone: +1 631 390 0215
URL: asa.aip.org

American National Standards Institute (ANSI)
1819 L Street NW, 6th Floor
Washington, DC 20036 USA
Telephone: +1 202 293 8020
URL: www.ansi.org

American Society for Testing and Materials (ASTM)
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959 USA
Telephone: +1 610 832 9585
URL: www.astm.org

Document Automation and Production Service
700 Robbins Avenue, Building 4/D
Philadelphia, PA 19111-5094 USA
Telephone: +1 215 697 6257
URL: www.dodssp.daps.mil

Electronic Industries Alliance (EIA)
Corporate Engineering Department
2500 Wilson Boulevard
Arlington, VA 22201 USA
Telephone: +1 703 907 7500
URL: www.eia.org

European Committee for Standardization (CEN)
Rue de Stassart 36
B 1050 Brussels, Belgium
Telephone: +32 2 550 0876
URL: www.cenorm.be

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112 USA
Telephone: +1 800 854 7179
URL: global.ihs.com
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International Electrotechnical Commission (IEC)
3, rue de Varembé
Case postale 131
CH-1211 Geneva 20, Switzerland
Telephone: +41 22 734 01 50
URL: www.iec.ch

International Organization for Standardization (ISO)
1, rue de Varembé
Case postale 56
CH-1211 Geneva 20, Switzerland
Telephone: +41 22 734 01 50
URL: www.iso.ch

Instrumentation, Systems, and Automation Society (ISA)
67 Alexander Drive
Research Triangle Park, NC 27709 USA
Telephone: +1 919 549 8288
URL: www.isa.org

NASA/Marshall Space Flight Center
Mail Code: ED41
Marshall Space Flight Center, AL 35812 USA
Attention: Paul Gill
Telephone: +1 256 544 2557
URL: standards.nasa.gov

Society of Automotive Engineers (SAE)
World Headquarters
400 Commonwealth Drive
Warrendale, PA 15096-0001 USA
Telephone: +1 724 776 4841
URL: www.sae.org

Society of Naval Architects and Marine Engineers (SNAME)
601 Pavonia Avenue
Jersey City, NJ 07306 USA
Telephone: +1 800 798 2188
URL: www.sname.org

U.S. Government Printing Office
Washington, DC 20402 USA
Attention: Superintendent of Documents
Telephone: +1 202 512 1704
URL: bookstore.gpo.gov/subscriptions

U.S. National Committee of the IEC (USNC/IEC)
11 West 42d Street
New York, NY 10036 USA
Telephone: +1 212 642 4936
URL: www.ansi.org
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CHAPTER 20
TEST CRITERIA AND

SPECIFICATIONS

Allan G. Piersol

INTRODUCTION

This chapter covers the development of shock and vibration test criteria for mechan-
ical, electrical, electronic, or hydraulically powered equipment, for example, an
alternator for an automobile or an electronic instrument for an airplane.The empha-
sis throughout is on the selection of test criteria rather than the formulation of
design criteria, but specified shock and vibration test levels and durations are com-
monly used as design criteria as well. Following a brief overview of environmental
specifications, this chapter presents (1) a summary of the descriptions of shock and
vibration environments used to establish test criteria, (2) a discussion of the differ-
ent types of tests used to achieve various objectives, (3) procedures to select shock
and vibration test levels, (4) procedures to select vibration test durations, and (5)
general testing considerations.

ENVIRONMENTAL SPECIFICATIONS

An environmental specification is a written document that details the environmen-
tal conditions under which an item of equipment to be purchased must operate dur-
ing its service life. Several contracting agencies of the U.S. government and various
professional societies issue general environmental specifications for particular
classes of equipment (see Chap. 19), but deviations from the specified environmen-
tal conditions in such documents are permitted when more appropriate conditions
can be established by direct measurements or predictions of the environments of
concern. An environmental test specification is a written document that details the
specific criteria for an environmental test, as well as other matters such as the
preparation of the test item, identification of all test equipment and instrumenta-
tion, description of any test fixtures, instructions for mounting sensors, step-by-step
procedures for operating the test item (if operation is required), procedures for
taking data on the test item function and the applied environment, and perfor-
mance acceptability criteria. The test criteria (the magnitude and duration of the
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test excitation) in environmental test specifications often serve as design criteria as
well (see Chap. 41).

GENERAL TYPES OF ENVIRONMENTS

The environments that must be considered in equipment design and testing are listed
in Table 20.1. Those printed in boldface, namely, shock and vibration, are the ones of
special concern in this handbook. Shock and vibration environments may result from
the equipment operation (for example, the vibration caused by shaft unbalance in
equipment with a rotating element), but it is the external shock and vibration motions
transmitted into the equipment through its mounting points to the structure of the
system incorporating the equipment that are of primary interest here.The acoustical,
blast, fluid flow, and wind environments noted in Table 20.1 are often the original
source of the shock and vibration motions of the system structure that transmit into
the equipment, but the original source may also be a direct motion input to the sys-
tem, for example, earthquake inputs to a building or road roughness inputs to an
automobile. Such environments have complicated transmission patterns that are
modified or intensified by mechanical resonances of the system structure and, there-
fore, are appropriately described by frequency-dependent functions, i.e., spectra.

TABLE 20.1 Various Types of Environments to Which Equipment 
May Be Exposed

Acceleration (sustained) Fungus Salt spray
Acoustical noise Humidity Temperature (sustained)
Blast Mechanical shock Temperature cycling
Dust and sand Pressure (sustained) Vibration
Fluid flow Rain, hail, and snow Wind

In practice, for economy of effort, equipment is often designed and tested for
exposure to each of the environments listed in Table 20.1 as if they occur separately.
However, some of the environments in Table 20.1 may occur simultaneously and
have an additive effect; for example, a shock may occur during a period of high static
acceleration where the stress in the equipment due to the combination of the two
environments is greater than the stress due to either applied separately. Worse yet,
two environments may have a synergistic effect; for example, equipment may be
subject to high vibration during a period when the temperature exposure is also
high, and high temperatures cause a degradation of the equipment strength, making
it more vulnerable to vibration-induced failures. These matters must be carefully
evaluated during the definition of a test program to determine if simultaneous test-
ing for two or more environments is required.

SHOCK AND VIBRATION ENVIRONMENTS

From a testing viewpoint, it is important to carefully distinguish between a shock
environment and a vibration environment. In general, equipment is said to be
exposed to shock if it is subject to a relatively short-duration (transient) mechanical
excitation; equipment is said to be exposed to vibration if it is subject to a longer-
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duration mechanical excitation. If the basic properties of the vibration are time-
invariant, it is called stationary (or steady-state for periodic vibrations). However,
vibration environments are often nonstationary, i.e., one or more of their basic prop-
erties vary with time. If the properties change slowly relative to the lowest frequency
of the vibration, then the vibration can be analyzed to arrive at criteria for a station-
ary vibration test, as detailed later. Otherwise, the environment must be viewed as a
shock. Practical distinctions between shock and vibration environments cannot be
made on an absolute basis, independent of the equipment exposed to the environ-
ment. To be more specific, any mechanical device that is more or less linear can be
characterized by one or more resonance frequencies and damping coefficients (see
Chap. 2) or by a corresponding set of decaying transient responses after a momen-
tary excitation. In more analytical terms, the response characteristics of a mechani-
cal device are given by the unit impulse response function defined in Chap. 21. From
a testing viewpoint, an excitation whose duration is comparable to, or less than, the
response (or decay) time of the equipment is considered a shock, while an excitation
whose duration is long compared to the response time of the equipment is consid-
ered a vibration.

DESCRIPTIONS OF SHOCK AND VIBRATION

ENVIRONMENTS

The response of equipment to shock and vibration at its mounting points is depend-
ent on frequency. Hence, shock and vibration environments are usually described by
some type of spectrum; a spectrum is a description of the magnitude of the 
frequency components that constitute the shock or vibration. The most common
spectral descriptions of both deterministic and random shock and vibration envi-
ronments are summarized in Table 20.2 (see Chaps. 22 and 23 for details). It is com-
mon to present data for test specification purposes in terms of acceleration,
primarily because it is convenient to measure acceleration with accelerometers
described in Chap. 12. However, for shock data presented in the form of a shock
response spectrum, a response in terms of velocity or pseudo-velocity (see Chap. 41)
is often preferred to acceleration. This is because the shock response spectrum rep-
resents the peak response of a single degree-of-freedom system, and modal (rela-
tive) velocity for such a response has a direct linear relationship to stress2,3 [see Eq.
(26.1)]. Nevertheless, the use of an acceleration parameter for shock response spec-
tra is not a problem in specifying test criteria as long as the criteria simulate the spec-
trum of the environment, and acceleration is used for both the environmental
description and the test criteria.

TABLE 20.2 Common Spectral Descriptions of Shock and Vibration Environments

Environment Characteristic Spectral description

Shock Deterministic Fourier (integral) spectrum (see Chap. 23)
Shock response spectrum (see Chaps. 8 and 23)

Random Energy spectral density (see Chap. 11 and Ref. 1)
Shock response spectrum (see Chaps. 8 and 23)

Vibration Deterministic Line spectrum (see Chap. 22)
Random Power spectral density (see Chaps. 11 and 22)
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The vibration environment for an item of equipment usually varies in magnitude
and spectral content during its service life. Similarly, a shock environment may
involve repetitive shocks with different magnitudes and spectral content. For reli-
ability tests discussed later in this chapter, it may be necessary to measure or predict
the spectra of the shock and/or vibration environment for all conditions (or a repre-
sentative sample thereof) throughout the service life and to formulate test criteria
that require a series of tests with several different magnitudes and spectral content.
For most testing applications, however, a test involving a single spectrum is desired
for convenience. To assure that the test produces a conservative result, a maximax
spectrum is used; a maximax spectrum is the envelope of the spectra for all condi-
tions throughout the service environment. Thus, the maximax spectrum may not
equal any of the individual spectra measured or predicted during the service envi-
ronment, since the maximum value at two different frequencies may occur at differ-
ent times.

TYPES OF SHOCK AND VIBRATION TESTS

An environmental test is any test of a device under specified environmental condi-
tions (or sometimes under the environment generated by a specified testing
machine) to determine whether the environment produces any deterioration of per-
formance or any damage or malfunction of the device; an environmental test may
also be distinguished by the objectives of the test. In assessing the effects of shock
and vibration on equipment, the types of tests most commonly performed fall into
the following categories:

1. Development
2. Qualification
3. Acceptance
4. Screening
5. Statistical reliability
6. Reliability growth

DEVELOPMENT TESTS

A development test (sometimes called an analytical test) is a test performed early in
a program to facilitate the design of a device or piece of equipment to withstand its
anticipated service environments. It may involve determining the resonance fre-
quency of a constituent component mounted inside the equipment by applying a
sinusoidal excitation with a slowing-varying frequency (often called a swept sine
wave test). Sinusoidal vibration is widely used as the excitation for development
tests because of its simplicity and well-defined deterministic properties. In contrast,
it may involve a more elaborate test to determine the normal modes and damping
ratio of the equipment structure as described in Chap. 21. A stationary random
vibration or a controlled shock excitation with appropriate data reduction software
can greatly reduce the time required to perform a more extensive modal analysis of
the equipment. In either type of test, the characteristics and magnitude of the exci-
tation used for the test are not related to the actual shock and/or vibration environ-
ment to which the equipment is exposed during its service use.
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QUALIFICATION TESTS

A qualification test is a test intended to verify that an equipment design is satisfac-
tory for its intended purpose in the anticipated service environments. Such a test is
commonly a contractual requirement, and hence, a specific test specification is usu-
ally involved. Preliminary qualification tests are sometimes performed on prototype
hardware to identify and correct design problems before the formal qualification
test is performed. Also, qualification test requirements might be based upon a gen-
eral environmental specification (see Chap. 19). In some cases, the specification may
require a test on a specific type of testing machine that produces a desired qualifica-
tion environment (see Chap. 26). However, contracts usually allow deviations from
the specified test levels and/or test durations in general environmental specifica-
tions, if it can be established that different test conditions would be more suitable for
the given equipment. In any case, the basic purpose of a qualification test requires
that the test conditions conservatively simulate the basic characteristics of the antic-
ipated service environments.

Some years ago, when test facilities were more limited, it was argued that shock
and vibration environments for equipment could be simulated for qualification test
purposes in terms of the damaging potential of the environment, without the need
for an accurate simulation of the detailed characteristics of the environment.4 For
example, it was assumed that random vibration could be simulated with sinusoidal
vibration designed to produce the same damage. The validity of such “equivalent
damage concepts” requires the assumption of a specific damage model to arrive at
an appropriate test level and duration. Since the assumed damage model might be
incorrect for the equipment of interest, there is a substantial increase in the risk that
the resulting test criteria will severely under- or overtest the equipment. With the
increasing size and flexibility of modern test facilities, the use of equivalent damage
concepts to arrive at test criteria is rarely required and should be avoided, although
equivalent damage concepts are still useful in arriving at criteria for “accelerated
tests,” as discussed later in this chapter.When ever feasible, qualification tests should
be performed using an excitation that has the same basic characteristics as the envi-
ronment of concern; for example, random vibration environments should be simu-
lated with random vibration excitations, shock environments should be simulated with
shock excitations of similar duration, etc.

ACCEPTANCE TESTS

An acceptance test (sometimes called a production test or a quality control test) is a
test applied to production items to help ensure that a satisfactory quality of work-
manship and materials is maintained. For equipment whose failure in service might
result in a major financial loss or personal injury, all production items are subjected
to an acceptance test. Otherwise, a statistical sample of production items is selected,
and each item is tested in accordance with an acceptance sampling plan that assures
an acceptable average outgoing quality.5 In either case, there are two basic ap-
proaches to acceptance testing for shock and vibration environments. The first
approach is to design a test that will quickly reveal common workmanship errors
and/or material defects as determined from prior experience and studies of failure
data for the equipment, independent of the characteristics of the service environ-
ment. For example, suppose a specific type of electrical equipment has a history of
malfunctions induced by scrap-wire or poorly soldered wire junctions. Then, the
application of sinusoidal vibration at the resonance frequencies of wire bundles will

TEST CRITERIA AND SPECIFICATIONS 20.5

8434_Harris_20_b.qxd  09/20/2001  12:12 PM  Page 20.5



quickly reveal such problems and, hence, constitute a good test excitation even
though there may be no sinusoidal vibrations in the service environment. The sec-
ond and more common approach is to apply an excitation that simulates the shock
and/or vibration environments anticipated in service, similar to the qualification test
but usually at a less conservative (lower) level.

SCREENING TESTS

A screening test is a test designed to quickly induce failures due to latent defects that
would otherwise occur later during service use so that they can be corrected before
delivery of the equipment, i.e., to detect workmanship errors and/or material defects
that will not cause an immediate failure, but will cause a failure before the equip-
ment has reached its design service life. Screening tests are similar to acceptance
tests, but usually are more severe in level and/or longer in duration. If performed at
all, screening tests are usually applied to all production items. Vibration screening
tests are commonly performed with the simultaneous application of temperature
cycling, a process referred to as environmental stress screening (ESS).The vibration
environment is sometimes applied using relatively inexpensive, mechanically or
pneumatically driven vibration testing machines (often referred to as impact or
repetitive shock machines) that allow little or no control over the spectrum of the
excitation (see Chap. 25). Hence, except perhaps for the overall level, the screening
test environment generally does not represent an accurate simulation of the service
environment for the equipment.

STATISTICAL RELIABILITY TESTS

A statistical reliability test is a test performed on a large sample of production items
for a long duration to establish or verify an assigned reliability objective for the
equipment operating in its anticipated service environment, where the reliability
objective is usually stated in terms of a mean-time-to-failure (MTTF), or if all fail-
ures are assumed to be statistically independent, a mean-time-between-failures
(MTBF) or failure rate (the reciprocal of MTBF).To provide an accurate indication
of reliability, such tests must simulate the equipment shock and vibration environ-
ments with great accuracy. In some cases, rather than applying stationary vibration
at the measured or predicted maximax levels of the environment, even the nonsta-
tionary characteristics of the vibration are reproduced, often in combination with
shocks and other environments anticipated during the service life. The determina-
tion of reliability is accomplished by evaluating the times to individual failures, if
any, by conventional statistical techniques.6

RELIABILITY GROWTH TESTS

A reliability growth test is a test performed on one or a few prototype items at extreme
test levels to quickly cause failures and thus identify weaknesses in the equipment
design. In many cases, the test level is increased in a stepwise manner to clearly iden-
tify the magnitude of the load needed to cause a specific type of failure. Design
changes are then made and the failure rate of the equipment is monitored by either
statistical reliability tests in the laboratory or evaluations of failure data from service
experience to verify that the design changes produced an improvement in reliability.
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Unlike statistical reliability tests, reliability growth tests do not simulate the magni-
tudes of the service environments, although some effort is often made to simulate the
general characteristics of the environments; for example, random vibration would be
used to test equipment exposed to a random vibration service environment.

SELECTION OF SHOCK AND VIBRATION 

TEST LEVELS

The test level for a shock or vibration test is the spectrum of the excitation applied to
the equipment at its mounting points by the test machine. For tests that require a
simulation of the actual service shock and vibration environments (qualification,
reliability, and some acceptance tests), the selection of test levels involves four steps,
as follows:

1. Measurement or prediction of spectra for shock and vibration environments
2. Grouping of measured or predicted spectra into appropriate zones
3. Determination of zone limits
4. Selection of specified test levels

MEASUREMENT OR PREDICTION OF SPECTRA

Where equipment is to be installed in an existing system (for example, a new alter-
nator for an existing automobile), the shock and/or vibration response of the system
structure at the mounting points of the equipment can be determined by direct
measurements (see Chap. 15). However, where equipment is to be installed in a sys-
tem that has not yet been built and/or operated, the shock and/or vibration environ-
ment at the equipment mounting points must be predicted. Procedures for the
prediction of shock and vibration environments vary widely depending upon the
characteristics of environment and the system producing it. In general, however, pre-
diction procedures can be divided into the following broad categories:

Analytical Modeling Procedures. At least crude predictions for the shock and
vibration response of a structural system at the mounting points of equipment can
be achieved using the various analytical formulations detailed in other chapters in
this handbook (for example, see Chaps. 1 through 3). The accuracy of the resulting
shock and vibration predictions depends heavily upon the complexity of the system
structure being modeled and the exact analytical modeling procedure used.

Finite Element Method (FEM) Procedures. A popular modeling procedure for
the prediction of shock and vibration environments is the finite element method
(FEM) detailed in Chap. 28, Part II. Properly characterized shock and vibration exci-
tations can be applied to an FEM model to predict the structural response at any
point of interest. The FEM model can also be used to compute the frequency
response functions between excitation and response points needed to make predic-
tions by the frequency response procedures discussed later. Depending on the com-
plexity of the structure being modeled, FEM procedures can generally produce
reasonably accurate shock and vibration predictions up to a frequency equivalent to
about the 50th normal mode of the structure.
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Statistical Energy Analysis (SEA) Procedures. At frequencies above the
range where finite element method procedures are accurate, statistical energy
analysis (SEA) procedures described in Chap. 11 are commonly used to predict
vibration environments. Specifically, as frequency increases, the response of the sys-
tem structure can be predicted in terms of the space-averaged response for each of
a set of individual structural elements that are coupled to collectively describe the
system, where each element has near-homogeneous properties and light damping;
an example is a constant thickness panel. Such prediction procedures can be
applied to a wide range of structural systems if the assumptions detailed in Chap. 11
are satisfied.

Frequency Response Procedures. For those structural systems where the shock
and/or vibration environment is due to motion excitations at one or more points (for
example, the response of an automobile to road roughness inputs at the four
wheels), responses at various points on the system structure can be predicted using
the input/output relationships detailed in Chap. 21, which involve the frequency
response function defined in Eq. (21.10). Such frequency response functions for the
system between the excitation points on the system and the mounting points of the
equipment can be estimated either by using an FEM model described in Chap. 28,
Part II, or by experimental measurements described in Chap. 21. These estimated
frequency response functions can then be used to predict the response at the equip-
ment mounting points for any arbitrary excitation spectra.

Extrapolation Procedures. The spectra of the responses measured on one sys-
tem during its operation can often be used to predict the spectra in a newer model
of the system, assuming the old and new systems have a similar purpose and are of
broadly similar design, for example, a new airplane that flies faster but otherwise is
similar in structural design to an earlier model of the airplane. In such cases, the
shock and/or vibration responses of the new system at the structural locations of
equipment can be predicted, at least coarsely, by scaling the measurements made on
the previous system based upon the differences in at least two parameters, namely,
(1) the magnitude of the original excitation to the system structure and (2) the
weight of the system structure at the points where the equipment is mounted. Specif-
ically, as a first order of approximation, the shock and/or vibration magnitude on the
new system can be assumed to vary directly with the magnitude of the excitation and
inversely with the weight of the system structure. Such extrapolation techniques
have been widely used to predict spectra for the vibration response of new aero-
space vehicles3 and can often be applied to other types of systems as well.

GROUPING OF MEASURED OR PREDICTED SPECTRA INTO ZONES

The shock and vibration response of system structures that support equipment are
typically nonhomogeneous in space, sometimes to the extent that the spectra of the
responses vary substantially from one mounting point to another for a single item of
equipment.At relatively low frequencies, corresponding to frequencies below about
the fiftieth normal mode of the system structure (see Chap. 21), finite element
method (FEM) models for the system structure and the mounted equipment can be
used to predict the motions at the specific equipment attachment points. It is more
common, however, to define shock and vibration environments by making measure-
ments or predictions at selected points on the system structure that do not corre-
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spond to the exact mounting points for equipment, or if they do, the equipment is
not present during the measurements or accurately modeled for the predictions.
Hence, it is necessary to separate the measured or predicted responses at various
points on the system structure into groups, where the responses in each group have
broadly similar spectra that can be represented for test purposes by a single spec-
trum.A zone is defined as a region on the system structure that includes those points
where the measured or predicted shock and/or vibration responses have broadly
similar spectra. It is clear that a zone should correspond to a region of interest in the
formulation of shock and vibration test criteria for equipment, i.e., a single zone
should include all the attachment points for at least one item of equipment, and
preferably, for several items of equipment. However, a zone need not be a single
contiguous structural region. For example, all frames of a given size in an airplane,
no matter where they are located, might constitute a single zone if the responses of
those frames are similar.

The determination of zones is usually based upon engineering judgment and
experience. For example, given a system with frame-panel construction, engineering
judgment dictates that frames and panels should represent different zones, since the
responses of light panels will generally be greater than the much heavier frames.
Also, the responses perpendicular to the surface of the panels are generally greater
than the responses in the plane of the panels, so the responses along these two axes
might be divided into separate zones. A visual inspection of the spectra for the
measured or predicted responses also can be used to group locations with spectra of
similar magnitudes to arrive at appropriate zones. In any case, it is desirable to min-
imize the number of zones used to describe the shock and vibration responses over
those areas of the system structure where equipment will be mounted so as to mini-
mize the number of individual spectra required to test all the equipment for that
system.

DETERMINATION OF ZONE LIMITS

A zone limit (also called the maximum expected environment) is a single spectrum
that will conservatively bound the measured or predicted spectra at most or all
points within the zone, without severely exceeding the spectrum at any one point. A
zone limit may be determined using any one of several procedures.3,7 The most com-
mon procedure is to envelop the measured or predicted spectra in the zone, but a
more rigorous approach is to compute a tolerance limit for the spectra. Specifically,
given n measurements of a random variable x, an upper tolerance limit is defined as
that value of x (denoted by Lx) that will exceed at least β fraction of all values of x
with a confidence coefficient of γ.The fraction β represents the minimum probability
that a randomly selected value of x will be less than Lx; the confidence coefficient γ
can be interpreted as the probability that the Lx computed for a future set of data
will indeed exceed at least β fraction of all values of x. Tolerance limits are com-
monly expressed in terms of the ratio (100β)/(100γ). For example, a tolerance limit
determined for β = 0.95 and γ = 0.50 is called the 95/50 normal tolerance limit. In the
context of shock and/or vibration measurements or predictions, x represents the
spectral value at a specific frequency (see Table 20.2) for the response of the system
structure at a randomly selected point within a given zone, where x differs from
point-to-point within the zone due to the spatial variability of the response. How-
ever, x may also differ due to other factors, such as variations in the response from
one system to another of the same design or from one environmental exposure to
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another of the same system. In selecting a sample of measured or predicted spectra
to compute a tolerance limit, beyond the spectra at different locations within a zone,
it is wise to include spectra from different systems of the same design and different
environmental exposures of the same system, if feasible, so that all sources of vari-
ability are represented in the measured or predicted spectra.

Tolerance limits are most easily computed when the random variable is nor-
mally distributed (see Chap. 11). The point-to-point (spatial) variation of the shock
and vibration responses of system structures is generally not normally distributed,
but there is empirical evidence that the logarithm of the responses does have an
approximately normal distribution. Hence, by simply making the logarithmic trans-
formation

y = log10x (20.1)

where x is the spectral value at a specific frequency of the response within a zone, the
transformed variable y can be assumed to have a normal distribution. For n sample
values of y, a normal tolerance limit is given by5

Ly(n,β,γ) = y� + ksy (20.2)

where y� is the sample average and sy is the sample standard deviation of the n trans-
formed spectral values computed as follows:

�y = �
n

i = 1
yi sy = ���

n

i = 1
(yi − �y)2 (20.3)

The term k in Eq. (20.2) is called the normal tolerance factor and is a tabulated value;
a short tabulation of k for selected values of n, β, and γ, is presented in Table 20.3.
The normal tolerance limit for the transformed variable y is converted to the origi-
nal engineering units of x by

Lx(n,β,γ) = 10Ly(n,β,γ) (20.4)

To simplify test criteria, normal tolerance limits are often smoothed using a series of
straight lines, usually no more than seven with slopes of 0, ±3, or ±6 dB.

1
�
n − 1

1
�
n
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TABLE 20.3 Normal Tolerance Factors for Upper Tolerance Limit

γ = 0.50 γ = 0.75 γ = 0.90

n β = 0.90 β = 0.95 β = 0.99 β = 0.90 β = 0.95 β = 0.99 β = 0.90 β = 0.95 β = 0.99

3 1.50 1.94 2.76 2.50 3.15 4.40 4.26 5.31 7.34
4 1.42 1.83 2.60 2.13 2.68 3.73 3.19 3.96 5.44
5 1.38 1.78 2.53 1.96 2.46 3.42 2.74 3.40 4.67
7 1.35 1.73 2.46 1.79 2.25 3.13 2.33 2.89 3.97

10 1.33 1.71 2.42 1.67 2.10 2.93 2.06 2.57 3.53
15 1.31 1.68 2.39 1.58 1.99 2.78 1.87 2.33 3.21
20 1.30 1.67 2.37 1.53 1.93 2.70 1.76 2.21 3.05
30 1.29 1.66 2.35 1.48 1.87 2.61 1.66 2.08 2.88
50 1.29 1.65 2.34 1.43 1.81 2.54 1.56 1.96 2.74
∞ 1.28 1.64 2.33 1.28 1.64 2.33 1.28 1.64 2.33
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As an illustration, Fig. 20.1 shows the range of the maximax power spectra for 
n = 12 vibration measurements made at different locations in a selected zone of the
structure of a large space vehicle during lift-off. Also shown in this figure are the
unsmoothed and smoothed normal tolerance limit versus frequency computed with
β = 0.95 and γ = 0.50 (the 95/50 limit). Note that the normal tolerance limit at most
frequencies is higher than the largest of the 12 spectral values from which the limit
is computed. However, a normal tolerance limit could be either higher or lower than
the largest spectral values from which the limit is computed, depending on the val-
ues of n, β, and γ.

TEST CRITERIA AND SPECIFICATIONS 20.11

FIGURE 20.1 95/50 normal tolerance limit for spectra of 12 vibration measurements.

SELECTION OF FINAL TEST LEVELS

A test level is the spectrum of the shock or vibration environment that is specified for
testing purposes, i.e., the spectrum given in a final test specification. The determina-
tion of a test level based upon a computed zone limit requires the selection of a
value for β, the fraction of the locations within a zone where the spectra of the shock
and/or vibration responses of the system structure will be exceeded by the zone (tol-
erance) limit. This selection is often made somewhat arbitrarily, with values in the
range 0.90 ≤ β ≤ 0.99 being the most common for acceptance and qualification tests.
However, the value of β used to arrive at a test level can be optimized based upon an
assessment of the adverse consequences (the potential cost) of an undertest versus
an overtest. Also, even with an optimum selection, modifications to the test level
may be required to account for the interactions of the equipment and the system
structure and other considerations.

Optimum Test Level Selection. A number of procedures have been developed8

that yield an optimum test level for equipment in terms of a percentile of the envi-
ronmental distribution (which is essentially the value of β for a tolerance limit) as a
function of a “cost” ratio CT /CF, where CT is the cost of a test failure and CF is the cost
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of a service failure. Some of the procedures assume the equipment being tested has
already been manufactured in quantity, raising the possibility that a test failure will
lead to refurbishing costs, while others account for a safety factor in the equipment
design or a test factor based upon the assumed strength of the item being tested.The
simplest test level selection rule, which applies to the acceptance testing of a single
item of equipment, is given by3

β = (20.5)

As an illustration, consider an item of equipment where a failure during test could
be corrected by a relatively simple replacement of an inexpensive component, but
a failure during service would be catastrophic, perhaps resulting in personal injury.
According to Eq. (20.5), the item should be tested to a very severe level relative to
the measured or predicted shock and/or vibration environment so as to sharply
minimize the risk of an undertest; for example, if a service failure is assessed to be
1000 times as costly as a test failure, β = 0.999. On the other hand, consider an item
where a failure in test would lead to a difficult and expensive redesign, but a fail-
ure during service would not be catastrophic.According to Eq. (20.5), the test level
now should be moderate relative to the measured or predicted shock and/or vibra-
tion environment so as to minimize the risk of an overtest; for example, if a service
failure is assessed to be only 9 times as costly as a test failure, then β = 0.90. Note
that the selection procedure does not require the determination of quantitative
costs in dollars, but only relative costs, which can be interpreted in qualitative
terms. This allows such factors as the consequences of a possible delivery delay
caused by a test failure or customer dissatisfaction caused by a service failure to 
be considered. Also, the conservatism of the test level can be further increased 
or decreased by selecting a larger or smaller value of γ for the tolerance limit 
computation.

Equipment-Structure Interactions. Test levels are commonly specified in terms
of a motion parameter, for example, g 2/Hz versus frequency for a random vibration
test. However, at the resonance frequencies of relatively heavy items of equipment,
the apparent mass of the equipment dramatically increases, causing the equipment
to behave like a dynamic vibration absorber on the system structure to which the
equipment is mounted (see Chap. 6). If the test machine is made to deliver the spec-
ified motion to the equipment at its resonance frequencies, a severe overtest may
occur. This problem is sometimes addressed by placing limits on the response of the
equipment or by allowing “notches” in the specified test spectrum to be introduced
at the frequencies of strong resonances of the equipment. The best approach, how-
ever, is to derive a second spectrum for the limiting force at the mounting points of
the equipment and establish criteria for a dual control test that limits both the input
force and the input motion to the equipment.9

Added Test Level Factors. For qualification tests where the item of equipment
being tested will not be used in service, it is common to add a factor (often referred
to as a test margin) to the derived test levels to arrive at a final specified test level.
Such factors are usually justified to account for uncertainties not considered in the
determination of the test levels, such as unknown variabilities in the equipment
strength or its possible service use. These factors are sometimes selected rather
arbitrarily, with typical values ranging from 3 to 6 dB above the derived zone limits.

1
��
1 + (CT/CF)
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SELECTION OF VIBRATION TEST DURATIONS

The test duration for a vibration test is the total time the excitation is applied to the
equipment at its mounting points by the test machine. In some cases, the test dura-
tion is not relevant to the purpose of the test, for example, a development test. In
many cases, however, an appropriate simulation of the total duration of the vibration
environment anticipated in service is an important part of the test criteria. This is
particularly true of qualification and statistical reliability tests, where the purpose is
to detect design inadequacies that may lead to failures of any type during exposure
to the service vibration environment, including “wearout” failures. For shock envi-
ronments, this means exposing the equipment to repeated simulations of all the
shocks anticipated during its service life, which can usually be accomplished in a rea-
sonable period of time. For vibration environments, however, this means exposing
the equipment to a simulation of the anticipated service vibration environment for a
duration equivalent to the service life of the equipment, which may be thousands of
hours.Vibration environments usually vary widely in overall level and perhaps spec-
tral content during the equipment service life, for example, equipment on an auto-
mobile or truck in normal service use. As noted earlier in this chapter, statistical
reliability tests are sometimes performed with a duration similar to the anticipated
service life of the equipment. For qualification tests, however, it is usual to compress
a long, time-varying service environment into a stationary test level of much shorter
duration.10 To do this, the following steps are required:

1. Assume a time-dependent failure model for the equipment
2. Compress the time-varying magnitudes of the environment into a single test level

corresponding to a conservative estimate of the maximum magnitude of the envi-
ronment

3. In some cases, increase the test level beyond the maximum magnitude of the
environment to further accelerate the test

FAILURE MODELS

A failure of an item of equipment is defined as any deterioration of performance or
any damage or malfunction that prevents the equipment from accomplishing its
intended purpose.There are two basic types of failures that may be caused by vibra-
tion:

1. Hard failure. A failure involving permanent physical damage that makes the
equipment unable to perform its intended purpose, even after the vibration is ter-
minated. Hard failures generally result in observable damage, such as the fracture
of a structural element or the permanent disability of an electronic element.

2. Soft failure. A failure involving a malfunction or deterioration of performance
during the vibration exposure that makes the equipment unable to accomplish its
intended purpose, but after the vibration is terminated, the equipment does not
reveal any damage and functions properly. Soft failures most commonly occur in
electrical, electronic, and/or optical elements, although soft failures may occa-
sionally occur in complex mechanical elements, such as gyroscopic devices.

A failure mechanism is the specific means by which an item of equipment is dam-
aged by exposure to an environment. All failure mechanisms are a function of the
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magnitude of the vibration exposure. A time-dependent failure mechanism is a func-
tion of both the magnitude and the duration of the vibration exposure. Soft failures
during exposure to a vibration environment are rarely time-dependent, i.e., they usu-
ally occur immediately at the start of the vibration exposure. On the other hand, hard
failures usually are time-dependent, although there are some exceptions. For example,
if a vibration environment produces stresses that exceed the ultimate strength of a crit-
ical element in the equipment, a fracture will occur immediately at the start of the
vibration exposure. See Chaps. 34 and 41 for further discussions of equipment failures.

To establish appropriate test durations for qualification vibration tests, only time-
dependent failure mechanisms (usually producing hard failures) are of interest.
Common examples of time-dependent failure mechanisms for equipment exposed
to vibration environments are fatigue damage, force contact wear, relative velocity
wear, and the loosening of bolts or rivets. A failure model is an analytical relation-
ship between the time-to-failure of the equipment during exposure to a vibration
environment and the magnitude of the vibration environment. For a wide class of
time-dependent failure mechanisms, the time-to-failure τ for a stationary vibration
excitation can be approximated by the inverse power law10 given by

τ = c σ−b (20.6)

where σ is the stress in the equipment caused by the vibration (or any measure of the
vibration magnitude that is linearly related to stress), and b and c are constants
related to the specific failure mechanism. From Chap. 34, if the endurance limit is
ignored, the fatigue endurance curves for common metals fit the form of Eq. (20.6).

Using Eq. (20.6) and assuming a vibration test is performed that accurately sim-
ulates the basic characteristics (for example, random versus periodic) and the spec-
trum of a service vibration environment, the time required to produce a similar
amount of damage in the test environment Tt and the time in the service environ-
ment Te are related by

Tt = � �b

Te (20.7)

where σ is the rms value of the vibration, and the subscripts t and e denote the test
and service environments, respectively. For random vibrations defined in terms of
power spectra (i.e., W(f ) defined in Chap. 22), Eq. (20.7) becomes

Tt = � �b/2
Te (20.8)

The value of the power b in Eqs. (20.7) and (20.8) varies widely for different failure
mechanisms. For metal fatigue damage, a value of b = 8 is reasonable for many com-
mon materials (see Fig. 34.4) and is recommended in Ref. 3. However, a value of 
b = 4 is usually more appropriate for the typical failure mechanisms in electrical and
electronic equipment.11

COMPRESSING TIME-VARYING SERVICE ENVIRONMENTS

For those vibration environments that vary substantially in severity during the equip-
ment service life, the duration of the environment can often be reduced for testing pur-
poses by using Eq. (20.7) to scale the less severe vibration levels to the most severe
levels that occur during the service life. Such scaling procedures are most applicable to
environments that vary in overall level but not substantially in spectral content. For

We( f )
�
Wt( f )

σe�
σt
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example, consider an item of electrical equipment designed for a motor vehicle with a
service life of 4000 hours. Assume the anticipated service vibration environment for
the vehicle at the equipment mounting points has the rms values summarized in Table
20.4. Further assume b = 4 in Eq. (20.7), and the vibrations during the various service
conditions have a similar spectral content.Table 20.4 indicates the damage potential of
the 4000-hour service vibration environment can be simulated by a vibration test with
a duration of 80 hours at the maximum service vibration level.

For those vibration environments where the spectral content and the overall lev-
els change during service operations, the test duration computations illustrated in
Table 20.4 must be made on a frequency-by-frequency basis using Eq. (20.8) or a
similar expression for the appropriate spectral description in Table 20.2. This will
result in a different test duration at each frequency, leading to two possible testing
options: (1) a series of tests, each covering a different frequency range with a differ-
ent test duration or (2) a single test with a test duration equal to the longest test
duration computed at any frequency.The second option is usually the more practical
and assures a conservative test.

ACCELERATED TESTS

An accelerated test is a test where the test duration is reduced by increasing the test
level in a manner that will maintain the same environment-induced damage to the
equipment. The determination of a test duration for a stationary vibration test that
produces the same damage as a nonstationary vibration environment, as detailed in
the preceding section, constitutes the most desirable form of accelerated testing
because the test level never exceeds the maximum vibration level that the equip-
ment will experience during its service environment. Furthermore, most of the dam-
age experienced by equipment in service usually occurs during exposure to the
maximum vibration level in the service environment, which typically covers a small
fraction of the total service duration (see Table 20.4). In such cases, reducing the rel-
atively long durations of the less severe vibrations by scaling to the maximum level
according to Eq. (20.7) does not introduce a major error, even if the exponent in Eq.
(20.7) is inaccurate.

Highly Accelerated Tests. Situations often arise where scaling the less severe
segments of a nonstationary vibration environment to a stationary vibration level
corresponding to the maximum level of the environment may yield a test duration
that is still too long to be practical; for example, the test duration of 80 hours com-
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TABLE 20.4 Determination of Equivalent Duration for Automobile Equipment Vibration
Environment

Duration on road rms vibration on Equivalent duration on
Type of road segment segment, hours road segment, g road segment A, hours

A. Unpaved secondary roads 40 3 40
B. Improved secondary roads 460 1.4 22
C. Primary roads 1500 0.9 12
D. Major highways 2000 0.7 6

Total equivalent duration on road segment A (hours) 80
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puted for the 4000-hour service environment in Table 20.4 may still be too long for
testing purposes. In such a case, it is common to further reduce the test duration by
increasing the test level beyond the maximum level the equipment will experience
during its anticipated service environment. Indeed, if no limit is placed on the rms
test level in Eq. (20.7), the test duration theoretically can be made as short as
desired, provided the ultimate strength of the equipment structure is not exceeded.
However, increasing the test level beyond the maximum level during the anticipated
service environment introduces major uncertainties in the test results, particularly if
the equipment is fabricated using different materials and/or incorporates electrical,
electronic, and/or optical elements. The problem is that the failure mechanisms of
some elements may not comply with the inverse power law in Eq. (20.6). Further-
more, even if all failure mechanisms do comply with Eq. (20.6), the exponent b may
vary from one element to another within the equipment. Hence, increasing the test
level to accelerate the test rapidly in compliance with Eq. (20.7) may cause some ele-
ments of the equipment to be undertested and others to be overtested. The result
could be the occurrence of unrepresentative failures during the accelerated test.11

Durability and Functional Tests. A common procedure to suppress unrepresen-
tative failures that may be caused by rapidly accelerating a vibration test of equip-
ment with a long service life is to perform two separate tests, namely, a durability test
and a functional test.A durability test is intended to reveal only time-dependent fail-
ures and is rapidly accelerated to produce the same damage as the entire duration of
the service vibration environment based upon a specific damage model, for example,
Eq. (20.7). The equipment is not required to function during the durability test, and
any failures that are not time-dependent are ignored.A functional test is intended to
reveal failures that are not time-dependent (i.e., failures related only to the vibration
level) and is not accelerated with test levels that exceed the maximum expected
vibration level during the service environment. The equipment is required to func-
tion during the test, but since the failures of interest are not time-dependent, the test
duration is not critical; for example, the test duration is often fixed by the time
required to fully operate the equipment and verify that it properly performs its
intended purpose.

SHOCK AND VIBRATION TESTING

The laboratory machinery used to perform vibration tests and shock tests are
detailed in Chaps. 25 and 26, respectively. In all cases, there are several issues that
must be carefully considered in performing such tests, the most important being:

1. Identification of test failures
2. Type of excitation to be used
3. Single versus multiple-axis excitation
4. Test fixtures

IDENTIFICATION OF TEST FAILURES

In all shock and vibration tests of equipment, it is important to carefully establish
what types of equipment malfunctions or anomalies will be considered failures. This
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determination depends heavily on the purpose of the test and sometimes on the
judgment of the purchaser of the equipment. Here are a few examples:

1. Since a qualification test is intended to identify design problems, failures during
the test that are clearly due to workmanship errors or material defects are usually
ignored, i.e., the equipment is repaired and the test is continued.

2. Since the test level for a highly accelerated qualification test is based upon a spe-
cific failure model, failures during the test that are not consistent with the failure
model should be carefully evaluated and ignored if they are determined to
involve a failure mechanism that is not time-dependent.

3. During durability tests of equipment, if a fatigue crack forms in the equipment
structure that does not propagate to a fracture, whether the fatigue crack consti-
tutes a failure or the length of the fatigue crack that constitutes a failure must be
specified.

4. During functional tests of electrical, electronic, and/or optical equipment, if there
is measurable deterioration in the performance of the equipment during the test,
the exact degree of deterioration that prevents the equipment from performing
its intended purpose must be specified.

TYPES OF EXCITATION

Shock tests are sometimes performed using specified test machines, but more often
are performed using more general test machines that can produce transients with a
desired shock response spectrum (see Chaps. 26 and 27). Although vibration envi-
ronments may be simulated by mounting the equipment in a prototype system and
reproducing the actual environment for the system, it is more common to apply the
vibration directly to the equipment mounting points using vibration testing
machines described in Chap. 25.

Random Tests. Random excitations are used to simulate random vibration in
those tests where an accurate representation of the environment is desired, specifi-
cally, qualification, reliability, and some acceptance tests. The most commonly used
random test machines produce a near-Gaussian vibration. If the actual environment
is random but not Gaussian, a Gaussian simulation is acceptable since the response
of the equipment exposed to the environment will be near-Gaussian at its resonance
frequencies, assuming the equipment response is linear; this is because equipment
resonances constitute narrow-band filtering operations that suppress deviations
from the Gaussian form in the vibration response of the equipment.12

Sine Wave Tests. Sine wave excitations are used to simulate the fixed-frequency
periodic vibrations produced by constant-speed rotating machines and reciprocating
engines. Sine wave excitations are sometimes superimposed on random excitations
for those situations where the service vibration environment involves both. Sine
wave excitations fixed sequentially at the resonance frequencies of an equipment
item (often referred to as a dwell sine test) are sometimes used in development tests,
as well as in durability tests, to evaluate the fatigue resistance of the equipment.

Swept Sine Wave Tests. Sweep sine wave excitations are produced by continu-
ously varying the frequency of a sine wave in a linear or logarithmic manner. Such
excitations are used to simulate the vibration environments produced by variable-
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speed rotating machines and reciprocating engines. The usual approach is to make
the sweep rate sufficiently slow to allow the equipment being tested to reach a near-
full (steady-state) response as the swept sine wave excitation passes through each
resonance frequency. Swept sine wave excitations are also used for development
tests to identify resonance frequencies and sometimes to estimate frequency
response functions (see Chap. 21).

MULTIPLE-AXIS EXCITATIONS

Shock and vibration environments are typically multiple-axial, i.e., the excitations
occur simultaneously along all three orthogonal axes of the equipment. Multiple-
axis shock and vibration test facilities are often used to simulate low-frequency
shock and vibration environments, generally below 50 Hz, such as earthquake
motions (see Chap. 24). Also, multiple-axis vibration test facilities have been devel-
oped for higher-frequency vibration excitations (up to 2000 Hz), but it is more com-
mon to perform shock and vibration tests using machines that apply the excitation
sequentially along one axis at a time, i.e., machines that deliver rectilinear motion
only (see Chaps. 25 and 26). Single-axis testing introduces an additional uncertainty
of unknown magnitude in the accuracy of the test simulation, but there is debate as
to whether the removal of this uncertainty justifies the high cost and complexity of
multiple-axis test facilities.

TEST FIXTURES

A test fixture is a special structure that allows the test item to be attached to the table
of a shock or vibration test machine. Test fixtures are required for almost all shock
and vibration tests of equipment because the mounting hole locations on the equip-
ment and the test machine table do not correspond. For the usual case where the test
machine generates rectilinear motion normal to the table surface, a test fixture is
also necessary to reorient the equipment relative to the table so that vibratory
motion can be delivered along the lateral axes of the equipment, i.e., the axes paral-
lel to the plane of the equipment mounting points. This requires a versatile test fix-
ture between the table and the equipment, or perhaps three different test fixtures. If
the direction of gravity is important to the equipment, the test machine must be
rotated from vertical to horizontal, or vice-versa, to meet the test conditions.

For equipment that is small relative to the test machine table, L-shaped test fix-
tures with side gussets are commonly used to deliver excitation along the lateral axes
of the equipment as illustrated Fig. 20.2. Unless designed with great care, such fix-
tures are likely to have resonances in the test frequency range. In principle, the con-
sequent spectral peaks and valleys due to fixture resonances can be flattened out by
electronic equalization of the test machine table motion (see Chap. 27), but this is
difficult if the damping of the fixture is low. The best approach is to design the fix-
ture to have, if possible, no resonances in the test frequency range.

For equipment that is large relative to the test machine table, excitation along the
lateral axes of the equipment is commonly achieved by mounting the equipment on
a horizontal plate driven by the test machine rotated into the horizontal plane,
where the plate is separated from the flat opposing surface of a massive block by an
oil film or hydrostatic oil bearings as shown in Fig. 20.3. The oil film or hydrostatic
bearings provide little shearing restraint but give great stiffness normal to the sur-
face, the stiffness being distributed uniformly over the complete horizontal area.
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Accordingly, a relatively light moving plate can be vibrated that has the properties
of the massive rigid block in the direction normal to its plane. See Ref. 13 for further
discussions of vibration and shock test fixturing.

REFERENCES

1. Bendat, J. S., and A. G. Piersol:“Random Data:Analysis and Measurement Procedures,” 3d
ed., John Wiley & Sons, Inc., New York, 2000.

2. Gaberson, H. A., and R. H. Chalmers: Shock and Vibration Bull., 40(2):31 (1969).

3. Kern, D. L., et al.: “Dynamic Environmental Criteria Handbook,” NASA-HDBK-7005,
2001.

4. Harris, C. M., and C. E. Crede:“Shock and Vibration Handbook,” 1st ed., chap. 24, McGraw-
Hill Book Company, Inc., New York, 1961.

TEST CRITERIA AND SPECIFICATIONS 20.19

FIGURE 20.2 Test fixture to deliver excitation in the plane of the equipment mounting points.

FIGURE 20.3 Horizontal plate to deliver excitation in the plane of the equipment mounting
points.
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CHAPTER 21
EXPERIMENTAL

MODAL ANALYSIS

Randall J. Allemang

David L. Brown

INTRODUCTION

Experimental modal analysis is the process of determining the modal parameters
(natural frequencies, damping factors, modal vectors, and modal scaling) of a linear,
time-invariant system. The modal parameters are often determined by analytical
means, such as finite element analysis. One common reason for experimental modal
analysis is the verification or correction of the results of the analytical approach.
Often, an analytical model does not exist, and the modal parameters determined
experimentally serve as the model for future evaluations, such as structural modifi-
cations. Predominantly, experimental modal analysis is used to explain a dynamics
problem (vibration or acoustic) whose solution is not obvious from intuition, ana-
lytical models, or previous experience.

The process of determining modal parameters from experimental data involves
several phases. The success of the experimental modal analysis process depends
upon having very specific goals for the test situation. Every phase of the process is
affected by the goals which are established, particularly with respect to the errors
associated with that phase. One possible delineation of these phases is as follows:

Modal analysis theory refers to that portion of classical vibration theory that
explains the existence of natural frequencies, damping factors, and mode shapes
for linear systems.This theory includes both lumped-parameter, or discrete, mod-
els and continuous models.This theory also includes real normal modes as well as
complex modes of vibration as possible solutions for the modal parameters.1–3

Experimental modal analysis methods involve the theoretical relationship
between measured quantities and classical vibration theory, often represented as
matrix differential equations. All commonly used methods trace from the matrix
differential equations but yield a final mathematical form in terms of measured
raw input and output data in the time or frequency domains or some form of
processed data such as impulse-response or frequency response functions.

21.1
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Modal data acquisition involves the practical aspects of acquiring the data that
are required to serve as input to the modal parameter estimation phase. Much
care must be taken to assure that the data match the requirements of the theory
as well as the requirements of the numerical algorithm involved in the modal
parameter estimation.The theoretical requirements involve concerns such as sys-
tem linearity and time invariance of system parameters. The numerical algo-
rithms are particularly concerned with the bias errors in the data as well as with
any overall dynamic range considerations4–7 (see Chap. 22).

Modal parameter estimation is concerned with the practical problem of estimat-
ing the modal parameters, based upon a choice of mathematical model as justi-
fied by the experimental modal analysis method, from the measured data.8–10

Modal data presentation/validation is the process of providing a physical view or
interpretation of the modal parameters. For example, this may simply be the
numerical tabulation of the frequency, damping, and modal vectors along with
the associated geometry of the measured degrees-of-freedom. More often, modal
data presentation involves the plotting and animation of such information.

Figure 21.1 is a representation of all phases of the process. In this example, a con-
tinuous beam is being evaluated for the first few modes of vibration. Modal analysis
theory explains that this is a linear system and that the modal vectors of this system
should be real normal modes.The experimental modal analysis method that has been
used is based upon the relationships of the frequency response function to the matrix
differential equations of motion. At each measured degree-of-freedom (DOF), the
imaginary part of the frequency response function for that measured response
degree-of-freedom and a common input degree-of-freedom is superimposed perpen-
dicular to the beam. Naturally, the modal data acquisition in this example involves the
estimation of frequency response functions for each degree-of-freedom shown. The
frequency response functions are complex-valued functions, and only the imaginary
portion of each function is shown. One method of modal parameter estimation sug-
gests that for systems with light damping and widely spaced modes, the imaginary
part of the frequency response function at the damped natural frequency may be
used as an estimate of the modal coefficient for that response degree-of-freedom.The
damped natural frequency can be identified as the frequency of the positive and neg-
ative peaks in the imaginary part of the frequency response functions. The damping
can be estimated from the sharpness of the peaks. In this abbreviated way, the modal
parameters have been estimated. Modal data presentation for this case is shown as
the lines connecting the peaks. While animation is possible, a reasonable interpreta-
tion of the modal vector can be gained in this case from plotting alone.

MEASUREMENT DEGREES-OF-FREEDOM

The development of any theoretical concept in the area of vibrations, including
modal analysis, depends upon an understanding of the concept of the number of
degrees-of-freedom n of a system.This concept is extremely important to the area of
modal analysis since the number of modes of vibration of a mechanical system is
equal to the number of degrees-of-freedom. From a practical point of view, the rela-
tionship between this theoretical definition of the number of degrees-of-freedom
and the number of measurement degrees-of-freedom No, Ni is often confusing. For
this reason, the concept of degree-of-freedom is reviewed as a preliminary to the fol-
lowing experimental modal analysis material.
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To begin with, the basic definition that is normally associated with the concept of
the number of degrees-of-freedom involves the following statement: The number of
degrees-of-freedom for a mechanical system is equal to the number of independent
coordinates (or minimum number of coordinates) that is required to locate and orient
each mass in the mechanical system at any instant in time. As this definition is applied
to a point mass, 3 degrees-of-freedom are required since the location of the point
mass involves knowing the x, y, and z translations of the center-of-gravity of the
point mass. As this definition is applied to a rigid body mass, 6 degrees-of-freedom
are required since θx, θy, and θz rotations are required in addition to the x, y, and z
translations in order to define both the orientation and the location of the rigid body
mass at any instant in time. As this definition is extended to any general deformable
body, the number of degrees-of-freedom is essentially infinite. However, while this is
theoretically true, it is quite common, particularly with respect to finite element
methods, to view the general deformable body in terms of a large number of physi-
cal points of interest with 6 degrees-of-freedom for each of the physical points. In
this way, the infinite number of degrees-of-freedom can be reduced to a large but
finite number.

When measurement limitations are imposed upon this theoretical concept of the
number of degrees-of-freedom of a mechanical system, the difference between the
theoretical number of degrees-of-freedom n and the number of measurement
degrees-of-freedom No, Ni begins to evolve. Initially, for a general deformable body,
the number of degrees-of-freedom n can be considered to be infinite or equal to

EXPERIMENTAL MODAL ANALYSIS 21.3

FIGURE 21.1 Experimental modal analysis example using the imaginary part of the
frequency response functions.
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some large finite number if a limited set of physical points of interest is considered,
as discussed in the previous paragraph. The first measurement limitation that needs
to be considered is that there is normally a limited frequency range that is of inter-
est to the analysis. When this limitation is considered, the number of degrees-of-
freedom of this system that are of interest is reduced from infinity to a reasonable
finite number. The next measurement limitation that needs to be considered
involves the physical limitation of the measurement system in terms of amplitude.A
common limitation of transducers, signal conditioning and data acquisition systems
results in a dynamic range of 80 to 100 dB (104 to 105) in the measurement. This
means that the number of degrees-of-freedom is reduced further because of the
dynamic range limitations of the measurement instrumentation. Finally, since few
rotational transducers exist at this time, the normal measurements that are made
involve only translational quantities (displacement, velocity, acceleration, force) and
thus do not include rotational effects, or RDOF. In summary, even for the general
deformable body, the theoretical number of degrees-of-freedom that are of interest
is limited to a very reasonable finite value (n = 1 to 50). Therefore, this number of
degrees-of-freedom n is the number of modes of vibration that are of interest.

Finally, then, the number of measurement degrees-of-freedom No, Ni can be
defined as the number of physical locations at which measurements are made multi-
plied by the number of measurements made at each physical location. Since the
physical locations are chosen somewhat arbitrarily, and certainly without exact
knowledge of the modes of vibration that are of interest, there is no specific rela-
tionship between the number of degrees-of-freedom n and the number of measure-
ment degrees-of-freedom No, Ni. In general, in order to define n modes of vibration
of a mechanical system, No or Ni must be equal to or larger than n. However, No or
Ni being larger than n is not a guarantee that n modes of vibration can be found from
the measurement degrees-of-freedom. The measurement degrees-of-freedom must
include physical locations that allow a unique determination of the n modes of vibra-
tion. For example, if none of the measurement degrees-of-freedom are located on a
portion of the mechanical system that is active in one of the n modes of vibration,
portions of the modal parameters for this mode of vibration cannot be found.

In the development of material in the following text, the assumption is made that
a set of measurement degrees-of-freedom exists that allows n modes of vibration to
be determined. In reality, either No or Ni is always chosen much larger than n since a
prior knowledge of the modes of vibration is not available. If the set of No or Ni

measurement degrees-of-freedom is large enough and if the measurement degrees-
of-freedom are distributed uniformly over the general deformable body, the n
modes of vibration are normally found.

Throughout this experimental modal analysis reference, the frequency response
function notation Hpq is used to describe the measurement of the response at meas-
urement degree-of-freedom p resulting from an input applied at measurement
degree-of-freedom q. The single subscript p or q refers to a single sensor aligned in
a specific direction (± X, Y, or Z) at a physical location on or within the structure.

BASIC ASSUMPTIONS

There are four basic assumptions concerning any structure that are made in order to
perform an experimental modal analysis:

1. The structure is assumed to be linear, i.e., the response of the structure to any
combination of forces, simultaneously applied, is the sum of the individual responses
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to each of the forces acting alone. For a wide variety of structures this is a very good
assumption. When a structure is linear, its behavior can be characterized by a con-
trolled excitation experiment in which the forces applied to the structure have a
form that is convenient for measurement and parameter estimation rather than
being similar to the forces that are actually applied to the structure in its normal
environment. For many important kinds of structures, however, the assumption of
linearity is not valid. Where experimental modal analysis is applied in these cases, it
is hoped that the linear model that is identified provides a reasonable approxima-
tion of the structure’s behavior.

2. The structure is time invariant, i.e., the parameters that are to be determined
are constants. In general, a system which is not time invariant has components whose
mass, stiffness, or damping depend on factors that are not measured or are not
included in the model. For example, some components may be temperature depend-
ent. In this case, since temperature effects are not measured, the temperature of the
component is an unknown time-varying signal. Hence, the component has time-
varying characteristics.Therefore, for this case the modal parameters determined by
any measurement and estimation process depend on the time (and the associated
temperature dependence) when the measurements are made. If the structure that is
tested changes with time, then measurements made at the end of the test period
determine a different set of modal parameters from measurements made at the
beginning of the test period.Thus, the measurements made at the two different times
are inconsistent, violating the assumption of time invariance.

3. The structure obeys Maxwell’s reciprocity, i.e., a force applied at degree-of-
freedom p causes a response at degree-of-freedom q that is the same as the response
at degree-of-freedom p caused by the same force applied at degree-of-freedom 
q. With respect to frequency response function measurements, the frequency
response function between points p and q determined by exciting at p and measur-
ing the response at q is the same frequency response function found by exciting at q
and measuring the response at p (Hpq = Hqp).

4. The structure is observable, i.e., the input-output measurements that are made
contain enough information to generate an adequate behavioral model of the struc-
ture. Structures and machines which have loose components, or, more generally,
which have degrees-of-freedom of motion that are not measured, are not completely
observable. For example, consider the motion of a partially filled tank of liquid when
complicated sloshing of the fluid occurs. Sometimes enough data can be collected so
that the system is observable under the form chosen for the model, while at other
times an impractical amount of data is required. This assumption is particularly rel-
evant to the fact that the data normally describe an incomplete model of the struc-
ture. This occurs in at least two different ways. First, the data are normally limited to
a minimum and maximum frequency as well as a limited frequency resolution. Sec-
ond, no information relative to local rotations is available because of the lack of
available transducers in this area.

MODAL ANALYSIS THEORY

While modal analysis theory has not changed over the last century, the application
of the theory to experimentally measured data has changed significantly. The
advances of recent years with respect to measurement and analysis capabilities have
caused a reevaluation of what aspects of the theory relate to the practical world of

EXPERIMENTAL MODAL ANALYSIS 21.5

8434_Harris_21_b.qxd  09/20/2001  12:08 PM  Page 21.5



testing.Thus, the aspect of transform relationships has taken on renewed importance
since digital forms of the integral transforms are in constant use.The theory from the
vibrations point of view involves a more thorough understanding of how the struc-
tural parameters of mass, damping, and stiffness relate to the impulse-response func-
tion (time domain), the frequency response function (Fourier or frequency domain),
and the transfer function (Laplace domain) for single and multiple degree-of-
freedom systems.

SINGLE DEGREE-OF-FREEDOM SYSTEMS

In order to understand modal analysis, complete comprehension of single degree-of-
freedom systems is necessary. In particular, complete familiarity with single degree-
of-freedom systems as presented and evaluated in the time, frequency (Fourier), and
Laplace domains serves as the basis for many of the models that are used in modal
parameter estimation. This single degree-of-freedom approach is trivial from a
modal analysis perspective since no modal vectors exist. The true importance of this
approach results from the fact that the multiple degree-of-freedom case can be
viewed as simply a linear superposition of single degree-of-freedom systems.

The general mathematical representation of a single degree-of-freedom system is
expressed by

mẍ(t) + cẋ(t) + kx(t) = f(t) (21.1)

where m = mass constant
c = damping constant
k = stiffness constant

This differential equation yields a characteristic equation of the following form:

ms2 + cs + k = 0 (21.2)

where s is the complex-valued frequency variable (Laplace variable). This charac-
teristic equation of a single degree-of-freedom system has two roots, �1 and �2,
which are

λ1 = −σ1 + jω1 λ2 = −σ2 + jω2 (21.3)

where σ1 = damping factor for mode 1
ω1 = damped natural frequency for mode 1

Thus, the complementary solution of Eq. (21.1) is

x(t) = Ae λ1t + Beλ 2t (21.4)

A and B are complex-valued constants determined from the initial conditions
imposed on the system at time t = 0.

For most real structures, unless active damping systems are present, the damping
ratio is rarely greater than 10 percent. For this reason, all further discussion is
restricted to underdamped systems (ζ < 1). With reference to Eq. (21.2), this means
that the two roots λ1 and λ2 are always complex conjugates. Also, the two coeffi-
cients, A and B, are complex conjugates of each other. For an underdamped system,
the roots of the characteristic equation can be written as

λ1 = σ1 + jω1 λ1* = σ1 − jω1 (21.5)
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where σ1 = damping factor
ω1 = damped natural frequency

The roots of the characteristic equation (21.2) can also be written as

λ1 = −ζ1Ω1 ± jΩ1 �1� −� ζ�1
2� (21.6)

The damping factor is defined as the real part of a root of the characteristic equa-
tion.The damping factor describes the exponential decay or growth of the harmonic.
This parameter has the same units as the imaginary part of the root of the charac-
teristic equation, typically radians per second.

Time Domain: Impulse-Response Function. The impulse-response function of
the single degree-of-freedom system is defined as the time response x(t) of the sys-
tem, assuming that the initial conditions are zero and that the system excitation f(t)
is a unit impulse. The response of the system x(t) to such a unit impulse is known as
the impulse-response function h(t) of the system. Therefore

h(t) = Aeλ1t + A*eλ1*t = eσ1t [ Ae+jω1t + A*e−jω1t ] (21.7)

Thus, the residue A controls the amplitude of the impulse response, the real part of
the pole is the decay rate, and the imaginary part of the pole is the frequency of oscil-
lation. Figure 21.2 illustrates the impulse-response function for a single degree-of-
freedom system.

Frequency Domain: Frequency Response Function. An equivalent equation
of motion for Eq. (21.1) is determined for the Fourier or frequency (ω) domain.This
representation has the advantage of converting a differential equation to an alge-
braic equation. This is accomplished by taking the Fourier transform of Eq. (21.1).
Thus, Eq. (21.1) becomes
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FIGURE 21.2 Single degree-of-freedom impulse-response function.
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[ −mω2 + jcω + k ] X(ω) = F(ω) (21.8)

Restating the above equation,

X(ω) = H(ω) F(ω) (21.9)

where

H(ω) =

Equation (21.9) states that the system response X(ω) is directly related to the system
forcing function F(ω) through the quantity H(ω). If the system forcing function F(ω)
and its response X(ω) are known, H(ω) can be calculated. That is,

H(ω) = (21.10)

The quantity H(ω) is known as the frequency response function of the system. The
frequency response function relates the Fourier transform of the system input to the
Fourier transform of the system response.

The denominator of Eq. (21.9) is known as the characteristic equation of the sys-
tem and is of the same form as Eq. (21.2). Note that the characteristic values of this
complex equation are in general complex even though the equation is a function of
a real-valued independent variable ω. The characteristic values of this equation are
known as the complex roots of the characteristic equation or the complex poles of
the system. In terms of modal parameters, these characteristic values are also called
the modal frequencies.

The frequency response function H(ω) can now be rewritten as a function of the
complex poles as follows:

H(ω) = (21.11)

where λ1 = complex pole = σ + jω1

λ1* = σ − jω1

Since the frequency response function is a complex-valued function of a real-
valued independent variable ω, it is represented by a pair of curves, as shown in
Fig. 21.3.

Laplace Domain: Transfer Function. Just as in the previous case for the fre-
quency domain, the equivalent information can be presented in the Laplace domain
by way of the Laplace transform.The only significant difference in the development
concerns the fact that the Fourier transform is defined from negative infinity to pos-
itive infinity, while the Laplace transform is defined from zero to positive infinity
with initial conditions. The Laplace representation, also, has the advantage of con-
verting a differential equation to an algebraic equation.

The transfer function is defined in the same way that the frequency response
function is defined (assuming zero initial conditions):

1/m
���
( jω − λ1)( jω − λ1*)

X(ω)
�
F(ω)

1
��
−mω2 + jcω + k
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X(s) = H(s) F(s) (21.12)

where

H(s) =

The quantity H(s) is defined as the transfer function of the system.The transfer func-
tion relates the Laplace transform of the system input to the Laplace transform of
the system response. From Eq. (21.12), the transfer function is defined as

H(s) = (21.13)

The denominator term is once again referred to as the characteristic equation of the
system. As noted in the previous two cases, the roots of the characteristic equation
are given in Eq. (21.5).

The transfer function H(s) is now rewritten, just as in the frequency response
function case, as

X(s)
�
F(s)

1
��
ms2 + cs + k
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FIGURE 21.3 Single degree-of-freedom frequency response function (log magnitude/phase format).
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H(s) = (21.14)

Since the transfer function is a complex-valued function of a complex independent
variable s, it is represented, as shown in Fig. 21.4, as a pair of surfaces.

The definition of undamped natural frequency, damped natural frequency, damp-
ing factor, percent of critical damping, and residue are all relative to the information
represented by Fig. 21.4. The projection of this information onto the plane of zero
amplitude yields the information shown in Fig. 21.5.

1/m
��
(s − λ1)(s − λ1*)
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FIGURE 21.4 Single degree-of-freedom transfer function (log magnitude/phase format).
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The concept of residues is now defined in terms of the partial fraction expansion
of the transfer function or frequency response function equation. Equation (21.27)
is expressed in terms of partial fractions as follows:

H(s) = = + (21.15)
A*

�
s − λ1*

A
�
s − λ1

1/m
��
(s − λ1)(s − λ1*)
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The residues of the transfer function are defined as the constants A and A*. The ter-
minology and development of residues comes from the evaluation of analytic func-
tions in complex analysis. The residues of the transfer function are directly related to
the amplitude of the impulse-response function. In general, the residue A is a complex
quantity.As shown for a single degree-of-freedom system, A is purely imaginary. From
an experimental point of view, the transfer function is not estimated from measured
input-output data. Instead, the frequency response function is actually estimated via
the discrete Fourier transform.

MULTIPLE DEGREE-OF-FREEDOM SYSTEMS

Modal analysis concepts are applied when a continuous, nonhomogeneous structure
is described as a lumped-mass, multiple degree-of-freedom system.The modal (natu-
ral) frequencies, the modal damping, the modal vectors, or relative patterns of
motion, and the modal scaling can be found from an estimate of the mass, damping,
and stiffness matrices or from the measurement of the associated frequency response
functions. From the experimental viewpoint, the relationship of modal parameters
with respect to measured frequency response functions is most important.

FIGURE 21.5 Transfer function (Laplace domain projection).
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The development of the frequency response function solution for the multiple
degree-of-freedom case parallels that for the single degree-of-freedom case. This
development relates the mass, damping, and stiffness matrices to a matrix transfer
function model, or matrix frequency response function model, involving multiple
degrees-of-freedom. Just as in the analytical case where the ultimate solution can be
described in terms of single degree-of-freedom systems, the frequency response
functions between any input and response degree-of-freedom can be represented as
a linear superposition of the single degree-of-freedom models derived previously.

As a result of the linear superposition concept, the equations for the impulse-
response function, the frequency response function, and the transfer function for the
multiple degree-of-freedom system are defined as follows:

Impulse-response function:

hpq(t) = �
n

r = 1
Apqreλr t + A*pare λr *t (21.16)

Frequency response function:

Hpq(ω) = �
n

r = 1
+ (21.17)

Transfer function:

Hpq(s) = �
n

r = 1
+ (21.18)

where t = time variable
ω = frequency variable
s = Laplace variable
p = measured degree-of-freedom (response)
q = measured degree-of-freedom (input)
r = modal vector number

Apqr = residue
A = Qrψprψqr

Qr = modal scaling factor
ψpr = modal coefficient
λr = system pole
n = number of modal frequencies

It is important to note that the residue, Apqr, in Eqs. (21.16) through (21.18) is the
product of the modal deformations at the input q and response p degrees-of-
freedom and a modal scaling factor for mode r. Therefore, while the product of these
three terms is unique, each of the three terms individually is not unique.

Modal scaling refers to the relationship between the normalized modal vectors
and the absolute scaling of the mass matrix (analytical case) and/or the absolute
scaling of the residue information (experimental case). Modal scaling is normally
presented as modal mass or modal A. The driving point residue, Aqqr, is particularly
important in deriving the modal scaling.

A*pqr
�
s − λr*

Apqr
�
s − λr

A*pqr
�
jω − λr*

Apqr
�
jω − λr
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Aqqr = Qrψqrψqr = Qrψqr
2 (21.19)

For undamped and proportionally damped systems, the rth modal mass of a mul-
tiple degree-of-freedom system can be defined as

Mr = = (21.20)

where Mr = modal mass
Qr = modal scaling constant
ωr = damped natural frequency

If the largest scaled modal coefficient is equal to unity, Eq. (21.20) computes a quan-
tity of modal mass that has physical significance.The physical significance is that the
quantity of modal mass computed under these conditions is between zero and the
total mass of the system.Therefore, under this scaling condition, the modal mass can
be viewed as the amount of mass that is participating in each mode of vibration. For
a translational rigid body mode of vibration, the modal mass should be equal to the
total mass of the system. The modal mass defined in Eq. (21.20) is developed in
terms of displacement over force units. If measurements, and therefore residues, are
developed in terms of any other units (velocity over force or acceleration over
force), Eq. (21.20) has to be altered accordingly.

Once the modal mass is known, the modal damping Cr and stiffness Kr can be
obtained through the following single degree-of-freedom equations:

Cr = 2σrMr (21.21)

Kr = (σr
2 + ωr

2)Mr = Ωr
2Mr (21.22)

For systems with nonproportional damping, modal mass cannot be used for modal
scaling. For this case, and increasingly for the undamped and proportionally damped
cases as well, the modal A scaling factor is used as the basis for the relationship
between the scaled modal vectors and the residues determined from the measured
frequency response functions. This relationship is as follows:

MAr
= = (21.23)

Note that this definition of modal A is also developed in terms of displacement over
force units. Once the modal A is known, modal B (MBr) can be obtained through the
following single degree-of-freedom equation:

MBr
= −λrMAr (21.24)

For undamped and proportionally damped systems, the relationship between the
modal mass and the modal A scaling factors can be uniquely determined as

MAr
= ± j2Mrωr (21.25)

In general, the modal vectors are considered to be dimensionless since they repre-
sent relative patterns of motion.Therefore, the modal mass or modal A scaling terms
carry the units of the respective measurement. For example, the development of the

1
�
Qr

ψprψqr
�

Apqr

ψprψqr
�
j2Apqrωr

1
�
j2Qrωr
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frequency response is based upon displacement over force units. The residue must
have units of length over force-seconds. Since the modal A scaling coefficient is
inversely related to the residue, modal A has units of force-seconds over length.This
unit combination is the same as mass over seconds. Likewise, since modal mass is
related to modal A, for proportionally damped systems, through a direct relation-
ship involving the damped natural frequency, the units of modal mass are mass units,
as expected.

DAMPING MECHANISMS

In order to evaluate multiple degree-of-freedom systems that are present in the real
world, the effect of damping on the complex frequencies and modal vectors must be
considered. Many physical mechanisms are needed to describe all of the possible
forms of damping that may be present in a particular structure or system. Some of
the classical types are (1) structural damping, (2) viscous damping, and (3) Coulomb
damping. It is generally difficult to ascertain which type of damping is present in any
particular structure. Indeed most structures exhibit damping characteristics that
result from a combination of all the above, plus others that have not been described
here. (Damping is described in detail in Chap. 36.)

Rather than consider the many different physical mechanisms, the probable loca-
tion of each mechanism, and the particular mathematical representation of the
mechanism of damping that is needed to describe the dissipative energy of the sys-
tem, a model is used that is concerned only with the resultant mathematical form.
This model represents a hypothetical form of damping that is proportional to the
system mass or stiffness matrix. Therefore

[C] = α[M] + β[K] (21.26)

Under this assumption, proportional damping is the case where the equivalent
damping matrix is equal to a linear combination of the mass and stiffness matrices.
For this mathematical form of damping, the coordinate transformation that diago-
nalizes the system mass and stiffness matrices also diagonalizes the system damping
matrix. Nonproportional damping is the case where this linear combination does not
exist.Therefore when a system with proportional damping exists, that system of cou-
pled equations of motion can be transformed to a system of equations that represent
an uncoupled system of single degree-of-freedom systems that are easily solved.
With respect to modal parameters, a system with proportional damping has real-
valued modal vectors (real or normal modes), while a system with nonproportional
damping has complex-valued modal vectors (complex modes).

EXPERIMENTAL MODAL ANALYSIS METHODS

In order to understand the various experimental approaches used to determine the
modal parameters of a structure, some sort of outline of the various techniques is
helpful in categorizing the different methods that have been developed over the last
fifty years. One of several overlapping approaches can be used. One approach is to
group the methods according to whether one mode or multiple modes are excited at
one time. The terminology that is used for this is
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� Phase resonanance (single mode)
� Phase separation (multiple mode)

A slightly more detailed approach is to group the methods according to the type
of measured data that is acquired. When this approach is utilized, the relevant ter-
minology is

� Sinusoidal input-output model (forced normal mode)
� Frequency response function model
� Damped complex exponential response model
� General input-output model

A very common approach to comparing and contrasting experimental modal
analysis methodologies that is often used in the literature is based upon the type of
model that is used in the modal parameter estimation stage.The relevant nomencla-
ture for this approach is

� Parametric model
� Modal model
� [M], [K], [C] model

� Nonparametric model

Finally, the different experimental modal analysis approaches may be grouped
according to the domain in which the modal parameter estimation model is formu-
lated. The relevant nomenclature for this approach is

� Time domain
� Frequency domain
� Spatial domain

Regardless of the approach used to organize or classify the different approaches
to generating modal parameters from experimental data, the fundamental underly-
ing theory is the same. The differences largely are a matter of logistics, user experi-
ence requirements, or numerical or computational limitations rather than the
fundamental superiority or inferiority of the method. Most methodology is based
upon measured frequency response or impulse-response functions. Further discus-
sion of experimental modal analysis is limited to techniques related to the measure-
ment and use of these functions for determining modal parameters.The most widely
utilized methods are discussed in detail in a following section on Modal Parameter
Estimation.

MODAL DATA ACQUISITION

Acquisition of data that are used in the formulation of a modal model involves many
important technical concerns.The primary concern is the digital signal processing, or
the converting of analog signals into a corresponding sequence of digital values that
accurately describe the time-varying characteristics of the inputs to and responses
from a system. Once the data are available in digital form, the most common
approach is to transform the data from the time domain to the frequency domain by
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use of a discrete Fourier transform algorithm. Since this algorithm involves discrete
data over a limited time period, there are large potential problems with this
approach that must be well understood. (Data acquisition and analysis are discussed
in detail in Chap. 27.)

DIGITAL SIGNAL PROCESSING

In order to determine modal parameters, the measured input (excitation) and
response data must be processed and put into a form that is compatible with the test
and modal parameter estimation methods. As a result, digital signal processing of
the data is a very important step in structural testing. This is one of the technology
areas where a clear understanding of the time-frequency-Laplace domain relation-
ships is important. The conversion of the data from the time domain into the fre-
quency and Laplace domains is important both in the measurement process and
subsequently in the parameter estimation process.

Digital signal processing of the measured input and response data is used for the
following reasons:

� Condensation. In general, the amount of measured data tremendously exceeds
the information present in the desired measurements (frequency response, unit
impulse response, coherence function, etc.). Therefore, digital signal processing is
used to condense the data.

� Measurements. The measurements which are used subsequently in the modal
parameter estimation process are estimated. Since there are many excitation,
measurement, and modal parameter estimation procedures, there are likewise a
large number of digital signal processing options which can be used.

� Noise reduction. Signal processing is used to reduce the influences of noise in
the measurement process. The types of noise are classified as follows:
� Noncoherent noise. This noise is due to electrical noise on the transducer sig-

nals or unmeasured excitation sources, etc., which are noncoherent with respect
to the measured input signals or to some other signal which is used in the aver-
aging process. Zero mean noncoherent noise can be eliminated by averaging
with respect to a reference signal. This reference signal can be the input signal
in terms of a spectrum averaging process, or it can be a synchronization or trig-
ger signal in terms of cyclic averaging or random decrement process.

� Signal processing noise. The signal processing itself may generate noise. For
example, leakage is a classic source of noise when using fast Fourier transforms
(FFT) for computing frequency-domain measurements. This type of noise is
reduced or eliminated by using completely observed time signals (periodic or
transient), by using various types of windows, or by increasing the frequency
resolution.

� Nonlinear noise. If the system is nonlinear, then free decay, frequency response,
or unit-impulse function measurements may be distorted, which consequently
causes problems when estimating modal parameters. Nonlinear distortion noise is
eliminated by linearizing the test structure before testing or by randomizing the
input signals to the structure.This causes the nonlinear distortion noise to become
noncoherent with respect to the input signal. The nonlinear noise can then be
averaged from the data in the same manner as ordinary noncoherent noise.

The process of representing an analog signal as a series of digital values is a basic
requirement of digital signal processing analyzers. In practice, the goal of the analog-
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to-digital conversion (ADC) process (see Chap. 27) is to obtain the conversion while
maintaining sufficient accuracy in terms of frequency, magnitude, and phase. When
dealing strictly with analog devices, this concern is satisfied by the performance char-
acteristics of each individual analog device.With the advent of digital signal processing,
the performance characteristics of the analog device are only the first criteria consid-
ered.The characteristics of the analog-to-digital conversion are also very important.

This process of analog-to-digital conversion involves two separate concepts, each
of which is related to the dynamic performance of a digital signal processing ana-
lyzer. Sampling is the part of the process related to the timing between individual
digital pieces of the time-history. Quantization is the part of the process related to
describing an analog amplitude as a digital value. Primarily, sampling considerations
alone affect the frequency accuracy, while both sampling and quantization consider-
ations affect magnitude and phase accuracy. The two constraining relationships that
govern the sampling process are known as Shannon’s sampling theorem (Fig. 21.6)
and Rayleigh’s criterion (Fig. 21.7).The selection of the sampling parameters by way
of these constraints is discussed in Chaps. 14 and 22.
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FIGURE 21.6 Shannon’s sampling theorem: maximum fre-
quency relationship.

FIGURE 21.7 Rayleigh’s criterion: frequency resolution rela-
tionship.
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DISCRETE FOURIER TRANSFORM

The Fourier series concept explains that any physically realizable signal (signal that
satisfies the Dirochlet conditions) can be uniquely separated into a summation of
sine and cosine terms at appropriate frequencies. This generates a unique set of sine
and cosine terms because of the orthogonal nature of sine functions at different fre-
quencies, the orthogonal nature of cosine functions at different frequencies, and the
orthogonal nature of sine functions compared to cosine functions. If the choice of
frequencies is limited to a discrete set of frequencies, the discrete Fourier transform
describes the amount of each sine and cosine term at each discrete frequency. The
real part of the discrete Fourier transform describes the amount of each cosine term;
the imaginary part of the discrete Fourier transform describes the amount of each
sine term. Figure 21.8 is a graphical representation of this concept for a signal that
can be represented by a summation of sinusoids.
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FIGURE 21.8 Discrete Fourier transform concept.

The discrete Fourier transform algorithm is the basis for the formulation of any
frequency-domain function in digital data acquisition systems. In terms of an inte-
gral Fourier transform, the function must exist for all time in a continuous sense in
order to be evaluated. For the realistic measurement situation, data are available in
a discrete sense over a limited time period. The discrete Fourier transform, there-
fore, is based upon a set of assumptions concerning this discrete sequence of values.
The assumptions can be reduced to two, of which one must be met by every signal
processed by the discrete Fourier transform algorithm. The first assumption is that
the signal must be a totally observed transient with respect to the time period of
observation. If this is not true, then the signal must be composed only of harmonics
of the time period of observation. If one of these two assumptions is met by any dis-
crete history processed by the discrete Fourier transform algorithm, then the result-
ing spectrum does not contain bias errors. Much of the data processing effort, with
respect to acquisition of data used for the formulation of a modal model, is con-
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cerned with the assurance that the input and response histories match one of these
two assumptions. A more complete discussion of the discrete Fourier transform
algorithm is included in Chap. 14.

ERRORS

The accurate measurement of frequency response functions depends heavily upon
the errors involved with the digital signal processing. In order to take full advantage
of experimental data in the evaluation of experimental procedures and verification
of theoretical approaches, the errors in measurement, generally designated noise,
must be reduced to acceptable levels. With the increasing use of personal computer
(PC) instrumentation, the user must take great care to be certain that errors are min-
imized. With respect to the frequency response function measurement, the errors in
the estimate are generally grouped into two categories: variance and bias. The vari-
ance portion of the error is due to random deviations of each sample function from
the mean. Statistically, then, if sufficient sample functions are evaluated, the estimate
closely approximates the true function with a high degree of confidence. The bias
portion of the error, on the other hand, is not necessarily reduced by using many
samples. The bias error is due to a system characteristic or measurement procedure
that consistently results in an incorrect estimate.Therefore, the expected value is not
equal to the true value. Examples of this are system nonlinearities or digitization
errors such as aliasing or leakage. With this type of error, knowledge of the form of
the error is vital in reducing the resultant effect in the frequency response function
measurement. See Chap. 22 for details.

TRANSDUCER CONSIDERATIONS

The transducer considerations are often the most overlooked aspect of the experi-
mental modal analysis process. Considerations involving the actual type and specifi-
cations of the transducers, mounting of the transducers, and calibration of the
transducers are often among the largest sources of error. Chapter 12 discusses trans-
ducers and transducer design in significant detail. Calibration of transducers is
reviewed in Chap. 18. Chapter 15 discusses measurement techniques, including
transducer mounting and alignment. These topics are critical to estimating the accu-
rate frequency response function measurements required for most experimental
modal analysis methods.

TEST ENVIRONMENT CONSIDERATIONS

The test environment for any modal analysis test involves several environmental
factors as well as appropriate boundary conditions. Primarily, temperature, humidity,
vacuum, and gravity effects must be properly considered to match previous analysis
models or to allow the experimentally determined model to properly reflect the sys-
tem. Very few experimental laboratory facilities have the capability to control these
factors in other than a rudimentary fashion.

In addition to the environmental concerns, the boundary conditions of the system
under test are very important. Traditionally, modal analysis tests have been per-
formed under the assumption that the test boundary conditions can be made to con-
form to one of four conditions:
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� Free-free boundary conditions (impedance is zero).
� Fixed boundary conditions (impedance is infinite).
� Operating boundary conditions (impedance is correct).
� Arbitrary boundary conditions (impedance is known).

Except in very special situations, none of these boundary conditions can be practi-
cally achieved. Instead, practical guidelines are normally used to evaluate the appro-
priateness of the chosen boundary conditions. For example, if a free-free boundary
is chosen, the desired frequency of the highest rigid body mode must be at least a
factor of 10 below the first deformation mode of the system under test. Likewise, for
the fixed-boundary test, the desired interface stiffness must be at least a factor of 10
greater than the local stiffness of the system under test. While either of these practi-
cal guidelines can be achieved for small test objects, a large class of systems cannot
be acceptably tested in either configuration. Arguments have been made that the
impedance of a support system can be defined (via test and/or analysis) and the
effects of such a support system eliminated from the measured data. This technique
is theoretically sound, but, because of significant dynamics in the support system and
limited measurement dynamics, the approach has not been uniformly applicable.

In response to this problem, many alternative structural testing concepts have
been proposed. Active suspension systems (see Chap. 32) and combinations of
active and passive systems are being evaluated, particularly for application to very
flexible space structures. Active inert-gas suspension systems have been used in the
past for the testing of smaller commercial and military aircraft, and, in general, such
approaches are formulated to better match the requirements of a free-free bound-
ary condition.

Another alternative test procedure is to define a series of relatively conventional
tests with various boundary conditions. These various boundary conditions are cho-
sen in such a way that each perturbed boundary condition can be accurately mod-
eled (for example, the addition of a large mass at interface boundaries). Therefore,
as the experimental model is acquired for each configuration and used to validate
and correct the associated analytical model, the underlying model is validated and
corrected accordingly. This procedure has the added benefit of adding the influence
of modes of vibration that occur above the maximum frequency of the test into the
validation of the model.

MEASUREMENT FORMULATION

For current approaches to experimental modal analysis, the frequency response
function is the most important, and most common, measurement to be made. When
estimating frequency response functions, a measurement model is needed that
allows the frequency response function to be estimated from measured input and
output data in the presence of noise (errors). These errors have been discussed in
this and other chapters in great detail.

There are at least four different testing configurations that can be considered.
These different testing conditions are largely a function of the number of acquisition
channels or excitation sources that are available to the test engineer.

� Single input/single output (SISO)
� Single input/multiple output (SIMO)
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� Multiple input/single output (MISO)
� Multiple input/multiple output (MIMO)

In general, the best testing situation is the multiple input/multiple output configura-
tion (MIMO), since the data are collected in the shortest possible time with the
fewest changes in the test conditions.

FREQUENCY RESPONSE FUNCTION ESTIMATION

The estimation of the frequency response function depends upon the transforma-
tion of data from the time to the frequency domain. The Fourier transform is used
for this computation. The computation is performed digitally using a fast Fourier
transform algorithm. The frequency response functions satisfy the following single
and multiple input relationships:

Single input relationship:

Xp = HpqFq (21.27)

Multiple input relationship:

X1 H11 . . . H1q F1

X2 H21 . . . H2q F2

. . . = . . . . . . . . . . . . (21.28)�
Xp

�
No × 1

�
Hp1 . . . Hpq

�
No × Ni

�
Fq

�
Ni × 1

The most reasonable, and most common, approach to the estimation of frequency
response functions is the use of least squares (LS) or total least squares (TLS) tech-
niques.8, 9 These are standard techniques for estimating parameters in the presence of
noise. Least squares methods minimize the square of the magnitude error and thus
compute the best estimate of the magnitude of the frequency response function, but
they have little effect on the phase of the frequency response function. The primary
difference in the algorithms used to estimate frequency response functions is in the
assumption of where the noise enters the measurement problem. Three algorithms,
referred to as the H1, H2, and Hν algorithms, are commonly available for estimating
frequency response functions. Table 21.1 summarizes the assumed location of the
noise for these three algorithms.

TABLE 21.1 Summary of Frequency Response Function 
Estimation Models

Assumed location of noise

Technique Solution method Force inputs Response

H1 LS No noise Noise
H2 LS Noise No noise
Hν TLS Noise Noise
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Consider the case of Ni inputs and No outputs measured during a modal test.
Based upon the assumed location of the noise entering the estimation process, Eqs.
(21.29) through (21.31) represent the corresponding model for the H1, H2, and Hν
estimation procedures.

H1 technique:

[H ]No × Ni {F}Ni × 1 = {X}No × 1 − {η}No × 1 (21.29)

H2 technique:

[H ]No × Ni { {F}Ni × 1 − {υ}Ni × 1} = {X}No × 1 (21.30)

Hn technique:

[H ]No × Ni { {F}Ni × 1 − {υ}Ni × 1} = {X}No × 1 − {η}No × 1 (21.31)

This numerical model can be represented in block diagram form as shown in 
Fig. 21.9.

Single Input FRF Estimation. With reference to Fig. 21.9 for a case involving
only one input and one output (input location q and response location p), the equa-
tion that is used to represent the input-output relationship is

X̂p − ηp = Hpq(F̂q − υq) (21.32)

where F = F̂ − υ = actual input
X = X̂ − η = actual output
X̂ = spectrum of the pth output, measured
F̂ = spectrum of the qth input, measured
H = frequency response function
υ = spectrum of the noise part of the input
η = spectrum of the noise part of the output
X = spectrum of the pth output, theoretical
F = spectrum of the qth input, theoretical
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If υ = η = 0, the theoretical (expected) frequency response function of the system is
estimated. If η ≠ 0 and/or υ ≠ 0, a least squares method is used to estimate a best fre-
quency response function in the presence of noise.

In order to develop an estimation of the frequency response function, a number of
averages Navg is used to minimize the random errors (variance). This can be easily
accomplished through use of intermediate measurement of the power (auto-) and
cross-spectra.The estimate of the auto- and cross-spectra for the model in Fig. 21.9 is
defined as follows. Note that each function is a function of frequency.

Cross-spectra WXFpq and WXFqp:

WXFpq = �
Navg

1
XpFq* (21.33)

WFXqp = �
Navg

1
FqXp* (21.34)

Autospectra WFFqq and WXXpp:

WFFqq = �
Navg

1
FqFq* (21.35)

WXXpp = �
Navg

1
XpXp* (21.36)

where F* = complex conjugate of F(ω)
X* = complex conjugate of X(ω)

H1 Algorithm: Minimize Noise on Output (h). The most common formulation
of the frequency response function, often referred to as the H1 algorithm, tends to
minimize the noise on the output. This formulation is shown in Eq. (21.37).

Hpq = (21.37)

H2 Algorithm: Minimize Noise on Input (u). Another formulation of the 
frequency response function, often referred to as the H2 algorithm, tends to mini-
mize the noise on the input. This formulation is shown in Eq. (21.38).

Hpq = (21.38)

In the H2 formulation, an autospectrum is divided by a cross-spectrum.This can be a
problem since the cross-spectrum can theoretically be zero at one or more frequen-
cies. In both formulations, the phase information is preserved in the cross-spectrum
term.

Hn Algorithm: Minimize Noise on Input and Output (h and u). The solution
for Hpq using the Hν algorithm is found by the eigenvalue decomposition of a matrix
of power spectra. For the single input case, the following matrix involving the auto-
and cross-spectra can be defined:

WXXpp
�
WFXqp

WXFpq
�
WFFqq
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[WFFXp] = � �
2 × 2

(21.39)

The solution for Hpq is found by the eigenvalue decomposition of the [WFFX]
matrix as follows:

[WFFXp] = [V]  Λ  [V]H (21.40)

where  Λ  = diagonal matrix of eigenvalues.The solution for the Hpq matrix is found
from the eigenvector associated with the smallest (minimum) eigenvalue λ1.The size
of the eigenvalue problem is second-order, resulting in finding the roots of a quad-
ratic equation. This eigenvalue solution must be repeated for each frequency, and
the complete solution process must be repeated for each response point Xp.

Alternatively, the solution for Hpq is found by the eigenvalue decomposition of
the following matrix of auto- and cross-spectra:

[WXFFp] = � �
2 × 2

(21.41)

[WXFFp] = [V]  Λ  [V]H (21.42)

where  Λ  = diagonal matrix of eigenvalues. The solution for Hpq is again found
from the eigenvector associated with the smallest (minimum) eigenvalue λ1. The 
frequency response function is found from the normalized eigenvector associated
with the smallest eigenvalue. If [WFFXp] is used, the eigenvector associated with the
smallest eigenvalue must be normalized as follows:

{V}λ min = � � (21.43)

If [WXFFp] is used, the eigenvector associated with the smallest eigenvalue must be
normalized as follows:

{V}λ min = � � (21.44)

One important consideration in choosing one of the three formulations for 
frequency response function estimation is the behavior of each formulation in the
presence of a bias error such as leakage. In all cases, the estimate differs from the
expected value, particularly in the region of a resonance (magnitude maximum) or
antiresonance (magnitude minimum). For example, H1 tends to underestimate the
value at resonance, while H2 tends to overestimate the value at resonance. The Hν
algorithm gives an answer that is always bounded by the H1 and H2 values. The dif-
ferent approaches are based upon minimizing the magnitude of the error but have
no effect on the phase characteristics.

In addition to the attractiveness of H1, H2, and Hν in terms of the minimization of
the error, the availability of auto- and cross-spectra allows the determination of other

−1
Hpq

Hpq

−1

WXFpq
H

WFFqq

WXXpp

WXFpq

WXFpq

WXXpp

WFFqq

WXFpq
H
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important functions. The quantity γpq
2 is called the scalar or ordinary coherence func-

tion and is a frequency-dependent, real value between 0 and 1. The ordinary coher-
ence function indicates the degree of causality in a frequency response function. If
the coherence is equal to 1 at any specific frequency, the system is said to have perfect
causality at that frequency. In other words, the measured response power is caused
totally by the measured input power (or by sources which are coherent with the
measured input power).A coherence value less than unity at any frequency indicates
that the measured response power is greater than that caused by the measured input.
This is due to some extraneous noise also contributing to the output power. It should
be emphasized, however, that low coherence does not necessarily imply poor esti-
mates of the frequency response function; it simply means that more averaging is
needed for a reliable result.The ordinary coherence function is computed as follows:

COHpq = γpq
2 = = (21.45)

When the coherence is zero, the output is caused totally by sources other than the
measured input. In general, then, the coherence can be a measure of the degree of
noise contamination in a measurement. Thus, with more averaging, the estimate of
coherence may contain less variance, therefore giving a better estimate of the noise
energy in a measured signal. This is not the case, though, if the low coherence is due
to bias errors such as nonlinearities, multiple inputs, or leakage. A typical ordinary
coherence function is shown in Fig. 21.10 together with the corresponding frequency
response function magnitude. In Fig. 21.10, the frequencies where the coherence is
lowest are often the same frequencies where the frequency response function is at a
maximum or a minimum in magnitude.This is often an indication of leakage since the
frequency response function is most sensitive to leakage error at the lightly damped
peaks corresponding to the maxima. At the minima, where there is little response
from the system, the leakage error, even though it is small, may still be significant.

In all of these cases, the estimated coherence function approaches, in the limit,
the expected value of coherence at each frequency, dependent upon the type of
noise present in the structure and measurement system. Note that, with more aver-
aging, the estimated value of coherence does not increase; the estimated value of
coherence always approaches the expected value from the upper side.

Multiple Input FRF Estimation. Multiple input estimation of frequency
response functions is desirable for several reasons. The principal advantage is the
increase in the accuracy of estimates of the frequency response functions. During
single input excitation of a system, large differences in the amplitudes of vibratory
motion at various locations may exist due to the dissipation of the excitation power
within the structure. This is especially true when the structure has heavy damping.
Small nonlinearities in the structure consequently cause errors in the measurement
of the response. With multiple input excitation, the vibratory amplitudes across the
structure typically are more uniform, with a consequent decrease in the effect of
nonlinearities.

A second reason for improved accuracy is the increase in consistency of the 
frequency response functions compared to the single input method.When a number
of exciter systems are used, the elements from columns of the frequency response
function matrix corresponding to those exciter locations are being determined
simultaneously.With the single input method, each column is determined independ-
ently, and it is possible for small errors of measurement due to nonlinearities and

WXFpqWFXqp
��
WFFqqWXXpp

| WXFpq |2
��
WFFqqWXXpp

EXPERIMENTAL MODAL ANALYSIS 21.25

8434_Harris_21_b.qxd  09/20/2001  12:08 PM  Page 21.25



time-dependent system characteristics to cause a change in resonance frequencies,
damping, or mode shapes among the measurements in the several columns. This is
particularly important for the polyreference modal parameter estimation algorithms
that use frequency response functions from multiple columns or rows of the 
frequency response function matrix simultaneously.

An additional, significant advantage of multiple input excitation is a reduction in
the test time. In general, when multiple input estimation of frequency response func-
tions is used, frequency response functions are obtained for all input locations in
approximately the same time as required for acquiring a set of frequency response
functions for one of the input locations using a single input estimation method.4, 11, 12

With reference to Fig. 21.9 for a case involving Ni inputs and No outputs, the equa-
tion that is used to represent the input-output relationship is
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coherence function.
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X̂p − ηp = �
Ni

q = 1
Hpq(F̂q − υq) (21.46)

In order to develop an estimation of the frequency response function for the multi-
ple input case, a number of averages Navg is used to minimize the random errors
(variance). This can be easily accomplished through use of intermediate measure-
ment of the auto- and cross-spectra as defined in Eqs. (21.33) through (21.36).Addi-
tional matrices, compared to the single input case, need to be defined. These
additional matrices are constructed from the auto- and cross-spectra previously
defined for the single input case. Each function and, therefore, each resulting matrix
is a function of frequency.

Input-output cross-spectra matrix:

X1

X2

WXF11 . . . WXF1Ni

[WXF] = {X}{F}H =
. . .

[F1* F2* . . . FNi
*] = . . . . . . . . . (21.47)�

XNo

� �WXFNo1 . . . WXFNoNi
�

Input cross-spectra matrix:

F1

F2

WFF11 . . . WFF1Ni

[WFF ] = {F}{F}H =
. . .

[F1* F2* . . . FNi
*] = . . . . . . . . . (21.48)�

FNi

� � WFFNi1
. . . WFFNiNi

�
The frequency response functions can now be estimated for the three algorithms.

H1 Algorithm: Minimize Noise on Output (h)

[H] = [WXF][WFF]−1 (21.49)

In the experimental procedure, the input and response signals are measured,
and the averaged cross-spectra and autospectra necessary to create the [WXF ],
[WFF ], and [WXX ] matrices are computed. The input cross-spectrum matrix must
be inverted, at least implicitly, at every frequency in the analysis range. This means
that the computational load on the measurement system is greater than for the 
single input case, in which only the reciprocal of a single input autospectrum is
computed.

Equation (21.49) is valid unless the input cross-spectrum matrix [WFF] is singu-
lar for specific frequencies or frequency intervals. When this happens, the inverse of
[WFF ] does not exist and Eq. (21.49) cannot be used to solve for the frequency
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response function at those frequencies or in those frequency intervals. A computa-
tional procedure that solves Eq. (21.49) for [H] must monitor the rank of the matrix
[WFF ] that is to be inverted, and provide information on how to alter the input sig-
nals or use the available data when a problem exists. The current approach for eval-
uating whether the inputs are sufficiently uncorrelated at each frequency involves
determining the principal/virtual forces using principal component analysis.10

H2 Algorithm: Minimize Noise on Input (u)

[H] = [WXX][WFX]−1 (21.50)

One problem with using the H2 algorithm is that the solution for [H] can be found
directly using an inverse only when the number of inputs Ni and number of outputs
No are equal.

Hn Algorithm: Minimize Noise on Input and Output (u and h). The solution
for [H] is found by the eigenvalue decomposition of one of the following two
matrices:

[WFF] [WXFp]
[WFFXp] = �[WXFp]H WXXp

�
(Ni + 1) × (Ni + 1)

(21.51)

WXXp [WXFp]H

[WXFFp] = �[WXFp] [WFF] �
(Ni + 1) × (Ni + 1)

(21.52)

Therefore, the eigenvalue decomposition is

[WFFXp] = [V ]  Λ  [V ]H (21.53)

or

[WXFFp] = [V ]  Λ  [V ]H (21.54)

where  Λ  = diagonal matrix of eigenvalues. The solution for the pth row of the [H]
matrix is found from the eigenvector associated with the smallest (minimum) eigen-
value. Note that the size of the eigenvalue problem is Ni + 1 and that the eigenvalue
solution must be repeated for each frequency. The complete solution process must
be repeated for each response point Xp.

The frequency response function associated with a single output p and all inputs
is found by normalizing the eigenvector associated with the smallest eigenvalue. If
[WFFXp] is used, the eigenvector associated with the smallest eigenvalue must be
normalized as follows:

Hp1

Hp2

{V}λmin = � . . . � (21.55)

HpNi

−1
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If [WXFFp] is used, the eigenvector associated with the smallest eigenvalue must be
normalized as follows:

−1

Hp1

{V}λmin = � Hp2 � (21.56)

. . .

HpNi

The concept of the coherence function, as defined for single input measurement,
needs to be expanded to include the variety of relationships that are possible for
multiple inputs. Ordinary coherence is defined in this general sense as the correla-
tion coefficient describing the linear relationship between any two single spectra.
Great care must be taken in the interpretation of ordinary coherence when more
than one input is present. The ordinary coherence of an output with respect to an
input can be much less than unity even though the linear relationship between
inputs and outputs is valid, because of the influence of the other inputs.4–6

The ordinary coherence function can be formulated in terms of the elements of
the matrices defined previously. The ordinary coherence function between the pth
output and the qth input can be computed from the following formula:

Ordinary coherence function:

COHpq = λpq
2 = (21.57)

where WXXpp = autospectrum of the output p
WFFqq = autospectrum of the input q
WXFpq = cross-spectrum between output p and input q

Partial coherence is defined as the ordinary coherence between a conditioned
output and another conditioned output, between a conditioned input and another
conditioned input, or between a conditioned input and a conditioned output. The
output and input are conditioned by removing contributions from other input(s).
The removal of the effects of the other input(s) is formulated on a linear least
squares basis.The order of removal of the inputs during “conditioning” has a definite
effect upon the partial coherence if some of the input(s) are mutually correlated.
There is a partial coherence function for every input-output, input-input, and input-
output combination for all permutations of conditioning. The usefulness of partial
coherence for experimental modal analysis is limited.

Multiple coherence is defined as the correlation coefficient describing the linear
relationship between an output and all known inputs. There is a multiple coherence
function for every output. Multiple coherence can be used to evaluate the impor-
tance of unknown contributions to each output. These unknown contributions can
be measurement noise, nonlinearities, or unknown inputs. In particular, as in the
evaluation of ordinary coherence, a low value of multiple coherence near a reso-
nance often means that leakage error is present in the frequency response function.

The formulation of the equations for the multiple coherence functions can be
simplified to the following equation:

|WXFpq|2
��
WFFqqWXXpp
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Multiple coherence function:

MCOHp = �
Ni

q = 1
�

Ni

t = 1
(21.58)

where Hpq = frequency response function for output p and input q
Hpt = frequency response function for output p and input t

WFFqt = cross-spectrum between output q and output t

If the multiple coherence of the pth output is near unity, then the pth output is 
well predicted from the set of inputs using the least squares frequency response
functions.

Multiple Input Force Analysis/Evaluation. Of the variety of situations that can
cause difficulties in the computation of the frequency response functions, the one
with the highest potential for trouble is the case of coherent inputs. If two of the
inputs are fully coherent, then there are no unique frequency response functions
associated with those inputs. Unfortunately, there are a number of situations where
the input cross-spectrum matrix [WFF] may be singular at specific frequencies or
frequency intervals.When this happens, the inverse of [WFF ] does not exist, and Eq.
(21.49) cannot be used to solve for the frequency response function at those fre-
quencies or in those frequency intervals. First, one of the input autospectra may be
zero in amplitude over some frequency interval. Second, two or more of the input
signals may be fully coherent over some frequency interval. Third, numerical prob-
lems which cause the computation of the inverse to be inexact may be present.

The current approach used to detect correlated inputs involves utilizing princi-
pal component analysis to determine the number of forces contributing to the
[WFF ] matrix. In this approach, a principal component analysis must be conducted
on the [WFF ] matrix.10 Principal component analysis involves an eigenvalue de-
composition of the [WFF ] matrix. Since the eigenvectors of such a decomposition
are unitary, the eigenvalues should all be of approximately the same size if each of
the inputs is contributing. If one of the eigenvalues is much smaller at a particular
frequency, one of the inputs is not present or one of the inputs is correlated with the
other input(s).

[WFF] = [V ] [Λ] [V ]H (21.59)

where [Λ] represents the eigenvalues of the [WFF ] matrix. If any of the eigenvalues
of the [WFF] matrix are zero or insignificant, then the [WFF] matrix is singular.
Therefore, for a three-input test, the [WFF] matrix should have three eigenvalues of
approximately the same magnitude. (The number of distinct eigenvalues is equal to
the number of uncorrelated inputs.) Figure 21.11 shows the principal force plots for
a case with three inputs. At the frequencies where the third principal/virtual force
drops (lowest curve), the inputs are mutually correlated.

PRACTICAL MEASUREMENT CONSIDERATIONS

There are several factors that contribute to the quality of actual measured frequency
response function estimates. Some of the most common sources of error involve
measurement mistakes. With a proper measurement approach, most errors of this
type, such as overloading the input, extraneous signal pick-up via ground loops or

HpqWFFqtHpt*
��

WXXpp
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strong electric or magnetic fields nearby, etc., can be avoided. Violations of test
assumptions are often the source of another inaccuracy and can be viewed as a meas-
urement mistake. For example, frequency response and coherence functions have
been defined as parameters of a linear system. Nonlinearities generally shift energy
from one frequency to many new frequencies, in a way which may be difficult to rec-
ognize.The result is a distortion in the estimates of the system parameters, which may
not be apparent unless the excitation is changed. One way to reduce the effect of non-
linearities is to randomize these contributions by choosing a randomly different input
signal for each of the contributing averages. Subsequent averaging reduces these con-
tributions in the same way that random noise is reduced. Another example involves
control of the system input. One requirement is to excite the system with energy at all
frequencies for which measurements are expected. It is important to be sure that the
input signal spectrum does not have frequency ranges where little energy exists.
Otherwise, coherence is very low, and the variance on the frequency response func-
tion is unacceptable.

Assuming that the system is linear, the excitation is proper, and measurement
mistakes are avoided, some amount of error and/or noise is still present in the meas-
urement process. Five different approaches can be used to reduce this error involved
in frequency response function measurements. First of all, the use of different 
frequency response function estimation algorithms (Hν compared to H1) reduces the
effect of the leakage error on the estimation of the frequency response function
computation. The use of averaging significantly reduces errors of both variance and
bias and is probably the most general technique used to reduce errors in frequency
response function measurement. Selective excitation is often used to verify nonlin-
earities or randomize characteristics. In this way, bias errors due to system sources
can be reduced or controlled.The increase of frequency resolution through the zoom
fast Fourier transform improves the frequency response function estimate primarily
by reducing the leakage bias error through the use of a longer time sample. The
zoom fast Fourier transform by itself is a linear process and does not involve any
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specific error reduction characteristics compared to a baseband fast Fourier trans-
form (FFT). Finally, the use of weighting functions (windows) is widespread, and
much has been written about their value.4–6 Primarily, weighting functions compen-
sate for the bias error (leakage) caused by the analysis procedure.

Signal Averaging. The averaging of signals is normally viewed as a summation or
weighted summation process where each sample function has a common abscissa.6

Normally, the designation of history is given to sample functions with the abscissa of
absolute time, and the designation of spectrum is given to sample functions with the
abscissa of absolute frequency.The spectra are normally generated by Fourier trans-
forming the corresponding history. In order to generalize and consolidate the con-
cept of signal averaging as much as possible, the case of relative time is also
considered. In this way, relative history is discussed with units of the appropriate
event rather than seconds, and a relative spectrum is the corresponding Fourier
transform with units of cycles per event. This concept of signal averaging is used
widely in structural signature analysis where the event is a revolution of a rotating
shaft.This kind of approach simplifies the application of many other concepts of sig-
nal relationships, such as Shannon’s sampling theorem and Rayleigh’s criterion of
frequency resolution.

The process of signal averaging as it applies to frequency response functions is
simplified greatly by the intrinsic uniqueness of the frequency response function.
Since the frequency response function is expressed in terms of system properties of
mass, stiffness, and damping, it is reasonable to conclude that in most realistic struc-
tures, the frequency response functions are considered to be constants, just like 
mass, stiffness, and damping. This concept means that when formulating the 
frequency response function using H1, H2, or Hν algorithms, the estimate of fre-
quency response is intrinsically unique, as long as the system is linear and the noise
can be eliminated. In general, the auto- and cross-power spectra are statistically
unique only if the input is stationary and sufficient averages are taken. Nevertheless,
the estimate of frequency response is valid whether the input is stationary, nonsta-
tionary, or deterministic.

The concept of the intrinsic uniqueness of the frequency response function also
permits a greater freedom in the testing procedure. Each function is derived as the
result of a separate test or as the result of different portions of the same continuous
test situation. In either case, the estimate of the frequency response function is the
same as long as the time-history data for the auto- and cross-power spectra that are
utilized in any computation of the frequency response or coherence function are
acquired simultaneously.

The approaches to signal averaging vary only in the relationship between the
sample functions used. Since the Fourier transform is a linear function, there is no
theoretical difference between the use of histories or spectra. (Practically, though,
there are precision considerations.) With this in mind, the signal averaging useful to
frequency response function measurements can be divided into three classifications:

� Asynchronous
� Synchronous
� Cyclic

These three classifications refer to the trigger and sampling relationships between
sample functions. Asynchronous averaging describes the averaging case when each
average is acquired without a triggering event; it is sometimes referred to as free-run
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averaging. Synchronous averaging describes the averaging case when each average
is acquired only when an external triggering event occurs. Cyclic averaging describes
the averaging case when each average is acquired with a specific absolute time, or
phase, relationship to all previous averages. (Averaging is discussed in detail in
Chaps. 13 and 22.)

Excitation. Excitation includes any form of input that is used to create a response
in a mechanical system.This can include environmental or operational inputs as well
as the controlled force input(s) that are used in a vibration or modal analysis test. In
general, the following discussion is limited to force inputs that are measured and/or
controlled in some rigorous way.3, 13, 14

Excitation Assumptions. The primary assumption concerning the excitation of
a linear structure is that the excitation is observable. Whenever the excitation is
measured, this assumption simply implies that the measured characteristic properly
describes the actual input characteristics. For the case of multiple inputs, the differ-
ent inputs must often be uncorrelated for the computational procedures to yield a
solution. In most cases this means only that the multiple inputs must not be perfectly
correlated at any frequency. As long as the excitation is measured, the validity of
these limited assumptions can be evaluated.

There are a number of techniques that can be used to estimate modal character-
istics from response measurements with no measurement of the excitation. If this
approach is used, the excitation assumptions are much more imposing. If the excita-
tion is not measured, estimates of modal scaling (modal mass, modal A, residues,
etc.) cannot be generated. Even when these parameters are not required, all of these
techniques have one further restriction: an assumption has to be made concerning
the characteristics of the excitation of the system. Usually, the autospectrum of the
excitation signal is assumed to be constant over the frequency interval of interest.
This is not generally practical.

Classification of Excitation. Inputs which can be used to excite a system in
order to determine frequency response functions belong to one of two classifica-
tions. The first classification is that of a random signal. Signals of this form can be
defined by their statistical properties only over some time period. Any subset of the
total time period is unique, and no explicit mathematical relationship can be formu-
lated to describe the signal. Random signals can be further classified as stationary or
nonstationary. Stationary random signals are a special case where the statistical
properties of the random signals do not vary with respect to translations with time.
Finally, stationary random signals can be classified as ergodic or nonergodic. A sta-
tionary random signal is ergodic when a time average on any particular subset of the
signal is the same for any arbitrary subset of the random signal. All random signals
which are commonly used as input signals fall into the category of ergodic, station-
ary random signals.

The second classification of inputs which can be used to excite a system in order
to determine frequency response functions is that of a deterministic signal. Signals of
this form can be represented in an explicit mathematical relationship. Deterministic
signals are further divided into periodic and nonperiodic classifications. The most
common inputs in the periodic deterministic signal designation are sinusoidal in
nature, while the most common inputs in the nonperiodic deterministic designation
are transient in form.

The choice of input to be used to excite a system in order to determine frequency
response functions depends upon the characteristics of the system, the characteristics
of the parameter estimation, and the expected utilization of the data. The characteri-
zation of the system is primarily concerned with the linearity of the system. As long
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as the system is linear, all input forms should give the same expected value. Naturally,
though, all real systems have some degree of nonlinearity. Deterministic input signals
result in frequency response functions that are dependent upon the signal level and
type. A set of frequency response functions for different signal levels can be used to
document the nonlinear characteristics of the system. Random input signals, in the
presence of nonlinearities, result in a frequency response function that represents the
best linear representation of the nonlinear characteristics for a given level of random
signal input. For small nonlinearities, use of a random input does not differ greatly
from the use of a deterministic input.

The characterization of the parameter estimation is primarily concerned with the
type of mathematical model being used to represent the frequency response func-
tion. Generally, the model is a linear summation based upon the modal parameters
of the system. Unless the mathematical representation of all nonlinearities is known,
the parameter estimation process cannot properly weight the frequency response
function data to include nonlinear effects. For this reason, random input signals are
regularly used to obtain the best linear estimate of the frequency response function
when a parameter estimation process using a linear model is to be utilized.

The expected utilization of the data is concerned with the degree of detailed
information required by any postprocessing task. For experimental modal analysis,
this can range from implicit modal vectors needed for troubleshooting to explicit
modal vectors used in an orthogonality check. As more detail is required, input sig-
nals, both random and deterministic, need to match the system characteristics and
parameter estimation characteristics more closely. In all possible uses of frequency
response function data, the conflicting requirements of the need for accuracy, equip-
ment availability, testing time, and testing cost normally reduce the possible choices
of input signal.

With respect to the reduction of the variance and bias errors of the frequency
response function, random or deterministic signals can be utilized most effectively if
the signals are periodic with respect to the sample period or totally observable with
respect to the sample period. If either of these criteria is satisfied, regardless of sig-
nal type, the predominant bias error, leakage, is eliminated. If these criteria are not
satisfied, the leakage error may become significant. In either case, the variance error
is a function of the signal-to-noise ratio and the amount of averaging.

Many signals are appropriate for use in experimental modal analysis. Some of the
most commonly used signals are described in the following sections. For those exci-
tation signals that require the use of a shaker, Fig. 21.12 shows a typical test configu-
ration; Fig. 21.13 shows a typical test configuration when an impact form of
excitation is to be used. The advantages and disadvantages of each excitation signal
are summarized in Table 21.2.

Slow swept sine. The slow swept sine signal is a periodic deterministic signal
with a frequency that is an integer multiple of the FFT frequency increment. Suf-
ficient time is allowed in the measurement procedure for any transient response
to the changes in frequency to decay, so that the resultant input and response his-
tories are periodic with respect to the sample period. Therefore, the total time
needed to compute an entire frequency response function is a function of the
number of frequency increments required and the system damping.
Periodic chirp. The periodic chirp is a fast swept sine signal that is a periodic
deterministic signal and is formulated by sweeping a sine signal up or down
within a frequency band of interest during a single sample period. Normally, the
fast swept sine signal is made up of only integer multiples of the FFT frequency
increment. This signal is repeated without change so that the input and output
histories are periodic with respect to the sample period.
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Impact (impulse). The impact signal is a transient deterministic signal which is
formed by applying an input pulse lasting only a very small part of the sample
period to a system.The width, height, and shape of this pulse determine the usable
spectrum of the impact. Briefly, the width of the pulse determines the frequency
spectrum, while the height and shape of the pulse control the level of the spec-
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FIGURE 21.12 Typical fixed-input modal test configuration: shaker.

FIGURE 21.13 Typical fixed-response modal test configuration: impact hammer.
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TABLE 21.2 Characteristics of Excitation Signals Used in Experimental Modal Analysis

Slow
swept Periodic Step Pure Pseudo- Periodic Burst 
sine chirp Impact relaxation random random random random

Minimize leakage Yes/No Yes Yes Yes No Yes Yes Yes

Signal-to-noise ratio Very High Low Low Fair Fair Fair Fair
high

RMS-to-peak ratio High High Low Low Fair Fair Fair Fair

Test measurement time Very Very Very Very Good Very Long Good
long short short short short

Controlled frequency Yes* Yes* No No Yes* Yes* Yes* Yes*
content

Controlled amplitude Yes* Yes* No Yes/No No Yes* Yes* No
content

Removes distortion No No No No Yes No Yes Yes

Characterize Yes Yes No No No Yes No No
nonlinearity

* Special hardware required.
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trum. Impact signals have proven to be quite popular due to the freedom of apply-
ing the input with some form of an instrumented hammer. While the concept is
straightforward, the effective utilization of an impact signal is very involved.14

Step relaxation. The step relaxation signal is a transient deterministic signal
which is formed by releasing a previously applied static input. The sample period
begins at the instant that the release occurs. This signal is normally generated by
the application of a static force through a cable. The cable is then cut or allowed
to release through a shear pin arrangement.

Pure random. The pure random signal is an ergodic, stationary random signal
which has a Gaussian probability distribution. In general, the signal contains all
frequencies (not just integer multiples of the FFT frequency increment), but it
may be filtered to include only information in a frequency band of interest. The
measured input spectrum of the pure random signal is altered by any impedance
mismatch between the system and the exciter.

Pseudo-random. The pseudo-random signal is an ergodic, stationary random
signal consisting only of integer multiples of the FFT frequency increment. The
frequency spectrum of this signal has a constant amplitude with random phase. If
sufficient time is allowed in the measurement procedure for any transient
response to the initiation of the signal to decay, the resultant input and response
histories are periodic with respect to the sample period. The number of averages
used in the measurement procedure is only a function of the reduction of the
variance error. In a noise-free environment, only one average may be necessary.

Periodic random. The periodic random signal is an ergodic, stationary random
signal consisting only of integer multiples of the FFT frequency increment. The
frequency spectrum of this signal has random amplitude and random phase dis-
tribution. Since a single history does not contain information at all frequencies, a
number of histories must be involved in the measurement process. For each aver-
age, an input history is created with random amplitude and random phase. The
system is excited with this input in a repetitive cycle until the transient response
to the change in excitation signal decays.The input and response histories should
then be periodic with respect to the sample period and are recorded as one aver-
age in the total process. With each new average, a new history, uncorrelated with
previous input signals, is generated, so that the resulting measurement is com-
pletely randomized.

Random transient (burst random). The random transient signal is neither a
completely transient deterministic signal nor a completely ergodic, stationary
random signal but contains properties of both signal types. The frequency spec-
trum of this signal has random amplitude and random phase distribution and
contains energy throughout the frequency spectrum.The difference between this
signal and the periodic random signal is that the random transient history is trun-
cated to zero after some percentage of the sample period (normally 50 to 80 per-
cent). The measurement procedure duplicates the periodic random procedure,
but without the need to wait for the transient response to decay. The point at
which the input history is truncated is chosen so that the response history decays
to zero within the sample period. Even for lightly damped systems, the response
history decays to zero very quickly because of the damping provided by the
exciter system trying to maintain the input at zero.This damping provided by the
exciter system is often overlooked in the analysis of the characteristics of this sig-
nal type. Since this measured input, although not part of the generated signal,
includes the variation of the input during the decay of the response history, the
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input and response histories are totally observable within the sample period and
the system damping is unaffected.

Increased Frequency Resolution. An increase in the frequency resolution of a
frequency response function affects measurement errors in several ways. Finer fre-
quency resolution allows more exact determination of the damped natural fre-
quency of each modal vector. The increased frequency resolution means that the
level of a broad-band signal is reduced.The most important benefit of increased fre-
quency resolution, though, is a reduction of the leakage error. Since the distortion of
the frequency response function due to leakage is a function of frequency spacing,
not frequency, the increase in frequency resolution reduces the true bandwidth of
the leakage error centered at each damped natural frequency. In order to increase
the frequency resolution, the total time per history must be increased in direct pro-
portion.The longer data acquisition time increases the variance error problem when
transient signals are utilized for input as well as emphasizing any nonstationary
problem with the data. The increase of frequency resolution often requires multiple
acquisition and/or processing of the histories in order to obtain an equivalent fre-
quency range. This increases the data storage and documentation overhead as well
as extending the total test time.

There are two approaches to increasing the frequency resolution of a frequency
response function.The first approach involves increasing the number of spectral lines
in a baseband measurement. The advantage of this approach is that no additional
hardware or software is required. However, FFT analyzers do not always have the
capability to alter the number of spectral lines used in the measurement. The second
approach involves the reduction of the bandwidth of the measurement while holding
the number of spectral lines constant. If the lower frequency limit of the bandwidth is
always zero, no additional hardware or software is required. Ideally, though, for an
arbitrary bandwidth, hardware and/or software to perform a frequency-shifted, or
digitally filtered, FFT is required.

The frequency-shifted FFT process for computing the frequency response func-
tion has additional characteristics pertinent to the reduction of errors. Primarily,
more accurate information can be obtained on weak spectral components if the
bandwidth is chosen to avoid strong spectral components.The out-of-band rejection
of the frequency-shifted FFT is better than that of most analog filters that are used
in a measurement procedure to attempt to achieve the same results. Additionally,
the precision of the resulting frequency response function is improved due to
processor gain inherent in the frequency-shifted FFT calculation procedure.4–6

Weighting Functions. Weighting functions, or data windows, are probably the
most common approach to the reduction of the leakage error in the frequency
response function (see Chap. 14). While weighting functions are sometimes desir-
able and necessary to modify the frequency-domain effects of truncating a signal in
the time domain, they are too often utilized when one of the other approaches to
error reduction would give superior results. Averaging, selective excitation, and
increasing the frequency resolution all act to reduce the leakage error by eliminat-
ing the cause of the error. Weighting functions, on the other hand, attempt to com-
pensate for the leakage error after the data have already been digitized.

Windows alter, or compensate for, the frequency-domain characteristic associ-
ated with the truncation of data in the time domain. Essentially, again using the nar-
row bandpass filter analogy, windows alter the characteristics of the bandpass filters
that are applied to the data.This compensation for the leakage error causes an atten-
dant distortion of the frequency and phase information of the frequency response
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function, particularly in the case of closely spaced, lightly damped system poles.This
distortion is a direct function of the width of the main lobe and the size of the side
lobes of the spectrum of the weighting function.4–7

MODAL PARAMETER ESTIMATION

Modal parameter estimation, or modal identification, is a special case of system
identification where the a priori model of the system is known to be in the form of
modal parameters. Modal parameters include the complex-valued modal frequen-
cies λr, modal vectors {ψr}, and modal scaling (modal mass or modal A).Additionally,
most algorithms estimate modal participation vectors {Lr} and residue vectors {Ar}
as part of the overall process.

Modal parameter estimation involves estimating the modal parameters of a
structural system from measured input-output data. Most modal parameter estima-
tion is based upon the measured data being the frequency response function or the
equivalent impulse-response function, typically found by inverse Fourier transform-
ing the frequency response function. Therefore, the form of the model used to 
represent the experimental data is normally stated in a mathematical frequency
response function (FRF) model using temporal (time or frequency) and spatial
(input degree-of-freedom and output degree-of-freedom) information.

In general, modal parameters are considered to be global properties of the sys-
tem. The concept of global modal parameters simply means that there is only one
answer for each modal parameter and that the modal parameter estimation solution
procedure enforces this constraint. Every frequency response or impulse-response
function measurement theoretically contains the information that is represented by
the characteristic equation, the modal frequencies, and damping. If individual meas-
urements are treated as independent of one another in the solution procedure, there
is nothing to guarantee that a single set of modal frequencies and damping is gener-
ated. Likewise, if more than one reference is measured in the data set, redundant
estimates of the modal vectors can be made unless the solution procedure utilizes all
references in the estimation process simultaneously. Most of the current modal
parameter estimation algorithms estimate the modal frequencies and damping in a
global sense, but very few estimate the modal vectors in a global sense.

Since the modal parameter estimation process involves a greatly overdetermined
problem, the estimates of modal parameters resulting from different algorithms are
not the same as a result of differences in the modal model and model domain, dif-
ferences in how the algorithms use the data, differences in the way the data are
weighted or condensed, and differences in user expertise.

MODAL IDENTIFICATION CONCEPTS

The most common approach in modal identification involves using numerical tech-
niques to separate the contributions of individual modes of vibration in measure-
ments such as frequency response functions. The concept involves estimating the
individual single degree-of-freedom (SDOF) contributions to the multiple degree-
of-freedom (MDOF) measurement.

[H(ω)]No × Ni
= �

n

r = 1
+ (21.60)

[Ar*]No × Ni��
jω − λr*

[Ar]No × Ni��
jω − λr
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This concept is mathematically represented in Eq. (21.60) and graphically repre-
sented in Figs. 21.14 and 21.15.

Equation (21.60) is often formulated in terms of modal vectors {ψr} and modal
participation vectors {Lr} instead of residue matrices [Ar]. Modal participation vec-
tors are a result of multiple reference modal parameter estimation algorithms and
relate how well each modal vector is excited from each of the reference locations
included in the measured data. The combination of the modal participation vector
{Lr} and the modal vector {ψr} for a given mode give the residue matrix Apqr = Lqrψpr

for that mode.
Generally, the modal parameter estimation process involves several stages. Typi-

cally, the modal frequencies and modal participation vectors are found in a first
stage and residues, modal vectors, and modal scaling are determined in a second
stage. Most modal parameter estimation algorithms can be reformulated into a sin-
gle, consistent mathematical formulation with a corresponding set of definitions and
unifying concepts.15 Particularly, a matrix polynomial approach is used to unify the
presentation with respect to current algorithms such as the least squares complex
exponential (LSCE), polyreference time domain (PTD), Ibrahim time domain
(ITD), eigensystem realization algorithm (ERA), rational fraction polynomial
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FIGURE 21.14 Modal superposition example (positive frequency poles).
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(RFP), polyreference frequency domain (PFD) and complex mode indication func-
tion (CMIF) methods. Using this unified matrix polynomial approach (UMPA)
allows a discussion of the similarities and differences of the commonly used methods
as well as a discussion of the numerical characteristics. Least squares (LS), total least
squares (TLS), double least squares (DLS), and singular value decomposition
(SVD) methods are used in order to take advantage of redundant measurement
data. Eigenvalue and singular value decomposition transformation methods are uti-
lized to reduce the effective size of the resulting eigenvalue-eigenvector problem as
well. Many acronyms used in modal parameter estimation are listed in Table 21.3.

Data Domain. Modal parameters can be estimated from a variety of different
measurements that exist as discrete data in different data domains (time, frequency,
and/or spatial). These measurements can include free decays, forced responses, fre-
quency responses, and unit impulse responses. These measurements can be
processed one at a time or in partial or complete sets simultaneously. The measure-
ments can be generated with no measured inputs, a single measured input, or multi-
ple measured inputs. The data can be measured individually or simultaneously. In
other words, there is a tremendous variation in the types of measurements and in the
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types of constraints that can be placed upon the testing procedures used to acquire
these data. For most measurement situations, frequency response functions are uti-
lized in the frequency domain and impulse-response functions are utilized in the
time domain.

Another important concept in experimental modal analysis, and particularly
modal parameter estimation, involves understanding the relationships between the
temporal (time and/or frequency) information and the spatial (input DOF and out-
put DOF) information. Input-output data measured on a structural system can
always be represented as a superposition of the underlying temporal characteristics
(modal frequencies) with the underlying spatial characteristics (modal vectors).

Model Order Relationships. The estimation of an appropriate model order is the
most important problem encountered in modal parameter estimation. This problem
is complicated because of the formulation of the parameter estimation model in the
time or frequency domain, a single or multiple reference formulation of the modal
parameter estimation model, and the effects of random and bias errors on the modal
parameter estimation model.The basis of the formulation of the correct model order
can be seen by expanding the theoretical second-order matrix equation of motion to
a higher-order model.

 [m]s2 + [c]s + [k]  = 0 (21.61)

The above matrix polynomial is of model order two, has a matrix dimension of 
n × n, and has a total of 2n characteristic roots (modal frequencies).This matrix poly-
nomial equation can be expanded to reduce the size of the matrices to a scalar equa-
tion.

α2Ns2N + α2N − 1 s2N − 1 + α2N − 2 s2N − 2 + ⋅⋅⋅ + α0 = 0 (21.62)

The above matrix polynomial is of model order 2n, has a matrix dimension of 
1 × 1, and has a total of 2n characteristic roots (modal frequencies). The characteris-
tic roots of this matrix polynomial equation are the same as those of the original 
second-order matrix polynomial equation. Finally, the number of characteristic
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TABLE 21.3 Modal Parameter Estimation Algorithm Acronyms

CEA Complex exponential algorithm16

LSCE Least squares complex exponential16

PTD Polyreference time domain17, 18

ITD Ibrahim time domain19

MRITD Multiple reference Ibrahim time domain20

ERA Eigensystem realization algorithm21, 22

PFD Polyreference frequency domain23–25

SFD Simultaneous frequency domain26

MRFD Multireference frequency domain27

RFP Rational fraction polynomial28

OP Orthogonal polynomial29–31

CMIF Complex mode indication function32
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roots (modal frequencies) that can be determined depends upon the size of the
matrix coefficients involved in the model and the order of the highest polynomial
term in the model.

For modal parameter estimation algorithms that utilize experimental data, the
matrix polynomial equations that are formed are a function of matrix dimension,
from 1 × 1 to Ni × Ni or No × No. There are a significant number of procedures that
have been formulated particularly for aiding in these decisions and selecting the
appropriate estimation model. Procedures for estimating the appropriate matrix
size and model order are another of the differences between various estimation
procedures.

Fundamental Measurement Models. Most current modal parameter estima-
tion algorithms utilize frequency- or impulse-response functions as the data, or
known information, to solve for modal parameters.The general equation that can be
used to represent the relationship between the measured frequency response func-
tion matrix and the modal parameters is shown in Eqs. (21.63) and (21.64).

[H(ω)]No × Ni
= �ψ�

No × 2N   2N × 2N

[L]T
2N × Ni

(21.63)

[H(ω)]T
Ni × No

= [L]Ni × 2N   2N × 2N
�ψ�

T

2N × No
(21.64)

Impulse-response functions are rarely measured directly but are calculated from
associated frequency response functions via the inverse FFT algorithm. The general
equation that can be used to represent the relationship between the impulse-
response function matrix and the modal parameters is shown in Eqs. (21.9) and
(21.10).

[h(t)]No × Ni
= �ψ�

No × 2N  eλrt  2N × 2N

[L]T
2N × Ni

(21.65)

[h(t)]T
Ni × No

= [L]Ni × 2N  eλrt  2N × 2N
�ψ�

T

2N × No
(21.66)

Many modal parameter estimation algorithms have been originally formulated
from Eqs. (21.63) through (21.66). However, a more general development for all
algorithms is based upon relating the above equations to a general matrix polyno-
mial approach.

Characteristic Space. From a conceptual viewpoint, the measurement space of a
modal identification problem can be visualized as occupying a volume with the coor-
dinate axis defined in terms of three sets of characteristics.Two axes of the conceptual
volume correspond to spatial information and the third axis to temporal information.
The spatial coordinates are in terms of the input and output degrees-of-freedom
(DOF) of the system. The temporal axis is either time or frequency, depending upon
the domain of the measurements. These three axis define a 3-D volume which is
referred to as the characteristic space, as noted in Fig. 21.16.This space or volume rep-

1
�
jω − λr

1
�
jω − λr
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resents all possible measurement data as expressed by Eqs. (21.63) through (21.66).
This conceptual representation is very useful in understanding what data subspace
has been measured.Also, this conceptual representation is very useful in recognizing
how the data are organized and utilized with respect to different modal parameter
estimation algorithms. Information parallel to one of the axes consists of a solution
composed of the superposition of the characteristics defined by that axis. The other
two characteristics determine the scaling of each term in the superposition.

In modal parameter estimation algorithms that utilize a single frequency
response function, data collection is concentrated on measuring the temporal aspect
(time/frequency) at a sufficient resolution to determine the modal parameters. In
this approach, the accuracy of the modal parameters, particularly frequency and
damping, is essentially limited by Shannon’s sampling theorem and Rayleigh’s crite-
rion. This focus on the temporal information ignores the added accuracy that use of
the spatial information brings to the estimation of modal parameters. Recognizing
the characteristic space aspects of the measurement space and using these charac-
teristics (modal vector/participation vector) concepts in the solution procedure
leads to the conclusion that the spatial information can compensate for the limita-
tions of temporal information. Therefore, there is a tradeoff between temporal and
spatial information for a given accuracy requirement. This is particularly notable in
the case of repeated roots. No amount of temporal resolution (accuracy) can theo-
retically solve repeated roots, but the addition of spatial information in the form of
multiple inputs and/or outputs resolves this problem.

Any structural testing procedure measures a subspace of the total possible data
available. Modal parameter estimation algorithms may then use all of this subspace
or may choose to further limit the data to a more restrictive subspace. It is theoreti-
cally possible to estimate the characteristics of the total space by measuring a sub-
space which samples all three characteristics. However, the selection of the subspace
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FIGURE 21.16 Conceptualization of modal
characteristic space (input DOF axis, output DOF
axis, time axis).
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has a significant influence on the results. In order for all of the modal parameters to
be estimated, the subspace must encompass a region which includes contributions of
all three characteristics.An important example is the necessity to use multiple refer-
ence data (inputs and outputs) in order to estimate repeated roots. The particular
subspace which is measured and the weighting of the data within the subspace in an
algorithm are the main differences among the various modal identification proce-
dures which have been developed.

In general, the amount of information in a measured subspace greatly exceeds
the amount necessary to solve for the unknown modal characteristics. Another
major difference among the various modal parameter estimation procedures is the
type of condensation algorithms that are used to reduce the data to match the num-
ber of unknowns [for example, least squares (LS), singular value decomposition
(SVD), etc.]. As is the case with any overspecified solution procedure, there is no
unique answer.The answer that is obtained depends upon the data that are selected,
the weighting of the data, and the unique algorithm used in the solution process. As
a result, the answer is the best answer depending upon the objective functions asso-
ciated with the algorithm being used. Historically, this point has created some con-
fusion since many users expect different methods to give exactly the same answer.

Many modal parameter estimation methods use information (subspace) where
only one or two characteristics are included. For example, the simplest (computa-
tionally) modal parameter estimation algorithms utilize one impulse-response func-
tion or one frequency response function at a time. In this case, only the temporal
characteristic is used, and, as might be expected, only temporal characteristics (modal
frequencies) can be estimated from the single measurement. The global characteris-
tic of modal frequency cannot be enforced. In practice, when multiple measurements
are taken, the modal frequency does not change from one measurement to the next.

Other modal parameter estimation algorithms utilize the data in a plane of the
characteristic space. For example, this corresponds to the data taken at a number of
response points but from a single excitation point or reference. This representation
of a column of measurements is shown in Fig. 21.16 as a plane in the characteristic
space. For this case, representing a single input (reference), while it is now possible
to enforce the global modal frequency assumption, it is not possible to compute
repeated roots and it is difficult to separate closely coupled modes because of the
lack of spatial data.

Many modal identification algorithms utilize data taken at a large number of out-
put DOFs due to excitation at a small number of input DOFs. Data taken in this
manner are consistent with a multiexciter type of test. Conceptually, this is repre-
sented by several planes of data parallel to the plane of data represented in Fig.
21.16. Some modal identification algorithms utilize data taken at a large number of
input DOFs and a small number of output DOFs. Data taken in this manner are con-
sistent with a roving hammer type of excitation with several fixed output sensors.
These data can also be generated by transposing the data matrix acquired using a
multiexciter test. The conceptual representation is several rows of the potential
measurement matrix perpendicular to the plane of data represented in Fig. 21.16.
Measurement data spaces involving many planes of measured data are the best pos-
sible modal identification situations, since the data subspace includes contributions
from temporal and spatial characteristics. This allows the best possibility of estimat-
ing all the important modal parameters. The data which define the subspace need to
be acquired through a consistent measurement process in order for the algorithms
to estimate accurate modal parameters. This means that the data must be measured
simultaneously and requires that data acquisition, digital signal processing, and
instrumentation be designed and operate accordingly.
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Fundamental Modal Identification Models. The common characteristics of dif-
ferent modal parameter estimation algorithms can be more readily identified by
using a matrix polynomial model rather than using a physically based mathematical
model. One way of understanding the basis of this model can be developed from the
polynomial model used for the frequency response function.

Hpq(ω) = = (21.67)

This can be rewritten as

Hpq(ω) = =
�
n

k = 0
βk( jω)k

(21.68)

�
m

k = 0
αk( jω)k

Further rearranging yields the following equation, which is linear in the unknown α
and β terms:

�
m

k = 0
αk( jω)kXp(ω) = �

n

k = 0
βk( jω)kFq(ω) (21.69)

Noting that the response function Xp can be replaced by the frequency response
function Hpq if the force function Fq is assumed to be unity, the above equation can
be restated as

�
m

k = 0
αk( jω)kHpq(ω) = �

n

k = 0
βk( jω)k (21.70)

The above formulation is essentially a linear equation in terms of the unknown
coefficients αk and βk. The equation is valid at each frequency of the measured 
frequency response function. Since, in the worst case, the number of unknowns is 
m + n + 2, the unknown coefficients can theoretically be determined if the frequency
response function has m + n + 2 or more discrete frequencies. Practically, this is
always the case. Note that the total number of unknown coefficients (or coefficient
matrices) is actually m + n + 1 since one coefficient (or coefficient matrix) can be
assumed to be 1 (or the identity matrix).This is the case because the equation can be
divided, or normalized, by one of the unknown coefficients (or coefficient matrices).
Note that numerical problems can result if the equation is normalized by a coeffi-
cient (or coefficient matrix) that is close to zero. Normally, the coefficient α0 (or the
coefficient matrix [α0]) is chosen as unity (or the identity matrix).

The previous models can be generalized to represent the general multiple
input/multiple output case as follows:

�
m

k = 0
�[αk]( jω)k�{X(ω)} = �

n

k = 0
�[βk]( jω)k�{F(ω)} (21.71)

Xp(ω)
�
Fq(ω)

βn( jω)n + βn − 1( jω)n − 1 + ⋅⋅⋅ + β1( jω)1 + β0( jω)0

������
αm( jω)m + αm − 1( jω)m − 1 + ⋅⋅⋅ + α1( jω)1 + α0( jω)0

Xp(ω)
�
Fq(ω)
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Note that the size of the coefficient matrices [αk] and [βk] is normally Ni × Ni or No ×
No when the equations are developed from experimental data. Rather than the basic
model being developed in terms of force and response information, the models can
be stated in terms of frequency response information. The response vector {X(ω)}
can be replaced by a vector of frequency response functions {H(ω)} where either the
input or the output is held fixed. The force vector {F(ω)} is then replaced by an inci-
dence matrix {R} of the same size which is composed of all zeros except for unity at
the position in the vector consistent with the driving point measurement (common
input and output DOF).

�
m

k = 0
�( jω)k[αk]�{H(ω)} = �

n

k = 0
�( jω)k[βk]�{R} (21.72)

where

H1q(ω) 0

H2q(ω) 0

H3q(ω) 0

{H(ω)} = � . . . � {R} = � . . . �Hqq(ω) 1
. . . . . .

Hpq(ω) 0

The above model, in the frequency domain, corresponds to an autoregressive
moving-average (ARMA) model that is developed from a set of finite difference
equations in the time domain. The general characteristic matrix polynomial model
concept recognizes that both the time- and frequency-domain models generate
essentially the same matrix polynomial models. For that reason, the unified matrix
polynomial approach (UMPA) terminology is used to describe both domains since
the ARMA terminology has been connected primarily with the time domain.15

In parallel with the development of Eq. (21.67), a time-domain model represent-
ing the relationship between a single response degree-of-freedom and a single input
degree-of-freedom can be stated as follows:

�
m

k = 0
αkx(ti + k) = �

n

k = 0
βkf(ti + k) (21.73)

For the general multiple input/multiple output case,

�
m

k = 0
[αk] {x(ti + k)} = �

n

k = 0
[βk] {f(ti + k)} (21.74)

If the discussion is limited to the use of free decay or impulse-response function
data, the previous time-domain equations can be greatly simplified by noting that
the forcing function can be assumed to be zero for all time greater than zero. If this
is the case, the [βk] coefficients can be eliminated from the equations:

�
m

k = 0
[αk] �hpq(ti + k)� = 0 (21.75)
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In light of the above discussion, it is now apparent that most of the modal param-
eter estimation processes available can be developed by starting from a general
matrix polynomial formulation that is justifiable based upon the underlying matrix
differential equation. The general matrix polynomial formulation yields essentially
the same characteristic matrix polynomial equation for both time- and frequency-
domain data. For the frequency-domain data case, this yields

 [αm] s m + [αm − 1] s m − 1 + [αm − 2] s m − 2 + ⋅⋅⋅ + [α0]  = 0 (21.76)

For the time-domain data case, this yields

 [αm] zm + [αm − 1] zm − 1 + [αm − 2] zm − 2 + ⋅⋅⋅ + [α0]  = 0 (21.77)

With respect to the previous discussion of model order, the characteristic matrix
polynomial equation, Eq. (21.76) or (21.77), has a model order of m, and the number
of modal frequencies or roots that are found from this characteristic matrix polyno-
mial equation is m times the size of the coefficient matrices [α]. In terms of sampled
data, the time-domain matrix polynomial results from a set of finite difference equa-
tions and the frequency-domain matrix polynomial results from a set of linear equa-
tions, where each equation is formulated at one of the frequencies of the measured
data. This distinction is important to note since the roots of the matrix characteristic
equation formulated in the time domain are in the z domain (zr) and must be con-
verted to the frequency domain (λr), while the roots of the matrix characteristic
equation formulated in the frequency domain (λr) are already in the desired domain.
Note that the roots that are estimated in the time domain are limited to maximum
values determined by Shannon’s sampling theorem relationship (discrete time
steps).

zr = eλr ∆t λr = σr + jωr (21.78)

σr = Re � � ωr = Im � �
Using this general formulation, the most commonly used modal identification meth-
ods can be summarized as shown in Table 21.4.

The high-order model is typically used for those cases where the system is under-
sampled in the spatial domain. For example, the limiting case is when only one meas-
urement is made on the structure. For this case, the left-hand side of the general
linear equation corresponds to a scalar polynomial equation with the order equal to
or greater than the number of desired modal frequencies. This type of high-order
model may yield significant numerical problems for the frequency-domain case.

The low-order model is used for those cases where the spatial information is
complete. In other words, the number of independent physical coordinates is greater
than the number of desired modal frequencies. For this case, the order of the left-
hand side of the general linear equation, Eq. (21.72) or (21.75), is equal to 1 or 2.

The zero-order model corresponds to a case where the temporal information is
neglected and only the spatial information is used. These methods directly estimate
the eigenvectors as a first step. In general, these methods are programmed to process
data at a single temporal condition or variable. In this case, the method is essentially

ln zr�
∆t

ln zr�
∆t
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equivalent to the single degree-of-freedom (SDOF) methods which have been used
with frequency response functions. In other words, the comparison between the
zeroth-order matrix polynomial model and the higher-order matrix polynomial
models is similar to the comparison between the SDOF and MDOF methods used
in modal parameter estimation.

Two-Stage Linear Solution Procedure. Almost all modal parameter estimation
algorithms in use at this time involve a two-stage linear solution approach. For
example, with respect to Eqs. (21.63) through (21.66), if all modal frequencies and
modal participation vectors can be found, the estimation of the complex residues
can proceed in a linear fashion. This procedure of separating the nonlinear problem
into a multistage linear problem is a common technique for most estimation meth-
ods today. For the case of structural dynamics, the common technique is to estimate
modal frequencies and modal participation vectors in a first stage and then to esti-
mate the modal coefficients plus any residuals in a second stage. Therefore, based
upon Eqs. (21.63) through (21.66), most commonly used modal identification algo-
rithms can be outlined as follows:

First stage of modal parameter estimation:
� Load measured data into linear equation form [Eq. (21.72) or (21.75)].
� Find scalar or matrix autoregressive coefficients [αk].

� Normalize frequency range (frequency domain only).
� Utilize orthogonal polynomials (frequency domain only).

� Solve matrix polynomial for modal frequencies.
� Formulate companion matrix.
� Obtain eigenvalues of companion matrix λr or zr.
� Convert eigenvalues from zr to λr (time domain only).
� Obtain modal participation vectors Lqr or modal vectors {ψ}r from eigenvec-

tors of the companion matrix.

Second stage of modal parameter estimation:
� Find modal vectors and modal scaling from Eqs. (21.63) through (21.66).
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TABLE 21.4 Characteristics of Modal Parameter Estimation Algorithms

Domain Matrix polynomial order Coefficients

Algorithm Time Frequency Zero Low High Scalar Matrix

CEA � � �

LSCE � � �

PTD � � Ni × Ni

ITD � � No × No

MRITD � � No × No

ERA � � No × No

PFD � � No × No

SFD � � No × No

MRFD � � No × No

RFP � � � Both
OP � � � Both
CMIF � � No × Ni
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Equation (21.72) or (21.75) is used to formulate a single, block coefficient linear
equation as shown in the graphical analogy of Case 1a, Fig. 21.17. In order to esti-
mate complex conjugate pairs of roots, at least two equations from each piece or
block of data in the data space must be used. This situation is shown in Case 1b, Fig.
21.18. In order to develop enough equations to solve for the unknown matrix coeffi-
cients, further information is taken from the same block of data or from other blocks
of data in the data space until the number of equations equals (Case 2) or exceeds
(Case 3) the number of unknowns, as shown in Figs. 21.19 and 21.20. In the frequency
domain, this is accomplished by utilizing a different frequency from within each
measurement for each equation. In the time domain, this is accomplished by utiliz-
ing a different starting time or time shift from within each measurement for each
equation.

Once the matrix coefficients [α] have been found, the modal frequencies λr or zr

can be found using a number of numerical techniques.While in certain numerical sit-
uations, other numerical approaches may be more robust, a companion matrix
approach yields a consistent concept for understanding the process. Therefore, the
roots of the matrix characteristic equation can be found as the eigenvalues of the
associated companion matrix. The companion matrix can be formulated in one of
several ways. The most common formulation is as follows:
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FIGURE 21.17 Underdetermined set of linear
equations.

FIGURE 21.18 Underdetermined set of lin-
ear equations.

FIGURE 21.19 Determined set of linear
equations.

FIGURE 21.20 Overdetermined set of linear
equations.
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−[α]m − 1 −[α]m − 2 . . . −[α]1 −[α]0

[I] [0] . . . [0] [0]

[0] [I] . . . [0] [0]

[0] [0] . . . [0] [0]
[C] =

. . . . . . . . . . . . . . .
(21.79)

[0] [0] . . . [0] [0]

[0] [0] . . . [0] [0]

[0] [0] . . . [I] [0]

Note again that the numerical characteristics of the eigenvalue solution of the com-
panion matrix are different for low-order cases than for high-order cases for a given
data set.The companion matrix can be used in the following eigenvalue formulation
to determine the modal frequencies for the original matrix coefficient equation:

[C]{X } = λ [I]{X } (21.80)

The eigenvectors that can be found from the eigenvalue-eigenvector solution uti-
lizing the companion matrix may or may not be useful in terms of modal parameters.
The eigenvector that is found, associated with each eigenvalue, is of length model
order times matrix coefficient size. In fact, the unique (meaningful) portion of the
eigenvector is of length equal to the size of the coefficient matrices and is repeated
in the eigenvector a model order number of times. Each time the unique portion of
the eigenvector is repeated, it is multiplied by a scalar multiple of the associated
modal frequency. Therefore, the eigenvectors of the companion matrix have the fol-
lowing form:

λr
m{ψ}r

⋅ ⋅ ⋅

{φ}r = � λr
2{ψ}r � (21.81)

λr
1{ψ}r

λr
0{ψ}r r

Note that unless the size of the coefficient matrices is at least as large as the number
of measurement degrees-of-freedom, only a partial set of modal coefficients, the
modal participation coefficients Lqr, are found. For the case involving scalar coeffi-
cients, no meaningful modal coefficients are found.

If the size of the coefficient matrices, and therefore the modal participation vector,
is less than the largest spatial dimension of the problem, then the modal vectors are
typically found in a second-stage solution process using one of Eqs. (21.63) through
(21.66). Even if the complete modal vector {ψ} of the system is found from the eigen-
vectors of the companion matrix approach, the modal scaling and modal participation
vectors for each modal frequency are normally found in this second-stage formulation.
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Data Sieving/Filtering. For almost all cases of modal identification, a large
amount of redundancy or overdetermination exists. This means that for Case 3,
defined in Fig. 21.20, the number of equations available compared to the number
required for the determined Case 2 (defined as the overdetermination factor) is quite
large. Beyond some value of overdetermination factor, the additional equations con-
tribute little to the result but may add significantly to the solution time. For this rea-
son, the data space is often filtered (limited in the temporal sense) or sieved (limited
in the input DOF or output DOF sense) in order to obtain a reasonable result in the
minimum time. For frequency-domain data, the filtering process normally involves
limiting the data set to a range of frequencies or a different frequency resolution
according to the desired frequency range of interest. For time-domain data, the fil-
tering process normally involves limiting the starting time value as well as the num-
ber of sets of time data taken from each measurement. Data sieving involves limiting
the data set to certain degrees-of-freedom that are of primary interest.This normally
involves restricting the data to specific directions (X, Y, and/or Z directions) or spe-
cific locations or groups of degrees-of-freedom, such as components of a large struc-
tural system.

Equation Condensation. Several important concepts should be delineated in
the area of equation condensation methods. Equation condensation methods are
used to reduce the number of equations based upon measured data to more closely
match the number of unknowns in the modal parameter estimation algorithms.
There are a large number of condensation algorithms available. Based upon the
modal parameter estimation algorithms in use today, the three types of algorithms
most often used are

� Least squares. Least squares (LS), weighted least squares (WLS), total least
squares (TLS), or double least squares (DLS) methods are used to minimize the
squared error between the measured data and the estimation model. Historically,
this is one of the most popular procedures for finding a pseudo-inverse solution to
an overspecified system. The main advantage of this method is computational
speed and ease of implementation, while the major disadvantage is numerical pre-
cision.

� Transformation. There are a large number of transformation that can be used to
reduce the data. In the transformation methods, the measured data are reduced by
approximating them by the superposition of a set of significant vectors. The num-
ber of significant vectors is equal to the amount of independent measured data.
This set of vectors is used to approximate the measured data and used as input to
the parameter estimation procedures. Singular value decomposition (SVD) is one
of the more popular transformation methods. The major advantage of such meth-
ods is numerical precision, and the disadvantage is computational speed and
memory requirements.

� Coherent averaging. Coherent averaging is another popular method for reduc-
ing the data. In the coherent averaging method, the data are weighted by per-
forming a dot product between the data and a weighting vector (spatial filter).
Information in the data which is not coherent with the weighting vectors is aver-
aged out of the data. The method is often referred to as a spatial filtering proce-
dure.This method has both speed and precision but, in order to achieve precision,
requires a good set of weighting vectors. In general, the optimum weighting vec-
tors are connected with the solution, which is unknown. It should be noted that
least squares is an example of a noncoherent averaging process.

21.52 CHAPTER TWENTY-ONE

8434_Harris_21_b.qxd  09/20/2001  12:09 PM  Page 21.52



The least squares and the transformation procedures tend to weight those modes
of vibration which are well excited. This can be a problem when trying to extract
modes which are not well excited.The solution is to use a weighting function for con-
densation which tends to enhance the mode of interest. This can be accomplished in
a number of ways:

� In the time domain, a spatial filter or a coherent averaging process can be used to
filter the response to enhance a particular mode or set of modes. For example, by
averaging the data from two symmetric exciter locations, the symmetric modes of
vibration can be enhanced.A second example is to use only the data in a local area
of the system to enhance local modes. The third method is using estimates of the
modes’ shapes as weighting functions to enhance particular modes.

� In the frequency domain, the data can be enhanced in the same manner as in the
time domain, plus the data can be additionally enhanced by weighting them in a
frequency band near the natural frequency of the mode of interest.

The type of equation condensation method that is utilized in a modal identifica-
tion algorithm has a significant influence on the results of the parameter estimation
process.

Coefficient Condensation. For the low-order modal identification algorithms, the
number of physical coordinates (typically No) is often much larger than the number
of desired modal frequencies (2n). For this situation, the numerical solution proce-
dure is constrained to solve for No or 2No modal frequencies. This can be very time
consuming and is unnecessary.The number of physical coordinates No can be reduced
to a more reasonable size (Ne ≈ No or Ne ≈ 2No) by using a decomposition transfor-
mation from physical coordinates No to the approximate number of effective modal
frequencies Ne. Currently, SVD or eigenvalue decompositions (ED) are used to pre-
serve the principal modal information prior to formulating the linear equation solu-
tion for unknown matrix coefficients.33,34 In most cases, even when the spatial
information must be condensed, it is necessary to use a model order greater than 2 to
compensate for distortion errors or noise in the data and to compensate for the case
where the location of the transducers is not sufficient to totally define the structure.

[H′] = [T ][H] (21.82)

where [H′] = transformed (condensed) frequency response function matrix
[T ] = transformation matrix
[H] = original FRF matrix

The difference between the two techniques lies in the method of finding the trans-
formation matrix [T ]. Once [H] has been condensed, however, the parameter esti-
mation procedure is the same as for the full data set. Because the data eliminated
from the parameter estimation process ideally correspond to the noise in the data,
the modal frequencies of the condensed data are the same as the modal frequencies
of the full data set. However, the modal vectors calculated from the condensed data
may need to be expanded back into the full space:

[Ψ] = [T ]T [Ψ′] (21.83)

where [Ψ] = full-space modal matrix
[Ψ′] = condensed-space modal matrix
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Model Order Determination. Much of the work on modal parameter estimation
since 1975 has involved methodology for determining the correct model order for the
modal parameter model. Technically, model order refers to the highest power in 
the matrix polynomial equation. The number of modal frequencies found is equal to
the model order times the size of the matrix coefficients, normally No or Ni. For a
given algorithm, the size of the matrix coefficients is normally fixed; therefore, deter-
mining the model order is directly linked to estimating n, the number of modal fre-
quencies in the measured data that are of interest. As has always been the case, an
estimate for the minimum number of modal frequencies can be easily found by
counting the number of peaks in the frequency response function in the frequency
band of analysis. This is a minimum estimate of n since the frequency response func-
tion measurement may be at a node of one or more modes of the system, repeated
roots may exist, and/or the frequency resolution of the measurement may be too
coarse to observe modes that are closely spaced in frequency. Several measurements
can be observed and a tabulation of peaks existing in any or all measurements can be
used as a more accurate minimum estimate of n. A more automated procedure for
including the peaks that are present in several frequency response functions is to
observe the summation of frequency response function power. This function repre-
sents the autopower or automoment of the frequency response functions summed
over a number of response measurements and is normally formulated as follows:

Hpower(ω) = �
No

p = 1
�

Ni

q = 1
Hpq(ω) Hpq*(ω) (21.84)

These techniques are extremely useful but do not provide an accurate estimate of
model order when repeated roots exist or when modes are closely spaced in fre-
quency. For these reasons, an appropriate estimate of the order of the model is 
of prime concern and is the single most important problem in modal parameter 
estimation.

In order to determine a reasonable estimate of the model order for a set of rep-
resentative data, a number of techniques have been developed as guides or aids to
the user. Much of the user interaction involved in modal parameter estimation
involves the use of these tools. Most of the techniques that have been developed
allow the user to establish a maximum model order to be evaluated (in many cases,
this is set by the memory limits of the computer algorithm). Information is utilized
from the measured data based upon an assumption that the model order is equal to
this maximum. This information is evaluated in a sequential fashion to determine if
a model order less than the maximum is sufficient to describe the data sufficiently.
This is the point at which the user’s judgment and the use of various evaluation aids
becomes important. Some of the commonly used techniques are:

� Measurement synthesis and comparison (curve-fit)
� Error chart
� Stability diagram
� Mode indication functions
� Rank estimation

One of the most common techniques is to synthesize an impulse-response func-
tion or a frequency response function and compare it to the measured function to
see if modes have been missed. This curve-fitting procedure is also used as a meas-
ure of the overall success of the modal parameter estimation procedure. The differ-
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ence between the two functions can be quantified and normalized to give an indica-
tor of the degree of fit. There can be many reasons for a poor comparison; incorrect
model order is one of the possibilities.

Error Chart. Another method that has been used to indicate the correct model
order more directly is the error chart. Essentially, the error chart is a plot of the error
in the model as a function of increasing model order.The error in the model is a nor-
malized quantity that represents the ability of the model to predict data that are not
involved in the estimate of the model parameters. For example, when measured data
in the form of an impulse-response function are used, only a small percentage of the
total number of data values are involved in the estimate of modal parameters. If the
model is estimated based upon 10 modes, only 4 × 10 data points are required, at a
minimum, to estimate the modal parameters if no additional spatial information is
used.The error in the model can then be estimated by the ability of the model to pre-
dict the next several data points in the impulse-response function compared to the
measured data points. For the case of 10 modes and 40 data points, the error in the
model is calculated from the predicted and measured data points 41 through 50.
When the model order is insufficient, this error is large, but when the model order
reaches the correct value, further increase in the model order does not result in a fur-
ther decrease in the error. Figure 21.21 is an example of an error chart.

Stability Diagram. A further enhancement of the error chart is the stability
diagram. The stability diagram is developed in the same fashion as the error chart
and involves tracking the estimates of frequency, damping, and possibly modal par-
ticipation factors as a function of model order.As the model order is increased, more
and more modal frequencies are estimated, but, hopefully, the estimates of the phys-
ical modal parameters stabilize as the correct model order is found. For modes that
are very active in the measured data, the modal parameters stabilize at a very low
model order. For modes that are poorly excited in the measured data, the modal
parameters may not stabilize until a very high model order is chosen. Nevertheless,
the nonphysical (computational) modes do not stabilize at all during this process
and can be sorted out of the modal parameter data set more easily. Note that incon-
sistencies (frequency shifts, leakage errors, etc.) in the measured data set obscure the
stability and make the stability diagram difficult to use. Normally, a tolerance, in per-
centage, is given for the stability of each of the modal parameters that are being eval-
uated. Figure 21.22 is an example of a stability diagram. In Fig. 21.22, a summation of
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the frequency response function power is plotted on the stability diagram for refer-
ence. Other mode indication functions can also be plotted against the stability dia-
gram for reference.

Mode Indication Functions. Mode indication functions (MIF) are normally
real-valued, frequency-domain functions that exhibit local minima or maxima at the
modal frequencies of the system. One mode indication function can be plotted for
each reference available in the measured data. The primary mode indication func-
tion exhibits a local minimum or maximum at each of the natural frequencies of the
system under test.The secondary mode indication function exhibits a local minimum
or maximum at repeated or pseudo-repeated roots of order 2 or more. Further mode
indication functions yield local minima or maxima for successively higher orders of
repeated or pseudo-repeated roots of the system under test.

MULTIVARIATE MODE INDICATION FUNCTION (MvMIF): The development of the
multivariate mode indication function is based upon finding a force vector {F} that
excites a normal mode at each frequency in the frequency range of interest.35 If a
normal mode can be excited at a particular frequency, the response to such a force
vector exhibits the 90° phase lag characteristic. Therefore, the real part of the
response is as small as possible, particularly when compared to the imaginary part or
the total response. In order to evaluate this possibility, a minimization problem can
be formulated as follows:

min
||F|| = 1 = λ (21.85)

This minimization problem is similar to a Rayleigh quotient, and it can be shown
that the solution to the problem is found by finding the smallest eigenvalue λmin and
the corresponding eigenvector {F}min of the following problem:

{F}T [HReal]T [HReal] {F}
�����
{F}T([HReal]T [HReal] + [HImag]T [HImag]) {F}
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[HReal]T [HReal] {F} = λ ([HReal]T [HReal] + [HImag]T [HImag]) {F} (21.86)

The above eigenvalue problem is formulated at each frequency in the frequency
range of interest. Note that the result of the matrix product [HReal]T [HReal] and
[HImag]T [HImag] in each case is a square, real-valued matrix of size equal to the num-
ber of references in the measured data Ni × Ni. The resulting plot of a multivariate
mode indication function for a seven-reference case can be seen in Fig. 21.23. The
frequencies where more than one curve approaches the same minimum are likely to
be repeated root frequencies (repeated modal frequencies).

COMPLEX MODE INDICATION FUNCTION (CMIF): An algorithm based on singular
value decomposition methods applied to multiple reference FRF measurements,
identified as the complex mode indication function (CMIF), is utilized in order to
identify the proper number of modal frequencies, particularly when there are closely
spaced or repeated modal frequencies.35 Unlike MvMIF, which indicates the exis-
tence of real normal modes, CMIF indicates the existence of real normal or complex
modes and the relative magnitude of each mode. Furthermore, MvMIF yields a set
of force patterns that can best excite the real normal mode, while CMIF yields the
corresponding mode shape and modal participation vector.

The CMIF, in the original formulation, is defined as the eigenvalues, solved from
the normal matrix formed from the frequency response function matrix, at each
spectral line.The normal matrix is obtained by premultiplying the FRF matrix by its
Hermitian matrix as [H(ω)]H [H(ω)].The CMIF is the plot of these eigenvalues on a
log magnitude scale as a function of frequency.The peaks detected in the CMIF plot
indicate the existence of modes, and the corresponding frequencies of these peaks
give the damped natural frequencies for each mode. In the application of CMIF to
traditional modal parameter estimation algorithms, the number of modes detected
in CMIF determines the minimum number of degrees-of-freedom of the system
equation for the algorithm. A number of additional degrees-of-freedom may be
needed to take care of residual effects and noise contamination.
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[H(ω)]H [H(ω)] = [V(ω)] [Λ(ω)] [V(ω)]H (21.87)

By taking the singular value decomposition of the FRF matrix at each spectral line,
an expression similar to Eq. (21.87) is obtained:

[H(ω)] = [U(ω)] [Σ(ω)] [V(ω)]H (21.88)

where Ne = number of effective modes. The effective modes are the modes
that contribute to the response of the structure at this particular
frequency ω

[U(ω)] = left singular matrix of size No × Ne, which is a unitary matrix
[Λ(ω)] = eigenvalue matrix of size Nd × Ne, which is a diagonal matrix
[Σ(ω)] = singular value matrix of size Ne × Ne, which is a diagonal matrix
[V(ω)] = right singular matrix of size Nd × Ni, which is also a unitary

matrix

Most often, the number of input points (reference points) Ni is less than the num-
ber of response points No. In Eq. (21.88), if the number of effective modes is less than
or equal to the smaller dimension of the FRF matrix, i.e., Ne ≤ Ni, the singular value
decomposition leads to approximate mode shapes (left singular vectors) and
approximate modal participation factors (right singular vectors). The singular value
is then equivalent to the scaling factor Qr divided by the difference between the dis-
crete frequency and the modal frequency jω − λr. For a given mode, since the scaling
factor is a constant, the closer the modal frequency is to the discrete frequency, the
larger the singular value is. Therefore, the damped natural frequency is the fre-
quency at which the maximum magnitude of the singular value occurs. If different
modes are compared, the stronger the mode contribution (larger residue value), the
larger the singular value is.

CMIFk(ω) 	 Λk(ω) = Σk(ω)2 k = 1, 2, . . . , Ne (21.89)

where CMIFk(ω) = kth CMIF as a function of frequency ω
Λk(ω) = kth eigenvalue of the normal matrix of FRF matrix as a 

function of frequency ω
Σk(ω) = kth singular value of the FRF matrix as a function of 

frequency ω

In practical calculations, the normal matrix formed from the FRF matrix, [H(ω)]H

[H(ω)], is calculated at each spectral line.The eigenvalues of this matrix are obtained.
The CMIF plot is the plot of these eigenvalues on a log magnitude scale as a function
of frequency. The peak in the CMIF indicates the location on the frequency axis that
is nearest to the pole. The frequency is the estimated damped natural frequency, to
within the accuracy of the frequency resolution. The magnitude of the eigenvalue
indicates the relative magnitude of the modes, residue over damping factor.

Since the mode shapes that contribute to each peak do not change much around
each peak, several adjacent spectral lines from the FRF matrix can be used simulta-
neously for a better estimation of mode shapes. By including several spectral lines of
data in the singular value decomposition calculation, the effect of the leakage error
can be minimized. The resulting plot of a complex mode indication function for a
seven-reference case can be seen in Fig. 21.24.The frequencies where more than one
curve approaches the same maximum are repeated root frequencies (repeated
modal frequencies).
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Rank Estimation. A more recent model order evaluation technique involves
the estimate of the rank of the matrix of measured data. An estimate of the rank
of the matrix of measured data gives a good estimate of the model order of the sys-
tem. Essentially, the rank is an indicator of the number of independent character-
istics contributing to the data. While the rank cannot be calculated in an absolute
sense, it can be estimated from the singular value decomposition (SVD) of the
matrix of measured data. For each mode of the system, one singular value should
be found by the SVD procedure. The SVD procedure finds the largest singular
value first and then successively finds the next largest. The magnitudes of the sin-
gular values are used in one of two different procedures to estimate the rank. The
concept that is used is that the singular values should go to zero when the rank of
the matrix is exceeded. For theoretical data, this happens exactly. For measured
data, because of random errors and small inconsistencies in the data, the singular
values do not become zero but become very small. Therefore, the rate of change of
the singular values rather than the absolute values is used as an indicator. In one
approach, each singular value is divided by the first (largest) to form a normalized
ratio. This normalized ratio is treated much like the error chart, and the appropri-
ate rank (model order) is chosen when the normalized ratio approaches an asymp-
tote. In another similar approach, each singular value is divided by the previous
singular value, forming a normalized ratio that is approximately equal to 1 if the
successive singular values are not changing in magnitude. When a rapid decrease
in the magnitude of the singular value occurs, the ratio of successive singular val-
ues drops (or peaks if the inverse of the ratio is plotted) as an indicator of rank
(model order) of the system. Figure 21.25 shows examples of these rank estimate
procedures.

Residuals. Continuous systems have an infinite number of degrees-of-freedom,
but, in general, only a finite number of modes can be used to describe the dynamic
behavior of a system.The theoretical number of degrees-of-freedom can be reduced
by using a finite frequency range. Therefore, for example, the frequency response
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can be broken up into three partial sums, each covering the modal contribution cor-
responding to modes located in the frequency ranges.

In the frequency range of interest, the modal parameters can be estimated to be
consistent with Eq. (21.60). In the lower and higher frequency ranges, residual terms
can be included to account for modes in these ranges. In this case, Eq. (21.60) can be
rewritten for a single frequency response function as

Hpq(ω) = RFpq + �
n

r = 1
+ + RIpq(ω) (21.90)

where RFpq = residual flexibility
RIpq(s) = residual inertia

The residual term that compensates for modes below the minimum frequency of
interest is called the inertia restraint, or residual inertia. The residual term that com-
pensates for modes above the maximum frequency of interest is called the residual
flexibility. These residuals are a function of each frequency response function meas-
urement and are not global properties of the frequency response function matrix.
Therefore, residuals cannot be estimated unless the frequency response function is
measured. In this common formulation of residuals, both terms are real-valued quan-
tities. In general, this is a simplification; the residual effects of modes below and/or
above the frequency range of interest cannot be completely represented by such sim-
ple mathematical relationships. As the system poles below and above the range of
interest are located in the proximity of the boundaries, these effects are not the real-
valued quantities noted in Eq. (21.90). In these cases, residual modes may be included
in the model to partially account for these effects. When this is done, the modal
parameters that are associated with these residual poles have no physical significance
but may be required in order to compensate for strong dynamic influences from out-

Apqr*
�
jω − λr*

Apqr
�
jω − λr
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side the frequency range of interest. Using the same argument, the lower and upper
residuals can take on any mathematical form that is convenient as long as the lack of
physical significance is understood. Mathematically, power functions of frequency
(zero, first, and second order) are commonly used within such a limitation. In general,
the use of residuals is confined to frequency response function models.This is primar-
ily due to the difficulty of formulating a reasonable mathematical model and solution
procedure in the time domain for the general case that includes residuals.

MODAL IDENTIFICATION ALGORITHMS (SDOF)

For any real system, the use of single degree-of-freedom algorithms to estimate
modal parameters is always an approximation since any realistic structural system
has many degrees-of-freedom. Nevertheless, in cases where the modes are not close
in frequency and do not affect one another significantly, single degree-of-freedom
algorithms are very effective. Specifically, single degree-of-freedom algorithms are
quick, rarely involving much mathematical manipulation of the data, and give suffi-
ciently accurate results for most modal parameter requirements. Naturally, most
multiple degree-of-freedom algorithms can be constrained to estimate only a single
degree-of-freedom at a time if further mathematical accuracy is desired. The most
commonly used single degree-of-freedom algorithms involve using the information
at a single frequency as an estimate of the modal vector.

Operating Vector Estimation. Technically, when many single degree-of-freedom
approaches are used to estimate modal parameters, sufficient simplifying assump-
tions are made that the results are not actually modal parameters. In these cases, the
results are often referred to as operating vectors rather than modal vectors.This term
refers to the fact that if the structural system is excited at this frequency, the result-
ing motion is a linear combination of the modal vectors rather than a single modal
vector. If one mode is dominant, then the operating vector is approximately equal to
the modal vector.The approximate relationships that are used in these cases are rep-
resented in the following two equations:

Hpq(ωr) ≈ + (21.91)

Hpq(ωr) ≈ (21.92)

For these less complicated methods, the damped natural frequencies ωr are esti-
mated by observing the maxima in the frequency response functions. The damping
factors σr are estimated using half-power methods.1 The residues Apqr are then esti-
mated from Eq. (21.91) or (21.92) using the frequency response function data at the
damped natural frequency.

Complex Plot (Circle Fit). The circle-fit method utilizes the concept that the data
curve in the vicinity of a modal frequency looks circular. In fact, the diameter of the
circle is used to estimate the residue once the damping factor is estimated. More
importantly, this method utilizes the concept that the distance along the curve
between data points at equidistant frequencies is a maximum in the neighborhood
of the modal frequency. Therefore, the circle-fit method is the first method to detect
closely spaced modes.

Apqr
�
−σr

Apqr*
�
jωr − λr*

Apqr
�
jωr − λr
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This method can give erroneous answers when the modal coefficient is near 
zero. This occurs essentially because, when the mode does not exist in a particular 
frequency response function (either the input or the response degree-of-freedom is
at a node of the mode), the remaining data in the frequency range of the mode are
strongly affected by the next higher or lower mode. Therefore, the diameter of the
circle that is estimated is a function of the modal coefficient for the next higher or
lower mode. This can be detected visually but is somewhat difficult to detect auto-
matically.The approximate relationship that is used in this case is represented in the
following equation:

Hpq(ωr) ≈ Rpq + + (21.93)

Two-Point Finite Difference Formulation. The difference method formulations
are methods that are based upon comparing adjacent frequency information in the
vicinity of a resonance frequency. When a ratio of this information, together with
information from the derivative of the frequency response function at the same fre-
quencies, is formed, a reasonable estimation of the modal frequency and residue for
each mode can be determined under the assumption that modes are not too close
together. This method can give erroneous answers when the modal coefficient is
near zero. This problem can be detected by comparing the predicted modal fre-
quency to the frequency range of the data used in the finite difference algorithm.As
long as the predicted modal frequency lies within the frequency band, the estimate
of the residue (modal coefficient) should be valid.

The approximate relationships that are used in this case are represented in the
following equations.The frequencies noted in these relationships are as follows: ω1 is
a frequency near the damped natural frequency ωr, and ωp is the peak frequency
close to the damped natural frequency ωr.

Modal frequency (l r ):

λr ≈ (21.94)

Residue (Apqr):

Apqr ≈ (21.95)

Since both of the equations that are used to estimate modal frequency λr and residue
Apqr are linear equations, a least squares solution can be formed by using other fre-
quency response function data in the vicinity of the resonance. For this case, addi-
tional equations can be developed using Hpq(ω2) or Hpq(ω3) in the above equations
instead of Hpq(ω1).

MODAL IDENTIFICATION ALGORITHMS (MDOF)

All multiple degree-of-freedom equations can be represented in a unified matrix
polynomial approach. The methods that are summarized in the following sections
are listed in Tables 21.3 and 21.4.

j(ω1 − ωp)Hpq(ω1)Hpq(ωp)
���

Hpq(ωp) − Hpq(ω1)

jωpHpq(ωp) − jω1Hpq(ω1)
���

Hpq(ωp) − Hpq(ω1)

Apqr*
�
jωr − λr*

Apqr
�
jωr − λr
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High-Order Time-Domain Algorithms. The algorithms that fall into the cate-
gory of high-order time-domain algorithms include the algorithms most commonly
used to determine modal parameters. The least squares complex exponential
(LSCE) algorithm is the first algorithm to utilize more than one frequency response
function, in the form of impulse-response functions, in the solution for a global esti-
mate of the modal frequency.The polyreference time-domain (PTD) algorithm is an
extension to the LSCE algorithm that allows multiple references to be included in a
meaningful way so that the ability to resolve close modal frequencies is enhanced.
Since both the LSCE and PTD algorithms have good numerical characteristics,
these algorithms are still the most commonly used today. The only limitations for
these algorithms are the cases involving high damping.As these are high-order algo-
rithms, more time-domain information is required than for low-order algorithms.

First-Order Time-Domain Algorithms. The first-order time-domain algorithms
include several well-known algorithms such as the Ibrahim time-domain (ITD) algo-
rithm and the eigensystem realization algorithm (ERA).These algorithms are essen-
tially a state-space formulation with respect to the second-order time-domain
algorithms.The original development of these algorithms is quite different from that
presented here, but the resulting solution of linear equations is the same regardless
of development.There is a great body of published work on both the ITD and ERA
algorithms, much of which discusses the various approaches for condensing the
overdetermined set of equations that results from the data (least squares, double
least squares, singular value decomposition).The low-order time-domain algorithms
require very few time points in order to generate a solution because of the increased
use of spatial information.

Second-Order Time-Domain Algorithms. The second-order time-domain algo-
rithm has not been reported in the literature previously but is simply modeled after
the second-order matrix differential equation with matrix dimension No. Since an
impulse-response function can be thought to be a linear summation of a number of
complementary solutions to such a matrix differential equation, the general second-
order matrix form is a natural model that can be used to determine the modal
parameters. This method is developed by noting that it is the time-domain equiva-
lent to a frequency-domain algorithm known as the polyreference frequency-
domain (PFD) algorithm. The low-order time-domain algorithms require very few
time points in order to generate a solution because of the increased use of spatial
information.

High-Order Frequency-Domain Algorithms. The high-order frequency-domain
algorithms, in the form of scalar coefficients, are the oldest multiple degree-of-
freedom algorithms utilized to estimate modal parameters from discrete data. These
are algorithms like the rational fraction polynomial (RFP), power polynomial (PP),
and orthogonal polynomial (OP) algorithms. These algorithms work well for narrow
frequency bands and limited numbers of modes but have poor numerical character-
istics otherwise. While the use of multiple references reduces the numerical condi-
tioning problem, the problem is still significant and not easily handled. In order to
circumvent the poor numerical characteristics, many approaches have been used (fre-
quency normalization, orthogonal polynomials), but the use of low-order frequency-
domain models has proven more effective.

Orthogonal Polynomial Concepts. The fundamental problem with using a
rational fraction polynomial (power polynomial) method can be highlighted by
looking at the characteristics of the data matrices. These matrices involve power
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polynomials that are functions of increasing powers of s = jω. These matrices are of
the Vandermonde form and are known to be ill-conditioned for cases involving wide
frequency ranges and high-ordered models.

VANDERMONDE MATRIX FORM:

( jω1)0 ( jω1)1 ( jω1)2 . . . ( jω1)2m − 1

( jω2)0 ( jω2)1 ( jω2)2 . . . ( jω2)2m − 1� ( jω3)0 ( jω3)1 ( jω3)2 . . . ( jω3)2m − 1� (21.96)

. . . . . . . . . . . . . . .

( jωi)0 ( jωi)1 ( jωi)2 . . . ( jωi)2m − 1

Ill-conditioning, in this case, means that the accuracy of the solution for the matrix
coefficients αm is limited by the numerical precision of the available arithmetic of
the computer. Since the matrix coefficients αm are used to determine the complex-
valued modal frequencies, this presents a serious limitation for the high-order fre-
quency-domain algorithms. The ill-conditioning problem can be best understood by
evaluating the condition number of the Vandermonde matrix.The condition number
measures the sensitivity of the solution of linear equations to errors, or small
amounts of noise, in the data. The condition number gives an indication of the accu-
racy of the results from matrix inversion and/or linear equation solution. The condi-
tion number for a matrix is computed by taking the ratio of the largest singular value
to the smallest singular value. A good condition number is a small number close to
unity; a bad condition number is a large number. For the theoretical case of a singu-
lar matrix, the condition number is infinite.

The ill-conditioned characteristic of matrices that are of the Vandermonde form
can be reduced, but not eliminated, by the following:

� Minimizing the frequency range of the data
� Minimizing the order of the model
� Normalizing the frequency range of the data (0,2) or (−2,2)
� Use of orthogonal polynomials

Several orthogonal polynomials have been applied to the frequency-domain modal
parameter estimation problem, such as

� Forsythe polynomials
� Chebyshev polynomials
� Legendre polynomials
� Laguerre polynomials

First-Order Frequency-Domain Algorithms. Several algorithms have been
developed that fall into the category of first-order frequency-domain algorithms,
including the simultaneous frequency-domain (SFD) algorithm and the multiple
reference simultaneous frequency-domain algorithm. These algorithms are essen-
tially frequency-domain equivalents to the ITD and ERA algorithms and effectively
involve a state-space formulation when compared to the second-order frequency-
domain algorithms. The state-space formulation utilizes the derivatives of the 
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frequency response functions as well as the frequency response function in the solu-
tion. These algorithms have superior numerical characteristics compared to the
high-order frequency-domain algorithms. Unlike the low-order time-domain algo-
rithms, though, sufficient data from across the complete frequency range of interest
must be included in order to obtain a satisfactory solution.

Second-Order Frequency-Domain Algorithms. The second-order frequency-
domain algorithms include the polyreference frequency-domain (PFD) algorithms.
These algorithms have superior numerical characteristics compared to the high-
order frequency-domain algorithms. Unlike the low-order time-domain algorithms,
though, sufficient data from across the complete frequency range of interest must be
included in order to obtain a satisfactory solution.

Residue Estimation. Once the modal frequencies and modal participation vec-
tors have been estimated, the associated modal vectors and modal scaling (residues)
can be found with standard least squares methods in either the time or the frequency
domain. The most common approach is to estimate residues in the frequency
domain utilizing residuals, if appropriate:

{Hpq(ω)}Ns × 1 = � �
Ns × (2n + 2)

{Apqr}(2n + 2) × 1 (21.97)

where Ns = number of spectral lines ≥ 2n + 2
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Hpq(ω1)

Hpq(ω2)

Hpq(ω3){Hpq(ω)} = � ⋅ ⋅ ⋅ �
Hpq(ωNs)

The above equation is a linear equation in terms of the unknown residues once
the modal frequencies are known. Since more frequency information Ns is available
from the measured frequency response function than the number of unknowns 
2n + 2, this system of equations is normally solved using the same least squares
methods discussed previously. If multiple-input frequency response function data
are available, the above equation is modified to find a single set of 2n residues rep-
resenting all of the frequency response functions for the multiple inputs and a sin-
gle output.

MODAL DATA PRESENTATION/VALIDATION

Once the modal parameters are determined, there are several procedures that allow
the modal model to be validated. Some of the procedures that are used are

� Measurement synthesis
� Visual verification (animation)
� Finite element analysis
� Modal vector orthogonality
� Modal vector consistency (modal assurance criterion)
� Modal modification prediction
� Modal complexity
� Modal phase colinearity and mean phase deviation

All of these methods depend upon the evaluation of an assumption concerning the
modal model. Unfortunately, the success of the validation method defines only the
validity of the assumption; the failure of the modal validation does not generally
define what the cause of the problem is.

MEASUREMENT SYNTHESIS

The most common validation procedure is to compare the data synthesized from the
modal model with the measured data. This is particularly effective if the measured
data are not part of the data used to estimate the modal parameters. This serves as
an independent check of the modal parameter estimation process. The visual match
can be given a numerical value if a correlation coefficient, similar to coherence, is
estimated. The basic assumption is that the measured frequency response function
and the synthesized frequency response function should be linearly related (unity)
at all frequencies.
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Synthesis correlation coefficient (SCC):

SCCpq = Γpq
2 = (21.98)

where Hpq(ω) = measured frequency response function
Ĥpq(ω) = synthesized frequency response function

VISUAL VERIFICATION

Another common method of modal model validation is to evaluate the modal vec-
tors visually. While this can be accomplished from plotted modal vectors superim-
posed upon the undeformed geometry, the modal vectors are normally animated
(superimposed upon the undeformed geometry) in order to quickly assess the
modal vector. In particular, modal vectors are evaluated for physically realizable
characteristics such as discontinuous motion or out-of-phase problems. Often, rigid
body modes of vibration are evaluated to determine scaling (calibration) errors or
invalid measurement degree-of-freedom assignment or orientation. Naturally, if the
system under test is believed to be proportionally damped, the modal vectors should
be normal modes, and this characteristic can be quickly observed by viewing an ani-
mation of the modal vector.

FINITE ELEMENT ANALYSIS

The results of a finite element analysis of the system under test can provide another
method of validating the modal model. While the problem of matching the number
of analytical degrees-of-freedom Na to the number of experimental degrees-of-
freedom Ne causes some difficulty, the modal frequencies and modal vectors can be
compared visually or through orthogonality or consistency checks. Unfortunately,
when the comparison is not sufficiently acceptable, the question of error in the
experimental model versus error in the analytical model cannot be easily resolved.
Generally, assuming minimal errors and sufficient analysis and test experience, rea-
sonable agreement can be found in the first ten deformable modal vectors, but
agreement for higher modal vectors is more difficult. Finite element analysis is dis-
cussed in detail in Chap. 28, Part II.

MODAL VECTOR ORTHOGONALITY

Another method that is used to validate an experimental modal model is the
weighted orthogonality check. In this case, the experimental modal vectors are used
together with a mass matrix normally derived from a finite element model to evalu-
ate orthogonality. The experimental modal vectors are scaled so that the diagonal
terms of the modal mass matrix are unity. With this form of scaling, the off-diagonal
values in the modal mass matrix are expected to be less than 0.1 (10 percent of the
diagonal terms).


 �
ω2

ω = ω1

Hpq(ω)Ĥpq*(ω)
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�����

�
ω2

ω = ω1
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Theoretically, for the case of proportional damping, each modal vector of a sys-
tem is orthogonal to all other modal vectors of that system when weighted by the
mass, stiffness, or damping matrix. In practice, these matrices are made available by
way of a finite element analysis, and normally the mass matrix is considered to be the
most accurate. For this reason, any further discussion of orthogonality is made with
respect to mass matrix weighting. As a result, the orthogonality relations can be
stated as follows:

Orthogonality of modal vectors:

{ψr}[M]{ψs} = 0 r ≠ s (21.99)

{ψr}[M]{ψs} = Mr r = s (21.100)

Experimentally, the result of zero for the cross orthogonality [Eq. (21.99)] can rarely
be achieved, but values up to one-tenth of the magnitude of the generalized mass of
each mode are considered to be acceptable. It is a common procedure to form the
modal vectors into a normalized set of mode shape vectors with respect to the mass
matrix weighting. The accepted criterion in the aerospace industry, where this confi-
dence check is made most often, is for all of the generalized mass terms to be unity
and all cross-orthogonality terms to be less than 0.1. Often, even under this criterion,
an attempt is made to adjust the modal vectors so that the cross-orthogonality con-
ditions are satisfied.36–38

In Eqs. (21.99) and (21.100) the mass matrix must be an No × No matrix corre-
sponding to the measurement locations on the structure. This means that the finite
element mass matrix must be modified from whatever size and distribution of grid
locations are required in the finite element analysis to the No × No square matrix cor-
responding to the measurement locations. This normally involves some sort of
reduction algorithm as well as interpolation of grid locations to match the measure-
ment situation.39, 40

When Eq. (21.99) is not sufficiently satisfied, one (or more) of three situations
may exist. First, the modal vectors can be invalid. This can be due to measurement
error or problems with the modal parameter estimation algorithms. This is a very
common assumption and many times contributes to the problem. Second, the mass
matrix can be invalid. Since the mass matrix is not easily related to the physical
properties of the system, this probably contributes significantly to the problem.
Third, the reduction of the mass matrix can be invalid. This can certainly be a realis-
tic problem and cause severe errors. One example of this situation occurs when a
relatively large amount of mass is reduced to a measurement location that is highly
flexible, such as the center of an unsupported panel. In such a situation the meas-
urement location is weighted very heavily in the orthogonality calculation of Eq.
(21.99) but may represent only incidental motion of the overall modal vector.

In all probability, all three situations contribute to the failure of cross-orthog-
onality criteria on occasion. When the orthogonality conditions are not satisfied, this
result does not indicate where the problem originates. From an experimental point of
view, it is important to try to develop methods that provide confidence that the modal
vector is or is not part of the problem.

MODAL VECTOR CONSISTENCY

Since the residue matrix contains redundant information with respect to a modal
vector, the consistency of the estimate of the modal vector under varying conditions
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such as excitation location or modal parameter estimation algorithms can be a valu-
able confidence factor to be utilized in the process of evaluation of the experimen-
tal modal vectors.

The common approach to estimation of modal vectors from the frequency
response function matrix is to measure a complete row or column of the frequency
response function matrix. This gives reasonable definition to those modal vectors
that have a nonzero modal coefficient at the excitation location and can be com-
pletely uncoupled with the forced normal mode excitation method.When the modal
coefficient at the excitation location of a modal vector is zero (very small with
respect to the dynamic range of the modal vector) or when the modal vectors cannot
be uncoupled, the estimation of the modal vector contains potential bias and vari-
ance errors. In such cases, additional rows and/or columns of the frequency response
function matrix are measured to detect such potential problems.

In these cases, information in the residue matrix corresponding to each pole of
the system is evaluated to determine separate estimates of the same modal vector.
This evaluation consists of the calculation of a complex modal scale factor (relating
two modal vectors) and a scalar modal assurance criterion (measuring the consis-
tency between two modal vectors). The function of the modal scale factor (MSF) is
to provide a means of normalizing all estimates of the same modal vector.When two
modal vectors are scaled similarly, elements of each vector can be averaged (with or
without weighting), differenced, or sorted to provide a best estimate of the modal
vector or to provide an indication of the type of error vector superimposed on the
modal vector. In terms of multiple-reference modal parameter estimation algo-
rithms, the modal scale factor is a normalized estimate of the modal participation
factor between two references for a specific mode of vibration. The function of the
modal assurance criterion (MAC) is to provide a measure of consistency between
estimates of a modal vector. This provides an additional confidence factor in the
evaluation of a modal vector from different excitation locations. The modal assur-
ance criterion also provides a method of determining the degree of causality
between estimates of different modal vectors from the same system.41 The modal
scale factor is defined, according to this approach, as follows:

MSFcdr = (21.101)

Equation (21.70) implies that the modal vector d is the reference to which the
modal vector c is compared. In the general case, modal vector c can be considered to
be made up of two parts.The first part is the part correlated with modal vector d. The
second part is the part that is not correlated with modal vector d and includes con-
tamination from other modal vectors and any random contribution. This error vec-
tor is considered to be noise. The modal assurance criterion is defined as a scalar
constant relating the portion of the automoment of the modal vector that is linearly
related to the reference modal vector as follows:

MACcdr = = (21.102)

The modal assurance criterion is a scalar constant relating the causal relationship
between two modal vectors. The constant takes on values from 0, representing no
consistent correspondence, to 1, representing a consistent correspondence. In this
manner, if the modal vectors under consideration truly exhibit a consistent relation-

�{ψcr}H {ψdr}��{ψdr}H {ψcr}�
���

{ψcr}H {ψcr}{ψdr}H {ψdr}

{ψcr}H {ψdr} 
2

���
{ψcr}H {ψcr} {ψdr}H {ψdr}

{ψcr }H {ψdr }
��
{ψdr }H {ψdr }
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ship, the modal assurance criterion should approach unity and the value of the
modal scale factor can be considered to be reasonable.

The modal assurance criterion can indicate only consistency, not validity. If the
same errors, random or bias, exist in all modal vector estimates, this is not delineated
by the modal assurance criterion. Invalid assumptions are normally the cause of this
sort of potential error. Even though the modal assurance criterion is unity, the
assumptions involving the system or the modal parameter estimation techniques are
not necessarily correct. The assumptions may cause consistent errors in all modal
vectors under all test conditions verified by the modal assurance criterion.

Coordinate Modal Assurance Criterion (COMAC). An extension of the modal
assurance criterion is the coordinate modal assurance criterion (COMAC).42 The
COMAC attempts to identify which measurement degrees-of-freedom contribute
negatively to a low value of MAC. The COMAC is calculated over a set of mode
pairs, analytical versus analytical, experimental versus experimental, or experimen-
tal versus analytical. The two modal vectors in each mode pair represent the same
modal vector, but the set of mode pairs represents all modes of interest in a given
frequency range. For two sets of modes that are to be compared, there is a value of
COMAC computed for each (measurement) degree-of-freedom.

The coordinate modal assurance criterion (COMAC) is defined as follows:

COMACp = (21.103)

where ψpr = modal coefficient from (measured) degree-of-freedom p and modal
vector r from one set of modal vectors

φpr = modal coefficient from (measured) degree-of-freedom p and modal
vector r from a second set of modal vectors

The above formulation assumes that there is a match for every mode in the two
sets. Only those modes that match between the two sets are included in the 
computation.

MODAL MODIFICATION PREDICTION

The use of a modal model to predict changes in modal parameters caused by a pertur-
bation (modification) of the system is becoming more of a reality as more measured
data are acquired simultaneously. In this validation procedure, a modal model is esti-
mated based upon a complete modal test.This modal model is used as the basis to pre-
dict a perturbation to the system that is tested, such as the addition of a mass at a
particular point on the structure.Then, the mass is added to the structure and the per-
turbed system is retested. The predicted and measured data or modal model can be
compared and contrasted as a measure of the validity of the underlying modal model.

MODAL COMPLEXITY

Modal complexity is a variation on the use of sensitivity analysis in the validation of
a modal model. When a mass is added to a structure, the modal frequencies either
should be unaffected or should shift to a slightly lower frequency. Modal overcom-


 �
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plexity is a summation of this effect over all measured degrees-of-freedom for each
mode. Modal complexity is particularly useful for the case of complex modes in an
attempt to quantify whether the mode is genuinely a complex mode, a linear combi-
nation of several modes, or a computational artifact. The mode complexity is nor-
mally indicated by the mode overcomplexity value (MOV), which is the percentage
of the total number of response points that actually cause the damped natural fre-
quency to decrease when a mass is added. A separate MOV is estimated for each
mode of vibration, and the ideal result should be 1.0 (100 percent) for each mode.

MODAL PHASE COLINEARITY AND MEAN PHASE DEVIATION

For proportionally damped systems, the modal coefficients for a specific mode of
vibration should differ by 0° or 180°. The modal phase colinearity (MPC) is an index
expressing the consistency of the linear relationship between the real and imaginary
parts of each modal coefficient. This concept is essentially the same as the ordinary
coherence function with respect to the linear relationship of the frequency response
function for different averages or the modal assurance criterion (MAC) with respect
to the modal scale factor between modal vectors. The MPC should be 1.0 (100 per-
cent) for a mode that is essentially a normal mode. A low value of MPC indicates a
mode that is complex (after normalization) and is an indication of a nonproportionally
damped system or errors in the measured data and/or modal parameter estimation.

Another indicator that defines whether a modal vector is essentially a normal
mode is the mean phase deviation (MPD).This index is the statistical variance of the
phase angles for each mode shape coefficient for a specific modal vector from the
mean value of the phase angle. The MPD is an indication of the phase scatter of a
modal vector and should be near 0° for a real, normal mode.

REFERENCES

1. Tse, F. S., I. E. Morse, Jr., and R. T. Hinkle: “Mechanical Vibrations: Theory and Applica-
tions,” 2d ed., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1978.

2. Craig, R. R., Jr.: “Structural Dynamics: An Introduction to Computer Methods,” John
Wiley & Sons, Inc., New York, 1981.

3. Ewins, D.: “Modal Testing: Theory and Practice,” John Wiley & Sons, Inc., New York, 1984.

4. Bendat, J. S., and A. G. Piersol:“Random Data:Analysis and Measurement Procedures,” 3d
ed., John Wiley & Sons, Inc., New York, 2000.

5. Bendat, J. S., and A. G. Piersol: “Engineering Applications of Correlation and Spectral
Analysis,” 2d ed., John Wiley & Sons, Inc., New York, 1993.

6. Himmelblau, H., A. G. Piersol, J. H. Wise, and M. R. Grundvig: “Handbook for Dynamic
Data Acquisition and Analysis,” I.E.S. Recommended Practice RP-DTE 012.1, Institute of
Environmental Sciences, Mount Prospect, Ill., 1994.

7. Dally, J. W., W. F. Riley, and K. G. McConnell: “Instrumentation for Engineering Measure-
ments,” John Wiley & Sons, Inc., New York, 1984.

8. Strang, G.: “Linear Algebra and Its Applications,” 3d ed., Harcourt Brace Jovanovich Pub-
lishers, San Diego, 1988.

9. Lawson, C. L., and R. J. Hanson: “Solving Least Squares Problems,” Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1974.

10. Jolliffe, I. T.: “Principal Component Analysis,” Springer-Verlag, New York, 1986.

11. Allemang, R. J., D. L. Brown, and R. W. Rost: “Dual Input Estimation of Frequency
Response Functions for Experimental Modal Analysis of Automotive Structures,” SAE
Paper No. 820193, 1982.

EXPERIMENTAL MODAL ANALYSIS 21.71

8434_Harris_21_b.qxd  09/20/2001  12:09 PM  Page 21.71



12. Potter, R. W.: J. Acoust. Soc. Amer., 66(3):776 (1977).
13. Brown, D. L., G. Carbon, and R. D. Zimmerman:“Survey of Excitation Techniques Applic-

able to the Testing of Automotive Structures,” SAE Paper No. 770029, 1977.
14. Halvorsen, W. G., and D. L. Brown: Sound and Vibration, November 1977, pp. 8–21.
15. Allemang, R. J., D. L. Brown, and W. Fladung: Proc. Intern. Modal Analysis Conf., 1994, p.

501.
16. Brown, D. L., R. J. Allemang, R. D. Zimmerman, and M. Mergeay: “Parameter Estimation

Techniques for Modal Analysis,” SAE Paper No. 790221, SAE Transactions, 88:828 (1979).
17. Vold, H., J. Kundrat, T. Rocklin, and R. Russell: SAE Transactions, 91(1):815 (1982).
18. Vold, H., and T. Rocklin: Proc. Intern. Modal Analysis Conf., 1982, p. 542.
19. Ibrahim, S. R., and E. C. Mikulcik: Shock and Vibration Bull., 47(4):183 (1977).
20. Fukuzono, K.: “Investigation of Multiple-Reference Ibrahim Time Domain Modal Param-

eter Estimation Technique,” M.S. Thesis, Dept. of Mechanical and Industrial Engineering,
University of Cincinnati, 1986.

21. Juang, Jer-Nan, and R. S. Pappa: AIAA J. Guidance, Control, and Dynamics, 8(4):620
(1985).

22. Longman, R. W., and Jer-Nan Juang: AIAA J. Guidance, Control, and Dynamics, 12(5):647
(1989).

23. Zhang, L., H. Kanda, D. L. Brown, and R. J.Allemang:“A Polyreference Frequency Domain
Method for Modal Parameter Identification,” ASME Paper No. 85-DET-106, 1985.

24. Lembregts, F., J. Leuridan, L. Zhang, and H. Kanda: Proc. Intern. Modal Analysis Conf.,
1986, pp. 589–598.

25. Lembregts, F., J. L. Leuridan, and H. Van Brussel: Mech. Systems and Signal Processing,
4(1):65 (1989).

26. Coppolino, R. N.:“A Simultaneous Frequency Domain Technique for Estimation of Modal
Parameters from Measured Data,” SAE Paper No. 811046, 1981.

27. Craig, R. R., A. J. Kurdila, and H. M. Kim: J. Analytical and Experimental Modal Anal.,
5(3): 169 (1990).

28. Richardson, M., and D. L. Formenti: Proc. Intern. Modal Analysis Conf., 1982, p. 167.
29. Vold, H.,“Orthogonal Polynomials in the Polyreference Method,” Proc. Intern. Seminar on

Modal Analysis, Katholieke University of Leuven, Belgium, 1986.
30. Van der Auweraer, H., and J. Leuridan: Mechanical Systems and Signal Processing, 1(3):259

(1987).
31. Shih, C. Y., Y. G. Tsuei, R. J. Allemang, and D. L. Brown: Mechanical Systems and Signal

Processing, 2(4):349 (1988).
32. Shih, C. Y., Y. G. Tsuei, R. J. Allemang, and D. L. Brown: Mechanical Systems and Signal

Processing, 2(4):367 (1988).
33. Dippery, K. D., A. W. Phillips, and R. J. Allemang: Proc. Intern. Modal Analysis Conf., 1994.
34. Dippery, K. D., A. W. Phillips, and R. J. Allemang: Proc. Intern. Modal Analysis Conf., 1994.
35. Williams, R., J. Crowley, and H. Vold: Proc. Intern. Modal Analysis Conf., 1985, p. 66.
36. Gravitz, S. I.: J. Aero/Space Sci., 25:721 (1958).
37. McGrew, J.: AIAA J., 7(4):774 (1969).
38. Targoff, W. P.: AIAA J., 14(2):164 (1976).
39. Guyan, R. J.: AIAA J., 3(2):380 (1965).
40. Irons, B.: AIAA J., 3(5):961 (1965).
41. Allemang, R. J., and D. L. Brown: Proc. Intern. Modal Analysis Conf., 1982, p. 110.
42. Lieven, N. A. J., and D. J. Ewins: Proc. Intern. Modal Analysis Conf., 1988, p. 690.

21.72 CHAPTER TWENTY-ONE

8434_Harris_21_b.qxd  09/20/2001  12:09 PM  Page 21.72



CHAPTER 22
CONCEPTS IN

VIBRATION DATA
ANALYSIS

Allan G. Piersol

INTRODUCTION

Vibration data are usually acquired in the form of continuous electrical (analog) sig-
nals generated by transducers (see Chap. 12), where each analog signal represents
the instantaneous value of a strain, pressure, force, or motion parameter (displace-
ment, velocity, or acceleration) as a function of time. Such a signal is commonly
referred to as a time-history. A sample record is defined as the time-history repre-
senting a single vibration measurement x(t) over a finite duration T. Although sam-
ple records are usually acquired in the form of time-histories, any other variable of
interest can replace time t as the independent variable for analysis purposes. For
example, road roughness data are commonly acquired as sample records of road ele-
vation x versus distance d, that is, x(d); 0 ≤ d < D, where D is the length of the record.
However, for clarity, all discussions and equations in this chapter are presented in
terms of sample time-history records, where it is understood that any other variable
can be substituted for time.

CLASSIFICATIONS OF VIBRATION DATA

The appropriate analysis procedures for vibration environments depend heavily
upon certain basic characteristics of the vibration. The most important distinctions
are defined in Chap. 1 and illustrated in Fig. 22.1. These definitions may be summa-
rized as follows:

1. A stationary vibration is one whose basic properties do not vary with time. Sta-
tionary vibrations typically occur when the operating and/or environmental condi-
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tions producing the vibration are time invariant. For example, the vibration environ-
ment for a motor vehicle driving over a homogeneous road at constant speed and
with a constant engine rpm will be stationary.

2. A nonstationary vibration is one whose basic properties vary with time, but
slowly relative to the lowest frequency of the vibration. For example, the vibration
environment for a motor vehicle during acceleration from zero to highway speed
will be nonstationary. Those dynamic environments that change rapidly relative to
the lowest frequency in the environment are considered transients or shocks, which
are addressed in Chap. 23.

3. A deterministic vibration is one whose value at any time can be predicted from
its value at any other time. It follows that sample records of a deterministic vibration
collected repeatedly under similar conditions will have similar time-histories. For
example, the vibration environments of rotating machines and reciprocating engines
(see Chap. 38) are generally deterministic.

4. A random vibration is one whose instantaneous magnitude is not specified at
any given time. The instantaneous magnitudes of a random vibration are specified
only by probability functions giving the probable fraction of the total time that the
magnitude (or some sequence of magnitudes) lies within a specified range. From
another viewpoint, a random vibration can be thought of as a single physical real-
ization, x(t), of a random process, which theoretically is described by an ensemble
of all possible physical realizations denoted by {x(t)}.1 Virtually all stationary ran-
dom vibrations can be represented by an ergodic random process (see Chap. 1),
meaning the properties of the random process {x(t)} can be described by time aver-
ages over a signal sample record x(t). It follows that the sample records of a sta-
tionary random vibration collected repeatedly under similar conditions will have
time-histories that differ in detail but have the same average properties. For exam-
ple, the vibrations induced by turbulent flow, wind, and jet noise (see Chaps. 29,
Part I; 29, Part II; and 29, Part III) are generally random.

5. A mixed vibration is one that includes a combination of deterministic and ran-
dom components.To some degree, most vibration environments are mixed, although
either a deterministic or random component will often dominate.

FIGURE 22.1 Classifications of vibration environments.
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The next section in this chapter summarizes the quantitative descriptions of
vibration environments. This is followed by a discussion of the important prelimi-
nary steps in preparing measured vibration data for analysis, and the specific analy-
sis procedures for measured vibration data.

QUANTITATIVE DESCRIPTIONS 

OF STATIONARY VIBRATIONS

The properties of stationary vibration environments, both deterministic and ran-
dom, that are of primary interest to engineering applications are defined in Chaps.
11 and 14. Those definitions are now summarized by functional relationships that
lead directly to the applied computational algorithms used to compute the desired
properties from sample records of measured vibration data.

OVERALL VALUES

The most fundamental descriptions of a stationary vibration with a time-history x(t)
are given by overall values. In general, various different overall values might be
determined (see Chap. 11), but often the mean value µx, the mean-square value ψ2

x,
and/or the variance σ2

x are the only overall values of interest.These values for a sam-
ple record x(t) with duration T are theoretically given by1,2

Mean value: µx = lim
T → ∞

�T

0
x(t)dt

Mean-square value: ψ2
x = lim

T → ∞
�T

0
x2(t)dt (22.1)

Variance: σ2
x = lim

T → ∞
�T

0
[x(t) − µx]2dt

It can be shown1 that the three quantities defined in Eq. (22.1) are interrelated by

ψ2
x = µ2

x + σ2
x (22.2)

Hence, a knowledge of any two quantities determines the third. The positive square
root of the mean-square value and the variance, ψx and σx, are called the root-mean-
square (rms) value and the standard deviation, respectively.

The mean value defines the central tendency (static value) of the vibration, while
the standard deviation defines the dispersion of the vibration, each with the same
units as the vibration. The rms value is a measure of both the central tendency and
dispersion. In many cases, one or more of the following will be true: (a) the mean
value of the vibration is zero, (b) the vibration transducer cannot produce a static
(dc) output corresponding to a mean value (e.g., piezoelectric accelerometers),
and/or (c) a mean value cannot be measured because the data acquisition system is
ac coupled, that is, it will not transmit dc. In these cases, the rms value of the vibra-
tion is the same as its standard deviation, that is, ψx = σx.

1
�
T

1
�
T

1
�
T
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FINITE FOURIER TRANSFORMS

Since frequency domain descriptions of vibrations are generally of the greatest engi-
neering value, the Fourier transform plays a major role in both the theoretical defi-
nitions of properties and the analysis algorithms for vibration data. The finite
Fourier transform of a sample record x(t) is defined as

X(f,T) = �T

0
x(t)e−j2πftdt = �T

0
x(t) cos (2πft)dt − j�T

0
x(t) sin (2πft)dt (22.3)

where j = �−1�. Three properties of the definition in Eq. (22.3) should be noted, as
follows:

1. The finite Fourier transform is generally a complex number that is defined for
both positive and negative frequencies, that is, X(f,T); −∞ < f < ∞. However,
X(−f,T) = X*(f,T), where the asterisk denotes the complex conjugate, meaning
that values at mathematically negative frequencies are redundant and provide no
information beyond that provided by the values at positive frequencies. Since
engineers typically think of frequency as a positive value, it is common to present
finite Fourier transforms as 2X(f,T); 0 < f < ∞.

2. Fourier transforms are often defined as a function of radial frequency ω in radi-
ans/sec, as opposed to cyclical frequency f in Hz, particularly for analytical appli-
cations. However, data analysis is usually accomplished in terms of cyclical
frequency f, as defined in Eq. (22.3). The two definitions are interrelated by
X(f,T) = 2π X(ω,T).

3. The finite Fourier transform X(f,T) is equivalent to the Fourier series of x(t)
assumed to have a period T.

STATIONARY DETERMINISTIC VIBRATIONS

Stationary deterministic vibration environments generally fall into one of two cate-
gories, namely, periodic vibrations or almost-periodic vibrations.

Periodic Vibrations. Periodic vibrations are those with time-histories that exactly
repeat themselves after a time interval TP, that is, x(t) = x(t + iTP); i = 1, 2, 3, . . . ,
where TP is called the period of the vibration. All periodic vibrations can be decom-
posed into a Fourier series, which consists of a collection of commensurately related
sine waves,1,2 that is,

x(t) = a0 + �
k

ak sin (2πkf1t + θk) k = 1, 2, 3, . . . (22.4)

where a0 is the mean value, kf1 is the kth frequency component (harmonic), and ak

and θk are the amplitude and phase angle associated with the kth frequency compo-
nent of the periodic vibration. The k = 1 component is called the fundamental fre-
quency of the periodic vibration, and is given by f1 = 1/TP. The magnitude of the
frequency components in Eq. (22.4) are given by

Lx(f) = 0 < f (22.5)
2|X(f,TP)|
��

TP

22.4 CHAPTER TWENTY-TWO
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CONCEPTS IN VIBRATION DATA ANALYSIS 22.5

where X(f,TP) is as defined in Eq. (22.3) with T = TP, the period of the vibration. A
plot of Lx(f) versus frequency is called a line spectrum or a linear spectrum. The
phase angles, θk; k = 1, 2, 3, . . . , are usually ignored, but these phase values should be
retained if the time-history is not retained, since both the magnitude and phase val-
ues in Eq. (22.4) are required to reconstruct the time-history.

Periodic vibrations are usually produced by the mechanical excitations of rotat-
ing machines and reciprocating engines operating with a constant rotational speed.
They are also produced by the aerodynamic excitations from large fans and pro-
pellers, again operating at a constant rotational speed. An illustration of the time-
history and line spectrum for a periodic vibration composed of three harmonic
components (k = 1, 2, and 3) is shown in Fig. 22.2.

FIGURE 22.2 Time-history and line spectrum for periodic vibration.

Almost-Periodic Vibrations. Although periodic vibrations can be decomposed
into a collection of commensurately related sine waves, as given by Eq. (22.4), it does
not follow that the sum of two or more independent sinusoidal excitations will pro-
duce a periodic vibration. As noted previously in Chap. 1, the sum of such inde-
pendent sine waves will be periodic only if the ratios of all pairs of frequencies
create rational numbers. Those deterministic vibrations that do not have commen-
surately related frequency components are called almost-periodic1 (also called
quasi-periodic or complex) vibrations. Nevertheless, such vibrations can be de-
scribed by a line spectrum based upon a relationship similar to Eq. (22.4), except the
commensurately related frequencies kf1 are replaced by independent frequencies fk;
k = 1, 2, 3, . . . . As for periodic vibrations, the magnitude of the frequency compo-
nents for almost-periodic vibrations can be described by a line spectrum defined in
Eq. (22.5), except TP → ∞.

Almost-periodic vibrations often occur when two or more independent periodic
excitations are summed. For example, the vibration produced by two independent
rotating machines that are not synchronized or geared together will usually be
almost-periodic rather than periodic. An illustration of the time-history and line
spectrum for an almost-periodic vibration composed of the sum of two sine waves
that are not commensurately related is shown in Fig. 22.3.
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22.6 CHAPTER TWENTY-TWO

STATIONARY RANDOM VIBRATIONS

By definition, random vibrations cannot be described by an explicit mathematical
function and, hence, must be described in statistical terms.This can be done (a) in the
amplitude domain by probability functions, (b) in the time domain by correlation
functions, and/or (c) in the frequency domain by spectral density functions.

Probability Density Functions. From Chap. 11, the probability density function
of a stationary random vibration x(t) may be defined as

p(x) = lim
Τ → ∞

(22.6)

where T(x,∆x) is the time that x(t) is within the magnitude interval ∆x centered at x
during the sample record duration T. The integral of the probability density function
between any two magnitudes x1 and x2 defines the probability at any future instant
that the value of x(t) will fall between x1 and x2, that is,

Prob[x1 < x(t) ≤ x2] = �x2

x1

p(x)dx (22.7)

It is noted in Chaps. 11 and 20 that the vibration response of a linear structure to
a stationary random excitation tends to be closely approximated by a specific prob-
ability density function, namely, the Gaussian (normal) probability density function,
which is defined in Eq. (11.14) and plotted in Fig. 22.4. Hence, it is common to omit
the computation of probability density functions from the analysis of random vibra-
tion data, and to simply assume the probability density function is Gaussian. How-
ever, the vibration response of a nonlinear system, even when the excitation is
Gaussian, will generally not be Gaussian.3 For example, the probability density func-
tion for the acceleration response to a Gaussian excitation of a single degree-of-
freedom system with a stiffness that increases with displacement (often called a
hardening spring system as illustrated in Fig. 31.8) is typically as shown in Fig. 22.4.
Note that the Gaussian assumption for such data can lead to erroneous conclusions
concerning the occurrence of extreme values.

Correlation Functions. Autocorrelation functions and cross-correlation functions
are defined in Eqs. (11.15) through (11.19). They have important theoretical appli-

T(x,∆x)
�

T
1

�∆x

FIGURE 22.3 Time-history and line spectrum for almost-periodic vibration.

∆x → 0
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cations,1–6 and a few practical applications to vibration problems.7 However, the
Fourier transform of a correlation function, called a spectral density function, is gen-
erally of greater interest for practical applications. Furthermore, in those rare cases
where a correlation function may be of interest, it can always be computed by taking
the inverse Fourier transform of a spectral density function.

Power Spectral Density Functions. The power spectral density function (also
called the power spectrum, autospectral density function, or autospectrum) of a sta-
tionary random vibration x(t) is often defined as the Fourier transform of the auto-
correlation function (see Chap. 11). From a practical viewpoint, however, two
equivalent theoretical definitions are more relevant to later data analysis algo-
rithms. First, the power spectrum of x(t) may be defined as1

Wxx(f) = lim
T → ∞

E[|X(f,T)|2] f > 0 (22.8)

where E[ ] denotes the expected value of [ ], which implies an ensemble average,
and X(f,T) is defined in Eq. (22.3). Note that the power spectrum Wxx(f) in Eq.
(22.8) is defined for positive frequencies only, and is often referred to as a one-sided
spectrum.

The second definition for the power spectrum is more engineering-oriented.
Specifically, referring to Fig. 22.5, the random vibration record x(t) is passed through
a narrow bandpass filter with a bandwidth Be and center frequency f to obtain an
output x(f,Be,t). The output is squared and averaged over a duration T to obtain a

2
�
T

CONCEPTS IN VIBRATION DATA ANALYSIS 22.7

FIGURE 22.4 Probability density functions for the acceleration response of linear and hardening
spring systems to stationary random excitation.

FIGURE 22.5 Definition of power spectrum by filtering, squaring, and averaging operations.

BANDPASS FILTER:

BANDWIDTH = B

CENTER FREQ. = f

x(t) e

DIVIDE BY BAND-

WIDTH B   AND

TAKE LIMITS

W   (f)xx

SQUARE AND

AVERAGE OVER

DURATION T
e

(f, B  , T)xψ2
ex  f, B  , t( )e
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bandwidth-limited mean-square value ψ2
x(f,Be,T). Finally, the bandwidth-limited

mean-square value is divided by the bandwidth Be. In the limit as Be approaches zero
and BeT approaches infinity, the computation illustrated in Fig. 22.5 yields the power
spectrum, that is,

Wxx(f) = lim
T → ∞

�T

0
x2 (f,Be,t)dt f > 0 (22.9)

It can be shown1 that Eq. (22.9) produces exactly the same result as Eq. (22.8), as
well as the result in Eq. (11.29).

The power spectrum describes the frequency content of the vibration and, hence, is
generally the most important and widely used function for engineering applications,4,7

which are facilitated by three important properties of power spectra, as follows:

1. Given two or more statistically independent vibrations, the power spectrum for
the sum of the vibrations is equal to the sum of the power spectra for the indi-
vidual vibrations, that is,

Wxx(f) = �
i

Wii(f) i = 1, 2, 3, . . . (22.10)

2. The area under the power spectrum between any two frequencies, fa and fb,
equals the mean-square value of the vibration in the frequency range from fa to
fb, that is,

ψ2
x(fa,fb) = �fb

fa
Wxx(f)df (22.11)

3. Given an excitation x(t) to a structural system with a frequency response function
H(f) (see Chap. 21), the power spectrum of the response y(t) is given by the prod-
uct of the power spectrum of the excitation and the squared magnitude of the fre-
quency response function, that is,

Wyy(f) = |H(f)|2 Wxx(f) (22.12)

Illustrations of the time-histories and autospectra for both wide bandwidth and
narrow bandwidth random vibrations are shown in Fig. 22.6.

Cross-Spectral Density Functions. Given two stationary random vibrations x(t)
and y(t), the cross-spectral density function (also called the cross-spectrum) is
defined as

Wxy(f) = lim
T → ∞

E[X*(f,T)Y(f,T)] f > 0 (22.13)

where E[ ] is the expected value of [ ], which implies an ensemble average, X*(f,T) is
the complex conjugate of the finite Fourier transform of x(t), as defined in Eq.
(22.3), and Y(f) is the finite Fourier transform of y(t), as defined in Eq. (22.3) with
y(t) replacing x(t).

The cross-spectrum is generally a complex number that measures the linear rela-
tionship between two random vibrations as a function of frequency with a possible
phase shift between the vibrations. Specifically, the cross-spectrum can be written as

2
�
T

1
�
BeT

Be → 0
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Wxy(f) = |Wxy(f)|e−jθxy(f) θxy(f) = 2πfτ(f) (22.14)

where τ(f) is the time delay between x(t) and y(t) at frequency f. An important appli-
cation of the cross-spectrum is as follows. Given a random excitation x(t) to a struc-
ture with a frequency response function H(f) (see Chap. 21), the cross-spectrum
between the excitation x(t) and the response y(t) is given by the product of the
power spectrum of the excitation and the frequency response function, H(f), that is,

Wxy(f) = H(f)Wxx(f) (22.15)

Coherence Functions. From Chap. 21, the coherence function between two ran-
dom vibrations x(t) and y(t) is given by

γ2
xy(f) = f > 0 (22.16)

where all terms are as defined in Eqs. (22.8) and (22.13). The coherence function is
bounded at all frequencies by zero and unity, where γ2

xy(f) = 0 means there is no lin-
ear relationship between x(t) and y(t) at the frequency f (the two vibrations are
uncorrelated) and γ2

xy(f) = 1 means there is a perfect linear relationship between x(t)
and y(t) at the frequency f (one vibration can be exactly predicted from the other).
This property leads to an important application of the coherence function. Specifi-
cally, given a stationary random vibration y(t) = x(t) + n(t), where n(t) represents
extraneous noise, including other vibrations that are not correlated with x(t), then

Wxx(f) = γ2
xy(f) Wyy(f) (22.17)

|Wxy(f)2|
��
Wxx(f)Wyy(f)

CONCEPTS IN VIBRATION DATA ANALYSIS 22.9

FIGURE 22.6 Time-histories and autospectra for wide-bandwidth (A) and narrow-bandwidth (B)
random vibrations.

(A)

(B)
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The result in Eq. (22.17) is referred to as the coherent output power relationship.1

The coherence function is also an important parameter in establishing the statistical
sampling errors in various spectral estimates to be discussed later.

Other Functions. There are various other specialized functions that have impor-
tant applications for certain advanced stationary random data analysis problems,
including the following:

1. Cepstrum functions, which have important applications to machinery condition
monitoring (see Chap. 14).

2. Hilbert transforms, which can be used to determine the causality between two
measurements1 and certain properties of modulation processes (Chap. 14).

3. Conditioned spectral density and coherence functions, which have important
applications to the analysis of structural vibration responses to multiple excita-
tions that are partially correlated,1,7 as well as to the analysis of the vibration
responses of nonlinear systems.3,7

4. Higher-order spectral density functions, such as bi-spectra and tri-spectra, which
have applications to the analysis of the vibration responses of nonlinear systems.3

5. Cyclostationary functions, which have important applications to machinery fault
diagnosis procedures.8

QUANTITATIVE DESCRIPTIONS OF

NONSTATIONARY VIBRATIONS

Unlike stationary vibrations, the properties of nonstationary vibrations must be
described as a function of time, which theoretically requires instantaneous averages
computed over an ensemble of sample records, {x(t)}, acquired under statistically
similar conditions. In this context, the overall values for stationary vibrations in 
Eq. (22.1) are given for nonstationary vibrations by

Mean value: µx(t) = E[x(t)]

Mean-square value: ψ2
x(t) = E[x2(t)] (22.18)

Variance: σ2
x(t) = E[{x(t) − µx(t)}2]

where E[ ] denotes the expected value of [ ], which implies an ensemble average.
Equation (22.2) applies to the values in Eq. (22.18) at each time t, and the interpre-
tations of these values following Eq. (22.2) apply.

NONSTATIONARY DETERMINISTIC VIBRATIONS

Nonstationary deterministic vibrations are defined here as those vibrations that
would be periodic under constant conditions, but where the conditions are time-
varying such that the instantaneous magnitude and/or the fundamental frequency of
the vibration versus time vary slowly compared to the fundamental frequency of the
vibration (often called phase coherent vibrations). In other words, the vibration can
be described by Eq. (22.4) where the magnitude and phase terms, ak and θk, are
replaced by time-varying magnitude and phase terms, ak(t) and θk(t), and/or the fun-

8434_Harris_22_b.qxd  09/20/2001  12:06 PM  Page 22.10



damental frequency f1 is replaced by a time-varying fundamental frequency f1(t),
that is,

x(t) = a0(t) + �
k

ak(t) cos [2πkf1(t) + θk(t)] (22.19)

A similar nonstationary deterministic vibration is given by Eq. (22.19) with kf1(t)
replaced by fk(t). Nonstationary deterministic vibrations described by Eq. (22.19)
are commonly displayed as a three-dimensional plot of the magnitude of the time-
varying coefficients versus time and frequency. Such a plot is often referred to as an
instantaneous line spectrum. An illustration of the time-history and instantaneous
line spectrum for a single instantaneous frequency component with linearly increas-
ing magnitude and frequency is shown in Fig. 22.7.

CONCEPTS IN VIBRATION DATA ANALYSIS 22.11

FIGURE 22.7 Time-history and instantaneous line spectrum for sine wave with slowly
increasing frequency and amplitude.

Another way to describe the frequency-time characteristics of a nonstationary
deterministic vibration is by the Wigner distribution, defined as1,9

WDxx(f,t) = �∞

−∞
x�t − �x�t + �e−j2πfτ dτ (22.20)

The Wigner distribution is similar to the instantaneous power spectrum discussed
later in this chapter, and has interesting theoretical properties.9 However, it often
produces negative spectral values, which are difficult to interpret for most engineer-
ing applications, and offers few advantages over the instantaneous line spectrum
given by Eq. (22.19).

NONSTATIONARY RANDOM VIBRATIONS

There are several theoretical ways to describe nonstationary random data,1 includ-
ing generalized spectra defined for two frequency variables that provide rigorous
excitation-response relationships, even for time-varying linear systems. From a data
analysis viewpoint, however, the most useful theoretical description for nonstation-
ary random vibrations is provided by the instantaneous power spectral density func-
tion (also called the instantaneous power spectrum or instantaneous autospectrum).
The instantaneous power spectrum is defined by1,7

τ
�
2

τ
�
2
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Wxx(f,t) = � E�x�t − � x �t + �	e−j2πfτ dτ (22.21)

where E[ ] denotes the expected value of [ ], which implies an ensemble average.
Note that the instantaneous power spectrum is essentially the Wigner distribution
defined in Eq. (22.20), except the product of the values of x(t) at two different times
is averaged.

Like the Wigner distribution, the instantaneous power spectrum can have nega-
tive values at some frequencies and times.1 For example, let a nonstationary random
process be defined as

{x(t)} = [cos 2πf0t]{u(t)} (22.22)

where {u(t)} is a narrow bandwidth stationary random process with a mean value of
zero and a standard deviation of unity, and the cosine term is a modulating function.
Substituting Eq. (22.22) for Eq. (22.21) yields

Wxx(f,t) = [Wuu(f − f0) + Wuu(f + f0)] + cos (4πf0t)Wuu(f) (22.23)

where Wuu(f) is the power spectrum of the stationary component {u(t)}. The instan-
taneous power spectrum given by Eq. (22.23) is plotted in Fig. 22.8. Note that the
instantaneous power spectrum consists of two stationary components (often called
sidebands) that are offset in frequency from the center frequency f1 of {u(t)} by plus
and minus the modulating frequency f0, and a time-varying component at the center

1
�
2

1
�
4

τ
�
2

τ
�
2

FIGURE 22.8 Instantaneous power spectrum for cosine-modulated, narrow bandwidth random
vibration.
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frequency f1 of {u(t)} that oscillates between positive and negative values. Further
note that for nonstationary vibration environments, as defined in this chapter, a
modulating frequency is small compared to the lowest frequency of the stationary
component, that is, f0 << f1 − B/2, where B is the bandwidth of the stationary compo-
nent. It follows that the stationary and time-varying spectral components of the
instantaneous power spectrum will heavily overlap and, hence, eliminate negative
spectral values at most times and frequencies.

PRELIMINARY DATA ANALYSIS

CONSIDERATIONS

Before the detailed analysis of vibration data is initiated, careful consideration
should be given to the following:

1. Final engineering applications of the analyzed data.
2. Stationary sample record durations for the data analysis.
3. Validation and editing of the data.
4. Data storage.
5. Analog-to-digital conversion.

The first two matters should actually be considered prior to the acquisition of the data,
but in any case should be carefully reviewed prior to the initiation of the data analysis.

ENGINEERING APPLICATIONS OF DATA ANALYSIS

Numerous possible applications might motivate the acquisition and analysis of vibra-
tion data, including the applications in this Handbook summarized in Table 22.1.

TABLE 22.1 Applications of Analyzed Vibration Data

Application Chapter

Formulation of test criteria and 
verification of test results 19, 20

Formulation of design criteria 41

Condition monitoring of machinery 16

Modal analysis and testing 21

Assessing the vibration response 
of structures 24; 29, Part I; 29, Part II; 29, Part III

Assessing the effects of vibration on 
humans 42

Prediction of structural failures and 
fatigue damage 11, 34, 35

Calibration of transducers 18

Evaluation of vibration responses of 
nonlinear systems 4

Balancing of rotating machinery 39, Part I

Input data for mathematical models 11; 28, Part I; 28, Part II
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The final application for the data is important in determining which properties of
the data should be computed. In most cases, the primary property of interest will be
some form of a frequency spectrum. However, there may be applications that
require other types of analysis. For example, fatigue damage predictions for ran-
dom vibration environments generally require some form of amplitude distribution
analysis, as detailed in Chaps. 11 and 34. These matters should be thoroughly
reviewed prior to initiating data analysis, not only to assure the needed data prop-
erties are computed, but also to avoid computing large amounts of unneeded infor-
mation.

STATIONARY SAMPLE RECORD DURATIONS

It is clear from the descriptions of vibrations in preceding sections that stationary
vibrations are much easier to analyze than nonstationary vibrations. It follows that
an effort should be made to collect stationary sample records of vibration data for
analysis. This is easily accomplished for the vibration data produced by laboratory
experiments, since most such experiments are performed under constant conditions
that naturally produce stationary results. On the other hand, the vibration data col-
lected from measurements of actual vibration environments are commonly nonsta-
tionary. Even in this case, measurement programs can often be designed to produce
stationary data for analysis purposes. For example, the vibration environment for a
motor vehicle during normal service operations is generally nonstationary. How-
ever, if the vehicle is operated over a homogeneous road at constant speed and
engine rpm, the resulting vibration levels will be approximately stationary. It follows
that the vibration environment of the vehicle under all conditions can be measured
and analyzed from a collection of stationary sample records, each representing a
specific road condition, vehicle speed, and/or engine rpm, that together cover all the
operating conditions for the vehicle. Whether a laboratory experiment or a field
experiment, the vibration data acquired for analysis should be forced to be station-
ary when possible.

Some vibrations are produced by excitations that cannot be forced to be station-
ary. Examples include the response of structures to wind loads (see Chap. 39, Part I)
and ocean waves (see Chap. 39, Part II). Even in these cases, however, it is often pos-
sible to identify and select piecewise stationary segments from a long sample record
for data analysis purposes. On the other hand, there are some types of vibration
environments that are inherently nonstationary, for example, a laboratory vibration
test involving a sweep-sine excitation (see Chap. 20) or the vibration environment of
a space vehicle during launch. In these situations, some type of nonstationary data
analysis procedure must be employed.

DATA VALIDATION AND EDITING

Every effort should be made to acquire accurate vibration data, as outlined in
Chap. 15. However, all vibration data collected and stored for later analysis should
be validated and, if necessary, edited to remove anomalies prior to analysis. The
four most common and serious anomalies in acquired vibration data are as fol-
lows:1,2

1. Signal clipping, which is a limiting on one or both sides of the time-history record,
is caused by too high a gain setting on one or more data acquisition instruments.

22.14 CHAPTER TWENTY-TWO
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Severe clipping will reduce the rms value of the data and introduce spurious high-
frequency components.

2. Excessive instrumentation noise, which appears in the data as broad bandwidth
random noise, is caused by too low a gain setting on one or more of the data
acquisition instruments. Severe instrumentation noise will sum with random
vibration data, increasing the rms value of the data and obscuring the spectral
characteristics of the data.

3. Intermittent noise spikes, which appear as one or more sharp spikes in the time-
history record, are usually caused by a faulty connector in the data acquisition
system, but may also occur due to a faulty transmission in telemetry data. Inter-
mittent noise spikes will often severely distort the computed spectral characteris-
tics of the data.

4. Power-line pickup, which appears as a sine wave with a frequency of 60 Hz in
North America and 50 Hz in many other regions of the world, is caused by faulty
shielding and/or grounding of the data acquisition system. Power-line pickup will
cause a spectral component in the data at the power-line frequency and, if severe,
may saturate one or more of the data acquisition instruments.

These and other anomalies can often be detected by a visual inspection of the time-
history record of the measured vibration1,2 or, for data at frequencies above 50 Hz,
by simply listening to the vibration signal with a headset during the data acquisition
or the playback of stored sample records. The hearing system of an experienced
vibration data analyst can be a powerful detector of data anomalies.

In many cases, the anomalies in acquired vibration data cannot be corrected, but
there are important exceptions. For example, power-line pickup can easily be
removed from data by interpolation procedures in the frequency domain, assuming
the power-line pickup did not saturate a data acquisition instrument and the data
do not include an actual periodic component at the power-line frequency.2 Simi-
larly, intermittent noise spikes can often be removed from the data by interpolation
procedures in the time domain.2 For stationary random vibration data with even
the most severe clipping, accurate spectral information can often be recovered by
specialized analysis procedures.1 See the indicated references for details and illus-
trations.

DATA STORAGE

In some cases, the analysis of sample records of vibration data is accomplished
online using real-time data analysis equipment or appropriate online computer pro-
grams, but it is more common to input the sample records into some storage medium
for later analysis.2 In either case, since virtually all modern vibration data analysis is
accomplished using digital techniques, each analog sample record, x(t); 0 ≤ t ≤ T, is
usually converted immediately to a digital sample record, x(n∆t); n = 0, 1, 2, . . . ,
(N − 1), where ∆t is the sampling interval in seconds and N∆t = T. This translation
into a digital format is accomplished using an analog-to-digital converter (see
Chaps. 13 and 27). The storage of digital sample records can then be accomplished
by directly inputting the data into the random access memory (RAM) or hard disk
(HD) on a digital computer or, for long-term storage, a removable storage medium
such as a digital tape recorder, digital video disk (DVD), or compact disk/read-only
memory (CD/ROM).
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ANALOG-TO-DIGITAL CONVERSION

The analog-to-digital (A/D) conversion operation discussed in Chap. 27 introduces
two potential errors that must be carefully suppressed, namely, aliasing errors and
quantization errors.

Aliasing Error. The first potential error arises because at least two sample values
are needed to define one cycle of a vibration signal.This imposes an upper frequency
limit on the digital data given by1,2

fA = 1/(2∆t) (22.24)

where fA is called the Nyquist frequency in Hz. Any signal content in the sample
record above the Nyquist frequency fA will fold back around fA and sum with the sig-
nal content below fA, often causing a severe distortion of the data referred to as an
aliasing error. Aliasing can be suppressed by low-pass filtering the analog signals
from the transducers before the A/D conversion, where the low-pass filter cut-off
frequency is set at fc = 0.5 fA to 0.8 fA, depending on the rolloff rate of the low-pass
filter. See Chap. 13 for details.

Quantization Error. The second potential error arises because a continuous ana-
log signal is being converted into a finite set of numbers.This introduces a round-off
error commonly referred to as the quantization error or digital noise. The round-off
error is established by the A/D conversion word size, which is the number of binary
digits (bits) used to describe each data value. Specifically, a word size of w provides
2w discrete values (see Chap. 13). Assuming the full range of the A/D converter is
used and allowing one bit for sign designation, the peak signal-to-rms noise ratio of
the digitized data in dB is given by1,2

PS/N(dB) = 6(w − 1) + 10.8 (22.25)

The rms signal-to-noise ratio (S/N) for the converter is then given by Eq. (22.25)
minus the peak-to-rms value in dB for the signal being converted. For example, if the
vibration signal were a sine wave, 3 dB would be subtracted from Eq. (22.25) to
obtain the S/N, since the peak-to-rms ratio for a sine wave is 1/�2� = −3 dB. Modern
A/D converters typically employ word sizes of w ≥ 12 bits, corresponding to a
PS/N(dB) ≥ 76.8 dB. The actual PS/N may be somewhat less than indicated by Eq.
(22.25) because of miscellaneous errors in the converter that reduce the effective
word size.1 Nevertheless, if the full range of the converter is used, the digital noise
level will usually be sufficiently low for a proper analysis of the data, and often lower
than the noise level of the transducer and analog instrumentation preceding the A/D
converter. On the other hand, if the full range of the converter is not used, the digi-
tal noise could restrict the dynamic range of the analyzed data.

VIBRATION DATA ANALYSIS PROCEDURES

The algorithms for analyzing vibration data evolve directly from the equations for
the quantitative descriptions presented earlier, but without the limiting operations.
Although usually computed from sample records in the form of a digital time series,
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x(n∆t); n = 0, 1, 2 . . . , all analysis procedures are presented in terms of both analog
equations and digital algorithms for clarity.

THE DISCRETE FOURIER TRANSFORM

Many of the analysis produces for both deterministic and random vibration data
require the computation of the finite Fourier transform defined in Eq. (22.3). In dig-
ital terms where the sample record x(t) = x(n∆t), this finite Fourier transform, often
called a discrete Fourier transform (DFT), is given by Eq. (14.6) as

X(m∆f) = ∆t �
N − 1

n = 0
x(n∆t) exp [−j2πm∆f n∆t]; m = 0, 1, 2, . . . , (N − 1) (22.26)

As discussed in Chap. 14, the DFT can be computed with remarkable efficiency
using a fast Fourier transform (FFT) algorithm. Note that the DFT defines N dis-
crete frequency values for N discrete time values with an inherent frequency resolu-
tion of

∆f = (22.27)

However, the Nyquist frequency defined in Eq. (22.24) occurs at m = (N/2). Hence,
only the first [(N/2) + 1] frequency components represent unique values; the last
[(N/2) − 1] frequency components constitute the redundant values representing the
negative frequency components in Eq. (22.3).

PROCEDURES FOR STATIONARY DETERMINISTIC DATA ANALYSIS

The analog equations and digital algorithms for the analysis of stationary determin-
istic vibration data are summarized in Table 22.2. The hat (^) over the symbol for
each computed parameter in Table 22.2 denotes an estimate as opposed to an exact
value.

1
�
N∆t

TABLE 22.2 Summary of Algorithms for Stationary Deterministic Vibration Data Analysis

Function Analog equation Digital algorithm

Mean value µ̂x = �T

0
x(t)dt µ̂x = �

N − 1

n = 0
x(n∆t)

Mean-square value ψ̂2
x = �T

0
x2(t)dt ψ̂2

x = �
N − 1

n = 0
x2(n∆t)

Variance σ̂2
x = �T

0
[x(t) − µ̂x]2 σ̂2

x = �
N − 1

n = 0
[x(n∆t) − µ̂x]2

Line spectrum* L̂x(f) = |X(f,T)|; f > 0 L̂x(m∆f) = |X(m∆f)|;

m = 1, 2, . . . , � − 1�
*X(f,T) defined in Eq. (22.3), X(m∆f) defined in Eq. (22.26).

N
�
2

2
�
N∆t

2
�
T

1
�
N − 1

1
�
T

1
�
N

1
�
T

1
�
N

1
�
T
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Overall Values. The mean, mean-square, and variance values for stationary deter-
ministic vibrations are estimated from a sample record using Eq. (22.1) with a finite
value for the averaging time T, as shown in Table 22.2. For periodic data, as defined
by Eq. (22.4), the averaging time should ideally cover an integer multiple of periods,
that is,

T = iTP i = 1, 2, 3, . . . (22.28)

where TP is the period of the data. However, since the period of a measured periodic
vibration is probably not known prior to estimating its overall values, it is unlikely in
practice that the averaging time will comply with Eq. (22.28). This leads to a trunca-
tion error that diminishes as the averaging time T increases, and is generally negligi-
ble (less than 3 percent) if T > 10TP. For almost-periodic vibration data, there will
always be a truncation error, but again it will be negligible if T > 10T1 where T1 is the
period of the lowest frequency in the data.

Line Spectra. The line spectrum for a periodic signal, as defined in Eq. (22.5), will
be exact as long as the averaging time complies with Eq. (22.28). Again, compliance
with Eq. (22.28) is unlikely in practice for periodic data and is not possible for
almost-periodic data, so a line spectrum estimate will generally involve a truncation
error. Specifically, rather than a single spectral line at the frequency of each har-
monic component of the periodic vibration, as illustrated in Fig. 22.2, spectral lines
will occur at all frequencies given by

fk = k/T k = 1, 2, 3, . . . (22.29)

where T ≠ iTP; i = 1, 2, 3, . . . . The largest spectral lines will fall at those frequencies
nearest the frequency of the harmonic components of the vibration, but they will
underestimate the magnitudes of the harmonic components. Furthermore, the com-
puted spectral lines will fall off about each harmonic frequency as shown in Fig.
14.10. This allows a second type of error, referred to as the leakage error, where the
magnitude of any one harmonic component can influence the computed values of
neighboring harmonic components. Of course, these errors diminish rapidly as T >>
TP for periodic data, or T >> T1 for almost-periodic data where T1 is the lowest fre-
quency in the data. In addition, sample record-tapering operations (see Chap. 14) or
interpolation algorithms2 can be used to suppress these errors.

PROCEDURES FOR STATIONARY RANDOM DATA ANALYSIS

The analog equations and digital algorithms for the analysis of stationary random
vibration data are summarized in Table 22.3. As before, the hat (^) over the symbol
for each computed function in Table 22.3 denotes an estimate as opposed to an exact
value. Unlike deterministic data, the estimation of parameters for random vibration
data will involve statistical sampling errors of two types, namely, (a) a random error
and (b) a bias (systematic) error. It is convenient to present these errors in normal-
ized terms. Specifically, for an estimate φ̂ of a parameter φ ≠ 0,

Random error: εr[φ̂] = σ[φ̂]/φ (22.30a)

Bias error: εb[φ̂] = (E[φ̂] − φ)/φ (22.30b)
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TABLE 22.3 Summary of Algorithms for Stationary Random Vibration Data Analysis

Function Analog equation* Digital algorithm*

Mean, mean- Same as in Table 22.2 Same as in Table 22.2
square, and 
variance values

Probability 
density

p̂(x) = p̂(x) =

function

Power 
spectrum,

Ŵxx(f) = �
nd

i = 1
|Xi(f,T)|2; f > 0 Ŵxx(m∆f) = �

nd

i = 1
|Xi(m∆f)|2;

via ensemble
averaging m = 1,2, . . . , � − 1�

Power 
spectrum via

Ŵxx(f) = �T

0
x2 (f,Be,T)dt; Ŵxx(m∆f) = �

N − 1

n = 0
x2 (Be,m∆f,n∆t);

bandpass
filtering f > 0 m = 1,2, . . . , � − 1�

Cross-spectrum 
via ensemble

Ŵxy(f) = �
nd

i = 1
X*(f,T)Y(f,T); Ŵxy(m∆f) = �

nd

i = 1
|Xi

*(m∆f)Yi(m∆f)|;

averaging
f > 0 m = 1,2, . . . , � − 1�

Coherence γ̂ 2
xy(f) = ; f > 0 γ̂ 2

xy(m∆f) =
function

m = 1,2, . . . , � − 1�

Frequency Ĥxy(f) = ; f > 0 Ĥxy(m∆f) = ;
response
function

m = 1,2, . . . , � − 1�
Coherent Ŵxx(f) = γ̂xy(f)Ŵyy(f); f > 0 Ŵxx(m∆f) = γ̂ 2

xy(m∆f)Ŵyy(m∆f);
output
power m = 1,2, . . . , � − 1�
function

*X(f,T) defined in Eq. (22.3), X(m∆f ) defined in Eq. (22.26).

N
�
2

N
�
2

Ŵxy(m∆f )
��
Ŵxx(m∆f)

Ŵxy(f )
�̂
Wxx(f)

N
�
2

|Ŵxy(m∆f)|2
���
Ŵxx(m∆f)Ŵyy(m∆f)

|Ŵxy(f)|2
��
Ŵxx(f)Ŵyy(f)

N
�
2

2
�
ndN∆t

2
�
ndT

N
�
2

1
�
BeN∆t

1
�
BeT

N
�
2

2
�
ndN∆t

2
�
ndT

N(x,∆x)
�∆x N

T(x,∆x)
�∆x T
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where σ[φ̂] is the standard deviation of the estimate φ̂ and E[ ] denotes the expected
value. For example, if the random error for an estimate φ̂ is εr[φ̂] = 0.1, this means that
the estimate ̂φ is a random variable with a standard deviation that is 10 percent of the
value of the parameter φ being estimated. If the bias error is εb[φ̂] = −0.1, this means
the estimate φ̂ is systematically 10 percent less than the value of the parameter φ
being estimated; note that the bias error can be either positive or negative. The ran-
dom and bias errors for the various estimates in Table 22.3 are summarized in Table
22.4.
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TABLE 22.4 Statistical Sampling Errors for Stationary Random Vibration Data Analysis

Function Random error Bias error

Mean value εr[µ̂x] = � � None

Mean-square εr[ψ̂x] = � � + � � None
value

Variance εr[σ̂2
x] = None

Probability εr[p̂(x)] ≤ εb[p̂(x)] =
density function

Power spectrum* εr[Ŵxx(f)] = εb[Ŵxx(f)] = − � �
2

Cross-spectrum εr[|Ŵxy(f)|] = εb[Ŵxy(f)] =
magnitude*

Cross-spectrum σr[|θ̂xy(f)|] = †

phase*

Coherence εr[|γ̂ 2
xy(f)|] = εb[γ̂ 2

xy(f)] = 
function*

Frequency εr[|Ĥxy(f)|] = †

response
function 
magnitude*

Frequency σr[|φ̂xy(f )|] = †

response
function 
phase*

Coherent output εr[γ̂xy(f)Ŵxy(f)] = †

power spectrum*

* nd can be replaced by BeTr when frequency-averaging or digital filtering is employed.
† There are several sources of bias errors,1,9 but they usually will be small if the bias error for the power

spectral density estimate is small.

[2 − γ 2
xy(f)]1/2

��
|γxy(f)|�nd�

[1 − γ 2
xy(f)]1/2

��
|γxy(f)|�2nd�

[1 − γ 2
xy(f)]1/2

��
|γxy(f)|�2nd�

[1 − γ 2
xy(f)]2

��γ 2
xy(f)nd

�2�[1 − γ 2
xy(f)]

��
|γxy(f)|�nd�

[1 − γ 2
xy(f)]1/2

��
|γxy(f)|�2nd�

Bed2|Wxy(f)|/df 2

��
24 Wxy(f)

1
��
|γxy(f)|�nd�

Be�
2ζfr

1
�
3

1
�
�nd�

(∆x)2d2[p(x)]/dx2

��
24 p(x)

1
��
�2BT ∆�x p(x)�

1
�
�BT�

µxσx�ψ2
x

�2�
�
�BT�

σ2
x�ψ2
x

1
�
�BT�

σx�µx

1
�
�2BT�
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Overall Values. The mean, mean-square, and variance values for a stationary ran-
dom vibration are estimated from a sample record using Eq. (22.1) with a finite
value for the averaging time T in the same way as for stationary deterministic vibra-
tion data, as shown in Table 22.2. For random data, however, truncation errors are
replaced by the random errors given in Table 22.4, where it is assumed that the data
have a uniform power spectrum over a frequency range with a bandwidth B. Since
vibration data rarely have uniform power spectra, the error formulas for the overall
values provide only coarse approximations for the random errors to be expected.
However, for sample records of adequate duration to provide reasonably accurate
power spectra estimates, to be detailed shortly, the random error in overall value
estimates will generally be negligible.

Probability Density Functions. The probability density function for a stationary
random vibration is estimated from a sample record using Eq. (22.6) with finite val-
ues for the averaging time T and an amplitude window width ∆x, as shown in Table
22.3. In this table, T(x,∆x) is the total time the analog record x(t) falls within the
amplitude window ∆x centered at x, and N(x,∆x) is the total number of values of the
digital record x(n∆t), n = 0, 1, 2, . . . , that fall within the amplitude window ∆x cen-
tered at x. Probability density estimates for random vibration data will involve both
a bias error and a random error, as summarized in Table 22.4.The bias error is a func-
tion of the second derivative of the probability density versus amplitude, which gen-
erally is not known prior to the analysis. However, if the probability density function
is relatively smooth and the analysis is performed with an amplitude window width
of ∆x ≤ 0.1 σx, experience suggests the bias error will typically be less than 5 percent
for all values of x. The random error shown in Table 22.4 is only a bound; the actual
random error depends on the power spectrum of the data,1 but in most cases will be
small if the sample record duration is adequate to provide accurate power spectra
estimates.

Power Spectra. Referring to Table 22.3, there are two basic ways to estimate the
power spectrum from a sample record of a stationary random vibration, as follows:

Ensemble Averaging Procedure. The first approach to the estimation of a
power spectrum, identified as “ensemble averaging” in Table 22.3, is based upon the
definition in Eq. (22.8), and involves the following primary steps:1

1. Given a sample record of total duration Tr = nd N∆t, divide the record into an
ensemble of nd contiguous segments, each of duration T = N∆t.

2. Apply an appropriate tapering operation to each segment of duration T = N∆t to
suppress side-lobe leakage (see Chap. 14).

3. Compute a “raw” power spectrum from each segment of duration T = N∆t, which
will produce N/2 spectral values at positive frequencies with a resolution of ∆f =
1/T = 1/(N∆t).

4. Average the “raw” power spectra values from the nd segments to obtain a power
spectrum estimate with nd averages and a frequency resolution of Be = ∆f.

The averaging operation over the ensemble of nd estimates simulates the expected
value operation in Eq. (22.8), and determines the random error in the estimate given
in Table 22.4. The resolution bandwidth Be = 1/(N∆t) determines the maximum bias
error in the estimate given in Table 22.4, which for structural vibration data typically
occurs at peaks and notches in the power spectrum caused by the resonant response
of the structure at a frequency fr with a damping ratio ζ. See Chap. 14 for details on
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the computation of power spectra for random data, including overlapped processing
and “zoom” transform procedures.

The ensemble averaging procedure can be replaced by a frequency-averaging
procedure, as follows:1

1. Given a sample record of total duration Tr = ndN∆t, compute a raw power spec-
trum over the entire duration of the sample record, which will produce ndN/2
spectral estimates at positive frequencies with a resolution of Be = 1/Tr =
1/(ndN∆t).

2. Divide the frequency range of the spectral components into a collection of con-
tiguous frequency segments, each containing nd spectral components.

3. Average the spectral components in each of the frequency segments to obtain the
power spectrum estimate.

The averaging over nd spectral components in a frequency segment produces the same
random error in Table 22.4 as averaging over nd raw power spectra estimates in the
ensemble-averaging procedure. In addition, for the same values of N and nd, the fre-
quency resolution is the same as for the ensemble-averaging procedure, meaning the
bias error in Table 22.4 is essentially the same. However, the bandwidth for the various
frequency segments need not be a constant. Any desired variation in the bandwidth
can be introduced, including a bandwidth that increases linearly with its center fre-
quency (commonly referred to as a constant percentage frequency resolution).

Bandpass Filtering Procedure. The second approach to the estimation of a
power spectrum, identified as “bandpass filtering” in Table 22.3, uses the definition
given by Eq. (22.9), as illustrated in Fig. 22.5, and involves the following primary
steps:

1. Using digital filters discussed in Chap. 14, pass the sample record of total dura-
tion Tr through a collection of contiguous bandpass filters, each centered at fre-
quency fi with a bandwidth of Bi; i = 1, 2, 3, . . . .

2. Square and average the output of each bandpass filter over the total sample
record duration Tr to obtain the mean-square value of the sample record within
each filter bandwidth Bi.

3. Divide the mean-square value from each bandpass filter by the filter bandwidth
to obtain a power spectrum estimate at the center frequency of each filter.

It can be shown1 that the product of the bandwidth Bi and the averaging time Tr in
the above procedure is equivalent to nd in the ensemble-averaging procedure.
Hence, the bandpass filtering procedure produces the same random and bias errors
shown in Table 22.4 with nd = BiTr and Bi = Be.

Optimum Resolution Bandwidth Selections. A common problem in the esti-
mation of power spectra from sample records of stationary random vibration data is
the selection of an appropriate resolution bandwidth, Be = 1/T = 1/(N∆t). One
approach to this problem is to select that resolution bandwidth that will minimize
the total mean-square error in the estimate given by

ε2 = εr
2 + ε2

b (22.31)

where εr and εb are defined in Eq. (22.30). From Table 22.4, the maximum mean-
square error for power-spectral density estimates of structural vibration data is
approximated by
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ε2[Ŵxx(f)] = + � �
4

(22.32)

where ζ is the damping ratio of the structure at the resonance frequency fr . Taking
the derivative of Eq. (22.32) with respect to Be and equating to zero yields the reso-
lution bandwidth that will minimize the mean-square error as

B0(f) = 2 (22.33)

Note in Eq. (22.33) that the optimum resolution bandwidth B0(f) is a function of the
−1⁄5 power of the sample record duration, Tr, meaning the optimum resolution band-
width is relatively insensitive to the sample record duration. Further, the optimum
resolution bandwidth B0(f) is proportional to the 4⁄5 power of the product ζf. Assum-
ing all structural resonances have approximately the same damping, this means a
constant percentage resolution bandwidth will provide near-optimum results in
terms of a minimum mean-square error in the power-spectrum estimate. For exam-
ple, assume the vibration response of a structure exposed to a random excitation is
measured with a total sample record duration of Tr = 10 sec. Further assume all res-
onant modes of the structure have a damping ratio of ζ = 0.05. From Eq. (22.33), the
optimum resolution bandwidth for the computation of a power spectrum of the
structural vibration is B0(f) = 0.115f 4/5. Hence, if the frequency range of the analysis
is, say, 10 Hz to 1000 Hz, the optimum resolution bandwidth for the analysis
increases from B0 = 0.726 Hz at f = 10 Hz [B0(f) = 0.0726f] to B0 = 28.9 Hz at f = 1000
Hz [B0(f) = 0.0280 f]. It follows that a 1⁄12 octave bandwidth resolution, which is
equivalent to Be(f) = 0.058f, will provide relative good spectral estimates over the
frequency range of interest.

Cross-Spectra. Referring to Table 22.3 and Eq. (22.13), the computational ap-
proach for estimating the cross-spectrum between two sample records x(t) and y(t)
is the same as described for power spectra, except |X(f)|2 is replaced by X*(f)Y(f).
Referring to Table 22.4, the random errors in the magnitude and phase of a cross-
spectrum estimate are heavily dependent on the coherence function, as defined in
Eq. (22.16). Specifically, if the coherence at any frequency is unity, this means the
two sample records, x(t) and y(t), are linearly related and the normalized random
error in the estimate is the same as for a power-spectrum estimate. On the other
hand, if the coherence is zero, then x(t) and y(t) are unrelated and the normalized
random error in any estimate that may be computed is infinite. In practice, the true
value of the coherence is not known, so sample estimates of the coherence, to be dis-
cussed shortly, would be used in the error formula shown in Table 22.4. There are
several sources of bias errors for cross-spectra estimates,1,10 but these bias errors will
generally be minor if the bias errors in the power-spectra estimates for the two sam-
ple records are small and there is no major time delay between the two sample
records.

Other Spectral Functions. Referring to Table 22.3, the frequency response,
coherence, and coherent output power functions defined in Eqs. (22.15) through
(22.17) are estimated from sample records using the appropriate estimates for the
power spectra, cross-spectra, and coherence functions of the data. From Table 22.4,
as for the cross-spectrum, the random errors for estimates of these functions are
heavily dependent on the coherence function. There are several sources of bias
errors in the estimates of these functions,1,10 but the bias errors will generally be

(ζfr)4/5

�
Tr

1/5

Be�
2ζfr

1
�
9

1
�
BeTr
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minor if the bias errors in the power spectra estimates used to compute the functions
is small and there is no major time delay between the two sample records.

PROCEDURES FOR NONSTATIONARY DATA ANALYSIS

As noted earlier, nonstationary vibration data are defined here as those whose basic
properties vary slowly relative to the lowest frequency in the vibration time-history.
Under this definition, the analog equations and digital algorithms for the analysis of
nonstationary vibration data from a single sample record, x(t), are summarized in
Table 22.5. These procedures are essentially the same as summarized in Tables 22.2
and 22.3, except the computations are performed over each of a sequence of short,
contiguous segments of the data where each segment is sufficiently short not to
smooth out the nonstationary characteristics of the data. In other words, given a non-
stationary sample record x(t) of total duration Tr, the record is assumed to be a
sequence of piecewise stationary segments, each covering the interval

iT to (i + 1)T = iN∆t to (i + 1)N∆t i = 0, 1, 2, . . . (22.34)

In many cases, rather than computing the estimates over the contiguous segments
defined in Eq. (22.34), a new segment is initiated every digital increment ∆t such that
each covers the interval

i∆t to (i + N)∆t i = 0, 1, 2, . . . (22.35)

The computation of estimates over the intervals defined in either Eq. (22.34) or
(22.35) is commonly referred to as a running average (also called a moving average).
Whether the averaging is performed over segments given by Eq. (22.34) or (22.35), the
primary problem is to select an appropriate averaging time, T = N∆t, for the estimates.

Overall Average Values for Deterministic Data. Referring to Table 22.5, the
optimum averaging time for the computation of time-varying mean, mean-square,
and variance values for nonstationary deterministic vibration data is bounded as fol-
lows. At the lower end, the averaging time must be at least as long as the period for
periodic data or the period of the lowest frequency component for almost-periodic
data. At the upper end, the averaging time must be sufficiently short to not smooth
out the time-varying properties in the data.This selection is usually accomplished by
trial-and-error procedures, as illustrated shortly.

Overall Average Values for Random Data. The optimum averaging time for the
computation of time-varying mean, mean-square, and variance values for nonsta-
tionary random vibration data is bounded as for nonstationary deterministic data
with one difference, namely, the computations for random data will involve a statis-
tical sampling (random) error, as summarized in Table 22.4. To minimize these ran-
dom errors, an averaging time that is as close as feasible to the upper bound noted
for deterministic data is desirable.Analytical procedures to select an optimum aver-
aging time that will minimize the mean-square error of the resulting time-varying
average value have been formulated,1 but they require a knowledge of the power
spectrum of the data, which is normally not available when overall average values
are being estimated. Hence, it is more common to select an averaging time by trial-
and-error procedures, as follows:
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TABLE 22.5 Summary of Algorithms for Nonstationary Vibration Data Analysis

Function Analog equation Digital algorithm

Mean value µ̂x(t) = �t + T/2

t − T/2
x(τ)dτ µ̂x(k∆t) = �

k + N/2

n = k − N/2
x(n∆t)

Mean-square value ψ̂2
x(t) = �t + T/2

t − T/2
x2(τ)dτ ψ̂2

x(k∆t) = �
k + N/2

n = k − N/2
x2(n∆t)

Variance σ̂2
x(t) = �t + T/2

t − T/2
[x(τ) − µ̂x]2dτ σ̂2

x(k∆t) = �
k + N/2

n = k − N/2
[x(n∆t) − µ̂x]2

Instantaneous line L̂x(f,ti) = |Xi(f,T)|; f > 0; L̂x(m∆f,ti) = |X(m∆f,ti)|;
spectrum via FFT

i = 1,2,3, . . . ; and m = 1,2, . . . , [(N/2) − 1] andfor deterministic
Xi(f,T) computed over ti � T/2 X(m∆f,ti) computed over ti � (Ni∆t/2)data*

Instantaneous Ŵxx(fk,ti) = �ti + Ti/2

ti − Ti/2
x2(fk,Bk,τ)dτ; Ŵxx(fk,ni∆t) = �

ni + (Ni/2)

n = ni − (Ni/2)
x2(fk,Bk,n∆t);

power spectrum via
i = 1,2,3, . . . , and k = 1,2,3, . . . i = 1,2,3, . . . , and k = 1,2,3, . . .bandpass filtering

for random data

* X(f,T) defined in Eq. (22.3), X(m∆f) defined in Eq. (22.26).
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1. Compute a running average for the overall value of interest using either Eq.
(22.34) or (22.35) with an averaging time, T = N∆t, that is too short to smooth out
the variations with time in the overall value being estimated.

2. Continuously recompute the running average with an increasing averaging time
until it is clear that the averaging time is smoothing out variations with time in the
overall value being estimated.

3. Choose that averaging time for the analysis that is just short of the averaging time
that clearly smoothes out variations with time in the overall value being estimated.

This procedure is illustrated in Fig. 22.9, which shows running average estimates for
the time-varying mean-square value of a nonstationary random vibration record
computed with averaging times of T = 0.1, 1.0, and 3.0 sec. Note that the running
average estimates with T = 0.1 sec reveal substantial random variations from one
estimate to the next, indicative of excessive random estimation errors, while the esti-
mates with T = 3 sec reveal a clear smoothing of the nonstationary trend in the data,
indicative of an excessive time interval bias error. The averaging time of T = 1 sec
provides a good compromise between the suppression of random and bias errors in
the data analysis.

Instantaneous Line Spectrum for Deterministic Data. Again referring to Table
22.5, the most common way to analyze the spectral characteristics of nonstationary
deterministic vibration data is to estimate the instantaneous line spectrum defined in
Eq. (22.19) by a sequence of line spectra computed over the time intervals defined in
Eq. (22.34) or (22.35).The resulting collection of line spectra is commonly referred to
as a waterfall plot or a cascade plot. An illustration of a waterfall plot computed from
a sample record of nonstationary deterministic vibration data is shown in Fig. 14.25.

For a spectral analysis using Fourier transforms, the averaging time T = N∆t and
the frequency resolution ∆f = 1/T = 1/(N∆t) are obviously interrelated. It follows that
there must always be a compromise between these two analysis parameters. On the
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FIGURE 22.9 Running mean-square value estimates for nonstationary vibration data.
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one hand, the averaging time must be longer than the period of the lowest instanta-
neous frequency component in the data at any time covered by the sample record.
On the other hand, the frequency resolution must be narrower than the minimum
frequency separation of any two instantaneous frequency components in the data at
any time covered by the sample record. This compromise will generally be achiev-
able for nonstationary deterministic vibration data that would be periodic if they
were stationary. In this case, assuming the maximum period at any time covered by
the sample record is TP, it follows that ∆f < 1/TP if T > TP. However, for almost-
periodic deterministic vibration data, there may be two spectral components that, at
some instant, might be separated by less than ∆f = 1/T where T > T1. See Chap. 14 for
further details on the computation of waterfall plots and other procedures for the
analysis of nonstationary deterministic vibration data.

Instantaneous Power Spectra for Random Data. Referring to Table 22.5, the
instantaneous power spectrum for nonstationary random vibration data requires an
averaging operation to suppress the statistical sampling errors associated with all
random data analysis, as suggested by the expected value operation in Eq. (22.21).
This averaging operation can be accomplished in several ways. For example, the
sample record could be divided into a sequence of contiguous time intervals of
appropriate durations and a power spectrum for the data in each time interval com-
puted using the ensemble-averaging procedure detailed in Table 22.3. However, the
most straightforward way is to compute the instantaneous power spectrum using the
bandpass filtering approach in Fig. 22.5, and computing a running average of the
squared output of each bandpass filter centered at frequency fi with an averaging
time of Ti = Ni∆t; i = 1, 2, 3, . . . , as shown in Table 22.5. For reasons to be discussed
shortly, a fixed averaging time of T = N∆t commonly can be used for all frequency
bands with good results.

A straightforward but time-consuming way to select an appropriate averaging time
for an instantaneous power spectrum estimate with bandpass digital filters is to use the
trial-and-error procedure illustrated for nonstationary mean-square value estimates in
Fig. 22.9, except now the optimum averaging time would have to be determined sepa-
rately for each frequency resolution bandwidth Bi. On the other hand, the problem
can also be approached analytically by determining the averaging time and resolution
bandwidth that will minimize the total mean-square error in the estimate, similar to
the procedure given in Eqs. (22.31) through (22.33) for stationary random vibration
data. In this case, however, there is a third error that must be included in the total
mean-square error, namely, a time resolution bias error caused by smoothing through
the time-varying values of the instantaneous power spectrum. A maximum value for
the normalized time resolution bias error can be approximated by1

εbt[Ŵxx(f)] = � 	
2

(22.36)

where TDi is the half-power point duration about the maximum power-spectral den-
sity value in the ith resolution bandwidth, that is, the time interval between the time
t1 before and the time t2 after that time tm when the maximum value occurs such that
Wxx(fi,t1) = Wxx(fi,t2) = Wxx(fi,tm)/2. Ideally, this time duration should be determined
individually for each frequency resolution bandwidth, but it will often suffice to use
a single value for TD determined from the estimate for the time-varying mean-
square value of the data, as illustrated in Fig. 22.9.Adding Eq. (22.36) with a constant
value TD to Eq. (22.32), taking partial derivatives with respect to T and Be, equating
to zero, and solving the two simultaneous equations, yields the optimum averaging
time and resolution bandwidth as1

2π
�
3TDi

T i
2

�
24
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T0(f) = 1.31 TD
5/6/(ζf)1/6 B0(f) = 1.94(ζf)5/6/T D

1/6 (22.37)

Note in Eq. (22.37) that the averaging time T0(f) is a function of the −1⁄6 power of the
product ζf, while the resolution bandwidth B0(f) is a function of the 5⁄6 power of the
product ζf. Assuming all structural resonances have approximately the same damp-
ing ratio, this means a fixed averaging time and a constant percentage resolution
bandwidth will provide near-optimum results in terms of a minimum mean-square
error in the instantaneous power-spectrum estimate. For example, assume the meas-
ured vibration response of a structure exposed to a nonstationary random excitation
has a time-varying mean-square value similar to that shown in Fig. 22.9, where the
half-power duration is about TD ≈ 2.5 sec. Further assume all resonant modes of the
structure have a damping ratio of ζ = 0.05. From Eq. (22.37), the optimum averaging
time for the computation of an instantaneous power spectrum of the nonstationary
structural vibration is T0(f) = 4.63f −1/6, while the optimum resolution bandwidth is
B0(f) = 0.137f 5/6. Hence, if the frequency range of the analysis is, say, 10 Hz to 1000
Hz, the optimum averaging time for the analysis decreases from T0 = 3.15 sec at 10
Hz to T0 = 1.46 sec at 1000 Hz, while the optimum resolution bandwidth increases
from B0 = 0.933 Hz at f = 10 Hz [B0(f) = 0.0933f] to B0 = 43.3 Hz at f = 1000 Hz 
[B0(f) = 0.0433f]. It follows that an analysis with a fixed averaging time of about T =
2.5 sec and a constant percentage resolution bandwidth of 1⁄12 octave, which is equiv-
alent to Be(f) = 0.058f, will provide relative good instantaneous spectral estimates
over the entire frequency range of interest. See Ref. 1 for details on specialized pro-
cedures for analyzing special cases of nonstationary random vibration data.
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CHAPTER 23
CONCEPTS IN

SHOCK DATA ANALYSIS

Sheldon Rubin

INTRODUCTION

This chapter discusses the interpretation of shock measurements and the reduction
of data to a form adapted to further engineering use. Methods of data reduction also
are discussed.A shock measurement is a trace giving the value of a shock parameter
versus time over the duration of the shock, referred to hereafter as a time-history.
The shock parameter may define a motion (such as displacement, velocity, or accel-
eration) or a load (such as force, pressure, stress, or torque). It is assumed that any
corrections that should be applied to eliminate distortions resulting from the instru-
mentation have been made.The trace may be a pulse or transient. Concepts in vibra-
tion data analysis are discussed in Chap. 22.

Examples of sources of shock to which this discussion applies are earthquakes
(see Chap. 24), free-fall impacts, collisions, explosions, gunfire, projectile impacts,
high-speed fluid entry, aircraft landing and braking loads, and spacecraft launch and
staging loads.

BASIC CONSIDERATIONS

Often, a shock measurement in the form of a time-history of a motion or loading
parameter is not useful directly for engineering purposes. Reduction to a different
form is then necessary, the type of data reduction employed depending upon the
ultimate use of the data.

Comparison of Measured Results with Theoretical Prediction. The correlation
of experimentally determined and theoretically predicted results by comparison of
records of time-histories is difficult. Generally, it is impractical in theoretical analy-
ses to give consideration to all the effects which may influence the experimentally
obtained results. For example, the measured shock often includes the vibrational
response of the structure to which the shock-measuring device is attached. Such
vibration obscures the determination of the shock input for which an applicable the-
ory is being tested; thus, data reduction is useful in minimizing or eliminating the

23.1
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irrelevancies of the measured data to permit ready comparison of theory with cor-
responding aspects of the experiment. It often is impossible to make such compar-
isons on the basis of original time-histories.

Calculation of Structural Response. In the design of equipment to withstand
shock, the required strength of the equipment is indicated by its response to the
shock. The response may be measured in terms of the deflection of a member of the
equipment relative to another member or by the magnitude of the dynamic loads
imposed upon the equipment. The structural response can be calculated from the
time-history by known means; however, certain techniques of data reduction result
in descriptions of the shock that are related directly to structural response.

As a design procedure it is convenient to represent the equipment by an appro-
priate model that is better adapted to analysis (see Chap. 41). A typical model is
shown in Fig. 23.1; it consists of a secondary structure supported by a primary
structure. Each structure is represented as a lumped-parameter single degree-of-
freedom system with the secondary mass m much smaller than the primary mass M
so that the response of the primary mass is unaffected by the response of the sec-
ondary mass. The response of the primary mass to an input shock motion is the
input shock motion to the secondary structure. Depending upon the ultimate
objective of the design work, certain characteristics of the response of the model
must be known:

1. If design of the secondary structure is to be effected, it is necessary to know the
time-history of the motion of the primary structure. Such motion constitutes the
excitation for the secondary structure.

2. In the design of the primary structure, it is necessary to know the deflection of
such structure as a result of the shock, either the time-history or the maximum
value.

By selection of suitable data reduction methods, response information useful in
the design of the equipment is obtained from the original time-history.

23.2 CHAPTER TWENTY-THREE

FIGURE 23.1 Commonly used structural model consisting of a primary and a
secondary structure.

Laboratory Simulation of Measured Shock. Because of the difficulty of using
analytical methods in the design of equipment to withstand shock, it is common
practice to prove the design of equipments by laboratory tests that simulate the
anticipated actual shock conditions. Unless the shock can be defined by one of a
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few simple functions, it is not feasible to reproduce in the laboratory the complete
time-history of the actual shock experienced in service. Instead, the objective is to
synthesize a shock having the characteristics and severity considered significant in
causing damage to equipment. Then, the data reduction method is selected so that
it extracts from the original time-history the parameters that are useful in specify-
ing an appropriate laboratory shock test. Shock testing machines are discussed in
Chap. 26.

EXAMPLES OF SHOCK MOTIONS

Five examples of shock motions are illustrated in Fig. 23.2 to show typical character-
istics and to aid in the comparison of the various techniques of data reduction. The
acceleration impulse and the acceleration step are the classical limiting cases of
shock motions. The half-sine pulse of acceleration, the decaying sinusoidal accelera-
tion, and the complex oscillatory-type motion typify shock motions encountered fre-
quently in practice.

In selecting data reduction methods to be used in a particular circumstance, the
applicable physical conditions must be considered. The original record, usually a
time-history, may indicate any of several physical parameters; e.g., acceleration,
force, velocity, or pressure. Data reduction methods discussed in subsequent sections
of this chapter are applicable to a time-history of any parameter. For purposes of
illustration in the following examples, the primary time-history is that of accelera-
tion; time-histories of velocity and displacement are derived therefrom by integra-
tion. These examples are included to show characteristic features of typical shock
motions and to demonstrate data reduction methods.

ACCELERATION IMPULSE OR STEP VELOCITY

The delta function d(t) is defined mathematically as a function consisting of an infi-
nite ordinate (acceleration) occurring in a vanishingly small interval of abscissa
(time) at time t = 0 such that the area under the curve is unity. An acceleration time-
history of this form is shown diagrammatically in Fig. 23.2A. If the velocity and dis-
placement are zero at time t = 0, the corresponding velocity time-history is the
velocity step and the corresponding displacement time-history is a line of constant
slope, as shown in the figure. The mathematical expressions describing these time
histories are

ü(t) = u̇0d(t) (23.1)

where d(t) = 0 when t ≠ 0, d(t) = ∞ when t = 0, and �∞

−∞
d(t) dt = 1. The acceleration can

be expressed alternatively as

ü(t) = lim
� → 0

u̇0/� [0 < t < �] (23.2)

where ü(t) = 0 when t < 0 and t > �. The corresponding expressions for velocity and
displacement for the initial conditions u = u̇ = 0 when t < 0 are

u̇(t) = u̇0 [t > 0] (23.3)

u(t) = u̇0t [t > 0] (23.4)

CONCEPTS IN SHOCK DATA ANALYSIS 23.3
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ACCELERATION STEP

The unit step function 1(t) is defined mathematically as a function which has a value
of zero at time less than zero (t < 0) and a value of unity at time greater than zero 
(t > 0). The mathematical expression describing the acceleration step is

ü(t) = ü01(t) (23.5)

23.4 CHAPTER TWENTY-THREE

FIGURE 23.2 Five examples of shock motions.
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where 1(t) = 1 for t > 0 and 1(t) = 0 for t < 0. An acceleration time-history of the unit
step function is shown in Fig. 23.2B; the corresponding velocity and displacement
time-histories are also shown for the initial conditions u = u̇ = 0 when t = 0.

u̇(t) = ü0t [t > 0] (23.6)

u(t) = 1⁄2ü0t2 [t > 0] (23.7)

The unit step function is the time integral of the delta function:

1(t) = �t

−∞
d(t) dt [t > 0] (23.8)

HALF-SINE ACCELERATION

A half-sine pulse of acceleration of duration τ is shown in Fig. 23.2C; the correspon-
ding velocity and displacement time-histories also are shown, for the initial condi-
tions u = u̇ = 0 when t = 0. The applicable mathematical expressions are

ü(t) = ü0 sin � � [0 < t < τ]

ü(t) = 0 when t < 0 and t > τ
(23.9)

u̇(t) = �1 − cos  � [0 < t < τ]

u̇(t) = [t > τ]
(23.10)

u(t) = � − sin � [0 < t < τ]

u(t) = � − 1� [t > τ]

(23.11)

This example is typical of a class of shock motions in the form of acceleration pulses
not having infinite slopes.

DECAYING SINUSOIDAL ACCELERATION

A decaying sinusoidal trace of acceleration is shown in Fig. 23.2D; the corresponding
time-histories of velocity and displacement also are shown for the initial conditions
u̇ = −u̇0 and u = 0 when t = 0. The applicable mathematical expression is

ü(t) = e−ζ1ω1t sin (�1� −� ζ�1
2�ω1t + sin−1 (2ζ1�1� −� ζ�1

2�)) [t > 0] (23.12)

where ω1 is the frequency of the vibration and ζ1 is the fraction of critical damping
corresponding to the decrement of the decay. Corresponding expressions for veloc-
ity and displacement are

u̇0ω1�
�1� −� ζ�1

2�

2t
�
τ

ü0τ2

�
π

πt
�
τ

πt
�
τ

ü0τ2

�
π2

2ü0τ�
π

πt
�
τ

ü0τ�
π

πt
�
τ
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u̇(t) = e−ζ1ω1t cos (�1� −� ζ�1
2� ω1t + sin−1 ζ1) [t > 0] (23.13)

where u̇(t) = −u̇0 when t < 0.

u(t) = − e−ζ1ω1t sin (�1� −� ζ�1
2�ω1t) [t > 0] (23.14)

where u(t) = −u̇0t when t < 0.

COMPLEX SHOCK MOTION

The trace shown in Fig. 23.2E is an acceleration time-history representing typical
field data. It cannot be defined by an analytic function. Consequently, the corre-
sponding velocity and displacement time-histories can be obtained only by numeri-
cal, graphical, or analog integration of the acceleration time-history.

CONCEPTS OF DATA REDUCTION

Consideration of the engineering uses of shock measurements indicates two basically
different methods for describing a shock: (1) a description of the shock in terms of its
inherent properties, in the time domain or in the frequency domain; and (2) a descrip-
tion of the shock in terms of the effect on structures when the shock acts as the exci-
tation. The latter is designated reduction to the response domain. The following
sections discuss concepts of data reduction to the frequency and response domains.

Whenever practical, the original time-history should be retained even though the
information included therein is reduced to another form. The purpose of data reduc-
tion is to make the data more useful for some particular application. The reduced
data usually have a more limited range of applicability than the original time-history.
These limitations must be borne in mind if the data are to be applied intelligently.

DATA REDUCTION TO THE FREQUENCY DOMAIN

Any nonperiodic function can be represented as the superposition of sinusoidal
components, each with its characteristic amplitude and phase.1 This superposition is
the Fourier spectrum, as defined in Eq. (23.55). It is analogous to the Fourier com-
ponents of a periodic function (Chap. 22). The Fourier components of a periodic
function occur at discrete frequencies, and the composite function is obtained by
superposition of components. By contrast, the classical Fourier spectrum for a non-
periodic function is a continuous function of frequency, and the composite function
is achieved by integration. The following sections discuss the application of the con-
tinuous Fourier spectrum to describe the shock motions illustrated in Fig. 23.2. A dis-
crete realization of the Fourier spectrum is given by Eq. (22.26).

Acceleration Impulse. Using the definition of the acceleration pulse given by Eq.
(23.2) and substituting this for f(t) in Eq. (23.55),

F(ω) = lim
� → 0

��

0
e−jωt dt (23.15)

u̇0�
�

u̇0��
ω1�1� −� ζ�1

2�

u̇0�
�1� −� ζ�1

2�
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Carrying out the integration,

F(ω) = lim
� → 0

= u̇0 (23.16)

The corresponding amplitude and phase spectra are

F(ω) = u̇0; θ(ω) = 0 (23.17)

These spectra are shown in Fig. 23.3A. The magnitude of the Fourier amplitude spec-
trum is a constant, independent of frequency, equal to the area under the acceleration-
time curve.

u̇0(1 − e−jω�)
��

jω�
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FIGURE 23.3 Fourier amplitude and phase spectra for the shock motions in Fig. 23.2.
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The physical significance of the spec-
tra in Fig. 23.3A is shown in Fig. 23.4,
where the rectangular acceleration pulse
of magnitude u̇0/� and duration t = � is
shown as approximated by superposed
sinusoidal components for several differ-
ent upper limits of frequency for the
components. With the frequency limit 
ωl = 4/�, the pulse has a noticeably
rounded contour formed by the superpo-
sition of all components whose frequen-
cies are less than ωl. These components
tend to add in the time interval 0 < t < �
and, though existing for all time from −∞
to +∞, cancel each other outside this
interval, so that ü approaches zero.When
ωl = 16/�, the pulse is more nearly rect-
angular and ü approaches zero more
rapidly for time t < 0 and t > �. When 
ωl = ∞, the superposition of sinusoidal
components gives ü = u̇0/� for the time
interval of the pulse, and ü = u̇0/2� at t = 0
and t = �. The components cancel com-
pletely for all other times. As � → 0 
and ωl → ∞, the infinitely large number
of superimposed frequency components
gives ü = ∞ at t = 0. The same general
result is obtained when the Fourier com-
ponents of other forms of ü(t) are super-
imposed.

Acceleration Step. The Fourier spec-
trum of the acceleration step does not
exist in the strict sense since the inte-

grand of Eq. (23.55) does not tend to zero as ω → ∞. Using a convergence factor, the
Fourier transform is found by substituting ü(t) for f(t) in Eq. (23.55):

F(ω − ja) = �∞

0
ü0e−j(ω − ja)t dt = (23.18)

Taking the limit as a → 0,

F(ω) = (23.19)

The amplitude and phase spectra are

F(ω) = ; θ(ω) = − (23.20)

These spectra are shown in Fig. 23.3B; the amplitude spectrum decreases as fre-
quency increases, whereas the phase is a constant independent of frequency. Note
that the spectrum of Eq. (23.19) is 1/jω times the spectrum for the impulse given by
Eq. (23.16).

π
�
2

ü0�
ω

ü0�
jω

ü0�
j(ω − ja)
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FIGURE 23.4 Time-histories which result
from the superposition of the Fourier compo-
nents of a rectangular pulse for several different
upper limits of frequency ωl of the components.
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Half-sine Acceleration. Substitution of the half-sine acceleration time-history,
Eq. (23.9), into Eq. (23.57) gives

F(ω) = �τ

0
ü0 sin e−jωt dt (23.21)

Performing the indicated integration gives

F(ω) = (1 + e−jωτ) [ω ≠ π/τ]

F(ω) = − [ω = π/τ]

(23.22)

Applying Eqs. (23.63) and (23.64) to find expressions for the spectra of amplitude
and phase,

F(ω) = � � [ω ≠ π/τ]

F(ω) = [ω = π/τ]

(23.23)

θ(ω) = − + nπ (23.24)

where n is the smallest integer that prevents |θ(ω)| from exceeding 3π/2.The Fourier
spectra of the half-sine pulse of acceleration are plotted in Fig. 23.3C.

Decaying Sinusoidal Acceleration. The application of Eq. (23.57) to the decay-
ing sinusoidal acceleration defined by Eq. (23.12) gives the following expression for
the Fourier spectrum:

F(ω) = u̇0 (23.25)

This can be converted to a spectrum of absolute values by applying Eq. (23.63):

F(ω) = u̇0 � (23.26)

A spectrum of phase angle is obtained from Eq. (23.64):

θ(ω) = −tan−1 (23.27)

These spectra are shown in Fig. 23.3D for a value of ζ = 0.1. The peak in the ampli-
tude spectrum near the frequency ω1 indicates a strong concentration of Fourier
components near the frequency of occurrence of the oscillations in the shock
motion.

Complex Shock. The complex shock motion shown in Fig. 23.3E is the result of
actual measurements; hence, its functional form is unknown. Its Fourier spectrum
must be computed numerically. The Fourier spectrum shown in Fig. 23.3E was eval-
uated digitally using 100 time increments of 0.00015 sec duration. The peaks in the
amplitude spectrum indicate concentrations of sinusoidal components near the fre-
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quencies of various oscillations in the shock motion. The portion of the phase spec-
trum at the high frequencies creates an appearance of discontinuity. If the phase
angle were not returned to zero each time it passes through −360°, as a convenience
in plotting, the curve would be continuous.

Application of the Fourier Spectrum. The Fourier spectrum description of a
shock is useful in linear analysis when the properties of a structure on which the
shock acts are defined as a function of frequency. Such properties are designated by
the general term frequency response function; in shock and vibration technology,
commonly used frequency response functions are mechanical impedance, mobility,
and transmissibility. Such functions are often inappropriately called “transfer func-
tions.” This terminology should be reserved for functions of the Laplace variable
(see Chap. 21).

When a shock acts on a structure, the structure responds in a manner that is
essentially oscillatory. The frequencies that appear predominantly in the response
are (1) the preponderant frequencies of the shock and (2) the natural frequencies of
the structure. The Fourier spectrum of the response R(ω) is the product of the
Fourier spectrum of the shock F(ω) and an appropriate frequency response function
for the structure, as given by Eq. (21.27). For example, if F(ω) and R(ω) are Fourier
spectra of acceleration, the frequency response function is the transmissibility of the
structure, i.e., the ratio of acceleration at the responding station to the acceleration
at the driving station, as a function of frequency. However, if R(ω) is a Fourier spec-
trum of velocity and F(ω) is a Fourier spectrum of force, the frequency response
function is mobility as a function of frequency.

The Fourier spectrum also finds application in evaluating the effect of a load
upon a shock source. A source of shock generally consists of a means of shock exci-
tation and a resilient structure through which the excitation is transmitted to a load.
Consequently, the character of the shock delivered by the resilient structure of the
shock source is influenced by the nature of the load being driven. The characteris-
tics of the source and load may be defined in terms of mechanical impedance or
mobility (see Chap. 10). If the shock motion at the source output is measured with
no load and expressed in terms of its Fourier spectrum, the effect of the load upon
this shock motion can be determined by Eq. (41.1). The resultant motion with the
load attached is described by its Fourier spectrum.

The frequency response function of a structure may be determined by applying a
transient force to the structure and noting the response. This is analogous to the
more commonly used method of applying a sinusoidally varying force whose fre-
quency can be varied over a wide range and noting the sinusoidally varying motion
at the frequency of the force application. In some circumstances, it may be more con-
venient to apply a transient. From the measured time-histories of the force and the
response, the corresponding Fourier spectra can be calculated. The frequency
response function is the quotient of the Fourier spectrum of the force divided by the
Fourier spectrum of the response (see Chap. 21).

DATA REDUCTION TO THE RESPONSE DOMAIN

A structure or physical system has a characteristic response to a particular shock
applied as an excitation to the structure. The magnitudes of the response peaks can
be used to define certain effects of the shock by considering systematically the prop-
erties of the system and relating the peak responses to such properties.This is in con-
trast to the Fourier spectrum description of a shock in the following respects:
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1. Whereas the Fourier spectrum defines the shock in terms of the amplitudes and
phase relations of its frequency components, the response spectrum describes
only the effect of the shock upon a structure in terms of peak responses. This
effect is of considerable significance in the design of equipments and in the spec-
ification of laboratory tests.

2. The time-history of a shock cannot be determined from the knowledge of the peak
responses of a system excited by the shock; i.e., the calculation of peak responses is
an irreversible operation. This contrasts with the Fourier spectrum, where the
Fourier spectrum can be determined from the time-history, and vice versa.

By limiting consideration to the response of a linear, viscously damped single
degree-of-freedom structure with lumped parameters (hereafter referred to as a
simple structure and illustrated in Fig. 23.5), there are only two structural parame-
ters upon which the response depends: (1) the undamped natural frequency and (2)
the fraction of critical damping. With only two parameters involved, it is feasible to
obtain from the shock measurement a systematic presentation of the peak responses
of many simple structures. This process is termed data reduction to the response
domain. This type of reduced data applies directly to a system that responds in a sin-
gle degree-of-freedom; it is useful to some extent by normal-mode superposition to
evaluate the response of a linear system that responds in more than one degree-of-
freedom. The conditions of a particular application determine the magnitude of
errors resulting from superposition.1–4

Shock Response Spectrum. The response of a system to a shock can be ex-
pressed as the time-history of a parameter that describes the motion of the system.
For a simple system, the magnitudes of the response peaks can be summarized as a
function of the natural frequency or natural period of the responding system, at vari-
ous values of the fraction of critical damping. This type of presentation is termed a
shock response spectrum, or simply a response spectrum or a shock spectrum. In the
shock response spectrum, or more specifically the two-dimensional shock response
spectrum, only the maximum value of the response found in a single time-history is
plotted.The three-dimensional shock response spectrum conceptually takes the form
of a surface and shows the distribution of response peaks throughout the time-
history.The two-dimensional spectrum is more common and is discussed in consider-
able detail in the immediately following section. The three-dimensional spectrum is
discussed in less detail in a later section.

CONCEPTS IN SHOCK DATA ANALYSIS 23.11

FIGURE 23.5 Representation of a simple structure used to accomplish the data reduc-
tion of a shock motion to the response domain.
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Parameters for the Shock Response Spectrum. The peak response of the simple
structure may be defined, as a function of natural frequency, in terms of any one of
several parameters that describe its motion. The parameters often are related to
each other by the characteristics of the structure. However, inasmuch as one of the
advantages of the shock response spectrum method of data reduction and presenta-
tion is convenience of application to physical situations, it is advantageous to give
careful consideration in advance to the particular parameter that is best adapted to
the attainment of particular objectives. Referring to the simple structure shown in
Fig. 23.5, the following significant parameters may be determined directly from
measurements on the structure:

1. Absolute displacement x(t) of mass m. This indicates the displacement of the
responding structure with reference to an inertial reference plane, i.e., coordinate
axes fixed in space.

2. Relative displacement δ(t) of mass m. This indicates the displacement of the re-
sponding structure relative to its support, a quantity useful for evaluating the dis-
tortions and strains within the responding structure.

3. Absolute velocity ẋ(t) of mass m. This quantity is useful for determining the
kinetic energy of the structure.

4. Relative velocity ̇δ(t) of mass m. This quantity is useful for determining the stresses
generated within the responding structure due to viscous damping and the maxi-
mum energy dissipated by the responding structure.

5. Absolute acceleration ẍ(t) of mass m. This quantity is useful for determining the
stresses generated within the responding structure due to the combined elastic
and damping reactions of the structure.

The equivalent static acceleration is that steadily applied acceleration, expressed
as a multiple of the acceleration of gravity, which distorts the structure to the maxi-
mum distortion resulting from the action of the shock.5 For the simple structure of
Fig. 23.5, the relative displacement response δ indicates the distortion under the
shock condition. The corresponding distortion under static conditions, in a 1g gravi-
tational field, is

δst = = (23.28)

By analogy, the maximum distortion under the shock condition is

δmax = (23.29)

where Aeq is the equivalent static acceleration in units of gravitational acceleration.
From Eq. (23.29),

Aeq = (23.30)

The maximum relative displacement δmax and the equivalent static acceleration Aeq

are directly proportional.
If the shock is a loading parameter, such as force, pressure, or torque, as a func-

tion of time, the corresponding equivalent static parameter is an equivalent static
force, pressure, or torque, respectively. Since the supporting structure is assumed to
be motionless when a shock loading acts, the relative response motions and absolute
response motions become identical.
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The differential equation of motion for the system shown in Fig. 23.5 is

−ẍ(t) + 2ζωnδ̇(t) + ωn
2δ(t) = 0 (23.31)

where ωn is the undamped natural frequency and ζ is the fraction of critical damp-
ing. When ζ = 0, ẍmax = Aeqg; this follows directly from the relation of Eq. (23.29).
When ζ ≠ 0, the acceleration ẍ experienced by the mass m results from forces trans-
mitted by the spring k and the damper c. Thus, in a damped system, the maximum
acceleration of mass m is not exactly equal to the equivalent static acceleration.
However, in most mechanical structures, the damping is relatively small; therefore,
the equivalent static acceleration and the maximum absolute acceleration often are
interchangeable with negligible error.

Referring to the model in Fig. 23.1, suppose the equivalent static acceleration
Aeq and the maximum absolute acceleration ẍmax are known for the primary struc-
ture. Then Aeq is useful directly for calculating the maximum relative displacement
response of the primary structure. When the natural frequency of the secondary
structure is much higher than the natural frequency of the primary structure, the
maximum acceleration ẍmax of M is useful for calculating the maximum relative
displacement of m with respect to M. The secondary structure then responds in a
“static manner” to the acceleration of the mass M; i.e., the maximum acceleration
of m is approximately equal to that of M. Consequently, both Aeq and ẍmax can be
used for design purposes to calculate equivalent static loads on structures or
equipment.

If the damping in the responding structure is large (ζ > 0.2), the values of Aeq

and ẍmax are significantly different. Because the maximum distortion of primary
structures often is the type of information required and the equivalent static accel-
eration is an expression of this response in terms of an equivalent static loading,
the following discussion is limited to shock response spectra in terms of Aeq.

The response of a simple structure with small damping to oscillatory-type shock
excitation often is substantially sinusoidal at the natural frequency of the structure,
i.e., the envelope of the oscillatory response varies in a relatively slow manner, as
depicted in Fig. 23.6.The maximum relative displacement δmax, the maximum relative
velocity δ̇max, and the maximum absolute acceleration ẍmax are related approximately
as follows:

δ̇max = ωnδmax; ẍmax = ωnδ̇max; ẍmax = ωn
2δmax (23.32)
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FIGURE 23.6 Examples of an oscillatory response time-history r(t) for
which the envelope of the response varies in a relatively slow manner.
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where the sign may be neglected since the positive and negative maxima are
approximately equal. When applicable, these relations may be used to convert
from a spectrum expressed in one parameter to a spectrum expressed in another
parameter.

For idealized shock motions which often are approximated in practice, it is desir-
able to use a dimensionless ratio for the ordinate of the shock response spectrum.
Some of the more common dimensionless ratios are

= ; ; ; ;

where ümax and umax are the maximum acceleration and displacement, respectively, of
the shock motion and ∆u̇ is the velocity change of the shock motion (equal to the
area under the acceleration time-history). Sometimes these ratios are referred to as
shock amplification factors.

Calculation of Shock Response Spectrum. The relative displacement response
of a simple structure (Fig. 23.5) resulting from a shock defined by the acceleration
ü(t) of the support is given by the Duhamel integral 6

δ(t) = �t

0
ü(tv)e−ζωn(t − tv) sin ωd(t − tv) dtv (23.33)

where ωn = (k/m)1/2 is the undamped natural frequency, ζ = c/2mωn is the fraction of
critical damping, and ωd = ωn(1 − ζ2)1/2 is the damped natural frequency. The excita-
tion ü(tv) is defined as a function of the variable of integration tv, and the response
δ(t) is a function of time t. The relative displacement δ and relative velocity δ̇ are
considered to be zero when t = 0. The equivalent static acceleration, defined by Eq.
(23.30), as a function of ωn and ζ is

Aeq(ωn,ζ) = δmax(ωn,ζ) (23.34)

If a shock loading such as the input force F(t) rather than an input motion acts on
the simple structure, the response is

δ(t) = �t

0
F(tv)e−ζωn(t − tv) sin ωd(t − tv) dtv (23.35)

and an equivalent static force is given by

Feq(ωn,ζ) = kδmax(ωn,ζ) = mωn
2δmax(ωn,ζ) (23.36)

The equivalent static force is related to equivalent static acceleration by

Feq(ωn,ζ) = mAeq(ωn,ζ) (23.37)

It is often of interest to determine the maximum relative displacement of the sim-
ple structure in Fig. 23.5 in both a positive and a negative direction. If ü(t) is positive
as shown, positive values of ẍ(t) represent upward acceleration of the mass m. Ini-
tially, the spring is compressed and the positive direction of δ(t) is taken to be posi-
tive as shown. Conversely, negative values of δ(t) represent extension of spring k
from its original position. It is possible that the ultimate use of the reduced data
would require that both extension and compression of spring k be determined. Cor-
respondingly, a positive and a negative sign may be associated with an equivalent
static acceleration Aeq of the support, so that Aeq

+ is an upward acceleration produc-
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ing a positive deflection δ and Aeq
− is a downward acceleration producing a negative

deflection δ.
For some purposes it is desirable to distinguish between the maximum response

which occurs during the time in which the measured shock acts and the maximum
response which occurs during the free vibration existing after the shock has termi-
nated. The shock spectrum based on the former is called a primary shock response
spectrum and that based on the latter is called a residual shock response spectrum.
For instance, the response δ(t) to the half-sine pulse in Fig. 23.2C occurring during
the period (t < τ) is the primary response and the response δ(t) occurring during the
period (t > τ) is the residual response. Reference is made to primary and residual
shock response spectra in the next section on Examples of Shock Response Spectra
and in the section on Relationship between Shock Response Spectrum and Fourier
Spectrum.

Examples of Shock Response Spectra. In this section the shock response spec-
tra are presented for the five acceleration time-histories in Fig. 23.2. These spectra,
shown in Fig. 23.7, are expressed in terms of equivalent static acceleration for the
undamped responding structure, for ζ = 0.1, 0.5, and other selected fractions of criti-
cal damping. Both the maximum positive and the maximum negative responses are
indicated. In addition, a number of relative displacement response time-histories
δ(t) are plotted to show the nature of the responses. A large number of shock
response spectra, based on various response parameters, are given in Chap. 8.

ACCELERATION IMPULSE: The application of Eq. (23.33) to the acceleration
impulse shown in Fig. 23.2A and defined by Eq. (23.1) yields

δ(t) = e−ζωnt sin ωdt [ζ <1] (23.38)

This response is plotted in Fig. 23.7A for ζ = 0, 0.1, and 0.5. The response peaks are
reached at the times t = (cos−1 ζ)/ωd, cos−1 ζ increasing by π for each succeeding peak.
The values of the response at the peaks are

δ(i)
max(ωn,ζ) = exp �− [cos−1 ζ + (i − 1)π]� [0 < cos−1 ζ ≤ π/2]

(23.39)

where i is the number of the peak (i = 1 for the first positive peak, i = 2 for the first
negative peak, etc.).

The largest positive response occurs at the first peak, i.e., when i = 1, and is shown
by the solid dots in Fig. 23.7A. Hence, the equivalent static acceleration in the posi-
tive direction is obtained by substitution of Eq. (23.39) into Eq. (23.34) with i = 1:

Aeq
+ (ωn,ζ) = exp �− cos−1 ζ� (23.40)

The equivalent static acceleration in the negative direction is calculated from the
maximum relative deflection at the second peak, i.e., when i = 2, and is shown by the
hollow dots in Fig. 23.7A:

Aeq
− (ωn,ζ) = exp �− (cos−1 ζ + π)� (23.41)

The resulting shock spectrum is shown in Fig. 23.7A with curves for ζ = 0, 0.1, 0.5,
and 1.0. At any value of damping, a shock response spectrum is a straight line pass-
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FIGURE 23.7 Time-histories of response to shock motions defined in Fig. 23.2 and corresponding shock
response spectra.
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ing through the origin. The peak distortion of the structure δmax is inversely pro-
portional to frequency. Thus, the relative displacement of the mass increases as the
natural frequency decreases, whereas the equivalent static acceleration has an op-
posite trend.

ACCELERATION STEP: The response of a simple structure to the acceleration step
in Fig. 23.2B is found by substituting from Eq. (23.5) in Eq. (23.33) and integrating:

δ(t) = 	1 − cos (ωdt − sin−1 ζ)
 [ζ < 1] (23.42)

The responses δ(t) are shown in Fig. 23.7B for ζ = 0, 0.1, and 0.5. The response over-
shoots the value ü0/ωn

2 and then oscillates about this value as a mean with diminish-
ing amplitude as energy is dissipated by damping.An overshoot to 2ü0/ωn

2 occurs for
zero damping. A response δ = ü0/ωn

2 would result from a steady application of the
acceleration ü0.

The response maxima and minima occur at the times t = iπ/ωd, i = 0 providing the
first minimum and i = 1 the first maximum. The maximum values of the relative dis-
placement response are

δmax(ωn,ζ) = 	1 + exp �− �
 [i odd] (23.43)

The largest positive response occurs at the first maximum, i.e., where i = 1, and is
shown by the solid symbols in Fig. 23.7B. The equivalent static acceleration in the pos-
itive direction is obtained by substitution of Eq. (23.43) into Eq. (23.34) with i = 1:

Aeq
+ (ωn,ζ) = 	1 + exp �− �
 (23.44a)

The greatest negative response is zero; it occurs at t = 0, independent of the value of
damping, as shown by open symbols in Fig. 23.7B. Thus, the equivalent static accel-
eration in the negative direction is

Aeq
− (ωn,ζ) = 0 (23.44b)

Since the equivalent static acceleration is independent of natural frequency, the
shock response spectrum curves shown in Fig. 23.7B are horizontal lines. The sym-
bols shown on the shock response spectra correspond to the responses shown.

The equivalent static acceleration for an undamped simple structure is twice the
value of the acceleration step ü0 /g. As the damping increases, the overshoot in
response decreases; there is no overshoot when the structure is critically damped.

HALF-SINE ACCELERATION: The expressions for the response of the damped sim-
ple structure to the half-sine acceleration of Eq. (23.9) are too involved to have gen-
eral usefulness. For an undamped system, the response δ(t) is

δ(t) = � � [sin ωnt − (ωnτ/π) sin (πt/τ)] [0 < t ≤ τ]

δ(t) = � � 2 cos � � sin 	ωn�t − �
 [t > τ]

(23.45)

For zero damping the residual response is sinusoidal with constant amplitude.
The first maximum in the response of a simple structure with natural frequency less
than π/τ occurs during the residual response; i.e., after t = τ. As a result, the magni-
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tude of each succeeding response peak is the same as that of the first maximum.Thus
the positive and negative shock response spectrum curves are equal for ωn ≤ π/τ.The
dot-dash curve in Fig. 23.7C is an example of the response at a natural frequency of
2π/3τ. The peak positive response is indicated by a solid circle, the peak negative
response by an open circle. The positive and negative shock response spectrum val-
ues derived from this response are shown on the undamped (ζ = 0) shock response
spectrum curves at the right-hand side of Fig. 23.7C, using the same symbols.

At natural frequencies below π/2τ, the shock response spectra for an undamped
system are very nearly linear with a slope ±2ü0τ/πg. In this low-frequency region the
response is essentially impulsive; i.e., the maximum response is approximately the
same as that due to an ideal acceleration impulse (Fig. 23.7A) having a velocity
change u̇0 equal to the area under the half-sine acceleration time-history.

The response at the natural frequency 3π/τ is the dotted curve in Fig. 23.7C. The
displacement and velocity response are both zero at the end of the pulse, and hence
no residual response occurs. The solid and open triangles indicate the peak positive
and negative response, the latter being zero.The corresponding points appear on the
undamped shock response spectrum curves. As shown by the negative undamped
shock response spectrum curve, the residual spectrum goes to zero for all odd multi-
ples of π/τ above 3π/τ.

As the natural frequency increases above 3π/τ, the response attains the character
of relatively low amplitude oscillations occurring with the half-sine pulse shape as a
mean. An example of this type of response is shown by the solid curve for ωn = 8π/τ.
The largest positive response is slightly higher than ü0/ωn

2, and the residual response
occurs at a relatively low level. The solid and open square symbols indicate the
largest positive and negative response.

As the natural frequency becomes extremely high, the response follows the half-
sine shape very closely. In the limit, the natural frequency becomes infinite and the
response approaches the half-sine wave shown in Fig. 23.7C. For natural frequencies
greater than 5π/τ, the response tends to follow the input and the largest response is
within 20 percent of the response due to a static application of the peak input accel-
eration. This portion of the shock response spectrum is sometimes referred to as the
“static region” (see Limiting Values of Shock Response Spectrum below).

The equivalent static acceleration without damping for the positive direction is

Aeq
+ (ωn,0) = � � cos � � 	ωn ≤ 


Aeq
+ (ωn,0) = � � sin � � 	ωn > 


(23.46)

where i is the positive integer which maximizes the value of the sine term while the
argument remains less than π. In the negative direction the peak response always
occurs during the residual response; thus, it is given by the absolute value of the first
of the expressions in Eq. (23.46):

Aeq
− (ωn,0) = � � cos � � (23.47)

Shock response spectra for damped systems are commonly found by use of a dig-
ital computer. Spectra for ζ = 0.1 and 0.5 are shown in Fig. 23.7C.

The response of a damped structure whose natural frequency is less than π/2τ is
essentially impulsive; i.e., the shock response spectra in this frequency region are
substantially identical to the spectra for the acceleration impulse in Fig. 23.7A.
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Except near the zeros in the negative spectrum for an undamped system, damping
reduces the peak response. For the positive spectra, the effect is small in the static
region since the response tends to follow the input for all values of damping. The
greatest effect of damping is seen in the negative spectra because it affects the decay
of response oscillations at the natural frequency of the structure.

DECAYING SINUSOIDAL ACCELERATION: Although analytical expressions for the
response of a simple structure to the decaying sinusoidal acceleration shown in Fig.
23.2D are available, calculation of spectra is impractical without use of a computer.
Figure 23.7D shows spectra for several values of damping in the decaying sinu-
soidal acceleration. In the low-frequency region (ωn < 0.2ω1), the response is essen-
tially impulsive. The area under the acceleration time-history of the decaying
sinusoid is u̇0; hence, the response of a very low-frequency structure is similar to the
response to an acceleration impulse of magnitude u̇0.

When the natural frequency of the responding system approximates the fre-
quency ω1 of the oscillations in the decaying sinusoid, a resonant type of build-up
tends to occur in the response oscillations.The region in the neighborhood of ω1 = ωn

may be termed a quasi-resonant region of the shock response spectrum. Responses
for ζ = 0, 0.1, and 0.5 and ωn = ω1 are shown in Fig. 23.7D. In the absence of damping
in the responding system, the rate of build-up diminishes with time and the ampli-
tude of the response oscillations levels off as the input acceleration decays to very
small values. Small damping in the responding system, e.g., ζ = 0.1, reduces the initial
rate of build-up and causes the response to decay to zero after a maximum is
reached. When damping is as large as ζ = 0.5, no build-up occurs.

COMPLEX SHOCK: The shock spectra for the complex shock of Fig. 23.2E are
shown in Fig. 23.7E. Time-histories of the response of a system with a natural fre-
quency of 1,250 Hz also are shown. The ordinate of the spectrum plot is equivalent
static acceleration, and the abscissa is the natural frequency in hertz. Three pro-
nounced peaks appear in the spectra for zero damping, at approximately 1,250 Hz,
1,900 Hz, and 2,350 Hz. Such peaks indicate a concentration of frequency content in
the shock, similar to the spectra for the decaying sinusoid in Fig. 23.7D. Other peaks
in the shock spectra for an undamped system indicate less significant oscillatory
behavior in the shock. The two lower frequencies at which the pronounced peaks
occur correlate with the peaks in the Fourier spectrum of the same shock, as shown
in Fig. 23.3E. The highest frequency at which a pronounced peak occurs is above the
range for which the Fourier spectrum was calculated.

Because of response limitations of the analysis, the shock spectra do not extend
below 200 Hz. Since the duration of the complex shock of Fig. 23.2E is about 0.016
sec, an impulsive-type response occurs only for natural frequencies well below 200
Hz. As a result, no impulsive region appears in the shock response spectra. There is
no static region of the spectra shown because calculations were not extended to a
sufficiently high frequency.

In general, the equivalent static acceleration Aeq is reduced by additional damp-
ing in the responding structure system except in the region of valleys in the shock
spectra, where damping may increase the magnitude of the spectrum. Positive and
negative spectra tend to be approximately equal in magnitude at any value of damp-
ing; thus, the spectra for a complex oscillatory type of shock may be based on peak
response independent of sign to a good approximation.

Limiting Values of Shock Response Spectrum. The response data provided by
the shock response spectrum sometimes can be abstracted to simplified parameters
that are useful for certain purposes. In general, this cannot be done without definite
information on the ultimate use of the reduced data, particularly the natural fre-
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quencies of the structures upon which the shock acts. Two important cases are dis-
cussed in the following sections.

IMPULSE OR VELOCITY CHANGE: The duration of a shock sometimes is much
smaller than the natural period of a structure upon which it acts. Then the entire
response of the structure is essentially a function of the area under the time-history
of the shock, described in terms of acceleration or a loading parameter such as force,
pressure, or torque. Consequently, the shock has an effect which is equivalent to that
produced by an impulse of infinitesimally short duration, i.e., an ideal impulse.

The shock response spectrum of an ideal impulse is shown in Fig. 23.7A. All
equivalent static acceleration curves are straight lines passing through the origin.
The portion of the spectrum exhibiting such straight-line characteristics is termed
the impulsive region. The shock response spectrum of the half-sine acceleration
pulse has an impulsive region when ωn is less than approximately π/2τ, as shown in
Fig. 23.7C. If the area under a time-history of acceleration or shock loading is not
zero or infinite, an impulsive region exists in the shock response spectrum. The
extent of the region on the natural frequency axis depends on the shape and dura-
tion of the shock.

The portions adjacent to the origin of the positive shock response spectra of an
undamped system for several single pulses of acceleration are shown in Fig. 23.8. To
illustrate the impulsive nature, each spectrum is normalized with respect to the peak
impulsive response ωn ∆u̇/g, where ∆u̇ is the area under the corresponding accelera-
tion time-history. Hence, the spectra indicate an impulsive response where the ordi-
nate is approximately 1. The response to a single pulse of acceleration is impulsive
within a tolerance of 10 percent if ωn < 0.25π/τ; i.e., fn < 0.4τ−1, where fn is the natural
frequency of the responding structure in hertz and τ is the pulse duration in seconds.
This result also applies when the responding system is damped.Thus, it is possible to
reduce the description of a shock pulse to a designated velocity change when the

natural frequency of the responding
structure is less than a specified value.
The magnitude of the velocity change is
the area under the acceleration pulse:

∆u̇ = �τ

0
ü(t) dt (23.48)

PEAK ACCELERATION OR LOADING:
The natural frequency of a structure 
responding to a shock sometimes is suf-
ficiently high that the response oscilla-
tions of the structure at its natural
frequency have a relatively small ampli-
tude. Examples of such responses are
shown in Fig. 23.7C for ωn = 8π/τ and 
ζ = 0, 0.1, 0.5. As a result, the maximum
response of the structure is approxi-
mately equal to the maximum accel-
eration of the shock and is termed
equivalent static response. The magni-
tude of the spectra in such a static region
is determined principally by the peak
value of the shock acceleration or load-
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FIGURE 23.8 Portions adjacent to the origin
of the positive spectra of an undamped system
for several single pulses of acceleration.
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ing. Portions of the positive spectra of an undamped system in the region of high nat-
ural frequencies are shown in Fig. 23.9 for a number of acceleration pulses. Each
spectrum is normalized with respect to the maximum acceleration of the pulse. If the
ordinate is approximately 1, the shock response spectrum curves behave approxi-
mately in a static manner.

The limit of the static region in terms of the natural frequency of the structure is
more a function of the slope of the acceleration time-history than of the duration of
the pulse. Hence, the horizontal axis of the shock response spectra in Fig. 23.9 is
given in terms of the ratio of the rise time τr to the maximum value of the pulse. As
shown in Fig. 23.9, the peak response to a single pulse of acceleration is approxi-
mately equal to the maximum acceleration of the pulse, within a tolerance of 20 per-

cent, if ωn > 2.5π/τr; i.e., fn > 1.25τr
−1,

where fn is the natural frequency of the
responding structure in hertz and τr is
the rise time to the peak value in sec-
onds.The tolerance of 20 percent applies
to an undamped system; for a damped
system, the tolerance is lower, as indi-
cated in Fig. 23.7C.

The concept of the static region also
can be applied to complex shocks. Sup-
pose the shock is oscillatory, as shown in
Fig. 23.2E. If the response to such a shock
is to be nearly static, the response to each
of the succession of pulses that make up
the shock must be nearly static. This is
most significant for pulses of large mag-
nitude because they determine the ordi-
nate of the spectrum in the static region.
Therefore, the shock response spectrum
for a complex shock in the static region is
based upon the pulses of greatest magni-
tude and shortest rise time.

Three-Dimensional Shock Response Spectrum.7 In general, the response of a
structure to a shock is oscillatory and continues for an appreciable number of oscil-
lations. At each oscillation, the response has an interim maximum value that differs,
in general, from the preceding or following maximum value. For example, a typical
time-history of response of a simple system of given natural frequency is shown in
Fig. 23.6; the characteristics of the response may be summarized by the block dia-
gram of Fig. 23.10. The abscissa of Fig. 23.10 is the peak response at the respective
cycles of the oscillation, and the ordinate is the number of cycles at which the peak
response exceeds the indicated value.Thus, the time-history of Fig. 23.6 has 29 cycles
of oscillation at which the peak response of the oscillation exceeds 0.6r0, but only 2
cycles at which the peak response exceeds 2.0r0.

In accordance with the concept of the shock response spectrum, the natural fre-
quency of the responding system is modified by discrete increments and the response
determined at each increment. This leads to a number of time-histories of response
corresponding to Fig. 23.6, one for each natural frequency, and a similar number of
block diagrams corresponding to Fig. 23.10. This group of block diagrams can be
assembled to form a surface that shows pictorially the characteristics of the shock in
terms of the response of a simple system. The axes of the surface are peak response,
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FIGURE 23.9 Portions of the positive shock
response spectra of an undamped system with
high natural frequencies for several single pulses
of acceleration.
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natural frequency of the responding sys-
tem, and number of response cycles ex-
ceeding a given peak value. The block
diagram of Fig. 23.10 is arranged on this
set of axes at A, as shown in Fig. 23.11, at
the appropriate position along the natu-
ral frequency axis. Other corresponding
block diagrams are shown at B. The
three-dimensional shock response spec-
trum is conceptually the surface faired
through the ends of the bars; the inter-
cept of this surface with the planes of the
block diagrams is indicated at C and that
with the maximum response–natural fre-
quency plane at D. Surfaces are obtain-
able for both positive and negative values
of the response, and a separate surface is

obtained for each fraction of critical damping in the responding system.
The two-dimensional shock response spectrum is a special case of the three-

dimensional surface. The former is a plot of the maximum response as a function of
the natural frequency of the responding system; hence, it is a projection on the plane
of the response and natural frequency axes of the maximum height of the surface.
However, the height of the surface never exceeds that at one response cycle. Thus,
the two-dimensional shock response spectrum is the intercept of the surface with a
plane normal to the “number of peaks exceeding” axis at the origin.

The response surface is a useful concept and illustrates a physical condition.
However, it is not well adapted to quantitative analysis because the distances from
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FIGURE 23.10 Bar chart for the response of a
system to a shock excitation.

FIGURE 23.11 Example of a three-dimensional shock response spectrum.
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the surface to the coordinate planes cannot be determined readily. A group of bar
charts, each corresponding to Fig. 23.10, is more useful for quantitative purposes.The
differences in lengths of the bars are discrete increments; this corresponds to the
data reduction method in which the axis of response magnitudes is divided into dis-
crete increments for purposes of counting the number of peaks exceeding each mag-
nitude. In concept, the width of the increment may be considered to approach zero
and the line faired through the ends of the bars represents the smooth intercept with
the surface.

Relationship between Shock Response Spectrum and Fourier Spectrum.
Although the shock response spectrum and the Fourier spectrum are fundamentally
different, there is a partial correlation between them. A direct relationship exists
between a running Fourier spectrum, to be defined subsequently, and the response
of an undamped simple structure. A consequence is a simple relationship between
the Fourier spectrum of absolute values and the peak residual response of an
undamped simple structure.

For the case of zero damping, Eq. (23.33) provides the relative displacement
response

δ(ωn,t) = �t

0
ü(tv) sin ωn(t − tv) dtv (23.49)

A form better suited to our needs here is

δ(ωn,t) = I 	ejωnt �t

0
ü(tv) e−jωntv dtv
 (23.50)

The integral above is seen to be the Fourier spectrum of the portion of ü(t) which lies
in the time interval from zero to t, evaluated at the natural frequency ωn. Such a
time-dependent spectrum can be termed a “running Fourier spectrum” and denoted
by F(ω,t):

F(ω,t) = �t

0
ü(tv)e−jωtv dtv (23.51)

It is assumed that the excitation vanishes for t < 0. The integral in Eq. (23.50) can be
replaced by F(ωn,t); and after taking the imaginary part

δ(ωn,t) = F(ωn,t) sin [ωnt + θ(ωn,t)] (23.52)

where F(ωn,t) and θ(ωn,t) are the magnitude and phase of the running Fourier spec-
trum, corresponding to the definitions in Eqs. (23.63) and (23.64). Equation (23.52)
provides the previously mentioned direct relationship between undamped structural
response and the running Fourier spectrum.

When the running time t exceeds τ, the duration of ü(t), the running Fourier spec-
trum becomes the usual spectrum as given by Eq. (23.57), with τ used in place of the
infinite upper limit of the integral. Consequently, Eq. (23.52) yields the sinusoidal
residual relative displacement for t > τ:

δr(ωn,t) = F(ωn) sin [ωnt + θ(ωn)] (23.53)

The amplitude of this residual deflection and the corresponding equivalent static
acceleration are

1
�
ωn

1
�
ωn

1
�
ωn

1
�
ωn
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(δr)max = F(ωn)

(Aeq)r = = F(ωn)

(23.54)

This result is clearly evident for the Fourier spectrum and undamped shock response
spectrum of the acceleration impulse. The Fourier spectrum is the horizontal line
(independent of frequency) shown in Fig. 23.3A and the shock response spectrum is
the inclined straight line (increasing linearly with frequency) shown in Fig. 23.7A.
Since the impulse exists only at t = 0, the entire response is residual. The undamped
shock spectra in the impulsive region of the half-sine pulse and the decaying sinu-
soidal acceleration, Fig. 23.7C and D, respectively, also are related to the Fourier spec-
tra of these shocks, Fig. 23.3C and D, in a similar manner. This results from the fact
that the maximum response occurs in the residual motion for systems with small nat-
ural frequencies. Another example is the entire negative shock response spectrum
with no damping for the half-sine pulse in Fig. 23.7C, whose values are ωn/g times the
values of the Fourier spectrum in Fig. 23.3C.

METHODS OF DATA REDUCTION

Even though preceding sections of this chapter include several analytic functions as
examples of typical shocks, data reduction in general is applied to measurements of
shock that are not definable by analytic functions. The following sections outline
data reduction methods that are adapted for use with any general type of function,
obtained in digital form in practice. Standard forms for presenting the analysis
results are given in Ref. 8.

FOURIER SPECTRUM

The Fourier spectrum is computed using the discrete Fourier transform (DFT)
defined in Eq. (14.6). The DFT is commonly computed using a fast Fourier trans-
form (FFT) algorithm, as discussed in Chap. 14 (see Ref. 9 for details on FFT com-
putations). Fourier spectra can be computed as a function of either radial frequency
ω in radians/sec or cyclical frequency f in Hz, that is,

F1(f) = �∞

−∞
x(t)e−j2πftdt or F2(ω) = �∞

−∞
x(t)e−jωtdt (23.55)

where the two functions are related by F2(ω) = 2πF1(f).

SHOCK RESPONSE SPECTRUM

The shock response spectrum can be computed by the following techniques: (a)
direct numerical or recursive integration of the Duhamel integral in Eq. (23.33), or
(b) convolution or recursive filtering procedures. One of the most widely used pro-
grams for computing the shock response spectrum is the “ramp invariant method”
detailed in Ref. 10.Any of these computational procedures can be modified to count

ωn�
g

ωn
2(δr)max��

g

1
�
ωn
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the number of response maxima above various discrete increments of maximum
response to obtain the results depicted in Fig. 23.11.

Reed Gage. The shock spectrum may be measured directly by a mechanical
instrument that responds to shock in a manner analogous to the data reduction tech-
niques used to obtain shock spectra from time-histories. The instrument includes a
number of flexible mechanical systems that are considered to respond as single
degree-of-freedom systems; each system has a different natural frequency, and
means are provided to indicate the maximum deflection of each system as a result of
the shock. The instrument often is referred to as a reed gage because the flexible
mechanical systems are small cantilever beams carrying end masses; these have the
appearance of reeds.11

The response parameter indicated by the reed gage is maximum deflection of the
reeds relative to the base of the instrument; generally, this deflection is converted to
equivalent static acceleration by applying the relation of Eq. (23.30). The reed gage
offers a convenience in the indication of a useful quantity immediately and in the
elimination of auxiliary electronic equipment. Also, it has important limitations: (1)
the information is limited to the determination of a shock response spectrum; (2) the
deflection of a reed is inversely proportional to its natural frequency squared,
thereby requiring high equivalent static accelerations to achieve readable records at
high natural frequencies; (3) the means to indicate maximum deflection of the reeds
(styli inscribing on a target surface) tend to introduce an undefined degree of damp-
ing; and (4) size and weight limitations on the reed gage for a particular application
often limit the number of reeds which can be used and the lowest natural frequency
for a reed. In spite of these limitations, the instrument sees continued use and has
provided significant shock response spectra where more elaborate instruments have
failed.
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CHAPTER 24
VIBRATION OF STRUCTURES

INDUCED BY 
GROUND MOTION

W. J. Hall

INTRODUCTION

This chapter discusses typical sources of ground motion that affect buildings, the
effects of ground motion on simple structures, response spectra, design response
spectra (also called design spectra), and design response spectra for inelastic systems.
The importance of these topics is reflected in the fact that such characterizations
normally form the loading input for many aspects of shock-related design, including
seismic design. Selected material are presented which are pertinent to the design of
resisting systems, for example, buildings designed to meet code requirements related
to earthquakes.

GROUND MOTION

SOURCE OF GROUND MOTION

Ground motion may arise from any number of sources such as earthquake excita-
tion1,2 (described in detail in this chapter), high explosive,3 or nuclear device detona-
tions.4 In such cases, the source excitation can lead to major vibration of the primary
structure or facility and its many parts, as well as to transient and permanent trans-
lation and rotation of the ground on which the facility is constructed. Detonations
may result in drag and side-on overpressures, ballistic ejecta, and thermal and radia-
tion effects.

Other sources of ground excitation, although usually not as strong, can be
equally troublesome. For example, the location of a precision machine shop near a
railroad or highway, or of delicate laboratory apparatus in a plant area containing
heavy drop forging machinery or unbalanced rotating machinery are typical of 
situations in which ground-transmitted vibrations may pose serious problems.

24.1
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Another different class of vibrational problems arises from excitation of the pri-
mary structure by other sources, e.g., wind blowing on a bridge, earthquake excita-
tion of a building, or people walking or dancing on a floor in a building. Vibration
of the primary structure in turn can affect secondary elements such as mounted
equipment and people located on a floor (in the case of buildings) and vehicles or
equipment (in the case of bridges).A brief summary of such people-structure inter-
action is given in Ref. 5.

The variables involved in problems of this type are exceedingly numerous and,
with the exception of earthquakes, few specific well-defined measurements are gen-
erally available to serve as a guide in estimating the ground motions that might be
used as computational guidelines in particular cases. A number of acceleration-vs.-
time curves for typical ground motions arising from the operation of machines and
vehicles are shown in Fig. 24.1. Another record arising from a rock quarry blast is
shown in Fig. 24.2. Although the records differ somewhat in their characteristics, all
can be compared directly with similar measurements of earthquakes, and response
computations generally are handled in the same manner.

In most cases, to analyze and evaluate such information one needs to (1) develop
an understanding of the source and nature of the vibration, (2) ascertain the physi-
cal characteristics of the structure or element, (3) develop an approach for modeling
and analysis, (4) carry out the analysis, (5) study the response (with parameter vari-
ations if needed), (6) evaluate the behavior of service and function limit states, and
(7) develop, in light of the results of the analysis, possible courses of corrective
action, if required. Merely changing the mass, stiffness, or damping of the structural
system may or may not lead to acceptable corrective action in the sense of a reduc-
tion in deflections or stresses; careful investigation of the various alternatives is
required to change the response to an acceptable limit. Advice on these matters is
contained in Refs. 3, 6, and 7.

RESPONSE OF SIMPLE STRUCTURES TO GROUND MOTIONS

Four structures of varying size and complexity are shown in Fig. 24.3: (A) a simple,
relatively compact machine anchored to a foundation, (B) a 15-story building, (C) a
40-story building, and (D) an elevated water tank. The dynamic response of each of
the structures shown in Fig. 24.3 can be approximated by representing each as a sim-
ple mechanical oscillator consisting of a single mass supported by a spring and a
damper as shown in Fig. 24.4. The relationship between the undamped angular fre-
quency of vibration ωn = 2πfn, the natural frequency fn , and the period T is defined
in terms of the spring constant k and the mass m:

ωn
2 = (24.1)

fn = = = �� (24.2)

In general, the effect of the damper is to produce damping of free vibrations or
to reduce the amplitude of forced vibrations. The damping force is assumed to be
equal to a damping coefficient c times the velocity u̇ of the mass relative to the
ground. The value of c at which the motion loses its vibratory character in free
vibration is called the critical damping coefficient; for example, cc = 2mωn . The
amount of damping is most conveniently considered in terms of the fraction of crit-
ical damping, ζ [see Eq. (2.12)],

k
�
m

1
�
2π

ωn�
2π

1
�
T

k
�
m
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VIBRATION OF STRUCTURES INDUCED BY GROUND MOTION 24.3

FIGURE 24.1 Ground-acceleration-vs.-time curves for typical machine and vehicle excitations. (A)
Vertical acceleration measured on a concrete floor on sandy loam soil at a point 6 ft from the base of
a drop hammer. (B) Horizontal acceleration 50 ft from drop hammer. The weight of the drop ham-
merhead was approximately 15,000 lb, and the hammer was mounted on three layers of 12- by 12-in.
oak timbers on a large concrete base. (C) Vertical acceleration 6 ft from a railroad track on the well-
maintained right-of-way of a major railroad during passing of luxury-type passenger cars at a speed
of approximately 20 mph. The accelerometer was bolted to a 2- by 2-in. by 21⁄2-in. steel block which
was firmly anchored to the ground. (D) Horizontal acceleration of the ground at 46 ft from the above
railroad track, with a triple diesel-electric power unit passing at a speed of approximately 20 mph. (E)
Horizontal acceleration of the ground 6 ft from the edge of a relatively smooth highway, with a large
tractor and trailer unit passing on the outside lane at approximately 35 mph with a full load of gravel.6
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FIGURE 24.2 Typical quarry blast data. (A) Time-history of velocity
taken by a velocity transducer and recorder. (B) Corresponding
response spectrum computed from the record in (A) using Duhamel’s
integral.3

FIGURE 24.3 Structures subjected to earth-
quake ground motion. (A) A machine anchored
to a foundation. (B) A 15-story building. (C) A
40-story building. (D) An elevated water tank.

FIGURE 24.4 System definition; the dynamic
response of each of the structures shown in 
Fig. 24.3 can be approximated by this simple
mechanical oscillator.
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ζ = = (24.3)

For most practical structures ζ is relatively small, in the range of 0.005 to 0.2 (i.e., 0.5
to 20 percent), and does not appreciably affect the natural period or frequency of
vibration (see Refs. 1b and 8).

EARTHQUAKE GROUND MOTION

Strong-motion earthquake acceleration records with respect to time have been
obtained for a number of earthquakes. Ground motions from other sources of dis-
turbance, such as quarry blasting and nuclear blasting, also are available and show
many of the same characteristics. As an example of the application of such time-
history records, the recorded accelerogram for the El Centro, California, earthquake
of May 18, 1940, in the north-south component of horizontal motion is shown in Fig.
24.5. On the same figure are shown the integration of the ground acceleration a to
give the variation of ground velocity v with time and the integration of velocity to
give the variation of ground displacement d with time. These integrations normally
require baseline corrections of various sorts, and the magnitude of the maximum
displacement may vary depending on how the corrections are made. The maximum
velocity is relatively insensitive to the corrections, however. For this earthquake,
with the integrations shown in Fig. 24.5, the maximum ground acceleration is 0.32g,
the maximum ground velocity is 13.7 in./sec (35 cm/sec), and the maximum ground

c
�
2mωn

c
�
cc
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FIGURE 24.5 El Centro, California, earthquake of May 18, 1940, north-south component. (A)
Record of the ground acceleration. (B) Variation of ground velocity v with time, obtained by integra-
tion of (A). (C) Variation of ground displacement with time, obtained by integration of (B).
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displacement is 8.3 in. (21 cm). These three maximum values are of particular inter-
est because they help to define the response motions of the various structures con-
sidered in Fig. 24.3 most accurately if all three maxima are taken into account.

RESPONSE SPECTRA

ELASTIC SYSTEMS

The response of the simple oscillator shown in Fig. 24.4 to any type of ground motion
can be readily computed as a function of time. A plot of the maximum values of the
response, as a function of frequency or period, is commonly called a response spec-
trum (or shock response spectrum). The response spectrum may be defined as the
graphical relationship of the maximum response of a single degree-of-freedom lin-
ear system to dynamic motions or forces. This concept of a response spectrum is
widely used in the study of the response of simple oscillators to transient distur-
bances; for a number of examples, see Chaps. 8 and 23.

A careful study of Fig. 24.4 will reveal that there are nine quantities represented
there: acceleration, velocity, and displacement of the base, mass, and their relative
values denoted by u. Commonly the maxima of interest are the maximum deforma-
tion of the spring, the maximum spring force, the maximum acceleration of the mass
(which is directly related to the spring force when there is no damping), or a quan-
tity having the dimensions of velocity, which provides a measure of the maximum
energy absorbed in the spring. The details of various forms of response spectra that
can be graphically represented, uses of response spectra, and techniques for com-
puting them are discussed in detail in Refs. 1b, 1c, and 1d. A brief treatment of the
applications of response spectra follows.The maximum values of the response are of
particular interest. These maxima can be stated in terms of the maximum strain in
the spring um = D, the maximum spring force, the maximum acceleration A of the
mass (which is related to the maximum spring force directly when there is no damp-
ing), or a quantity, having the dimensions of velocity, which gives a measure of the
maximum energy absorbed in the spring.This quantity, designated the pseudo veloc-
ity V, is defined in such a way that the energy absorption in the spring is 1⁄2mV 2. The
relations among the maximum relative displacement of the spring D, the pseudo
velocity V, and the pseudo acceleration A, which is a measure of the force in the
spring, are

V = ωD (24.4)

and A = ωV = ω2D (24.5)

The pseudo velocity V is nearly equal to the maximum relative velocity for sys-
tems with moderate or high frequencies but may differ considerably from the maxi-
mum relative velocity for very low frequency systems. The pseudo acceleration A is
exactly equal to the maximum acceleration for systems with no damping and is not
greatly different from the maximum acceleration for systems with moderate
amounts of damping, over the whole range of frequencies from very low to very high
values.

Typical plots of the response of the system to a base excitation, as a function of
period or natural frequency, are called response spectra (also called shock spectra).
Plots for acceleration and for relative displacement, for a system with a moderate
amount of damping and subjected to an input similar to that of Fig. 24.5, can be
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made. This arithmetic plot of maximum response is simple and convenient to use.
Various techniques of computing and plotting spectra may be found in the refer-
ences cited at the end of this chapter, especially in Refs. 1c, 1d, and 6 to 18.

A somewhat more useful plot, which indicates the values for D,V, and A, is shown
in Fig. 24.6. This plot has the virtue that it also indicates more clearly the extreme or
limits of the various parameters defining the response.All parameters are plotted on
a logarithmic scale. Since the frequency is the reciprocal of the period, the logarith-
mic scale for the period would have exactly the same spacing of the points, or in
effect the scale for the period would be turned end for end. The pseudo velocity is
plotted on a vertical scale.Then on diagonal scales along an axis that extends upward
from right to left are plotted values of the displacement, and along an axis that
extends upward from left to right the pseudo acceleration is plotted, in such a way
that any one point defines for a given frequency the displacement D, the pseudo
velocity V, and the pseudo acceleration A. Points are indicated in Fig. 24.6 for the
several structures of Fig. 24.3 plotted at their approximate fundamental frequencies.
Many other formats are used in plotting spectra; for example, u, u̇, ω u, or ẍ vs. time.
Such examples are shown in Ref. 1d.

Much of the work on spectra, described above, has been developed on the basis
of studying strong ground motion categorized by ground motion acceleration level
scaling. Another important aspect of statistical study, described in Ref. 19, concerns
both ground motions and spectra based on magnitude scaling.

In developing spectral relationships, a wide variety of motions have been con-
sidered,20 ranging from simple pulses of displacement, velocity, or acceleration of
the ground, through more complex motions such as those arising from nuclear-
blast detonations, and for a variety of earthquakes as taken from available strong-
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FIGURE 24.6 Smooth response spectrum for typical earthquake.
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motion records. Response spectra for the El Centro earthquake are shown in Fig.
24.7. The spectrum for small amounts of damping is much more jagged than indi-
cated by Fig. 24.6, but for the higher amounts of damping the response curves are
relatively smooth. The scales are chosen in this instance to represent the amplifi-
cations of the response relative to the ground-motion values of displacement,
velocity, or acceleration.

The spectra shown in Fig. 24.7 are typical of response spectra for nearly all types
of ground motion. On the extreme left, corresponding to very low-frequency sys-
tems, the response for all degrees of damping approaches an asymptote correspon-
ding to the value of the maximum ground displacement. A low-frequency system
corresponds to one having a very heavy mass and a very light spring. When the
ground moves relatively rapidly, the mass does not have time to move, and therefore
the maximum strain in the spring is precisely equal to the maximum displacement of
the ground. For a very high-frequency system, the spring is relatively stiff and the
mass very light.Therefore, when the ground moves, the stiff spring forces the mass to
move in the same way the ground moves, and the mass therefore must have the same
acceleration as the ground at every instant. Hence, the force in the spring is that
required to move the mass with the same acceleration as the ground, and the maxi-
mum acceleration of the mass is precisely equal to the maximum acceleration of the
ground. This is shown by the fact that all the lines on the extreme right-hand side of
the figure asymptotically approach the maximum ground-acceleration line.

For intermediate-frequency systems, there is an amplification of the motion. In
general, the amplification factor for displacement is less than that for velocity, which
in turn is less than that for acceleration. Peak amplification factors for the
undamped system (ζ = 0) in Fig. 24.7 are on the order of about 3.5 for displacement,
4.2 for velocity, and 9.5 for acceleration.
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FIGURE 24.7 Response spectra for elastic systems subjected to the El Centro earthquake for var-
ious values of fraction of critical damping ζ.
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The results of similar calculations for other ground motions are quite consistent
with those in Fig. 24.7, even for simple motions. The general nature of the response
spectrum shown in Fig. 24.8 consists of a central region of amplified response and
two limiting regions of response in which for low-frequency systems the response
displacement is equal to the maximum ground displacement, and for high-frequency
systems the response acceleration is equal to the maximum ground acceleration.
Values of the amplification factor reasonable for use in design are presented in the
next sections.

DESIGN RESPONSE SPECTRA

A response spectrum developed to give design coefficients is called a design
response spectrum or a design spectrum. As an example of its use in seismic design,
for any given site, estimates are made of the maximum ground acceleration, maxi-
mum ground velocity, and maximum ground displacement. The lines representing
these values can be drawn on the tripartite logarithmic chart of which Fig. 24.9 is
an example. The heavy lines showing the ground-motion maxima in Fig. 24.9 are
drawn for a maximum ground acceleration a of 1.0g, a velocity v of 48 in./sec (122
cm/sec), and a displacement d of 36 in. (91.5 cm). These data represent motions
more intense than those generally considered for any postulated design earth-
quake hazard. They are, however, approximately in correct proportion for a num-
ber of areas of the world, where earthquakes occur either on firm ground, soft
rock, or competent sediments of various kinds. For relatively soft sediments, the
velocities and displacements might require increases above the values correspon-
ding to the given acceleration as scaled from Fig. 24.9, and for competent rock, the
velocity and displacement values would be expected to be somewhat less. More
detail can be found in Refs. 1c and d. It is not likely that maximum ground veloci-
ties in excess of 4 to 5 ft/sec (1.2 to 1.5 m/sec) are obtainable under any circum-
stances.

On the basis of studies of horizontal and vertical directions of excitation for var-
ious values of damping,1c,10,11 representative amplification factors for the 50th and
84.1th percentile levels of horizontal response are presented in Table 24.1. The
84.1th percentile means that one could expect 84.1 percent of the values to fall at or
below that particular amplification. With these amplification factors and noting
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FIGURE 24.8 Typical tripartite logarithmic plot
of response-spectrum bounds compared with
maximum ground motion.
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points B and A to fall at about 8 and 33 Hz, the spectra may be constructed as
shown in Fig. 24.9 by multiplying the ground maxima values of acceleration, veloc-
ity, and displacement by the appropriate amplification factors. Further information
on, and other approaches to, construction of design spectra may be found in Refs.
1c and d.

TABLE 24.1 Values of Spectrum Amplification Factors1c,11

Damping, percent Amplification factor
of critical

Percentile damping D V A

50th 0.5 2.01 2.59 3.68
2.0 1.63 2.03 2.74
5.0 1.39 1.65 2.12

10.0 1.20 1.37 1.64
84.1th 0.5 3.04 3.84 5.10

2.0 2.42 2.92 3.66
5.0 2.01 2.30 2.71

10.0 1.69 1.84 1.99
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FIGURE 24.9 Basic design spectrum normalized to 1.0g for a value of damping
equal to 2 percent of critical, 84.1th percentile level. The spectrum bound values are
obtained by multiplying the appropriate ground-motion maxima by the correspon-
ding amplification value of Table 24.1.
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RESPONSE SPECTRA FOR INELASTIC SYSTEMS

It is convenient to consider an elastoplastic resistance-displacement relation be-
cause one can draw response spectra for such a relation in generally the same way
as the spectra were drawn for elastic conditions. A simple resistance-displacement
relationship for a spring is shown by the light line in Fig. 24.10A, where the yield
point is indicated, with a curved relationship showing a rise to a maximum resist-
ance and then a decay to a point of maximum useful limit or failure at a displace-
ment um; an equivalent elastoplastic resistance curve is shown by the heavy line. A
similar elastoplastic resistance function, more indicative of seismic response, is
shown in Fig. 24.10B. The ductility factor µ is defined as the ratio between the max-
imum permissible or useful displacement to the yield displacement for the effective
curve in both cases.

The ductility factors for various types of construction depend on the use of the
building, the hazard involved in its failure (assumed acceptable risk), the material
used, the framing or layout of the structure, and above all on the method of con-
struction and the details of fabrication of joints and connections. A discussion of
these topics is given in Refs. 1c, 10, and 11. Figure 24.11 shows acceleration spectra
for elastoplastic systems having 2 percent of critical damping that were subjected to
the El Centro, 1940, earthquake. Here the symbol Dy represents the elastic compo-
nent of the response displacement, but it is not the total displacement. Hence, the
curves also give the elastic component of maximum displacement as well as the max-
imum acceleration A, but they do not give the proper value of maximum pseudo
velocity. This is designated by the use of the V′ for the pseudo velocity drawn in the
figure.The figure is drawn for ductility factors ranging from 1 to 10. A response spec-
trum for total displacement also can be drawn for the same conditions as for Fig.
24.11. It is obtained by multiplying each curve’s ordinates by the value of ductility
factor µ shown on that curve.

VIBRATION OF STRUCTURES INDUCED BY GROUND MOTION 24.11

FIGURE 24.10 (A) Monotonic resistance-displacement relationships for a spring, shown
by the light line; an equivalent elastoplastic resistance curve, shown by the heavy line. (B) A
similar elastoplastic resistance function, more indicative of seismic response.
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The following considerations are useful in using the design spectrum to approxi-
mate inelastic behavior. In the amplified displacement region of the spectra, the left-
hand side, and in the amplified velocity region, at the top, the spectrum remains
unchanged for total displacement and is divided by the ductility factor to obtain yield
displacement or acceleration. The upper right-hand portion sloping down at 45°, or
the amplified acceleration region of the spectrum, is relocated for an elastoplastic
resistance curve, or for any other resistance curve for actual structural materials, by
choosing it at a level which corresponds to the same energy absorption for the elasto-
plastic curve as for an elastic curve for the same period of vibration. The extreme
right-hand portion of the spectrum, where the response is governed by the maximum
ground acceleration, remains at the same acceleration level as for the elastic case and,
therefore, at a corresponding increased total displacement level. The frequencies at
the corners are kept at the same values as in the elastic spectrum. The acceleration
transition region of the response spectrum is now drawn also as a straight-line transi-
tion from the newly located amplified acceleration line and the ground-acceleration
line, using the same frequency points of intersection as in the elastic response spec-
trum. In all cases the inelastic maximum acceleration spectrum and the inelastic max-
imum displacement spectrum differ by the factor µ at the same frequencies. The
design spectrum so obtained is shown in Fig. 24.12.

The solid line DVAA0 in Fig. 24.12 shows the elastic response spectrum. The
heavy circles at the intersections of the various branches show the frequencies which
remain constant in the construction of the inelastic design spectrum.The dashed line
D′V′A′A0 shows the inelastic acceleration, and the line DVA″A0″ shows the inelastic
displacement. These two differ by a constant factor µ for the construction shown,
except that A and A′ differ by the factor �2�µ� −� 1�, since this is the factor that corre-
sponds to constant energy for an elastoplastic resistance.
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FIGURE 24.11 Deformation spectra for elastoplastic systems with 2 percent of critical damping
that were subjected to the El Centro earthquake.
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The modified spectrum to account for inelastic action is an approximation at best
and should be used generally only for relatively small ductility values, for example, 5
or less. Additional information on the development of elastic and inelastic design
response spectra may be found in Refs. 1c, 1d, and 10 to 21.

MULTIPLE DEGREE-OF-FREEDOM SYSTEMS

USE OF RESPONSE SPECTRA

A multiple degree-of-freedom system has as many modes of vibration as the number
of degrees-of-freedom. For example, for the shear beam shown in Fig. 24.13A the fun-
damental mode of lateral oscillation is shown in (B), the second mode in (C), and the

third mode in (D).The number of modes
in this case is 5. In a system that has inde-
pendent (uncoupled) modes (this condi-
tion is often satisfied for buildings) each
mode responds to the base motion as an
independent single degree-of-freedom
system (see Chap. 21). Thus, the modal
responses are nearly independent func-
tions of time. However, the maxima do
not necessarily occur at the same time.

For multiple degree-of-freedom sys-
tems, the concept of the response spec-
trum can also be used in most cases,
although the use of the inelastic response
spectrum is only approximately valid as
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FIGURE 24.12 The normal elastic design spectrum is given by DVAA0. The
modified spectrum (see text for rules for construction) representing approxi-
mately the acceleration or elastic yield displacement for a nonlinear system with
ductility µ is given by D′V′A″A0. The total or maximum displacement for the
nonlinear system is given approximately by DVA″A″0 and is obtained by multi-
plying the modified spectrum by the value µ.

FIGURE 24.13 Modes of vibration of shear
beam.The first three (1, 2, 3) relative mode shapes
are shown by (B), (C), and (D), respectively, for
lateral vibration.
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a design procedure.10,11 For a system with a number of masses at nodes in a flexible
framework, the equation of motion can be written in matrix form as

Mü + Cu̇ + Ku = −M(ÿ){1} (24.6)

in which the last symbol on the right represents a unit column vector. The mass
matrix M is usually diagonal, but in all cases both M and the stiffness matrix K are
symmetrical.When the damping matrix C satisfies certain conditions, the simplest of
which is when it is a linear combination of M and K, then the system has normal
modes of vibration, with modal displacement vectors un. Analysis techniques for
handling multiple degree-of-freedom systems are described in Ref. 8, as well as
Chaps. 21 and 28.

DESIGN

GENERAL CONSIDERATIONS

The design of all types of building structures, as well as the design of building serv-
ices (such as water, gas, fuel pipelines, water and electrical services, sewage, and ver-
tical transportation) must take into account the effects of earthquakes and wind.
(The design of structures for wind loads is covered in Chap. 29, Part II.) Often, these
building services are large, expensive, and affect large numbers of people. Thus, the
design of a building should consider siting studies to minimize seismic effects or, at
very least, identify such effects that must be expected to be accommodated, includ-
ing faulting; all this must be taken into account, in addition to the usual considera-
tions of functional needs, economics, land acquisition and land use restrictions,
transportation, and the availability of labor.

From a design perspective, there must be a rational selection of the applicable
loadings (demand)—preferably, examination of the design for a range of loadings,
load combinations, and load paths, in order to assess margins of safety—as well as
careful attention to modeling and analysis. From the resistance (supply) side, careful
attention must be given to the properties of the materials, to connections of struc-
tural members and items, as well as to the joining process, to foundations and
anchorage, to provisions for controlling ductility and handling transient displace-
ments, to aging considerations, and to the meeting or exceeding applicable code
requirements, specifications, and regulations—all in accordance with appropriate
professional standards of care and good engineering judgment.

In the design of a building to resist earthquake motions, the designer works
within certain constraints, such as the architectural configuration of the building, the
foundation conditions, the nature and extent of the hazard should failure or collapse
occur, the possibility of an earthquake, the possible intensity of earthquakes in the
region, the cost or available capital for construction, and similar factors. There must
be some basis for the selection of the strength and the proportions of the building
and of the various members in it. The required strength depends on factors such as
the intensity of earthquake motions to be expected, the flexibility of the structure,
and the ductility or reserve strength of the structure before damage occurs. Because
of the interrelations among the flexibility and strength of a structure and the forces
generated in it by earthquake motions, the dynamic design procedure must take
these various factors into account. The ideal to be achieved is one involving flexibil-
ity and energy-absorbing capacity which will permit the earthquake displacements
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to take place without generating unduly large forces. To achieve this end, careful
design (with attention to continuity, redundancy, connections, strength, and ductil-
ity), control of the construction procedures, and appropriate inspection practices are
necessary. The attainment of the ductility required to resist earthquake motions
must be emphasized. If the ductility achieved is less than assumed, then in all likeli-
hood the forces in the structure will be higher than estimated.

The above considerations emphasize the importance of a knowledge of structural
behavior and the uncertainties associated therewith, and techniques for assessing and
implementing appropriate margins of safety in design. In earthquake engineering
design, careful consideration must be given to the cyclic behavior that normally
occurs, as opposed to monotonic behavior. Because of this severe cyclic demand on
the structural framing and its connections (irrespective of whether or not they are
made of reinforced or prestressed concrete or of steel), it is important to consider the
strength characteristics of the particular materials and sections as they are joined,
including bracing; it is necessary to ensure that the demand for limited ductility can
be achieved in a satisfactory manner. Earthquakes throughout the world in the 1990s
have shown that certain design assumptions and accompanying fabrication tech-
niques have led to severely decreased strength margins in some cases and/or to seri-
ous structural damage. Life safety is the primary matter of concern, but increasingly
building owners are more conscious of protecting their plant investment and to pre-
serving production operations without major repair and “down time.”Thus the build-
ing owner and engineering designer must come to an agreement as to the level of
protection desired, based on current knowledge and applicable conditions.

Some typical references for structures, lifelines, and transportation systems
(including observation summaries of major earthquakes) are given in Refs. 22 to 36.
In addition to these sources, guidelines and regulations are available from associa-
tions of manufacturers or major suppliers of steel, concrete, prestressed concrete,
masonry, and wood.

EFFECTS OF DESIGN ON BEHAVIOR AND ON ANALYSIS*

A structure designed for very much larger horizontal forces than are ordinarily pre-
scribed will have a shorter period of vibration because of its greater stiffness. The
shorter period results in higher spectral accelerations, so that the stiffer structure
may attract more horizontal force. Thus, a structure designed for too large a force
will not necessarily be safer than a similar structure based on smaller forces. On the
other hand, a design based on too small a force makes the structure more flexible
and will increase the relative deflections of the floors.

In general, yielding occurs first in the story that is weakest compared with the
magnitudes of the shearing forces to be transmitted. In many cases this will be near
the base of the structure. If the system is essentially elastoplastic, the forces trans-
mitted through the yielded story cannot exceed the yield shear for that story. Thus,
the shears, accelerations, and relative deflections of the portion of the structure
above the yielded floor are reduced compared with those for an elastic structure
subjected to the same base motion. Consequently, if a structure is designed for a base
shear which is less than the maximum value computed for an elastic system, the low-
est stories will yield and the shears in the upper stories will be reduced. This means
that, with proper provision for energy absorption in the lower stories, a structure
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will, in general, have adequate strength, provided the design shearing forces for the
upper stories are consistent with the design base shear. Building code recommenda-
tions are intended to provide such a consistent set of shears. However, on all levels
it is wise to have the energy absorption, if possible, distributed more or less uni-
formly throughout the structural system, i.e., not concentrated only in a few loca-
tions; such a procedure places an unusual, and quite often unbalanced, demand on
localized and specific portions of a structure.

A significant inelastic deformation in a structure inhibits the higher modes of
oscillation. Therefore, the major deformation is in the mode in which the inelastic
deformation predominates, which is usually the fundamental mode. The period of
vibration is effectively increased, and in many respects the structure responds almost
as a single degree-of-freedom system corresponding to its entire mass supported by
the story which becomes inelastic.Therefore, the base shear can be computed for the
modified structure, with its fundamental period defining the modified spectrum on
which the design should be based. The fundamental period of the modified structure
generally will not be materially different from that of the original elastic structure in
the case of framed structures. In the case of shear-wall structures it will be longer.

It is partly because of these facts that it is usual in design recommendations to use
the frequency of the fundamental mode, without taking direct account of the higher
modes. However, it is desirable to consider a shearing-force distribution which
accounts for higher-mode excitations of the portion above the plastic region. This is
implied in the UBC, SEAOC (Structural Engineers Association of California), and
National Earthquake Hazard Reduction Program (NEHRP) recommendations by
the provision for lateral-force coefficients which vary with height. The distribution
over the height corresponding to an acceleration varying uniformly from zero at the
base to a maximum at the top takes into account the fact that local accelerations at
higher levels in the structure are greater than those at lower levels, because of the
larger motions at the higher elevations, and accounts quite well for the moments and
shears in the structure.

Many of the modern seismic analysis approaches are described in detail in Ref. 8.
Prevailing analysis techniques employ design spectra or motion time-histories as
input. Many benchmarked computer software packages are available that permit
fairly sophisticated structural analyses to be undertaken, especially when the mod-
eling is carefully studied and well understood and the input is relatively well defined.
Typical of these powerful programs are ETABS, SAP 80, ABAQUS, ANSYS, and
ADINA. In the field of soil-structure interaction, computer software packages
include SASSI, CLASSI, FLUSH, and SHAKE. Since all such programs are con-
stantly being upgraded, it is necessary to keep abreast of such modifications.

In the case of intense earthquakes, the ensuing ground motions can be of the
sharp, impulsive type. When such ground motions impinge on a structure, the effect
is literally that of a shock. Moreover, the impulses can be multiple in nature, so that
if the timing between impulses is quite short, the rapid shock-type motion transmit-
ted to building frames may be intensified. Such an intense form of impulsive input
has been observed in earthquakes in Northridge, California and in Kobe, Japan; it
may lead to serious structural problems in buildings if such input has not been prop-
erly considered in the building’s design and construction. Although not explicitly
spelled out in present building codes, it is expected that a strength check would be
carried out to see that the gross building shearing resistance is sufficient (including
normal margins of strength) to resist an intense shock characterized by the zero
period acceleration (ZPA); in addition, structural members must have ample tensile
and compressive resistance so that they are able to resist a vertical or oblique type
of shock. This intense type of input subsequently leads to the vibratory type of
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motion that is commonly treated in seismic analysis. Fortunately, in most earth-
quakes, the initial motions that lead to building vibration are small enough to be
accommodated by the resistance of most buildings.

The strength checks, referred to above, have nothing to do with the principal
modes of vibration of a building as determined by analysis; in reality, the structure or
piece of equipment is initially at rest; then it must respond in a quasi-rigid mode to
these intense impulses. In that sense the entire mass of the building is active in pro-
viding resistance. The forces under those circumstances can be quite high. However,
in some cases where the design calls for the lateral and vertical forces to be carried
in just a few frames or members, the imparted forces can be immense. Fortunately,
most buildings have ample resistance to accommodate such effects—especially if the
base anchorage and connections are well constructed for a requisite set of structural
frames. Similarly, most equipment that is properly mounted has more than enough
margin of strength to accommodate the imposed intense dynamic loading. Analysis
of earthquake damage, with regard to difficulties with connections and details in
both steel and concrete structures, suggests that adequate attention is required in the
design of details, in the quality of their fabrication, and in the quality of their con-
struction in order to assure their adequate performance. In this respect, Ref. 36 con-
cerned with the quality of construction is pertinent.

As a result of the damage experienced in the 1989 Loma Prieta earthquake, the
1994 Northridge earthquake, and the 1995 Kobe earthquake, numerous studies have
been made of the performance of structural building forms and elements, especially
connections. At the same time, building codes are rapidly undergoing major revi-
sions. One of the largest R&D studies was conducted on steel moment-frame build-
ings,37 which is leading to changes in the provisions of the AISC steel provisions.38 At
the same time, many revisions have occurred in the provisions for reinforced con-
crete39 and, in the case of prestressed concrete structures, one needs to keep abreast
of the developments reported in the 1999 and later PCI Journal. Engineers and
architects involved in the design of steel and concrete structures are advised to keep
abreast of the latest technical literature in the fields sited.

DESIGN LATERAL FORCES

Although the complete response of multiple degree-of-freedom systems subjected
to earthquake motions can be calculated (see Chap. 28, Part II), it should not be
inferred that it is generally necessary to make such calculations as a routine matter
in the design of multistory buildings. There are a great many uncertainties about the
input motions and about the structural characteristics that can affect the computa-
tions. Moreover, it is not generally necessary or desirable to design tall structures to
remain completely elastic under severe earthquake motions, and considerations of
inelastic behavior lead to further discrepancies between the results of routine meth-
ods of calculation and the actual response of structures.

The Uniform Building Code25 recommendations, with proper attention to the R
and S values, for earthquake lateral forces are, in general, consistent with the forces
and displacements determined by more elaborate procedures. A structure designed
according to these recommendations will remain elastic, or nearly so, under moder-
ate earthquakes of frequent occurrence, but it must be able to yield locally without
serious consequences if it is to resist a major earthquake. Thus, design for the
required ductility is an important consideration.

The ductility of the material itself is not a direct indication of the ductility of the
structure. Laboratory and field tests, and data from operational use of military
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weapons tests indicate that structures of practical configurations having frames of duc-
tile materials, or a combination of ductile materials, exhibit ductility factors µ ranging
from a minimum of 3 to a maximum of 8. For a quality constructed structure with well-
distributed energy absorption, a ductility factor of about 3 to 5, or even less, for critical
facilities is a reasonable criterion when designed to IBC earthquake requirements.

As a result of the numerous earthquakes that have occurred throughout the
world and of the resulting loss of life and property, seismic design codes have under-
gone major revisions to reflect a modern understanding of dynamic design, based on
research, and to reflect lessons learned in recent damaging earthquakes. Building
codes, with their applicable provisions, are undergoing rapid and major revisions. A
major advance has occurred with the issuance of an international building code.40

Other relatively recent structural provision changes are reflected in the Uniform
Building Code25 and the NEHRP,27 with much of the latter material subsumed into
the International Building Code.40 At the same time, major changes in other codes
and specifications are being made, as described earlier herein.

The complexity of any such modern code requires that the provisions, along with
the commentary, be studied in detail prior to performing detailed computations. In
general the seismic coefficients have been increased in comparison to earlier values,
and the approaches being adopted attempt to take more factors into consideration
in arriving at the design base shear.

SEISMIC FORCES FOR OVERTURNING MOMENT 

AND SHEAR DISTRIBUTION

In general when modal analysis techniques are not used, in a complex structure or
in one having several degrees-of-freedom, it is necessary to have a method of
defining the seismic design forces at each mass point of the structure in order to be
able to compute the shears and moments to be used for design throughout the
structure. The method described in the SEAOC, UBC, IBC, or NEHRP provisions
is preferable for this purpose. Obviously, the proper foundations, and adequate
anchorage, are required.

DAMPING

The damping in structural elements and components and in supports and founda-
tions of the structure is a function of the intensity of motion and of the stress or
strain levels introduced within the structural component or structure, and is highly
dependent on the makeup of the structure and the energy absorption mechanisms
within it. For further details see Refs. 1 and 12.

GRAVITY LOADS

The effect of gravity loads, when the structures deform laterally by a considerable
amount, can be of importance. In accordance with the general recommendations of
most extant codes, the effects of gravity loads are to be added directly to the primary
and earthquake effects. In general, in computing the effect of gravity loads, one must
take into account the actual deflection of the structure, not the deflection corre-
sponding to reduced seismic coefficients.
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VERTICAL AND HORIZONTAL EXCITATION

Usually the stresses or strains at a particular point are affected primarily by the
earthquake motions in only one direction; the second direction produces little if any
influence. However, this is not always the case and is certainly not so for a simple
square building supported on four columns where the stress in a corner column is in
general affected equally by the earthquakes in the two horizontal directions, and
may be affected also by the vertical earthquake forces. Since the ground moves in all
three directions in an earthquake, and even tilts and rotates, consideration of the
combined effects of all these motions must be included in the design. When the
response in the various directions may be considered to be uncoupled, consideration
can be given separately to the various components of base motion, and individual
response spectra can be determined for each component of direction or of transient
base displacement. Calculations have been made for the elastic response spectra in
all directions for a number of earthquakes. Studies indicate that the vertical
response spectrum is about two-thirds the horizontal response spectrum, and it is
recommended that a ratio of 2:3 for vertical response compared with horizontal
response be used in design. If there are systems or elements that are particularly sen-
sitive to vertical shock, these will require special design consideration.

For parts of structures or components that are affected by motions in various
directions in general, the response may be computed by either one of two methods.
The first method involves computing the response for each of the directions inde-
pendently and then taking the square root of the sums of the squares of the result-
ing stresses in the particular direction at a particular point as a combined response.
Alternatively, one can use the second method of taking the seismic forces corre-
sponding to 100 percent of the motion in one direction combined with 40 percent of
the motions in the other two orthogonal directions, adding the absolute values of the
effects of these to obtain the maximum resultant forces in a member or at a point in
a particular direction, and computing the stresses corresponding to the combined
effects. In general, this alternative method is slightly conservative. A related matter
that merits attention in design is the provision for relative motion of parts or ele-
ments having supports at different locations.

UNSYMMETRICAL STRUCTURES IN TORSION

In design, consideration should be given to the effects of torsion on unsymmetrical
structures and even on symmetrical structures where torsions may arise from off-
center loads and accidentally because of various reasons, including lack of homo-
geneity of structures or the presence of the wave motions developed in earthquakes.
Most modern codes provide values of computed and accidental eccentricity to use in
design, but in the event that analyses indicate values greater than those recom-
mended by the code, the analytical values should be used in design.

SIMULATION TESTING

Simulation testing to create various vibration environments has been employed for
years in connection with the development of equipment that must withstand vibra-
tion. Over the years such testing of small components has been accomplished on
shake tables (see Chap. 25) and involves many different types of input functions. As
a result of improved development of electromechanical rams, large shake tables
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have been developed which can simulate the excitation that may be experienced in
a building, structural component, or items of equipment, from various types of
ground motions, including earthquake motions, nuclear ground motions, nuclear
blast motions induced in the ground or in a structure, and traffic vibrations. Some of
these devices are able to provide simultaneous motion in three orthogonal direc-
tions. For larger items analysis may be the tool available for assessment of adequacy,
coupled with physical observation during transport.

The matter of simulation testing became of great importance with regard to
earthquake excitation because of the development of nuclear power plants and the
necessity for components in these plants to remain operational for purposes of safe
shutdown and containment, and also because of the observed loss of lifeline items in
recent earthquakes as, for example, communication and control equipment, utilities,
and fire-fighting systems. It is common to require computation of floor response
spectra21 and to provide for equipment qualification.

EQUIPMENT AND LIFELINES

No introduction to earthquake engineering would be complete without mention of
the importance of adequate design of equipment in buildings and essential building
services, including, for example, communications, water, sewage and transportation
systems, gas and liquid fuel pipelines, and other critical facilities. Design approaches
for these important elements of constructed facilities, as well as sources of energy,
have received major design attention in recent years as the importance of maintain-
ing their integrity has become increasingly apparent.

It has always been obvious that the seismic design of equipment was important,
but the focus on nuclear power has pushed this technology to the forefront. Many
standards and documents are devoted to the design of such equipment.As a starting
point for gaining information about such matters, the reader is referred to Refs. 34
through 36 and 41 through 43. Design considerations for critical industrial facilities,
meaning those industries that require less attention than a nuclear power plant, but
more than a routine building, are discussed in Ref. 44.
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CHAPTER 25
VIBRATION TESTING

MACHINES

David O. Smallwood

INTRODUCTION

This chapter describes some of the more common types of vibration testing
machines which are used for developmental, simulation, production, or exploratory
vibration tests for the purpose of studying the effects of vibration or of evaluating
physical properties of materials or structures. A summary of the prominent features
of each machine is given. These features should be kept in mind when selecting a
vibration testing machine for a specific application. Digital control systems for
vibration testing are described in Chap. 27. Applications of vibration testing
machines are described in other chapters.

A vibration testing machine (sometimes called a shake table or shaker and
referred to here as a vibration machine) is distinguished from a vibration exciter in
that it is complete with a mounting table which includes provisions for bolting the
test article directly to it. A vibration exciter, also called a vibration generator, may be
part of a vibration machine or it may be a device suitable for transmitting a vibratory
force to a structure.A constant-displacement vibration machine attempts to maintain
constant-displacement amplitude while the frequency is varied. Similarly, a constant-
acceleration vibration machine attempts to maintain a constant-acceleration ampli-
tude as the frequency is changed.

The load of a vibration machine includes the item under test and the supporting
structures that are not normally a part of the vibration machine. In the case of equip-
ment mounted on a vibration table, the load is the material supported by the table.
In the case of objects separately supported, the load includes the test item and all fix-
tures partaking of the vibration.The load is frequently expressed as the weight of the
material. The test load refers specifically to the item under test exclusive of support-
ing fixtures. A dead-weight load is a rigid load with rigid attachments. For nonrigid
loads the reaction of the load on the vibration machine is a function of frequency.
The vector force exerted by the load, per unit of acceleration amplitude expressed in
units of gravity of the driven point at any given frequency, is the effective load for
that frequency. The term load capacity, which is descriptive of the performance of
reaction and direct-drive types of mechanical vibration machines, is the maximum
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dead-weight load that can be vibrated at the maximum acceleration rating of the
vibration machine.The load couple for a dead-weight load is equal to the product of
the force exerted on the load and the distance of the center-of-mass from the line-of-
action of the force or from some arbitrarily selected location (such as a table sur-
face).The static and dynamic load couples are generally different for nonrigid loads.

The term force capacity, which is descriptive of the performance of electrody-
namic shakers, is defined as the maximum rated force generated by the machine.
This force is usually specified, for continuous rating, as the maximum vector ampli-
tude of a sinusoid that can be generated throughout a usable frequency range.A cor-
responding maximum rated acceleration, in units of gravity, can be calculated as the
quotient of the force capacity divided by the total weight of the coil table assembly
and the attached dead-weight loads. The effective force exerted by the load is equal
to the effective load multiplied by the (dimensionless) ratio g, which represents the
number of units of gravity acceleration of the driven point [see Eq. (25.1)].

DIRECT-DRIVE MECHANICAL VIBRATION

MACHINES

The direct-drive vibration machine consists of a rotating eccentric or cam driving a
positive linkage connection which forces a displacement between the base and table
of the machine. Except for the bearing clearances and strain in the load-carrying
members, the machine tends to develop a displacement between the base and the
table which is independent of the forces exerted by the load against the table. If the
base is held in a fixed position, the table tends to generate a vibratory displacement
of constant amplitude, independent of the operating rpm. Figure 25.1 shows the
direct-drive mechanical machine in its simplest forms. This type of machine is some-
times referred to as a brute force machine since it will develop any force necessary to
produce the table motion corresponding to the crank or cam offset, short of break-
ing the load-carrying members or stalling the driving shaft.

The simplest direct-drive mechanical vibration machine is driven by a constant-
speed motor in conjunction with a belt-driven speed changer and a frequency-
indicating tachometer. Table displacement is set during shutoff and is assumed to
hold during operation. An auxiliary motor driving a cam may be included to pro-
vide frequency cycling between adjustable limits. More elaborate systems employ
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FIGURE 25.1 Elementary direct-drive mechanical vibration machines:
(A) Eccentric and connecting link. (B) Scotch yoke. (C) Cam and follower.
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a direct-coupled variable-speed motor with electronic speed control, as well as
amplitude adjustment from a control station. Machines have been developed
which provide rectilinear, circular, and three-dimensional table movements—the
latter giving complete, independent adjustment of magnitude and phase in the
three directions.

Many types of mechanisms are used to adjust the displacement amplitude and
frequency of the mounting table. For example, the displacement amplitude can be
adjusted by means of eccentric cams and cylinders.

PROMINENT FEATURES

� Low operating frequencies and large displacements can be provided conveniently.
� Theoretically, the machine maintains constant displacement regardless of the

mechanical impedance of the table-mounted test item within force and frequency
limits of the machine. However, in practice, the departure from this theoretical
ideal is considerable, due to the elastic deformation of the load-carrying members
with change in output force.The output force changes in proportion to the square
of the operating frequency and in proportion to the increased displacement
resulting therefrom. Because the load-carrying members cannot be made infi-
nitely stiff, the machines do not hold constant displacement with increasing fre-
quency with a bare table. This characteristic is further emphasized with heavy
table mass loads.Accordingly, some of the larger-capacity machines which operate
up to 60 Hz include automatic adjustment of the crank offset as a function of oper-
ating frequency in order to hold displacement more nearly constant throughout
the full operating range of frequency.

� The machine must be designed to provide a stiff connection between the ground
or floor support and the table. If accelerations greater than 1g are contemplated,
the vibratory forces generated between the table and ground will be greater than
the weight of the test item. Hence, all mass loads within the rating of the machine
can be directly attached to the table without recourse to external supports.

� The allowable range of operating frequencies is small in order to remain within
bearing load ratings.Therefore, the direct-drive mechanical vibration machine can
be designed to have all mechanical resonances removed from the operating fre-
quency range. In addition, relatively heavy tables can be used in comparison to the
weight of the test item. Consequently, misplacing the center-of-gravity of the test
item relative to the table center for vibration normal to the table surface and the
generation of moments by the test item (due to internal resonances) usually have
less influence on the table motions for this type of machine than would other
types which are designed for wide operational frequency bands.

� Simultaneous rectilinear motion normal to the table surface and parallel to the
table surface in two principal directions is practical to achieve. It may be obtained
with complete independent control of magnitude and phase in each of the three
directions.

� Displacement of the table is generated directly by a positive drive rather than by
a generated force acting on the mechanical impedance of the table and load. Con-
sequently, impact loads in the bearings, due to the necessary presence of some
bearing clearance, result in the generation of relatively high impact forces which
are rich in harmonics. Accordingly, although the waveform of displacement might
be tolerated as such, the waveform of acceleration is normally sufficiently dis-
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torted to preclude recognition of the fundamental driven frequency, when dis-
played on a time base.

REACTION-TYPE MECHANICAL VIBRATION

MACHINE

A vibration machine using a rotating shaft carrying a mass whose center-of-mass is
displaced from the center-of-rotation of the shaft for the generation of vibration, is
called a reaction-type vibration machine. The product of the mass and the distance of
its center from the axis of rotation is referred to as the mass unbalance, the rotating
unbalance, or simply the unbalance. The force resulting from the rotation of this
unbalance is referred to as the unbalance force.

The reaction-type vibration machine consists of at least one rotating-mass unbal-
ance directly attached to the vibrating table. The table and rotating unbalance are
suspended from a base or frame by soft springs which isolate most of the vibration
forces from the supporting base and floor. The rotating unbalance generates an
oscillating force which drives the table.The unbalance consists of a weight on an arm
which is relatively long by comparison to the desired table displacement.The unbal-
ance force is transmitted through bearings directly to the table mass, causing a vibra-
tory motion without reaction of the force against the base. A vibration machine
employing this principle is referred to as a reaction machine since the reaction to the
unbalance force is supplied by the table itself rather than through a connection to
the floor or ground.

CIRCULAR-MOTION MACHINE

The reaction-type machine, in its simplest form, uses a single rotating-mass un-
balance which produces a force directed along the line connecting the center-of-
rotation and the center-of-mass of the displaced mass. Referred to stationary
coordinates, this force appears normal to the axis of rotation of the driven shaft,
rotating about this axis at the rotational speed of the shaft. The transmission of this
force to the vibration-machine table causes the table to execute a circular motion in
a plane normal to the axis of the rotating shaft.

Figure 25.2 shows, schematically, a machine employing a single unbalance pro-
ducing circular motion in the plane of the vibration-table surface. The unbalance is
driven at various rotational speeds, causing the table and test item to execute circu-
lar motion at various frequencies. The counterbalance weight is adjusted to equal
the test item mass moment calculated from d, the plane of the unbalance force,
thereby keeping the combined center-of-gravity coincident with the generated
force. Keeping the generated force acting through the combined center-of-gravity of
the spring-mounted assembly eliminates vibratory moments which, in turn, would
generate unwanted rotary motions in addition to the motion parallel to the test
mounting surface. The vibration isolator supports the vibrating parts with minimum
transmission of the vibration to the supporting floor.

For a fixed amount of unbalance and for the case of the table and test item acting
as a rigid mass, the displacement of motion tends to remain constant if there are no
resonances in or near the operating frequency range. If balance force must remain
constant, requiring the amount of unbalance to change with shaft speed.
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RECTILINEAR-MOTION MACHINE

Rectilinear motion rather than circular motion can be generated by means of a
reciprocating mass. Rectilinear motions can be produced with a single rotating
unbalance by constraining the table to move in one direction.

Two Rotating Unbalances. The most common rectilinear reaction-type vibra-
tion machine consists of two rotating unbalances, turning in opposite directions
and phased so that the unbalance forces add in the desired direction and cancel in
other directions. Figure 25.3 shows schematically how rectilinear motion perpen-
dicular and parallel to the vibration table is generated. The effective generated
force from the two rotating unbalances is midway between the two axes of rota-
tion and is normal to a line connecting the two. In the case of motion perpendicu-
lar to the surface of the table, simply locating the center-of-gravity of the test item
over the center of the table gives a proper load orientation. Tables are designed so
that the resultant force always passes through this point. This results in collinear-
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FIGURE 25.2 Circular-motion reaction-type mechanical vibration 
machine.

FIGURE 25.3 Rectilinear-motion reaction-type mechanical
vibration machine using two rotating unbalances: (A) Vibra-
tion perpendicular to table surface. (B) Vibration parallel to
table surface.
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ity of generated forces and inertia forces, thereby avoiding the generation of
moments which would otherwise rock the table. In the case of motion parallel to
the table surface, no simple orientation of the test item will achieve collinearity of
the generated force and inertia force of the table and test item. Various methods
are used to make the generated force pass through the combined center-of-gravity
of the table and test item.

Three Rotating Unbalances. If a machine is desired which can be adjusted to
give vibratory motion either normal to the plane of the table or parallel to the plane
of the table, a minimum of three rotating unbalances is required. Inspection of Fig.
25.4 shows how rotating the two smaller mass unbalances relative to the single larger
unbalance results in the addition of forces in any desired direction, with cancellation
of forces and force couples at 90° to this direction. Although parallel shafts are usu-
ally used as illustrated, occasionally the three unbalances may be mounted on
collinear shafts, the two smaller unbalances being placed on either side of the single
larger unbalance to conserve space and to eliminate the bending moments and shear
forces imposed on the structure connecting the individual shafts.

PROMINENT FEATURES

� The forces generated by the rotating unbalances are transmitted directly to the
table without dependence upon a reactionary force against a heavy base or rigid
ground connection.

� Because the length of the arm which supports the unbalance mass can be large,
relative to reasonable bearing clearances and the generation of a force which does
not reverse its direction relative to the rotating unbalance arm, the generated
waveform of motion imparted to the vibration machine table is superior to that
attainable in the direct-drive type of vibration machine.

� The generated vibratory force can be made to pass through the combined center-
of-gravity of the table and test item in both the normal and parallel directions rel-
ative to the table surface, thereby minimizing vibratory moments giving rise to
table rocking modes.

� The attainable rpm and load ratings on bearings currently limit performance to a
frequency of approximately 60 Hz and a generated force of 300,000 lb (1.3 MN),
respectively, although in special cases frequencies up to 120 Hz and higher can be
obtained for smaller machines.

25.6 CHAPTER TWENTY-FIVE

FIGURE 25.4 Adjustment of direction of generated force in a reaction-type
mechanical vibration exciter: (A) Vertical force. (B) Horizontal force.
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ELECTRODYNAMIC VIBRATION MACHINE

GENERAL DESCRIPTION

A complete electrodynamic vibration test system is comprised of an electrodynamic
vibration machine, electrical power equipment which drives the vibration machine,
and electrical controls and vibration monitoring equipment.

The electrodynamic vibration machine derives its name from the method of force
generation. The force which causes motion of the table is produced electrodynami-
cally by the interaction between a current flow in the armature coil and the intense
magnetic dc field which passes through the coil, as illustrated in Fig. 25.5. The table
is structurally attached to a force-generating coil which is concentrically located
(with radial clearances) in the annular air gap of the dc magnet circuit.The assembly
of the armature coil and the table is usually referred to as the driver coil-table or
armature. The magnetic circuit is made from soft iron which also forms the body of
the vibration machine. The body is magnetically energized, usually by two field coils
as shown in Fig. 25.5C, generating a radially directed field in the air gap, which is per-
pendicular to the direction of current flow in the armature coil. Alternatively, in
small shakers, the magnetic field is generated by permanent magnets.The generated
force in the armature coil is in the direction of the axis of the coil, perpendicular to
the table surface. The direction of the force is also perpendicular to the armature-
current direction and to the air-gap field direction.

The table and armature coil assembly is supported by elastic means from the
machine body, permitting rectilinear motion of the table perpendicular to its surface,
corresponding in direction to the axis of the armature coil. Motion of the table in all
other directions is resisted by stiff restraints.Table motion results when an ac current
passes through the armature coil.The body of the machine is usually supported by a
base with a trunnion shaft centerline passing horizontally through the center-of-
gravity of the body assembly, permitting the body to be rotated about its center,
thereby giving a vertical or horizontal orientation to the machine table. The base
usually includes an elastic support of the body, providing vibration isolation between
the body and the supporting floor.

Where a very small magnetic field is required at the vibration machine table due
to the effect of the magnetic field on the item under test, degaussing may be pro-
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FIGURE 25.5 Three main magnet circuit configurations.
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vided. Magnetic fields of 5 to 30 gauss several inches above the table are normal for
modern machines with double-ended, center air-gap magnet designs, Fig. 25.5C,
without degaussing accessories; in contrast, with degaussing accessories, magnetic
fields of 2 to 5 gauss can be achieved.

Because of copper and iron losses in the electrodynamic unit, provision must be
made to carry off the dissipated heat. Cooling by convection air currents, com-
pressed air, or a motor-driven blower is used and, in some cases, a recirculating fluid
is used in conjunction with a heat exchanger. Fluid cooling is particularly useful
under extremes of hot or cold environments or altitude conditions where little air
pressure is available.

MAGNET CIRCUIT CONFIGURATIONS

Three magnet circuit configurations that are used in the electrodynamic machines
are shown schematically in Fig. 25.5. In Fig. 25.5A, the table and driver coil are
located at opposite ends of the magnet circuit.The advantage of this configuration is
that the location of the annular air gap, the region of high magnetic leakage flux, is
spaced from the table and the body itself acts as a magnetic shield, resulting in lower
magnetic flux density at the table. The disadvantage lies in the loss of rigidity in the
connecting structure between the driver coil and the table because of its length.This
configuration is usually cooled by convection air currents or by forced air from a
motor-driven blower.

In Fig. 25.5B, the table is connected directly to the driver coil. This eliminates the
length of structure passing through the magnet structure, thereby increasing the
rigidity of the driver coil-table assembly and allowing higher operating frequencies.
The leakage magnetic field in the vicinity of the table is high in this configuration. It
is therefore difficult, if not impossible, to reduce the leakage to acceptable levels
without adding extra length to the driver coil assembly, elevating the table above the
air gap. The configuration in Fig. 25.5C has a complete magnet circuit above and
below the annular air gap, thereby reducing the external leakage magnetic field to a
minimum. This configuration also increases the total magnetic flux in the air gap by
a factor of almost 2 for the same diameter driver coil, giving greater force generation
and a more symmetrical magnetic flux density along the axis of the coil. Hence a
more uniform force generation results when the driver coil is moved axially
throughout its total stroke. All high-efficiency and high-performance electrody-
namic vibration machines use the configuration shown in Fig. 25.5C. Configurations
B and C of Fig. 25.5 may use air cooling throughout or an air-cooled driver coil and
liquid-cooled field coil(s) or total liquid cooling.

The main magnetic circuit uses dc field coils for generating the high-intensity
magnetic flux in the annular gap in all of the larger and most of the smaller units. Per-
manent magnet excitation is used in small portable units and in some general-
purpose units up to about 500-lb (2-kN) generated force.

INDUCTION-TYPE SHAKER

In the induction-type electrodynamic shaker, a stator coil is fixed in the shaker body
(see Fig. 25.6). The varying current from the power source is passed trough the sta-
tor coil. The armature coil is a cylinder of conductive material (usually aluminum).
The stator current is coupled inductively to the armature coil. The stator coil (many
turns) acts as the primary in a transformer.The armature coil (a single shorted turn)
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acts as the secondary in the transformer. The stator current inductively generates a
current in the single turn shorted armature coil. In Fig. 25.6, the dc magnetic field is
across the paper, the armature current is into the paper, and the generated force is
vertical. The advantages are a rugged armature design, and an armature that is elec-
trically isolated from the rest of the shaker. The disadvantages include a decrease in
performance at low frequencies due to inductive coupling losses and a slight prob-
lem cooling the armature. Because the induction losses are a function of scale, this
design is usually found in the larger electrodynamic shakers.

FREQUENCY RESPONSE CONSIDERATIONS

Testing procedures which call for sinusoidal motion (see Chap. 20) of a vibration-
machine table can be performed even though the frequency response curve of the
electrodynamic vibration machine is far from flat. For a test at a fixed frequency, the
driving voltage is adjusted until the table motion is equal in amplitude to that
required by the test specifications. If the procedure calls for cycling the frequency
between two frequency limits while keeping a constant displacement or acceleration,
a control system or servo control adjusts the driver-coil voltage as required to main-
tain the desired vibration machine table motion independent of the frequency of
operation. This control system provides a correction at any frequency of operation
within the testing frequency limits, but it can correct for only one operating frequency
at any instant of time.The closer the frequency response is to the desired variation in
acceleration with frequency, the smaller the corrections in driver-coil voltage will be
from the control system—thereby improving the attainable accuracy of the control.

Similarly for test procedures that call for a random vibration source, the auto-
spectrum of the source must be adjusted, because of test requirements and the fre-
quency response of the test system. A shaker with a more constant response will
allow for a greater range of spectral values than can be controlled.

Test procedures can also call for the reproduction of a transient.This test method
is called waveform control or waveform reproduction. For this test method, the fre-
quency response function between the power amplifier input voltage and the con-
trol accelerometer is measured with the test item in place. This information is used
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FIGURE 25.6 Cross section in the vicinity of the armature of an
induction-type shaker.
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to construct an input voltage time-history that will reproduce the desired test time-
history at the control point.

In the past, analog control systems were used, but with the advent of relatively
inexpensive computers, digital control is now almost exclusively used. Digital vibra-
tion control systems are discussed in Chap. 27.

CHARACTERIZATION OF AN ELECTRODYNAMIC SHAKER AS A

TWO-PORT NETWORK

An electrodynamic shaker can be modeled as a mixed electrical/mechanical two-
port network1,2 (see Chap. 10). This characterization can give good insight about the
performance capabilities of a shaker and/or a shaker/power supply combination. In
matrix form, this characterization can be written as

� � = � � � � (25.1)

where E = the voltage required to drive the shaker
I = the current required to drive the shaker

A = the acceleration observed at the shaker/load interface
F = the force at the shaker/load interface

All the variables are complex functions of frequency as described in Chap. 22. The
terms in the impedance matrix are frequency response functions defined as

Z11 = �F = 0
Z12 = �I = 0

Z21 = �F = 0
Z22 = �I = 0

(25.2)

Two of the terms are easily measured. Z11 is the unloaded table (no mechanical load
on the shaker) electrical impedance of the shaker, and Z21 is the ratio of the
unloaded acceleration to input current of the shaker. Z22 is the accelerance (ratio of
acceleration to force) looking into the shaker with the shaker electrical input open
(zero current, but with the field on). Z12 is the ratio of voltage, generated at the open
electrical shaker input, to a driving force applied at the armature. The direct meas-
urement of Z12 and Z22 would require that an external force be applied to the shaker
and the resulting open circuit voltage and acceleration be measured, a difficult feat
in practice. But the terms in the impedance matrix can be measured experimentally
by performing experiments with two or more known loads attached to the shaker.
The general case is given by a system of equations for n measured load conditions,
where the subscripts indicate the different loading conditions.

� � = � � � � (25.3)

Each test requires the measurement of the input voltage and current and the output
acceleration and force. If the test item is a rigid mass, the force can be estimated from
F = ma. In short hand, Eq. (25.3) will be written as

E = ZI (25.4)
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The impedance matrix can then be found using a Moore-Penrose pseudoinverse3

Z = EI−1 (25.5)

If the number of test conditions is greater than two, the solution is in a least-squares
sense. This assumes the inverse exists. The equation is typically solved at a finite set
of discrete frequencies using techniques described in Chap. 22. Other forms of the
impedance matrix can be defined which give frequency response functions that may
be more useful in a particular application. The admittance matrix is defined as

� � = � � � � (25.6)

The transmission matrix is defined as

� � = � � � � (25.7)

The reciprocal transmission matrix is defined as

� � = � � � � (25.8)

These matrices are all related by the equations

Y = Z−1 R = T−1

T = � � (25.9)

R = � �
For example, for a sine test, the voltage and current required for a particular load
acceleration are easily determined by substituting

F = ZmA (25.10)

into Eq. (25.7) to give

� � = A� � � � (25.11)

Zm is the driving point (the interface at the shaker) free effective mass4 (the ratio of
force to acceleration) of the load (test item and fixtures). The free effective mass is
related to the mechanical impedance, Z (the ratio of force to velocity), defined in
Chap. 10, by the relationship, Zm = jωZ. In general, Zm is a frequency response func-
tion. If the load and fixtures are a rigid mass, Zm is a constant equal to the mass of the
test item and fixtures.

Similarly, for a given shaker power supply with known characteristics (the maxi-
mum output voltage and current capability), the shaker performance capabilities
(the achievable acceleration) for a given load are easily determined from Eq.
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(25.11). The maximum acceleration that can be achieved for a given voltage limit is 

AElim = |Elim/(T11 + T12Zm)|

The maximum acceleration that can be achieved for a given current limit is

AIlim = |Ilim/(T21 + T22Zm)|

The maximum acceleration that can be reached before either limit is reached is the
smaller of these two numbers.

Amax = min(AElim, AIlim)

The development is easily generalized for random and transient testing using the
techniques in Chap. 22.The development can be generalized for the multiple shaker
system driving a single test item.5

A useful review of electrodynamic shakers is given in Ref. 6.

SYSTEM RATINGS

The electrodynamic vibration machine system is rated: (1) in terms of the peak value
of the sinusoidal generated force for sinusoidal vibration testing and (2) in terms of
the rms and instantaneous values of the maximum force generated under random
vibration testing. In order to determine the acceleration rating of the system with a
test load on the vibration table, the weight of the test load, assumed to be effective
at all frequencies, must be known and used in the following expressions:

� =
(25.12)

�rms =

where � = a/g, a dimensionless number expressing the ratio of the peak sinu-
soidal acceleration to the acceleration due to gravity (i.e., the peak
sinuosidal acceleration in g’s)

�rms = arms/g, a number expressing the ratio of the rms value of random
acceleration to the acceleration due to gravity

WL = weight of load
WT = equivalent weight of table driver-coil assembly and associated mov-

ing parts
F = rated peak value of sinusoidal generated force

Frms = rated rms value of random generated force

The force rating of an electrodynamic vibration machine is the value of force
which can be used to calculate attainable accelerations for any rigid-mass table load
equal to (or greater than) the driver coil weight. It is not necessarily the force gener-
ated by the driver coil. These two forces are identical only if the operating frequen-

Frms��
WL + WT

F
��
WL + WT
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cies are sufficiently below the axial resonance frequency of the armature assembly,
where it acts as a rigid body. As the axial resonance frequency is approached, a
mechanical magnification of the force generated electrically by the driver coil results.
The design of the driving power supply takes into account the possible reduction in
driver-coil current at frequencies approaching the armature axial resonance fre-
quency, since full current in this range cannot be used without exceeding the rated
value of transmitted force at the table, possibly causing structural damage.

In those cases where the test load dissipates energy mechanically, the system per-
formance should be analyzed for each specific load since normal ratings are based
on a dead-mass, nondissipative type of load. This consideration is particularly signif-
icant in resonance-type fatigue tests at high stress levels.

PROMINENT FEATURES

� A wide range of operating frequencies is possible, with a properly selected electric
power source, from 0 to above 30,000 Hz. Small, special-purpose machines have
been made with the first axial/resonance mode above 26,000 Hz, giving inherently
a resonance-free, flat response to 10,000 Hz.

� Frequency and displacement amplitude are easily controlled by adjusting the
power-supply frequency and voltage.

� Pure sinusoidal table motion can be generated at all frequencies and amplitudes.
Inherently, the table acceleration is the result of a generated force proportional to
the driving current. If the electric power supply generates pure sinusoidal voltages
and currents, the waveform of the acceleration of the table will be sinusoidal, and
background noise will not be present. Operation with table acceleration wave-
form distortion of less than 10 percent through a displacement range of 10,000-to-
1 is common, even in the largest machines. Velocity and displacement waveforms
obtained by the single and double integration of acceleration, respectively, will
have even less distortion.

� Random vibration, as well as sinusoidal vibration, or a combination of both, can
be generated by supplying an appropriate input voltage.

� A unit occupying a small volume, and powered from a remote source, can be used
to generate small vibratory forces.A properly designed unit adds little mass at the
point of attachment and can have high mobility without mechanical damping.

� Leakage magnetic flux is present around the main magnet circuit. This leakage
flux can be minimized by proper design and the use of degaussing coil techniques.

SPECIFICATIONS

Design Factors

Force Output. The maximum vector-force output for sinusoidal excitation shall
be given for continuous duty and may additionally be given for intermittent duty.
When nonsinusoidal motions are involved, the force may additionally be given in
terms of an rms value together with a maximum instantaneous value. The latter
value is especially significant when a random type of excitation is required.

In some cases of wide-frequency-band operation of the electrodynamic vibration
machine, the upper frequencies are sufficiently near the axial mechanical resonance
frequency of the coil-table assembly to provide some amplification of the generated
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force. Most system designs account for this magnification, when present, by reducing
the capacity of the electrical driving power accordingly.

The peak values of the input electrical signal, for random excitation, may extend
to indefinitely large values. In order that the armature coil voltage and generated
force may be limited to reasonable values, the peak values of the excitation are
clipped so that no maxima shall exceed a given multiple of the rms value. The mag-
nitude of the maximum clipped output shall be specified preferably as a multiple of
the rms value. If adjustments are possible, the range of magnitudes shall be given.

Weight of Vibrating Assembly. The weight of the vibration coil-table assembly
shall be given. It shall include all parts which move with the table and an appropri-
ate percentage of the weight of those parts connecting the moving and stationary
parts giving an effective over-all weight.

Vibration Direction. The directions of vibration shall be specified with respect
to the surface of the vibration table and with respect to the horizontal or vertical
direction. Provisions for changing the direction of vibration shall be stated.

Unsupported Load. The maximum allowable weight of a load not requiring
external supports shall be given for horizontal and vertical orientations of the vibra-
tion table. This load in no way relates to dyanmic performance but is a design limi-
tation, the basis of which may be stated by the manufacturer.

Static Moments and Torques. Static moments and torques may be applied to
the coil-table assembly of a vibration machine by the tightening of bolts and by the
overhang of the center-of-gravity of an unsupported load during horizontal vibra-
tion. The maximum permissible values of these moments and torques shall be spec-
ified. These loads in no way relate to the dynamic performance but are design
limitations, the basis for which may be stated by the manufacturer.

Total Excursion Limit. The maximum table motion between mechanical stops
shall be given together with the maximum vibrational excursion permissible with no
load and with maximum load supportable by the table.

Acceleration Limit. The maximum allowable table acceleration shall be given.
(These large maxima may be involved in the drive of resonant systems.)

Stiffness of Coil-Table Assembly Suspension System
AXIAL STIFFNESS: The stiffness of the suspension system for axial deflections of

the coil-table assembly shall be given in terms of pounds per inch of deflection. The
natural frequency of the unloaded vibrating assembly may also be given. Provisions,
if any, to adjust the table position to compensate for position changes caused by dif-
ferent loads shall be described.

SUSPENSION RESONANCES: Resonances of the suspension system should be
described together with means for their adjustment where applicable.

Axial Coil-Table Resonance. The resonance frequency of the lowest axial
mode of vibration of the coil-table assembly shall be given for no load and for an
added dead-weight load equal to 1 and to 3 times the coil-table assembly weight. If
this resonance frequency is not obvious from measurements of the table amplitude
vs. frequency, it may be taken to be approximately equal to the lowest frequency,
above the rigid-body resonance of the table-coil assembly on its suspension system,
at which the phase difference between the armature coil current and the accelera-
tion of the center of the table is 90°.

Impedance Characteristics. When an exciter or vibration machine is consid-
ered independent of its power supply, information concerning the electrical imped-
ance characteristics of the machine shall be given in sufficient detail to permit
matching of the power-supply output to the vibration-machine input. It is suggested
that consideration be given to providing schematic circuit diagrams (electrical and
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mechanical or equivalent electrical) together with corresponding equations that
contain the principal features of the machine.

Environmental Extremes. When it is anticipated that the vibration machine
will be used under conditions of abnormal pressure and temperature, the following
information shall be supplied as may be applicable: maximum simulated altitude (or
minimum pressure) under which full performance ratings can be applied; maximum
simulated altitude under which reduced performance ratings can be applied; maxi-
mum ambient temperature for rated output; low-temperature limitations; humidity
limitations.

Performance. The performance relates in part to the combined operation of the
vibration generator and its power supply.

Amplitude-Frequency Relations. Data on sinusoidal operation shall be given as
a series of curves for several table loads, including zero load, and for a load at least 3
times the weight of the coil-table assembly. Maximum loads corresponding to 20g and
10g table acceleration under full-rated force output would be preferred.These curves
should give amplitudes of table displacement, velocity, or acceleration, whichever is
limiting, throughout the complete range of operating frequencies corresponding to
maximum continuous ratings of the system. Additionally, the maximum rated force
should be given. If this force is frequency-dependent, it should be presented as a curve
with the ordinate representing the force and the abscissa the frequency.

If the system is for broad-band use, necessarily employing an electronic power
amplifier, the exciting voltage signal applied to the input of the system shall be held
constant and the output acceleration shall be plotted as a function of frequency with
and without filters or other compensating devices for the loads and accelerations
indicated above. If the vibrator is used only for sinusoidal vibrations, and employs
servo amplitude control, the curves should be obtained under automatic frequency
sweeping conditions with the control system included.

Waveform. Total rms distortion of the acceleration waveform at the center of
the vibration table, or at the center on top of the added test weight, shall be fur-
nished to show at least the frequencies of worst waveform under the test conditions
specified under the above paragraph.The pickup type, and frequency range, shall be
given together with the frequency range of associated equipment. It is desirable to
have the over-all frequency range at least 10 times the frequency of the fundamental
being recorded.Tabular data on harmonic analysis may alternatively or additionally
be given.

Magnetic Fields. The maximum values of constant and alternating magnetic
fields, due to the vibration exciter, in the region over the surface of the vibration
table should be indicated. If degaussing coils are furnished, these values should be
given with and without the use of the degaussing coils.

Frequency Range. The over-all frequency range shall be given. A group of fre-
quency ranges shall also be given for electronic power supplies if they require
changes of their output impedance for the different ranges.

Frequency Drift. The probable drift of a set frequency shall be stated, together
with factors that contribute to the drift. This shall apply for nonresonant loads.

Signal Generator. A vibration pickup, if built into the vibration machine, shall
have calibrations furnished over a specified frequency and amplitude range.

Installation Requirements. Recommendations shall be given as to suitable
methods for installing the vibration machine and auxiliary equipment. Electrical and
other miscellaneous requirements shall be stated.
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HYDRAULIC VIBRATION MACHINE

The hydraulic vibration machine is a device which transforms power in the form of a
high-pressure flow of fluid from a pump to a reciprocating motion of the table of the
vibration machine.A schematic diagram of a typical machine is shown in Fig. 25.7. In
this example, a two-stage electrohydraulic valve is used to deliver high-pressure
fluid, first to one side of the piston in the actuator and then to the other side, forcing
the actuator to move with a reciprocating motion. This valve consists of a pilot stage
and power stage, the former being driven with a reciprocating motion by the elec-
trodynamic driver. At the time the actuator moves under the force of high-pressure
fluid on one side of the piston, the fluid on the other side of the piston is forced back
through the valve at reduced pressure and is returned to the pump.

The electrohydraulic valve is usually mounted directly on the side of the actuator
cylinder, forming a close-coupled assembly of massive steel parts. The close proxim-
ity of the valve and cylinder is desirable to reduce the volume and length of the con-
necting fluid paths between the several spools and the actuator, thereby minimizing
the effects of the compliance of the fluid and the friction to its flow. Many types of
electrohydraulic valves exist, all of which fail to meet the requirement of sufficient
flow at high frequencies to give vibration machine performance equivalent to exist-
ing electrodynamic machine performance at 2000 Hz.

OPERATING PRINCIPLE

In Fig. 25.7, the pilot and power spools of a hydraulic vibration machine are shown in
the “middle” or “balanced” position, blocking both the pump high-pressure flow P and
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the return low-pressure flow R. Correspondingly, the piston of the actuator must be
stationary since there can be no fluid flow either to or from the actuator cylinder. If the
pilot spool is displaced to the right of center by a force from the electrodynamic driver,
then high-pressure fluid P will flow through the passage from the pilot spool to the left
end of the power spool, causing it to move to the right also.This movement forces the
trapped fluid from the right-hand end of the power spool through the connecting pas-
sage, back to the pilot stage, and then through the opening caused by the displacement
of the pilot spool to the right, to the chamber R connected to the return to the pump.
Correspondingly, if the pilot spool moves to the left, the flow to and from the power
spool is reversed, causing it to move to the left. For a given displacement of the pilot
spool, a flow results which causes a corresponding velocity of the power spool. A dis-
placement of the power spool to the right allows the flow of high-pressure fluid P from
the pump to the left side of the piston in the actuator, causing it to move to the right
and forcing the trapped fluid on the right of the piston to be expelled through the con-
necting passage to the power spool and out past the right-hand restrictions to the
return fluid chamber R. The transducers shown on the power spool and the actuator
shaft are of the differential transformer type and are used in the feedback circuit to
improve system operation and provide electrical control of the average (i.e., station-
ary) position of the actuator shaft relative to the actuator cylinder.

A block diagram of the complete hydraulic vibration machine system is shown in
Fig. 25.8. The pump, in conjunction with accumulators in the pressure and return
lines at the hydraulic valve, should be capable of variable flow while maintaining a
fixed pressure. Most systems to date have required an operating pump pressure of
3000 lb/in.2 (20 MPa). The upper limit of efficiency of the hydraulic valve is approx-
imately 60 percent, the losses being dissipated in the form of heat. Mechanical loads
are seldom capable of dissipating appreciable power; most of the power in the pump
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discharge is converted to a temperature rise in the fluid.Therefore a heat exchanger
limiting the fluid temperature must be included as part of the system.

PROMINENT FEATURES

� Large generated forces or large strokes can be provided relatively easily. Large
forces and large velocities of motion, made possible with a large stroke, determine
the power capacity of the system. For example, one hydraulic vibration machine
has a peak output power of 450,000 lb-in./sec (approximately 34 hp or 25 kW)
with a single electrohydraulic valve. This power can be increased by the installa-
tion of several valves on a single actuator.Appreciable increases in valve flow can
be realized by sacrificing high-frequency performance. Hence, the hydraulic vibra-
tion machine excels at low frequencies where large force, stroke, and power capac-
ity are required.

� The hydraulic machine is small in weight, relative to the forces attainable; there-
fore, a rigid connection to firm ground or a large massive base is necessary to
anchor the machine in place and to attenuate the vibration transmitted to the sur-
rounding area.

� The main power source is hydraulic, which is essentially dc in character from
available pumps. The electrical driving power for controlling the valve is small.
Therefore, the operating frequency range can be extended down to zero Hz.

� The magnetic leakage flux in the region of the table is insignificant by comparison
with the electrodynamic-type vibration machine.

� The machine, with little modification, is suitable for use in high- and low-
temperature, humidity, and altitude environments.

� The machine is inherently nonlinear with amplitude in terms of electrical input
and output flow or velocity.

PIEZOELECTRIC VIBRATION EXCITERS

A piezoelectric material (see Chap. 12) can be used to generate motion and act as a
piezoelectric vibration exciter. Typically a piezoelectric exciter employs a number of
disks of piezoelectric material as illustrated in Fig. 25.9; this arrangement increases
the ratio of the displacement output to voltage input sensitivity of the exciter. The
strain is proportional to the charge, and the charge is increased by increasing the
voltage gradients across the piezoelectric material.The voltage gradient is increased
by using many thin layers of piezoelectric material, separated with a conducting
material, with alternating polarity on the conducting separators.This arrangement of
alternating layers of piezoelectric material and conducting material is called a piezo-
electric stack. Because the piezoelectric stack has little tensile strength, the stack
must be preloaded. The stiffness of the preloading mechanism must be much less
than the stiffness of the piezoelectric stack so that preloading will not influence the
mechanical output significantly. The combination of the piezoelectric stack (acting
like a displacement actuator) and a reaction mass forms a reaction-type vibration
exciter as described above. The reaction mass of the piezoelectric exciter can be the
armature mass of a small electrodynamic exciter. This effectively places an electro-
dynamic and a piezoelectric exciter in series, producing a machine with a usable out-
put over a wide frequency range.
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PROMINENT FEATURES

� The exciters can have a usable frequency range from 0 to 60 kHz.
� The low-frequency output is severely limited by the displacement limits of the

piezoelectric stack, usually a few thousandths of an inch (a few hundredths of a
millimeter).

� The high-frequency output is limited by internal resonances of the vibration exciter.
� The force output of the exciter is limited by the displacement limit of the piezo-

electric stack and by the mass of the reaction mass.
� The power supply for a piezoelectric exciter requires high voltages (typically

about 1000 volts) and sufficient current to drive the capacitance (typically 10 to
1000 nanofarads) of the device.

IMPACT EXCITERS

A limited amount of vibration testing, such as some modal testing and some stress
screening, require a broad frequency bandwidth of relatively uncontrolled vibra-
tion. A class of exciters broadly known as impact exciters (and also called repetitive
shock machines) is sometimes used for the above applications. These devices
depend on the property that a short impact generates a broad bandwidth of vibra-
tion energy. Each impact is a short transient, for example see Fig. 26.1, but repeated
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FIGURE 25.9 Simplified cross section of a piezoelectric vibration exciter. A compressed piezo-
electric stack is excited with an oscillating voltage. An electrical voltage applied to the electrical con-
nections causes the piezoelectric stack to elongate and contract, producing a relative displacement
between the mounting surface and the reaction mass. The inertia of the reaction mass results in a
force being applied to an item mounted on the mounting surface.
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impacts result in a quasi-steady-state vibration having a wide frequency bandwidth.
If the impacts are periodic, the spectrum is composed of the fundamental frequency
of the impacts and many harmonics of this fundamental frequency, i.e., the excita-
tion is essentially a periodic function. However, the impacts are often varied ran-
domly in magnitude and spacing to produce a time-averaged spectrum that is
smoother, much like random vibration. Nevertheless, the instantaneous spectrum
or Wigner distribution (see Chap. 22) for the excitation will still reveal an instanta-
neous periodic function with a time-varying magnitude and fundamental fre-
quency. The probability distribution can vary significantly from a Gaussian
distribution. The vibration characteristics are strongly influenced by the dynamics
of the structure on which they are mounted. The impact exciters can be mounted
directly to the test specimen, or the exciters can excite a table on which the test item
is mounted. The latter can be classed as a vibration testing machine.

PROMINENT FEATURES

� The design is usually simple, compact, and rugged.
� The maximum attainable displacement is usually small.
� The vibration is relatively uncontrolled. The user has little control over the spec-

trum of the resulting vibration.

MULTIPLE SHAKERS DRIVING 

A SINGLE TEST ITEM

It is sometimes desirable to have more than one shaker driving a test item. Some of
the reasons include:

Desire to excite many modes. This is the motivation for multiple input modal
tests. A single input may not be capable of exciting all the modes, but multiple
input tests have a better chance.
Desire to provide more representative boundary conditions. Many test items are
not mounted in service on rigid foundations. Single-axis testing on rigid fixtures
is often a poor simulation of the boundary conditions of service environments.
Multiple input tests can sometimes provide more realistic boundary conditions.
The vibration input in the field environment is often not through a single point.
Large test items. Large test items are difficult to drive with a single shaker.
Examples include complete airplanes or space launch systems, seismic simula-
tions, automobiles, and other large transportation systems. The size and/or force
requirements to test these items are often beyond the capabilities of a single
shaker.
Desire to provide excitation in more than one direction. Most conventional
shakers excite the test item in one rectilinear direction. Most environments
include vibration in several directions (both rectilinear and rotation) simultane-
ously. In an effort to provide more realistic testing, shaker systems with inputs in
several directions at the same time are desirable.

Multiple exciters driving a single test item have been used extensively in modal
testing (see Chap. 21). This is relatively easy because control of the vibration input
is not usually necessary. Multiple input tests with controlled inputs are more diffi-
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cult because of cross-coupling effects. Cross-coupling is where the input at one
point causes response at the control point of another input. Control of systems
with cross-coupling requires a careful mechanical design and a carefully designed
control system (see Chap. 27). The shaker, the fixture, and the control system form
three legs of a triad. They must all work together; a weakness in any of the three
can result in the system failure. The mechanical design must minimize cross-
coupling effects and the control system must compensate for the remaining cross-
coupling.

Systems with two inputs typically controlling one translation and one rotation
degree of freedom are not very difficult to design. An example would be a horizon-
tal beam-like structure with the vertical translation controlled independently at each
end. Isolation of the rotation from the shakers can usually be accomplished with fix-
tures that are stiff axially but soft in bending.

The mechanical design of systems with more than two degrees of freedom is
more difficult. The shaker providing the input can usually move in only one direc-
tion. If the test item is to move in more than one direction and/or rotate, the mechan-
ical design of the system must isolate all the motion except in one direction from the
shakers. It is also difficult to restrain other degrees-of-freedom, for example, rota-
tions. Restraint of unwanted motion is usually accomplished with passive restraints
(for example, hydrostatic bearings) or with active restraints using the exciters and
the control system. Undesired motion, compromising the test, will result if the
uncontrolled degrees of freedom are not restrained.

A system using three electrodynamic shakers controlling three orthogonal
translations, with the three rotations passively restrained, has been built.7 This sys-
tem has a usable bandwidth of almost 2 kHz. Electrodynamic systems with six
degrees-of-freedom have also been built with varying degrees of success. Electro-
hydraulic shaker systems with six rigid-body degrees-of-freedom (three transla-
tions and three rotations) have been built.8 These systems have a usable
bandwidth of about 500 Hz. Larger electrohydraulic systems with two to six
degrees-of-freedom have been built for seismic simulation with a bandwidth of
about 50 Hz (see Chap. 24). Other electrohydraulic systems with as many as 18
hydraulic actuators with a bandwidth of about 50 Hz are used as road simulators
in the automotive industry. One of these systems is illustrated in Fig. 25.10. An
advantage of electrohydraulic shakers for multiple input applications is that their
mechanical input impedance is relatively high, reducing the cross-coupling effects.
Their disadvantage is that they are all inherently nonlinear, which makes control
more difficult. All of these systems, both electrodynamic and electrohydraulic, are
capable, with appropriate control systems, of performing sine, random, and tran-
sient tests.

VIBRATION FIXTURES

Test items are usually attached to a shaker with a fixture. Seldom will the test item
mount directly on the shaker. These fixtures are usually designed to be rigid in the
frequency band of interest and lightweight. Rigidity is required because the vibra-
tion test is typically controlled at a single point.The assumption is that the motion of
the control point is representative of the input to the test item. If the fixture is not
rigid, this assumption is obviously not true. Also, flexible fixtures typically have one
or more frequencies where the operating shape at the control point is near zero.This
will result in large, unrealistic responses of the test item. The fixtures need to be
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lightweight to maximize the force available to drive the test item. Light weight and
rigidity are contradictory requirements. Design of satisfactory vibration fixtures is a
combination of experience, analysis, and compromise. Vibration fixtures are dis-
cussed in Chap. 20.
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FIGURE 25.10 A road simulator which uses a cross-coupled multiple-drive/multiple-control-point
predetermined waveform control system.The predetermined waveforms (with a bandwidth of about 1
to 50 Hz) are measured on the vehicle while driving on a road. The predetermined waveforms are
reproduced on the vehicle during the simulation on the road simulator. Four hydraulic actuators drive
each wheel hub, and two hydraulic actuators drive the vehicle fore and aft at the bumpers. (MTS Corp.)
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CHAPTER 26, PART I
SHOCK TESTING 

MACHINES

Richard H. Chalmers

INTRODUCTION

Equipment must be sufficiently rugged to operate satisfactorily in the shock and vibra-
tion environments to which it will be exposed and to survive transportation to the site
of ultimate use. To ensure that the equipment is sufficiently rugged and to determine
what its mechanical faults are, it is subjected to controlled mechanical shocks on shock
testing machines. Mechanical shock is a nonperiodic excitation (e.g., a motion of the
foundation or an applied force) of a mechanical system that is characterized by sud-
denness and severity, and it usually causes significant relative displacements in the sys-
tem. The severity and nature of the applied shocks are usually intended to simulate
environments expected in later use or to be similar to important components of those
environments. However, a principal characteristic of shocks encountered in the field is
their variety.These field shocks cannot be defined exactly.Therefore shock simulation
can never exactly duplicate shock conditions that occur in the field.

There is no general requirement that a shock testing machine reproduce field
conditions.All that is required is that the shock testing machine provide a shock test
such that equipment which survives is acceptable under service conditions. Assur-
ance that this condition exists requires a comparison of shock test results and field
experience extending over long periods of time. This comparison is not possible for
newly developed items. It is generally accepted that shocks that occur in field envi-
ronments should be measured and that shock machines should simulate the impor-
tant characteristics of shocks that occur in field environments or have a damage
potential which by analysis is shown to be similar to that of a composite field shock
environment against which protection is required.

A shock testing machine (frequently called a shock machine) is a mechanical
device that applies a mechanical shock to an equipment under test.The nature of the
shock is determined from an analysis of the field environment. Tests by means of
shock machines usually are preferable to tests under actual field conditions for four
principal reasons:

1. The nature of the shock is under good control, and the shock can be repeated
with reasonable exactness. This permits a comparative evaluation of the equip-
ment under test and allows exact performance specifications to be written.

2. The intensity and nature of shock motions can be produced that represent an
average condition for which protection is practical, whereas a field test may
involve only a specific condition that is contained in this average.
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3. The shock machine can be housed at a convenient location with suitable facilities
available for monitoring the test.

4. The shock machine is relatively inexpensive to operate, so it is practical to per-
form a great number of developmental tests on components and subassemblies in
a manner not otherwise practical.

SHOCK-MACHINE CHARACTERISTICS

DAMAGE POTENTIAL AND SHOCK RESPONSE SPECTRA

The damage potential of a shock motion is dependent upon the nature of an equip-
ment subjected to the shock, as well as upon the nature and intensity of the shock
motion.To describe the damage potential, a description of what the shock does to an
equipment must be given—a description of the shock motion is not sufficient. To
obtain a comparative measure of the damage potential of a shock motion, it is cus-
tomary to determine the effect of the motion on simple mechanical systems. This 
is done by determining the maximum responses of a series of single degree-of-
freedom systems (see Chap. 2) to the shock motion and considering the magnitude
of the response of each of these systems as indicative of the damage potential of the
shock motion. The responses are plotted as a function of these natural frequencies.
A curve representing these responses is called a shock response spectrum, or
response spectrum (see Chap. 23). Its magnitude at any given frequency is a quanti-
tative measure of the damage potential of a particular shock motion to a single
degree-of-freedom system with that natural frequency. This concept of the shock
response spectrum originally was applied only to undamped single degree-of-
freedom systems, but the concept has been extended to include systems in which any
specified amount of damping exists.

The response of a simple system can be expressed in terms of the relative dis-
placement, velocity, or acceleration of the system. It is customary to define velocity
and acceleration responses as 2πf and (2πf )2 times the maximum relative displace-
ment response, where f is frequency expressed in hertz. The corresponding response
curves are called displacement, velocity, or acceleration shock response spectra. A
more detailed discussion of shock response spectra is given in Chap. 23.

Of the three motion parameters (displacement, velocity, and acceleration)
describing a shock spectrum, velocity is the parameter of greatest interest from the
viewpoint of damage potential. This is because the maximum stresses in a structure
subjected to a dynamic load typically are due to the responses of the normal modes
of the structure, that is, the responses at natural frequencies (see Chap. 21). At any
given natural frequency, stress is proportional to the modal (relative) response
velocity.1 Specifically,

σmax = Cνmax �Eρ� (26.1)

where σmax = maximum modal stress in the structure
νmax = maximum modal velocity of the structural response

E = Young’s modulus of the structural material
ρ = mass density of the structural material
C = constant of proportionality dependent upon the geometry of the

structure (often assumed for complex equipment to be 4 < C < 8)2
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Of course, if the shock response spectrum for a test machine–generated shock is com-
puted solely to validate that test results comply with a specified shock response spec-
trum, or for comparison to the shock response spectra computed from measured
shocks in a service environment, then either displacement or acceleration shock
response spectra are as meaningful as a velocity shock response spectrum. However,
if the maximum stress in the structure subjected to the shock is of primary interest,
the velocity shock response spectrum is the most applicable.

MODIFICATION OF CHARACTERISTICS 

BY REACTIONS OF TEST ITEM

The shock motion produced by a shock machine may depend upon the mass and fre-
quency characteristics of the item under test. However, if the effective weight of the
item is small compared with the weight of the moving parts of the shock machine, its
influence is relatively unimportant. Generally, however, the reaction of the test item
on the shock machine is appreciable and it is not possible to specify the test in terms
of the shock motions unless large tolerances are permissible. The test item acts like
a dynamic vibration absorber (see Chap. 6). If the item is relatively heavy, this causes
the shock response spectra of the exciting shock to have minima at the frequencies
of the test item; it also causes its mounting foundation to have these minima during
shock excitation at field installations. Shock tests and design factors are sometimes
established on the basis of an envelope of the maximum values of shock response
spectra. However, maximum stresses in the test item will most probably occur at the
antiresonance frequencies where the shock response spectrum exhibits minimum
values. To require that the item withstand the upper limit of spectra at these fre-
quencies may result in overtesting and overdesign. Considerable judgment is there-
fore required both in the specification of shock tests and in the establishment of
theoretical design factors on the basis of field measurements. See Chap. 20 for a
more complete discussion of this subject.

DOMINANT FREQUENCIES OF SHOCK MACHINES

The shock motion produced by a shock machine may exhibit frequencies that are char-
acteristic of the machine. These frequencies may be affected by the equipment under
test.The probability that these particular frequencies will occur in the field is no greater
than the probability of other frequencies in the general range of interest.A shock test,
therefore, discriminates against equipment having elements whose natural frequencies
coincide with frequencies introduced by the shock machine.This may cause failures to
occur in relatively good equipment whereas other equipment, having different natural
frequencies, may pass the test even though of poorer quality. Because of these factors,
there is an increasing tendency to design shock machines to be as rigid as possible, so
that their natural frequencies are above the range of frequencies that might be strongly
excited in the equipment under test. The shock motion is then designed to be the sim-
plest shape pulse that will give a desired shock motion or response spectrum.

CALIBRATION

A shock-machine calibration is a determination of the shock motions or response
spectra generated by the machine under standard specified conditions of load,
mounting arrangements, methods of measurement, and machine operation. The
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purpose of the calibration is not to present a complete study of the characteristics of
the machine but rather to present a sufficient measure of its performance to ensure
the user that the machine is in a satisfactory condition. Measurements should there-
fore be made under a limited number of significant conditions that can be accurately
specified and easily duplicated. Calibrations are usually performed with deadweight
loads rigidly attached to the shock machine.

The statement of calibration results must include information relative to all fac-
tors that may affect the nature of the motion. These include the magnitude, dimen-
sions, and type of load; the location and method of mounting of the load;
factors related to the operation of the shock machine; the locations and mounting
arrangements of pickups; and the frequency range over which the measurements
extend.

SPECIFYING A SHOCK TEST

Two methods of specification are employed in defining a shock test: (1) a specifica-
tion of the shock motions (or response spectra) to which the item under test is sub-
jected and (2) a specification of the shock machine, the method of mounting the test
item, and the procedure for operating the machine.3

The first method of specification can be used only when the shock motion can be
defined in a reasonably simple manner and when the application of forces is not so
sudden as to excite structural vibration of significant amplitude in the shock
machine. If equipment under test is relatively heavy, and if its normal modes of
vibration are excited with significant amplitude, the shock motions are affected by
the load; then the specified shock motions should be regarded as nominal. If compa-
rable results are to be obtained for tests of different machines of the same type, the
methods of mounting and operational procedures must be the same.

The second method of specification for a shock test assumes that it is impractical
to specify a shock motion because of its complexity; instead, the specification states
that the shock test shall be performed in a given manner on a particular machine.
The second method permits a machine to be developed and specified as a standard
shock testing machine. Those who are responsible for the specification then should
ensure that the shock machine generates appropriate shock motions. This method
avoids a difficulty that arises in the first method when measurements show that the
shock motions differ from those specified. These differences are to be expected if
load reactions are appreciable and complex.

A shock testing machine must be capable of reproducing shock motions with
good precision for purposes of comparative evaluation of equipment and for the
determination as to whether a manufacturer has met contractual obligations. More-
over, different machines of the same type must be able to provide shocks of equiva-
lent damage potential to the same types of equipment under test. Precision in
machine performance, therefore, is required on the basis of contractual obligations
and for the comparative evaluation of equipments even though it is not justified on
the basis of a knowledge of field conditions.

Sometimes equipment under test may consistently fail to meet specification
requirements on one shock machine but may be acceptable when tested on a different
shock machine of the same type.The reason for this is that small changes of natural fre-
quencies and of internal damping, of either the equipment or the shock machine, may
cause large changes in the likelihood of failure of the item. Results of this kind do not
necessarily mean that a test has been performed on a faulty machine;normal variations
of natural frequencies and internal damping from machine to machine make such
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changes possible. However, standard calibrations of shock machines should be made
from time to time to ensure that significant changes in the machines have not occurred.

SHOCK TESTING MACHINES

CHARACTERISTIC TYPES OF SHOCKS

The shock machines described below are grouped according to the types of shocks
they produce. When a machine can be classified under several headings, it is placed
in the one for which it is primarily intended. One characteristic shared by all shock
machines is that the motions they produce are sudden and likely to create significant
inertial forces in the item under test. The types of shock shown in Fig. 26.1 are clas-
sified as (A) through (D), simple shock pulses, whose shapes can be expressed in a
practical mathematical form; (E), single complex shock; and (F), a multiple shock. In
contrast to a simple shock pulse specification, the motions illustrated in Fig. 26.1 (E)
and (F) often are the result of a shock test in which the shock testing machine, the
method of mounting, and machine operations were specified.

Velocity Shocks. A velocity shock is produced by a sudden change in the net
velocity of the structure supporting the item under test. When the duration of the

shock is short compared to the periods
of the principal natural frequencies of
the item under test, a velocity shock is
said to have occurred. Figure 26.1A
shows a nearly instantaneous change in
velocity. The shocks shown in Fig. 26.1B,
C, and D are also considered velocity
shocks if the above shortness criterion is
met.Velocity shocks produce substantial
energy at the principal natural frequen-
cies of the item under test. This is illus-
trated in Figs. 26.2 and 26.3, which show
the shock response spectra (computed
with a zero damping ratio) for the half-
sine and sawtooth acceleration pulses in
Fig. 26.1A and B, respectively. Note in
both cases that the values of the velocity
shock response spectra are uniform at
all frequencies below about Tf = 0.2.
Hence, from Eq. (26.1), they have the
potential to cause substantial damage to
the basic structure of the item under
test, assuming the item has natural fre-
quencies below f = 0.2/T Hz.

Displacement Shocks. Some shock
test machines produce a sequence of
two or more velocity shocks with equal
and opposite velocity magnitudes such
that the test item experiences no net
velocity change. For example, the half-

SHOCK TESTING MACHINES 26.5

FIGURE 26.1 Characteristic types of shocks.
(A) Velocity shock, or step velocity change. (B)
Simple half-sine acceleration shock pulse. (C)
Rectangular force pulse. (D) Sawtooth accelera-
tion pulse. (E) Single complex shock. (F ) Multi-
ple shock.
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FIGURE 26.3 Shock response spectra of a sawtooth acceleration pulse shown in the inset.

sine acceleration pulse in Fig. 26.1B might be followed by a second half-sine pulse of
equal magnitude in the opposite direction. If the time between the two equal and
opposite acceleration pulses is longer than the duration of the individual pulses, a
substantial displacement of the test item between the positive and negative velocity
changes will occur.This type of shock is commonly called a displacement shock. Such
shocks have a damage potential similar to that of velocity shocks.

High-Frequency Shocks. Metal-to-metal impacts that do not result in a net 
velocity change of the item under test create high-acceleration, high-frequency oscil-
lations in the vicinity of the impact. Figure 26.1E and F are examples of high-
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FIGURE 26.2 Residual and overall shock response spectra of the half-sine acceler-
ation pulse shown in the inset.
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frequency shocks. Since the frequency range of these shocks often exceeds the prin-
cipal natural frequencies of the item under test, the shocks usually are not readily
transmitted far from the point of their creation. Consequently, this type of shock
lacks the damage potential of velocity shocks for all but small and/or brittle compo-
nents of the item under test. Common sources of high-frequency shocks include
pyrotechnic devices, which produce what are commonly referred to as pyroshocks.
Laboratory machines and techniques for the simulation of pyroshocks are detailed
separately in Chap. 26, Part II.

SIMPLE SHOCK PULSE MACHINES

Although shocks encountered in the field are usually complex in nature (for exam-
ple, see Fig. 26.1E), it is frequently advantageous to simulate a field shock by a shock
of mathematically simple form. This permits designers to calculate equipment
response more easily and allows tests to be performed that can check these calcula-
tions. This technique is additionally justifiable if the pulses are shaped so as to pro-
vide shock response spectra similar to those obtained for a suitable average of a
given type of field conditions. Machines are therefore built to provide these simple
shock motions. However, note that the motions provided by actual machines are
only ideally simple.The ideal outputs may be given as nominal values; the actual out-
puts can only be determined by measurement.

Drop Tables. A great variety of drop testers are used to obtain acceleration pulses
having magnitudes ranging from 80,000g down to a few g. The machines each
include a carriage (or table) on which the item under test is mounted; the carriage
can be hoisted up to some required height and dropped onto an anvil. Guides are
provided to keep the carriage properly oriented. When large velocity changes are
required, the carriage may be accelerated downward by a means other than gravity.
Frequently, parts of the carriage, associated with its lifting and guiding mechanism,
are flexibly mounted to the rigid part of the carriage structure that receives the
impact. This is to isolate the main carriage structure from its flexible appendages so
as to retain the simple pulse structure of the stopping acceleration.

A typical drop table machine is shown in Fig. 26.4. The desire acceleration pulse
shape is obtained using a programming device between the impacting surfaces.
Devices ranging from liquid programmers to simple pads of elastomeric materials
can be used. Note the shock cords that accelerate the table to create velocities
beyond those that can be obtained with a free fall. Machines of this type can produce
acceleration waveforms that closely approximate many different types of velocity
shocks, such as the half-sine and terminal sawtooth acceleration pulses in Fig. 26.1A
and B, respectively.

Air Guns. Air guns frequently are used to impart large accelerations to pistons on
which items under test can be attached. The piston is mechanically retained in posi-
tion near the breech end of the gun while air pressure is built up within the breech.
A quick-release mechanism suddenly releases the piston, and the air pressure pro-
jects the piston down the gun barrel. The muzzle end of the gun is closed so that the
piston is stopped by compressing the air in the muzzle end.Air bleeder holes may be
placed in the gun barrel to absorb energy and to prevent an excessive number of
oscillations of the piston between its two ends.

A variety of such guns can provide the acceleration pulses shown in Fig. 26.5A
and B. The peak accelerations may extend from a maximum of about 1000g for the
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FIGURE 26.4 Drop-table arrangement for use with programming devices between
the impacting surfaces. (Courtesy of MTS Systems Corp.)
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large-diameter (21 in, 53 cm) guns up to 200,000g for small-diameter (2 in, 5 cm)
guns. The pulse length varies correspondingly from about 50 to 3 milliseconds. The
maximum piston velocity varies from about 400 to 750 ft/sec (122 to 229 m/sec). The
maximum velocities are not dependent upon piston diameter.

High-acceleration gas guns have been developed for testing electronic devices.
The items under test are attached to the piston. The gun consists of a barrel (cylin-
der) that is closed at the muzzle end but which has large openings to the atmosphere
a short distance from the muzzle end. The piston is held in place while a relatively
low-pressure gas (usually air or nitrogen) is applied at the breech end of the gun.The
piston is then released, whereby it is accelerated over a relatively long distance until
it reaches the position along the length of the cylinder that is open to the atmo-
sphere. This initial acceleration is of relatively small magnitude. After the piston has
passed these openings, it is stopped by the compression of gas in the short closed end
of the cylinder. This results in a reverse acceleration of relatively large magnitude.
(Sometimes an inert gas, such as nitrogen, is used in the closed end to prevent explo-
sions which might be caused by oil particles igniting under the high temperatures
incident to the compression.) Thus, in contrast to the previously described devices,
the major acceleration pulse is delivered during stopping rather than starting. An
advantage of this latter technique is that the difficult problem of constructing a
quick-release mechanism for the piston, which will work satisfactorily under the
large forces exerted by the piston, is greatly simplified.

Vibration Machines. Electrodynamic, hydraulic, and pneumatic vibration
machines provide a ready and flexible source of shock pulses, so long as the pulse
requirements do not exceed the force and motion capabilities of the selected
machine. See Chap. 25 for information.

Test Load Reactions. In the above description of the output of shock machines
designed to deliver simple shock pulses of adjustable shapes, it is assumed that the
load imposed on the machine by the item under test has little effect on the shock
motions. This is true only when the effective weight of the load is negligibly small
compared with that of the shock machine mounting platform. If the effective weight
of the load is independent of frequency, i.e., if it behaves as a rigid body, it is simple
to compensate for the effect of the load by adjusting machine parameters. However,
when the load is flexible and the reactions of excited vibrations are appreciable, the
motions of the shock machine platform are complex. Specifications involving the
use of these types of machines should require that the mounting platform have no
significant natural frequencies below a specified frequency. The weight of this plat-
form together with that of all rigidly attached elements, exclusive of the test load,
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FIGURE 26.5 Typical acceleration-time curves for (A) 5-in. (13-cm) air gun; (B) 21-in. (53-cm) air
gun.
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also should be specified. Pulse shapes may then be specified for motions of this plat-
form or for the platform together with given dead-weight loads. These may be spec-
ified as nominal values for test loads, but it is neither practical nor desirable to
require that the pulse shape be maintained in simple form for complex loads of con-
siderable mass.

COMPLEX SHOCK PULSE MACHINES

Because of the infinite variety of shock motions possible under field conditions, it is
not practical or desirable to construct a shock machine to reproduce a particular
shock that may be encountered in the field. However, it is sometimes desirable to
simulate some average of a given type of shock motion. To accomplish this may
require that the shock machine deliver a complex motion. A shock of this type can-
not be specified easily in terms of the shock motions, since the motions are very com-
plex and dependent on the nature and the mounting of the load. It is customary,
therefore, to specify a test in terms of a shock machine, the conditions for its opera-
tion, and a method of mounting the item under test.

High-Impact Shock Machines. The Navy high-impact shock machines are
designed to simulate shocks of the nature and intensity that might occur on a ship
exposed to severe but sublethal, noncontact, underwater explosions. Such severe
shocks produce motions that extend throughout the ship. Equipment intended for
shipboard use can demonstrate its ability to withstand the shock simulations pro-
duced by these high-impact shock machines and thus be considered capable of with-
standing the actual underwater explosion environment.

Lightweight Machines.3–5 The lightweight high-impact shock machine, shown
in Fig. 26.6, is used for testing equipment weighing up to about 350 lb (159 kg).
Equipment under test is attached to the anvil plate A. Method of attachment is con-
strained to resemble closely the eventual field attachments.The anvil is struck on the
backside by the pendulum hammer C, or the anvil is rotated 90° on a vertical axis
and struck on the end by the pendulum hammer. The drop hammer B can be made
to strike the top of the anvil, thus providing principal shock motions in the third
orthogonal direction. Shock response spectra of shock motions generated by this
machine are shown in Fig. 26.7 (these results were computed with a damping ratio of
about 0.01). The spectrum for the motion at the center of the plate illustrates the
amplification of the spectrum level at a natural frequency of the plate (about 100
Hz) and some attenuation at higher frequencies.

Medium-Weight Machines.4,5 This machine is used to test equipment that, with
its supporting structures, weighs up to 7400 lb (3357 kg). Shown in Fig. 26.8, this
machine consists principally of a 3000-lb (1361-kg) hammer and a 4500-lb (2041-kg)
anvil. Loads are not attached directly to the rigid anvil structure but rather to a
group of steel channel beams which are supported at their ends by steel members,
which in turn are attached to the anvil table. The number of channels employed is
dependent on the weight of the load and is such as to cause the natural frequency of
the load on these channels to be about 60 Hz. The hammer can be dropped from a
maximum effective height of 5.5 ft (1.68 m). It rotates on its axle and strikes the anvil
on the bottom, giving it an upward velocity. The anvil is permitted to travel a dis-
tance of up to 3 in. (7.6 cm) before being stopped by a retaining ring.The machine is
mounted on a large block of concrete which is mounted on springs to isolate the sur-
rounding area from shock motions. The general nature of the shock is complex, sim-

26.10 CHAPTER TWENTY-SIX, PART I

8434_Harris_26_b.qxd  09/20/2001  11:54 AM  Page 26.10



SHOCK TESTING MACHINES 26.11

FIGURE 26.6 Navy high-impact shock machine for lightweight equipment.

FIGURE 26.7 Shock response spectra for a 5-ft back blow with a 57-lb (25.9-
kg) load on the mounting plate for four different lightweight high-impact shock
machines.
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FIGURE 26.8 High-impact shock machine for medium-weight equipment.

ilar to that of the lightweight machine. Little of the high-amplitude, high-frequency
components of the shock motions are transmitted to the load.

Heavy-Weight Machines.4–6 The floating shock platform (FSP), and the large
floating shock platform (LFSP) are high-load-capacity shock machines of the high-
impact category. They are rectangular barges fitted with semicylindrical canopies
within which test items are installed as they are aboard ship.The shock motions com-
prising the test series are generated by detonating explosive charges beneath the
water surface at various distances.

The FSP is 28 ft (8.5 m) long by 16 ft (4.9 m) wide and has a maximum load capac-
ity of 60,000 lb (27,216 kg). Its available internal volume is about 26 ft (7.9 m) by 14
ft (4.3 m) by 15 ft (4.6 m) high to the center of the canopy. The charges for the suc-
cessive shots of the test sequence are all 60 lb (27 kg) at a depth of 24 ft (7.3 m). The
charge standoff, the horizontal distance from the near side of the FSP, is shortened
for each shot to a final value of 20 ft (6.1 m). Design shock response spectra for the
FSP are shown in Fig. 26.9.

The LFSP is 50 ft (15.2 m) long by 30 ft (9.1 m) wide with a maximum load capac-
ity of 400,000 lb (181,440 kg) and an internal volume of about 48 ft (14.6 m) by 28 ft
(8.5 m) by 34 ft (10.4 m) high to the center of the canopy. The charge size is 300 lb
(136.1 kg), and the charge depth is 20 ft (6.1 m); the standoff is decreased for each shot
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to a final value of 50 ft (15.2 m).At the crossover load of 30,000 to 40,000 lb (13,640 to
18,180 kg), the LFSP provides a shock environment equivalent to the FSP. Therefore,
data in Fig. 26.9 can be used in design of equipment scheduled for LFSP shock testing.

Hopkinson Bar. When shock testing requires extremely high g levels for light
loads (for example, calibration of accelerometers), the Hopkinson bar has proven
useful.A controlled velocity projectile is impacted on the end of a metallic bar, caus-
ing a stress wave of known magnitude to travel along the bar. Often, the magnitude
of the stress wave is measured as it passes the middle of the bar. The item under test
is attached to the extreme end of the bar and experiences a high g rapid rise time
acceleration when the stress wave arrives at that position. See Fig. 18.12.

MULTIPLE-IMPACT SHOCK MACHINES

Many environments, particularly those involving transportation, subject equipment
to a relatively large number of shocks.These are of lesser severity than the shocks of
major intensity that have been considered above, but their cumulative effect can be
just as damaging. It has been observed that components of equipment that are dam-
aged as a result of a large number of shocks of relatively low intensity are usually dif-
ferent from those that are damaged as a result of a few shocks of a relatively high
intensity. The damage effects of a large number of shocks of low intensity cannot
generally be produced by a small number of shocks of high intensity. Separate tests
are therefore required so that the multiple number of low-intensity shocks are prop-
erly emulated.

Vibration Machines. Electrodynamic, hydraulic, and pneumatic vibration test-
ing machines provide a ready and flexible source of multiple shock pulses so long
as the pulse requirements do not exceed force and motion capabilities of the

SHOCK TESTING MACHINES 26.13

FIGURE 26.9 Design shock response spectra for the floating shock platform.
The lower cutoff frequency is 1.15 Hz for all directions. The upper cutoff frequen-
cies are vertical, 67 Hz; athwartship, 220 Hz; fore and aft, 125 Hz.
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selected machine. They can be programmed to provide a series of different shock
pulses or to repeat a particular shock motion as many times as desired and to estab-
lish the necessary initial conditions prior to each shock pulse. See Chap. 25 for more
information.

ROTARY ACCELERATOR

A quick-starting centrifuge can is used to quickly attain and maintain an accelera-
tion for a long period of time. The accelerator consists of a rotating arm which is
suddenly set into motion by an air-operated piston assembly. The test object is
mounted on a table attached to the outer end of the arm.The table swings on a pivot
so that the resultant direction of the acceleration is always along a fixed axis of the
table. Initially the resultant acceleration is caused largely by angular acceleration of
the arm, so this axis is in a circumferential direction. As the centrifuge attains its full
speed, the acceleration is caused primarily by centrifugal forces, so this table axis
assumes a radial direction. These machines are built in several sizes. They require
between 5 and 60 milliseconds to reach the maximum value of acceleration. For
small test items (8 lb, 3.6 kg), a maximum acceleration of 450g is attainable; for
heavy test items (100 lb, 45.4 kg), the maximum value is about 40g.
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CHAPTER 26, PART II
PYROSHOCK TESTING

Neil T. Davie

Vesta I. Bateman

INTRODUCTION

Pyroshock, also called pyrotechnic shock, is the response of a structure to high-
frequency (thousands of hertz), high-magnitude stress waves that propagate
throughout the structure as a result of an explosive event such as the explosive charge
to separate two stages of a multistage rocket. The term pyrotechnic shock originates
from the use of propellants such as black powder, smokeless powder, nitrocellulose,
and nitroglycerin in devices common to the aerospace and defense industries. These
devices include pressure squibs, explosive nuts and bolts, latches, gas generators, and
air bag inflators.1 The term pyroshock is derived from pyrotechnic shock, but both
terms are used interchangeably in the industry and its literature. A pyroshock differs
from other types of mechanical shock in that there is very little rigid-body motion
(acceleration, velocity, and displacement) of a structure in response to the pyroshock.
The pyroshock acceleration time-history measured on the structure is oscillatory and
approximates a combination of decayed sinusoidal accelerations with very short
duration in comparison to mechanical shock described in Part I of this chapter. The
characteristics of the pyroshock acceleration time-history vary with the distance from
the pyroshock event. In the near field, which is very close to the explosive event, the
pyroshock acceleration time-history is a high-frequency, high-amplitude shock that
may have transients with durations of microseconds or less. In the far field, which is
far enough from the event to allow structural response to develop, the acceleration
time-history of the pyroshock approximates a combination of decayed sinusoids with
one or more dominant frequencies. The dominant frequencies are usually much
higher than that in a mechanical shock and reflect the local modal response of the
structure.The dominant frequencies are generally lightly damped. However, since the
frequencies are so high, it typically takes less than 20 milliseconds for the pyroshock
response to dampen out and return to zero. Satellite, aerospace, and weapon compo-
nents are often subjected to pyroshocks created by devices such as explosive bolts
and pyrotechnic actuators. Pyroshock structural response is also found in ground-
based applications in which there is a sudden release of energy, such as the impact of
a structure by a projectile.

Pyroshock was once considered to be a relatively mild environment due to its
low-velocity change and high-frequency content. Although it rarely damages struc-
tural members, pyroshock can easily cause failures in electronic components that are
sensitive to the high-frequency pyroshock energy. The types of failures caused by
pyroshock commonly include relay chatter, hard failures of small circuit compo-
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nents, and the dislodging of contaminants (e.g., solder balls), which cause short cir-
cuits.A significant number of flight failures have been attributed to pyroshock com-
pared to other types of shock or vibration sources, and, in one case, an extensive
database of the failures has been compiled.2 Designers must rely on testing for qual-
ifications of their systems and components that will be exposed to pyroshock envi-
ronments in the absence of analytical techniques to predict structural response to a
pyroshock. Failures can be reduced by implementing a qualification testing program
for components exposed to a pyroshock environment. This chapter describes the
characteristics of pyroshock environments, measurement techniques, test specifica-
tions, and simulation techniques.

PYROSHOCK CHARACTERISTICS

COMPARISON OF NEAR-FIELD AND FAR-FIELD CHARACTERISTICS

The detonation of an explosively actuated device produces high-frequency tran-
sients in the surrounding structure.The specific character of these acceleration tran-
sients depends on various parameters including: (1) the type of pyrotechnic source,
(2) the geometry and properties of the structure, and (3) the distance from the
source. Due to the endless combinations of these parameters, sweeping conclusions
about pyroshock characteristics cannot be made; however the following paragraphs
describe useful characteristics of typical pyroshock environments.

A pyrotechnically actuated device produces a nearly instantaneous pressure on
surfaces in the immediate vicinity of the device. As the resulting stress waves propa-
gate through the structure, the high-frequency energy is gradually attenuated due to
various material damping and structural damping mechanisms. In addition, the high-
frequency energy is transferred or coupled into the lower-frequency modes of the
structure. The typical pyroshock acceleration transient thus has roughly the appear-
ance of a multifrequency decayed sinusoid (i.e., the envelope of the transient decays
and is symmetric with respect to the positive and negative peaks).The integral of the
typical transient also has these same characteristics.3 In most cases, the initial portion
of the acceleration transient exhibits a brief period during which the amplitudes of
the peaks are increasing prior to the decay described above (see Figs. 26.10 and
26.11). This is a result of the interaction of stress waves as they return from various
locations in the structure.

A pyrotechnically actuated device imparts very little impulse to a structure since
the high forces produced are acting for only a short duration and are usually inter-
nal to the structure.The net rigid body velocity change resulting from a pyroshock is
thus very low relative to the peak instantaneous velocity seen on the integral of the
acceleration transient. Rigid body velocity changes are commonly less than 1 meter
per second. The duration of a pyroshock transient depends on the amount of damp-
ing in a particular structure, but it is commonly 5 to 20 milliseconds in duration.

Pyroshock may be subdivided into two general categories: Near-field pyroshock
occurs close to the pyrotechnic source before significant energy is transferred to
structural response. It is dominated by the input from the source and contains very
high-frequency and very high g energy. This energy is distributed over a wide fre-
quency range and is not generally dominated by a few selected frequencies. Far-field
pyroshock environments are found at a greater distance from the source where sig-
nificant energy has transferred into the lower-frequency structural response. It con-
tains lower frequency and lower g energy than near-field pyroshock; most of the
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energy is usually concentrated at one or a few frequencies which correspond to dom-
inant structural mode(s).

A more detailed discussion of shock response spectrum (see Chap. 23 for defini-
tion) applications is given later in this chapter, but it is introduced here as a means of
describing pyroshock characteristics. Many far-field pyroshock environments have a
typical shock response spectrum shape as illustrated in Fig.26.11,which shows an actual
far-field pyroshock acceleration transient along with its associated shock response
spectrum.The shock response spectrum initially increases with frequency at a slope of
9 to 12 dB/octave, followed by an approximately constant or slightly decreasing ampli-
tude.The frequency at which the slope changes is called the knee frequency, and it cor-
responds to a dominant frequency in the pyroshock environment.The knee frequency
is often between 1000 and 5000 Hz for far-field pyroshock, but it could be higher or
lower in some cases. Near-field pyroshock may also exhibit this typical pyroshock
shock response spectrum except with a higher knee frequency. However, since near-
field pyroshock usually has broad-band frequency content, its shock response spectrum
often exhibits a more complex shape that contains numerous excursions but on aver-
age follows a 6-dB/octave slope over the entire frequency range of interest. Figure
26.10 shows an example of this type of near-field shock response spectrum.

No fixed rules define at what distance from the pyrotechnic source the near-field
pyroshock ends and the far-field pyroshock begins. It is more appropriate to classify
near- and far-field pyroshock according to the various test techniques that are
appropriate to employ in each case.

PYROSHOCK TESTING 26.17

FIGURE 26.10 Shock response spectrum and acceleration time-history for a near-field
pyroshock. The shock response spectrum is calculated from the inset acceleration time-
history using a 5 percent damping ratio.
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TEST TECHNIQUES FOR NEAR- AND FAR-FIELD PYROSHOCK

The pyroshock simulation techniques described in this chapter fall into two cate-
gories: (1) pyrotechnically excited simulations and (2) mechanically excited simu-
lations. A short-duration mechanical impact on a structure causes a response
similar to that produced by a pyrotechnic source. Although these mechanically ex-
cited simulations can be carried out with lower cost and better control than pyro-
technically excited simulations, they cannot produce the very high frequencies
found in near-field pyroshock. Mechanically excited simulations allow control of
dominant frequencies up to about 10,000 Hz (or higher for very small test items).
For environments requiring higher frequency content, a pyrotechnically excited
technique is usually more appropriate. The following general guidelines apply in
selecting a technique for simulating pyroshock:

Near-field pyroshock. For a test that requires frequency control up to and above
10,000 Hz, a pyrotechnically excited simulation technique is usually required.
Far-field pyroshock. For a test that requires frequency control no higher than
10,000 Hz, a mechanically excited simulation technique is usually acceptable.

These guidelines are not rigid rules, but they provide a reasonable starting point
when planning a pyroshock simulation test.

26.18 CHAPTER TWENTY-SIX, PART II

FIGURE 26.11 A typical shock response spectrum and acceleration time-history for a far-
field pyroshock.The shock response spectrum is calculated from the inset acceleration time-
history using a 5 percent damping ratio.The straight lines indicate tolerance bands (typically
±6 dB as shown) which might be applied for qualification test specification.
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QUANTIFYING PYROSHOCK FOR TEST SPECIFICATION

An intrinsic characteristic of pyroshock is its variability from one test to another.That
is, even though great care has been taken with the test technique, the measured
response in both the near and the far fields may vary a great deal from test to test.This
variability occurs in the situation where actual explosive devices are used and in the
laboratory where more controlled techniques are employed.As a result, various tech-
niques have been sought to quantify pyroshock for test specification. The purpose of
these techniques is to define the pyroshock in a manner that can be reproduced in the
laboratory and can provide a consistent evaluation for hardware that must survive
pyroshock in field environments.All techniques require that a measurement be made
of the actual pyroshock event at or near the location of the subsystem or component
that will be tested. The measurement may be acceleration, velocity, or displacement,
but acceleration is the most widely used measure.The measurement is then used with
one of the techniques below to obtain a test specification for pyroshock. The shock
response spectrum is considered to be conservative and a potential over-test of com-
ponents and subsystems. However, components and subsystems that survive labora-
tory tests specified using shock response spectra generally survive pyroshock field
environments, although they may be over-designed. Because aerospace systems
require lightweight components and subsystems, other techniques such as temporal
moments and shock intensity spectrum have been developed so that laboratory tests
can more closely simulate actual pyroshock events and allow tighter design margins.

Shock Response Spectra. By far the most widely used technique for quantifying
pyroshock is the shock response spectrum.This technique provides a measure of the
effect of the pyroshock on a simple mechanical model with a single degree-of-
freedom. Generally, a measured acceleration time-history is applied to the model,
and the maximum acceleration response is calculated. The damping of the model is
held constant (at a value such as 5 percent) for these calculations. An ensemble of
maximum absolute-value acceleration responses is calculated for various natural
frequencies of the model and the result is a maxi-max shock response spectra. A
curve representing these responses as a function of damped natural frequency is
called a shock response spectrum (see Chap. 23), and is normally plotted with log-
log scales. Velocity and displacement shock response spectra may be computed (see
Chap. 26, Part I), but are not commonly used for pyroshock specification. The shock
response spectrum for pyroshock has a characteristically steep slope at low frequen-
cies of 12 dB/octave that is a direct result of the minimal velocity change occurring
in a pyroshock. Occasionally, a pyrotechnic device, such as an explosive bolt cutter,
is combined with another mechanism, such as a deployment arm, to position com-
ponents for a particular event sequence. In this case, a distinct velocity change is
combined with the pyroshock event, and the low-frequency slope of the shock
response spectrum will reflect this velocity change. For a typical far-field pyroshock,
the low-frequency slope changes at the knee frequency, and the shock response spec-
trum approaches a constant value at high frequencies that is the peak acceleration in
the time-domain as shown in Fig. 26.11.A typical near-field pyroshock may have this
shape or may have the shape shown in Fig. 26.10. Conventionally, tolerance bands of
±6 dB are drawn about a straight-line approximation of the shock response spec-
trum for laboratory testing. An example of a typical maxi-max shock response spec-
trum is shown in Fig. 26.11 with the conventional ±6 dB tolerance bands.

Band-Limited Temporal Moments. The method of temporal moments may be
used for modeling shocks whose time durations are too short for nonstationary
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models and that contain a large random contribution.4 The method uses the magni-
tude of the Fourier spectrum in the form of an energy spectrum (Fourier spectrum
magnitude squared) that is smoothed or formed from an ensemble average to gen-
erate statistically significant values. Temporal moments of the time-histories are
used to represent how the energy is distributed in time. The moments are analogous
to the moments of the probability density functions and provide a convenient
method to describe the envelopes of complicated time-histories such as pyroshock.
The ith temporal moment mi(a) of a time-history f(t), about a time location a, is
defined as

mi(a) = �+∞

−∞
(t − a)i[f(t)]2 dt (26.2)

The time-history energy E is given by

E = �+∞

−∞
|F(ω)|2 dω (26.3)

where F(ω) is the Fourier transform of f(t). The first five moments are used in the
temporal moments technique. The zeroth-order moment m0 is the integral of the
magnitude squared of the time-history and is called the time-history energy.The first
moment normalized by the energy is called the central time τ.A central moment is a
moment computed about the central time, i.e., a = τ. The second central moment is
normalized by the energy and is defined as the mean-square duration of the time-
history. The third central moment normalized by the energy is defined as the skew-
ness and describes the shape of the time-history. The fourth central moment
normalized by the energy is called kurtosis. The moments are calculated for a shock
time-history passed through a contiguous set of bandpass filters. A product model is
formed using a deterministic window w(t) (see Chap. 25) and a realization of a
dimensionless stationary random process with unity variance x(t) as w(t)⋅x(t + τ). A
product model is then used to generate a simulation that has the same energy and
moments in the mean as the original shock. Band-limited moments characterize the
shock and not the response to the shock as the shock spectrum and do not rely on a
structural model.

Other Techniques. Other techniques to quantify pyroshock include the shock
intensity spectrum based on the Fourier energy spectrum,5 the method of least favor-
able response,6,7 and nonstationary models.8,9 These techniques are not commonly
used but may provide additional insight for quantifying pyroshocks. The Fourier
spectrum is an attractive alternative to shock response spectrum because it is easy to
compute and readily available in many software packages as a fast Fourier trans-
form (FFT). Since the Fourier spectrum is complex, both magnitude and phase
information is available. The magnitude generally has intuitive meaning, but the
phase is difficult to interpret and may be contaminated with noise at the high fre-
quencies present in pyroshock. The method of least favorable response provides a
method of selecting the phase to maximize the response of the system under test.
This method results in a conservative test provided that an appropriate measure-
ment point is chosen on the structure. Stationary models for random vibration have
been used for many years. Nonstationary models consist of a stationary process mul-
tiplied by a deterministic time-varying modulating function, which is a product
model.9 A nonstationary model is appropriate for pyroshock and approaches a sta-
tionary model as the time-record length is increased.

1
�
2π
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MEASUREMENT TECHNIQUES

Measurements of pyroshocks are generally made with accelerometers, strain gages,
or laser Doppler vibrometers (LDV). The accelerometers are used to measure
acceleration, and the strain gages and LDV are used to measure velocity. The strain
gages may also be used to sense force, stress, or strain. General shock measurement
instrumentation is applicable for pyroshock measurements (see Chap. 12); how-
ever, care must be taken to protect accelerometers from the high frequencies con-
tained in pyroshocks that may cause the accelerometers to resonate and, in some
cases, to fail. If accelerometers are excited into resonance, large-magnitude output
results and may exceed the maximum amplitude of the data acquisition system that
was chosen for the test. The result is that the data magnitude is clipped. If clipped,
the data are rendered useless and the results from the test will be greatly dimin-
ished. Several mechanically isolated accelerometers are available commercially
and should be used if there is a possibility of exciting the accelerometers into reso-
nance. There is only one mechanically isolated accelerometer that can provide the
wide-frequency bandwidth (dc to 10 kHz) required for pyroshock.10,11 Other
mechanical isolators generally provide a frequency bandwidth of about dc to 1 kHz.
Any mechanical isolator that is used in a pyroshock environment must be well
characterized over a range of frequencies and a range of acceleration values using
a shock test technique, for example, Hopkinson bar testing. Strain gages are useful
measurements of the pyroshock environment but are not easily translated into a
test specification. Strain gages have the advantage of high-frequency response (in
excess of dc to 40 kHz) provided that their size is appropriately chosen. Addition-
ally, strain gages do not have the resonance problems that accelerometers have.The
LDV provides velocity measurements that are not contaminated by cross-axis
response because the LDV only responds to motion in the direction of the laser
beam. The LDV is a noncontacting measurement and is easy to set up; consistent
measurements of pyroshock events have been obtained with a LDV.12,13 The LDV
has the disadvantage of being very expensive per channel in comparison to the
other measurement techniques, difficult to calibrate, and must have line of sight to
the measurement location.

Pyroshock Test Specifications. An acceleration or velocity time-history is not
adequate for specifying a pyroshock test. The time-history data must be analyzed
using one of the techniques discussed above to quantify the pyroshock for a test
specification. Ideally, the time-history data that are used to develop the qualification
test specification should be measured during a full-scale system test in which the
actual pyrotechnic device or devices were initiated. The full-scale test should be
accomplished with hardware that is structurally similar to the real hardware if the
real hardware is not available. A control point measurement is specified close to
each component or subassembly of interest, preferably at the attachment point to
measure the input pyroshock. Since full-scale testing is expensive, data from a simi-
lar application may be used to develop component or subassembly qualification test
specifications. This practice may result in over-tested or over-designed components
or subassemblies if a large margin is added to the test specification to account for the
uncertainty in the data. If this practice is used, the test specification should be
revised when better system data become available.

Once the time-history data have been acquired, the data should be scrutinized to
ensure their quality.3 The data should be free of zero-shifts and offsets. Acceleration
and velocity time-histories should be integrated and the results examined.The time-
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history data should be low-pass filtered at a designated cutoff frequency; a cutoff fre-
quency of 20 kHz is typical. The data must then be analyzed using the same tech-
nique as was used for analysis of the time-history data from which the test
specification was derived. Test margin and tolerance bands are applied to the data
analysis. For instance, if the shock response spectrum is being used, a straight-line
approximation of the shock response spectrum is used as the baseline for the test
specification process. A margin of �3 dB is typically added to the baseline shock
response spectrum, and a customary ±6-dB tolerance is used with the baseline shock
response spectrum. A typical test specification may allow the shock response spec-
trum from the actual test to fall outside the tolerance band at a specified number of
frequency points. Pyroshock tests are highly variable, and the engineer must specify
how much variability from test to test will be accepted; in some cases, a tighter, ±3-
dB tolerance may be required.Additionally, the specification should require that the
peak acceleration (or velocity) value and pulse durations are in agreement with the
intended values for the specified input pulse. Similar approaches are used for other
techniques for quantifying pyroshock.

In some cases, two or more pyroshock events, such as stage separation and an
explosive actuator, may be combined into a single test specification. If the events
are significantly different, the resulting test specification may be difficult or impos-
sible to meet. A better practice is to make separate test specifications for each
pyroshock event and to combine the specifications only in the case where a realiz-
able test results.

PYROSHOCK SIMULATION TECHNIQUES

PYROTECHNICALLY EXCITED NEAR-FIELD SIMULATION

Ordnance Devices. Linear, flexible detonating charges may be used to generate
pyroshocks for test purposes.An example of a test configuration using a flexible lin-
ear charge is shown in Fig. 26.12.A steel plate is suspended by bungee cords, and the
test item is mounted on the plate in the same manner as it is in actual usage. Flexible
linear charge is attached to the edges of the plate. The charge configuration may be
varied according to experience and the desired effect.14 For example, the charge may
be attached to the backside of the plate directly opposite to the test item. A mass-
mockup of the actual test item is used for the trial and error required to finalize the
test configuration. In some cases, the charges may be attached to a portion of the
structure where the test items are installed. Their storage, handling, and detonating
constitute a hazard to laboratory personnel and facilities. However, such a fixture
would normally be rather expensive because the structure would be damaged or
destroyed during each shock test. The shock produced in this manner may vary
greatly from test to test because actual explosives are used. However, this test con-
figuration has the advantage of reproducing the pyroshock with realistic high accel-
erations and high frequencies. To ensure repeatability, the grooves generated by the
charge into the surfaces of the shock plates should be machined down to eliminate
the porosity which tends to absorb and modify the explosive impacts. Other disad-
vantages are that a qualified explosives facility (with its associated safety proce-
dures) is required. In comparison to mechanical simulation techniques, considerable
time is needed to conduct the numerous trial tests required to experimentally deter-
mine the various test parameters.
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Scaled Tests. If the quantity of propellant or explosive is sufficiently large and
the influence of the pyrotechnic device is localized, a scaled portion of the structure
may be used in simulating the effects of the pyroshock as shown in Fig. 26.13 where
a missile section or rocket payload section is shown. This type of test assumes that
the influence of the pyrotechnic event is insignificant to other parts of the structure
and isolated to the section under test. Actual pyrotechnic device firings on space-
craft equipment and scientific instruments are conducted in the scaled test. Such a
test is usually an intermediate step in the design of the structure. Components in the
subassembly may have been qualified with a ordnance device, and the scaled test
adds another dimension of complexity to the qualification of the subassembly and
its individual components.

Full-Scale Tests. In some cases, if the structure is sufficiently complex, a full-
scale test may be warranted. Full-scale tests, which include multiple firings of certain
critical pyrotechnic devices, are conducted to verify the structural integrity and
design functions as well as to qualify items of hardware that have not been previ-
ously qualified. Full-scale tests are conducted by actuation of the flight pyrotechnic
devices, which provide full-scale shock qualification. A full-scale test is usually the
last test in a sequence of increasingly complex tests; the sequence is from ordnance
to scaled tests to full-scale tests. The advantage of a full-scale test is that it is the real
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FIGURE 26.12 Ordnance-generated pyroshock simulator. (Courtesy of
National Technical Systems.)
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pyroshock event in its most complex form. The main objectives of the full-scale
pyroshock test firings are: (1) to define shock response in the vicinity of potentially
sensitive equipment so that component test specifications may be derived or verified
and (2) to conduct full-scale qualification and thus verify the design values for
shock.The disadvantage of a full-scale test is that considerable time and expense are
required to obtain all the required hardware.The hardware must then be assembled,
instrumented, and removed for post-test evaluation. Generally, special facilities are
required for the use of explosives.

MECHANICALLY EXCITED FAR-FIELD SIMULATION

Standard Shock-Testing Machines. Shock machines such as the drop tables
described in Part I of this chapter usually are not suitable for pyroshock simula-
tion. The single-sided pulses produced by these machines bear little or no resem-
blance to a pyroshock acceleration transient; such pulses produce significantly
greater velocity change than a pyroshock environment. A severe over-test at low
frequencies can be expected if a drop table is used to simulate pyroshock environ-
ments. This can result in failures of structural members that would not have been
significantly stressed by the actual pyroshock. However, in certain cases, drop
tables may produce acceptable pyroshock qualification testing. For example, if a
test item has significant design margin at low frequencies, then a drop table may be
acceptable. Also, if the lowest natural frequency of the test item is higher than the
over-tested low-frequency range, then the low-frequency over-test may be irrele-
vant since the affect on the test item is dominated by the peak g’s of the accelera-
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FIGURE 26.13 Scaled tests using representative structure.The test vehicle midbody
section is a portion of the full-scale structure where the explosive event is located.Two
input control stations A and B are used to determine that the test was properly con-
ducted. Response measurements are made at test specimens A and B. (Courtesy of
Wyle Laboratories.)
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tion time-history. In these cases there is
strong motivation to use drop tables
due to their common availability and
low test cost. If a drop table is selected
as a means of conducting a pyroshock
qualification test, the test item must be
subjected to a shock in both positive
and negative directions for each axis
tested, since the drop table produces
only a single-sided pulse.

Another application of a drop table
for pyroshock testing is the bounded
impact method15 as illustrated in Fig.
26.14, which shows the test item fixture
bounded by two springs (typically felt or
elastomeric pads). When the drop table
strikes the upper spring, the fixture
oscillates at the natural frequency of the
spring-mass system. This oscillation
ceases when the drop table rebounds
from the spring, resulting in an accelera-
tion transient that appears as a decayed
sinusoid with about two or three cycles.
The velocity change is much less than
for a haversine pulse, which results in a
shock spectrum with the desired slope of
9 to 12 dB/octave. Knee frequencies up
to about 2000 Hz are attainable with this
method.

Electrodynamic Shakers. Pyroshock environments can be simulated with an
acceleration transient produced on an electrodynamic shaker (see Chap. 25). In this
method the acceleration transient is synthesized so that its shock response spectrum
closely matches the test requirement. With this method a relatively complex shock
response spectrum shape can be matched within close tolerances up to about 3000
Hz. The equipment limits (maximum acceleration) restrict this method to the simu-
lation of lower-energy pyroshock environments. Even if the desired shock response
spectrum is precisely met, an over-test is likely due to the high mechanical imped-
ance of the shaker relative to the structure to which the test item is attached in a real
application.

Resonant Fixtures. This section describes a variety of resonant fixture tech-
niques used to simulate pyroshock environments. All of these methods utilize a fix-
ture (or structure) which is excited into resonance by a mechanical impact from a
projectile, a hammer, or some other device.A test item attached to the fixture is thus
subjected to the resonant response, which simulates the desired pyroshock. There is
no single preferred method since each has its own relative merits. Some of the meth-
ods require extensive trial-and-error iterations in order to obtain the desired test
requirement. However, once the procedures are determined, the results are very
repeatable. Other methods eliminate the need for significant trial and error but are
usually limited to pyroshock environments which exhibit the typical far-field char-
acter as explained in Fig. 26.13.
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FIGURE 26.14 Bounded impact test configu-
ration on a “standard” drop-table.
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Full-Scale Tests. Some mechanically excited simulation techniques involve
the use of an actual or closely simulated structure16,17 (e.g., an entire missile pay-
load section). The pyrotechnic devices (e.g., explosive bolt cutters) normally
located on this structure would then be replaced with hardware that allow a con-
trolled impact at this same location. Since a closely simulated structure is used, it is
anticipated that the impact will cause the modes of vibration of the structure to be
excited in a manner similar to the actual pyrotechnic source. In principle, test
amplitudes can be adjusted by changing the impact speed or mass. This method is
relatively expensive due to the cost of the test structure and because significant
trial and error is required to obtain the desired test specification. Since this method
applies to a specific application, it is not suited as a general-purpose pyroshock
simulation technique.

In a variation of the above method18 the pyrotechnic source and a portion of the
adjacent structure are replaced by a “resonant plate” designed so that its lowest-
resonance frequency corresponds to the dominant frequency produced by the
pyrotechnic device and its associated structure. The resonant plate is then attached
to the test structure in a manner which simulates the mechanical linkage of the
pyrotechnic source, as shown in Fig. 26.15.When this plate is subjected to a mechan-
ical impact, its response will provide the desired excitation of the test structure. A
resonant fixture has successfully simulated component shock response spectra for
frequencies up to 4000 Hz on a full-scale structure weighing 400 lb.19

General-Purpose Resonant Fixtures. Instead of developing application-
specific pyroshock methods as described above, it may be desirable to implement a
more general-purpose test method which can be used for a variety of test items
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FIGURE 26.15 Full-scale pyroshock simulation with resonant fixture. Measurements
at component locations confirm simulation success.
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and/or test specifications. This can be accomplished by using a simple resonant fix-
ture (usually a plate) instead of the complex structures described above. When such
a fixture is excited into resonance by a mechanical impact, its response can provide
an adequate pyroshock simulation to an attached test item. Excitation of the fixture
can be achieved as the result of the impact of a projectile, pendulum hammer, pneu-
matic piston, or the like on the fixture.The response of the fixture is dependent on a
large number of parameters including: (1) plate geometry and material, (2) impact
mass or speed, (3) impact duration, which is controlled with various impact materi-
als (e.g., metals, felt, elastomers, wood, etc.), (4) impact location, (5) test item loca-
tion, and (6) various clamps and plate suspension mechanisms. In theory these
parameters could be varied with the aid of an analytical model, but they are usually
evaluated experimentally. A significant effort is therefore required to obtain each
pyroshock simulation.

Mechanical Impulse Pyroshock (MIPS) Simulator. The MIPS simulator20, 21 is
a well-developed embodiment of the trial-and-error resonant fixture methods. It is
universally referred to by its acronym and is widely used in the aerospace industry. Its
design facilitates the easy variation of many of the parameters described above. The
MIPS simulator configuration shown in Fig. 26.16 consists of an aluminum mounting
plate which rests on a thick foam pad. The shock is generated by a pneumatic actua-
tor which is rigidly attached to a movable bridge, facilitating various impact loca-
tions. The impactor head is interchangeable so that different materials (lead,
aluminum, steel, etc.) may be used to achieve variation of input duration.Although a
triaxial acceleration measurement is usually made at the control point near the test
item, it is unlikely that the test requirement will be met simultaneously in all axes.
Separate test configurations must normally be developed for each test axis. Once the
test configuration and procedures are determined, the results are very repeatable.
The configuration for a new test specification can be obtained more quickly if records
of previous setups and results are maintained for use as a starting point for the new
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FIGURE 26.16 MIPS simulator. The mounting plate is excited
into resonance by an impact from the actuator. The plate response
simulates far-field pyroshock for the attached test item. (Courtesy of
Martin Marrietta Astrospace.)
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specification. Reference 19 provides some general guidelines for parameter varia-
tion, as well as results obtained from several different test configurations.

Tuned Resonant Fixtures with Fixed Knee Frequency. It is possible to greatly
reduce the amount of trial and error required by the MIPS simulator and other res-
onant fixture test methods. In order to do this, a simple resonant fixture is designed
so that its dominant response frequency corresponds to the dominant frequency in
the shock response spectrum test requirement. These tuned resonant fixtures are
primarily limited to pyroshock environments which exhibit more or less typical
characteristics with knee frequencies up to 3000 Hz (or higher for small test items).
The basic design principle is to match the dominant fixture response frequency
(usually the first mode) to the shock response spectrum knee frequency. When this
fixture is excited into resonance, it will “automatically” have the desired shock
response spectrum knee frequency and the typical 9-dB/octave initial slope. This
concept was originally developed using a plate excited into its first bending mode
and a bar excited into its first longitudinal mode.22 The methods described in the
following sections require relatively thick and massive resonant fixtures compared
to the structures to which the test item might be attached in actual use. Because of
this, the motion imparted to the test item attached to a resonant fixture is approxi-
mately in-phase from point-to-point across the mounting surface. Whereas, the
actual pyroshock motion may not be in-phase if the test item is mounted to a thin
structure in actual use.The in-phase motion of resonant fixtures yields some degree
of conservatism when selecting these methods for qualification testing. One signif-
icant advantage of using a thick resonant fixture is that its response is not greatly
influenced by the attached test item. This allows the same test apparatus to be used
for a variety of different test items.

Each of the tuned resonant fixture test methods described below produces a
simulated pyroshock environment with the same basic characteristics. These simi-
larities are illustrated in Fig. 26.17, which shows a typical acceleration record and
shock response spectrum from the tunable resonant beam apparatus described
later. The other methods produce pyroshock environments with initial shock
response spectra slopes that are slightly less than 9 dB/octave due to a small veloc-
ity change inherent with these other methods. The shock response spectrum shown
in Fig. 26.17 exhibits the desired typical shape, and the energy is concentrated at the
knee frequency. The absence of significant frequency content above the knee fre-
quency may cause the shock response spectrum to be too low at these frequencies.
In practice the attached test item adds some frequency content above the knee fre-
quency, which tends to increase the shock response spectrum. These test methods
allow good control and repeatability of the shock response spectrum, especially
below the knee frequency.

When using tuned resonant fixtures, the test item is usually attached to an inter-
mediate fixture such as a rectangular aluminum plate. This adapter fixture must be
small enough and stiff enough so that the input from the resonant fixture is not sig-
nificantly altered. Since the resonant fixture is designed to produce the pyroshock
simulation in only one direction, the adapter fixture should be designed so that it
may be rigidly attached to the resonant fixture in three orthogonal orientations (e.g.,
flat down and on each of two edges). The acceleration input should be measured
next to the test item on the adapter fixture. It is good practice to measure the accel-
eration in all three axes because it is possible (although infrequently) to simultane-
ously attain the desired test specification in more than one axis.

A number of different techniques are used to provide the mechanical impact
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required by the tuned resonant fixture methods described below. Pendulum hammers
of the general type shown in Fig. 26.8 have been used, as well as pneumatically driven
pistons or air guns. The method which is selected must provide repeatability and con-
trol of the impact force, both in magnitude and duration.The magnitude of the impact
force controls the overall test amplitude, and the impact duration must be appropriate
to excite the desired mode of the tuned resonant fixture. In general the impact dura-
tion should be about one-half the period of the desired mode. The magnitude of the
impact force is usually controlled by the impact speed, and the duration is controlled
by placing various materials (e.g., felt, cardboard, rubber, etc.) on the impact surfaces.

Resonant Plate (Bending Response). The resonant plate test method23, 24 is
illustrated in Fig. 26.18, which shows a plate (usually a square or rectangular alu-
minum plate) freely suspended by some means such as bungee cords or ropes.A test
item is attached near the center of one face of the plate, which is excited into reso-
nance by a mechanical impact directed perpendicular to the center of the opposite
face.The resonant plate is designed so that its first bending mode corresponds to the
knee frequency of the test requirement.The first bending mode is approximately the
same as for a uniform beam with the same cross-section and length. Appendix 1.1
provides a convenient design tool for selecting the size of the resonant plate. The
plate must be large enough so that the test item does not extend beyond the middle
third of the plate.This assures that no part of the test item is attached at a nodal line
of the first bending mode. Usually, the resonant fixture with an attached test item is
insufficiently damped to yield the short-duration transient (5 to 20 milliseconds)
required for pyroshock simulation. Damping may be increased by adding various
attachments to the edge of the plate, such as C-clamps or metal bars. These attach-
ments may also lower the resonance frequency and must be accounted for when
designing a resonant plate.
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FIGURE 26.17 Typical shock response spectrum and acceleration time-
history from a tuned or tunable resonant fixture test. The shock response
spectrum is calculated from the inset acceleration time-history using a 5 per-
cent damping ratio.
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Resonant Bar (Longitudinal Response). The resonant bar concept23,24 is illus-
trated in Fig. 26.19, which shows a freely suspended bar (typically aluminum or steel)
with rectangular cross section. A test item is attached at one end of the bar, which is
excited into resonance by a mechanical impact at the opposite end.The basic princi-
ple of the resonant bar test is exactly the same as for a resonant plate test except that
the first longitudinal mode of vibration of the bar is utilized.The bar length required
for a particular test can be calculated by

l = (26.4)

where l = length of the bar
c = wave speed in bar
f = first longitudinal mode of the bar (equal to desired knee frequency)

The other dimensions of the bar can be sized to accommodate the test item, but they
must be significantly less than the bar length.As with the resonant plate method, the
response of the bar can be damped with clamps if needed. These are most effective
if attached at the impact end.

Tunable Resonant Fixtures with Adjustable Knee Frequency. The tuned res-
onant fixture methods described above can produce typical pyroshock simulations
with knee frequencies that are fixed for each resonant fixture. A separate fixture

c
�
2f
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FIGURE 26.18 Resonant plate test method. The first bending
mode is excited by an impact as shown. The plate’s response simu-
lates far-field pyroshock for the attached test item.The plate is sized
so that its first bending mode frequency corresponds to the desired
knee frequency of the test.
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must be designed and fabricated for each test requirement with a different knee fre-
quency, so that a potentially large inventory of resonant fixtures would be necessary
to cover a variety of test requirements. For this reason tunable resonant fixture test
methods were developed which allow an adjustable knee frequency for a single test
apparatus.

Tunable Resonant Bars. The frequency of the first longitudinal mode of vibra-
tion of the resonant bar shown in Fig. 26.19 can be tuned by attaching weights at
selected locations along the length of the bar.24 If weights are attached at each of the
two nodes for the second mode of vibration of the bar, then the bar’s response will be
dominated by the second mode (2f). Similarly, if weights are attached at each of the
three nodes for the third mode of the bar, then the third mode (3f ) will dominate. It
is difficult to produce this effect for the fourth and higher modes of the bar since the
distance between nodes is too small to accommodate the weights. This technique
allows a single bar to be used to produce pyroshock simulations with one of three dif-
ferent knee frequencies. For example a 100-in. (2.54-m) aluminum bar can be used for
pyroshock simulations requiring a 1000-, or 2000-, or 3000-Hz knee frequency. If the
weights are attached slightly away from the node locations, the shock response spec-
trum tends to be “flatter” at frequencies above the knee frequency.25

Another tunable resonant bar method26 can be achieved by attaching weights
only to the impact end of the bar shown in Fig. 26.19. This method uses only the
first longitudinal mode, which can be lowered incrementally as more weights are
added. A nearly continuously adjustable knee frequency can thus be attained over
a finite frequency range.The upper limit of the knee frequency is the same as given
by Eq. (26.3) and is achieved with no added weights. In theory, this knee frequency
could be reduced in half if an infinite weight could be added. However, a realizable
lower limit of the knee frequency would be about 25 percent less than the upper
limit.

Tunable Resonant Beam. Figure 26.20 illustrates a tunable resonant beam
apparatus26 which will produce typical pyroshock simulations with a knee frequency
that is adjustable over a wide frequency range. In this test method, an aluminum
beam with rectangular cross section is clamped to a massive base as shown. The
clamps are intended to impose nearly fixed-end conditions on the beam. When the
beam is struck with a cylindrical mass fired from the air-gun beneath the beam, it will
resonate at its first bending frequency, which is a function of the distance between
the clamps. Ideally, the portion of the beam between the clamps will respond as if it
had perfectly fixed ends and a length equal to the distance between the clamps. For
this ideal case, the frequency of the first mode of the beam varies inversely with the
square of the beam length. In practice, the end conditions are not perfectly fixed, and
the frequency of the first mode is somewhat lower than predicted. This method pro-
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FIGURE 26.19 Resonant bar test method. The first longitudinal bar mode is excited by
an impact as shown. The bar is sized so that its first normal mode frequency corresponds
to the desired knee frequency in the test.
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vides a good general-purpose pyroshock simulator, since the knee frequency is con-
tinuously adjustable over a wide frequency range (e.g., 500 to 3000 Hz). This tun-
ability allows small adjustments in the knee frequency to compensate for the effects
of test items of different weights.
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CHAPTER 27
APPLICATION OF

DIGITAL COMPUTERS

Marcos A. Underwood

INTRODUCTION

This chapter introduces numerous applications and tools that are available on and
with digital computers for the solution of shock and vibration problems. First, the
types of computers that are used, the associated specialized processors, and their
input and output peripherals, are considered.This is followed by a discussion of com-
puter applications that fall into the following basic categories: (1) numerical analy-
ses of dynamic systems, (2) experimental applications that require the synthesis of
excitation (driving) signals for electrodynamic and electrohydraulic exciters (shak-
ers), and (3) the acquisition of the associated responses and the digital processing of
these responses to determine important structural characteristics.

The decision to employ a digital computer–based system for the solution of a
shock or vibration problem should be made with considerable care. Before particu-
lar computer software or hardware is selected, the following matters should be care-
fully considered.

1. The existing hardware and/or software that is or is not available to perform the
required task.

2. The extent to which the task or the existing software/hardware must be modified
in order to perform the task.

3. If no applicable software/hardware exists, the extent of the development effort
necessary to create the suitable software and/or hardware subsystems.

4. The detailed assumptions needed in the software/hardware in order to simplify
its development (e.g., linearity, proportional damping, frequency content, sam-
pling rates, etc.).

5. The ability of the software/hardware to measure and compute the output infor-
mation required (e.g., absolute vs. relative motion, phase relationships, rotational
information, etc.).
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6. The detailed input and output limitations of the needed system software and/or
hardware (types of excitation signals, voltage ranges, minimum detectable signal
amplitudes, calculation rates, control speed, graphic outputs, setup parameters,
etc.).

7. The processing power and time needed to perform the task.
8. The algorithms and hardware features that are needed to perform the task.

After these matters are resolved, the user must realize that the results obtained
from the output of a computer system can be no better than its available inputs. For
example, the quality of the natural frequencies and mode shapes obtained from a
structural analysis software system depends heavily on the degree to which the
mathematical model employed represents the actual mass, stiffness, and damping of
the physical structure being analyzed (see Chap. 21). Likewise, a spectral analysis of
a signal with poor signal-to-noise ratio will provide an accurate spectrum of the sig-
nal plus the measurement noise, but not of the signal amplitudes that fall below the
noise floor (see Chap. 22).

DIGITAL COMPUTER TYPES

The digital computer types that are used to solve shock and vibration problems are
varied. There are general-purpose or specialized digital computers. It is generally
better to use general-purpose computers whenever possible, since these types of dig-
ital computers are supported with the best graphics, applications development, sci-
entific and engineering tools, and the wider availability of preexisting applications
software. However, even within these general categories, there are various processor
or computer configurations available to help solve shock and vibration problems.
The following sections provide definitions, descriptions, and discussions of the appli-
cability of general-purpose computers and specialized processors that can help solve
shock and vibration problems.

GENERAL PURPOSE

General-purpose computers are computers designed to solve a wide range of prob-
lems. They are optimized to allow many individual users to access the particular
computer system’s resources. They range from large central systems like main-
frames, which can handle thousands of simultaneous users, to personal computers,
which are designed to serve one interactive user at a time and provide direct and
easy access to the computer system’s computational capability through thousands of
existing applications and its graphical user interface. These are personified by per-
sonal computers based on Wintel (i.e., Windows and Intel) or Power PC technolo-
gies. In the following, mainframes, workstations, personal computers, and palmtop
digital computers are discussed from the viewpoint of their applicability to solve
shock and vibration problems.

Mainframes. Mainframe computers are computer systems that are optimized to
serve many users simultaneously. They typically have large memories, many parallel
central processing units, large-capacity disk storage, and high-bandwidth local net-
work and Internet connections.These systems, when available, can be used to solve the
largest shock and vibration simulations, where very large finite element models or
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other discrete system models require large memories and the processing power that
mainframes provide.They are also used for web or disk server functions to networked
workstations and personal computers. Mainframe computers are increasingly being
replaced by either powerful workstation or personal computer–based systems.

Workstations. Workstations are computer systems that provide dedicated com-
puter processing for individual users that typically are involved in technically spe-
cialized and complex computing activities. These computer systems usually run a
version of the UNIX operating system using a graphical user interface that is based
on X-windows; X-windows is a set of libraries of graphical software routines, devel-
oped by an industry consortium that provide a standard access to the workstation’s
graphics hardware through a graphical user interface. Workstations often are based
on reduced instruction set computer systems, to be discussed in a later section, with
significant floating point processing power, sophisticated graphic hardware systems,
and access to large disk and random access memory systems. This suits them for
computer-assisted engineering activities like large-scale simulations, mechanical and
electrical system design and drafting, significant applications in the experimental
area that involve many channels of data acquisition and analysis, and the control of
multiexciter vibration test systems. They are designed to efficiently serve one user,
but are inherently multiuser, multitasking, and multiprocessor in nature, and can
serve as a suitable replacement for mainframes in the server arena. These systems
are now mature, with capability still expanding, but merging in the future with high-
powered personal computers. However, due to their maturity, they have an inherent
reliability advantage over personal computers, and thus have a higher suitability for
mission-critical applications. Newer versions of UNIX, like LINUX, allow personal
computer hardware to be used as a workstation, affording the power and reliability
of workstations with the convenience of personal computer hardware.

Personal Computers. Personal computers (PCs) are computer systems that are
intended to be used by casual users and are designed for simplicity of use. PCs orig-
inally were targeted to be used as home- and hobby-oriented computers. Over the
years, PCs have evolved into systems that have central processing units that rival
those of workstations and some older mainframes. PC operating systems have also
evolved to provide access to large disk and random access memories, and a sophisti-
cated graphical user interface. They have many applications in the shock and vibra-
tion arena that are available commercially. These applications include sophisticated
word processors, spreadsheet processors, graphics processors, system modeling tools
like Matlab, design applications, and countless other computer-aided engineering
applications.

There are also many experimental applications like modal analysis, signal analy-
sis, and vibration control systems that are implemented using PCs. These types of
systems are typically less expensive when they are built using PCs rather than work-
stations. At this time, however, workstations still provide greater performance and
reliability than PCs. PC operating systems are not as robust as those that run on
workstations, although this may change in the future. PCs, however, are ubiquitous
and the hardware and software used to make them continues to expand in capabil-
ity and reliability. It is likely that the PC and workstation categories will ultimately
merge, hopefully preserving the best of both worlds. Currently, most PCs are based
on Wintel technologies, with a smaller percentage based on Power PC technologies.

Palmtops. Palmtop computers (also called hand-held computers) are computer
systems that are designed for extreme portability and moderate computing applica-
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tions. This type of digital computer system is an outgrowth of electronic organizers.
They are small enough to fit in a shirt pocket, are battery-powered, have small
screens, and thus are useful for note-taking, simple calculations, simple word pro-
cessing, and Internet access. They support simplified versions of popular personal
computer applications with many also supporting handwriting and voice recogni-
tion. They can be employed in the shock and vibration field as remote data gather-
ers that can connect to a host computer to transfer the acquired data to it for further
processing. The host computer is typically a personal computer or workstation.

SPECIALIZED PROCESSORS

Specialized processors are designed for a particular activity or type of calculation
that is being performed.They consist of embedded, distributed, digital signal proces-
sors, and reduced instruction set computer processor architectures. These systems
typically afford the most performance for shock and vibration applications, but at a
higher level of complexity than that associated with the general purpose computers
that were previously discussed. Included in this category are specialized peripherals
such as analog-to-digital (A/D) converters and digital-to-analog (D/A) converters
that provide the fundamental interfaces between computer systems and physical
systems like transducers and exciters, which are used for many shock and vibration
testing and analysis applications. Specialized processor architectures are used exten-
sively in shock and vibration experimental applications, since they provide the nec-
essary power and structure to be able to accomplish some of the more demanding
applications like the control of single or multiple vibration test exciters, or applica-
tions that involve the measurement and analysis of many response channels from a
shock and vibration test.

Embedded Processors. Embedded processors are computer systems that do not
interact directly with the user and are used to accomplish a specialized application.
This type of system is part of a larger system where the embedded portion serves as
an intelligent peripheral for a general purpose computer host like a workstation or
personal computer–based system. The embedded subsystem is used to perform
time-critical functions that are not suitable for a general purpose system due to lim-
itations in its operating systems. The operating system used for embedded proces-
sors is optimized for real-time response and dedicated, for example, to the signal
synthesis, signal acquisition, and processing tasks. The embedded system typically
communicates with the host processor through a high-speed interface like Ethernet,
small computer system interconnect (SCSI), or a direct communication between the
memory busses of the embedded and host computer systems. An embedded com-
puter system does not interface directly with the computer system user, but uses the
host computer system for this purpose. An example of an embedded system, which
uses distributed processors, is shown in Fig. 27.1. Here the host computer is used to
set the parameters for the particular activity, for example, shock and vibration con-
trol and analysis, and uses the embedded computer subsystem to accomplish the
control and analysis task directly. This frees the host processor to simply receive the
results of the shock and vibration task, and to create associated graphic displays for
the system user.

Distributed Computer Systems. Distributed computer systems are digital com-
puters that accomplish their task by using several computer processor systems in
tandem to solve a problem that cannot be suitably solved by an individual computer
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or processor system.This type of computer system typically partitions its task in such
a way that each part can be executed in parallel by its respective processor. This
enables the use of several specialized processors to separately accomplish a
demanding subtask, and thus the overall shock and vibration task, in a way that may
not be possible with the use of a single general purpose computer system.

An example of this type of system, as shown in Fig. 27.1, is a distributed and
embedded computer system that uses digital signal processors to process data being
received from an A/D converter by filtering it and extracting the pertinent signal
characteristics needed as part of a shock and vibration test.This filtered data, and its
extracted characteristics, are subsequently sent to a more general processor to per-
form additional analysis on the data. The results of this more general analysis may
yield a time-series data stream that is sent to another digital signal processor for fil-
tering, and then sent to an output D/A converter to produce signals that are used to
excite a system under test. Figure 27.1 also shows, in the form of a block diagram, a
typical form and application of a distributed and embedded subsystem as it would be
used in a shock and vibration test. A specialized embedded operating system is typ-
ically used by the distributed system’s central processing unit (CPU) to coordinate
the communications between and with the two digital signal processor subsystems.
The host processing system is used to interface with the overall system’s user.

Digital Signal Processors. Digital signal processors (DSPs) are specialized
processors that are optimized for the multiply-accumulate operations that are used
in digital filtering and linear algebra–related processing. They are used extensively
in shock and vibration signal analysis and vibration control systems. These proces-
sors are ideal to implement digital filters, for sample-rate reduction and aliasing pro-
tection1 (see Chap. 14), fast Fourier transform (FFT)–based algorithms (see Chap.
22), and digital control systems. Linear algebra problems, like those encountered in
signal estimation, filtering, and prediction, are also performed efficiently by this
architecture.2,3 The previous example of an embedded and distributed system in Fig.
27.1 also shows a typical application of DSP technology. The development of this
digital computer architecture has empowered much of the audio and video signal
processing systems in current use. It has also enabled many of the shock and vibra-
tion experimental applications now in use.

Reduced Instruction Set Computer. Reduced instruction set computer (RISC)
systems are computer systems based on specialized processors that are optimized to
execute their computer instructions in a single CPU cycle. In order to execute
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instructions in a single cycle, these processors typically are designed to execute only
simple instructions at a higher rate than is possible with complex instruction set com-
puters (CISCs) like those used in many personal computer and mainframe computer
systems. Current RISC systems also have multiple execution units that are part of
the CPU and thus can execute several instructions in parallel. Such systems are
called super-scalar RISC systems. RISC systems also have large internal memories,
within the processor’s integrated circuits, that are called cache memories, that keep
the most recently executed instructions and data.This further speeds the computer’s
ability to execute instructions. Floating point instructions are also heavily optimized,
which give this type of processor an advantage for shock and vibration applications.
However, CISC processors are evolving. They are incorporating the best ideas from
RISC designs and, as time passes, these two types of computer architectures will
tend to merge.

RISC processors were originally developed for high-powered workstations that
run the UNIX operating system. Now they are being used more in the embedded
application arena for things like digital video, sophisticated game consoles, and
increasingly in experimental applications for shock and vibration in systems like the
example embedded system shown in Fig. 27.1. In these systems, the embedded and
distributed system CPU is typically a RISC processor running an embedded real-
time operating system (RTOS) to coordinate its activity and the activities of the
other specialized processors that are used, as in Fig. 27.1.

A/D and D/A Converters for Signal Sampling and Generation. A/D and D/A
converters are fundamental to the applications of digital computers to the field of
shock and vibration. They provide a fundamental interface between the analog
nature of shock and vibration phenomena and the digital processing available from
modern computing systems. These important subsystems are now realized by single
integrated circuits (ICs), often incorporating most of the filtering needed for
antialiasing (see Chaps. 13, 14, and 22) for A/D converters, and anti-imaging for D/A
converters. This is particularly true of those A/D converters that use sigma-delta
(Σ∆) technology, which employs (1) simple analog signal preprocessing, (2) an inter-
nal sampling rate that is much higher than the signal’s frequency bandwidth, (3)
internal low accuracy A/D and D/A converters coupled with advanced feedback
control processing, and (4) internal digital signal processing to reduce the output
sampling rate and increase the output signal’s resolution.4 In practice, even when
using Σ∆ technology, additional analog circuitry is needed to complete the antialias-
ing and anti-imaging function, and also to add needed signal amplification and con-
ditioning to more fully utilize the resolution of modern A/D and D/A converters.

A/D Converters and Data Preparation. A/D converters furnish the analog-to-
digital conversion function, which is the process by which an analog (continuous)
signal is converted into a series of numerical values with a given binary digit (bit)
resolution (see Chap. 22). This is the first step in any digital method. The A/D con-
verter operation is generally built into self-contained digital analysis systems that
use the A/D converter subsystem as a peripheral. The main CPU within the digital
analysis system is typically a personal computer or a high-performance workstation.
This CPU is used to set up the A/D converter’s data-acquisition parameters such as
the sampling rate, input-voltage range, frequency range, input data block size (dura-
tion of signal to be digitized), and the number of data blocks to be digitized. The
acquired data may then be subsequently analyzed offline by the digital analysis sys-
tem, or in real-time as the test progresses. Examples of A/D converter applications
are shown in Figs. 27.1 and 27.2. If the digital processing is to be performed on a
general-purpose scientific computer at another facility, then the data is captured to
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local storage on the digital analysis system so that it can then be transported to the
remote scientific computer, either by hard disk, by the Internet, or by other facility
methods or networks.

A prime advantage of digital analysis methods is that the time-history needs to be
digitized with an A/D converter and digitally recorded only once. Subsequently, the
recorded data can be analyzed using various methods and at various times. Some-
times, the need to digitally record a time-history may be omitted if only real-time
interactive signal analysis is needed. However, if the test data is digitized and stored
during a test using real-time signal analysis, the problems associated with not antici-
pating the need for a particular signal analysis result during a test can be avoided by
being able to reanalyze the test data that was digitally recorded.

In Fig. 27.2, the input signal from the system under test is amplified by the input
amplifier to maximize the A/D converter’s resolution. The amplified signal is then
filtered to remove high-frequency energy in the input signal that could be aliased
(see Chap. 22), and then is passed to the A/D converter for digitization. The digital
time series that the A/D converter produces is then sent to a digital signal processor
for additional filtering and perhaps sample-rate reduction, or other needed special-
ized processing before it is sent to the host processor. For each input channel, the
combination of (1) the input amplifier, (2) the antialiasing filter, (3) the A/D con-
verter, and (4) the DSP, is called the input subsystem and is used by digital vibration
control systems to be discussed later.

The integrated circuits in many A/D converters, such as those shown in Figs. 27.1
and 27.2, employ Σ∆ technology.4 The technology uses oversampling techniques to
provide a higher oversampling ratio (the sampling frequency divided by the highest
frequency of interest). This reduces the need for complexity in the antialias filter
from that required for more conventional A/D converters, which use a lower over-
sampling ratio, like 2.56, and thus need complex antialias analog filters with very
narrow transition bands1,4 (the frequency region between the filter’s cutoff fre-
quency and the start of its stopband). Σ∆ A/D converters are typically implemented
as shown in Fig. 27.3, which illustrates their usual structure in the form of a block
diagram.

In Fig. 27.3, the Σ∆ modulator (the device that converts the analog input into its
digital representation) and digital filter1 operate at sampling rates K times higher
than the A/D converter’s output sampling rate fs in samples per second (sps). In this
example, the oversampling ratio of the modulator is K. The digital filter reduces the
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sampling rate from that used in the modulator section to fs by successively filtering
and decimating, usually in stages, to reduce the complexity of the digital filter. Most
current A/D converter designs can provide alias-free output samples at an fs that is
2.2 times the highest frequency of interest (the acquisition bandwidth). For example,
if the A/D converter is operated with a 51.2 ksps sampling rate, then its output will
be alias-free for an acquisition bandwidth (ABW) of 23.27 kHz. However, most dig-
ital systems used for shock and vibration testing applications, for example, typically
process the data with an ABW of 20 kHz, thus using an effective oversampling ratio
of 2.56.The modulator typically performs the initial sampling of the analog input sig-
nal with an internal oversampling ratio of 64, which results in an internal oversam-
pled rate of 3.2768 Msps (64 times 51.2 ksps). The use of this internal sampling rate
results in signal values that will alias if their frequency is above the Nyquist fre-
quency fA, defined as one-half the sample rate, that is, fA = fs/2 (see Chap. 22). How-
ever, only frequencies higher than 3.2568 MHz will alias into the 20 kHz ABW of
this example.13,31 The antialias filter thus only needs to attenuate signal frequencies
larger than 3.2568 MHz to ensure alias-free data below 20 kHz, and thus can have a
transition bandwidth from 20 kHz to 3.2568 MHz.4,5 Since the complexity of the
needed antialiasing filter is largely determined by the narrowness of its transition
bandwidth, this large resultant transition bandwidth, which corresponds to the large
oversampling ratio of 64, significantly simplifies the design of the needed antialias
filter. Higher-signal ABWs can be obtained by operating the A/D converter at a
higher sample rate. Output sample rates as high as 204.8 ksps, while maintaining
good low-frequency performance, are becoming available, which provide an ABW
of 80 kHz when using a 2.56 oversampling ratio.

The modulator4 of the A/D converter shown in Fig. 27.3 is at the heart of the A/D
converter design, and thus its structure is an important determinant of its resultant
performance. An example of its internal structure is shown in Fig. 27.4, which pres-
ents an example of a first-order4 modulator. Such first-order modulators show the
basic ideas underlying Σ∆ technology. However, many current Σ∆ A/D converters
employ higher-order modulators. These higher-order modulators use a number of
integrators, as shown in Fig. 27.4, equal in number to the order of the Σ∆ modulator.
These are either used in a cascade of first-order modulators, as in Fig. 27.4, or as a
combination of integrators that are used in a multiple feedback loop, equal to the Σ∆
modulator order,4 again as shown in Fig. 27.4.

At the input of the modulator shown in Fig. 27.4, there is a comparator that com-
pares the value of the output voltage of the low-bit D/A converter and the analog
input voltage, and passes this difference to an integrator.The integrated error voltage
is passed to a low-bit A/D converter, typically with the same number of bits as the
D/A converter, usually 1 or 2 bits, which then makes a digital output available from
the Σ∆ modulator at its oversampled rate. The short-term averages of this low-
resolution digital output sample can be made very close in value to the digitized value
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of the analog input at a given bit resolution.4 The digital filter that follows the Σ∆
modulator in Fig. 27.3 is designed to both average these samples and thereby increase
their digital resolution, as well as reduce their sample rate while performing as a dig-
ital antialiasing filter.4 The digital filter also causes delay effects in Σ∆ A/D converters
that can cause problems when used with digital vibration control systems. This is due
to the digital filter’s group delay,1,4 which is typically on the order of 34 samples, and
which can cause closed-loop stability problems if not addressed properly.

D/A Converters and Signal Synthesis. As discussed previously, D/A converters
convert a digital time series into an analog signal. This analog signal will have a
“staircase” or zero-order hold nature.5 This occurs because the D/A converter out-
put signal is held constant for an output sample-rate period, and then is changed
according to the next digital sample at the next sample-clock period. This staircase
nature of the output D/A converter signal causes its analog output signal spectrum
to have high-frequency terms, in addition to those present in its digital time series
spectrum, with their frequency content centered about the D/A converter’s sample-
rate frequency, both below the sample rate and above the sample rate, and its inte-
ger multiples.5 These somewhat symmetrical spectral lobes that appear in the D/A
converter output signal spectrum, and that are centered at the sample-rate fre-
quency and its harmonics, are called signal images.5 These spectral lobes have a
bandwidth double that of the bandwidth of the digital time series that is being sent
to the D/A converter.5 The spectrum of these signal images has a sin(x)/x envelope
that is due to the zero-order hold nature of the D/A converter. They are the coun-
terpart to aliasing that occurs with A/D converter sampling (see Chap. 22). These
signal images should be removed before using the D/A converter output signal to
excite a system under test. For this reason and others, the output subsystem should
be organized as is shown in Fig. 27.5.

In Fig. 27.5, the signal flow is the reverse of that for the A/D converter–based input
subsystem, as shown in Figs. 27.1 and 27.2. In Fig. 27.5, the output signal flows from a
local high-speed disk storage subsystem into the host processor, which formats it for
the digital signal processor in the output subsystem. The digital signal processor per-
forms some filtering and perhaps increases the sample rate to minimize the impact of
output signal images, moving them higher in frequency and lower in amplitude. This
filtered and processed output time series is then sent to the D/A converter to produce
an analog voltage.The D/A converter output voltage is filtered by an anti-imaging fil-
ter to remove any signal images that may still be present. This filtered signal is then
passed to the output attenuator subsystem to set the final output signal amplitude.
The attenuator is used to maximize the D/A converter output resolution. Typically,
additional output filtering is provided by the analog circuitry that is part of the atten-
uator. Digital vibration control systems use the output subsystem shown in Fig. 27.5.

APPLICATION OF DIGITAL COMPUTERS 27.9

FIGURE 27.4 Typical first-order Σ∆ modulator.

8434_Harris_27_b.qxd  09/20/2001  11:51 AM  Page 27.9



Σ∆ D/A converter IC designs are also used for shock and vibration applications.
They use an internal signal flow that is the reverse of that for a Σ∆ A/D converter, as
shown in Fig. 27.3, but are otherwise very similar.4 It uses digital filters for output
interpolation and to increase the sampling rate from the system sampling rate to an
oversampling rate. This digital filter also causes group delay effects like those dis-
cussed for Σ∆ A/D converters. At this oversampling rate, a low-bit resolution D/A
converter output is produced, but at this high output sample rate, the signal image
filter shown in Fig. 27.5 is also simplified since the D/A converter signal images are
now centered at the oversampling frequency, which is typically 3.2768 MHz, instead
of the output sample rate frequency which is typically 51.2 kHz. As in the Σ∆ A/D
converter case, this results in a large transition bandwidth image filter. The low-bit
D/A converter output is filtered by the image filter to remove the signal images that
are still present. The image filter also acts like a short-term averager, and thus a
higher effective D/A converter resolution is obtained, again as in the associated dis-
cussion on Σ∆ A/D converters. For the Σ∆ D/A converter, the major design and
research efforts are in the Σ∆ de-modulator4 section (the device that converts the
digital representation of the output signal into an equivalent analog output).

ANALYTICAL APPLICATIONS

The development of large-scale computers with a very short cycle time (i.e., the time
required to perform a single operation, such as adding two numbers) and a very
large memory permits detailed analyses of structural responses to shock and vibra-
tion excitations. In this chapter, programs developed to perform these analyses are
categorized as general-purpose programs and special-purpose programs. References
3, 6, and 7 contain extensive discussions of both general-purpose and special-
purpose analytical programs.

GENERAL-PURPOSE PROGRAMS

Programs may be classed as general-purpose if they are applicable to a wide range of
structures and permit the user to select a number of options, such as damping (vis-
cous or structural), and various types of excitations (sinusoidal vibration, random
vibration, or transients).
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Finite Element Methods. The most numerous programs are classed as finite ele-
ment or lumped-parameter programs, as described in detail in Chap. 28, Part II. In a
lumped-parameter program, the structure to be analyzed is represented in a model
as a number of point masses (or inertias) connected by massless, spring-like ele-
ments. The points at which these elements are connected, and at which a mass may
or may not be located, are the nodes of the system. Each node may have up to six
degrees-of-freedom at the option of the analyst.The size of the model is determined
by the sum of the degrees-of-freedom for which the mass or inertia is nonzero. The
number of natural frequencies and normal modes that may be computed is equal to
the number of dynamic degrees-of-freedom. However, the number of frequencies
and modes that reliably represent the physical structure is generally only a fraction
of the number that can be computed. Each program is limited in capacity to some
combination of dynamic and zero mass degrees-of-freedom. The spring-like ele-
ments are chosen to represent the stiffness of the physical structure between the
selected nodes and generally may be represented by springs, beams, or plates of
specified shapes. The material properties, geometric properties, and boundary con-
ditions for each element are selected by the analyst.

In the more general finite element programs, the spring-like elements are not
necessarily massless, but may have distributed mass properties. In addition, lumped
masses may be used at any of the nodes of the system. The equations of motion of
the finite element model can be expressed in matrix form and solved by the methods
described in Chap. 28, Part I. Regardless of the computational algorithms employed,
the program computes the set of natural frequencies and orthogonal mode shapes of
the finite-dimensional system. These modes and frequencies are sorted for future
use in computing the response of the system to a specified excitation. For the latter
computations, a damping factor must be specified. Depending on the programs, this
damping factor may have to be equal for all modes, or it may have a selected value
for each mode.

Component Mode Synthesis. The method of modeling described above leads to
the creation of models with a very large number of degrees-of-freedom compared
with the number of modes and frequencies actually of interest. Not only is this
expensive, but it rapidly exceeds the capacity of many programs. To overcome these
problems, component mode synthesis8,9 techniques have been developed. Instead of
developing a model of an entire physical system, several models are developed, each
representing a distinct identifiable region of the total structure and within the capac-
ity of the computer program. The modes and frequencies of interest in each of these
models are computed independently. Where actual hardware exists for some or all
components, modes and frequencies from an experimental modal analysis may be
used (see Chap. 21).A model of the entire structure is then obtained by joining these
several models, using the component model synthesis technique. This model retains
the essential features of each substructure model, and thus the entire structure, with
a greatly reduced number of degrees-of-freedom.

Reduction of Model Complexity. Companion methods developed to reduce the
cost of analysis, permit the joining of several substructure models, and provide for
correlation with experimental results are described under reduction techniques in
Chap. 28, Part II. For cost reduction and joining of substructures, the objective is to
reduce the mass and stiffness matrices to the minimum size consistent with retaining
the modes and frequencies of interest, as well as other dynamic characteristics such
as base impedance. For test/analysis correlation, the objective is to match the
degrees-of-freedom of the test. It should be noted, however, that the Guyan reduc-
tion method (see Chap. 28, Part II) yields a mass matrix which is nondiagonal and
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which may be unacceptable for some computer programs. It is also of interest that
the rigid-body mass properties (total masses and inertias of the structure) are not
identifiable in the reduced mass matrix.

Boundary-Element Method. The boundary-element method10–12 involves the
transformation of a partial differential equation, which describes the behavior of an
enclosed region, to an integral equation that describes the behavior of the region
boundary. Once the numerical solution for the boundary is obtained, the behavior of
the enclosed region is then calculated from the boundary solution. Using this
method, three-dimensional problems can be reduced to two dimensions, and two-
dimensional problems can be reduced to one dimension. It is then necessary to
model in detail only the boundary of the enclosed region rather than the complete
region.A volume can be described by its surface, and an area can be described by its
edges.A discrete description of the boundary is much less detailed and less sensitive
to mesh distortion than a finite element model of the same region. However, each
boundary-element equation has a greater number of algebraic functions than the
corresponding finite element equation, and more processing power is required.

Two types of boundary-element methods exist. The direct method solves directly
for the physical variables on the surface. The system of equations is of a form where
the matrices are full, complex, nonsymmetric, and a function of frequency. Boundary
conditions for the direct method are the prescribed physical variables or impedance
relationships at the nodes. The indirect method solves for single- and double-layer
potentials on the surface, which can be postprocessed to obtain the physical vari-
ables. Matrices for the indirect method are complex-valued and symmetric, which
enables coupling with finite element models.

The boundary-element method is particularly powerful for solving field or semi-
infinite problems. It can be readily applied to coupled structural/acoustical analysis
or to solve for the boundary conditions of a finite element model. The method
assumes isotropic material properties and works well for structures that have a high
volume-to-surface ratio, but is not suitable for plate and thin-shell problems.

Distributed (Continuous) System Methods. A number of specialized programs
treating the analysis of distributed or continuous structural systems such as beams,
plates, shells, rings, etc., have been developed.6,7 Each program can be applied for a
broad, selectable range of physical properties and dimensions of the particular struc-
tural shape. Not all programs employ the same theory of elasticity. Thus, the user
must examine the theoretical basis on which the program was developed. For exam-
ple, the user must determine if the program includes such effects as rotary inertia or
shear deformation.

Preprocessing and Postprocessing of Shock and Vibration Data. Experience
with the general-purpose analysis programs previously described indicates two
major shortcomings: (1) a large amount of development time is required to debug
the structural models, and (2) the large amount of tabulations and/or much of the
results of the analysis are very difficult to evaluate. To alleviate these problems, pro-
grams have been written, called preprocessors and postprocessors, which use sophis-
ticated interactive graphics in combination with algorithms. Such programs greatly
simplify the construction and verification of the models, and presentation of the
results of the analysis. These highly efficient programs often can be run on personal
computers, independent of the larger computer required to exercise the model.
Many organizations have developed their own preprocessors tailored to their prod-
uct lines. Commercial software packages also are available for this purpose. Inter-
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faces have been developed so computer-aided design (CAD) and the CAD database
can exchange the obtained structural model data.

Statistical Energy Analysis. Statistical energy analysis (SEA)13 is used to predict
the structural response to broadband random excitation in frequency regions of high
modal density (see Chap. 11). In these frequency regions, response predictions for
individual normal modes are impractical. Structural response is treated in a statisti-
cal manner, that is, an estimate of the average response is computed in frequency
bands wide enough to include many normal modes. The structural system is divided
into components, with each component described by the parameters of modal den-
sity and loss factor. A third modeling parameter is the energy transmission charac-
teristics of the structural coupling between components. SEA is valuable in
predicting environments and responses for structures in the conceptual design
phase, where detailed structural information is not available. Chapter 11 describes
SEA in detail.

Personal Computer–Based Applications. Almost all analytical and experimen-
tal applications that are available on mainframe computers and workstations can
also be found for personal computer systems.14,15 Mainframes and workstations are
often used for applications requiring large amounts of memory and disk space; fast
processing speeds, such as large finite element models; and vibration control and
data analysis for tests with a great number of control and response channels. How-
ever, for most other computation efforts, both analytical and experimental, personal
computers can be employed. The following are examples of general-purpose appli-
cations that are widely used on the personal computer.

Technical computation packages are available that allow the user to obtain solu-
tions to dynamics equations without resorting to programming. Equations can be
entered using symbolic mathematical formulas that involve integrals, differentials,
matrices, and vectors. Solutions can be plotted in two and three dimensions. Such
equations may be solved using either symbolic or numerical methods. Additional
capabilities include curve fitting, fast Fourier transform (FFT) calculation, symbolic
manipulation, numerical integration, and the treatment of vectors and matrices as
variables.

Spreadsheet software developed for accounting can also be used to manipulate
vectors and matrices. Their graphical capabilities can be used to generate report-
quality plots. Commercial data acquisition systems can store time- or frequency-
domain information in files compatible with spreadsheets. Even ensemble averaging
can be accomplished for the computation of statistical functions (see Chap. 22).

Graphical programming software exists for data acquisition and control, data
analysis, and data presentation and visualization. Instruments such as oscilloscopes,
spectrum analyzers, vibration controllers, etc., can be emulated in graphical form.
These instruments can acquire, analyze, and graphically present data from plug-in
data acquisition boards or from connected instruments.15

SPECIAL-PURPOSE APPLICATIONS

The need for a special-purpose program6,7 may arise in several ways. First, for an
engineering activity engaged in the design, on a repetitive basis, of what amounts
analytically to the same structure, it may be economical to develop an analysis pro-
gram that efficiently analyzes that particular structure. The analysis of vibration iso-
lator systems, automobile suspension systems, piping systems, or rotating machinery,
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are examples. Similarly, parametric studies of a particular structure, either to gain an
understanding or to optimize the design, may require a sufficient number of com-
puter runs to justify the development of specialized software. A second type of
special-purpose program includes programs that in some way perform an unusual
type of analysis, for example, the analysis of nonlinear systems. Access to existing
special-purpose programs is generally more restricted than is access to general-
purpose programs, because they are often proprietary and their development
requires a substantial investment.

EXPERIMENTAL APPLICATIONS

The classification experimental applications covers uses of computers which involve,
in some way, the processing of shock and vibration information originally obtained
during the test or field operation of equipment.Two development streams led to the
applications described in later sections, namely, (1) the recognition of the computa-
tional efficiency of the fast Fourier transform (FFT) algorithm (see Chap. 14) and
other advanced digital signal processing algorithms, and (2) the development of
hardware FFT processors, using digital signal processor technology. These develop-
ments permit the use of digital computers for such tasks as vibration data analysis;
shock data analysis; and shock, vibration, and modal testing. The information result-
ing from such applications is in digital form, which permits more sophisticated engi-
neering evaluation of the information through further efficient digital processing,
e.g., regression analysis, averaging, etc.

Digital computers are used extensively in experimental applications such as (1)
the acquisition and processing of shock and vibration data associated with a test or
field operation of equipment, (2) controlling the vibration testing machine used to
accomplish many of these tests, and (3) modal testing. In each of these cases, a digi-
tal computer–based system, along with specialized signal acquisition, signal process-
ing, and signal generation hardware and software, is used to accomplish these
complex applications, as discussed in the following sections.

DIGITAL SHOCK AND VIBRATION DATA ANALYSIS16

The basic principles of digital shock and vibration data analysis are thoroughly cov-
ered in other chapters and their references, as summarized in Table 27.1. Only meth-
ods that are fundamental to the discussed applications of digital computers that are
not presented elsewhere are discussed here. Specifically, this section discusses (1)
the definition of the estimates of the spectral density and cross–spectral density
matrices used with multiexciter random vibration control systems; (2) tracking fil-
ters for the measurement of the amplitude and phase, as a function of frequency, of
response and control data taken during a swept-sine vibration test; (3) the synthesis
of transient signals that achieve a predetermined shock response spectrum (see
Chap. 26); and (4) frequency response estimation.

Spectral Density Matrix. The spectral density matrix (SDM) is a matrix that con-
sists of both power spectral density values as its diagonal elements and cross–spec-
tral density values as its off-diagonal elements. It is the natural extension to matrices
of the concepts of power spectral density and cross–spectral density that are dis-
cussed in Chap. 22. A SDM is both a Hermitian and a nonnegative definite
matrix.17–22 It can be estimated as follows.
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Let {x(t)} be an N-dimensional column-vector of time-histories, whose compo-
nents are the waveforms x1(t), . . . , xN(t).These waveforms could, for example, be the
acceleration responses of a system under test, at N measurement points, that is being
excited by N vibration exciters with the use of N stationary Gaussian drive signals
that are partially correlated (see Chap. 22). If their complex finite Fourier transform
is defined as in Eq. (22.3), with x(t) successively replaced by the xi(t) waveforms, the
complex vector {X(f,T)} is obtained, with the finite Fourier transforms, X1(f,T), . . . ,
XN(f,T), as its components. If the time-history vector {x(t)} has a duration much
longer than T, then as in Chap. 22 it can be partitioned into a series of nonoverlap-
ping segments of data (often called frames), each of duration T, such that the aver-
age can be defined as

[WXX(f,T)] = �
nd

i = 1� �
i

{X*
1(f,T) X*

2(f,T) ⋅⋅ X*
N(f,T)}i (27.1)

or using a more compact matrix notation as

[WXX(f,T)] = �
nd

i = 1
{X(f,T)}i {X(f,T)}i

H (27.2)

In Eqs. (27.1) and (27.2), (1) the average is taken as in Table 22.3, where the esti-
mates for the power and cross-spectra are defined using a finite Fourier transform,
(2) X*

1(f,T) is the complex conjugate of X1(f,T), (3) {X(f,T)}i
H is the complex conju-

gate transpose of the vector {X(f,T)}i, and (4) the subscript i refers to the ith
nonoverlapping frame. As is shown in Refs. 17 to 19, the above average is an unbi-
ased estimator for the spectral density matrix of the N-dimensional Gaussian sta-
tionary process {X(t)}, which converges to the true spectral density matrix of the
process, {x(t)}, as T and nd approach infinity. The use of windowing17–19 in the defini-
tion of the Xi(f,T) that are used in Eqs. (27.1), (27.2), and (27.3) reduces the errors
associated with spectral side-lobe leakage (see Chap. 14).

Cross–Spectral Density Matrix. The cross–spectral density matrix (CSDM) is a
matrix that consists of cross–spectral densities between the components of two mul-
tidimensional Gaussian stationary random processes. It is defined similarly as the
previously discussed spectral density matrix. It is the natural extension of the
cross–spectral density concepts that are discussed in Chap. 22. The CSDM is further
discussed in Refs. 17 to 22. For simplicity and without loss of generality, the CSDM

2
�
ndT

X1(f,T)
X2(f,T)

:
XN(f,T)

2
�
ndT
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TABLE 27.1 Summary of Data Analysis Applications

Application Chapter

Spectral analysis for stationary vibration data 11, 14, 22
Spectral analysis for nonstationary vibration data 22
Correlation analysis for stationary vibration data 11
Probability analysis for stationary vibration data 11, 22
Fourier and shock response spectral analysis of shock data 23
Modal analysis of structural systems from shock and vibration data 21
Multiple input/output analysis of shock and vibration data 21
Average values and tolerance limits for shock and vibration data 20
Other statistical analysis of shock and vibration data 22
Matrix methods of analysis for shock and vibration data 28, Part I
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estimate is defined in the following discussion for the case where the two random
process vectors have the same dimension.

Let {x(t)} and {y(t)} be two N-dimensional column vectors of time-histories,
which respectively consist of the waveforms x1(t), . . . , xN(t) and y1(t), . . . , yN(t). The
{x(t)} waveform vector can, for example, be the vector of random drive signals that
are used to excite the system under test, as in Fig. 27.8.The {y(t)} waveform vector in
this case will be the vector of responses, at the N instrumented points located on a
system under test, that is being excited by N-exciters with the use of the drive vector
{x(t)}. If the finite Fourier transform vectors {X(f,T)} and {Y(f,T)} are similarly
defined, with components X1(f,T), . . . , XN(f,T) and Y1(f,T), . . . , YN(f,T), it is found
that the average cross-spectrum can be defined as

[WYX(f,T)] = �
nd

i = 1
{Y(f,T)}i{X(f,T)}i

H (27.3)

where the above average is taken as in Eqs. (27.1) and (27.2) but with the use of the
vector {Y(f,T)}i instead of the vector {X(f,T)}i for the ith nonoverlapping frame. As
in the spectral density matrix estimator in Eqs. (27.1) and (27.2), and as is shown in
Refs. 17 to 19, the above average is an unbiased estimator for the cross-spectral den-
sity matrix between the N-dimensional Gaussian stationary processes {x(t)} and
{y(t)}, which converges to the true CSDM as T and nd approach infinity. There are
also convergence results for fixed T when {x(t)} and {y(t)} are ergodic (see Chap. 1)
and with the use of a window function as nd approaches infinity for Eqs. (27.1)
through (27.3).17

Tracking Filters. Tracking filters are specialized filters that implement a narrow
bandpass filter, of selectable bandwidth, centered about the instantaneous fre-
quency of a sine wave with a frequency that is changing with time (commonly called
a sweeping sine wave).23 These filters are used to extract the amplitude of the sweep-
ing response sine wave, as well as its phase with respect to the modulating signal
used in the tracking filter implementation. This algorithm, based on proprietary
technologies, provides essentially a time-varying estimate of the Fourier spectral
amplitude, in essentially a continuous manner, of a sweeping sine wave,23 as illus-
trated in Fig. 22.7.

A simplified implementation of a tracking filter is shown in Fig. 27.6. It accepts
a sweeping sine wave response from a system under test that is being excited by a
sweeping sine wave. This response signal is shown as Asin(ωt + θ) + n(t), with a fre-
quency of ω radians/sec, an amplitude A, a phase of θ with respect to the modulat-
ing signals sin(ωt) and cos(ωt), and an additive distortion and noise term n(t). By
modulating the input signal with the sine and cosine terms shown in Fig. 27.6, the
energy at the sweep frequency ω is translated to 0 Hz, hence the name 0-Hz inter-
mediate frequency (IF) detector, where the data detection23 is accomplished by the
two low-pass filters that produce the imaginary and real-term estimates of the
complex amplitude of the sweeping sine wave response of the system under test.
From these filter outputs, the amplitude A and phase θ, with respect to the modu-
lating signal, are estimated. By analyzing several response signals in this manner
with separate tracking filters that use the same modulating signals, the relative
phase between several sweeping sine wave responses can be measured since their
individual phase measurements have a common phase reference. In this way,
tracking filters can be used for such diverse applications as frequency response
function and matrix estimation, and multiexciter and single-exciter swept sine
wave control.

2
�
ndT
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The tracking filter operation shown in Fig. 27.6 provides an estimate of the com-
plex amplitude at the modulating signal’s frequency, which is typically the same as
the swept sine wave’s frequency. It is important that the modulating signals and the
drive signals used to excite the system under test be in frequency and phase syn-
chronization for the best results. Because it can track a sweeping sine wave, it pro-
vides a way of measuring the nonstationary spectral amplitudes associated with
swept sine wave tests and rotating machinery vibration analysis. By its nature, it dis-
cards other terms not centered at the sweep frequency, like unwanted harmonic and
nonharmonic distortion terms. Tracking filters can also be used to track frequencies
other than the fundamental response frequency, like the frequencies of harmonics.
Some modern digital vibration control systems provide the function of Fig. 27.6 by
using dedicated digital signal processors to implement a digital tracking filter sub-
system. These can provide an estimate of a sweeping sine wave’s amplitude and
phase at their sampling rate. Some provide estimates of as many as four to eight
times per cycle of the drive signal.23

Shock Response Spectrum Transient/Shock Synthesis. Signal synthesis tech-
niques are used in transient testing where the test’s reference response is specified
as a shock response spectrum, as discussed later in this chapter.This type of applica-
tion is often referred to as shock response spectrum synthesis. The primary goal is to
create or synthesize a transient signal with a predetermined shock response spec-
trum. Since the same shock response spectrum is possible for a large range of signals
(see Chaps. 23 and 26), many such synthesis techniques are possible. Some are based
on wavelet expansions24,25 for pyroshock testing, and others on a transient created by
windowing a stationary random signal (see Chap. 26, Part II).

The methods employed for pyroshock testing are based on the use of a weighted
sum of wavelets, which are defined as a set of orthogonal functions with finite dura-
tions. The wavelets used for shock synthesis are either windowed sine waves with an
odd number of half cycles or damped sinusoids.24,25 These are used in an inverse
wavelet transform process24–26 to represent the transients. The transients are chosen
as sums of these wavelets.The amplitude of the wavelets is modified so that the sum
of such wavelets is a transient that achieves the prescribed shock response spec-
trum.24,25 Since the shock response spectrum definition (see Chap. 23) allows for
many waveforms to have the same shock response spectrum, this many-to-one rela-
tionship allows for the further optimization of the resulting shock-synthesized
transients.25,27,28 They can be optimized, for example, to produce the least peak accel-
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eration for a given peak shock response spectrum. This type of optimization can
increase the peak amplitude of the shock response spectra that are possible with a
particular system under test (see Fig. 27.8), thus extending the performance range of
vibration test machines used for transient/shock testing.

The method used for seismic simulation involves windowed sections of broad-
band Gaussian stationary noise, also known as burst-random transients. These ran-
dom transients are generated using a prescribed magnitude Fourier spectrum,
assigning random phase to it, and using the inverse FFT to create a random transient
with the specified magnitude spectrum. This transient is windowed (see Chap. 14)
and its shock response spectrum is calculated. The calculated shock response spec-
trum is compared with the prescribed shock response spectrum, and the discrepancy
is used to modify the magnitude of its Fourier spectrum. The synthesis iteration is
repeated until the shock response spectrum of the synthesized windowed transient
agrees with the prescribed shock response spectrum within some acceptable error.
Again, the many-to-one characteristic of the shock response spectrum allows for
further optimization of the synthesized random transient.

Frequency Response Function and Frequency Response Matrix Measure-
ments. The computation of frequency response functions and frequency response
matrices make use of the digital signal processor,A/D converter, D/A converter, and
embedded distributed computer systems discussed in a previous section. The objec-
tive of these applications is to excite the system under test in such a way that its 
frequency response characteristics can be measured. This type of measurement is
done as part of modal-testing, single-exciter, and multiexciter control systems appli-
cations to be discussed later in this chapter.

Single Input, Multiple Output (SIMO) Methods. In this method, a single drive
signal is used to excite the system under test at any one time. A digital system, like
those shown in Figs. 27.1, 27.2 and 27.5, can be used to drive a system under test and
acquire multiple response signals from instrumentation on the system under test.
The excitation signals can be impulsive, continuous broadband noise, transient noise,
or swept sine waves. In all these cases, the complex-amplitude spectra are measured
for both the drive and response signals by the digital system.The cross–spectral den-
sities between the various response signals and the drive signal, as measured at the
input to the system under test, are divided by the drive signal’s power spectral den-
sity to obtain a frequency response function estimate between the single drive signal
and the response signals (see Table 22.3). Typically broadband noise and swept sine
wave excitations produce the best estimates for the needed frequency response
functions, but at the expense of longer test times that may stress the test article or
system under test. Frequency response functions can be measured, while using swept
sine wave excitation, by using the tracking filters discussed previously.

A multiple-reference frequency response matrix estimate can be obtained by
exciting the system with a hammer or a vibration exciter, one excitation at a time but
at different locations, to successively obtain one column of the frequency response
matrix estimate using this SIMO methodology. These methods may have problems
with repeatability since the structure’s characteristics may change between excita-
tions (see Chap. 21).

Multiple Input, Multiple Output (MIMO) Methods. These methods excite the
system under test with a digital system as in the previous section, but drive it with
multiple simultaneous excitation signals, acquire the associated response signals, and
process the thus-acquired response and drive signals to obtain the needed system
frequency response matrix estimates. Most estimators used are based on the
response equations17–19
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[Wcd(f)] = [H(f)][Wdd(f)] or [Wcc(f)] = [H(f)][Wdc(f)] (27.4)

where [Wcd(f)] is an estimate of the cross–spectral density matrix between the
response vector {c(t)} and drive-signal vector {d(t)}, as defined in Eq. (27.3). [Wcc(f)]
and [Wdd(f)] are estimates of the spectral density matrices of the response vector
{c(t)} and the drive-signal vector {d(t)}, as defined in Eqs. (27.1) and (27.2), and
[Wdc(f)] is the complex-conjugate and matrix transpose of [Wcd(f)].17–19 The above
two equations that are part of Eq. (27.4) can be solved separately for [H(f)].The left
equation is relatively insensitive to measurement noise but sensitive to drive-signal
noise, and the right equation exhibits the reverse condition.These types of frequency
response matrix estimates are very similar to the type 1 and type 2 frequency
response estimators discussed in Chap. 21. Here the emphasis is on the use of Eq.
(27.4) with the spectral density matrix and cross–spectral density matrix estimates,
defined in Eqs. (27.1) through (27.3), to estimate [H(f)].The use of Eq. (27.4) for sys-
tem identification will also be discussed as part of the sections on multiexciter digi-
tal vibration control and modal testing.

Note that to use Eq. (27.4), either the matrix [Wdd(f)] or [Wdc(f)] needs to be
inverted. For this reason, the left side of Eq. (27.4) is typically used because it is eas-
ier to guarantee that [Wdd(f)] is not singular rather than [Wdc(f)]. In many cases,
[Wdc(f)] is not a square matrix because the dimensions of {c(t)} and {d(t)} are not
equal and clearly [Wdc(f)] is singular in that case. Some digital systems make an addi-
tional simplification by exciting the system with mutually uncorrelated random
drive signals and thus “ensure” that [Wdd(f)] is a diagonal matrix. This simplification
can cause additional problems since the measured [Wdd(f)] will typically not be diag-
onal even if the drive signals are uncorrelated due to unavoidable measurement and
exciter noise. Hence, in practice, it is better to measure [Wdd(f)] and invert it as a
matrix rather than just inverting its diagonal elements and assuming that its matrix
inverse is diagonal. This is the preferred way to characterize the system under test
for multiexciter control applications to be discussed later. In many of these cases, the
drive signals are measured as inputs to the test article by load cells (see Chap. 12).
The use of MIMO methods can separate modes that correspond to the same
repeated root or eigenvalue (see Chap. 28, Part I), whereas SIMO methods may not
(see Chap. 21).

DIGITAL CONTROL SYSTEMS FOR SHOCK 

AND VIBRATION TESTING

The vibratory motions specified for the majority of vibration tests are either sinu-
soidal23,29 or random29 (see Chap. 20).A smaller percentage of the vibration tests are
prescribed to be either a classical-shock transient27 (see Chap. 26, Part I), a shock
response spectrum synthesized transient (see Chap. 26, Part II), a long-term
response waveform,30 or mixed-mode31 (sine-on-random or narrow bandwidth
random-on-random) vibratory motions. These specified environments are typically
represented by a reference response signal, in either the time or frequency domain,
that the digital control system servo uses as a control reference to achieve the spec-
ified control response at the chosen control point or points that are associated with
the test (see Chap. 20).

The reference response is either a frequency-domain or time-domain signal that
represents the specified vibration environment associated with a shock or vibration
test. It is typically specified as a reference spectrum, which describes the vibration
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environment in the frequency domain to which the control response spectrum is
compared as part of the digital vibration control process. It could be a power spec-
tral density for a random vibration test, an amplitude vs. frequency profile for a
swept-sine test, a shock response spectrum for a shock test, or a finite Fourier spec-
trum (see Chaps. 20 and 22) for a generalized transient or a long-term reference
response waveform test. Time-domain vibration environments, like transient and
long-term response waveforms, are represented by a reference pulse or reference
waveform, whereas frequency-domain-specified environments like random, swept-
sine, and shock response spectrum synthesis shock tests, are specified with an appro-
priate reference spectrum. Typically, the time-domain reference signals are
converted to the frequency domain as part of the feedback control and drive-signal
synthesis process, using an appropriate time-to-frequency and frequency-to-time
transformation process.

Vibration tests are accomplished with the use of vibration test machines, as dis-
cussed in Chap. 25, and a digital vibration control system (DVCS). The DVCS
employed to control the vibration level(s) during the test typically utilizes the out-
put signal from a control transducer (usually an accelerometer) mounted at an
appropriate location on the vibration exciter’s test fixture (part of the vibration test
machine) or the unit under test (UUT) to provide a feedback signal to its servo sys-
tem. The servo system in turn drives the power supply of the vibration testing
machine used for the shock or vibration test. The servo system is largely imple-
mented digitally using analog-to-digital (A/D) converters, digital-to-analog (D/A)
converters, digital signal processors (DSPs), embedded processors, and general-
purpose processors, to adjust the drive-signal amplitude and spectrum for the system
under test so as to maintain the control transducer’s response level and waveform
characteristics as close to the test’s specified reference response as possible.

The overall block diagram of the vibration test system, when using electrody-
namics exciters and accelerometers for control transducers, is shown in Fig. 27.7. In
this case, the DVCS drives the system under test with an analog drive signal, d(t),
such that the control response at the chosen control-point location on the system
under test agrees with the specified reference response with an acceptable error.The
DVCS consists of (1) an input subsystem, which acquires the response waveform of
the system under test, c(t); (2) the digital servo subsystem, which creates the digital
drive signal through a closed-loop process that causes c(t) to agree with a suitable
description of the specified test reference signal; and (3) the output subsystem,
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which converts the digital description of the generated drive signal into an equiva-
lent analog drive signal, d(t), used to drive the system under test.

A typical system-under-test configuration for both single and multiple exciters is
shown in Fig. 27.8. If there is only one exciter involved, then only the top leg of the
block diagram in Fig. 27.8 is used. Here, di means the drive signal generated by the
DVCS that is used to drive the ith exciter. This drive signal is sent to the exciter’s
power amplifier (when using electrodynamic exciters), which in turn drives the
exciter. For electrohydraulic exciters, this drive signal is sent to the exciter’s servo
amplifier, which in turn drives the hydraulic servo-valve subsystem, as discussed in
Chap. 25. The exciter, either electrohydraulic or electrodynamic, then drives a test
fixture (see Chap. 20), which in turn drives the unit under test. The test is either
instrumented by mounting control transducers, which are typically accelerometers
(see Chap. 12), on the test fixture, here shown by the signal c1 through cn, or on the
UUT as shown by the signals c1 through cn in Fig. 27.8. These chosen control signals
are then sent to the input subsystem of the DVCS where they are either averaged or
their maximum or minimum, as a function of frequency, is extracted to create a com-
posite response spectrum.

The signals a1 through am in Fig. 27.8 are additional or auxiliary responses of the
UUT that are monitored during the test as additional signal channels to be analyzed
as part of the test. The signals l1 through lp are input channels that are to be used for
limiting during the test. This limiting may involve either limits on the response or
limits on the applied force to the UUT, as discussed in Chap. 20. For multiexciter
applications, there are n exciter systems with n drive signals, d1 through dn. These
drive signals are processed as in the single exciter case discussed before. The basic
difference is that the n exciters will drive the UUT jointly through the fixture that
connects the UUT to the multiple exciters. The response to this vector of drive sig-
nals is also a vector comprised of the control responses c1 through cn. This test con-
figuration and its associated control methods are further discussed in a subsequent
section. In either the single- or multiexciter control configuration, the control feed-
back signals, auxiliary response signals, and the limit signals are routed to the input
subsystem of the DVCS.

A block diagram of the input subsystem is shown in Fig. 27.9. Here only the
control-feedback signals are shown as inputs to the DVCS’s input subsystem. These
feedback signals, also called control-response channels, or simply control signals, are
each sensed through an input signal conditioning system and analog-to-digital
(A/D) converter subsystem. The input signal conditioning typically consists of an
instrumentation amplifier, followed by a ranging amplifier to optimize the signal’s
amplitude as presented to the A/D converter, and an antialiasing filter (see the input
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subsystem in Fig. 27.2). This condi-
tioned analog signal representing the
chosen response signal is finally pre-
sented to the A/D converter subsystem
for conversion into a digital time-
history.

Typically, other points on the UUT
or on the vibration test machine are
also monitored by the digital control
system for subsequent vibration analy-
sis or limiting. The input subsystem
then sends digitized versions of the

control signals, here represented by the c1 through cn, to the DVCS’s servo subsys-
tem, as shown in Fig. 27.10.The digital control-response time-series, c1 through cn, are
then sent to a time-to-frequency block shown in Fig. 27.10.The function of this block
varies with the type of vibration control. For random vibration testing, this block
estimates the control-response power spectral density. For swept-sine vibration test-
ing, this block typically produces either the fundamental amplitude or the overall
response root-mean-square (rms) estimate using tracking filters or variable time-
constant rms detectors.29 For other types of vibration testing, this block is typically
an FFT estimator (see Chap. 23). These estimates are further processed to produce
either a single control-response spectrum, C1, for single shaker control, or a control-
response vector, with components C1 through Cn, for multishaker control. The type
of processing is again application-specific. These control-response amplitude esti-
mates are then sent to a block that updates the drive-signal amplitude and spectrum
to minimize the difference between these control-response amplitudes and the spec-
ified test reference for single-shaker control, or the test’s reference-response vector
for multishaker control applications. The updated drive amplitude(s) and their
respective spectra are then sent to a frequency-to-time transformation block, which
converts the spectral representation of the drive signal(s) into a digital time series of
the time-domain drive that will be used to excite the system under test as previously
described. This digital time-series signal or vector, comprised of d1 through dn for
multishaker control, is then sent to the output subsystem (see Figs. 27.5 and 27.11)
for conversion into an analog signal or signals to be used to drive the previously dis-
cussed system under test in Fig. 27.8. The output subsystem is shown in Fig. 27.11.
The digital version of the drive signal or signals are synthesized to analog-driving
voltages by the system’s output subsystem. These digital drive signals are then con-
verted into analog signals by the subsystem’s D/A converters. The D/A converter
output signals are filtered to eliminate the images generated by the D/A converters,
and the final output is attenuated from the D/A converter’s full-scale voltage to pro-
duce the proper amplitude exciter drive signal d1 for single-shaker control or drive-
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FIGURE 27.9 Input subsystem for digital
vibration control system.

FIGURE 27.10 Servo subsystem for digital vibration control system.
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signal vector for multiexciter control
(see Fig. 27.5). These conditioned ana-
log drive signals are output by the
DVCS to drive the system under test.

Initially, with the advent of dedi-
cated FFT processors and minicomput-
ers, it became possible to perform
spectral analysis of random processes
rapidly enough to permit the use of
digital control systems for random
vibration testing. Further develop-
ments in digital signal processors,

embedded and distributed processors, personal computers, and workstation tech-
nologies extended the range of vibration testing to include swept-sine, transient
waveform, long-term waveform, and multishaker testing. Most shock and vibration
testing remains based on single-shaker methods, but multishaker testing is becoming
more important when the size and weight of the UUT dictates its need, or when the
prescribed vibratory motions are inherently multiaxis or otherwise consist of multi-
ple degree-of-freedom vibratory motions.30,32,33 Enough differences exist between
single- and multishaker digital control systems for these to be discussed separately
in the following sections. The previous discussion, however, illustrates the areas
where they are similar.

Single-Exciter Testing Applications. The great majority of shock and vibration
testing is specified and accomplished with the use of single exciters or shakers.These
are typically single-axis tests. Multiaxis test specifications are accomplished one axis
at a time when using single exciters. Random, swept-sine, mixed-mode, transient
waveform, and long-term response waveform vibration applications can be accom-
plished as long as the vibration test machine capabilities and the weight and size of
the unit under test allow it (see Chap. 25).

In many single-exciter vibration tests, especially random and swept-sine tests, even
though only a single drive signal is employed, multiple control accelerometer input
channels are used. In these cases, the multiple control signals are combined by aver-
aging them or by selecting the largest or smallest response, as a function of frequency,
to create a composite control-response spectrum, with the control-estimation block
in Fig. 27.10. Often multiple input channels are additionally used for limit control, as
discussed earlier. The single-shaker control applications that use a single drive signal
to excite the system under test, and use multiple input control signals and/or limit sig-
nals, are called multiple input, single output (MISO) control systems.

Random. These systems excite a test item with an approximation of a station-
ary Gaussian random vibration (see Chap. 2). Digital random vibration control sys-
tems use signal processing that mimics analog methods in their fundamental control
and measurement methods [see Eq. (22.7)] and offer significant user-interface and
graphics subsystems that provide greater system tailoring and varied displays and
graphs of ongoing test conditions. Digital systems also afford greater stability, more
freedom in the control methods, and superior accuracy than those control systems
that directly use analog methods.29

The control-response waveforms from the system under test are low-pass filtered
to prevent aliasing (see Chaps. 13 and 22) and converted to a sequence of control
samples by the input subsystem of the digital system as previously discussed. The
averaging control, the spectrum analyzer, and the display are implemented by the
time-to-frequency and control-amplitude estimation blocks. These blocks use a dis-
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crete Fourier transform (DFT), as discussed in Chap. 14, to estimate the power-
spectral density (see Table 22.3) of the control responses c1(t) through cn(t). The ran-
dom noise generator and the analog equalizer, used in previous analog random
vibration systems, are replaced by an analogous digital process using a DFT and a
time-domain randomization algorithm.29 This is accomplished in the frequency-to-
time processing block within the DVCS in Fig. 27.10.The lines of the DFT (see Chap.
14) in the digital system play the role of the contiguous narrowband filters in the
equalizer of the analog system.29 Equalization is the adjustment of the amplitude of
the output of a bank of narrowband DFT filters, which is an FFT equivalent (see
Chap. 22), whose amplitude is given by the drive signal’s spectrum amplitude, D1(f),
that correspond to the center frequency of each DFT filter, such that the power spec-
tral density of the control response matches that of the test-prescribed reference.

The equalization of the drive waveform can be accomplished directly, by gener-
ating an error correction from the difference between the control power-spectral
density and the reference spectral density. The equalization can also be accom-
plished indirectly through a knowledge of the system frequency response function
magnitude. The required system frequency response function (see Chap. 21) is the
ratio of the Fourier transform of the control response (usually an acceleration) and
the Fourier transform of the drive-voltage signal, as is discussed in an earlier section.
Only the magnitude of the frequency response function is required for random con-
trol, since the relative phase between frequencies is random and not controlled.

The drive spectrum D1, that results from the “update drive to minimize error”
block in Fig. 27.10, is multiplied by a random phase sequence and its inverse FFT is
calculated to create the corrected drive time series d1(t). Samples of the corrected
digital drive time series, d1(t), are fed through the output subsystem in Fig. 27.11
within the DVCS, converted to an analog signal, low-pass filtered to remove the
images caused by the D/A converter, further amplified, and then sent as the analog
signal d1 to the power amplifier input of the system under test, which completes the
loop. Corrections to the drive are not made continuously in the digital random-
vibration control system. Many samples of the drive (often thousands) are output
between corrections. Many digital systems use a time-domain randomization
process29 that converts the finite duration d1(t) drive block into an indefinite dura-
tion signal with a continuous power spectral density that has the same values as
d1(t)’s at the discrete frequencies at which the FFT was evaluated.The time between
drive corrections is called the loop time. The loop time for digital random vibration
control systems can be from a fraction of a second to a few seconds depending on the
type of averaging used for control-response power spectral density estimation.

The speed at which the system can correct the control spectrum is determined by
two factors. The first is the loop time, and the second is the number of spectral aver-
ages required to generate a statistically sound estimate of the control power spectral
density (see Chap. 22). The loop time is usually the shorter of the two. Typically, a
compromise is required; an estimate of the power spectral density with a significant
error is used, but only a fraction of the correction is made in each loop. The type of
spectrum average, linear or exponential, also has a large effect on the averaging time
where the exponential average affords a shorter averaging period, but only a frac-
tion of a correction is made in each control loop to ensure system closed-loop sta-
bility.29 In such cases, multiple corrections occur within the averaging period. The
equivalent bandwidth of the DFT filters is dependent on the number of lines in the
DFT, the type of spectral window that is used (see Chap. 14), and the sampling rate
of the D/A and A/D converters. These parameters are usually options chosen by the
operator either directly or indirectly. The averaging parameters are also typically
operator-specified.
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Swept-Sine. The objective of a digital sine wave vibration test control system is
to drive a system under test, as shown in Fig. 27.8, with a sweeping sine wave excita-
tion such that the control-response signals, when processed by the control-response
estimation block shown in Fig. 27.10, agree with the specified test reference within
some acceptable error. The control-response outputs, c1 through cn, of the system
under test are filtered and digitized with the input subsystem of the DVCS. The
needed tracking filters,23 variable time-constant rms detectors,29 averaging control,
and control signal selection are implemented within the appropriate blocks in Fig.
27.10 by the use of an embedded DSP subsystem for the required specialized signal-
processing functions. It is however nontrivial to implement tracking filters digitally,23

as previously discussed. Many systems, in the interest of simplicity, do not use true
tracking filters, but approximate this function by using FFT methods. In any case,
these are implemented in the time-to-frequency transformation and control-
amplitude estimation blocks within the servo subsystem in Fig. 27.10 within the
DVCS.

The sine-wave generator is implemented by using samples of a digitally gener-
ated sine wave, usually by a digital signal processor subsystem within the frequency-
to-time transformation block in Fig. 27.10, which are sent to the output subsystem in
Figs. 27.5 and 27.11, to be used to drive the system under test in Fig. 27.8. The swept-
sine test parameters are entered by the test operator through the DVCS’s graphical
user interface to be stored in a test parameter file for use in a subsequent test. The
control-response servo subsystem shown in Fig. 27.10 is implemented by an algo-
rithm that compares the computed amplitude of the control waveform with the
required control amplitude, as defined by the test setup, and generates a corrected
sampled drive waveform.This function is accomplished by the “update drive to min-
imize control error” block shown in the DVCS’s servo subsystem block diagram in
Fig. 27.10.The sampled drive waveform is converted to an analog drive waveform by
the D/A converter and sent to the low-pass filter and output attenuator shown in
Fig. 27.5, which illustrates the DVCS’s output subsystem block diagram shown in Fig.
27.11. This resultant analog drive signal, d1, is used as the input to the power ampli-
fier within the system-under-test block diagram in Fig. 27.8 to complete the closed
loop.

Swept-sine vibration tests can require that the frequency be stepped in a
sequence of fixed frequencies, or swept in time over a range of frequencies. How-
ever, the stepped approach can generate vibration transients every time the fre-
quency of the sine-wave drive signal is changed. A swept sine is the changing of the
frequency from one frequency to another in a smooth continuous manner.This is the
preferred drive-signal generation method since it creates no significant transients as
the frequency is changed.Again, many commercial control systems use the stepped-
frequency method because of its simpler implementation. The rate of change of fre-
quency with respect to time is called sweep rate. Both logarithmic and linear swept
sines are required. For a logarithmic sweep, the change in the logarithm of the fre-
quency per unit of time is a constant. For a linear sweep, the change in frequency per
unit of time is a constant. Because the drive waveform is usually generated in blocks
of samples, care must be taken in swept-sine vibration tests to ensure that the fre-
quency and amplitude change is continuous.The correction of the drive amplitude in
a digital system is not continuous, but discrete. The time between amplitude correc-
tions is also called the loop time, and is controlled by the number of samples that
must be taken to define the control-waveform amplitude and the required compu-
tations to compute the corrected drive waveform. Here as in the other DVCS appli-
cations, a control loop iteration is the completion of one complete cycle from the
correction of one drive waveform to the next.

APPLICATION OF DIGITAL COMPUTERS 27.25

8434_Harris_27_b.qxd  09/20/2001  11:51 AM  Page 27.25



The control-response amplitude can vary rapidly as the frequency changes due to
system resonance, and the required loop time is measured in small fractions of a sec-
ond. For stability, the complete correction of the drive waveform is not usually made
in each loop.The maximum rate of drive waveform correction is called the compres-
sion speed29 and is usually expressed as decibels per second (dB/sec). If the com-
pression speed is too fast, system instabilities can occur. If the compression speed is
too slow, the correct amplitude will not be maintained. The required compression
speed is a function of (1) frequency, (2) sweep rate, (3) the system dynamics, (4) the
amount of noise present in the response measurement, and (5) the degree to which
the response of the system under test is nonlinear. Limited operator control of the
compression speed is usually provided. The bandwidth of the digital tracking fil-
ter23,29 will affect the stability of the system. Specifically, as the bandwidth of the
tracking filter decreases, the delay in the output of the tracking filter increases.23 As
the filter delay increases, the compression speed must be decreased to maintain sta-
bility.29 Some of the more advanced DVCSs used for this purpose accommodate the
change in correction rate automatically to ensure a good compromise between con-
trol speed and accuracy. However, the user needs to make the required compromise
by selecting the bandwidth of the tracking filter or the time constant of the rms
measurement to be used during the swept-sine test, which trades off the ability to
reject components in the control waveform at frequencies other than the drive fre-
quency, and the ability of the control system to respond quickly to changes in the
control waveform amplitude.

Transient/Shock. Sometimes it is desirable to perform shock or transient test-
ing using electrodynamic or electrohydraulic vibration test machines.24 The ability to
employ this method is dependent on such parameters as the stroke (the maximum
allowable motion of the vibration exciter); the peak amplitude, spectral characteris-
tics of the specified transient waveform; the amount of moving mass during the test;
and the test time. If the required test is within the performance capability of an avail-
able vibration test machine, the ability to obtain and control the desired motion has
been greatly expanded by the use of digital control equipment.24,27 In general, the
servo control of a shock test parallels that used for the other vibration-control meth-
ods but, in this case, the controller compares the control accelerometer time-history
response to a reference waveform as part of the control process. The primary differ-
ence here is that the time-to-frequency and frequency-to-time transformations in
Fig. 27.10 are accomplished using an FFT of the transient with the forward or inverse
transformations, respectively. If necessary, the controller drive signal is altered to
minimize the deviation of the control accelerometer response from the reference
based on the comparison between the control-response and reference-response FFT
spectrum.This discrepancy is used to update the drive spectrum in the “update drive
to minimize control error” processing block within the DVCS’s servo subsystem in
Fig. 27.10.

Shock-test requirements may be specified in one of two ways. The first and more
direct method specifies a certain acceleration waveform, such as a half-sine pulse of
specified duration and maximum acceleration. These are called classical-shock tran-
sients (see Chap. 26, Part I). The DVCS in this case needs to modify such classical
pulses by adding a pre- and postpulse to the overall test pulse waveform27 to ensure
that the response of the system under test returns to a zero acceleration, velocity,
and displacement conditions at the end of the shock test. Typical pulses used as the
reference-response waveform, r(t), in addition to the previously discussed half-sine
pulse, include final and initial-peak sawtooth, rectangular, and trapezoidal pulses of
varying duration and amplitudes (see Chap. 26, Part I). The control method that is
used is a subset of what is used for long-term response-waveform control, discussed
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in a later section, usually without a need for the overlap and add indirect convolu-
tion method.1

The second method employs the shock response spectrum (see Chaps. 23 and 26,
Part II) as the means of characterizing the response of the control points.25,28 In this
case, the control-response spectrum, C(f), and the reference-response spectrum,
R(f), are specified as a shock response spectrum.The requirements for the reference
shock response spectrum must specify the frequency range, frequency spacing,
damping factor, type of spectrum, and either maximum or nominal values with an
allowable tolerance on spectrum values.24,28 Reference pulses are generated using
one of the shock response spectrum synthesis techniques24,25 discussed previously.
The control method that is used is called the wavelet amplitude equalization (WAE)
method. If the test requirements are specified as a shock response spectrum refer-
ence, R(f), then during the test the shock response spectrum of the control-response
waveform is computed and compared with the prescribed R(f). The difference is
then used to update the drive signal, which is expressed as a weighted sum of
wavelets. The weights in the sum represent the amplitude of the various wavelets.
These amplitudes are varied as a function of the discrepancy of the control-response
shock response spectrum and the reference shock response spectrum. Care is
required when this difference is large since the control problem is highly nonlinear
due to the nonlinear dependence of the control-response shock response spectrum
to the wavelet amplitudes of the drive signal. Because of this, the control corrections
are iterative and yield an approximate shock response spectrum for the control
response.

Mixed-Mode. Digital vibration test control systems are available which can
control several sine waves superimposed on a stationary random vibration test.31

This is called sine-on-random vibration testing or swept-sine-on-random vibration
testing. Systems are also available that can control swept narrow bandwidths of non-
stationary random superimposed on a stationary random vibration test. This is
called swept-narrow-bandwidth-random-on-random testing. It uses a variation of the
random vibration control methods, previously discussed, by modifying the reference-
response spectrum during the test to create sweeping narrow bandwidths of random
that are superimposed on a broad-bandwidth random background.31 The control or
servo-process for the case of sine-on-random works as a parallel connection of a
random vibration and a swept-sine control system. A simplified block diagram of
this process is shown in Fig. 27.12.

The two critical differences between mixed-mode controllers and individual ran-
dom and swept-sine controllers are the presence of the bandpass/reject and synthe-
size composite subblocks in Fig. 27.12. The bandpass/reject subblock in Fig. 27.12
separates the swept-sine and random backgrounds into two separate signal streams.
The swept-sine component is fed into the sine control section and the random back-
ground section is fed into the random control section. These separate controllers,
with needed synchronization between each other, then create separate drive-
amplitude updates for control of their respective component. These separate drive-
amplitude updates are combined into a composite drive signal, containing the
random and swept-sine components in a single drive signal, by the synthesize com-
posite section in Fig. 27.12.This composite drive is then sent to the system under test
to complete the control loop. The bandpass/reject section should employ advanced
signal-estimation techniques to determine the phase and amplitude of the control-
response sinusoids that are masked by the background random noise contained in
the composite control-response signal, c(t).

Long-Term Response Waveform Control. The objective of a long-term
response waveform control, or simply waveform control, test is to drive the system
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under test in Fig. 27.8 with a drive signal, d(t), such that the time-domain response of
the chosen control transducer [c1(t) in Fig. 27.8] matches the test-specified reference
waveform r(t) within an operator-specified error margin. The same type of DVCS
shown in Figs. 27.7 through 27.11 can be used for this application. The DVCS is
tasked with finding the drive signal, d(t), which achieves the objective of the wave-
form control test.

This type of testing is sometimes called waveform replication testing and uses an
estimate of the system-under-test’s frequency response function to control the
response of the system under test. The frequency response function estimate relates
the control-response waveform, ci(t), to the electrical drive waveform, d(t), that the
DVCS uses to control the system under test. It is the principal quantity that is used
in the waveform control process. The frequency response function needs to be esti-
mated prior to the vibration test. It is measured by exciting the system under test
with a drive-voltage waveform having a bandwidth of at least that of r(t), which is
output through the DVCS’s output subsystem to the system under test. During this
test phase, which is often called system identification or characterization, the
response of the chosen control point, ci(t), is measured and the drive signal, d(t),
which is used to achieve this response, is also stored.These two signals, ci(t) and d(t),
are then used to calculate the system-under-test frequency response function H(f)
(see Table 22.3). The functions H−1(f) and r(t) are then used in conjunction with an
overlap-and-add fast indirect-convolution method1 to generate a drive signal that
should cause the system-under-test’s control response, c(t), to agree with the speci-
fied reference-response, r(t), within an acceptable error margin.30,32 Often multiple
control iterations that use H−1(f), r(t), and c(t), within the DVCS’s servo subsystem,
as part of an overlap-and-add fast indirect-convolution method, are needed to
achieve the test’s goal.30,32

The unit under test needs to be part of the system under test, as shown in Fig.
27.8, during the system identification test phase, since feedback from the test article
or unit under test will change the system’s frequency response function H(f).
Numerous waveforms can be used for the excitation including an impulsive tran-
sient, the predetermined reference-response waveform, a continuous random wave-
form, or repeated short bursts of random vibration with the transient noise having
frequency-domain characteristics like those of the continuous noise. The last two
methods are most commonly used. Continuous random noise produces better
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results in practice, but at the expense of longer vibration times for the unit under test
during this phase. In all cases, it is important for the excitation drive signal to have
energy at all frequencies of interest, but of sufficiently small amplitude so the test
item is not damaged from this excitation, but a large enough amplitude such that a
linear extrapolation to full-test level will not cause significant control errors. Aver-
aging, as part of the frequency response function estimation, can mitigate the effects
of nonlinear response and measurement noise (see Chap. 22) on the quality of the
estimate.

Multiexciter Testing Applications. The simplest example of multiple-exciter test-
ing is when multiple exciters are connected to independent systems under test and
are controlled simultaneously. This configuration corresponds to several single-
exciter control systems operating in parallel and will not be further discussed. The
more complex and more interesting case is when the multiple exciters act on the
same test fixture and unit under test simultaneously, as shown in Fig. 27.8 and dis-
cussed in more detail in Chap. 25.The attachments of the multiple exciters to the test
fixture can be at several points in a single direction, or at one point in several direc-
tions, or combinations of both.33 This is the type of configuration that is represented
in the block diagram of the multiexciter system under test in Fig. 27.8. If any of the
drives, d1(t) through dn(t), is capable of causing a response on more than one of the
control responses, c1(t) through cn(t), then the multiexciter control system has cross-
coupling between control responses. In this situation, the measured frequency
response matrix, [H(f)], between the drive-signal vector, {d(t)}, and the control-
response vector, {c(t)}, will have offdiagonal elements that compare in order to the
diagonal elements.

Systems that have cross-coupling between the control-response signals, c1(t)
through cn(t), and which are elements of the vector of control-response waveforms,
{c(t)}, require the DVCS to have provisions for control of these cross-coupling
effects.These are typically controlled using the measured frequency response matrix
in a manner similar to how the system frequency response function, H(f), is used for
long-term response waveform control. The needed frequency response matrix is
measured using the multiple input, multiple output (MIMO) system identification
techniques discussed in association with Eq. (27.4). The specifics of how this is done
vary with each application dictated by the type of MIMO shock and vibration test-
ing that needs to be accomplished. These are typically multiexciter tests that use a
MIMO methodology within the DVCS employed to control such multiexciter tests.
These shock and vibration control applications are called MIMO random, MIMO
swept-sine, MIMO shock, and MIMO long-term response waveform control tests.
Good mechanical design (the design of the excitation, fixturing subsystems, how the
test article is attached, and where the control points are located on the system under
test) is very important and can reduce the severity of system identification and con-
trol problems that can arise during multiexciter testing. Poor mechanical design can
make the MIMO system under test and the corresponding DVCS unusable, no mat-
ter how advanced the control technology may be.

The complexity of building these systems (i.e., designing the control system) and
specifying the test parameters increases much faster than the rate of increase in the
number of exciters. To a first order, the control and test specification complexity
increases by at least the square of the number of exciters that are used due to the use
of n-dimensional signal-processing methods and their use of n-by-n complex matri-
ces.The design complexity of the system under test in Fig. 27.8 also increases, but for
other reasons (see Chap. 25). The resultant physical constraints of achievable system-
under-test designs typically limits many MIMO control and excitation systems to
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frequencies less than 2 kHz. The significant displacements encountered in low-
frequency MIMO testing also increase the complexity of the design of the vibration
fixture that interconnects the exciters and the unit under test, and lets the exciters
move independently from each other. However, at lower frequencies, large MIMO
test systems are possible. For example, long-term response waveform control sys-
tems that have as many as 18 exciters are used to simulate road conditions in the
automobile industry. An example of this is shown in Fig. 25.10.

MIMO Random. For MIMO random, the test’s vibratory motions are speci-
fied in terms of a reference response spectral density matrix [R(f)]. This is a matrix
that consists of both power spectral densities along the diagonal and cross-spectral
densities along the offdiagonal elements of the matrix.The elements at the ith diag-
onal of the reference spectral density matrix, Rii(f), represents the reference power
spectral density to be used for the ith reference response for the control response
ci(t). The ijth offdiagonal matrix elements of the reference spectral density matrix,
Rij(f), represent the reference response cross-spectral density to control the control-
response cross-spectral density between the ith and jth control response, ci(t) and
cj(t), as in Eq. (27.1). This cross-spectral density can also be described by the ordi-
nary coherence and phase between ci(t) and cj(t) (see Chap. 22), as well as their
respective power-spectral densities.18,30,32,33 The objective of the MIMO random
vibration test control system is to create a drive signal vector, {d(t)}, that consists of
the exciter drive signals, d1(t) through dn(t), which causes the spectral density matrix
of the control-response vector, [Wcc(f)], to agree, within some acceptable error, with
the MIMO random test reference spectral density matrix, [R(f)]. The issues associ-
ated with spectrum averaging and input-signal windowing that were discussed for
single-exciter random vibration control also need to be considered.

The control-response spectral density matrix, [Wcc(f)], of the control-response
vector can be modeled by the following result from linear system dynamics and mul-
tidimensional stationary stochastic process theory,17–19 which states that the control-
response spectral density matrix is given by

[Wcc(f)] = [H(f)][Wdd(f)][H(f)]H (27.5)

Equation (27.5) can be solved for the initial drive signals using the measured
frequency response matrix, [H(f)], and the test-prescribed reference-response spec-
tral density matrix, [R(f)]. This result gives the spectral density matrix, [Wdd(f)], of
the drive signals as

[Wdd(f)] = [H(f)]−1[Wcc(f)][H(f)]−H (27.6)

The resultant drive spectral density matrix, [Wdd(f)], can be further factored using a
Cholesky decomposition2,18,32,34 as

[Wdd(f)] = [Γd(f)][Γd(f)]H (27.7)

where [Γd(f)] is the Cholesky factor of [Wdd(f)], which is a lower-triangular complex
matrix, with real and nonnegative diagonal elements, that plays the same role as the
drive spectrum plays in single-shaker control (see Refs. 24 and 34 for details). This
Cholesky factor is also associated with the general study of partial coherence,17,20,21

and the partial coherence that will exist between drive signals that are synthesized
using it. It is used, with the frequency-to-time processing block of Fig. 27.10, to cre-
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ate a vector of drive signals, {d(t)}, that has [Wdd(f)] as its spectral density matrix.32,34

These are further randomized by a MIMO time-domain randomization process, sim-
ilar to what is done in single-exciter random, but with the use of a lower-triangular
matrix of waveforms obtained from [Γd(f)].22,32 By this means, the coherence and
phase between the control-response signals is controlled as well as each individual
control response’s power spectral density.30,32 The drive vector, {d(t)}, then has the
matrix [Wdd(f)] as its spectral density matrix, and should cause the MIMO system
under test to respond with a control-response vector, {c(t)}, that has as its spectral
density matrix, [Wcc(f)], which agrees with the test-specified reference-response
spectral density matrix, [R(f)], within some acceptable error margin.

MIMO random, similar to waveform control, uses the matrix-inverse of the
measured frequency response matrix, [H(f)], to create the initial drive. The imped-
ance matrix, [Z(f)], of the system under test, is given by

[Z(f)] = [H(f)]−1 (27.8)

This matrix needs to be measured prior to the test in the system identification test-
ing phase, as discussed in previous sections on frequency response matrix estima-
tion. The accuracy of this measured matrix, which is computed before the vibration
test, is critical to the success of the control task. The method used to estimate
[H(f)]17–19,30,35 typically uses the left expression in Eq. (27.4) to solve for [H(f)] from
the computed spectral density matrix [Wdd(f)] and the measured cross–spectral den-
sity matrix [Wcd(f)] as

[H(f)] = [Wcd(f)][Wdd(f)]−1 (27.9)

The MIMO control system uses the frequency response matrix, measured before
the MIMO test with the use of Eq. (27.9), to construct the initial drive signals as in
Eq. (27.6). A further MIMO control iteration is used to refine the drive and approx-
imately account for the possible nonlinearities in the control responses.30,32,33,35 The
control iteration uses [Z(f)] to compute the contribution that the control errors at
each of the control points make to each of the drive signals. It effectively decouples
the control errors so they can be used to adjust the drive signal’s relative phase and
coherence to achieve control22,30,32,34,35 according to their respective contribution. In
MIMO random, unlike in MISO random testing, phase cannot be ignored since the
relative phase between the control responses and the drive signals, and also between
the drive vector and the control response vector, is critical to the success of the
MIMO test. Also, since the impedance matrix, [Z(f)], which is the inverse of [H(f)],
is being used for control, special care is needed in its calculation at those frequencies
where [H(f)] is singular or nearly singular.30,32,35

For MIMO random testing, the system characterization is done by operating all
exciters in the system under test simultaneously with band-limited Gaussian noise.
These system identification drive signals typically have a uniform, bandwidth-
limited spectrum covering the maximum frequency of interest. They are also uncor-
related among themselves. The response levels for the system characterization
should be chosen as high above the noise floor as possible to maximize the accuracy
of the [Z(f)] estimate, but below a level that might cause undue stress or damage to
the test article during the system identification operation.With the system excited in
this way, the spectral density matrix [Wdd(f)] and the cross–spectral density matrix
[Wcd(f)] are estimated using the methods associated with Eqs. (27.1) through (27.3).
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Equation (27.9) is used to compute the estimate of [H(f)], and Eq. (27.6) is used to
generate the initial drive signals based on the Cholesky factor [Γd(f)] discussed as
part of Eq. (27.7).

MIMO Swept-Sine. MIMO swept-sine control systems operate much like the
MIMO random control systems discussed previously with differences in the control
objective. The objective of a MIMO swept-sine test is to apply a controlled excita-
tion to a structure at specified points with a series of exciters connected to the struc-
ture so that the response motion at a chosen number of control points on the system
under test (see Fig. 27.8), as described by the control-response vector, {C(f)}, match
a specified reference-response vector, {R(f)}, within some acceptable error mar-
gin.30,35 In this case, if there are n exciters and n control transducers, the complex vec-
tors of spectra, {C(f)}, with components C1(f) through Cn(f), and {R(f)}, with
components R1(f) through Rn(f), are of dimension n for each frequency within the
test range. To accomplish this goal, the linear system model of system response is
solved for the initial drive by

{D(f)} = [H(f)]−1 {R(f)} (27.10)

As in other MIMO control applications, Eq. (27.10) is solved for the initial drive
vector {D(f)}, using the system-under-test’s frequency response matrix that is
obtained prior to the test. In MIMO sine, the additional problem is that random
noise excitation, as used in other MIMO applications, is many times not suitable for
the system identification.This is because the system’s frequency response character-
istics can be quite different for swept-sine excitation, as opposed to a random exci-
tation. For this reason, the system identification should be done with a swept-sine
excitation, one exciter at a time. This can be time-consuming and may cause undue
fatigue to the structure under test in Fig. 27.13. Other approaches that are used
involve stepped-sweep methods with a single exciter at time or with multiple
exciters using multiple phases at each step frequency. There is at least one commer-
cial system, which uses patented adaptive control technology, that can estimate the
[H(f)] matrix during the swept-sine test, and thus minimize the initial system identi-
fication phase.35

The overall block diagrams of the MIMO swept-sine control system and the
MIMO sweep-sine controller are shown in Figs. 27.13 and 27.14, respectively.As can
be seen in the block diagram of the overall system in Fig. 27.13, a vector-tracking fil-
ter subsystem plays the role of the time-to-frequency conversion in the DVCS. As
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discussed in a previous section, tracking filters estimate the complex amplitude of
the sweeping sine-wave control-response signals, c1(t) through cn(t). The resulting
complex control-response vector, {C(f)}, is then compared by the DVCS with the
specified test reference-response vector, {R(f)}.The control-error vector is then mul-
tiplied by the impedance matrix, [Z(f)], to get the contribution of the control errors
at each control location to each drive signal sent to each exciter.A percentage of this
error, given by ε, is added to the previous complex-drive signal’s amplitude spectrum
to obtain the next drive signal’s vector spectrum amplitude, as shown in the multi-
exciter swept-sine controller block diagram in Fig. 27.14. This corrected drive signal,
with updated amplitude and relative phase, is then sent to the vector oscillator,
which plays the role of the frequency-to-time transformation subsystem within the
DVCS. It provides control of the amplitude of the output drive signals and the rela-
tive phase with respect to the modulating signal used by the vector-tracking filter
shown in Fig. 27.13. Each component of {C(f)} is an output of an individual tracking
filter, within the vector-tracking filter in Fig. 27.13 given by Fig. 27.6, which all use the
same modulating signal. There is also a common phase and frequency reference for
the drive signals generated by the complex vector oscillator in Fig. 27.13.The system
is driven as the frequency of the drive-signal vector is swept continuously through
the sweep range of the MIMO swept-sine wave test.

MIMO Transient/Shock. MIMO transient waveform control methods are an
extension of single-shaker transient/shock and MIMO swept-sine control methods
previously discussed. This type of control is used principally for seismic simulations.
The application uses shock response spectrum synthesis techniques to create the
waveforms that are to be used as the specified reference-response vector, {r(t)}. In
this case, the control process matches the specified shock response spectrum indi-
rectly by using waveform control to make the control response, {c(t)}, match {r(t)},
thereby indirectly matching the specified shock response spectrum. This vector of
waveforms, {r(t)}, typically consist of random transients that have been synthesized
such that each such transient matches a specified shock response spectrum to be
used as the spectral reference response for each control point, as discussed in the
section on shock response spectrum synthesis. In other applications, these transient
waveforms sometimes represent data that have been measured in the field. Many
times, they are actual earthquake time-domain response data, from remote sensors
that are located to measure an earthquake’s ground motion when and where it
occurs. The block diagram of this type of control system is similar to that of MIMO
sine. The predominant difference is that the time-to-frequency transformation is
accomplished by an FFT, with a frame size large enough to accommodate the tran-
sient, but still avoid circular convolution errors.1 Spectral leakage errors (see Chap.
14) are mitigated by using windowing.

MIMO Long-Term Response Waveform Control. This application is an exten-
sion of MIMO transient waveform control discussed in the previous section.The pri-
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mary difference is in the fact that the test-specified reference-response vector, {r(t)},
consists of waveforms that cannot be processed within a single FFT frame. For this
reason, like in the discussion about single-exciter waveform control methods, an
overlap-and-add technique1 has to be used in both the time-to-frequency and
frequency-to-time transformations within the DVCS used for MIMO long-term
response waveform control.The issues that are associated with the use of the overlap-
and-add indirect convolution technique need to be considered and addressed.1,30,32

Again, as in MIMO random, MIMO sine, and MIMO transient/shock applica-
tions, the MIMO system under test is driven with a vector of time-histories, {d(t)},
such that the control-response vector, {c(t)}, in this case a vector of time-histories,
agrees within an acceptable error margin with the test-specified reference-response
vector {r(t)}, which is also a vector of time-histories.

Modal Testing. Modal testing is conducted to excite a system under test, acquire
its drive and response signals, and estimate its frequency response characteristics to
determine experimentally the natural frequencies, mode shapes, and associated
damping factors of a structure via modal analysis. Modal analysis is discussed thor-
oughly in Chap. 21. Typically, much of the DVCS hardware and its shock and vibra-
tion data acquisition and analysis software is usable for this application.

Currently, digital computers are applied in modal testing in two distinct ways.
First, for sinusoidal excitation, computers are employed as an aid in obtaining the
desired purity of the modal excitation as well as in acquiring and processing data,
usually with operator adjustments of the frequency, the relative phase, and the
amplitude of several sine-wave outputs. These are used to drive a system under test
so as to achieve a particular relative phase and amplitude between chosen response
points on the system under test that is characteristic of a particular normal mode
response. The use of MIMO sine control methods can simplify this process. Second,
and more commonly, the DVCS is used to excite the system under test with either a
broad bandwidth random or a transient excitation, usually with several such outputs.
The response and drive signals are acquired and processed using FFT computations
with the methods discussed on frequency response function and frequency response
matrix estimation, using Eq. (27.4). The use of MIMO random control methods can
simplify this process. The frequency response functions are typically measured
between chosen response points on the system under test, while exciting the system
under test with the chosen excitation at prespecified excitation points, as discussed
previously and in Chap. 21. The frequency response functions and/or frequency
response matrices thus estimated are subsequently passed to modal analysis soft-
ware for further processing and extraction of the pertinent modal data using the
methods of Chap. 21.
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CHAPTER 28, PART I
MATRIX METHODS 

OF ANALYSIS

Stephen H. Crandall

Robert B. McCalley, Jr.

INTRODUCTION

The mathematical language which is most convenient for analyzing multiple degree-
of-freedom vibratory systems is that of matrices. Matrix notation simplifies the pre-
liminary analytical study, and in situations where particular numerical answers are
required, matrices provide a standardized format for organizing the data and the
computations. Computations with matrices can be carried out by hand or by digital
computers. The availability of programs such as MATLAB makes the solution of
many complex problems in vibration analysis a matter of routine.

This chapter describes how matrices are used in vibration analysis. It begins with
definitions and rules for operating with matrices.The formulation of vibration prob-
lems in matrix notation then is treated. This is followed by general matrix solutions
of several important types of vibration problems, including free and forced vibra-
tions of both undamped and damped linear multiple degree-of-freedom systems.
Part II of this chapter considers finite element models.

MATRICES

Matrices are mathematical entities which facilitate the handling of simultaneous equa-
tions.They are applied to the differential equations of a vibratory system as follows:

A single degree-of-freedom system of the type in Fig. 28.1 has the differential
equation

mẍ + cẋ + kx = F

where m is the mass, c is the damping coefficient, k is the stiffness, F is the applied
force, x is the displacement coordinate, and dots denote time derivatives. In Fig. 28.2
a similar three degree-of-freedom system is shown.The equations of motion may be
obtained by applying Newton’s second law to each mass in turn:

mẍ1 + cẋ1 + 5kx1 − 2kx2 = F1

2mẍ2 + 2cẋ2 − 2cẋ3 − 2kx1 + 3kx2 − kx3 = F2 (28.1)

3mẍ3 − 2cẋ2 + 2cẋ3 − kx2 + kx3 = F3

28.1
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The accelerations, velocities, displacements, and forces may be organized into
columns, denoted by single boldface symbols:

ẍ1 ẋ1 x1 F1

ẍ = �ẍ2� ẋ = �ẋ2� x = �x2� f = �F2� (28.2)

ẍ3 ẋ3 x3 F3

The inertia, damping, and stiffness coefficients may be organized into square
arrays:

m 0 0 c 0 0 5k −2k 0

M = �0 2m 0 � C = �0 2c −2c� K = �−2k 3k −k� (28.3)

0 0 3m 0 −2c 2c 0 −k k

By using these symbols, it is shown below that it is possible to represent the three
equations of Eq. (28.1) by the following single equation:

Mẍ + Cẋ + Kx = f (28.4)

Note that this has the same form as the differential equation for the single degree-of-
freedom system of Fig. 28.1. The notation of Eq. (28.4) has the advantage that in sys-
tems of many degrees-of-freedom it clearly states the physical principle that at every
coordinate the external force is the sum of the inertia, damping, and stiffness forces.
Equation (28.4) is an abbreviation for Eq. (28.1). It is necessary to develop the rules
of operation with symbols such as those in Eqs. (28.2) and (28.3) to ensure that no
ambiguity is involved.The algebra of matrices is devised to facilitate manipulations of
simultaneous equations such as Eq. (28.1). Matrix algebra does not in any way sim-
plify individual operations such as multiplication or addition of numbers, but it is an
organizational tool which permits one to keep track of a complicated sequence of
operations in an optimum manner. Matrices are essential elements of linear algebra,1

and are widely employed in structural analysis2 and vibration analysis.3

DEFINITIONS

A matrix is an array of elements arranged systematically in rows and columns. For
example, a rectangular matrix A, of elements ajk, which has m rows and n columns is

a11 a12 . . . a1n

A = [ajk] = �a21 a22 . . . a2n�. . . . . . . . . . . .

am1 am2 . . . amn

28.2 CHAPTER TWENTY-EIGHT, PART I
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FIGURE 28.2 Three degree-of-freedom sys-
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The elements ajk are usually numbers or functions, but, in principle, they may be any
well-defined quantities.The first subscript j on the element refers to the row number
while the second subscript k refers to the column number. The array is denoted by
the single symbol A, which can be used as such during operational manipulations in
which it is not necessary to specify continually all the elements ajk. When a numeri-
cal calculation is finally required, it is necessary to refer back to the explicit specifi-
cations of the elements ajk.

A rectangular matrix with m rows and n columns is said to be of order (m,n). A
matrix of order (n,n) is a square matrix and is said to be simply a square matrix of
order n. A matrix of order (n,1) is a column matrix and is said to be simply a column
matrix of order n. A column matrix is sometimes referred to as a column vector. Simi-
larly, a matrix of order (1,n) is a row matrix or a row vector. Boldface capital letters are
used here to represent square matrices and lower-case boldface letters to represent
column matrices or vectors. For example, the matrices in Eq. (28.2) are column matri-
ces of order three and the matrices in Eq. (28.3) are square matrices of order three.

Some special types of matrices are:

1. A diagonal matrix is a square matrix A whose elements ajk are zero when j ≠ k.
The only nonzero elements are those on the main diagonal, where j = k. In order to
emphasize that a matrix is diagonal, it is often written with small ticks in the direc-
tion of the main diagonal:

A = ajj

2. A unit matrix or identity matrix is a diagonal matrix whose main diagonal elements
are each equal to unity.The symbol I is used to denote a unit matrix. Examples are

1 0 0

�1 0� �0 1 0�0 1
0 0 1

3. A null matrix or zero matrix has all its elements equal to zero and is simply
written as zero.

4. The transpose AT of a matrix A is a matrix having the same elements but with
rows and columns interchanged. Thus, if the original matrix is

A = [ajk]

the transpose matrix is

AT = [ajk]T = [akj]

For example:

3 2 3 −1
A = �−1 4� AT = �2 4�

The transpose of a square matrix may be visualized as the matrix obtained by rotat-
ing the given matrix about its main diagonal as an axis.

The transpose of a column matrix is a row matrix. For example,

3
x = �−4� xT = [3 4 −2]

−2
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Throughout this chapter a row matrix is referred to as the transpose of the corre-
sponding column matrix.

5. A symmetric matrix is a square matrix whose off-diagonal elements are sym-
metric with respect to the main diagonal. A square matrix A is symmetric if, for all j
and k,

ajk = akj

A symmetric matrix is equal to its transpose. For example, all three of the matrices
in Eq. (28.3) are symmetric. In addition, the matrix M is a diagonal matrix.

MATRIX OPERATIONS

Equality of Matrices. Two matrices of the same order are equal if their corre-
sponding elements are equal. Thus two matrices A and B are equal if, for every j
and k,

ajk = bjk

Matrix Addition and Subtraction. Addition or subtraction of matrices of the
same order is performed by adding or subtracting corresponding elements. Thus,
A + B = C if for every j and k,

ajk + bjk = cjk

For example, if

3 2 −1 2
A = �−1 4� B = � 5 6�

then

2 4 4 0
A + B = �4 10� A − B = �−6 −2�

Multiplication of a Matrix by a Scalar. Multiplication of a matrix by a scalar c
multiplies each element of the matrix by c. Thus

cA = c[ajk] = [cajk]

In particular, the negative of a matrix has the sign of every element changed.

Matrix Multiplication. If A is a matrix of order (m,n) and B is a matrix of order
(n,p), then their matrix product AB = C is defined to be a matrix C of order (m,p)
where, for every j and k,

cjk = �
n

r = 1
ajrbrk (28.5)

The product of two matrices can be obtained only if they are conformable, i.e., if the
number of columns in A is equal to the number of rows in B.The symbolic equation

(m,n) × (n,p) = (m,p)

28.4 CHAPTER TWENTY-EIGHT, PART I
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indicates the orders of the matrices involved in a matrix product. Matrix products
are not commutative, i.e., in general,

AB ≠ BA

The matrix products which appear in this chapter are of the following types:

Square matrix × square matrix = square matrix
Square matrix × column vector = column vector
Row vector × square matrix = row vector
Row vector × column vector = scalar
Column vector × row vector = square matrix

In all cases, the matrices must be conformable. Numerical examples are given below.

AB = � � � � = �−(3 × 1) + (2 × 5) (3 × 2) + (2 × 6)� = � �(1 × 1) + (4 × 5) −(1 × 2) + (4 × 6)

(3 × 5) + (2 × 3)
Ax = � � � � = �−(1 × 5) + (4 × 3)� = � �

3 2yTA = [−2 1] �−1 4� = [−(2 × 3) − (1 × 1) − (2 × 2) + (1 × 4)] = [−7 0]

yTx = [−2 1] � � = (−10 + 3) = −7

−(5 × 2) (5 × 1)
xyT = � � [−2 1] = �−(3 × 2) (3 × 1)� = � �

The last product always results in a matrix with proportional rows and columns.
The operation of matrix multiplication is particularly suited for representing sys-

tems of simultaneous linear equations in a compact form in which the coefficients
are gathered into square matrices and the unknowns are placed in column matrices.
For example, it is the operation of matrix multiplication which gives unambiguous
meaning to the matrix abbreviation in Eq. (28.4) for the three simultaneous differ-
ential equations of Eq. (28.1). The two sides of Eq. (28.4) are column matrices of
order three whose corresponding elements must be equal. On the right, these ele-
ments are simply the external forces at the three masses. On the left, Eq. (28.4) states
that the resulting column is the sum of three column matrices, each of which results
from the matrix multiplication of a square matrix of coefficients defined in Eq.
(28.3) into a column matrix defined in Eq. (28.2). The rules of matrix operation just
given ensure that Eq. (28.4) is exactly equivalent to Eq. (28.1).

Premultiplication or postmultiplication of a square matrix by the identity matrix
leaves the original matrix unchanged; i.e.,

IA = AI = A

Two symmetrical matrices multiplied together are generally not symmetric. The
product of a matrix and its transpose is symmetric.

5
3

−10
−6

5
3

5
3

21
7

5
3

2
4

3
−1

18
22

7
21

2
6

−1
5

2
4

3
−1
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Continued matrix products such as ABC are defined, provided the number of
columns in each matrix is the same as the number of rows in the matrix immediately
following it. From the definition of matrix products, it follows that the associative law
holds for continued products:

(AB)C = A(BC)

A square matrix A multiplied by itself yields a square matrix which is called the
square of the matrix A and is denoted by A2. If A2 is in turn multiplied by A, the
resulting matrix is A3 = A(A2) = A2(A). Extension of this process gives meaning to
Am for any positive integer power m. Powers of symmetric matrices are themselves
symmetric.

The rule for transposition of matrix products is

(AB)T = BTAT

Inverse or Reciprocal Matrix. If, for a given square matrix A, a square matrix 
A−1 can be found such that

A−1A = AA−1 = I (28.6)

then A−1 is called the inverse or reciprocal of A. Not every square matrix A possesses
an inverse. If the determinant constructed from the elements of a square matrix is
zero, the matrix is said to be singular and there is no inverse. Every nonsingular
matrix possesses a unique inverse. The inverse of a symmetric matrix is symmetric.
The rule for the inverse of a matrix product is

(AB)−1 = (B−1)(A−1)

The solution to the set of simultaneous equations

Ax = c

where x is the unknown vector and c is a known input vector can be indicated with
the aid of the inverse of A. The formal solution for x proceeds as follows:

A−1Ax = A−1c

Ix = x = A−1c

When the inverse A−1 is known, the solution vector x is obtained by a simple matrix
multiplication of A−1 into the input vector c.

Calculation of inverses and the solutions of simultaneous linear equations are
readily performed for surprisingly large values of n by programs such as MATLAB.
When n = 2 and

A = � � x = � � c = � �
hand-computation is possible using the following formulas:

A−1 = � � x1 = x2 =
∆2�∆

∆1�∆
−a12

a11

a22

−a21

1
�∆

c1

c2

x1

x2

a12

a22

a11

a21

28.6 CHAPTER TWENTY-EIGHT, PART I

8434_Harris_28_b.qxd  09/20/2001  11:48 AM  Page 28.6



where the determinants have the values

∆ = a11a22 − a12a21 ∆1 = c1a22 − c2a12 ∆2 = c2a11 − c1a21

QUADRATIC FORMS

A general quadratic form Q of order n may be written as

Q = �
n

j = 1
�

n

k = 1
ajkxjxk

where the ajk are constants and the xj are the n variables. The form is quadratic since
it is of the second degree in the variables.The laws of matrix multiplication permit Q
to be written as

a11 a12 . . . a1n x1

Q = [x1 x2 . . . xn] �a21 a22 . . . a2n� �x2�. . . . . . . . . . . . . . .
an1 an2 . . . ann xn

which is

Q = xTAx

Any quadratic form can be expressed in terms of a symmetric matrix. If the given
matrix A is not symmetric, it can be replaced by the symmetric matrix

B = 1⁄2(A + AT)

without changing the value of the form.
As an example of a quadratic form, the potential energy V for the system of Fig.

28.2 is given by

2V = 3kx1
2 + 2k(x2 − x1)2 + k(x3 − x2)2

= 5kx1x1 − 2kx1x2

− 2kx2x1 + 3kx2x2 − kx2 x3

− kx3 x2 + kx3x3

Using the displacement vector x defined in Eq. (28.2) and the stiffness matrix K in
Eq. (28.3), the potential energy may be written as

V = 1⁄2xTKx

Similarly, the kinetic energy T is given by

2T = mẋ1
2 + 2mẋ2

2 + 3mẋ3
2

In terms of the inertia matrix M and the velocity vector ẋ defined in Eqs. (28.3) and
(28.2), the kinetic energy may be written as

T = 1⁄2ẋTMẋ

The dissipation function D for the system is given by
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2D = cẋ1
2 + 2c(ẋ3 − ẋ2)2

= cẋ1ẋ1

+ 2cẋ2ẋ2 − 2cẋ2ẋ3

− 2cẋ3 ẋ2 + 2cẋ3 ẋ3

In terms of the velocity vector ̇x and the damping matrix C defined in Eqs. (28.2) and
(28.3), the dissipation function may be written as

D = 1⁄2ẋTCẋ

The dissipation function gives half the rate at which energy is being dissipated in the
system.

While quadratic forms assume positive and negative values in general, the three
physical forms just defined are intrinsically positive for a vibrating system with lin-
ear springs, constant masses, and viscous damping; i.e., they can never be negative
for a real motion of the system. Kinetic energy is zero only when the system is at
rest. The same thing is not necessarily true for potential energy or the dissipation
function.

Depending upon the arrangement of springs and dashpots in the system, there
may exist motions which do not involve any potential energy or dissipation. For
example, in vibratory systems where rigid body motions are possible (crankshaft tor-
sional systems, free-free beams, etc.), no elastic energy is involved in the rigid body
motions. Also, in Fig. 28.2, if x1 is zero while x2 and x3 have the same motion, there is
no energy dissipated and the dissipation function is zero. To distinguish between
these two possibilities, a quadratic form is called positive definite if it is never nega-
tive and if the only time it vanishes is when all the variables are zero. Kinetic energy
is always positive definite, while potential energy and the dissipation function are
positive but not necessarily positive definite. It depends upon the particular config-
uration of a given system whether the potential energy and the dissipation function
are positive definite or only positive. The terms positive and positive definite are
applied also to the matrices from which the quadratic forms are derived. For exam-
ple, of the three matrices defined in Eq. (28.3), the matrices M and K are positive
definite, but C is only positive. It can be shown that a matrix which is positive but not
positive definite is singular.

Differentiation of Quadratic Forms. In forming Lagrange’s equations of motion
for a vibrating system,* it is necessary to take derivatives of the potential energy V,
the kinetic energy T, and the dissipation function D. When these quadratic forms are
represented in matrix notation, it is convenient to have matrix formulas for differ-
entiation. In this paragraph rules are given for differentiating the slightly more gen-
eral bilinear form

F = xTAy = yTAx

where xT is a row vector of n variables xj, A is a square matrix of constant coeffi-
cients, and y is a column matrix of n variables yj. In a quadratic form the xj are iden-
tical with the yj.

For generality it is assumed that the xj and the yj are functions of n other variables uj.
In the formulas below, the notation Xu is used to represent the following square matrix:

28.8 CHAPTER TWENTY-EIGHT, PART I
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. . .

Xu = . . .

. . . . . . . . . . . .

. . .

Now letting ∂/∂u stand for the column vector whose elements are the partial differ-
ential operators with respect to the uj, the general differentiation formula is

= = XuAy + YuATx
⋅⋅⋅

For a quadratic form Q = xTAx the above formula reduces to

= Xu(A + AT )x

Thus whether A is symmetric or not, this kind of differentiation produces a symmetri-
cal matrix of coefficients (A + AT ). It is this fact which ensures that vibration equations
in the form obtained from Lagrange’s equations always have symmetrical matrices of
coefficients. If A is symmetrical to begin with, the previous formula becomes

= 2XuAx

Finally, in the important special case where the xj are identical with the uj, the matrix
Xx reduces to the identity matrix, yielding

= 2Ax (28.7)

which is employed in the following section in developing Lagrange’s equations.

FORMULATION OF VIBRATION PROBLEMS IN MATRIX FORM

Consider a holonomic linear mechanical system with n degrees-of-freedom which
vibrates about a stable equilibrium configuration. Let the motion of the system be
described by n generalized displacements xj(t) which vanish in the equilibrium posi-
tion. The potential energy V can then be expressed in terms of these displacements
as a quadratic form. The kinetic energy T and the dissipation function D can be
expressed as quadratic forms in the generalized velocities ẋj(t).

∂Q
�
∂x

∂Q
�
∂u

∂Q
�
∂u

∂F
�
∂un

∂F
�
∂u2

∂F
�
∂u

∂F
�
∂u1

∂xn�
∂un

∂x2�
∂un

∂x1�
∂un

∂xn�
∂u2

∂x2�
∂u2

∂x1�
∂u2

∂xn�
∂u1

∂x2�
∂u1

∂x1�
∂u1
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The equations of motion are obtained by applying Lagrange’s equations

� � + + = fj(t) [ j = 1, 2, . . . , n]

The generalized external force fj(t) for each coordinate may be an active force in the
usual sense or a force generated by prescribed motion of the coordinates.

If each term in the foregoing equation is taken as the jth element of a column
matrix, all n equations can be considered simultaneously and written in matrix form
as follows:

� � + + = f

The quadratic forms can be expressed in matrix notation as

T = 1⁄2(ẋTMẋ)

D = 1⁄2(ẋTCẋ)

V = 1⁄2(xTKx)

where the inertia matrix M, the damping matrix C, and the stiffness matrix K may be
taken as symmetric square matrices of order n. Then the differentiation rule (28.7)
yields

(Mẋ) + Cẋ + Kx = f

or simply

Mẍ + Cẋ + Kx = f (28.8)

as the equations of motion in matrix form for a general linear vibratory system with
n degrees-of-freedom. This is a generalization of Eq. (28.4) for the three degree-of-
freedom system of Fig. 28.2. Equation (28.8) applies to all linear constant-
parameter vibratory systems. The specifications of any particular system are
contained in the coefficient matrices M, C, and K.The type of excitation is described
by the column matrix f. The individual terms in the coefficient matrices have the
following significance:

mjk is the momentum component at j due to a unit velocity at k.

cjk is the damping force at j due to a unit velocity at k.

kjk is the elastic force at j due to a unit displacement at k.

The general solution to Eq. (28.8) contains 2n constants of integration which
are usually fixed by the n displacements xj(t0) and the n velocities ẋj(t0) at some
initial time t0. When the excitation matrix f is zero, Eq. (28.8) is said to describe
the free vibration of the system. When f is nonzero, Eq. (28.8) describes a forced
vibration. When the time behavior of f is periodic and steady, it is sometimes con-
venient to divide the solution into a steady-state response plus a transient response
which decays with time. The steady-state response is independent of the initial
conditions.

d
�
dt

∂V
�
∂x

∂D
�
∂ẋ

∂T
�
∂ẋ

d
�
dt

∂V
�
∂xj

∂D
�
∂ẋj

∂T
�
∂ẋj

d
�
dt
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COUPLING OF THE EQUATIONS

The off-diagonal terms in the coefficient matrices are known as coupling terms. In
general, the equations have inertia, damping, and stiffness coupling; however, it is
often possible to obtain equations that have no coupling terms in one or more of the
three matrices. If the coupling terms vanish in all three matrices (i.e., if all three
square matrices are diagonal matrices), the system of Eq. (28.8) becomes a set of
independent uncoupled differential equations for the n generalized displacements
xj(t). Each displacement motion is a single degree-of-freedom vibration independent
of the motion of the other displacements.

The coupling in a system depends on the choice of coordinates used to describe
the motion. For example, Figs. 28.3 and 28.4 show the same physical system with two
different choices for the displacement coordinates.

The coefficient matrices corresponding to the coordinates shown in Fig. 28.3 are

m1 0 k1 + k2 −k2
M = �0 m2

� K = � −k2 k2
�

Here the inertia matrix is uncoupled because the coordinates chosen are the
absolute displacements of the masses. The elastic force in the spring k2 is generated
by the relative displacement of the two coordinates, which accounts for the coupling
terms in the stiffness matrix.

The coefficient matrices corresponding to the alternative coordinates shown in
Fig. 28.4 are

m1 + m2 m2 k1 0
M = � m2 m2

� K = �0 k2
�

Here the coordinates chosen relate directly to the extensions of the springs so that
the stiffness matrix is uncoupled. The absolute displacement of m2 is, however, the
sum of the coordinates, which accounts for the coupling terms in the inertia matrix.

A fundamental procedure for solving vibration problems in undamped systems
may be viewed as the search for a set of coordinates which simultaneously uncouples
both the stiffness and inertia matrices.This is always possible. In systems with damp-
ing (i.e., with all three coefficient matrices) there exist coordinates which uncouple
two of these, but it is not possible to uncouple all three matrices simultaneously,
except in the special case, called proportional damping, where C is a linear combi-
nation of K and M.

The system of Fig. 28.2 provides an example of a three degree-of-freedom system
with damping. The coefficient matrices are given in Eq. (28.3). The inertia matrix is
uncoupled, but the damping and stiffness matrices are coupled.

MATRIX METHODS OF ANALYSIS 28.11

FIGURE 28.3 Coordinates (x1,x2) with uncou-
pled inertia matrix.

FIGURE 28.4 Coordinates (x1,x2) with uncou-
pled stiffness matrix. The equilibrium length of
the spring k2 is L2.
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Another example of a system with
damping is furnished by the two
degree-of-freedom system shown in
Fig. 28.5. The excitation here is fur-
nished by acceleration ẍ0(t) of the base.
This system is used as the basis for the
numerical example at the end of Part I
of the chapter. With the coordinates
chosen as indicated in the figure, all
three coefficient matrices have coupling
terms. The equations of motion can be
placed in the standard form of Eq.
(28.8), where the coefficient matrices
and the excitation column are as fol-
lows:

m1 + m2 m2 c1 + c3 c3
M = � m2 m2

� C = � c3 c2 + c3
�

k1 + k3 k3 m1 + m2
K = � k3 k2 + k3

� f = −ẍ0 � m2
�

(28.9)

THE MATRIX EIGENVALUE PROBLEM

In the following sections the solutions to both free and forced vibration problems
are given in terms of solutions to a specialized algebraic problem known as the
matrix eigenvalue problem. In the present section a general theoretical discussion of
the matrix eigenvalue problem is given.

The free vibration equation for an undamped system,

Mẍ + Kx = 0 (28.10)

follows from Eq. (28.8) when the excitation f and the damping C vanish. If a solution
for x is assumed in the form

x = R {vejωt}

where v is a column vector of unknown amplitudes, ω is an unknown frequency, j is the
square root of −1, and R { } signifies “the real part of,” it is found on substituting in
Eq. (28.10) that it is necessary for v and ω to satisfy the following algebraic equation:

Kv = ω2Mv (28.11)

This algebraic problem is called the matrix eigenvalue problem. Where necessary it
is called the real eigenvalue problem to distinguish it from the complex eigenvalue
problem described in the section on Vibration of Systems with Damping.

To indicate the formal solution to Eq. (28.11), it is rewritten as

(K − ω2M)v = 0 (28.12)

which can be interpreted as a set of n homogeneous algebraic equations for the n
elements vj. This set always has the trivial solution

28.12 CHAPTER TWENTY-EIGHT, PART I

FIGURE 28.5 Two degree-of-freedom vibra-
tory system.The equilibrium length of the spring
k1 is L1 and the equilibrium length of the spring
k2 is L2.
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v = 0

It also has nontrivial solutions if the determinant of the matrix multiplying the vec-
tor v is zero, i.e., if

det (K − ω2M) = 0 (28.13)

When the determinant is expanded, a polynomial of order n in ω2 is obtained. Equa-
tion (28.13) is known as the characteristic equation or frequency equation. The
restrictions that M and K be symmetric and that M be positive definite are sufficient
to ensure that there are n real roots for ω2. If K is singular, at least one root is zero.
If K is positive definite, all roots are positive.The n roots determine the n natural fre-
quencies ωr (r = 1, . . . , n) of free vibration.These roots of the characteristic equation
are also known as normal values, characteristic values, proper values, latent roots, or
eigenvalues. When a natural frequency ωr is known, it is possible to return to Eq.
(28.12) and solve for the corresponding vector vr to within a multiplicative constant.
The eigenvalue problem does not fix the absolute amplitude of the vectors v, only
the relative amplitudes of the n coordinates.There are n independent vectors vr cor-
responding to the n natural frequencies which are known as natural modes. These
vectors are also known as normal modes, characteristic vectors, proper vectors, latent
vectors, or eigenvectors.

MODAL AND SPECTRAL MATRICES

The complete solution to the eigenvalue problem of Eq. (28.11) consists of n eigen-
values and n corresponding eigenvectors. These can be assembled compactly into
matrices. Let the eigenvector vr corresponding to the eigenvalue ωr

2 have elements
vjr (the first subscript indicates which row, the second subscript indicates which
eigenvector). The n eigenvectors then can be displayed in a single square matrix V,
each column of which is an eigenvector:

V = [vjk] = � �
The matrix V is called the modal matrix for the eigenvalue problem, Eq. (28.11).

The n eigenvalues ωr
2 can be assembled into a diagonal matrix Ω2 which is known

as the spectral matrix of the eigenvalue problem, Eq. (28.11)

ω1
2 0 . . . 0

�W2 = ωr
2 = �0 ω2

2 . . . 0
. . . . . . . . . . . .
0 0 . . . ωn

2

Each eigenvector and corresponding eigenvalue satisfy a relation of the following
form:

Kvr = Mvrωr
2

By using the modal and spectral matrices it is possible to assemble all of these rela-
tions into a single matrix equation

v1n

v2n

. . .
vnn

. . .

. . .

. . .

. . .

v12

v22

. . .
vn2

v11

v21

. .
vn1
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KV = MVW2 (28.14)

Equation (28.14) provides a compact display of the complete solution to the eigen-
value problem Eq. (28.11).

PROPERTIES OF THE SOLUTION

The eigenvectors corresponding to different eigenvalues can be shown to satisfy the
following orthogonality relations. When ωr

2 ≠ ωs
2,

vr
TKvs = 0 vr

TMvs = 0 (28.15)

In case the characteristic equation has a p-fold multiple root for ω2, then there is a 
p-fold infinity of corresponding eigenvectors. In this case, however, it is always pos-
sible to choose p of these vectors which mutually satisfy Eq. (28.15) and to express
any other eigenvector corresponding to the multiple root as a linear combination of
the p vectors selected. If these p vectors are included with the eigenvectors corre-
sponding to the other eigenvalues, a set of n vectors is obtained which satisfies the
orthogonality relations of Eq. (28.15) for any r ≠ s.

The orthogonality of the eigenvectors with respect to K and M implies that the
following square matrices are diagonal.

VTKV = vr
T Kvr

VTMV = vr
T Mvr

(28.16)

The elements vr
T Kvr along the main diagonal of VTKV are called the modal stiff-

nesses kr, and the elements vr
T Mvr along the main diagonal of VTMV are called the

modal masses mr. Since M is positive definite, all modal masses are guaranteed to be
positive. When K is singular, at least one of the modal stiffnesses will be zero. Each
eigenvalue ωr

2 is the quotient of the corresponding modal stiffness divided by the
corresponding modal mass; i.e.,

ωr
2 =

In numerical work it is sometimes convenient to normalize each eigenvector so
that its largest element is unity. In other applications it is common to normalize the
eigenvectors so that the modal masses mr all have the same value m, where m is
some convenient value such as the total mass of the system. In this case,

VTMV = mI (28.17)

and it is possible to express the inverse of the modal matrix V simply as

V−1 = VTM

An interpretation of the modal matrix V can be given by showing that it defines
a set of generalized coordinates for which both the inertia and stiffness matrices are
uncoupled. Let y(t) be a column of displacements related to the original displace-
ments x(t) by the following simultaneous equations:

y = V−1x or x = Vy

1
�
m

kr�
mr
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The potential and kinetic energies then take the forms

V = 1⁄2xTKx = 1⁄2yT(VTKV)y

T = 1⁄2 ẋTMẋ = 1⁄2 ẏT(VTMV)ẏ

where, according to Eq. (28.16), the square matrices in parentheses on the right
are diagonal; i.e., in the yj coordinate system there is neither stiffness nor inertia
coupling.

An alternative method for obtaining the same interpretation is to start from the
eigenvalue problem of Eq. (28.11). Consider the structure of the related eigenvalue
problem for w where again w is obtained from v by the transformation involving the
modal matrix V.

w = V−1v or v = Vw

Substituting in Eq. (28.11), premultiplying by VT, and using Eq. (28.14),

Kv = ω2Mv

KVw = ω2MVw

VTKVw = ω2VTMVw

(VTMV)W2w = ω2(VTMV)w

Now, since VTMV is a diagonal matrix of positive elements, it is permissible to can-
cel it from both sides, which leaves a simple diagonalized eigenvalue problem for w:

W2w = ω2w

A modal matrix for w is the identity matrix I, and the eigenvalues for w are the same
as those for v.

EIGENVECTOR EXPANSIONS

Any set of n independent vectors can be used as a basis for representing any other
vector of order n. In the following sections, the eigenvectors of the eigenvalue prob-
lem of Eq. (28.11) are used as such a basis.An eigenvector expansion of an arbitrary
vector y has the form

y = �
n

r = 1
vrar (28.18)

where the ar are scalar mode multipliers. When y and the vr are known, it is possible
to evaluate the ar by premultiplying both sides by vs

T M. Because of the orthogonal-
ity relations of Eq. (28.15), all the terms on the right vanish except the one for which
r = s. Inserting the value of the mode multiplier so obtained, the expansion can be
rewritten as

y = �
n

r = 1
vr (28.19)

or alternatively as

vr
T My

�
vr

T Mvr
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y = �
n

r = 1
y (28.20)

The form of Eq. (28.19) emphasizes the decomposition into eigenvectors since the
fraction on the right is just a scalar. The form of Eq. (28.20) is convenient when a
large number of vectors y are to be decomposed, since the fractions on the right,
which are now square matrices, must be computed only once. The form of Eq.
(28.20) becomes more economical of computation time when more than n vectors y
have to be expanded. A useful check on the calculation of the matrices on the right
of Eq. (28.20) is provided by the identity

�
n

r = 1
= I (28.21)

which follows from Eq. (28.20) because y is completely arbitrary.
An alternative expansion which is useful for expanding the excitation vector f is

f = �
n

r = 1
ωr

2Mvrar = �
n

r = 1
Mvr (28.22)

This may be viewed as an expansion of the excitation in terms of the inertia force
amplitudes of the natural modes. The mode multiplier ar has been evaluated by pre-
multiplying by vr

T.A form analogous to Eq. (28.20) and an identity corresponding to
Eq. (28.21) can easily be written.

RAYLEIGH’S QUOTIENT

If Eq. (28.11) is premultiplied by vT, the following scalar equation is obtained:

vTKv = ω2vTMv

The positive definiteness of M guarantees that vTMv is nonzero, so that it is per-
missible to solve for ω2.

ω2 = (28.23)

This quotient is called “Rayleigh’s quotient.” It also may be derived by equating
time averages of potential and kinetic energy under the assumption that the vibra-
tory system is executing simple harmonic motion at frequency ω with amplitude
ratios given by v or by equating the maximum value of kinetic energy to the maxi-
mum value of potential energy under the same assumption. Rayleigh’s quotient has
the following interesting properties.

1. When v is an eigenvector vr of Eq. (28.11), then Rayleigh’s quotient is equal to
the corresponding eigenvalue ωr

2.
2. If v is an approximation to vr with an error which is a first-order infinitesimal,

then Rayleigh’s quotient is an approximation to ωr
2 with an error which is a sec-

ond-order infinitesimal; i.e., Rayleigh’s quotient is stationary in the neighbor-
hoods of the true eigenvectors.

3. As v varies through all of n-dimensional vector space, Rayleigh’s quotient re-
mains bounded between the smallest and largest eigenvalues.

vTKv
�
vTMv

vr
Tf

�
vr

T Mvr

vrvr
T M

�
vr

T Mvr

vrvr
T M

�
vr

T Mvr
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A common engineering application of Rayleigh’s quotient involves simply eval-
uating Eq. (28.23) for a trial vector v which is selected on the basis of physical
insight. When eigenvectors are obtained by approximate methods, Rayleigh’s quo-
tient provides a means of improving the accuracy in the corresponding eigenvalue. If
the elements of an approximate eigenvector whose largest element is unity are cor-
rect to k decimal places, then Rayleigh’s quotient can be expected to be correct to
about 2k significant decimal places.

Perturbation Formulas. The perturbation formulas which follow provide the
basis for estimating the changes in the eigenvalues and the eigenvectors which result
from small changes in the stiffness and inertia parameters of a system. The formulas
are strictly accurate only for infinitesimal changes but are useful approximations for
small changes. They may be used by the designer to estimate the effects of a pro-
posed change in a vibratory system and may also be used to analyze the effects of
minor errors in the measurement of the system properties. Iterative procedures for
the solution of eigenvalue problems can be based on these formulas. They are
employed here to obtain approximations to the complex eigenvalues and eigenvec-
tors of a lightly damped vibratory system in terms of the corresponding solutions for
the same system without damping.

Suppose that the modal matrix V and the spectral matrix W2 for the eigenvalue
problem

KV = MVW2 (28.14)

are known. Consider the perturbed eigenvalue problem

K*V* = M*V*W*
2

where

K* = K + dK M* = M + dM

V* = V + dV W*
2 = W2 + dW2

The perturbation formula for the elements dωr
2 of the diagonal matrix dΩ2 is

dωr
2 = (28.24)

Thus in order to determine the change in a single eigenvalue due to changes in M
and K, it is necessary to know only the corresponding unperturbed eigenvalue and
eigenvector.To determine the change in a single eigenvector, however, it is necessary
to know all the unperturbed eigenvalues and eigenvectors. The following algorithm
may be used to evaluate the perturbations of both the modal matrix and the spectral
matrix. Calculate

F = VT dK V − VT dM VW2

and

L = VTMV

The matrix L is a diagonal matrix of positive elements and hence is easily inverted.
Continue calculating

G = L−1F = [gjk] and H = [hjk]

vr
T dK vr − ωr

2vr
T dM vr���

vr
T Mvr
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where

0 if ωj
2 = ωk

2

hjk = � if ωj
2 ≠ ωk

2

Then, finally, the perturbations of the modal matrix and the spectral matrix are given
by

dV = VH dW2 = gjj (28.25)

These formulas are derived by taking the total differential of Eq. (28.14), premulti-
plying each term by VT, and using a relation derived by taking the transpose of Eq.
(28.14). An interesting property of the perturbation approximation is that the
change in each eigenvector is orthogonal with respect to M to the corresponding
unperturbed eigenvector; i.e.,

vj
T M dvj = 0

VIBRATIONS OF SYSTEMS WITHOUT DAMPING

In this section the damping matrix C is neglected in Eq. (28.8), leaving the general
formulation in the form

Mẍ + Kx = f (28.26)

Solutions are outlined for the following three cases: free vibration (f = 0), steady-
state forced sinusoidal vibration (f = R {dejωt}, where d is a column vector of driving-
force amplitudes), and the response to general excitation (f an arbitrary function of
time). The first two cases are contained in the third, but for the sake of clarity each
is described separately.

FREE VIBRATION WITH SPECIFIED INITIAL CONDITIONS

It is desired to find the solution x(t) of Eq. (28.26) when f = 0 which satisfies the ini-
tial conditions

x = x(0) ẋ = ẋ(0) (28.27)

at t = 0 where x(0) and ẋ(0) are columns of prescribed initial displacements and
velocities. The differential equation to be solved is identical with Eq. (28.10), which
led to the matrix eigenvalue problem in the preceding section. Assuming that the
solution of the eigenvalue problem is available, the general solution of the differen-
tial equation is given by an arbitrary superposition of the natural modes

x = �
n

r = 1
vr(ar cos ωrt + br sin ωrt)

where the vr are the eigenvectors or natural modes, the ωr are the natural frequen-
cies, and the ar and br are 2n constants of integration. The corresponding velocity is

gjk
�ωk

2 − ωj
2
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ẋ = �
n

r = 1
vrωr(−ar sin ωrt + br cos ωrt)

Setting t = 0 in these expressions and substituting in the initial conditions of Eq.
(28.27) provides 2n simultaneous equations for determination of the constants of
integration.

�
n

r = 1
vrar = x(0) �

n

r = 1
vrωrbr = ẋ(0)

These equations may be interpreted as eigenvector expansions of the initial dis-
placement and velocity. The constants of integration can be evaluated by the same
technique used to obtain the mode multipliers in Eq. (28.19). Using the form of Eq.
(28.20), the solution of the free vibration problem then becomes

x(t) = �
n

r = 1
�x(0) cos ωr t + ẋ(0) sin ωr t� (28.28)

STEADY-STATE FORCED SINUSOIDAL VIBRATION

It is desired to find the steady-state solution to Eq. (28.26) for single-frequency sinu-
soidal excitation f of the form

f = R {dejωt}

where d is a column vector of driving force amplitudes (these may be complex to
permit differences in phase for the various components). The solution obtained is a
useful approximation for lightly damped systems provided that the forcing fre-
quency ω is not too close to a natural frequency ωr. For resonance and near-
resonance conditions it is necessary to include the damping as indicated in the
section which follows the present discussion.

The steady-state solution desired is assumed to have the form

x = R {aejωt}

where a is an unknown column vector of response amplitudes. When f and x are
inserted in Eq. (28.26), the following set of simultaneous equations for the elements
of a is obtained:

(K − ω2M)a = d (28.29)

If ω is not a natural frequency, the square matrix K − ω2M is nonsingular and may be
inverted to yield

a = (K − ω2M)−1d

as a complete solution for the response amplitudes in terms of the driving force
amplitudes. This solution is useful if several force amplitude distributions are to be
studied while the excitation frequency ω is held constant. The process requires
repeated inversions if a range of frequencies is to be studied.

An alternative procedure which permits a more thorough study of the effect of
frequency variation is available if the natural modes and frequencies are known. The
driving-force vector d is represented by the eigenvector expansion of Eq. (28.22), and
the response vector a is represented by the eigenvector expansion of Eq. (28.18):

1
�
ωr

vrvr
T M

�
vr

T Mvr
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d = �
n

r = 1
d a = �

n

r = 1
vrcr

where the cr are unknown coefficients. Substituting these into Eq. (28.29), and mak-
ing use of the fundamental eigenvalue relation of Eq. (28.11), leads to

�
n

r = 1
(ωr

2 − ω2)Mvrcr = �
n

r = 1
d

This equation can be uncoupled by premultiplying both sides by vr
T and using the

orthogonality condition of Eq. (28.15) to obtain

(ωr
2 − ω2)vr

TMvrcr = vr
Td

cr =

The final solution is then assembled by inserting the cr back into a and a back into x.

x = R � �
n

r = 1
d� (28.30)

This form clearly indicates the effect of frequency on the response.

RESPONSE TO GENERAL EXCITATION

It is now desired to obtain the solution to Eq. (28.26) for the general case in which
the excitation f(t) is an arbitrary vector function of time and for which initial dis-
placements x(0) and velocities ẋ(0) are prescribed. If the natural modes and fre-
quencies of the system are available, it is again possible to split the problem up into
n single degree-of-freedom response problems and to indicate a formal solution.

Following a procedure similar to that just used for steady-state forced sinusoidal
vibrations, an eigenvector expansion of the solution is assumed:

x(t) = �
n

r = 1
yrcr(t)

where the cr are unknown functions of time and the known excitation f(t) is
expanded according to Eq. (28.22). Inserting these into Eq. (28.26) yields

�
n

r = 1
(Mvr c̈r + Kvrcr) = �

n

r = 1
f(t)

Using Eq. (28.11) to eliminate K and premultiplying by vr
T to uncouple the equation,

c̈r + ωr
2cr

2 = (28.31)

is obtained as a single second-order differential equation for the time behavior of the
rth mode multiplier. The initial conditions for cr can be obtained by making eigen-
vector expansions of x(0) and ẋ(0) as was done previously for the free vibration case.
Formal solutions to Eq. (28.29) can be obtained by a number of methods, including
Laplace transforms and variation of parameters. When these mode multipliers are
substituted back to obtain x, the general solution has the following appearance:

vr
Tf(t)

�
vr

T Mvr

Mvrvr
T

�
vr

T Mvr

vrvr
T

�
vr

T Mvr

ejωt

�
ωr

2 − ω2

vr
Td

�
vr

TMvr

1
�
ωr

2 − ω2

Mvrvr
T

�
vr

T Mvr

Mvrvr
T

�
vr

TMvr
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x(t) = �
n

r = 1
�x(0) cos ωrt + ẋ(0) sin ωrt�

+ �
n

r = 1
	t

0
f(t′) sin {ωr(t − t′)} dt′ (28.32)

The integrals involving the excitation can be evaluated in closed form if the ele-
ments fj(t) of f(t) are simple (e.g., step functions, ramps, single sine pulses, etc.).When
the fj(t) are more complicated, numerical results can be obtained by using integra-
tion software.

VIBRATION OF SYSTEMS WITH DAMPING

In this section solutions to the complete governing equation, Eq. (28.8), are dis-
cussed. The results of the preceding section for systems without damping are 
adequate for many purposes. There are, however, important problems in which it is
necessary to include the effect of damping, e.g., problems concerned with resonance,
random vibration, etc.

COMPLEX EIGENVALUE PROBLEM

When there is no excitation, Eq. (28.8) becomes

Mẍ + Cẋ + Kx = 0

which describes the free vibration of the system. As in the undamped case, there are
2n independent solutions which can be superposed to meet 2n initial conditions.
Assuming a solution in the form

x = uept

leads to the following algebraic problem:

(p2M + pC + K)u = 0 (28.33)

for the determination of the vector u and the scalar p. This is a complex eigenvalue
problem because the eigenvalue p and the elements of the eigenvector u are, in gen-
eral, complex numbers.The most common technique for solving the nth-order eigen-
value problem, Eq. (28.33), is to transform it to a 2nth-order problem having the
same form as Eq. (28.11). This may be done by introducing the column vector ṽ of
order 2n given by

ṽ = {u pu}T

and the two square matrices of order 2n given by

K̃ = � � M̃ = � �
In terms of these, an eigenvalue problem equivalent to Eq. (28.33) is

M
0

C
M

0
M

−K
0

vrvr
T

�
ωrvr

T Mvr

1
�
ωr

vrvr
T M

�
vr

T Mvr
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K̃ṽ = pM̃ṽ (28.34)

which is similar to Eq. (28.11) except that M̃ does not have the positive definite
property that M has. As a result, the eigenvalue p and the eigenvector v are gener-
ally complex. Since the computational time for most eigenvalue problems is propor-
tional to n3, the computational time for the 2nth-order system of Eq. (28.34) will be
about eight times that for the nth-order system of Eq. (28.11).

If the complex eigenvalue p = −α + jβ together with the complex eigenvector u =
v + jw satisfy the eigenvalue problem of Eq. (28.33), then so also does the complex
conjugate eigenvalue pC = −α − jβ together with the complex conjugate eigenvector
uC = v − jw. There are 2n eigenvalues which occur in pairs of complex conjugates or
as real negative numbers. When the damping is absent all roots lie on the imaginary
axis of the complex p-plane; for small damping the roots lie near the imaginary axis.
The corresponding 2n eigenvectors ur satisfy the following orthogonality relations:

(pr + ps)ur
TMus + ur

TCus = 0

ur
TKus − prpsur

TMus = 0

whenever pr ≠ ps; they can be made to hold for repeated roots by suitable choice of
the eigenvectors associated with a multiple root. When ps is put equal to pr

C, the
orthogonality relations provide convenient formulas for the real and imaginary
parts of the eigenvalues in terms of the eigenvectors

2αr = =

αr
2 + βr

2 = =

The complex eigenvalue is often represented in the form

pr = ωr(−ζr + j
1 − ζr
2�) (28.35)

where ωr = 
αr
2 + β�r

2� is called the undamped natural frequency of the rth mode, and
ζr = αr/ωr is called the critical damping ratio of the rth mode.

PERTURBATION APPROXIMATION TO COMPLEX 

EIGENVALUE PROBLEM

The complex eigenvalue problem of Eq. (28.33) can be solved approximately, when
the damping is light, by using the perturbation equations of Eqs. (28.24) and (28.25).
When C = 0 in Eq. (28.33) the complex eigenvalue problem reduces to the real
eigenvalue problem of Eq. (28.11) with p2 = −ω2. Suppose that the real eigenvalue ωr

2

and the real eigenvector vr are known. The perturbation of the rth mode due to the
addition of small damping C can be estimated by considering the damping to be a
perturbation of the stiffness matrix of the form

dK = jωrC

vr
TKvr+ wr

TKwr��
vr

TMvr+ wr
TMwr

ur
TKur

C

�
ur

TMur
C

vr
TCvr+ wr

TCwr��
vr

TMvr+ wr
TMwr

ur
TCur

C

�
ur

TMur
C
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In this way it is found that the perturbed solution corresponding to the rth mode
consists of a pair of complex conjugate eigenvalues

pr = −αr + jωr pr
C = −αr − jωr

and a pair of complex conjugate eigenvectors

ur = vr + jwr ur
C = vr − jwr

where ωr and vr are taken directly from the undamped system, and αr and wr are
small perturbations which are given below. The superscript C is used to denote the
complex conjugate.The real part of the eigenvalue, which describes the rate of decay
of the corresponding free motion, is given by the following quotient:

2αr = 2ζrωr = (28.36)

The decay rate αr for a particular r depends only on the rth mode undamped solu-
tion. The imaginary part of the eigenvector jwr, which describes the perturbations in
phase, is more difficult to obtain. All the undamped eigenvalues and eigenvectors
must be known. Let W be a square matrix whose columns are the wr. The following
algorithm may be used to evaluate W when the undamped modal matrix V is known.
Calculate

F = VTCV

and

L = VTMV

The matrix L is a diagonal matrix of positive elements and hence is easily inverted.
Continue calculating

G = L−1F = [gjk] and H = [hjk]

where

0 if ωj
2 = ωk

2

hjk = � if ωj
2 ≠ ωk

2

Then, finally, the eigenvector perturbations are given by

W = VH (28.37)

The individual eigenvector perturbations wr obtained in this manner are orthogonal
with respect to M to their corresponding unperturbed eigenvectors vr; i.e., wr

TMvr = 0.

FORMAL SOLUTIONS

If the solution to the eigenvalue problem of Eq. (28.33) is available, it is possible to
exhibit a general solution to the governing equation

Mx + Cẋ + Kx = f (28.8)

gjkωk
�ωk

2 − ωj
2

vr
TCvr�

vr
T Mvr
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for arbitrary excitation f(t) which meets prescribed initial conditions for x(0) and ẋ(0)
at t = 0. The solutions given below apply to the case where the 2n eigenvalues occur
as n pairs of complex conjugates (which is usually the case when the damping is light).
This does, however, restrict the treatment to systems with nonsingular stiffness matri-
ces K because if ωr

2 = 0 is an undamped eigenvalue, the corresponding eigenvalues in
the presence of damping are real.All quantities in the solutions below are real. These
forms have been obtained by breaking down complex solutions into real and imagi-
nary parts and recombining. With the notation

pr = −αr + jβr ur = vr + jwr

for the real and imaginary parts of eigenvalues and eigenvectors, it follows from Eq.
(28.35) that

αr = ζrωr βr = ωr 
1� −� ζ�r
2�

The general solution to Eq. (28.8) is then

x(t) = �
n

r = 1
{GrMẋ(0) + (−αrGrM + βrHrM + GrC)x(0)}e−αr t cos βrt

+ �
n

r = 1
{HrMẋ(0) + (−βrGrM − αrHrM + HrC)x(0)}e−αr t sin βrt

+ �
n

r = 1
Gr 	t

0
f(t′)e−αr (t − t′) cos βr(t − t′) dt′

+ �
n

r = 1
Hr 	t

0
f(t′)e−αr (t − t′) sin βr(t − t′) dt′ (28.38)

where

ar = −2αr(vr
T Mvr − wr

T Mwr) − 4βrvr
T Mwr + vr

TCvr − wr
TCwr

br = 2βr(vr
T Mvr − wr

T Mwr) − 4αrvr
T Mwr + 2vr

TCwr

Ar = vrvr
T − wrwr

T Br = vrwr
T + wrvr

T

Gr = arAr + brBr Hr = brAr − arBr

The solution of Eq. (28.38) should be compared with the corresponding solution of
Eq. (28.32) for systems without damping. When the damping matrix C = 0, Eq.
(28.38) reduces to Eq. (28.32).

For the important special case of steady-state forced sinusoidal excitation of
the form

f = R {dejωt}

where d is a column of driving force amplitudes, the steady-state portion of the
response can be written as follows, using the above notation:

x(t) = R � �
n

r = 1
d� (28.39)

This result reduces to Eq. (28.30) when the damping matrix C is set equal to zero.

αrGr + βrHr + jωGr���
ωr

2 − ω2 + j2ζrωrω
2ejωt

�
ar

2 + br
2

2
�
ar

2 + br
2

2
�
ar

2 + br
2

2
�
ar

2 + br
2

2
�
ar

2 + br
2
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APPROXIMATE SOLUTIONS

For a lightly damped system the exact solutions of Eq. (28.38) and Eq. (28.39) can be
abbreviated considerably by making approximations based on the smallness of the
damping.A systematic method of doing this is to consider the system without damp-
ing as a base upon which an infinitesimal amount of damping is superposed as a per-
turbation. An approximate solution to the complex eigenvalue problem by this
method is provided by Eqs. (28.36) and (28.37). This perturbation approximation
can be continued into Eqs. (28.38) and (28.39) by simply neglecting all squares and
products of the small quantities αr, ζr, wr, and C.When this is done it is found that the
formulas of Eqs. (28.38) and (28.39) may still be used if the parameters therein are
obtained from the simplified expressions below.

αr = ζrωr βr = ωr

ar = −4ωrvr
T Mwr br = 2ωrvr

T Mvr

ar
2 + br

2 = 4ωr
2(vr

T Mvr)2

(28.40)
Ar = vrvr

T Br = vrwr
T + wrvr

T

Gr = 2ωr(vr
T Mvr)(vrwr

T + wrvr
T )

Hr = 2ωr(vr
T Mvr)vrvr

T

For example, the steady-state forced sinusoidal solution of Eq. (28.39) takes the fol-
lowing explicit form in the perturbation approximation:

x(t) = R � �
n

r = 1

vrvr
T + �vrwr

T + wrvr
T�

d� (28.41)ωr
2 − ω2 + j2ζrωrω

A cruder approximation, which is often used, is based on accepting the complex
eigenvalue pr = −αr + jωr but completely neglecting the imaginary part jwr of the
eigenvector ur = vr + jwr. It is thus assumed that the undamped mode vr still applies
for the system with damping. The approximate parameter values of Eq. (28.40) are
further simplified by this assumption; e.g., ar = 0, Br = Gr = 0. The steady forced sinu-
soidal response of Eq. (28.41) reduces to

x(t) = R � �
n

r = 1
d� (28.42)

This approximation should be compared with the undamped solution of Eq. (28.30),
as well as with the exact solution of Eq. (28.39) and the perturbation approximation
of Eq. (28.41).

In the special case of proportional damping, the exact eigenvectors are real and
Eq. (28.36) produces the exact decay rate αr = ζrωr, so that the response of Eq.
(28.42) is an exact result.

Example 28.1. Consider the system of Fig. 28.5 with the following mass, damping,
and stiffness coefficients:

m1 = 1 lb-sec2/in. m2 = 2 lb-sec2/in.

c1 = 0.10 lb-sec/in. c2 = 0.02 lb-sec/in. c3 = 0.04 lb-sec/in.

k1 = 3 lb/in. k2 = 0.5 lb/in. k3 = 1 lb/in.

vrvr
T

�
vr

T Mvr

e jωt

��
ωr

2 − ω2 + j2ζrωrω

jω
�ωrejωt

�
vr

T Mvr
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The coefficient matrices of Eq. (28.9) then have the following numerical values:

3 2 0.14 0.04 4 1
M = � � C = � � K = � �

2 2 0.04 0.06 1 1.5

Assuming that the numerical values above are exact, the exact solutions to the com-
plex eigenvalue problem of Eq. (28.33) for these values of M, C, and K are, correct
to four decimal places,

pr = −αr + jβr ur = vr + jwr

2α1 = 0.0279 α1 = ζ1ω1 = 0.0139 ζ1 = 0.0166

β1 = 0.8397 ω1 = 0.8398 ω1
2 = 0.7053

2α2 = 0.1221 α2 = ζ2ω2 = 0.0611 ζ2 = 0.0324 (28.43)

β2 = 1.8818 ω2 = 1.8828 ω2
2 = 3.5449

V = � � W = �0.0016 0.0010�0 0

Note that this is a lightly damped system. The damping ratios in the two modes are
1.66 percent and 3.24 percent, respectively.

For comparison, the solution of the real eigenvalue problem Eq. (28.12) for the
corresponding undamped system (i.e., M and K as above, but C = 0) is, correct to four
decimal places,

V = � �
Note that, to this accuracy, there is no discrepancy in the real parts of the eigenvec-
tors. There are, however, small discrepancies in the imaginary parts of the eigenval-
ues. The difference between β1 for the damped system and ω1 for the undamped
system is 0.0001, and the corresponding difference between β2 and ω2 is 0.0009. The
imaginary parts of the eigenvectors and the real parts of the eigenvalues for the
damped system are completely absent in the undamped system. They may be
approximated by applying the perturbation equations of Eqs. (28.36) and (28.37) to
the solution of the eigenvalue problem for the undamped system.

The real parts αr of the eigenvalues obtained from Eq. (28.36) agree, to four dec-
imal places, with the exact values in Eq. (28.43).The imaginary parts wr of the eigen-
vectors obtained from Eq. (28.37) are

w1 = � � w2 = � �
These vectors satisfy the orthogonality conditions vr

T Mwr = 0.
In order to compare these values with Eq. (28.43), it is first necessary to normal-

ize the complete eigenvector vr + jwr, so that its second element is unity. For exam-
ple, this is done in the case of r = 1 by dividing both v1 and w1 by 1.0000 − j0.0014.
When this is done, it is found that the perturbation approximation to the eigenvec-
tors agrees, to four decimal places, with the exact solution of Eq. (28.43).

To illustrate the application of the formal solutions given above, consider the
steady-state forced oscillation of the system shown in Fig. 28.5 at a frequency ω due

0.0002
0.0009

0.0013
−0.0014

−0.9179
1.0000

0.2179
1.0000

ω1
2 = 0.7053

ω2
2 = 3.5447

−0.9179
1.0000

0.2179
1.0000
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to driving force amplitudes d1 and d2. Using the exact solution values of Eq. (28.43),
the expressions ar, br, Ar, Br, Gr, and Hr following Eq. (28.38) are evaluated for r = 1
and r = 2. With these values, the steady-state response, Eq. (28.39), becomes

� � = R �ejωt �� � + jω � �� � �0.7053 − ω2 + 0.0279jω

+
ejωt�� � + jω � ��

� ��3.5449 − ω2 + 0.1221jω

When the approximation in Eq. (28.41) based on the perturbation solution is evalu-
ated, the result is almost identical to this. A few entries differ by one or two units in
the fourth decimal place. The crude approximation, Eq. (28.42), is the same as the
perturbation approximation except that the terms in the numerators which are mul-
tiplied by jω are absent. This means that the relative error between the crude
approximation and the exact solution can be large at high frequencies. At low fre-
quencies, however, even the crude approximation provides useful results for lightly
damped systems. In the present case, the discrepancy between the crude approxima-
tion and the exact solution remains under 1 percent as long as ω is less than ω2 (the
highest natural frequency). At higher frequencies the absolute response level
decreases steadily, which tends to undercut the significance of the increasing relative
discrepancy between approximations.
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CHAPTER 28, PART II
FINITE ELEMENT MODELS

Robert N. Coppolino

INTRODUCTION

The finite element method (FEM), formally introduced by Clough1 in 1960, has
become a mature engineering discipline during the past forty years. In actual prac-
tice, finite element analysis is a systematic applied science, which incorporates (1)
the definition of a physical model of a complex system as a collection of building
blocks (finite elements), (2) the solution of matrix equations describing the physical
model, and (3) the analysis and interpretation of numerical results. The foundations
of finite element analysis are (a) the design of consistent, robust finite elements2; and
(b) matrix methods of numerical analysis3,4,5 (see Chap. 28, Part I). Originally devel-
oped to address modeling and analysis of complex structures, the finite element
approach is now applied to a wide variety of engineering applications including heat
transfer, fluid dynamics, and electromagnetics, as well as multiphysics (coupled
interaction) applications.

Modern finite element programs include powerful graphical user interface
(GUI) driven preprocessors and postprocessors, which automate routine operations
required for the definition of models and the interpretation of numerical results,
respectively (see Chap. 27). Moreover, finite element analysis, computer-assisted
design and optimization, and laboratory/field testing are viewed as an integrated
“concurrent engineering” process. Commercially available products, widely used in
industry, include MSC/NASTRAN (a product of MSC.Software), ANSYS (a prod-
uct family of ANSYS Incorporated), and ABAQUS (a product of HKS Incorpo-
rated), just to mention a few.

This chapter describes finite element modeling and analysis with an emphasis on
its application to the shock and vibration of structures and structures interacting
with fluid media. Included are discussions on the theoretical foundations of finite
element models, effective modeling guidelines, dynamic system models and analysis
strategies, and common industry practice.

THEORETICAL FOUNDATIONS OF FINITE

ELEMENT MODELS

APPLICATION OF MINIMAL PRINCIPLES

The matrix equations describing both individual finite elements and complete finite
element system models are defined on the basis of minimal principles. In particular,
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for structural dynamic systems, Hamilton’s Principle or Lagrange’s Equations6 con-
stitute the underlying physical principle. The fundamental statement of Hamilton’s
Principle is

δ 	t1

t0

(T + W)dt = 0 (28.44)

where T is the system kinetic energy, W is the work performed by internal and
external forces, t represents time, and δ is the variational operator. In the case of
statics, Hamilton’s Principle reduces to the Principle of Virtual Work, stated mathe-
matically as

δW = 0 (if T = 0) (28.45)

For most mechanical systems of interest, W may be expressed in terms of a conser-
vative interior elastic potential energy (U), dissipative interior work (WD), and the
work associated with externally applied forces (WE). Thus Hamilton’s Principle is
stated as

	t1

t0

(δT − δU + δWD + δWE)dt = 0 (28.46)

The kinematics of a mechanical system of volume, V, are described in terms of the
displacement field

{u} = [Nu Nq]� � (28.47)

where {u} is the displacement array at any point in V, {ui} is an array of discrete dis-
placements (typically) on the element surface, and {q} is an array of generalized dis-
placement coefficients. The transformation matrix partitions, Nu and Nq, describe
assumed shape functions for the particular finite element. The most commonly used
elements, namely H-type elements, do not include generalized displacement coeffi-
cients, {q}. The more general case element is called a P-type element. For simplicity,
the subsequent discussion will be limited to H-type elements.

In matrix notation (see Chap. 28, Part I), the strain field within the element vol-
ume is related to the assumed displacements by the differential operator matrix
[Nεu] as

{ε(x,y,z,t)} = {ε} = [Nεu]{u} (28.48)

The stress field within the element volume is expressed as

{σ(x,y,z,t)} = {σ} = [D]{ε} = [D][Nεu]{u} (28.49)

In the case of hybrid finite element formulations, for which there is an assumed ele-
ment stress field other than simply [D][Nεu], the situation is more involved.

Using the above general expressions, the kinetic and strain energies associated
with a finite element are

ui

q
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2T = 	
v

{ �u}T[Nu]T[ρ][Nu]{ �u}dV = { �u}T[Me]{ �u} (28.50)

2U = 	
v

{u}T[Nεu]T[D][Nεu]{u}dV = {u}T[Ke]{u} (28.51)

where [ρ] is the material density matrix, [D] is the material elastic matrix, and [Me]
and [Ke] are the individual element mass and stiffness matrices, respectively. The
superscript shown as { }T and [ ]T denotes the transpose of an array and matrix,
respectively. In the case of viscous damping (which is a common yet not necessarily
realistic assumption), the element virtual dissipative work is

δWD = {δu}T[Be]{ �u} (28.52)

where [Be] is the symmetric element damping matrix.
In order to assemble the mass, stiffness, and damping matrices associated with a

complete finite element system model, the displacement array for the entire system,
{ug}, must first be defined. The individual element contributions to the system are
then allocated (and accumulated) to the appropriate rows and columns of the sys-
tem matrices. This results in the formation of generally sparse, symmetric matrices.
The complete system kinetic and strain energies are, respectively,

2Tg = { �ug}T[Mgg]{ �ug} (28.53)

2Ug = {ug}T[Kgg]{ug} (28.54)

where [Mgg] and [Kgg] are the system mass and stiffness matrices.
For the case of viscous damping, the complete system virtual dissipative work is

δWDg = {δug}T[Bgg]{ �ug} (28.55)

Finally, the virtual work associated with externally applied forces on the complete
system is defined as

δWEg = {δug}T[Γge]{Fe} (28.56)

where [Γge] represents the allocation matrix for externally applied forces, {Fe},
including moments, stresses, and pressures if applicable. Substitution of the above
expressions for the complete system energies and virtual work into Hamilton’s Prin-
ciple, followed by key manipulations, results in the finite element system differential
equations

[Mgg]{üg} + [Bgg]{ �ug} + [Kgg]{ug} = [Γge]{Fe} (28.57)

The task of defining a finite element model is not yet complete at this point. Con-
straints and boundary conditions, as required, must now be imposed. The logical
sequence of imposed constraint types is (1) multipoint constraints (e.g., geometric
constraints expressed as algebraic relationships) and (2) single-point constraints
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(e.g., fixed supports). These constraints are described, in summary, by the linear
transformation

{ug} = [Ggf]{uf} (28.58)

where {uf} is the array of “free” displacements. By imposing the constraint transfor-
mation, [Ggf], in a symmetric manner to the system equations [see Eq. (28.57)], the
following constrained system equations are formed:

[Mff]{üf} + [Bff]{ �uf} + [Kff]{uf} = [Γfe]{Fe} (28.59)

where

[Mff] = [Ggf]T[Mgg][Ggf], [Bff] = [Ggf]T[Bgg][Ggf]

(28.60)
[Kff] = [Ggf]T[Kgg][Ggf], [Γfe] = [Ggf]T[Γge]

TYPICAL FINITE ELEMENTS

Commonly used finite elements in commercial codes may be divided into two pri-
mary classes, namely, (1) elements based on technical theories, and (2) elements
based on three-dimensional continuum theory. The first class of elements includes
one-dimensional beam elements.Truss and bar elements are special cases of the gen-
eral beam element. A modern beam element permits modeling of the shear defor-
mation and warping associated with general cross-section geometry. Beam elements,
which may describe a straight or curved segment, are typically described in terms of
nodal displacements (three linear and three angular displacements) at the two
extremities as illustrated in Fig. 28.6.

Also within the family of elements based on technical theories are shell elements.
Membrane and flat plate elements are special cases of the general shell element.
Shell elements are typically of triangular or quadrilateral form with straight or
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curved edges as illustrated in Fig. 28.7. Common H-type shell elements are defined
by nodal displacements (three linear and three angular displacements) at the ele-
ment corners. Shell elements may also be defined in terms of midside nodal dis-
placements. Modern shell elements may include such features as shear deformation,
anisotropic elastic materials, and composite layering.

The family of three-dimensional elastic elements includes tetrahedral, pentahe-
dral, wedge, and hexahedral configurations with straight or curved edges as illus-
trated in Fig. 28.8. H-type continuum elements are defined by nodal displacements
(three linear) at the element corners. Three-dimensional H-type elements may also
be defined in terms of midside nodal displacements.As in the case of shell elements,
anisotropic elastic materials may be employed in element formulations.

Effect of Static Loading—Differential Stiffness. The effective stiffness of struc-
tures subjected to static loads may be increased or decreased. For example, the lat-
eral stiffness of a column subjected to axial compression decreases, becoming
singular if the fundamental buckling load is imposed. In the case of an inflated bal-
loon, the shell-bending stiffness is almost entirely due to significant membrane ten-
sion. In each of these situations, the static load–associated differential stiffness
derives from a finite geometric change. Modern commercial finite element codes
contain the option to include differential stiffness effects in the model definition.

Fluid-Structure Interaction. Linear dynamic models of oscillating (but otherwise
assumed stationary) fluids interacting with elastic structures are employed in vibro-
acoustics, liquid-filled tank vibratory dynamics, and other applications. One popular
approach used to describe the fluid medium employs pressure degrees-of-freedom. On
the basis of complementary energy principles,7 three-dimensional fluid elements (with
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the geometric configurations illustrated in Fig. 28.8) are defined. The matrix equations
describing dynamics of such a fluid interacting with an elastic structure are of the form

� �� � + � �� � = � �� � (28.61)

where [C] is the fluid compliance matrix, [S] is the fluid susceptance matrix (analo-
gous to the inverse of a mass matrix), and [A] is the fluid-structure interface area
matrix. The matrix partitions [ΓQ] and [ΓF] are the fluid volumetric source flow {Q̈e}
and the structural applied load {Fe} allocation matrices, respectively. The system of
equations is unsymmetric due to the fact that it is based on a blend of standard struc-
tural displacement and complementary fluid pressure variational principles.

A variety of algebraic manipulations are used to cast the hydroelastic equations
in a conventional symmetric form. In many applications involving approximately
incompressible (liquid) fluids, the fluid compliance is ignored. The incompressible
hydroelastic equations (without source flow excitation) may then be cast in the
symmetric form7

[M + Mf]{ü} + [K]{u} = [ΓF]{Fe} (28.62)

where the (generally full) fluid mass matrix is

[Mf] = [A][S]−1[A]T (28.63)

Specialized constraints are often required to permit the decomposition of the generally
singular fluid susceptance matrix.7 Moreover, specialized eigenvalue analysis proce-
dures are recommended to efficiently deal with the full fluid mass matrix.

Q̈e

Fe

0
ΓF

ΓQ

0
P
u

0
K

S
−A

P̈
ü

AT

M
C
0
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For the most general case of a compressible fluid, introduction of the fluid volu-
metric strain variable

{v} = [C]{P} (28.64)

results in the symmetric equation set

� �� � + � �� � = � � � � (28.65)

As for the incompressible, symmetric formulation, a specialized efficient eigenvalue
analysis procedure (based on the subspace iteration algorithm8) is recommended to
efficiently deal with the full hydroelastic mass matrix.

In situations for which the fluid is a lightweight acoustic gas, a decoupling approx-
imation may provide reasonable, approximate dynamic solutions.The approximation
assumes that the acoustic medium is driven by a much heavier structure, which is
unaffected by fluid interaction. The decoupled approximate dynamic equations are

[M]{ü} + [K]{u} = [ΓF]{Fe} (28.66)

[C]{P̈} + [S]{P} = −[AT]{ü} + [ΓQ]{Q̈e} (28.67)

Uncoupled modal analyses of the structural and acoustic media are used in the com-
putation of the system dynamic response for this approximate formulation.

General Linear System Dynamic Interaction Considerations. In the previous
discussion on fluid-structure interaction, a variety of algebraic manipulations, which
transform coupled unsymmetric dynamic equations to a conventional symmetric lin-
ear formulation, were described.Transformations resulting in symmetric matrix equa-
tions, however, are not possible in more general situations involving dynamic
interaction.

Linear systems which include complicating effects due to the interaction with
general linear subsystems (e.g., control systems, propulsion systems, and perturbed
steady fluid flow) are generally appended with nonsymmetric matrix dynamic rela-
tionships.The nonconventional linear dynamic formulation incorporates state equa-
tions for the interacting subsystem

[Ai]{qi} − { �qi} = [Bi]{ �u} + [Ki]{u} (28.68)

and the forces of interaction with the structural dynamic system

[Γi]{Fi} = [Γi][Ci]{qi} (28.69)

where {qi} are subsystem state variables, [Ai] is the subsystem plant matrix, and [Bi],
[Ki], and [Ci] are coupling matrices. The complete dynamic system is described by
the state equations

� �� � − � � = � �{Fe} (28.70)
−M−1Γe

0
0

ü
�u
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�u
u
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The above state equations are of the class

[Asys]{qsysi} − { �qsys} = [Γsysi]{Fsys} (28.71)

Nonlinear Dynamic Systems. The most general type of dynamic system includes
nonlinear effects, which may be due to large geometric deformations, nonlinear
material behavior, stick-slip friction, gapping, and other complicating effects (see
Chap. 4). Fortunately, many dynamic systems are approximately linear. A thorough
discussion of nonlinear finite element modeling and analysis techniques is beyond
the scope of the present discussion. However, two particularly useful classes of mod-
els are pointed out herein, namely, (1) linear systems with physically localized non-
linear features, and (2) general nonlinear systems.

A structural dynamic system with physically localized nonlinear features is
described by slightly modified linear matrix equations as

[M]{ü} + [B]{ �u} + [K]{u} = [ΓN]{FN(uN, �uN)} + [ΓF]{Fe} (28.72)

where [ΓN] is the allocation matrix for nonlinear features and {FN} are the nonlinear
forces related to local displacements and velocities. The local displacements and
velocities are related to global displacements and velocities as

{uN} = [ΓN]T{u}, { �uN} = [ΓN]T{ �u} (28.73)

This type of nonlinear dynamic formulation is useful in that the linear portion of the
system may be efficiently treated with modal analysis procedures, to be discussed
later.

General situations involving extensively distributed nonlinear behavior are
described by equations of the type

{ü} = [M]−1{F(u, �u,t)} (28.74)

or

� � = � �� � (28.75)

Advanced numerical integration procedures are employed to treat general nonlin-
ear dynamic systems. The procedures fall into two distinct classes, namely, (a)
implicit methods,9 and (b) explicit methods.4

EFFECTIVE MODELING GUIDELINES

CUT-OFF FREQUENCY AND GRID SPACING

In order to develop a relevant dynamic model, general requirements should be
addressed based on

F(u, �u,t)
�u

0
I

M−1

0
ü
�u
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1. Frequency bandwidth 0 < f < f*, and intensity (F*) of anticipated dynamic envi-
ronments.

2. General characteristics of structural or mechanical components.

Typical dynamic environments are summarized in Table 28.1. Dynamic environ-
ments are generally (a) harmonic, (b) transient, (c) impulsive, or (d) random. For all
categories, the cut-off frequency (f*) is reliably determined by shock response spec-
trum analysis (see Chap. 23).The overall intensity level of a dynamic environment is
described by a peak amplitude for harmonic, transient, and impulsive events, or by a
statistical amplitude (e.g., mean plus a multiple of the standard deviation) for a long-
duration random environment (see Chaps. 11 and 22). With the cut-off frequency
(f*) established, the shortest relevant wavelength of a forced vibration for compo-
nents in a structural assembly may be calculated. For finite element modeling, the
quarter wavelength (L/4) is of particular interest, since it defines the grid spacing
requirement needed to accurately model the dynamics. The guidelines for typical
structural components are summarized in Table 28.2.

In addition to the above grid spacing guidelines, the engineer must also consider
the limitations associated with beam and plate theories. In particular, if the wave-
length-to-thickness ratio (L/h) is less than about 10, a higher-order theory or 3D
elasticity modeling should be considered. Moreover, modeling requirements for the
capture of stress concentration details may call for a finer grid meshing than sug-
gested by the cut-off frequency. Finally, if the dynamic environment is sufficiently
high in amplitude, nonlinear modeling may be required, e.g., if plate deflections are
greater than the thickness, h.

MODAL DENSITY AND EFFECTIVENESS 

OF FINITE ELEMENT MODELS

Finite element modeling is an effective approach for the study of structural and
mechanical system dynamics as long as individual vibration modes have sufficient fre-
quency spacing or low modal density. Modal density is typically described as the num-
ber of modes within a 1⁄3 octave frequency band (f0 < f < 1.26 f0).When the modal density
of a structural component or structural assembly is greater than 10 modes per 1⁄3 octave
band, details of individual vibration modes are not of significance and statistical vibra-
tion response characteristics are of primary importance. In such a situation, the Statis-
tical Energy Analysis (SEA) method10 applies (see Chap. 11). Formulas for modal
density10 as a mathematical derivative, dn/dω (n = number of modes, ω = frequency in
radians/sec), for typical structural components are summarized in Table 28.3.
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TABLE 28.1 Summary of Typical Dynamic Environments

Environment Chapter or reference

Seismic excitation Chap. 24
Fluid flow Chap. 29, Part I
Wind loads Chap. 29, Part II
Sound Chap. 29, Part III
Transportation and handling impact MIL-STD-810E
Transportation and handling vibration MIL-STD-810E
Shipboard vibration MIL-STD-167-1
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DYNAMIC SYSTEM MODELS 

AND ANALYSIS STRATEGIES

FUNDAMENTAL DYNAMIC FORMULATIONS

finite element dynamic models fall into a variety of classes, which are expressed by
the following general equation sets:

1. Linear structural dynamic systems [see Eq. (28.59)]
2. Linear structural dynamic systems interacting with other media [see Eq. (28.70)]
3. Dynamic systems with localized nonlinear features [see Eqs. (28.72) and (28.73)]
4. Dynamic systems with distributed nonlinear features [see Eqs. (28.74) and

(28.75)]
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TABLE 28.3 Modal Density for Typical Structural Components

Component Motion Modal density, dn/dω Additional data

String Lateral L/(π
/T/ρA�) T = tension, A = area,
ρ = mass density,
L = length

Rod Axial L/(π
E/ρ�) E = elastic modulus

Rod Torsion L/(π
G/ρ�) G = shear modulus

Beam Bending L/(2π)(ω
EI/ρA�)−1/2 EI = flexural stiffness

Membrane Lateral Asω/(2π)(N/ρh) N = stress resultant,
As = surface area

Plate Bending As/(4π)
D/ρh� D = plate flexural stiffness,
h = plate thickness

Acoustic Dilatational V0ω2/(2π2)(
B/ρ�)3 B = bulk modulus,
V0 = enclosed volume

TABLE 28.2 Guidelines for Dynamic Finite Element Model Meshing

Component Mode type L/4 Additional data

String Lateral (
T/ρA�)/4f* T = tension, A = area,
ρ = mass density

Rod Axial (
E/ρ�)/4f* E = elastic modulus

Rod Torsion (
G/ρ�)/4f* G = shear modulus

Beam Bending (π/2)(EI/ρA)1/4/
2πf*� EI = flexural stiffness

Membrane Lateral (
N/ρh�)/4f* N = stress resultant

Plate Bending (π/2)(D/ρh)1/4/
2πf*� D = plate flexural stiffness,
h = plate thickness

3D elastic Dilatational (
E/ρ�)/4f*

3D elastic Shear (
G/ρ�)/4f*

Acoustic Dilatational (
B/ρ�)/4f* B = bulk modulus
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The first category represents the type of systems most often dealt with in structural
dynamics and mechanical vibration. In the majority of engineering analyses, damp-
ing is assumed to be well-distributed in a manner justifying the use of normal mode
analysis techniques (see Chaps. 21 and 28, Part I). Systems in the first and second cat-
egories having more general damping features may be treated by complex modal
analysis procedures (see Chap. 28, Part I). When localized nonlinear features are
present, normal or complex mode analysis procedures may also be applied.The final
class, namely dynamic systems with distributed nonlinear features, must be treated
using numerical integration procedures. When a nonlinear system is subjected to a
slowly applied or moderately low frequency environment, implicit numerical inte-
gration is often the preferred numerical integration strategy. Alternatively, when 
the dynamic environment is suddenly applied, high-frequency and/or short-lived
explicit numerical integration is often advantageous.

APPLICATION OF NORMAL MODES IN TRANSIENT 

DYNAMIC ANALYSIS

The homogeneous form for the conventional linear structural dynamic formulation
[see Eq. (28.59)], with damping ignored, defines the real eigenvalue problem, that is,

[K]{Φn} − [M]{Φn}ωn
2 = {0} (28.76)

where

{u} = {Φn} sin (ωnt) (28.77)

There are as many distinct eigenvectors or modes, {Φn}, as set degrees-of-freedom
for a well-defined undamped dynamic system. The eigenvalues, ω2

n (ωn = natural fre-
quency of mode n), however, are not necessarily all distinct. Individual modes or
mode shapes represent displacement patterns of arbitrary amplitude. It is conven-
ient to normalize the mode shapes (to unit modal mass) as follows:

{Φn}T[M]{Φn} = 1 (28.78)

The assembly of all or a truncated set of normalized modes into a modal matrix, [Φ],
defines the (orthonormal) modal transformation

{U} = [Φ]{q} (28.79)

where

[Φ]T[M][Φ] = [OR] = [I] = diagonal identity matrix
(28.80)

[Φ]T[K][Φ] = [Λ] = [ω2
n] = diagonal eigenvalue matrix

The modal transformation produces the mathematically diagonal matrix

[Φ]T[B][Φ] = [2ζnωn] = diagonal modal damping matrix (28.81)
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only for special forms of the damping matrix. One such form, known as proportional
damping, is

[B] = α[M] + β[K] (28.82)

In reality, proportional damping is a mathematical construction that bears little
resemblance to physical reality. It is experimentally observed in many situations,
however, that the diagonal modal damping matrix is a valid approximation.

Application of the modal transformation to the dynamic equations [see Eq.
(28.59)] results in the uncoupled single degree-of-freedom dynamic equations

q̈n + 2�nωn
�qn + ωn

2qn = [Φn
TΓ]{F(t)} = [Γqn]{F(t)} = Qn(t) (28.83)

The symbol ζn is the critical damping ratio and [Γqn] = [Φn
TΓ] is the modal excitation

gain array.
The character and content of an individual normal mode, [Φn], is described fun-

damentally by the geometric distribution of the displacement degrees-of-freedom.
Utilizing the mass matrix, [M], the modal momentum distribution is

{Pn} = [M]{Φn} (28.84)

and the modal kinetic energy distribution is

{En} = {Pn} � {Φn} = ([M]{Φn}) � {Φn} (28.85)

where � denotes term-by-term multiplication. The sum of the terms in the modal
kinetic energy vector, {En}, is 1.0 when the mode is normalized to unit modal mass.

Internal structural loads and stresses, relative displacements, strains, and other
user-defined terms are calculated as recovery variables. In many cases the recovery
variables, {S}, are related to the physical displacements, {u}, through a load transfor-
mation matrix, [KS], specifically,

{S} = [KS]{u} (28.86)

A modal (displacement-based) load transformation matrix, defined by substitution
of the modal transformation, is

{S} = [ΦKS]{q} (28.87)

where

[ΦKS] = [KS][Φ]

The dynamic response of a structural dynamic system, described in terms of normal
modes, is computed as follows:

Step 1. Calculate the modal responses numerically with, for example, the Du-
hamel integral (see Chap. 8) given by
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qn(t) = 	t

0
hn (t − τ)Qn(τ)dτ (28.88)

where

hn(t − τ) = e−ζnωn(t − τ) sin ((ωn 
1 − ζn�2)(t − τ)) (28.89)

Similar relationships exist for modal velocity and acceleration.

Step 2. Calculate the physical displacement, velocity, and acceleration responses
by modal superposition using Eq. (28.79) and calculate loads using Eq. (28.87).

It should be noted that the calculation of modal responses to harmonic and random
excitation environments follows strategies paralleling steps 1 and 2. These matters
will be discussed at the end of this chapter.

MODAL TRUNCATION

A common practice in structural dynamics analysis is to describe a system response
in terms of a truncated set of lowest-frequency modes. The selection of an appropri-
ate truncated mode set is accomplished by a normalized displacement, shock
response spectrum analysis (see Chap. 23) of each force component in the excitation
environment, {F(t)}, and establishment of the cut-off frequency, ω*. All modal
responses for systems with a natural frequency, ωn > ω*, will respond quasi-statically.
Therefore, the dynamic response will be governed by the truncated set of modes,
[ΦL], with natural frequencies below ω*.The remaining set of high-frequency modes
is denoted as [ΦH]. Therefore, the partitioned modal relationships are

{u} = [ΦL]{qL} + [ΦH]{qH}

{q̈L} + [2�LωL]{ �qL} + [ω2
L]{qL} = [ΦT

LΓ]{F(t)} (28.90)

[ω2
H]{qH} ≈ [ΦT

HΓ]{F(t)}

Since the high-frequency modal equations are algebraic, the modal transformation
becomes

{u} = [ΦL]{qL} + [Ψρ]{F(t)} (28.91)

where [Ψρ] is the residual flexibility matrix defined as

[Ψρ] = [ΦH][ω2
H]−1[ΦH]T[Γ] (28.92)

The computation of structural dynamic response employing a truncated set of
modes often is inaccurate if the quasi-static response associated with the high-

ωn�

1 − ζn�2
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frequency modes is not accounted for. This being the case, it appears that all modes
must be computed as indicated in Eq. (28.92). Such a requirement results in an
excessive computational burden for large-order finite element models.

Residual Mode Vectors and Mode Acceleration. The significance of residual
flexibility (quasi-static response of high-frequency modes) is well established,11 as
are methods for the efficient definition of residual vectors.12 The basic definition for
residual flexibility, using all of the high-frequency modal vectors, is computationally
inefficient for large-order models. Therefore, procedures that do not explicitly
require knowledge of the high-frequency modes have been developed.

The most fundamental procedure for deriving residual vectors forms residual
shape vectors as the difference between a complete static solution and a static solu-
tion based on the low-frequency mode subset. The complete static solution for unit-
applied loads, using a shifted stiffness (allowing treatment of an unconstrained
structure), is

[ΨS] = [K + λSM]−1[Γ] (28.93)

where λS is a small “shift” used for singular stiffness matrices. For nonsingular stiff-
ness, the shift is not required. The corresponding truncated, low-frequency mode
static solution is

[ΨL] = [ΦL][ω2
L + λS]−1[ΦL]T[Γ] (28.94)

Therefore, the residual vectors are

[Ψρ] = [ΨS] − [ΨL] = [K + λSM]−1[Γ] − [ΦL][ω2
L + λS]−1[ΦL]T[Γ] (28.95)

Note that the high-frequency modes are not explicitly required in this formulation.
Therefore the excessive computational burden for large-order finite element mod-
els is mitigated.

An alternative strategy, which automatically compensates for modal truncation,
is the mode acceleration method.13 The basis for this strategy is the substitution of
truncated expressions for acceleration and velocity in the system dynamic equations,
which results in

[K]{u} = [Γ]{F} − [M][ΦL]{q̈L} − [B][ΦL]{ �qL} (28.96)

In most applications, the term with modal velocity is ignored. The static solution of
the above equation, at each time point, produces physical displacements, which
include the quasi-static effects of all high-frequency modes.

Load Transformation Matrices. Recovery of structural loads is often organized
by a definition of the load transformation matrices (LTMs).14 When residual mode
vectors are employed, Eqs. (28.91) and (28.86) are combined to define the displace-
ment LTM relationship

{S} = [LTMq]{q} + [LTMF]{F} (28.97)
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where

[LTMq] = [KS][ΦL], [LTMF] = [KS][Ψρ] (28.98)

When the mode acceleration method is employed, Eqs. (28.96) and (28.86) are com-
bined to define the mode acceleration LTM relationship

{S} = [LTMA]{q̈} + [LTMV]{ �q} + [LTMAF]{F} (28.99)

where

[LTMA] = −[KS][K−1MΦL]

[LTMV] = −[KS][K−1BΦL] (28.100)

[LTMF] = [KS][K−1Γ]

In practice, [LTMV] is generally ignored. Mode acceleration LTMs are used exten-
sively in the aeronautical and space vehicle industries, while their mode displace-
ment (and residual vector)–based counterpart is rarely applied.

APPLIED LOADS AND ENFORCED MOTIONS

Dynamic excitation environments sometimes are described in terms of specified
foundation or boundary motions, for example, in the study of structural dynamic
response to seismic excitations (see Chap. 24). In such situations, the physical dis-
placement array is partitioned into two subsets as follows:

{u} = � � = � � (28.101)

The conventional linear structural dynamic formulation is expressed in partitioned
form as

� �� � + � �� � + � �� � = � � (28.102)

Using the partitioned stiffness matrix, the transformation from absolute to relative
response displacements is

� � = � �� � = � �� � (28.103)

Moreover, this transformation may be expressed in modal form by substituting the
lowest-frequency modes associated with the interior eigenvalue problem, which fol-
lows the relationships already discussed in Eqs. (28.76) through (28.81), that is,

[Kii]{Φin} = [Mii]{Φin}ωin
2 , {ui} = [Φi]{qi} (28.104)
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By combining Eqs. (28.103) and (28.104), the modal reduction transformation is

� � = � �� � (28.105)

Substitution of this transformation into the partitioned dynamic equation set, Eq.
(28.102), results in

� �� � + � �� � + � �� � = � � (28.106)

The terms in the above equation set have the following significance:

1. [Pib] is the modal participation factor matrix. Its terms express the degree of exci-
tation delivered by individual foundation accelerations. Moreover, its transpose
describes the degree of foundation reaction loads associated with individual
modal accelerations. The term-by-term product [Pib] � [Pib], called the modal
effective mass matrix, is often used to evaluate the completeness of a truncated
set of modes.

2. [M′bb] is the boundary mass matrix. When the boundary motions are sufficient to
impose all six rigid body motions (in a statically determinate or redundant man-
ner), this matrix expresses the complete rigid body mass properties of the mod-
eled system.

3. [K′bb] is the boundary stiffness matrix. When the boundary motions are sufficient
to impose all six rigid body motions in a statically determinate manner, this
matrix is null. If the boundary is statically indeterminate, the boundary stiffness
matrix will have six singularities associated with the six rigid body motions. In
rare situations, additional singularities will (correctly) be present if the structural
system includes mechanisms.

4. Critical evaluation of the properties of [M′bb] and [K′bb] is an effective means for
model verification.

5. In most situations, damping is not explicitly modeled. Therefore the boundary
damping matrix, [B′bb], will not be computed.

When the dynamic excitation environment consists entirely of prescribed boundary
motions, ({Fi} = {0}), Eq. (28.106) may be expressed in the following convenient form:

{q̈i} + [2ζiωi]{ �qi} + [ωi
2]{qi} = −[Pib]{üb} (modal response)

(28.107)
{Fb} = [M′bb]{üb} + [K′bb]{ub} + [Pbi]{q̈i} (boundary reactions)

The accurate recovery of structural loads is preferably accomplished with the mode
acceleration method. The load transformation matrix relationship for this situation
takes the following form (ignoring damping):

{S} = [LTMq̈]{q̈} + [LTMüb
]{üb} + [LTMub

]{ub} + [LTMFi
]{Fi} (28.108)

The above relationships are commonly used in seismic structural analysis and equip-
ment shock response analysis.
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STRATEGIES FOR DEALING WITH LARGE-ORDER MODELS

The capabilities of computer resources and commercial finite element software have
continually increased making very large-order (∼106 degrees-of-freedom or more)
finite element models a practical reality. A variety of numerical analysis strategies
have been introduced to efficiently deal with these large-order models.

In 1965, what is popularly known as the Guyan reduction method15 was intro-
duced. This method employs a static reduction transformation based on the model
stiffness matrix to consistently reduce the mass matrix. By subdividing the model
displacements into analysis (a) and omitted (o) subsets, the static reduction trans-
formation is

� � = � �{ua} (28.109)

By applying this transformation to the dynamic system, an approximate reduced
dynamic system for modal analysis is defined as

[Maa]{üa} + [Kaa]{ua} = {0} (28.110)

where

[Maa] = � �
T

� �� �
[Kaa] = � �

T

� �� �
(28.111)

The reduced approximate mass and stiffness matrices are generally fully populated,
in spite of the fact that the original system matrices are typically quite sparse. The
effective selection of an appropriate analysis set, {ua}, is a process requiring good
physical intuition. A recently introduced two-step procedure16 automatically iden-
tifies an appropriate analysis set. The Guyan reduction method is no longer a
favored strategy for dealing with large-order dynamic systems due to the develop-
ment of powerful numerical procedures for very large-order sparse dynamic sys-
tems. It continues to be employed, however, for the definition of test-analysis
models (TAMs) which are used for modal test planning and test-analysis correla-
tion analyses (see Chap. 41). Numerical procedures, which are currently favored for
dealing with modern large-order dynamic system modal (eigenvalue) analyses, are
(1) the Lanczos method17 (refined and implemented by many other developers)
and (2) subspace iteration.8

Segmentation of Large-Order Dynamic Systems. Many dynamic systems,
such as aircraft, launch vehicle–payload assemblies, spacecraft, and automobiles,
naturally lend themselves to substructure segmentation (see Fig. 28.9). Numerical
analysis strategies, which exploit substructure segmentation, were originally intro-
duced to improve the computational efficiency of large-order dynamic system analy-
sis. However, advances in numerical analysis of very large-order dynamic systems
have reduced the need for substructure segmentation. The enduring utilization of
substructure segmentation, especially in the aerospace industry, is a result of the fact
that substructure models provide cooperating organizations with a standard means
for sharing and integrating subsystem data. It should also be noted that some
research efforts in the area of parallel processing are utilizing mature substructure
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FIGURE 28.9 International space station substructure segmentation.
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analysis concepts. Each designated substructure (which also may be termed a super-
element) is defined in terms of interior, {ui}, and boundary, {ub}, displacement sub-
sets. Specific types of modal analysis strategies are employed to reduce or condense
the individual substructures to produce modal components.

The Craig-Bampton Modal Component. The most popularly employed modal
component type, the Craig-Bampton18 (or Hurty19) component, is defined by Eqs.
(28.101) through (28.106) and (28.108). The undamped key dynamic equations
describing this component are as follows:

1. The Craig-Bampton reduction transformation (boundary-fixed interior modes
and boundary deflection shapes) is identical to Eq. (28.105), that is,

� � = � �� � (28.112)

2. The Craig-Bampton mass and stiffness matrices, from Eq. (28.106), are

� �� � + � �� � = � � (28.113)

The MacNeal-Rubin Modal Component. The MacNeal-Rubin12,20 component
reduction transformation consists of a truncated set of free boundary modes and
quasi-static residual vectors associated with unit loads applied at the boundary
degrees-of-freedom. The key dynamic equations describing this component are as
follows:

1. The MacNeal-Rubin reduction transformation (boundary-free component
modes and residual vectors) is

� � = � �� � (28.114)

Noting that there are as many residual vectors as boundary degrees-of-freedom,
the above transformation may be expressed in terms of the modal and boundary
degrees-of-freedom, that is,

� � = � �� � (28.115)

2. The MacNeal-Rubin mass and stiffness matrices: Using the first reduction
transformation form [see Eq. (28.114)], the undamped component mode equations
are of the form

� �� � + � �� � = � � (28.116)

When the second reduction transformation form [see Eq. (28.115)] is employed,
the component mode equations are of the fully coupled form

� �� � + � �� � = � � (28.117)0
0
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The second form of the MacNeal-Rubin mass and stiffness matrices is preferred
for automated assembly of modal components.

The Mixed Boundary Modal Component. A more general type of modal com-
ponent may be defined employing fixed- and free-boundary degree-of-freedom sub-
sets.21 The reduced component mass and stiffness matrices associated with this
component are fully coupled, having a form similar to Eq. (28.117).

Each of the above three modal component types employs a truncated set of sub-
system modes. The frequency band, which determines an adequate set of subsystem
modes, is related to the base frequency band of the expected dynamic environment.
In particular, a generally accepted standard for the modal frequency band defines
the cut-off frequency as 1.4f* (see the discussion on Cut-Off Frequency and Grid
Spacing f*).

COMPONENT MODE SYNTHESIS STRATEGIES

Two alternative strategies for component mode synthesis are generally accepted in
industry. The first strategy views all substructures as appendages. The second alter-
native views substructures as appendages, which attach to a common main body.

General Method 1: Assembly of Appendage Substructures. The boundary
degrees-of-freedom for each component of a complete structural assembly map
onto an assembled structure boundary (collector, c) array, that is,

{ub} = [Tbc]{uc} (28.118)

Therefore, each component’s reduction transformation is expressed in the assem-
bled (collector) degrees-of-freedom as

� � = � �� � (28.119)

where Ψii represents the upper left modal transformation partition for the particular
modal component type. Application of this transformation to Eq. (28.113) or
(28.117) results in

� �� � + � �� � = � � (28.120)

The format of the assembled system dynamic equations, shown here for an assembly
of three components denoted as 1, 2, and 3, is

� �� � + � �� � = � � (28.121)

The system normal modes are calculated from the above equation where the final
system mode transformation (which decouples the system mass and stiffness matri-
ces) is
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� � = [Φsys]{qsys} (28.122)

General Method 2: Attachment of “Appendage” Substructures to a Main
Body. This method of component mode synthesis differs from General Method 1
in that all components are not considered appendages. A simple way to view this
approach is to first follow General Method 1 for all appendage substructures up to
Eq. (28.121).The boundary collector degrees-of-freedom, in this case, correspond to
those associated with a main body, which is described in terms of main body mass
and stiffness matrices [Mm] and [Km], respectively. The assembled system of
appendages and main body are described as

� �� � + � �� � = � � (28.123)

where the boundary-loaded main body mass and stiffness matrices are

[M′m] = [M′cc] + [Mm], [K′m] = [K′cc] + [Km] (28.124)

The truncated set of modes associated with the boundary-loaded main body define
the intermediate transformation

� � = � �� � (28.125)

Application of the above transformation to Eq. (28.124) results in the following
modal equations for the system

� �� � + � �� � = � � (28.126)

If the appendages are all of the Craig-Bampton type, the above equation set reduces
to the following Benfield-Hruda22 form

� �� � + � �� � = � � (28.127)

The mass coupling terms (P1C, etc.) are modal participation factor matrices, which
indicate the relative level of excitation delivered to the appendages by main body
modal accelerations. This feature of the Benfield-Hruda form is the primary reason
for the enduring popularity of the method. Uncoupled system modes are finally com-
puted from the eigenvalue solution of Eq. (28.127). Component mode synthesis pro-
cedures are also applied in multilevel cascades when such a strategy is warranted.
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DYNAMIC RESPONSE RESULTING FROM 

VARIOUS ENVIRONMENTS

The response of linear structural dynamic systems to dynamic environments may be
computed by either modal or direct methods. Modal methods tend to be computa-
tionally efficient when the required number of system modes addressing the
dynamic environment frequency band are significantly smaller than the order of the
system finite element model. When this is not the case, direct methods may be more
efficient. In addition, when transient environments are brief or impulsive, direct
integration may be more efficient than modal strategies. The following discussion
provides an overview of strategies for the computation of dynamic response to var-
ious environments.

Transient Environments. General relationships detailing the modal method of
transient dynamic analysis are presented in the section entitled Application of Nor-
mal Modes in Transient Dynamic Analysis. Enhancement of the modal solution
accuracy with residual vectors and the mode acceleration method was discussed in
the sections entitled Residual Mode Vectors and Mode Acceleration and Load Trans-
formation Matrices, respectively. Direct integration methods employing implicit9 or
explicit4 numerical strategies may be advantageous when environments are of wide
bandwidth and short-lived.

Brief or Impulsive Environments. Brief or impulsive dynamic environments are
often described in terms of shock response spectra (see Chap. 23). Peak dynamic
responses and structural loads are estimated by employing approximate modal
superposition methods utilizing shock response spectra as modal weighting func-
tions.23 A systematic approach to this process, which incorporates positive and nega-
tive spectra and quasi-static residual vectors, is presented in Ref. 11. Approximate
shock response spectra–based modal superposition methods are employed in earth-
quake engineering, equipment (e.g., naval shipboard subsystems) shock survivability
prediction, and related applications. This approach is especially appropriate when
standard dynamic environments are specified as shock response spectra.

Simple Harmonic Excitation. Computation of the structural dynamic response
due to simple harmonic excitation is either an end in itself or a key intermediate step
in the computation of the response to random or transient environments. In the case
of transient environments, the time-history response may be calculated through
application of Fourier transform techniques (see Chap. 23). The applied force and
displacement response, respectively, are conveniently expressed in terms of complex
exponential functions by

{F} = Fo(ω)eiωt, {u} = {U(ω)}eiωt, { �u} = iω{U(ω)}eiωt, {ü} = −ω2{U(ω)}eiωt (28.128)

where ω is the forcing frequency in radians per second. Upon substitution of the
above relationships into the linear structural dynamic equations [see Eq. (28.59)],
the following algebraic matrix equation is defined.

[K + iωB − ω2M]{U(ω)} = {ΓF}Fo(ω) (28.129)

When Fo(ω) = 1, the response quantities are called frequency response functions
(see Chap. 21). If the normal mode substitution is employed, the above equation set
is diagonalized (assuming modal viscous damping) as follows:
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{U(ω)} = [Φ]{q(ω)} { �U(ω)} = iω[Φ]{q(ω)} {Ü(ω)} = −ω2[Φ]{q(ω)}
(28.130)

(ω2
n + 2iζnωnω − ω2)qn(ω) = {Φn}T[ΓF]{F(ω)} 1 ≤ n ≤ nmax

When the modal method is used, it is recommended that a quasi-static residual vec-
tor be employed to mitigate modal truncation errors.This is not required if the direct
method, namely, the solution of Eq. (28.129), is employed.

The modal approach to simple harmonic or frequency response analysis is com-
putationally more efficient than the direct method if the number of modes required
in a frequency band of interest (0 ≤ ω ≤ ωmax) is much less than the number of finite
element model degrees-of-freedom. When this is not the case, the direct method
becomes more efficient since the direct solution for {U(ω)} involves decomposition
of a sparse coefficient matrix at each forcing frequency.

When the direct solution procedure is employed, it is most convenient to describe
modal damping as complex structural damping (see Chap. 2). In this situation the
linear, frequency domain, structural dynamic equations are

[(1 + iη)K + iωBL − ω2M]{U(ω)} = {ΓF}Fo(ω) (28.131)

where the well-known approximate equivalence of structural damping loss factor, η,
and (viscous) modal damping ratio, ζ, is η ≈ 2ζ.The advantage associated with struc-
tural damping is that the modes need not be explicitly determined in order to
account for modal damping effects. The matrix [BL] is included in the above equa-
tion to account for any known discrete viscous damping features.

An important aspect of effective frequency response analysis, regardless of
whether the modal or direct method is used, is the selection of a frequency grid for
the clear definition of harmonic response peaks. It is generally recommended that
solutions be calculated at frequency points capturing at least four points within a
modal half-power bandwidth, that is,

∆ω = �nωn/2 = ηωn (28.132)

This guideline suggests a logarithmic frequency grid (∆ω increases with increasing
frequency) is desirable.

Random Excitation. In the most common situations, random environments are
assumed to be associated with ergodic (see Chap. 1) processes.24 The computation of
structural dynamic response to random excitation, in such a situation, utilizes
numerical results from the response to a simple harmonic excitation. If a random
environment is imposed at several discrete structural degrees-of-freedom or as sev-
eral geometric load patterns, the frequency responses associated with the individual
loads are denoted as

Hij(ω) = Ui(ω)/Fo,j(ω) (28.133)

where these functions are computed either by the modal or direct method. There-
fore, the frequency-domain response associated with several excitations is

Ui(ω) = �
j

Hij(ω) ⋅ Fo,j(ω) (28.134)

or in matrix form
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U(ω) = [H(ω)]{Fo(ω)} (28.135)

Describing the correlated random excitations in terms of the input cross-spectral
density matrix, [GFF(ω)], the response autospectral density is

Wuu(ω) = [H(ω)] ⋅ [GFF(ω)] ⋅ [H(ω)]T* (28.136)

where the asterisk [ ]T* denotes the complex conjugate transpose of a matrix. Finally,
the mean square of response is calculated as the integral

Ψ2
u = u�i�(�t�)�2� = 	ω2

ω1

Wuu(ω)dω (28.137)

In order to assure the accurate computation of a mean-square response, this inte-
gral must be evaluated with a frequency grid with refinement consistent with Eq.
(28.132). If too coarse a frequency grid is used, the mean-square response may be
severely underestimated.
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CHAPTER 29, PART I
VIBRATION OF 

STRUCTURES INDUCED 
BY FLUID FLOW

R. D. Blevins

INTRODUCTION

Fluid around a structure can significantly alter the structure’s vibrational characteris-
tics.The presence of a quiescent fluid decreases the natural frequencies and increases
the damping of the structure.A dense fluid couples the vibration of elastic structures
which are adjacent to each other. Fluid flow can induce vibration. A turbulent fluid
flow exerts random pressures on a structure, and these random pressures induce a
random response. The structure can resonate with periodic components of the wake.
If a structure is sufficiently flexible, the structural deformation under the fluid load-
ing will in turn change the fluid force. The response can be unstable with very large
structural vibrations—once the fluid velocity exceeds a critical threshold value.

Vibration induced by fluid flow can be classified by the nature of the fluid-
structure interaction as shown in Fig. 29.1. Effects which are largely independent of
viscosity include added mass and inertial coupling. Unsteady pressure on the sur-
face of a structure, due to either variations in the free stream flow or turbulent fluc-
tuations, induces a forced vibration response. Strong fluid-structure interaction
phenomena result when the fluid force on a structure induces a significant response
which in turn alters the fluid force. These phenomena are discussed in this section.

ADDED MASS AND INERTIAL COUPLING

If a body accelerates, decelerates, or vibrates in a fluid, then fluid is entrained by the
body. This entrainment of fluid, called the added mass or virtual mass effect, occurs
both in viscous and in inviscid, i.e., ideal, fluids. It is of practical importance when the
fluid density is comparable to the density of the structure because then the added
mass becomes a significant fraction of the total mass in dynamic motion.

Consider the rigid body shown in Fig. 29.2 which lies in a reservoir of incompress-
ible inviscid irrotational fluid.The surface S defines the surface of the body.The body
moves with velocity U(t). From ideal flow theory, it can be shown that there exists a
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velocity potential Φ(x, y, z, t) which is a
function of the special coordinates and
time, such that the velocity vector is the
gradient of a potential function:

V = ∇Φ (29.1)

V(x, y, z, t) is the fluid velocity vector.
The potential function Φ satisfies
Laplace’s equation:1,2

∇2Φ = 0 (29.2)

The boundary condition is that on the surface of the body; the normal component of
velocity must equal the velocity of the body:

= V ◊ n on the surface S

where n is the unit outward normal vector. The pressure in the fluid is given by the
Bernoulli equation

p = −ρ − ρV 2

where ρ is the fluid density and V is the magnitude of V. The force exerted by the
fluid on the body is the integral of the fluid pressure over the surface.

F = �
S

pn dS

If the fluid is of infinite extent, then the solution of these equations is consider-
ably simplified. The fluid force is1

F = −ρ �
S

Φn dS (29.3)
∂

�
∂t

1
�
2

∂Φ
�
∂t

∂Φ
�
∂n
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FIGURE 29.1 A classification of flow-induced vibration.

FIGURE 29.2 Fluid-filled region. Fluid den-
sity ρ.
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and flow potential can be expressed as φ = U(t)φ(x′, y′, z′), where x′, y′, and z′ are
coordinates that are fixed to the body and U is the flow velocity relative to the body.
Substituting this potential in Eq. (29.3) yields the following force:

F = −m (29.4)

where the added mass m is

m = ρ �
S

φ dS (29.5)

The added mass force Eq. (29.3) is zero for U and Φ independent of time, i.e., for
steady translation. This is the D’Alembert paradox for an ideal inviscid fluid flow;
the fluid force is not zero for steady translation in a viscous fluid.

As an example of added mass calculation, the potential for flow over a cylinder
of radius a is

φ = U cos θ

where r = radial coordinate
θ = angular coordinate

U = flow velocity

The added mass per unit length is found from Eq. (29.5). The result is

m = ρπa2

where a is the cylinder radius. This added fluid mass is equal to the mass of fluid dis-
placed by the cylinder.

In general, there will be an added mass tensor to represent the added mass for
acceleration in each of the three coordinate directions:

mij = ρ �
S

φj dS

and an added mass tensor for rotation about the three coordinate axes. φi is the
potential associated with flow in the i direction. Note that the added mass tensor is
symmetric, i.e., mij = mji, but if the body is not symmetric, there is coupling between
motions in the various coordinate directions.1 For example, if a body is not symmet-
ric about the X axis, acceleration in the X direction generally induces added mass
force in the Y direction and a moment as well.

Since the added mass acts in phase with acceleration [Eq. (29.3)], the net effect of
added mass is to increase the effective mass of the body and to decrease the natural
frequencies. In general, added mass is only important to mechanical structures in
dense fluids such as water. In gases, such as air, the added mass is ordinarily negligi-
ble except for very lightweight structures. Figure 29.3 gives added mass for various
sections and bodies in large unrestricted reservoirs.Additional tables of added mass
are given in Refs. 3 and 4.

If two structures are in close proximity, then the added mass will be a function of
the spacing between the structures and inertial coupling will be introduced between
the bodies. For example, consider a cylindrical rod centered in a fluid-filled annulus
bounded by a cylindrical cavity shown in Fig. 29.4. The radius of the rod is a and the

∂φi�
∂n

r2 + a2

�
r

∂φ
�
∂n

∂U
�
∂t
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radius of the outer cylinder is b. The fluid forces exerted on the rod and outer cylin-
der because of their relative acceleration are5

F1 = −mẍ1 + (M1 + m)ẍ2

F2 = (m + M1)ẍ1 − (m + M1 + M2)ẍ2

(29.6)

where x1, x2 = displacement of inner rod and outer cylinder
F1, F2 = force on inner rod and outer cylinder

m = ρπa2(b2 + a2)/(b2 − a2), added mass of inner rod
M1 = ρπa2

M2 = ρπb2

29.4 CHAPTER TWENTY-NINE, PART I

FIGURE 29.3 Added mass for lateral acceleration.3 The acceleration is left to right. b is
the span for two-dimensional sections.
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These forces include not only added
mass but also inertial coupling between
the motion of the two structures. [These
equations also apply for a sphere con-
tained within a spherical cavity but here
m = (M1/2)(b3 − 2a3)/(b3 − a3), M1 = 4⁄3ρπa3,
and M2 = 4⁄3ρπb3.] Coupling is introduced
between the cylinder and the rod
through the fluid annulus. The coupling
increases with the density of the fluid

and decreases with increasing gap. If the cylinder and the rod are elastic, motion of
either structure tends to set both structures into motion.

For example, consider an array of heat exchanger tubes contained within a shell.
Water fills the shell and surrounds the tubes. If the tubes are widely spaced (more
than about two diameters between centers), then the tubes are largely uncoupled
and the effect of added mass is simply to reduce the tube natural frequencies by the
addition of fluid equal to the displaced volume of the tubes. However, if the tubes
are closely spaced, then motion of one tube sets adjacent tubes and the shell into
motion. Fluid-coupled modes of vibration will result in the tubes and the shell mov-
ing in fixed modal patterns as shown in Fig. 29.5. In Refs. 6 and 7, analysis is given for
inertial coupling of a cylinder contained eccentrically within a cylindrical cavity,
rows of cylinders, and arrays of cylinders.

VIBRATION OF STRUCTURES INDUCED BY FLUID FLOW 29.5

FIGURE 29.4 A rod in a fluid-filled annulus.

FIGURE 29.5 Coupled modes of vibration of a bank of tubes in a
dense fluid.6

Added mass and inertial coupling occur in elastic and rigid bodies, but the added
complexity of elasticity and the three-dimensional motions make a closed-form
solution impossible for most elastic bodies. In the case of quasi-two-dimensional
structures (such as long span tubes or rods), the axial variation in the motion occurs
relatively slowly over the span, and two-dimensional results for sections are applica-
ble. Concentric cylindrical shells coupled by a fluid annulus are important in the
design of nuclear reactor containment vessels. Approximate solutions are required
for both the vessels and the fluid. Reviews of the analysis of fluid coupled concentric
vessels are given in Refs. 8 and 9.

Finite element numerical solutions, developed for an irrotational fluid, have
been incorporated in the NASTRAN and other computer programs to permit solu-
tion for added mass and inertial coupling.These programs solve the fluid and struc-
tural problems and then couple the results through interaction forces10 (see Chap.
28, Part II).
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WAVE-INDUCED VIBRATION OF STRUCTURES

Waves induce vibration of structures, such as marine pipelines, oil terminals, tanks,
and ships, by placing oscillatory pressure on the surface of the structure.These forces
are often well-represented by the inviscid flow solution for many large structures
such as ships and oil storage tanks. For most smaller structures, viscous effects influ-
ence the fluid force and the fluid forces are determined experimentally.

Consider an ocean wave approaching the vertical cylindrical structure as shown
in Fig. 29.6. The wave is propagating in the X direction. Using small-amplitude (lin-

29.6 CHAPTER TWENTY-NINE, PART I

FIGURE 29.6 A circular cylindrical structure exposed to
ocean waves.

ear) inviscid wave theory, the wave is characterized by the wave height h (vertical
distance between trough and crest), its angular frequency ω, and the associated
wavelength λ (horizontal distance between crests), and d is the depth of the water.
The wave potential Φ satisfies Laplace’s equation [Eq. (29.2)] and a free-surface
boundary condition.11 The associated horizontal component of wave velocity varies
with depth −z from the free surface and oscillates at frequency ω:

U(t, z) = cos � − ωt� (29.7)

This component of wave velocity induces substantial fluid forces on structures, such
as pilings and pipelines, which are oriented perpendicular to the direction of wave
propagation.

The forces which the wave exerts on the cylinder in the direction of wave propa-
gation (i.e., in line with U) can be considered the sum of three components: (1) a
buoyancy force associated with the pressure gradient in the laterally accelerating
fluid [Eq. (29.7)], (2) an added mass force associated with fluid entrained during rel-
ative acceleration between the fluid and the cylinder [Eq. (29.4)], and (3) a force due
to fluid dynamic drag associated with the relative velocity between the wave and the
cylinder. The first two force components can be determined from inviscid fluid
analysis as discussed previously.The drag component of force, however, is associated
with fluid viscosity.

Thus, the in-line fluid force per unit length of cylinder due to an unsteady flow is
expressed as the sum of the three fluid force components:

F = ρAU̇ + CI ρA(U̇ − ẍ) + 1⁄2ρ | U − ẋ | (U − ẋ)DCD (29.8)

2πx
�

λ
cosh [2π(z + d)/λ]
��

sinh (2πd/λ)
hω
�
2
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where x = lateral position of structure in direction of wave propagation
A = cross-sectional area = 1⁄4πD2 of cylinder having diameter D
CI = added mass coefficient, which has theoretical value of 1.0 for circular

cylinder
CD = drag coefficient

This is the generalized form of the Morison equation, widely used to compute the
wave forces on slender cylindrical ocean structures such as pipelines and piers.

If ẋ and ẍ are set equal to zero in Eq. (29.8), the incline force per unit length on
a stationary cylinder in an oscillating flow is obtained:

F(ẋ = ẍ = 0) = CmρȦU + 1⁄2ρ |U | UDCD (29.9)

Because of the absolute sign in the term |U | U, the force contains not only compo-
nents at the wave frequency but also components associated with the drag at har-
monics of the wave frequency. The resultant time-history of in-line force due to a
harmonically oscillating flow has an irregular form that repeats once every wave
period.

If the flow oscillates with zero mean flow, U = U0 cos ωt as in Eq. (29.7), then the
maximum fluid force per unit length on a stationary cylinder is

�ρACmωU0 if <
Fmax =

ρU0
2DCD + if >

(29.10)

If the cylinder is large (such as for a storage tank) with diameter D greater than the
ocean wave height h and if the wavelength of the ocean wave is comparable to the
diameter, then U0 is small compared to ωD and the maximum force is given by the
first alternative in Eq. (29.10). The drag force is negligible compared to the inertial
forces for large cylinders.As a result, the ocean wave forces on large cylinders can be
calculated using inviscid, i.e., potential flow, methods which are discussed in Refs. 11
and 12.

For the Reynolds number ranges typical of most offshore structures, measure-
ments show that the inertial coefficient Cm = 1 + CI for cylindrical structures gener-
ally falls in the range between 1.5 and 2.0. Cm = 1.8 is a typical value. Cm decreases for
very large diameter cylinders owing to the tendency of waves to diffract about large
cylinders (Refs. 13 and 14). Similarly, measurements show that the drag coefficient
falls between 0.6 and 1.0 for circular cylinders; CD = 0.8 is a typical value.

Wave forces on elastic ocean structures induce structural motion. Since the wave
force is nonlinear [Eq. (29.8)] and involves structural motion, no exact solution
exists. One approach is to integrate the equations of motion directly by applying Eq.
(29.8) at each spanwise point on a structure and then numerically integrate the time-
history of deflection using a predictor-corrector or recursive relationship to account
for the nonlinear term. A simpler approach is to assume that the structural defor-
mation does not influence the fluid force and apply Eq. (29.9) as a static load. This
static approximation is valid as long as the fundamental natural frequency of the
structure is well above the wave frequency and the first three or four harmonics of
the wave frequency. However, many marine structures are not sufficiently stiff to
satisfy this condition.

One generally valid simplification for dynamic analysis of relatively flexible struc-
tures is to consider that the wave velocity is much less than the structural velocity so

CmA
�
CDD2

U0�
ωD

(ρACmU0ω)2

��
2πU0

2DCD

1
�
2

CmA
�
CDD2

U0�
ωD
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that |U − ẋ| � |U |.With this approximation, application of Eq. (29.8) to a single degree-
of-freedom model for a structure gives the following linear equation of motion:

(m + ρACI)ẍ + (2ζωN + 1⁄2ρ |U | DCD)ẋ + kx = ρACmU̇ + 1⁄2ρ |U | UDCD (29.11)

where m = structural mass per unit length
k = stiffness
ζ = structural damping

This equation is solved by expanding both x(t) and U(t) in a Fourier series and
matching the coefficients.

The fluid forces contribute added mass and fluid damping to the left-hand side as
well as forcing terms to the right-hand side. This equation may be simplified further
by retaining only the first (constant) term in the series expansion for |U | in the fluid
damping term so that the equation becomes a classical forced oscillator with con-
stant coefficient.12

Flexible structures will resonate with the wave if the structural natural period
equals the wave period or a harmonic of the wave period. Since the wave frequen-
cies of importance are ordinarily less than 0.2 Hz (wave period generally greater
than one cycle per 5 sec), such a resonance occurs only for exceptionally flexible
structures such as deep-water oil production risers and offshore terminals. The
amplitude of structural response at resonance is a balance between the wave force
and the structural stiffness times the damping. Since the wave force diminishes with
increased structural motion [Eq. (29.8)], the resultant displacements are necessarily
self-limiting. In other words, the response which would be predicted by applying Eq.
(29.9) dynamically is overly pessimistic because the wave force contributes mass and
damping to the structure as well as excitation as can be seen in Eq. (29.11).

The above discussion considers only fluid forces which act in line with the direc-
tion of wave propagation. These in-line forces produce an in-line response. How-
ever, substantial transverse vibrations also occur for ocean flows around circular
cylinders.These vibrations are associated with periodic vortex shedding, which is dis-
cussed below. The models discussed in the following section for steady flow are
applicable to vortex shedding in oscillatory flows provided that the wave period
exceeds the period of shedding, based on the maximum oscillatory velocity so that it
is possible to fit one or more shedding cycles into the wave cycle.13,14

VORTEX-INDUCED VIBRATION

Many structures of practical importance such as buildings, pipelines, and cables are
not streamlined but rather have abrupt contours that can cause a fluid flow over the
structure to separate from the aft contours of the structure. Such structures are
called bluff bodies. For a bluff body in uniform cross flow, the wake behind the body
is not regular but contains distinct vortices of the pattern shown in Fig. 29.7 at a
Reynolds number Re = UD/v greater than about 50, where D is the width perpendi-
cular to the flow and v is the kinematic viscosity. The vortices are shed alternately
from each side of the body in a regular manner and give rise to an alternating force
on the body. Experimental studies have shown that the frequency, in hertz, of the
alternating lift force is expressed as16, 17

fs = (29.12)
SU
�
D
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The dimensionless constant S called the Strouhal number generally falls in the range
0.25 ≥ S ≥ 0.14 for circular cylinders, square cylinders, and most bluff sections. The
value of S increases slightly as the Reynolds number increases; a value of S = 0.2 is
typical for circular cylinders.

The oscillating lift force imposed on a single circular cylinder of length L and
diameter D, in a uniform cross flow of velocity U, due to vortex shedding is given by

F = 1⁄2ρU2CLDLJ sin (2πfst) (29.13)

where the lift coefficient CL is a function of Reynolds number and cylinder motion.
The experimental measurements of CL show considerable scatter with typical values
ranging from 0.1 to 1.0. The scatter is in part due to the fact that the alternating vor-

VIBRATION OF STRUCTURES INDUCED BY FLUID FLOW 29.9

FIGURE 29.7 Regimes of fluid flow across circular cylinders.15
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tex forces are not generally correlated on the entire cylinder length L. The spanwise
correlation length lc of vortex shedding over a stationary circular cylinder17 is
approximately three to seven diameters for 103 < Re < 2 × 105. In order to account
for the effect of the spanwise correlation on the net force on the cylinder of length
L, a factor J called the joint acceptance has been introduced on the right-hand side
of Eq. (29.13). Two limiting cases exist for the joint acceptance.

J = �� �
1/2

if lc << L

1 if fully correlated

Thus, if a cylinder is much longer than three to seven diameters, the lack of spanwise
correlation reduces the net vortex lift force [Eq. (29.13)] on the cylinder.

Cylinder vibration at or near the vortex shedding frequency organizes the wake
and changes the fluid force on the cylinder. Vibration of a cylinder in a fluid flow
can:12, 17, 18

1. Increase the strength of the shed vortices.
2. Increase the spanwise correlation of the vortex shedding.
3. Cause the vortex shedding frequency shift from the natural shedding frequency

[Eq. (29.12)] to the frequency of cylinder oscillation. This is called synchroniza-
tion or lock-in.

4. Increase the mean drag on the cylinder. Mean drag can triple for one diameter
amplitude cylinder vibration.

5. Alter the phase sequence and pattern of vortices in the wake. Figure 29.8 shows
the patterns of vortices in the wake of a transversely vibrating cylinder, where 
fs = natural shedding frequency [Eq. (29.12)], f = forced vibration frequency, and 
Ay = vibration amplitude transverse to flow.

As the flow velocity is increased or decreased so that the shedding frequency fs

approaches the natural frequency fn of an elasticly mounted cylinder so that

fn ≈ fs = so ≈ = ≈ 5

the vortex shedding frequency suddenly locks onto the structure natural frequency.
The resultant vibrations occur at or nearly at the natural frequency of the structure
and vortices in the near wake input energy to the cylinder. Large amplitude vortex-
induced structural vibration can result.

The vortex-induced vibrations of a spring-mounted cylinder in a flow are shown
as a function of velocity in Fig. 29.9 for two levels of damping. The horizontal scale
gives flow velocity nondimensionalized (i.e., divided by the cylinder diameter D
times the cylinder natural frequency f ), both of which are held fixed as velocity U
increases. The lower part of the figure shows the measured response cylinder single
amplitude Ay vibration response as a function of flow velocity. The maximum cylin-
der amplitude occurs at the resonance condition U / ( fD) � 5.5. The upper part of
the figure shows the vortex shedding frequency. The shedding frequency increases
with velocity as predicted by Eq. (29.8) until it equals the cylinder natural frequency
at U/fD = 5 and large amplitude cylinder vibrations begin. The shedding frequency 

1
�
S

U
�
fsD

U
�
fnD

SU
�
D

lc�
L
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is entrained by the cylinder natural frequency. Entrainment persists until velocity is
increased to U/fD = 6.5 at which point lock-in is broken and the shedding frequency
abruptly returns to its natural value. In general, the larger the structural response to
vortex shedding, the larger the range of lock-in.

Both the amplitude of the structural response and the velocity range over which
lock-in persists are functions of the dimensionless reduced damping parameter δr:

δr =

where m = mass per unit length of cylinder, including added mass
ζ = damping factor for vibration in mode of interest, ordinarily measured

in still fluid
ρ = fluid density

D = cylinder diameter

The lower δr, the greater the amplitude of the structural response and the greater
the range of flow velocities over which lock-in occurs (see Ref. 19 and Fig. 29.8). For
lightly damped structures in dense fluids (such as marine pipelines), δr is on the
order of 1 and lock-in can persist over a 40 percent variation in velocity above and
below that which produces resonance.

Within the synchronization band, substantial resonance vibration often occurs.
Peak-to-peak vibration amplitudes of up to three diameters have been observed in
water flows over cables and tubing. The vibrations are predominantly transverse to

2m(2πζ)
�

ρD2
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FIGURE 29.8 Patterns of vortices shed in the wake of a transversely oscillating cylin-
der in a cross flow.
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the flow and are self-limiting.12 Lesser amplitude vibrations have also been observed
in the drag direction at twice the vortex shedding frequency and at subharmonic fre-
quencies of the vortex shedding frequency, i.e., at one-fourth, one-third, or one-half
of the flow velocity required for synchronization,21 fs = fn.

If a uniform elastic cylinder is subjected to a crossflow uniformly over its span,
then the oscillating vortex-induced lift force is given by Eq. (29.13). At lock-in, the
vortex shedding frequency equals the natural frequency of the nth vibration mode 
fs = fn, and the amplitude of the cylinder response is

= (29.14)

where the maximum amplitude vibrations along the span are y(t) = Ay sin (2πfnt).
This equation is conservative if CL = J = 1. However, Eq. (29.14) gives overly conser-
vative predictions with CL = J = 1 owing to the tendency of the actual lift coefficient
to decrease at amplitudes in excess of 0.5 diameters and the lack of perfect spanwise
correlation at lower amplitudes. Semiempirical correlations are given in Refs. 12, 22,
and 23. One of these correlations is12

CLJ
�
4πS2δr

Ay
�
D
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FIGURE 29.9 Response of a spring-supported cylinder to vortex-
induced vibration.20
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= �0.3 + �
1/2

(29.15)

The mode shape parameter γ falls between 1.0 and 1.4. For a translating rigid rod 
(φ = 1), γ = 1, for a cable or pipeline with a sinusoidal mode shape, γ = 1.15 and for a
cantilever mode shape, γ = 1.4 and Ay is tip amplitude.

Equation (29.15) correctly predicts the self-limiting behavior of the resonance
vibrations. Setting damping to zero, δr = 0, it follows that Ay /D � 1.5, which is a
typical vibration level for lightly damped marine cables in a current. See Fig.
29.10. Large amplitude vibrations also are associated with increased steady drag
on the structure. Drag coefficients of up to 3.5 have been measured on resonantly
vibrating marine cables as opposed to the typical value of 1.0 for a stationary
cylinder.24

0.72
��
(δr + 1.9)S

0.07γ
��
(δr + 1.9)S2

Ay
�
D
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FIGURE 29.10 Maximum amplitude of vortex-induced vibration as a function of
damping.12

A number of fairings, strakes, and ribbons have been attached to the exterior of
circular cylindrical structures to reduce vortex-induced vibrations as shown in Fig.
29.11. These devices act by disrupting the near wake and disturbing the correlation
between the vortex shedding and vibration. They do, however, increase the steady
drag from that which is measured on a stationary structure. Reviews of vortex sup-
pression devices are given in Refs. 25 and 26.
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FLUID ELASTIC INSTABILITY

Fluid flow across an array of elastic tubes can induce a dynamic instability, resulting
in very large amplitude tube vibrations once the critical cross-flow velocity is
exceeded. This is a relatively common occurrence in tube and shell heat exchangers.
Once the critical cross-flow velocity is exceeded, vibration amplitude increases very
rapidly with cross-flow velocity V, usually as Vn where n = 4 or more, compared with
an exponent in the range 1.5 < n < 2.5 below the instability threshold. This can be
seen in Fig. 29.12, which shows the response of an array of metallic tubes to water
flow. The initial hump is attributed to vortex shedding. The cross-flow velocity is
defined as velocity perpendicular to the tube axis at the minimum gap between
tubes. Once the critical velocity is exceeded, the very large amplitude vibrations usu-
ally lead to failures of the heat exchanger tubes.

Often the large amplitude vibrations vary in time; the amplitudes grow and fall
about a mean value in pseudorandom fashion. Generally the tubes do not move
independently but instead move in somewhat synchronized orbits with neighboring
tubes. This orbital behavior has been observed in tests in both air and water with
orbits ranging from near circles to nearly straight lines. See Fig. 29.13.

As the tubes whirl in orbital motion, they extract energy from the fluid (Refs. 12,
28, and 29). Below the onset of instability, energy which is extracted is less than the
energy which is expended in damping. Above the critical velocity, the energy
extracted from the flow by the tube motion exceeds the energy expended in damp-
ing, so the vibrations increase in amplitude. Restricting the motion or introducing
frequency differences between one or more tubes often increases the critical veloc-
ity for onset of instability. Such increases in critical velocity are generally no greater
than about 40 percent unless additional support is given to all tubes exposed to high
velocity flow. Often the onset of instability is more gradual in a bank of tubes having
tube-to-tube frequency differences than in a bank with identical tubes. Only a rela-
tively small percentage of the tube will become unstable at one time. Flexible long-
span tubes in areas of high flow velocity (such as at inlets) are most susceptible to
the instability.

At cross-flow velocities beyond those which produce an onset of instability, dam-
aging vibrations are encountered. The tube vibration amplitudes are limited by
clashing with other tubes, by impacting with the tube supports, and by yielding of the
tubes. Sustained operation in the unstable vibration regime ordinarily results in tube

29.14 CHAPTER TWENTY-NINE, PART I

FIGURE 29.11 Methods of reducing vortex-induced vibration.
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failure due to wear or propagation of cracks in the tubes. Fluid elastic instability is
second only to corrosion as a cause of heat exchanger failure.

A displacement model for the fluid elastic forces is given in Ref. 12 which correctly
predicts the observed onset of instability for most cases in air and gases. Results are

less satisfactory in water or when the
motion of some of the tubes is restricted.
More complex models take into account
velocity-induced forces as well as the
displacement-induced forces.29,30 These
theories give somewhat better agree-
ment with data over limited ranges, but
none are entirely suitable for a design
tool.

The most viable, practical procedure
for predicting the onset of instability of
closely spaced arrays of tubes to cross
flow is to use the theoretical form given
by the displacement mechanism but
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FIGURE 29.12 Typical amplitude of vibration of a tube array
in cross flow.27

FIGURE 29.13 Tube vibration patterns for
fluid elastic instability.28
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with parameters obtained by filling experimental data. The onset of instability is
predicted as12, 22, 23,31

= C � 	
a

(29.16)

where Vcrit = uniform cross flow averaged over minimum gap between tubes (If the
velocity is nonuniform, then either the maximum can be used or a
modal weighted average can be employed.)

fn = fundamental natural frequency of tubing (Ordinarily the fundamen-
tal mode is most susceptible to instability.)

ζ = damping factor of fundamental mode (Typically ζ falls in the range
between 0.01 and 0.03 for tubes with some intermediate supports. For
rolled-in or welded-in tubes with no intermediate supports, ζ can be
as low as 0.001.)

mt = mass per unit length of tube including added mass and internal mass
of fluid

ρ = fluid density

Fitting Eq. (29.16) to the available 174 data points for onset of instability31 shown in
Fig. 29.14 leads to the mean and lower-bound coefficients for the parameter C and
the exponent a given in Table 29.1. The coefficient corresponding to the mean fit to
the experimental data is Cmean; C90% is the lower bound fit to the data such that 90%
of the data are above the curve.

Most of the data used in this correlation come from tube arrays with center-to-
center spacing of between 1.25 and 2.0 diameters and with various array geome-
tries. There is insufficient statistical evidence to determine if certain patterns are
more or less susceptible to instability than others. Instability has been observed for
both straight and curved tubes, tube rows, and tube arrays in a wide variety of tube
patterns.

The most common means of increasing the resistance of an array of tubes to
instability is to add intermediate supports to increase the natural frequency of the
tubes. Details of the tube support (particularly the gap between the tube and the
support) influence the resultant vibration. In general, smaller gaps tend to result in
lower tube-support impact velocities and hence in lower tube wear.32,33

INTERNAL FLOW IN PIPES

Internal flow through a pipe decreases the natural frequency of the pipe. Sufficiently
high internal velocity will induce buckling in a pipe supported at both ends since the
momentum of fluid turning through a small angle of pipe deflection is greater than
the stiffness of the pipe. If the pipe is restrained at only one end, the pipe will
become unstable at high velocities like an unrestrained garden hose.

The equation of motion for a straight pipe conveying steady fluid flow is34,35

EI + ρAv2 + 2ρAv + M = 0 (29.17)

where E and I are the modulus and moment of inertia of the pipe which conveys
fluid of density ρ through the internal area A of the pipe at a steady velocity v;
Y(x, t) is the lateral deflection of the pipe which has total mass per unit length M.
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FIGURE 29.14 Velocity for onset of instability of tube arrays in cross flow as a function of the damping parameter.22
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The first and last terms in Eq. (29.17) are the usual stiffness and mass terms.The mid-
dle terms are associated with fluid forces imposed on the pipe by the internal fluid
as the pipe deflects slightly from its equilibrium position.

Although Eq. (29.17) is a linear partial differential equation with constant coeffi-
cients, its solution is difficult owing to the mixed derivative term (third term from the
left). One technique used to solve the equation is to expand the solution in terms of
the mode shapes of vibration which are obtained for zero flow, v = 0.

Y(x, t) = Σi aiyi(x) sin ωt (29.18)

where yi(x) are the mode shapes for zero flow that satisfy Eq. (29.17) and the
boundary conditions on the ends of the pipe span. Equation (29.18) is substituted
into Eq. (29.23), and the derivatives of yi(x) are expressed in terms of the orthogonal
set yi(x)

yi′(x) = Σibiyi(x)

Like terms in the series are equated.
For a uniform pipe with pinned ends, the result can be expressed as a decrease in

natural frequency due to flow.12

= �1 − � �
2

	
1/2

(29.19)

where f = fundamental natural frequency
f1 = fundamental natural frequency in absence of flow
vc = critical flow velocity

The critical flow velocity can be expressed as

vc = � 	
1/2

(29.20)

where L is the span of the pipe. As the flow velocity approaches vc, the fundamental
natural frequency f1 decreases to zero.The pipe span spontaneously buckles at v = vc.

The buckling velocity is a function of the boundary conditions on the ends of the
pipe, and there can be vibration; these solutions for various boundary conditions are
generally scaled by the velocity vc [Eq. (29.20)]. In general, only exceptionally thin-
walled flexible tubes with very high velocity flows, such as rocket motor feed lines
and penstocks, are prone to vibration induced by internal flow. External parallel
flow can also induce an analogous instability. (See the review given in Ref. 35.) For a
tube subjected to both internal and parallel external flow of the same magnitude, the
velocity for the onset of instability is

EI
�
ρA

π
�
L

v
�
vc

f
�
f1
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TABLE 29.1 Coefficients in Eq. (29.16) for Onset of Instability of Tube Arrays31

mt(2πζ)/ρD2 < 0.7 mt(2πζ)/ρD2 > 0.7

Cmean 3.9 4.0
C90% 2.7 2.4
a 0.21 0.5
rms error in fitted data for Vcrit, % 24.5 32.5
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vc = � 	
1/2

(29.21)

where Ai = πD2
i /4 and Ae = πD2

e /4 are the cross-sectional areas associated with the
tube inside and outside diameters Di and De, respectively.

Oscillatory flow in pipes can also cause vibration. Oscillations of fluids in pipes
can be caused by reciprocating pumps and acoustic oscillations produced by flow
through valves and obstructions. Internal flow imposes net fluid force on pipe at
bends and changes in area. For example, the fluid force acting on a 90° bend in a pipe
is the sum of pressure and momentum components:

Fbend = [(p − pa) + ρU 2] Ai − [(p − pa) + ρU 2] Aj (29.22)

Here p is the internal pressure in the pipe, pa is the pressure in the atmosphere sur-
rounding the pipe, and U is the internal velocity in the pipe. The vectors i and j are
unit vectors in the direction of the incoming and outgoing fluid, respectively.

If the pressure and velocity in the pipe oscillates, then the fluid force on the bend
will oscillate, causing pipe vibration in response to the internal flow. This problem is
most prevalent in unsupported bends in pipe that are adjacent to pumps and valves.
Two direct solutions are to (1) support pipe bends and changes in area so that fluid
forces are reacted to ground and (2) reduce fluid oscillations in pipe by avoiding
large pressure drops through valves and installation of oscillation-absorbing devices
on pump inlet and discharge.

REFERENCES

1. Newman, J. N.: “Marine Hydrodynamics,” The MIT Press, Cambridge, Mass., 1977.

2. Lamb, H.: “Hydrodynamics,” Dover Publications, New York, 1945. Reprint of 6th ed.,
1932.

3. Blevins, R. D.: “Formulas for Natural Frequency and Mode Shape,” Kreiger, Malabar,
Florida, 1984. Reprint of 1979 edition.

4. Milne-Thompson, L. L.: “Theoretical Hydrodynamics,” 5th ed., Macmillan, New York,
1968.

5. Fritz, R. J.: J. Eng. Industry, 94:167 (1972).

6. Chen, S-S: J. Eng. Industry, 97:1212 (1975).

7. Chen, S-S: Nucl. Eng. Des., 35:399 (1975).

8. Brown, S. J.: J. Pressure Vessel Tech., 104:2 (1982).

9. Au-Yang, M. K.: J. Vibration, Acoustics, 108:339 (1986).

10. Zienkiewicw, O. C.: “The Finite Element Method,” 3d ed., McGraw-Hill Book Company,
Inc., New York, 1977.

11. Ippen, A. T. (ed.): “Estuary and Coastline Hydrodynamics,” McGraw-Hill Book Com-
pany, Inc., New York, 1966.

12. Blevins, R. D.: “Flow-Induced Vibration,” 2d ed., Kreiger, Malibar, Fla., 1994.

13. Sarpkaya, T., and M. Isaacson: “Mechanics of Wave Forces on Offshore Structures,” Van
Nostrand Reinhold, New York, 1981.

14. Obasaju, E. D., P. W. Bearman, and J. M. R. Graham: J. Fluid Mech., 196:467 (1988).

EI
��ρAi + ρAe

π
�
L

VIBRATION OF STRUCTURES INDUCED BY FLUID FLOW 29.19

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.19



15. Lienard, J. H.: “Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular
Cylinder,” Washington State University, College of Engineering, Research Division Bul-
letin 300, 1966.

16. Roshko, A.: “On the Development of Turbulent Wakes from Vortex Streets,” National
Advisory Committee for Aeronautics Report NACA TN-2913, 1953.

17. Sarpkaya, T.: J. Appl. Mech., 46, 241 (1979).

18. Williamson, C. H. K., and A. Roshko: J. Fluids and Structures, 2:355 (1988).

19. Scruton, C.: “On the Wind Excited Oscillations of Stacks, Towers and Masts,” National
Physical Laboratory Symposium on Wind Effects on Buildings and Structures, Paper 16,
790, 1963.

20. Feng, C. C.: “The Measurement of Vortex-Induced Effects in Flow Past Stationary and
Oscillating Circular and D-Section Cylinder,” M.A.Sc. thesis, University of British
Columbia, 1968.

21. Durgin, W. W., P. A. March, and P. J. Lefebvre: J. Fluids Eng., 102:183 (1980).

22. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Appendix N-1300, 1998.

23. Au-Yang, M. K., T. M. Mulcahy, and R. D. Blevins.: Pressure Vessel Technology, 113:257
(1991).

24. Vandiver, J. K.:“Drag Coefficients of Long Flexible Cylinders,” 1983 Offshore Technology
Conference, Paper 4490, 1983, p. 405.

25. Zdravkovich, M. M.: J. Wind Eng., Industrial Aerodynamics, 7:145 (1981).

26. Wong, H. Y., and A. Kokkalis: J. Wind Eng. Industrial Aerodynamics, 10:21 (1982).

27. Chen, S-S, J.A. Jendrzejczyk, and W. H. Lin:“Experiments on Fluid Elastic Instability in a
Tube Bank Subject to Liquid Cross Flow,” Argonne National Laboratory Report ANL-
CT-44, July 1978.

28. Connors, H. J.:“Fluid Elastic Vibration of Tube Arrays Excited by Cross Flow,” Paper pre-
sented at the Symposium on Flow Induced Vibration in Heat Exchangers, ASME Winter
Annual Meeting, December 1970.

29. Paidoussis, M. P., and S. J. Price: J. Fluid Mech., 187:45 (1988).

30. American Society of Mechanical Engineers.“Flow-Induced Vibrations—1994,” PVP-273,
New York, 1994.

31. Blevins, R. D.: J. Sound & Vibration, 97:641 (1984).

32. Blevins, R. D.: J. Eng. Materials Tech., 107:61 (1985).

33. Cha, J. H.: J. Pressure Vessel Tech., 109:265 (1987).

34. Housner, G. W.: J. Appl. Mech., 19:205 (1952).

35. Paidoussis, M. P., and P. Besancon: J. Sound & Vibration, 76:361 (1981).

29.20 CHAPTER TWENTY-NINE, PART I

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.20



CHAPTER 29, PART II
VIBRATION OF 

STRUCTURES INDUCED 
BY WIND

Alan G. Davenport 

Milos Novak

INTRODUCTION

Vibration of significant magnitude may be induced by wind in a wide variety of
structures including buildings, television and cooling towers, chimneys, bridges,
transmission lines, and radio telescopes. No structure exposed to wind seems entirely
immune from such excitation. The material presented here describes several mech-
anisms causing these oscillations and suggests a few simpler approaches that may be
taken in design to reduce vibration of structures induced by wind.There is an exten-
sive literature1–5 giving a more detailed treatment of the subject matter.

FORMS OF AERODYNAMIC EXCITATION

The types of structure referred to above are generally unstreamlined in shape. Such
shapes are termed “bluff bodies” in contrast to streamlined “aeronautical” shapes
discussed in Chap. 29, Part III. The distinguishing feature is that when the air flows
around such a bluff body, a significant wake forms downstream, as illustrated in Fig.
29.15. The wake is separated from the outside flow region by a shear layer. With a
sharp-edged body (such as a building or structural number) as in Fig. 29.15, this shear
layer emanates from the corner.With oval bodies such as the cylinder in Fig. 29.15, the
shear layer commences at a so-called boundary layer on the upstream surface at
points A and B (the separation points) and becomes a free shear layer. The exact
position of these separation points depends on a wide variety of factors, such as the
roughness of the cylinder, the turbulence in the flow, and the Reynolds number R =
VD/ν, where V = flow velocity, D = diameter of the body, and ν = kinematic viscosity.

The flow illustrated in Fig. 29.15 represents the time-average picture which would

29.21
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be obtained by averaging the movements of the fluid particles over a time interval
that is long compared with the “transit time” D/V. The instantaneous picture of the
flow may be quite different, as indicated in Fig. 29.16, for two reasons.

First, if the flow is the wind, it is under almost all practical circumstances strongly
turbulent; the oncoming flow will be varying continuously in direction and speed in
an irregular manner. These fluctuating motions will range over a wide range of fre-
quencies and scales (i.e., eddy sizes).

Second, the wake also will take on a fluctuating character. Here, however, the size
of the dominant eddies (vortices) will be of a similar size to the body.The vortices tend
to start off their career by curling up at the separation point and then are carried off
downstream. Sometimes these eddies are fairly regular in character and are shed alter-
nately from either side; if made visible by smoke or other means, they can be seen to
form a more or less regular stepping-stone pattern until they are broken up by the tur-
bulence or dissipate themselves. In a strongly turbulent flow,the regularity is disrupted.

The flow characteristics of the oncoming flow and the wake are the direct causes
of the forces on the bodies responsible for their oscillation. The forms of the result-
ing oscillation are as follows.

1. Turbulence-induced oscillations. Certain types of oscillation of structures can
be attributed almost exclusively to turbulence in the oncoming flow. In the wind these

29.22 CHAPTER TWENTY-NINE, PART II

FIGURE 29.15 Wake formation past bluff bodies:
(a) sharp-edged body; (b) circular cylinder.

FIGURE 29.16 Vortex street past circular cylinder (R = 56). (After
Kovasznay, Proc. Roy. Soc. London, 198, 1949.)
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VIBRATION OF STRUCTURES INDUCED BY WIND 29.23

FIGURE 29.17 Main types of wind-induced oscillations: (A) vibration due to turbu-
lence; (B) vibration due to vortex shedding; (C) aerodynamic instability.

may be described as “gust-induced oscillations” (or turbulence-induced, oscillations).
The gusts may cause longitudinal, transverse, or torsional oscillations of the structure,
which increase with wind velocity (Fig. 29.17).

2. Wake-induced oscillations. In other instances, the fluctuations in the wake may
be the predominant agency. Since these fluctuations are generally characterized by
alternating flow, first around one side of the body, then around the other, the most sig-
nificant pressure fluctuations act on the sides of the body in the wake behind the sep-
aration point (the so-called after body); they act mainly laterally or torsionally and to
a much lesser extent longitudinally. The resultant motion is known as vortex-induced
oscillation. Oscillation in the direction perpendicular to that of the wind is the most
important type. It often features a pronounced resonance peak (Fig. 29.17B).

While these distinctions between gust-induced and wake-induced forces are
helpful, they often strongly interact; the presence of free-stream turbulence, for
example, may significantly modify the wake.

3. Buffeting by the wake of an upstream structure. A further type of excitation is
that induced by the wake of an upstream structure (Fig. 29.18). Such an arrangement
of structures produces several effects. The turbulent wake containing strong vortices
shed from the upstream structure can buffet the downstream structure. In addition, if
the oncoming wind is very turbulent, it can cause the wake of the upstream structure
to veer, subjecting the downstream structure successively to the free flow and the
wake flow. This frequently occurs with chimneys in line, as well as with tall buildings.

4. Galloping and flutter mechanisms. The final mechanism for excitation is
associated with the movements of the structure itself. As the structure moves rela-
tive to the flow in response to the forces acting, it changes the flow regime sur-
rounding it. In so doing, the pressures change, and these changes are coupled with
the motion. A pressure change coupled to the velocity (either linearly or nonlin-
early) may be termed an aerodynamic damping term. It may be either positive or
negative. If positive, it adds to the mechanical damping and leads to higher effective
damping and a reduced tendency to vibrate; if negative, it can lead to instability and
large amplitudes of movement. This type of excitation occurs with a wide variety of
rectangular building shapes as well as bridge cross sections and common structural
shapes such as angles and I sections.

In other instances, the coupling may be with either the displacement or accelera-
tion, in which case they are described as either aerodynamic stiffness or mass terms,
the effect of which is to modify the mass or stiffness terms in the equations of
motion. Such modification can lead to changes in the apparent frequency of the
structure. If the aerodynamic stiffness is negative, it can lead to a reduction in the
effective stiffness of the structure and eventually to a form of instability known as

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.23



divergence. All types of instability feature a sudden start at a critical wind velocity
and a rapid increase of violent displacements with wind velocity (Fig. 29.17C).

These various forms of excitation are briefly discussed in this chapter. Because all
types of oscillations are influenced strongly by the properties of the wind, some basic
wind characteristics are described first.

BASIC WIND CHARACTERISTICS

Wind is caused by differences in atmospheric pressure. At great altitudes, the air
motion is independent of the roughness of the ground surface and is called the
geostrophic, or gradient wind. Its velocity is reached at a height called gradient
height, which lies between about 1000 and 2000 ft. Below the gradient height, the
flow is affected by surface friction, by the action of which the flow is retarded and
turbulence is generated. In this region, known as the planetary boundary layer, the
three components of wind velocity resemble the traces shown in Fig. 29.19. The lon-
gitudinal component consists of a mean plus an irregular turbulent fluctuation; the
lateral and vertical components consist of similar fluctuations. These turbulent
motions can be characterized in a number of different ways.

The longitudinal motion at height z can be expressed as

Vz(t) = V̄z + v(t) (29.23)

where V̄z = mean wind velocity (the bar denotes time average) and v(t) = fluctuating
component.

29.24 CHAPTER TWENTY-NINE, PART II

FIGURE 29.18 Buffeting by the wake of an upstream structure.
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Mean Wind Velocity. The mean wind velocity V̄z varies with height z as repre-
sented by the mean wind velocity profile (Fig. 29.20). The profiles observed in the
field can be matched by a logarithmic law, for which there are theoretical grounds, or
by an empirical power law

= � 	
α

(29.24)

where V̄G = gradient wind velocity, zG = gradient height, and α = an exponent <1.
Gradient height zG and exponent α depend on the surface roughness, which can be
characterized by the surface drag coefficient κ (here referenced to the wind speed at
10 meters).

A few typical values of these parameters are given in Fig. 29.20. The mean wind
profiles shown are characteristic of level terrain. They can significantly change, par-

z
�
zG

V̄z�̄
VG
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FIGURE 29.19 Record of horizontal component
of wind speed at three heights on 500 ft mast in open
terrain. (Courtesy of E. L. Deacon.)

FIGURE 29.20 Vertical profiles of mean wind velocity for three typical terrains.
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ticularly in the lower region, when the air flow meets an abrupt change in surface
roughness or terrain contour. A sudden increase in roughness reduces the wind
speed near the ground while a hill accelerates the flow over its crest.

The mean wind profiles are useful when predicting the wind speed at a particular
site.The gradient wind speed is estimated using data registered by the nearest mete-
orological stations at their standard height, which is usually 33 ft (10 meters). The
mean wind velocity generally depends on the period over which the wind speed is
averaged. Periods from 10 to 60 minutes appear adequate for engineering consider-
ations and usually yield reasonably steady mean values. The same duration is suit-
able to define the fluctuating wind component.

Fluctuating Components of the Wind. The fluctuating components of the wind
change with height less than the mean wind and are random both in time and space.
The random nature of the wind requires the application of statistical concepts (see
Chap. 11). The basic statistical characteristics of the velocity fluctuations are the
intensity of turbulence, the power spectral density (power spectrum), the correlation
between velocities at different points, and the probability distribution.

The intensity of turbulence is defined as σv/V̄z, where σv = 
v�2�(�t�)� is the root-mean-
square (rms) fluctuation in the longitudinal direction.The intensity of the lateral and
vertical fluctuations can be described similarly. For wind, the intensity of turbulence
is between 5 and 25 percent. The magnitude σv also defines the probability distribu-
tion of the fluctuations which may be assumed to be Gaussian (normal).

The energy of turbulent fluctuations (gustiness) is distributed over a range of fre-
quencies. This distribution of energy with frequency f can be described by the spec-
trum of turbulence (power spectral density) Wv(f ). The relationship between the
spectrum and the variance is

�∞

0
Wv(f ) df = σv

2

which leads to another form of the spectrum known as the logarithmic spectrum
fWv(f )/σv

2. This form of the spectrum is dimensionless and preserves the relative
contributions to the variance at different frequencies represented on a logarithmic
scale; and its integral is

�∞

0
d ln f = 1

The two forms of spectra are sketched in Fig. 29.21. A generalization of wind
spectra for different wind velocities is possible if the frequency scale is so modified

fWv(f )
�

σv
2
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FIGURE 29.21 Two different ways of presenting power spectral densities.
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that it too is dimensionless. The ratio f/V̄ is the so-called inverse wavelength related
to the “size” of atmospheric eddies. This may be expressed as a ratio to a represen-
tative length scale L, such as the wavelength of the eddies at the peak of the spec-
trum. The dimensionless frequency or inverse wavelength may now be written

f̄ = fL/V̄

Under certain circumstances this relationship is also known as the Strouhal number
or the reduced frequency.

It is generally found that while the length scale L in the oncoming flow corre-
sponds to that of the turbulence itself (this in the natural wind is of the order of
thousands of feet), in the wake the governing length scale is of the same order as the
diameter of the body D. This is illustrated in Fig. 29.22.

VIBRATION OF STRUCTURES INDUCED BY WIND 29.27

FIGURE 29.22 Universal spectrum of horizontal gusti-
ness in strong winds and example of spectrum of fluctua-
tions in wake.

The spectrum of horizontal gustiness in strong winds is largely independent of
height above the ground, is proportional to both the surface drag coefficient κ and
the square of the mean velocity at the standard height of 10 meters, V̄10, and can be
represented, with some approximations, as6,7

Wv(f ) = 4κV̄10
2 (29.25)

in which f = frequency, Hz, f̄ = fL/V̄10 where L = scale length ≈4000 ft, and κ is given
in Fig. 29.20. This spectrum is shown in Fig. 29.22.

The variance of the velocity fluctuations is

σv
2 = �∞

0
Wv(f ) df = 6.68κV̄10

2 (29.26)

It can be seen from Eqs. (29.25) and (29.26) that large velocity fluctuations can be
expected in rough terrain where coefficient κ is large.

The spatial correlation of wind speeds at two different stations is described by the
coherence function (see Chap. 22),

L/V̄10�
(2 + f̄ 2)5⁄6
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γ12
2(f ) = ≤ 1 (29.27)

where W12(f ) = cross spectrum (generally complex) between stations 1 and 2; W1(f)
and W2(f ) are power spectra of the two stations. The coherence function depends
primarily on the parameter ∆zf/V̄, where ∆z = separation and V̄ = 1⁄2(V̄1 + V̄2) is the
average wind speed. A suitable approximate function is

�C�o�h�e�re�n�ce� = e−c(∆zf/V̄)

where c is a constant having a value of approximately 7 for vertical separation and
approximately 15 for horizontal separation. Coherence decreases with both separa-
tion and frequency. A more detailed discussion of wind characteristics is given in
Refs. 1 and 7.

EXCITATION DUE TO TURBULENCE

When a structure is exposed to the effects of wind, the fluctuating wind velocity
translates into fluctuating pressures, which in turn produce a time-variable response
(deflection) of the structure. This response is random and represents the basic type
of wind-induced oscillations. The theoretical prediction of this oscillation is rather
complex but can be reduced to a simple procedure suitable for design purposes. The
discussion of the oscillation is therefore presented in two parts. In the first part, the
basic theoretical steps are outlined. In the second part, the design procedure known
as the gust-factor approach is given in more detail.

FUNDAMENTALS OF RESPONSE PREDICTION

If the area A of the structure exposed to wind is small relative to the significant tur-
bulent eddies, the so-called quasi-steady theory for turbulence can be used to esti-
mate aerodynamic forces. In the drag direction, the drag force

D(t) = ρCDAV 2(t)

= ρCDAV̄ 2�1 + 2 + 	
where ρ = air density (normally equal to 0.0024 slugs/ft3), and CD = drag coefficient.
If v(t) << V̄, the squared term is ignored. The spectra of the fluctuating drag and
velocity are then related as

= 4 (29.28)

where the mean drag (static component of the drag) is

D̄ = ρCDAV̄ 2 (29.29)

and Wv(f) is given by Eq. (29.25).

1
�
2

Wv(f )
�̄

V 2

WD(f )
�̄

D2

v2(t)
�̄
V 2

v(t)
�̄
V

1
�
2

1
�
2

|W12(f )|2
��
W1(f )W2(f )
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With large bodies, the wavelength is comparable to the size of the body itself
(that is, f �A�/V̄ ≈ 1) and it is necessary to modify the drag spectrum by the so-called
aerodynamic admittance function |Xaero(f )|2. This function6 describes the modifying 
influence of any changes in effective drag coefficient as well as the decrease in cor-
relation of the eddies as the wavelength of the eddies approaches the diameter of
the body. Thus, the modified drag spectrum is

= 4|Xaero(f )|2

If these forces act on an elastic spring-mass-damper system, the response of this
system u will have a spectrum

= |Xaero|2|Xmech|2

where static deflection ū =D̄/k, k = stiffness constant, and the mechanical admittance
function is

|Xmech|2 =

where ζ = critical damping ratio, and fn = natural frequency of the system.
The transition from the spectrum of the wind-velocity fluctuations to the spec-

trum of the response is shown diagrammatically in Fig. 29.23. The variance of the
response σu

2 is obtained from the spectrum of the response,

σu
2 = �∞

0
Wu(f ) df (29.30)

The relationships above describe the mean and the variance of the response. For
engineering purposes, it is also useful to define extreme values. It is often satisfactory
to assume that the process in question is Gaussian with probability density function
given by

1
���
[1 − (f/fn)2]2 + 4ζ2(f 2/fn

2)

4Wv(f )
�̄

V2

Wu(f )
�

ū2

Wv(f )
�̄

V2

WD(f )
�̄

D2
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FIGURE 29.23 Transition from gust spectrum to response spectrum.
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p(u) = e−(u − ū)2/2σu
2

This distribution is fully described by the mean and the variance. Maximum values
of the response during time T can be written as

umax = ū + gσu (29.31)

where g = peak factor.The average largest value of the peak factor in a period T can
be estimated from6

g = �2� l�n� ν�T� + (29.32)

where ν is an effective cycling rate of the process, generally close to the natural fre-
quency. The relationship of the distribution of the largest peak value to the distribu-
tion of all values is shown in Fig. 29.24. As can be seen, when the period T or the
natural frequency increases, the expected peak displacement also increases.The fac-
tor g usually ranges between 3 and 5.

0.5772
�
�2� l�n� ν�T�

1
�
�2�π� σu
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FIGURE 29.24 Relationship of distribution of largest peak value to dis-
tribution of all values (for a stationary random process).

Further extension of the concept includes the cross correlation of the wind loads
at different stations (e.g., heights), the shape of the vibration mode, and the nonuni-
formity of the mean flow.These factors can be included into the solution formulated
in terms of modal analysis (see Chap. 21). With a prismatic structure, the displace-
ment may be expressed in the form

u(z,t) =  
∞

j = 1
qj(t)φj(z) (29.33)

where qj(t) = the generalized coordinate of the jth mode, and φj(z) = the jth mode of
natural vibrations to an arbitrary scale.

With damping small and natural frequencies well separated, the cross correlation
of the generalized coordinate can be neglected and the mean-square displacement
(the variance) is
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u�2�(�z�,�t�)� =  
∞

j = 1
q�j�2� φj

2(z) (29.34)

The variance of the generalized coordinate q�j�2� is determined by the power spectrum
of the generalized force Qj.When the lateral dimension of the structure is small, only
cross correlation in direction z need be considered. Then the power spectrum of the
generalized force is

WQj
(f ) = �H

0
�H

0
W12(z1,z2, f )φj(z1)φj(z2) dz1 dz2 (29.35)

where W12(z1,z2, f ) = cross spectrum of the wind loads at heights z1 and z2, and 
H = height of the structure. With respect to Eq. (29.28), the cross spectrum of the
wind loads can be expressed in terms of the power spectrum of the wind speed [Eq.
(29.25)] and the coherence function, Eq. (29.27).

The variance of qj is

q�j�2� = �∞

0
WQj(f )

≈ WQj(fj) + �fj

0
WQj(f ) df (29.36)

where fj = jth natural frequency and generalized mass

Mj = �H

0
m(z)φj

2(z) dz (29.37)

where m(z) = mass of the structure per unit length. The approximate integration8 of
Eq. (29.36) yields the response composed of two parts, the resonance effect (the first
term) and the background turbulence effect (the second term), as shown in Fig.
29.25. The variance of the displacement follows from Eq. (29.34), and its standard 
deviation (rms dynamic displacement) is σu(z) = �u�2�(�z�,�t�)��. The peak response is 
established from Eq. (29.31) by means of the peak factor g [Eq. (29.32)] as in one
degree-of-freedom.The mean deflection ū(z) is the static deflection due to the mean
wind V̄z.

1
��
(2πfj)4Mj

2

1
��
64π3ζfj

3Mj
2

1
���
[1 − (f/fj)2]2 + 4ζ2(f/fj)2

1
��
(2πfj)4Mj

2
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FIGURE 29.25 Spectrum of structural response with indication
of resonance effect and background turbulence effect.
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Other analyses of slender structures are also available.9–11 In applications to
buildings and free-standing towers, the analysis can usually be limited to the first
modal component in Eq. (29.34).Application to buildings and structures with signif-
icant lateral dimension requires the incorporation of the horizontal cross correlation
as well. A complete solution established by means of simplifying assumptions and
numerical integrations is given below.

GUST-FACTOR APPROACH

The gust-factor approach is a design procedure derived on the basis of the theory
above by means of a few simplifying assumptions. The approach given here is a
modified version of the method described in Ref. 12 and adopted in Ref. 13. It con-
siders only the response in the first vibration mode which is assumed to be linear.
These assumptions are particularly suitable for buildings.The method yields all the
data needed in design: the maximum response, the equivalent static wind load that
would produce the same maximum response, and the maximum acceleration
needed for the evaluation of the physiological effects of strong winds (human
comfort).

The gust factor G is defined as the ratio of the expected peak displacement (load)
in a period T to the mean displacement (load) �u. Hence, the maximum expected
response is

umax = Gū = �1 + g � ū (29.38)

The gust factor is given as

G = 1 + g
 �B + � (29.39)

where ζ = damping ratio and K = factor related to the surface roughness; this factor
is equal to 0.08 for open terrain (zone A), 0.10 for suburban, urban, or wooded ter-
rain (zone B), and 0.14 for concentrations of tall buildings (zone C). All the other
parameters appearing in Eq. (29.39) can be obtained from Fig. 29.26. Ce = exposure
factor based on the mean wind speed profile (coefficient α) and thus on surface
roughness. For the three zones, the exposure factor is obtained from Fig. 29.26A for
the height of the building H. Ce relates to wind pressure rather than speed. Hence,
the mean wind speed at the top of the building is given by

V̄H =V̄10 �C�e�

where V̄10 = reference wind speed at the standard height of 10 meters.V̄10 can be
obtained from meteorological stations. Velocity V̄H is needed for determination of
parameters s and F. Factors B, s, F, and g are given in Fig. 29.26C to f as a function of
parameters indicated; D = width of the frontal area, and fn = the first natural fre-
quency of the structure in cycles per second.The average fluctuation rate ν, on which
the peak factor g depends, is evaluated from the formula

ν = f0 
 (29.40)
sF/ζ

�
B + sF/ζ

sF
�
ζ

K
�
Ce

σu�
ū
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The peak factor g is plotted in Fig. 29.26F, assuming a period of observation T = 3600
sec; it can also be calculated from Eq. (29.32).

The parameters given also yield the design wind pressure p, which produces dis-
placement umax if applied as a static load. This design pressure

p = qCeGCp (29.41)

VIBRATION OF STRUCTURES INDUCED BY WIND 29.33

FIGURE 29.26 Components of gust factor.
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where q = 1⁄2ρV̄10
2 is the reference mean-velocity pressure, and Ce = exposure factor.

In this case, Ce varies continuously with the elevation according to Fig. 29.26A for
pressures acting on the windward face of the structure; for the leeward face, Ce is
constant and evaluated at one-half the height of the building.The quantity Cp = aver-
age pressure coefficient, which depends on the shape of the structure and the flow
pattern around it. For a typical building with a flat roof and a height greater than
twice the width, the coefficients are given for the windward and leeward faces in Fig.
29.26B together with the pressure distribution.

The peak acceleration A of a structure due to gusting wind is given by

A = umax 

where umax = maximum deflection under the design pressure p. The other parameters
are equal to those used in Eq. (29.39). When the acceleration exceeds about 1 per-
cent of gravity, the motion is usually perceptible. However, there are large differ-
ences in the perceptibility of motions having very low frequencies.14,15 Similar
approaches are given in Refs. 16 to 18.

EFFECT OF GUSTS ON CLADDING AND WINDOWS

Wind gusts produce local pressures on cladding and window panels of a building.
Because the natural frequency of such a panel is very high compared with the fre-
quency components of the wind-speed fluctuations, the panel displacement is essen-
tially static. Its design may be based on the static displacement resulting from
maximum expected pressure, which is the algebraic sum of the height and time-
dependent exterior pressure (or suction) and the constant interior pressure (or suc-
tion). If the fluctuating component of the pressure p(t) is considered to be a
stationary random process, the exterior expected maximum pressure is

pmax = p̄ �1 + g � = p̄G (29.42)

where p̄ = 1⁄2ρCp
¯̄V 2 = mean pressure
Cp = local pressure coefficient
σp = standard deviation of the fluctuating pressure component
g = peak factor given by Eq. (29.32)

G = gust factor

To account for the sensitivity of glass to both static and dynamic fatigue, it has been
suggested19, 20 that g or G in Eq. (29.42) be multiplied by a wind-on-glass effect factor.

Factors g, σp/p̄, and Cp are most reliably determined from wind-tunnel experi-
ments. They strongly depend on location of the panel, wind direction, turbulence
intensity, and the local flow pattern determined by the shape of the building and its
immediate environment. In full-scale experiments, values of g in excess of 10 have
been observed in highly intermittent flow. Largest local pressure coefficients Cp

(actually suctions) appear with skew wind at the leading edge of the building where
a typical value is Cp = −1.5. In that part of the building exposed to free flow, a gust
factor G ≈ 2.5 is a reasonable estimate.13, 21 The interior pressure is not very high, but
its magnitude and sign depend on openings and leakage.

σp
�
p̄

KsF
�
Ceζ

4π2f0
2g

�
G
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Damage to windows may result from local wind pressure, but it also depends on
material properties of glass and its fatigue. The fatigue limit of glass is only about 20
percent of the instantaneous strength.20

VIBRATION DUE TO VORTEX SHEDDING

Vortex shedding represents the second most important mechanism for wind-
induced oscillations. Unlike the gusts, vortex shedding produces forces which origi-
nate in the wake behind the structure, act mainly in the across-wind direction, and
are, in general, rather regular. The resultant oscillation is resonant in character, is
often almost periodic, and usually appears in the direction perpendicular to that of
the wind. Lightly damped structures such as chimneys and towers are particularly
susceptible to vortex shedding. Many failures attributed to vortex shedding have
been reported.

When a bluff body is exposed to wind, vortices shed from the sides of the body
creating a pattern in its wake often called the Karman vortex street (Fig. 29.16). The
frequency of the shedding, nearly constant in many cases, depends on the shape and
size of the body, the velocity of the flow, and to a lesser degree on the surface rough-
ness and the turbulence of the flow. If the cross section of the body is noncircular, it
also depends on the wind direction. The dominant frequency of vortex shedding fs is
given by

fs = S
¯

Hz (29.43)

where S = dimensionless constant called the Strouhal number,V̄ = mean wind veloc-
ity, and D = width of the frontal area. The second dimensionless parameter is the
Reynolds number R = V̄D/ν, where ν = kinematic viscosity. For air under normal
conditions, ν = 1.6 × 10−4 ft2/sec.

For a body having a rectangular or square cross section, the Strouhal number is
almost independent of the Reynolds number. For a body having a circular cross sec-
tion, the Strouhal number varies with the regime of the flow as characterized by the
Reynolds number. There are three major regions: the subcritical region for R �� 3 ×
105, the supercritical region for 3 × 105 �� R �� 3 × 106, and the transcritical region for
R �

� 3 × 106. Approximate values of the Strouhal number for typical cross sections
are given in Table 29.2. The numbers given in this table are based on Refs. 1, 22, 23,
and 24 and other measurements, and may be used for turbulent shear flow.

PREDICTION OF VORTEX-INDUCED OSCILLATION

Although the mechanism of vortex shedding and the character of the lift forces have
been the subject of a great number of studies,25 the available information does not
permit an accurate prediction of these oscillations. The motion is most often viewed
as forced oscillation due to the lift force, which, per unit length, may be written as

FL = ρDV̄ 2CL(t) (29.44)
1
�
2

V�
D
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where CL(t) is a lift coefficient fluctuating in a harmonic or random way. Some
authors26, 27 consider vortex shedding to be self-excitation, which does not seem nec-
essary, however, for relatively small motions. Hence, the solution of the response
depends on the time-history assumed for CL(t).

HARMONIC EXCITATION OF PRISMATIC CYLINDERS BY VORTICES

Harmonic excitation represents a traditional model for vortex excitation, but it is
really justified only for very low Reynolds numbers (�� 300) or possibly for large
vibration where the motion starts controlling both the wake and the lift forces in the
form of the “locking-in” phenomenon. Strongest oscillations arise at that wind
velocity for which the frequency of vortex shedding fs is equal to one of the natural
frequencies of the structure fj. This resonant wind velocity is, from Eq. (29.43),

Vc = fjD (29.45)

With free-standing towers and stacks, resonance in the first two modes is met most
often; resonance with higher modes has been observed as well with guyed towers
(Fig. 29.27).

At the resonant wind velocity, the lift force is given by Eq. (29.44) in which 
CL(t) = CL sin 2πfjt, and CL = amplitude of lift coefficient. Assuming a uniform wind
profile and a constant diameter D, the resonant amplitude of mode j at the critical
wind velocity Vc is, from Eq. (29.33),

uj(z) = φj(z) �H

0
φj(z) dz (29.46)

where Mj is given by Eq. (29.37) and ζ = structural damping ratio. The formula can
be further simplified if it is assumed that the lift force is distributed along the struc-
ture in proportion to the mode φj(z). This assumption reflects the loss of spanwise
correlation of the forces.Then, with constant mass per unit length m(z) = m, the res-
onant amplitude at the height where the modal displacement is maximum:

uj = (29.47)
D3

�
ζm

ρCL�
16π2S2

D3

�
ζMj

ρCL�
16π2S2

1
�
S
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TABLE 29.2 Aerodynamic Data for Prediction of Vortex-Induced Oscillations 
in Turbulent Flow

rms lift Correlation
Strouhal coefficient Bandwidth length L

Cross section number S σL B (diameters)

Circular:
Subcritical 0.2 0.5 0.1 2.5
Supercritical Not marked 0.14 Not marked 1.0
Transcritical 0.25 0.25 0.3 1.5

Square:
Wind normal to face 0.11 0.6 0.2 3
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For the first mode of a free-standing structure, this occurs at the tip. In higher modes,
this amplitude appears at the height where local resonance takes place. For circular
cylinders, a design value of the lift coefficient CL is about �2�σL. This simple formula
can be used for the first estimate of the amplitudes that are likely to represent the
upper bound. It is also indicative of the role of the diameter, mass, and damping of
the structure. Approximate values of σL are given in Table 29.2.

RANDOM EXCITATION OF PRISMATIC CYLINDERS BY VORTICES

Even when vortex shedding appears very regular, the lift force and thus CL(t) are not
purely harmonic but random. The power spectrum of the lift force per unit length is
from Eq. (29.44).

WL(f) = � ρDV̄ 2σL�
2

WL′(f) (29.48)

where σL = 
C�L�2�(�t�)� is the standard deviation of the lift coefficient and WL′(f) = nor-
malized power spectrum of CL(t) for which

1
�
2
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FIGURE 29.27 Vortex-induced oscillations in different modes measured on 1000 ft guyed
tower.28
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�∞

0
WL′(f) df = 1 (29.49)

With circular cylinders, the lift force is narrow-band random in the subcritical and
transcritical22,23 ranges where the energy is distributed about the dominant fre-
quency fs, given by Eq. (29.43) (Fig. 29.28A). Such spectra can be described by a
Gaussian-type curve,

29.38 CHAPTER TWENTY-NINE, PART II

FIGURE 29.28 Spectra of lift coefficient for circular cylinder.

A few design values of bandwidth B are given in Table 29.2. In the supercritical
range, the power spectrum is broad (Fig. 29.28B) and can be expressed as29

WL′(f) = 4.8 (29.51)

Because the vortices are three-dimensional, a realistic treatment also requires the
inclusion of the spanwise cross correlation of the lift forces. This can be done in
terms of the “correlation length” L given in number of diameters.

Approximate values of L are given in Table 29.2. The correlation length
decreases with turbulence30 and shear, and increases with aspect ratio 2H/D and the
amplitude of the motion as shown in Fig. 29.29.

Using the correlation length, the spectral density of the lift force, Eqs. (29.50) and
(29.51), and a few further approximations, the vibration can be evaluated from Eqs.
(29.34) to (29.36). The root-mean-square (rms) displacement at height z in mode j is
approximately


�u�j�2�(�z�,�t�)� = C
π1/4σLρD4φj(z/H)
��

�B�ζ� (4πS)2Mj

D
�̄
V

1 + 682.2(fD/ V̄)2

���
[1 + 227.4(fD/ V̄)2]2

(A) (B)

WL′ ( f ) = exp � − � �
2

	 (29.50)
1 − f/fs
�B

1
�
�π�Bfs
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where

C2 = �1

0 � �
3α

φj
2 � � d � �

Here, α = wind profile exponent (Fig. 29.20), and parameters S, σL, B, and L are
given in Table 29.2. The mode φj(z/H) is dimensionless, and consequently Mj is in

slugs in this case. The peak response is g 
u�j�2�(�z�,�t�)�, where the peak factor g is given by
Eq. (29.32). If it is larger than about 2 percent of diameter D, locking-in may develop
and the analysis should be repeated assuming harmonic excitation or at least random
excitation with a significantly increased correlation length, as Fig. 29.29 indicates.

RANDOM EXCITATION OF TAPERED CYLINDERS BY VORTICES

Tapered cylinders, such as stacks, also vibrate due to vortex shedding, but less is
known about the mechanism of excitation. It appears that the lift forces are nar-
rowband random with a rather small correlation length L and with the dominant
frequency fs given by Eq. (29.43). As the diameter is variable, local resonance
between fs and the natural frequency fj takes place at different heights zr. As the
wind speed increases, the resonance first appears at the tip and shifts downward.
The critical wind speed for each height follows from Eq. (29.45) with D = D(zr).
The rms displacements at height H due to local resonance at height zr can be
obtained from an approximate formula,32


 u�j�2�(�H�,�t�)�

= 
� φj(H)

where

Ψ = +

or with a constant taper

Ψ = +

where t = D(0) − D(H) and α = the wind-
profile exponent. The other parameters
can be taken from Table 29.2. The val-
ues listed for the transcritical region
may be adequate, inasmuch as most
tapered stacks are large. The peak dis-
placement is again obtained by means
of the peak factor given by Eq. (29.32).

Maximum response of chimneys in
the first mode usually results from local
resonance at about 3⁄4 H. The height of
maximum excitation follows from the
condition d[D4(z)φj(z)]/dz = 0.

αD(zr)�
zr

t
�
H

αD(zr)�
zr

dD(zr)�
dz

σLρD4(zr)φj(zr)��
8S2Mj

L
�
2π3ζΨ

z
�
H

z
�
H

z
�
H

(H/D)2

��
1 + (H/2LD)
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FIGURE 29.29 Variation of correlation length
of vortex shedding with amplitude of motion and
turbulence (2a = double amplitude, turbulence
intensity 10 percent).

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.39



SUPPRESSION OF VORTEX-INDUCED VIBRATIONS

Vortex shedding may induce severe vibration of a cylindrical structure such as a
chimney, free-standing tower, guyed mast, bridge columns, etc. Very strong oscilla-
tions have been observed28,31 in all-welded structures where the damping ratio is
extremely low, sometimes less than 0.005.8,28 Welded structures are particularly
prone to fatigue failure, as the endurance limit may be only a fraction of the strength
if heavy notches, flaws, attachments, or other adverse details are present. In other
cases, the motion is intolerable because of its physiological effects or swaying of
antennas. For these reasons, suppression of vibration is often desirable.

In some cases, vibration can be reduced by increasing the structural damping.
This can be accomplished by additional dampers attached to an independent sup-
port28 or to a special mass suspended from the structure and suitably tuned or by
hanging chains33 (see Chap. 6). Columns of a few bridges were filled with gravel,
sand, or plastic balls partly filled with oil. The increase in mass may be unfavorable
but can increase the original structural damping.

Another successful method of vibration control is to break down the wake pat-
tern by providing the surface by helical “strakes” or “spoilers.”28,31,34 A suitable
height of the spoilers is about 0.1D or more with a pitch of about 5D. A significant
drawback of the spoilers is that they considerably increase the drag, sometimes by
100 percent or more.31,35

WAKE BUFFETING

If one structure is located in the wake of another, vortices shed from the upstream
structure may cause oscillation of the downstream structure.36,37 If the two structures
differ greatly in size or shape, this excitation is usually not significant. Strong vibra-
tion of the downstream structure may arise when two or more structures are identi-
cal and less than about 10 diameters apart. Then the structure in the wake is
efficiently excited by well-tuned wake buffeting and its own vortex shedding. Such
excitation has been observed with stacks and bridges, and to a certain degree with
hyperbolic cooling towers.36

GALLOPING OSCILLATIONS

Vibrations due to turbulence and vortices discussed above are induced by aerody-
namic forces which are, to a high degree, independent of the motion and act even on
stationary bodies. Quite a different kind of oscillation is induced by the aerodynamic
forces generated by the motion itself. Such forces may result from oscillatory
changes in pressure distribution brought about by the continuous change in the
angle under which the wind strikes the structure (“angle of attack”). This kind of
oscillation often has a tendency to diverge; it is called, summarily, aerodynamic insta-
bility, flutter, or self-excited oscillation. Sudden start and violent amplitudes are typi-
cal of such phenomena (Fig. 29.17C).

The mechanism of this oscillation is, in general, complex.The aerodynamic forces
may be a function of the displacements (translation and rotation), vibration velocity,
or both, and they may interact with turbulence and vortex shedding. The basic type
of the self-excited oscillations is the lateral (across-wind) oscillation induced by
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aerodynamic forces which are related to vibration velocity alone. Such oscillation is
referred to as galloping. Typical features of galloping oscillation are motion in the
direction perpendicular to that of the wind, sudden onset, large steady amplitudes
increasing with wind velocity, and a frequency equal to the natural frequency. Gal-
loping oscillation occurs in transmission lines and in a variety of structures having
square, rectangular, or other sharp-edged cross sections.

The origin of galloping oscillation depends on the relation between lift and drag.
If a body moves with a velocity u̇ in a flow having velocity V̄ perpendicular to its
direction (Fig. 29.30), the aerodynamic force acting on the body is produced by rela-
tive wind velocity V̄rel. The angle of attack of relative wind is

α = arctan (29.52)
u̇
�̄
V
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FIGURE 29.30 Cross section in flow.

The drag and lift components D and L of the aerodynamic force F are

D = CD ρhl V̄ 2
re1

L = CL ρhl V̄ 2
re1

where CD and CL are drag and lift coefficients at angle α (Fig. 29.31), h = depth of the
cross section, and l = length of the body.

The component of force F into the direction of axis Y, therefore, is

Fy = −(CD sin α + CL cos α) ρhl V̄2 sec2 α = CFy ρhl V̄2 (29.53)

where

CFy = −(CL + CD tan α) sec α (29.54)

The lateral force excites the vibration if the first derivative of CFy at α = 0 is >0, hence

A1 = �α = 0
= −� + CD� > 0 (29.55)

dCL�
dα

dCFy�
dα

1
�
2

1
�
2

1
�
2

1
�
2
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TABLE 29.3 Coefficients A1 for Determination of Galloping Onset Wind Velocity 
(Infinite Prisms)

Cross section
(Side ratio)

Unstable in smooth flow Stable in smooth flow

Square Rect. Rect. Rect. Rect. D-section*

V →

Flow

Smooth 2.7 1.91 2.8 0 −0.03 −0.1
Turbulent ≈10

percent
intensity 2.6 1.83 −2.0 0.74 0.17 0

* Varies with Reynolds number.

This condition for aerodynamic instabil-
ity is known as Den Hartog’s criterion.38

Substitution of Eq. (29.52) into Eq.
(29.54) indicates that the aerodynamic
forces depend on vibration velocity and
thus actually represent the aerodynamic
damping. This damping is negative if A1

> 0. Because the system also has struc-
tural damping ζ, which is positive, the
vibration will start only if the total avail-
able damping becomes less than 0. This
condition yields the onset (minimum)
wind velocity for galloping from the
equilibrium (or zero displacement) posi-
tion as

V̄0 = ζ (29.56)

where fj = natural frequency, n = ρh2/(4m) = mass parameter, and m = mass of the
body per unit length. Some values of coefficient A1 are given in Table 29.3.

Galloping oscillations starting from zero initial displacement can occur only
when the cross section has A1 > 0. Cross sections having A1 ≤ 0 are generally consid-
ered stable even though galloping may sometimes arise if triggered by a large initial
amplitude.41

The response and the onset velocity are often very sensitive to turbulence. Some
cross sections, such as a flat rectangle or a D section, are stable in smooth flow 
but can become unstable in turbulent flow.41, 42 With other cross sections, turbulence
may stabilize a shape that is unstable in smooth flow (see Table 29.2). From Eqs.
(29.53) and (29.54) the nonlinear, negative aerodynamic damping can be calcu-
lated43 for inclusion in the treatment of the across-wind response due to atmospheric
turbulence.

The prediction of oscillations for wind velocities greater than V0 depends on
the shape of the CFy coefficient and requires the application of nonlinear the-

2πfjh
�
nA1
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FIGURE 29.31 Lift and drag as function of
angle of attack.
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ory.39–42 A few typical cases are shown in Fig. 29.32. The cases are typical of a
square cross section, a flat rectangular section, and a D section whose angle of
attack is allowed to change due to drag. Similar response can be expected with
other cross sections.

Torsion can also participate in galloping oscillations and play an important part
in the vibration.This is the case with angle cross sections44 and bundled conductors.45

The quasi-steady theory of pure torsional galloping can be found in Ref. 46. A solu-
tion of coupled galloping is presented in Ref. 47.

Galloping often appears in overhead conductors which also vibrate due to vortex
shedding. Vortex shedding produces resonant vibration in a high-vibration mode.
Galloping usually involves the fundamental mode and is known to occur when the

VIBRATION OF STRUCTURES INDUCED BY WIND 29.43

FIGURE 29.32 Typical lateral force coefficients CFy and corresponding galloping
oscillations: (A) vibration from equilibrium position, (B) vibration triggered by initial
amplitudes, and (C) vibration with variable angle of attack.
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conductor is ice-coated or free of ice. The vibration often leads to fatigue failures,
and various techniques are therefore used to reduce the amplitude. This can be
achieved by means of resonant dampers48 consisting of auxiliary masses suspended
on short lengths of cable which dissipate energy through the bending (see Chap. 6),
or aerodynamic dampers49 consisting of perforated shrouds. Vibrations of bundled
conductors can be eliminated by twisting the bundle45 and thereby changing the
aerodynamic characteristics in the spanwise direction.

VIBRATION OF 

SPECIAL STRUCTURES

The basic types of vibration discussed above are common in many structures. How-
ever, there are some special structures which would require individual treatment. A
few examples are cited below.

Guyed towers experience complicated vibration patterns because of the nonlin-
earity of the guys, the three-dimensional character of the response, the interaction
between the guys and the tower, and other factors.28, 50–52

Hyperbolic cooling towers can suffer from some of the effects of wake buffeting36

and are susceptible to turbulence.53

Information on the vibration of a number of special structures can be found in
Refs. 2 to 5.
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CHAPTER 29, PART III
VIBRATION OF 

STRUCTURES INDUCED 
BY SOUND

John F. Wilby

INTRODUCTION

Vibration of structures due to interaction with a surrounding fluid can occur in a
variety of ways. Parts I and II of this chapter are concerned with several fluid flow
phenomena—waves, vortices, and wind—that induce vibration in an adjacent struc-
ture. The intent in Part III is to address the response of structures to acoustic and
aeroacoustic excitations, where the term aeroacoustic includes sources, such as tur-
bulent boundary layers, that have many characteristics similar to those of an acoustic
field. The excitations can be deterministic or random in nature, as defined in Chap.
1, depending on the particular source.

Sound-induced vibration can result in sound radiation to other regions, acoustic
fatigue (also known as sonic or high-cycle fatigue) of the structure being excited, or
transmission of vibration to attached equipment causing malfunction or failure.
Interest is often centered on aerospace applications where structures are light-
weight and sound levels are high. In that case, there is the likelihood of damage to
the primary structure of an aerospace vehicle, payloads in a launch vehicle, or the
equipment mounted on the structure. However, structural vibration due to acoustic
excitation occurs in a wide range of other environments including building damage
and vibration of equipment in microelectronics manufacturing facilities.

Different acoustic and aeroacoustic sources will be described, followed by a dis-
cussion of methods for predicting linear and nonlinear response of structures to an
acoustic or aeroacoustic excitation. Then, the problem of acoustic fatigue will be
addressed. Finally, test methods for the measurement of structural response to
acoustic and aeroacoustic excitations will be identified.

SOUND SOURCES

Acoustic and aeroacoustic pressure fields may be deterministic or random, sta-
tionary or nonstationary, and homogeneous or inhomogeneous (see definitions in

29.47
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Chap. 1). Deterministic pressures are periodic or almost-periodic (see Chap. 22)
and can be described by time-dependent functions, whereas random pressures can
be described only in statistical terms (see Chap. 22). Stationary pressure fields have
properties that, on the average, are invariant with time. That is not true of nonsta-
tionary pressure fields, which can include impulsive excitations such as blast waves
and sonic booms. Homogeneous pressure fields have properties that, on the aver-
age, are the same at any location on a structure, whereas inhomogeneous pressure
fields have properties that change with location.The term aeroacoustic is used here
in a general sense to include sound produced by fluid flow or by interaction of
flows with solid bodies, and fluctuating aerodynamic pressures such as those
beneath a turbulent boundary layer. For convenience, and without loss of general-
ity, both acoustic and aeroacoustic pressure fields will be referred to herein as
sound fields.

One important characteristic of a sound field is that the fluctuating pressures are
distributed over a large area, if not the entire surface, of the excited structure, and
usually consist of a wide range of frequencies that includes several modes of vibra-
tion of the structure.The response of the excited structure depends on several prop-
erties of the sound field—sound pressure, frequency content, spatial distribution of
pressure level and phase, and duration of exposure. The spatial characteristics of a
random pressure field are best described in terms of the pressure cross-spectrum
(see Chap. 22), although narrowband correlation functions have been used as equiv-
alent representations (see Chap. 11). Sound pressures encountered in everyday life
cover a range of many orders of magnitude.Thus, it is convenient to express them in
terms of a logarithmic quantity called the sound pressure level, Lp, which is
expressed in terms of decibels (dB) and is defined by

Lp = 10 log � 	 = 20 log � 	 dB (29.57)

where prms is the root-mean-square (rms) value of the sound pressure and pref is a ref-
erence pressure that has been established by international standard to be pref = 20
µPa in air. The common reference for underwater sound pressures is pref = 1 µPa.

The range of sound pressure levels encountered in practice is demonstrated by
the typical values listed in Table 29.4. The levels vary from 0 dB at the threshold of
human hearing to 170 dB or more on some surfaces of aerospace vehicles, well
above the threshold of pain for a human. Typical sound pressure levels near a busy
highway are on the order of 80 dB, and noisy machinery can generate sound pressure
levels of about 100 dB at the operator’s position.

Structural response to sound is of interest in a variety of situations but, as indi-
cated by Table 29.4, the most intense sound fields can be found in aerospace appli-
cations. Thus, aerospace vehicle sound sources are of special interest and provide a
wide range of characteristics. The sources include the exhaust of jet and rocket
engines, propellers and fans, powered lift devices, turbulent boundary layers, oscil-
lating shock waves, and sonic booms.1 In many cases, the pressure field is neither sta-
tionary nor homogeneous. However, it is often acceptable to assume stationarity and
homogeneity when predicting the response of a structure, if the variations in space
and time are gradual. There are exceptions to this assumption, for example, pro-
peller noise where the pressure field is strongly inhomogeneous with the sound
pressure levels being very high in the plane of rotation of the propeller and decreas-
ing rapidly in the forward and aft directions.A survey of near-field pressure fields on
flight vehicles can be found in Ref. 2.

prms�
pref

p2
rms�

p2
ref
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Although the following discussion on sound sources is directed toward aerospace
vehicles, it should be viewed more generally in terms of sound-generating mecha-
nisms that can be found in a wide range of situations. For example, the high-velocity
gas exhaust from a pressure relief valve has acoustical characteristics similar to
those of a jet engine exhaust. Axial fans in air-conditioning systems or gas-cooled
nuclear reactors have similar noise-generating mechanisms to those of a turbofan
engine. Also, regions of flow separation on an automobile can have characteristics
that are similar to those for separated flow on an airplane.

JET AND ROCKET EXHAUSTS

Jet and rocket noise is generated by interaction between the turbulent exhaust of the
jet or rocket engine and the surrounding air. At low exhaust velocities, below about
1000 ft/sec (300 m/sec), the acoustic power generated by the exhaust is proportional
to the eighth power of the exhaust velocity, Vj. However, as the velocity increases the
index decreases until, for rocket exhausts, where the exhaust velocity is of the order
of 9000 ft/sec (2750 m/sec), the acoustical power is proportional to the third power
of velocity. As the mechanical power of a rocket exhaust is also proportional to V j

3,
the acoustical power of a rocket exhaust is usually expressed in terms of an effi-
ciency factor η, which is the ratio of acoustical power Wa to mechanical power Wm.
That is,

Wa = ηWm = 0.5ηTVj (29.58)

where T is the thrust of the rocket engine.Typical values3,4 of the efficiency factor are
usually in the range 0.5 to 1.0 percent.

Since jet noise levels are determined by the relative velocity between the exhaust
and the surrounding air, the noise levels will decrease as the vehicle accelerates at
takeoff or liftoff, the highest levels occurring when the vehicle is stationary.This vari-
ation of noise level with vehicle speed means that the noise levels are nonstationary,
although they can be considered as stationary over short time periods.

VIBRATION OF STRUCTURES INDUCED BY SOUND 29.49

TABLE 29.4 Typical Sound Pressure Levels for Different Environments

Sound pressure
level Lp

(dB re 20 µPa) Environment

170 Jet noise on aircraft surface
160 Immediate hearing damage
140 Threshold of pain
120 Jet airplane takeoff at 1500 ft (500 m)
100 Punch press and wood planers at 3 ft (1 m)
90 Power mower at 3 ft (1 m)
80 Truck at 60 ft (20 m)
70 Automobile at 60 ft (20 m)
50 Conversation level, A-weighted, in a free field, at 3 ft (1 m)
40 Quiet residential neighborhood
20 Recording studio, A-weighted
0 Threshold of hearing
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Jet noise is strongly directional, with the highest sound pressure levels in the far
field occurring at angles of 30 to 50° to the jet axis, the angle being dependent on the
exhaust velocity. The situation is not so well defined in the near field, where the air-
craft structure is located. Representative near-field pressure contours can be found
in Refs. 4 to 7, and typical contours are shown in Fig. 29.33.7

29.50 CHAPTER TWENTY-NINE, PART III

FIGURE 29.33 Jet noise near-field sound pressure levels. D = nozzle diameter, x = distance
downstream of nozzle, y = distance from jet axis. (Reproduced with permission of ESDU Inter-
national.7)

Jet noise spectra are broadband and peak at different frequencies for different
locations in the near field.5–7 The spectra can be normalized in terms of a nondimen-
sional frequency using jet nozzle diameter D and jet velocity Vj as the normalizing
parameters. Then, the frequency of the spectral peak lies in the range 0.1 < fD/V <
1.0, depending on location relative to the nozzle, as shown in Fig. 29.34.7

The spatial distribution of the pressure phase for a jet noise near field can be pre-
sented in terms of the band-limited (e.g., one-third-octave band) crosscorrelation
function5,8,9 (see Chap. 11) or the normalized cross–spectral density function γp(ξ,f)
(see Chap. 22), since the two functions are equivalent. Typical measured values of
γp(ξ,f) for jet noise pressures close to a jet8,9 are shown in Fig. 29.35. Frequency f is
normalized with respect to separation distance ξ and the trace wavespeed of the inci-
dent sound, in order to permit scaling from one situation to another. Trace
wavespeed Vt is the wave speed of the incident sound when projected onto the sur-
face of the excited structure. Thus, for sound waves of speed c incident at an angle θ
to the normal to the surface, the trace wavespeed is c/sin θ. The value of Vt is often
frequency dependent and, in the case of the data in Fig. 29.35, has values of 1.43c,
1.25c, and 1.0c for frequencies 400, 500, and 800 Hz, respectively.These values of the
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trace wavespeed correspond to angles of incidence of 44, 53, and 90°, respectively.
The different angles of incidence are associated with the different locations in the jet
exhaust of the effective noise sources for different frequencies. Figure 29.35 refers to
measurements made in a plane passing through the jet axis. Corresponding infor-
mation in a direction perpendicular to that plane are less well defined.

For convenient substitution into analytical models, the normalized cross-spectrum
is often represented as an exponentially decaying cosine, with the general form

γp(ξ,f) = e−ak|ξ| cos (kξ) (29.59)

where a is a decay parameter and k is the wave number of the pressure field, where
wave number is defined by

k = = (29.60)

Curves of γp(ξ,f) are shown in Fig. 29.35 for three values of the decay parameter a,
namely, 0.05, 0.07, and 0.10.

Supersonic jet exhausts that are under- or overexpanded contain shockwaves
that result in the generation of additional broadband noise and discrete frequency
screech.1 The screech consists of a fundamental component, whose frequency is a
function of nozzle pressure ratio or flow Mach number, and several harmonics. The
directivity of the screech noise is a function of harmonic order, with the fundamen-
tal having a maximum in the upstream direction and the second harmonic having a
multilobed directivity pattern with peaks in directions perpendicular to the flow
direction, as well as in the upstream direction.

2πf
�
Vt

ω
�
Vt
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FIGURE 29.34 Normalized sound pressure spectra for several locations in jet noise near-
field. V = jet velocity; D, x, y, as defined in Fig. 29.33. (Reproduced with permission of ESDU
International.7)
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FIGURE 29.35 Example of normalized cross-spectral density function for jet noise near-field pressures. Test
data collapsed with trace velocity Vt = 1.43c (200, 400 Hz), 1.25c (500 Hz), and 1.0c (800 Hz). Continuous plots
represent Eq. (29.59) with decay parameter a = 0.05, 0.07, and 0.10. (Data from Richards and Mead.9)
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ENGINE EXHAUST FLOWS

Powered lift aircraft utilize the exhaust from the engines to augment the lift gener-
ated by the wing and increase the effectiveness of the control surfaces, utilizing sys-
tems such as upper surface blowing and externally blown flaps.1 By so doing, the
surfaces of the aircraft are exposed to high sound pressure levels that are a combi-
nation of acoustic and aeroacoustic pressures. For example, sound pressure levels of
up to 165 dB were measured on an airplane with upper surface blowing.10 In addi-
tion, the structure was heated to a temperature of 500 to 700°F (260 to 370°C). A
similar situation exists on stealth aircraft where the engine exhaust flows over the
upper surface of the aft structure so that the gases are cooled before they can be
observed from below.10 Sound pressure levels greater than 180 dB are predicted in
the neighborhood of the exhaust flows on hypersonic aircraft.10–12

PROPELLERS AND FANS

Propeller or fan noise consists of both broadband and discrete frequency compo-
nents, but the pressure spectrum is dominated by discrete frequency components at
the blade passage frequency of the propeller or fan and harmonics thereof. The
blade passage frequency fb is given by

fb = (29.61)

where Ω is the rotational speed (rpm) of the propeller or fan and B is the number of
blades. The spectra for counter-rotating propellers are more complex, with blade
passage frequency components for each of the propellers plus interaction tones,13 as
shown in Fig. 29.36. The spectrum in the figure also contains components for each
individual blade of the propeller, because the blades are not identical.

ΩB
�
60

VIBRATION OF STRUCTURES INDUCED BY SOUND 29.53

FIGURE 29.36 Spectrum for near-field sound pressure levels of high-speed, counter-rotating pro-
peller with 8 and 10 blades. BPF(8) and BPF(10) denote blade passage frequencies for 8- and 10-blade
propeller stages, respectively. (Simpson, Druez, Kimbrough, Brock, Burge, Mathur, Cannon, and Tran.13)
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Sound pressure levels on the fuselage of multiengined general aviation aircraft
are typically of the order of 130 dB at the blade passage frequency. High-speed pro-
pellers, with tip speeds that are supersonic under cruise conditions, have higher
sound pressure levels on the order of 150 dB.13

Cross-spectrum measurements of propeller noise on a general aviation airplane14

show that the pressure field in the plane of rotation is an aerodynamic potential field
that rotates with the propeller blades. Forward and aft of the plane of rotation the
pressure field is acoustic and has the characteristics of propagating acoustic waves gen-
erated by sources located near the tips of the propeller blades.The spatial distribution
of the cross-spectrum phase is more complicated for counter-rotating propellers.15

TURBULENT BOUNDARY LAYER

The dominant fluctuating pressures acting on launch vehicles, missiles, and aircraft
in high-speed flight are associated with the turbulent boundary layer on the external
surfaces of the vehicle. Similar fluctuating pressure fields are also encountered on
other moving vehicles including automobiles, particularly around the windshield,
and high-speed elevators. These pressure fields have many of the characteristics of
an acoustic pressure field, but the convection velocity of the pressure fluctuations
over the surface may be subsonic in contrast to an acoustic field where the trace
velocity is always equal to, or greater than, the speed of sound in the fluid.There are
also differences in the cross-spectra.

Measurements of turbulent boundary layer pressure fluctuations have been
made in wind tunnels, on aircraft in flight, and underwater.9,16–18 The measurements
have included both subsonic and supersonic flow conditions, but the emphasis has
been on subsonic conditions.A combination of analytical and empirical methods has
resulted in representations for the various characteristics of turbulent boundary
layer pressure fields for both attached and separated flow.

For an attached turbulent boundary layer, taking into account compressibility
effects, the rms pressure prms can be expressed as a function of Mach number, in rela-
tionships such as19

= (29.62)

where q is the dynamic pressure of the flow, given by q = 1⁄2ρV2 where V is velocity, ρ
is the density of the fluid, and M is the flow Mach number, defined at some location
such as free stream or the edge of the boundary layer. Corresponding relationships
can be developed for separated flow conditions.

The pressure spectrum Gp(ω) for an attached turbulent boundary layer is broad-
band and can be represented by a relationship of the form19

= (29.63)

where κ is a function of flow Mach number, V is the flow velocity, and δ* is the
boundary layer displacement thickness. The boundary layer displacement thickness
is the distance that the surface beneath the boundary layer would have to move out-
ward and normal to itself to account for the differences in the rate of mass flow with
the boundary layer present and, hypothetically, without the boundary layer. Sepa-
rated turbulent boundary layers in the neighborhood of steps, ramps, and other sur-

2κ(prms/q)2

��

π�1 + ��κω
V
δ*
��

2

	
Gp(ω)V
�

q2δ*

0.006
��
1 + 0.13M2

prms�
q
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face discontinuities have higher pressure levels at low frequencies than is the case
for attached boundary layers, as shown in Fig. 29.37.18 Pressure spectrum and fre-
quency are normalized in Fig. 29.37 with respect to boundary layer thickness δ rather
than boundary layer displacement thickness δ*. Boundary layer thickness can be
defined as the distance from the surface at which the flow velocity reaches 99.5 per-
cent of the free stream velocity. Equation (29.63) can be modified to take into
account the low-frequency shifts seen in Fig. 29.63 by replacing κ with Cκ, where 
C > 1. The presence of oscillating shockwaves further increases the low-frequency
component of the pressure spectrum,18 as can be seen in Fig. 29.37.

VIBRATION OF STRUCTURES INDUCED BY SOUND 29.55

FIGURE 29.37 Pressure spectra beneath different turbulent boundary
layers in supersonic flow. Gp(f) = Gp(ω)/2π, V = flow velocity, q = flow
dynamic pressure, δ = boundary layer thickness. (Coe, Chyu, and Dods.18)

Normalized cross-spectra or band-limited cross-correlation functions have been
measured for attached turbulent boundary layers.16,17 The measured data indicate
that the normalized cross-spectrum is dependent on the thickness of the boundary
layer δ as well as on the convection speed Vc of the pressure field and the separation
distance ξ between the measuring points. Empirical relationships such as20

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.55



γ(ξ,ω) = exp �−�� �
2

+ � �
2

	
0.5

|ξ|� cos � � (29.64)

have been proposed for attached turbulent boundary layers. There is little corre-
sponding information for separated boundary layers, where the flow is much more
complicated.

IMPULSIVE SOUNDS

Impulsive sounds, such as sonic booms generated by airplanes in supersonic flight1

and blast waves from explosions, can cause transient vibration of a structure.

ANALYTICAL METHODS

It is often assumed in the analysis of structural response to acoustic excitation that
the structure responds in a linear manner, so that there is a linear relationship
between excitation force and structural response. However, this assumption may not
be valid when the acoustic excitation levels are high. In that case the response is non-
linear.

LINEAR ANALYSIS

Several different methods can be used to calculate the linear response of a structure
to acoustical excitation. They include classical normal mode analysis, statistical
energy analysis, and finite element analysis. Each method has its own advantages
and disadvantages.

Classical Normal Mode Analysis. In the classical modal formulation,9 the acceler-
ation autospectrum Ga(x,ω) for location x and angular frequency ω can be written as

Ga(x,ω) = ω4A2Gp(ω) 
r


s

ψr(x)ψs(x)Hr(ω)Hs*(ω)j2
rs(ω) (29.65)

where A is the area of the structure exposed to the excitation, Gp(ω) is the excitation
pressure spectrum, ψr(x) is the mode shape of mode of order r, Hr(ω) is the structural
mode response function, j2

rs(ω) is the cross acceptance that describes the spatial cou-
pling between the excitation pressure field and the structural mode shapes, and an
asterisk denotes a complex conjugate. The cross acceptance is defined by

j2
rs(ω) = �� Gp(x, x′,ω)ψr(x)ψs(x′ )dxdx′ (29.66)

and the structural mode response function is defined by

|Hr(ω)|2 = Mr
−2[(ωr

2 − ω2)2 + ηr
2ωr

4]−1 (29.67)

where ηr is the damping loss factor (ηr = 2ζ r, where ζ r is the damping ratio), Mr is the
modal mass, and ωr is the resonance frequency of mode r. The modal mass is defined
as

1
�
A2Gp(ω)

ωξ
�
Vc

0.27
�

δ
0.1ω
�

Vc

29.56 CHAPTER TWENTY-NINE, PART III

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.56



Mr = �
A

mψr
2(x)dx (29.68)

where m is the mass per unit area for a panel of area A. For a uniform panel with
simply supported boundaries, Mr = mA/4. Prediction methods for ωr can be found in
Chap. 7.

If the damping is small and the fluid loading is negligible (which is usually true in
air but not in water), the vibration is dominated by the response at the resonance
frequencies and contributions from the cross terms (r ≠ s) can be neglected. Then
Eq. (29.65) becomes

Ga(x,ω) = ω4A2Gp(ω) 
r

ψr
2(x)|Hr(ω)|2jr

2(ω) (29.69)

In Eq. (29.69), the cross acceptance of Eq. (29.66) is replaced by the joint acceptance

j r
2(ω) = �� Gp(x, x′,ω)ψr(x)ψr(x′ )dxdx′ (29.70)

Assuming that the structure has simply supported boundaries, and Gp(ω) and jr
2(ω)

vary slowly with ω in frequency band ∆ω, the space-average, mean square response
in frequency band ∆ω is

[a2]∆ω ≈ Gp(ω) 
r

jr
2(ω) �

∆ω
|Hr(ω)|2dω (29.71)

For small damping

�
ω

|Hr(ω)|2dω ≈ (29.72)

and Eq. (29.71) reduces to

[a2]∆ω ≈ Gp(ω) 
r � ∆ω

(29.73)

The notation r � ∆ω signifies that the summation is over all modes of order r whose
resonance frequency ωr lies in the frequency band ∆ω. From Eq. (29.73), the accel-
eration spectral density, averaged in space and frequency, is

〈Ga(ω)〉A,∆ω = ≈ Gp(ω) 
r � ∆ω

(29.74)

where 〈 〉A,∆ω denotes averaging over area A and frequency band ∆ω. It can be seen
in Eqs. (29.69), (29.73), and (29.74) that the two functions representing the excitation
pressure field are the pressure autospectrum, Gp(ω), and the joint acceptance, jr

2(ω).
The classical normal mode approach of Eq. (29.69) is an accurate way to predict

structural response to acoustic or aeroacoustic pressure fields, provided that the rel-
evant details of the structure and pressure field are known and represented cor-
rectly. However, that is often not the case. It is difficult to obtain the cross-spectrum
data for the pressure field and approximations have to be made. Also, an accurate
description of the normal modes and resonance frequencies of the structure is not
always available, especially for complicated structures. Experimental procedures
(see Chap. 21) and analytical methods, such as finite element analysis (see Chap. 28,
Part II), might be used to obtain normal mode information, but both methods
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�ωr
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ω4A2π
�
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become increasingly inaccurate as frequency increases. One solution is to resort to
averaging techniques such as Eq. (29.73) or (29.74), but that has the disadvantage of
eliminating some of the details in the results. Statistical energy analysis (see Chap.
11) is a further step in the averaging process.

Analysis of structural response to sound underwater is complicated by the fact
that fluid loading is no longer negligible and has to be included in the analytical
model.21,22 The effect of fluid loading depends on whether the frequency of interest
is below or above the critical frequency, which is defined as the frequency at which
the trace wavespeed of the sound field is equal to the wavespeed of the flexural or
bending waves in the structure. At frequencies below the critical frequency, fluid
loading essentially acts as an entrained mass that has to be included as a second mass
term in the equations of motion.22 At frequencies above the critical frequency, the
fluid loading influences the radiation resistance and the sound radiation into the
fluid.22

Joint Acceptance. The joint acceptance function describes the efficiency by
which a particular pressure field can excite a structure. For a given pressure spec-
trum Gp(ω), different types of excitation, with different joint acceptance functions,
will generate different vibration levels in the responding structure. For example, tur-
bulent boundary layer pressure fluctuations will produce different vibration levels
than will jet noise of the same pressure level.

Simplifying assumptions are usually introduced so that the joint acceptance can
be obtained in closed form. Specifically, it is commonly assumed that the pressure
field is homogeneous, so that x and x′ can be replaced by ξ, where x′ − x = ξ.The vec-
tor ξ has components ξx and ξy in the x and y directions, respectively. Also, it is
assumed that the joint acceptance is separable in the x and y directions. Finally, it is
assumed that the structure is simply supported at the boundaries. Then, the compo-
nent of the joint acceptance in the x-direction is

j2
m(ω) = �

Lx
� γx(ξx,ω) cos (kxξx) sin � � sin � �dxdx′ (29.75)

with

γx(ξx,ω) = (29.76)

and mode order r � (m,n). Similar relationships apply in the y-direction.
Closed-form joint acceptance functions for three different types of excitation,

namely, attached turbulent boundary layer, jet noise, and diffuse (reverberant)
sound field, are given in Ref. 20. Typical nondimensional joint acceptance curves
based on Eqs. (29.75), (29.76), and (29.59) are shown in Fig. 29.38, for the case where
the decay parameter a in Eq. (29.59) has a value of 0.1. The joint acceptance for the
first mode shape (n = 1) has a maximum value at zero wave number or frequency,
but the joint acceptance for each of the other modes has a maximum value at a
nonzero value of frequency. Those maxima for the higher-order modes occur when
the wave number of the excitation is equal to the flexural wave number for the struc-
tural mode, a condition known as coincidence.

Statistical Energy Analysis. Statistical energy analysis (SEA) makes the general
assumption that it is not practical to represent all the details of a structure in a given
response prediction procedure (see Chap. 11). Thus, ensemble averaging is per-

|Gp(ξx,0,ω)|
��
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mπx′
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mπx
�
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formed over a series of similar, but slightly different, structures to obtain an average
response. In practice, ensemble averaging is time-consuming, so it is replaced by fre-
quency averaging.

Equation (29.74) leads to a typical SEA relationship for simply supported panels,
specifically,

〈Ga(ω)〉A,∆ω = Gp(ω) (29.77)

where 〈 〉∆ω denotes averaging over frequency, nr(ω) is the modal density of the struc-
ture, and m is the mass/unit area of the panel (assumed uniform). The frequency-
band-averaged joint acceptance is

〈jr
2(ω)〉∆ω = 

N

r = 1
jr
2(ω) (29.78)

where N is the number of modes with resonance frequencies in frequency band ∆ω.
The modal density of the structure is defined by

nr(ω) = (29.79)

For a flat panel,

dN
�
dω

1
�
N

〈jr
2(ω)〉∆ω�〈ηr〉∆ω

2πωnr(ω)
��

m2
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FIGURE 29.38 Joint acceptance curves based on Eqs. (29.75), (29.76), and (29.59), with decay
parameter a = 0.1. L = length of panel, m = mode order, k = excitation wave number [Eq. (29.60)].
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n(ω) = (29.80)

where h is the panel thickness and cL is the longitudinal wave speed in the structure
given by

cL = 
� (29.81)

In Eq. (29.81), E is Young’s modulus of the structural material, ρ is the material den-
sity, and v is Poisson’s ratio.

The use of SEA techniques to simplify the analysis has the advantage that the
response can be calculated to high frequencies with minimum computing time, but
there is the disadvantage that the use of space- and frequency-averaging methods
means that structural response cannot be predicted for a specific point on the struc-
ture nor at a specific frequency. Additional methods have to be used to supplement
the SEA calculations. Further discussion on statistical energy analysis can be found
in Chap. 11.

SEA is of limited value at low frequencies where modes are sparse (N < 3, say).
The method can still be used but the variance of the results becomes large. However,
classical normal mode and finite element methods are applicable at low frequencies.
In practice, it is often found that there is a midfrequency range, above the usual fre-
quency range for normal mode and finite element methods and below the usual fre-
quency range for SEA, where none of the methods is very accurate.

Finite Element Analysis. In finite element analysis, a continuous structure is
modeled as an array of grid points connected by appropriate elements (see Chap. 28,
Part II). This means that the continuously distributed sound pressure field has to be
represented as an array of discrete forces applied at the grid points. The forces have
to be given autospectral functions that take into account the frequency characteris-
tics and amplitudes of the excitation pressure field, and the structural area attributed
to each grid point. In addition, the forces at each pair of grid points have to be
assigned the appropriate cross-spectrum function based on the spatial separation
between the grid points.

The response of the structure at location x can be calculated using relationships
of the form23

Ga(x,ω) = 
q

j = 1

q

k = 1
Hjx*T(ω) Gjk(ω) Hkx(ω) (29.82)

where Hjx(ω) is the frequency response function between the jth input and the
response location x, Gjk(ω) is the cross-spectrum between the jth and kth inputs, Aj

is the area associated with the jth input, and Ax is the area associated with the
response location. The frequency response function Hjx*T(ω) is the transpose of the
complex conjugate of Hjx(ω). Basic details of the finite element method can be
found in Chap. 28, Part II.

Successful application of finite element analysis to the calculation of the response
of a structure to acoustic or aeroacoustic pressure fields requires that there be an
adequate number of degrees-of-freedom in the finite element model and an appro-
priate representation of the pressure field auto- and cross-spectra. In principle, finite
element methods can be applied over the entire frequency range of interest, but that
is not necessarily true in practice. As frequency and number of modes increases, it

Ax�
Ak

Ax�
Aj

E
�ρ(1 − v2)

�3�A
�
2πhcL

29.60 CHAPTER TWENTY-NINE, PART III

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.60



becomes more difficult to provide an accurate description of the structure including
boundary conditions. It also becomes more difficult to represent the details of the
pressure field cross-spectrum. Finally, the time required to perform the necessary
computations can become excessive. Thus, the finite element method suffers from
the same disadvantages as does the classical normal mode method.

Damping. It is obvious from Eqs. (29.73) and (29.74) that damping is an important
parameter in determining the magnitude of the structural response to acoustic or
aeroacoustic excitation, since the mean square acceleration is inversely proportional
to the damping loss factor ηr. The damping loss factor in Eq. (29.73) is composed of
three components, as follows:

ηr = ηr,struc + ηr,rad + ηr,aero (29.83)

The structural loss factor, ηr,struc, represents the damping due to material properties
of the structure and mechanisms such as gas pumping at riveted joints and slip
damping (see Chap. 36). It also represents damping due to any applied treatments
(see Chap. 37). The radiation damping loss factor, ηr,rad, represents damping associ-
ated with the radiation of sound as a consequence of the vibration of the structure.
This can be a significant contribution for structures such as composite structures that
are very lightly damped. For structures in vacuo, ηr,rad = 0.The aerodynamic damping
loss factor, ηr,aero, represents the damping associated with the presence of nonzero
mean flow over the structure. Additional information on the damping of structures
can be found in Refs. 24 and 25.

NONLINEAR VIBRATION

When excitation sound levels become too high, the response of a structure becomes
nonlinear and linear analysis methods for the prediction of structural vibration are
inaccurate. There are several situations where nonlinear response can be important.
They include vibration where the displacement of the structure is no longer small
with respect to the panel thickness, rattle induced by impulsive or low-frequency
noise, and snap-through response of curved or buckled plates. Snap-through motion
occurs when the local curvature of a panel that is curved by design or by buckling,
jumps from one direction to another. Buckling can be caused, for example, by ther-
mal stresses induced by high temperatures. Nonlinear response can be in the form of
a hardening or softening spring (see Chap. 4), or instability conditions with snap-
through motion.

Response characteristics often associated with nonlinear vibration are (1) the
response amplitude no longer increasing in proportion to the amplitude of the exci-
tation, (2) the resonance frequencies of the response modes changing with excita-
tion amplitude, and (3) broadening of resonance peaks, which is attributed to
nonlinear damping. The first two phenomena are demonstrated in Fig. 29.39, which
shows the response of a panel to a sound field generated by a siren.26 The response
in the first mode, in terms of amplitude and resonance frequency, becomes nonlinear
when the sound pressure reaches a level of about 102 dB.

Various approaches have been developed for the prediction of nonlinear
response of a structure to acoustic excitation,27–31 but they often have very limited
application. Characteristics of nonlinear vibration and several approximate methods
for analyzing the vibration are reviewed in Chap. 4. Nonlinear analytical methods
that give closed-form quantitative results are usually limited to simple structures.
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FIGURE 29.39 Nonlinear stress response characteristics for flat panel exposed to siren excitation. Panel with
clamped edges, panel length = 12 in. (0.30 m). (Mei.26)
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Approximate methods are usually required for complex structures such as those
found in aerospace applications. Other approaches include numerical methods, such
as the Monte Carlo approach, and finite element methods using nonlinear element
stiffness matrices. However, the methods are often restricted to simple acoustic
pressure fields such as (1) plane waves at normal incidence, with the pressure uni-
form in both amplitude and phase over the entire surface of the structure; (2) plane
acoustic waves at grazing incidence; or (3) uncorrelated pressure fields. Further-
more, structural response is often limited to a single mode.

The Monte Carlo method31 is based on the numerical generation of a large num-
ber of random, sample excitations and the calculation of the response to each sam-
ple. The method can be used for both linear and nonlinear responses to random
excitations, and it could be a feasible approach for nonlinear vibration where closed-
form or approximate solutions are not possible, although the method requires the
use of high-speed digital computers. One example of a second-order, nonlinear
equation of motion for a panel is

dXij/dt2 + 2ζijωij(dXij/dt) + ω2
ijXij + N(Xij,dXij/dt) = Fij(t) (29.84)

where Xij are the components of generalized coordinates, ωij are the natural fre-
quencies of a linear system, ζij are the modal damping coefficients, N is the nonlinear
system operator, and Fij(t) are the generalized random forces.

The time-domain Monte Carlo method consists of three basic steps:31 (1) random
inputs for Fij(t) are generated using simulation procedures of random processes; (2)
the equations of motion, such as Eq. (29.84), are solved numerically for each random
value of Fij(t); and (3) statistical moments and other needed quantities of the ran-
dom response Xij(t) are computed for ensemble averages. If the system is ergodic
(see Chap. 1), the ensemble averaging can be replaced by time averaging, with a sav-
ing in computing time.

In many aerospace situations, the structure is exposed to high temperatures and
the structural vibration is strongly dependent on thermal stresses induced by a ther-
mal environment. The effect is taken into account in some procedures by applying
the acoustic and thermal loads in sequence. A more appropriate analysis of nonlin-
ear response of aerospace structures considers acoustic and thermal loads simulta-
neously.27

Structural damping is often represented as linear damping. However, nonlinear
damping can be represented, for example, by replacing linear damping in Duffing’s
equation (see Chap. 4) with a nonlinear damping term32 such as ωoη(1 + αq2)dq/dt.

ACOUSTIC FATIGUE

Acoustically induced structural vibration results in oscillating stresses. The stress
levels may be low but, because of the frequencies involved, typically 100 to 500 Hz,
the number of stress reversals can be large enough at stress concentration points to
create fatigue cracks. This phenomenon is called high-cycle fatigue, acoustic fatigue,
or sonic fatigue.33 Most examples of failures induced by sonic fatigue occur in air-
craft structures in the form of skin failures along rivet lines, skin debonding in sand-
wich panels, and failure in internal attachment structures.5,6

In many cases the stresses induced by acoustic pressure fields are dominated by
response in the first mode of vibration of a panel, and the acoustical wavelength is
large relative to the dimensions on the panel. Then, the sound pressures are essen-
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tially in phase over the panel, and details of the pressure correlation are of minor
importance.The mean square stress σ2(t) can be estimated using the approximation6

σ2(t) ≈ K fnGp(fn)� �
2

(29.85)

where fn is the frequency of the dominant mode of order n, Gp(fn) is the spectral den-
sity of the excitation pressure at frequency fn, η is the damping ratio, and σo is the
stress at the point of interest due to a uniform static pressure of magnitude Fo. Equa-
tion (29.85) is based on early work34 for a single degree-of-freedom system. The fac-
tor K is included in Eq. (29.85) so that the equations can be modified to fit particular
structural configurations and materials. There are cases where acoustic fatigue is
caused by vibration of several modes, not just one. Thus, alternative prediction pro-
cedures are required that extend the approach in Eq. (29.85) to higher-order modes
and complex shapes, and estimate the influence of acoustical wavelength.12

It is apparent from Eq. (29.85) that increasing the damping of a structure would
decrease the stresses. Thus, the application of damping material will reduce the like-
lihood of acoustic fatigue. For example, damping treatment was applied to the fuselage
structure of a test airplane with high-speed propellers to minimize the likelihood of
acoustic fatigue in the plane of rotation of the propellers.13 Applied damping tech-
niques are described in Chap. 37 and the wider aspects of passive vibration control
are discussed in Ref. 35.

LABORATORY TESTING OF STRUCTURES 

AND EQUIPMENT

Laboratory tests are often required to supplement or validate analysis, evaluate new
structural designs, or develop a database of fatigue life for different environmental
conditions or for new materials, especially composites. Acoustical environments of
aircraft and space vehicles can reach overall sound pressure levels in the range
170–180 dB in local areas. Consequently, there is a need to develop similar levels in
the laboratory with the appropriate frequency distributions. Two test environments,
the progressive wave tube and the reverberant chamber, are used for many of the
laboratory tests. The purposes of the testing are to find weak points in the structural
design or in the manufacturing process, or to determine whether or not the structure
will have a satisfactory fatigue life (see Chap. 20). The progressive wave tube and
reverberant chamber play different roles in this process.

PROGRESSIVE WAVE TUBES

A progressive wave tube consists of duct with a sound source at one end and a sound-
absorbing termination at the other end. It is used to expose structural components,
such as a panel, to high-intensity sound pressure levels for long periods of time so as
to evaluate the susceptibility of the structure to acoustic fatigue.The test structure is
mounted in one wall of the tube and exposed to sound waves traveling along the
tube at grazing incidence.5,9,10,36 Relatively small test specimens are used because of
the difficulty of generating, in the laboratory, very high sound pressure levels over
large areas.

Due to concerns about the effect of high temperatures for some applications,

σo�
Fo

π
�
4η
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such as aircraft-powered lift devices, the structure beneath the engine exhaust of
stealth aircraft, and the vehicle structure of hypersonic vehicles, facilities have been
constructed that permit the heating of the test specimen at the same time that it is
being exposed to the high-intensity sound pressure levels. The acoustic excitation is
limited to the lower frequencies because of constraints on the source, which usually
consists of several electropneumatic modulators with broadband random acoustical
outputs. However, the lower frequencies are usually responsible for the highest
stresses that determine acoustical fatigue life.

A typical progressive wave tube is shown in Fig. 29.40. The number of electro-
pneumatic modulators is determined by the size of the duct, and the desired maxi-
mum sound pressure levels and frequency range. The number of modulators can
range from 2 to 12, generating maximum sound pressure levels from 170 to over 180
dB with frequency ranges varying from 30–500 Hz to 50–1500 Hz.9,10,36 Test panel
sizes range from 1 to 20 ft2 (0.1 to 2 m2).
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FIGURE 29.40 Typical progressive wave tube. (Shimovetz and Wentz.10)

REVERBERATION CHAMBERS

Reverberation chambers can be used to expose large structures to sound pressure
levels typical of those encountered in service. A reverberation chamber is an enclo-
sure with thick, rigid walls and smooth interior surfaces that strongly reflect sound
waves.37 Acoustic noise is introduced into the chamber at one or more locations, usu-
ally with air modulators mounted in one or more of the walls. Assuming that the
acoustic noise source is random in character, it produces a sound field within the
chamber that becomes increasingly homogeneous (a uniform sound pressure level
throughout the chamber) as the wavelength of the sound becomes small relative to
the minimum dimension of the chamber. Further, the sound field inside the chamber
approaches a diffuse noise field, where diffuse noise is defined as a sound field where
the sound waves at any point arrive from all directions with equal intensity and ran-
dom phase. High-intensity reverberation chambers typically have an interior volume
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of 7000 to 350,000 ft3 (200 to 10,000 m3), and are capable of producing sound pres-
sure levels in an empty chamber of 150 to 160 dB over a frequency range from 0.1 to
10 kHz.38

The vibration response of a test item to the acoustic excitation in a reverberation
chamber can be measured by suspending the test item near the middle of the cham-
ber, applying acoustic excitation with the desired level and spectrum, and measuring
the vibration response of the test item at all locations of interest. However, it must
be remembered that the spatial cross-spectrum for the field in a reverberation
chamber may be quite different from that for the sound field in the actual service
environment of the test item. Specifically, as mentioned earlier, the sound field in a
reverberation chamber with a random acoustic source will closely approximate a
diffuse noise field, which has a normalized spatial cross-spectrum between any two
points given by14

γ(ξ,ω) = (29.86)

where k is the wave number of the pressure field defined in Eq. (29.60), and ξ is the
separation distance. It should be noted that this is quite different from the normalized
cross-spectrum for the sound field produced by jet noise or a turbulent boundary
layer, as given by Eqs. (29.59) and (29.64), respectively. Hence, the cross-acceptance
function defined in Eq. (29.66), which couples the sound field to the test item, may be
different. It follows that the vibration response of the test item may be different from
that which occurs in the service environment.

The maximum sound pressure levels achievable in a reverberation chamber are
not as high as those in a progressive wave tube, but reverberant chambers can
accommodate larger structures. Thus, the two environments are usually used for dif-
ferent types of tests.
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CHAPTER 30
THEORY OF 

VIBRATION ISOLATION

Charles E. Crede

Jerome E. Ruzicka

INTRODUCTION

Vibration isolation concerns means to bring about a reduction in a vibratory effect.
A vibration isolator in its most elementary form may be considered as a resilient
member connecting the equipment and foundation. The function of an isolator is to
reduce the magnitude of motion transmitted from a vibrating foundation to the
equipment or to reduce the magnitude of force transmitted from the equipment to
its foundation.

CONCEPT OF VIBRATION ISOLATION

The concept of vibration isolation is illustrated by consideration of the single
degree-of-freedom system illustrated in Fig. 30.1.This system consists of a rigid body
representing an equipment connected to a foundation by an isolator having
resilience and energy-dissipating means; it is unidirectional in that the body is con-
strained to move only in vertical translation.The performance of the isolator may be
evaluated by the following characteristics of the response of the equipment-isolator
system of Fig. 30.1 to steady-state sinusoidal vibration:

Absolute transmissibility. Transmissibility is a measure of the reduction of
transmitted force or motion afforded by an isolator. If the source of vibration is
an oscillating motion of the foundation (motion excitation), transmissibility is the
ratio of the vibration amplitude of the equipment to the vibration amplitude of
the foundation. If the source of vibration is an oscillating force originating within
the equipment (force excitation), transmissibility is the ratio of the force ampli-
tude transmitted to the foundation to the amplitude of the exciting force.
Relative transmissibility. Relative transmissibility is the ratio of the relative
deflection amplitude of the isolator to the displacement amplitude imposed at
the foundation.A vibration isolator effects a reduction in vibration by permitting

30.1
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deflection of the isolator. The relative deflection is a measure of the clearance
required in the isolator. This characteristic is significant only in an isolator used
to reduce the vibration transmitted from a vibrating foundation.
Motion response. Motion response is the ratio of the displacement amplitude of
the equipment to the quotient obtained by dividing the excitation force amplitude
by the static stiffness of the isolator. If the equipment is acted on by an exciting
force, the resultant motion of the equipment determines the space requirements
for the isolator, i.e., the isolator must have a clearance at least as great as the
equipment motion.

FORM OF ISOLATOR

The essential features of an isolator are resilient load-supporting means and energy-
dissipating means. In certain types of isolators, the functions of the load-supporting
means and the energy-dissipating means may be performed by a single element, e.g.,
natural or synthetic rubber. In other types of isolators, the resilient load-carrying
means may lack sufficient energy-dissipating characteristics, e.g., metal springs; then
separate and distinct energy-dissipating means (dampers) are provided. For pur-
poses of analysis, it is assumed that the springs and dampers are separate elements.
In general, the springs are assumed to be linear and massless. The effects of nonlin-
earity and mass of the load-supporting means upon vibration isolation are consid-
ered in later sections of this chapter.

Various types of dampers are shown in combination with ideal springs in the fol-
lowing idealized models of isolators illustrated in Table 30.1. Practical aspects of iso-
lator design are considered in Chap. 32.

Rigidly connected viscous damper. A viscous damper c is connected rigidly
between the equipment and its foundation as shown in Table 30.1A. The damper
has the characteristic property of transmitting a force Fc that is directly propor-
tional to the relative velocity δ̇ across the damper, Fc = cδ̇.This damper sometimes
is referred to as a linear damper.

30.2 CHAPTER THIRTY

FIGURE 30.1 Schematic diagrams of vibration isolation systems: (A) vibration isolation where
motion u is imposed at the foundation and motion x is transmitted to the equipment; (B) vibration
isolation where force F is applied by the equipment and force FT is transmitted to the foundation.

8434_Harris_30_b.qxd  09/20/2001  11:41 AM  Page 30.2



THEORY OF VIBRATION ISOLATION 30.3

TABLE 30.1 Types of Idealized Vibration Isolators
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Rigidly connected Coulomb damper. An isolation system with a rigidly con-
nected Coulomb damper is indicated schematically in Table 30.1B. The force Ff

exerted by the damper on the mass of the system is constant, independent of posi-
tion or velocity, but always in a direction that opposes the relative velocity across
the damper. In a physical sense, Coulomb damping is approximately attainable
from the relative motion of two members arranged to slide one upon the other
with a constant force holding them together.

Elastically connected viscous damper. The elastically connected viscous damper
is shown in Table 30.1C. The viscous damper c is in series with a spring of stiffness
k1; the load-carrying spring k is related to the damper spring k1 by the parameter
N = k1/k. This type of damper system sometimes is referred to as a viscous relax-
ation system.

Elastically connected Coulomb damper. The elastically connected Coulomb
damper is shown in Table 30.1D. The friction element can transmit only that force
which is developed in the damper spring k1. When the damper slips, the friction
force Ff is independent of the velocity across the damper, but always is in a direc-
tion that opposes it.

30.4 CHAPTER THIRTY

TABLE 30.2 Transmissibility and Motion Response for 
Isolation Systems Defined in Table 30.1

Where the equation is shown graphically, the applicable figure is indicated below the equa-
tion. See Table 30.1 for definition of terms.

NOTE 1: These equations apply only when there is relative motion across the damper.
NOTE 2: This equation applies only when excitation is defined in terms of displacement amplitude.
NOTE 3: These curves apply only for optimum damping [see Eq. (30.15)]; curves for other values of

damping are given in Ref. 4.
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INFLUENCE OF DAMPING IN VIBRATION ISOLATION

The nature and degree of vibration isolation afforded by an isolator is influenced
markedly by the characteristics of the damper. This aspect of vibration isolation is
evaluated in this section in terms of the single degree-of-freedom concept; i.e., the
equipment and the foundation are assumed rigid and the isolator is assumed mass-
less. The performance is defined in terms of absolute transmissibility, relative trans-
missibility, and motion response for isolators with each of the four types of dampers
illustrated in Table 30.1. A system with a rigidly connected viscous damper is dis-
cussed in detail in Chap. 2, and important results are reproduced here for com-
pleteness; isolators with other types of dampers are discussed in detail here.

The characteristics of the dampers and the performance of the isolators are
defined in terms of the parameters shown on the schematic diagrams in Table 30.1.
Absolute transmissibility, relative transmissibility, and motion response are defined
analytically in Table 30.2 and graphically in the figures referenced in Table 30.2. For
the rigidly connected viscous and Coulomb-damped isolators, the graphs generally
are explicit and complete. For isolators with elastically connected dampers, typical
results are included and references are given to more complete compilations of
dynamic characteristics.

THEORY OF VIBRATION ISOLATION 30.5

TABLE 30.2 Transmissibility and Motion Response for 
Isolation Systems Defined in Table 30.1 (Continued)

Where the equation is shown graphically, the applicable figure is indicated below the equa-
tion. See Table 30.1 for definition of terms.

NOTE 4: These curves apply only for N = 3.
NOTE 5: This equation applies only when excitation is defined in terms of displacement amplitude; for

excitation defined in terms of force or acceleration, see Eq. (30.18).
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RIGIDLY CONNECTED VISCOUS DAMPER

Absolute and relative transmissibility curves are shown graphically in Figs. 30.2 and
30.3, respectively.* As the damping increases, the transmissibility at resonance
decreases and the absolute transmissibility at the higher values of the forcing fre-
quency ω increases; i.e., reduction of vibration is not as great. For an undamped iso-
lator, the absolute transmissibility at higher values of the forcing frequency varies
inversely as the square of the forcing frequency. When the isolator embodies signifi-
cant viscous damping, the absolute transmissibility curve becomes asymptotic at
high values of forcing frequency to a line whose slope is inversely proportional to
the first power of the forcing frequency.

The maximum value of absolute transmissibility associated with the resonant
condition is a function solely of the damping in the system, taken with reference to
critical damping. For a lightly damped system, i.e., for ζ < 0.1, the maximum absolute
transmissibility [see Eq. (2.41)] of the system is1

30.6 CHAPTER THIRTY

* For linear systems, the absolute transmissibility TA = x0/u0 in the motion-excited system equals FT /F0 in
the force-excited system. The relative transmissibility TR = δ0/u0 applies only to the motion-excited system.

FIGURE 30.2 Absolute transmissibility for the
rigidly connected, viscous-damped isolation sys-
tem shown at A in Table 30.1 as a function of the
frequency ratio ω/ω0 and the fraction of critical
damping ζ. The absolute transmissibility is the
ratio (x0/u0) for foundation motion excitation
(Fig. 30.1A) and the ratio (FT /F0) for equipment
force excitation (Fig. 30.1B).

FIGURE 30.3 Relative transmissibility for the
rigidly connected, viscous-damped isolation sys-
tem shown at A in Table 30.1 as a function of the
frequency ratio ω/ω0 and the fraction of critical
damping ζ.The relative transmissibility describes
the motion between the equipment and the
foundation (i.e., the deflection of the isolator).
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Tmax = (30.1)

where ζ = c/cc is the fraction of critical damping defined in Table 30.1.
The motion response is shown graphically in Fig. 30.4. A high degree of damping

limits the vibration amplitude of the equipment at all frequencies, compared to an
undamped system.The single degree-of-freedom system with viscous damping is dis-
cussed more fully in Chap. 2.

RIGIDLY CONNECTED COULOMB DAMPER

The differential equation of motion for the system with Coulomb damping shown in
Table 30.1B is

mẍ + k(x − u) ± Ff = F0 sin ωt (30.2)

The discontinuity in the damping force that occurs as the sign of the velocity
changes at each half cycle requires a step-by-step solution of Eq. (30.2).2 An
approximate solution based on the equivalence of energy dissipation involves
equating the energy dissipation per cycle for viscous-damped and Coulomb-
damped systems:3

πcωδ0
2 = 4Ff δ0 (30.3)

where the left side refers to the viscous-
damped system and the right side to the
Coulomb-damped system; δ0 is the
amplitude of relative displacement
across the damper. Solving Eq. (30.3)
for c,

ceq = = j � � (30.4)

where ceq is the equivalent viscous damp-
ing coefficient for a Coulomb-damped
system having equivalent energy dissi-
pation. Since δ̇0 = jωδ0 is the relative
velocity, the equivalent linearized dry
friction damping force can be consid-
ered sinusoidal with an amplitude
j(4Ff /π). Since cc = 2k/ω0 [see Eq. (2.12)],

ζeq = = (30.5)

where ζeq may be defined as the equiva-
lent fraction of critical damping. Substi-
tuting δ0 from the relative transmissibility
expression [(b) in Table 30.2] in Eq.
(30.5) and solving for ζeq

2,

2ω0Ff�
πωkδ0

ceq
�
cc

4Ff
�
πδ̇0

4Ff
�
πωδ0

1
�
2ζ
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FIGURE 30.4 Motion response for the
rigidly connected viscous-damped isolation sys-
tem shown at A in Table 30.1 as a function of
the frequency ratio ω/ω0 and the fraction of
critical damping ζ. The curves give the resulting
motion of the equipment x in terms of the exci-
tation force F and the static stiffness of the iso-
lator k.
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ζeq
2 =

� η�
2

�1 − �
2

(30.6)

� − � η�
2

�
where η is the Coulomb damping parameter for displacement excitation defined in
Table 30.1.

The equivalent fraction of critical damping given by Eq. (30.6) is a function of the
displacement amplitude u0 of the excitation since the Coulomb damping parameter
η depends on u0. When the excitation is defined in terms of the acceleration ampli-
tude ü0, the fraction of critical damping must be defined in corresponding terms.
Thus, it is convenient to employ separate analyses for displacement transmissibility
and acceleration transmissibility for an isolator with Coulomb damping.

Displacement Transmissibility. The absolute displacement transmissibility of an
isolation system having a rigidly connected Coulomb damper is obtained by substi-
tuting ζeq from Eq. (30.6) for ζ in the absolute transmissibility expression for viscous
damping, (a) in Table 30.2. The absolute displacement transmissibility is shown
graphically in Fig. 30.5, and the relative displacement transmissibility is shown in Fig.
30.6. The absolute displacement transmissibility has a value of unity when the forc-
ing frequency is low and/or the Coulomb friction force is high. For these conditions,
the friction damper is locked in, i.e., it functions as a rigid connection, and there is no
relative motion across the isolator.The frequency at which the damper breaks loose,

4
�
π

ω4

�
ω0

4

ω2

�
ω0

2

ω2

�
ω0

2

2
�
π
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FIGURE 30.5 Absolute displacement trans-
missibility for the rigidly connected, Coulomb-
damped isolation system shown at B in Table 30.1
as a function of the frequency ratio ω/ω0 and the
displacement Coulomb-damping parameter η.

FIGURE 30.6 Relative displacement transmis-
sibility for the rigidly connected, Coulomb-
damped isolation system shown at B in Table 30.1
as a function of the frequency ratio ω/ω0 and the
displacement Coulomb-damping parameter η.
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THEORY OF VIBRATION ISOLATION 30.9

* This equation is based upon energy considerations and is approximate. Actually, the friction damper
breaks loose when the inertia force of the mass equals the friction force, mu0ω2 = Ff.This gives the exact solu-
tion (ω/ω0)L = �η�. A numerical factor of 4/π relates the Coulomb damping parameters in the exact and
approximate solutions for the system.

i.e., permits relative motion across the isolator, can be obtained from the relative dis-
placement transmissibility expression, (e) in Table 30.2. The relative displacement is
imaginary when ω2/ω0

2 ≤ (4/π)η. Thus, the “break-loose” frequency ratio is*

� �
L

= �	η (30.7)

The displacement transmissibility can become infinite at resonance, even though
the system is damped, if the Coulomb damping force is less than a critical minimum
value. The denominator of the absolute and relative transmissibility expressions
becomes zero for a frequency ratio ω/ω0 of unity. If the break-loose frequency is
lower than the undamped natural frequency, the amplification of vibration becomes
infinite at resonance.This occurs because the energy dissipated by the friction damp-
ing force increases linearly with the displacement amplitude, and the energy intro-
duced into the system by the excitation source also increases linearly with the
displacement amplitude.Thus, the energy dissipated at resonance is either greater or
less than the input energy for all amplitudes of vibration. The minimum dry-friction
force which prevents vibration of infinite magnitude at resonance is

(Ff)min = = 0.79 ku0 (30.8)

where k and u0 are defined in Table 30.1.
As shown in Fig. 30.5, an increase in η decreases the absolute displacement trans-

missibility at resonance and increases the resonance frequency.All curves intersect at
the point (TA)D = 1, ω/ω0 = �2�.With optimum damping force, there is no motion across
the damper for ω/ω0 ≤ �2�; for higher frequencies the displacement transmissibility is
less than unity. The friction force that produces this “resonance-free” condition is

(Ff)op = = 1.57 ku0 (30.9)

For high forcing frequencies, the absolute displacement transmissibility varies
inversely as the square of the forcing frequency, even though the friction damper dis-
sipates energy. For relatively high damping (η > 2), the absolute displacement trans-
missibility, for frequencies greater than the break-loose frequency, is approximately
4ηω0

2/πω2.

Acceleration Transmissibility. The absolute displacement transmissibility (TA)D

shown in Fig. 30.5 is the ratio of response of the isolator to the excitation, where each is
expressed as a displacement amplitude in simple harmonic motion. The damping
parameter η is defined with reference to the displacement amplitude u0 of the excita-
tion. Inasmuch as all motion is simple harmonic, the transmissibility (TA)D also applies
to acceleration transmissibility when the damping parameter is defined properly.When
the excitation is defined in terms of the acceleration amplitude ü0 of the excitation,

ηü0
= (30.10)

Ff ω2

�
kü0

πku0�
2

πku0
�

4

4
�
π

ω
�
ω0
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where ω = forcing frequency, rad/sec
ü0 = acceleration amplitude of excitation, in./sec2

k = isolator stiffness, lb/in.
Ff = Coulomb friction force, lb

For relatively high forcing frequencies, the acceleration transmissibility approaches
a constant value (4/π)ξ, where ξ is the Coulomb damping parameter for acceleration
excitation defined in Table 30.1. The acceleration transmissibility of a rigidly con-
nected Coulomb damper system becomes asymptotic to a constant value because the
Coulomb damper transmits the same friction force regardless of the amplitude of the
vibration.

ELASTICALLY CONNECTED VISCOUS DAMPER

The general characteristics of the elastically connected viscous damper shown at C
in Table 30.1 may best be understood by successively assigning values to the viscous
damper coefficient c while keeping the stiffness ratio N constant. For zero damping,
the mass is supported by the isolator of stiffness k. The transmissibility curve has the
characteristics typical of a transmissibility curve for an undamped system having the
natural frequency

ω0 = �	 (30.11)

When c is infinitely great, the transmissibility curve is that of an undamped system
having the natural frequency

ω∞ = �	 = �N� +� 1� ω0 (30.12)

where k1 = Nk. For intermediate values of damping, the transmissibility falls within the
limits established for zero and infinitely great damping. The value of damping which
produces the minimum transmissibility at resonance is called optimum damping.

All curves approach the transmissibility curve for infinite damping as the forcing
frequency increases.Thus, the absolute transmissibility at high forcing frequencies is
inversely proportional to the square of the forcing frequency. General expressions
for absolute and relative transmissibility are given in Table 30.2.

A comparison of absolute transmissibility curves for the elastically connected
viscous damper and the rigidly connected viscous damper is shown in Fig. 30.7. A
constant viscous damping coefficient of 0.2cc is maintained, while the value of the
stiffness ratio N is varied from zero to infinity.The transmissibilities at resonance are
comparable, even for relatively small values of N, but a substantial gain is achieved
in the isolation characteristics at high forcing frequencies by elastically connecting
the damper.

Transmissibility at Resonance. The maximum transmissibility (at resonance) is
a function of the damping ratio ζ and the stiffness ratio N, as shown in Fig. 30.8. The
maximum transmissibility is nearly independent of N for small values of ζ. However,
for ζ > 0.1, the coefficient N is significant in determining the maximum transmissi-
bility.The lowest value of the maximum absolute transmissibility curves corresponds
to the conditions of optimum damping.

k + k1�
m

k
�
m
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Motion Response. A typical motion
response curve is shown in Fig. 30.9 for
the stiffness ratio N = 3. For small damp-
ing, the response is similar to the
response of an isolation system with
rigidly connected viscous damper. For
intermediate values of damping, the
curves tend to be flat over a wide fre-
quency range before rapidly decreasing
in value at the higher frequencies. For
large damping, the resonance occurs near
the natural frequency of the system with
infinitely great damping. All response
curves approach a high-frequency
asymptote for which the attenuation
varies inversely as the square of the exci-
tation frequency.

Optimum Transmissibility. For a sys-
tem with optimum damping, maximum
transmissibility coincides with the inter-
sections of the transmissibility curves for
zero and infinite damping.The frequency
ratios (ω/ω0)op at which this occurs are
different for absolute and relative trans-
missibility:

Absolute transmissibility:

� �
op

(A)

= �	 (30.13)

Relative transmissibility:

� �
op

(R)

= �	
The optimum transmissibility at resonance, for both absolute and relative motion, is

Top = 1 + (30.14)

The optimum transmissibility as determined from Eq. (30.14) corresponds to the
minimum points of the curves of Fig. 30.8.

The damping which produces the optimum transmissibility is obtained by differ-
entiating the general expressions for transmissibility [(g) and (h) in Table 30.2] with
respect to the frequency ratio, setting the result equal to zero, and combining it with
Eq. (30.13):

Absolute transmissibility:

(ζop)A = �2�(N� +� 2�)� (30.15a)
N

�
4(N + 1)

2
�
N

N + 2
�

2
ω
�
ω0

2(N + 1)
�

N + 2
ω
�
ω0
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FIGURE 30.7 Comparison of absolute trans-
missibility for rigidly and elastically connected,
viscous damped isolation systems shown at A
and C, respectively, in Table 30.1, as a function of
the frequency ratio ω/ω0.The solid curves refer to
the elastically connected damper, and the param-
eter N is the ratio of the damper spring stiffness
to the stiffness of the principal support spring.
The fraction of critical damping ζ = c/cc is 0.2 in
both systems. The transmissibility at high fre-
quencies decreases at a rate of 6 dB per octave
for the rigidly connected damper and 12 dB per
octave for the elastically connected damper.
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Relative transmissibility:

(ζop)R = (30.15b)

Values of optimum damping determined from the first of these relations correspond
to the minimum points of the curves of Fig. 30.8. By substituting the optimum damp-
ing ratios from Eqs. (30.15) into the general expressions for transmissibility given in
Table 30.2, the optimum absolute and relative transmissibility equations are
obtained, as shown graphically by Figs. 30.10 and 30.11, respectively. For low values
of the stiffness ratio N, the transmissibility at resonance is large but excellent isola-
tion is obtained at high frequencies. Conversely, for high values of N, the transmissi-
bility at resonance is lowered, but the isolation efficiency also is decreased.

ELASTICALLY CONNECTED COULOMB DAMPER

Force-deflection curves for the isolators incorporating elastically connected
Coulomb dampers, as shown at D in Table 30.1, are illustrated in Fig. 30.12. Upon
application of the load, the isolator deflects; but since insufficient force has been
developed in the spring k1, the damper does not slide, and the motion of the mass is
opposed by a spring of stiffness (N + 1)k. The load is now increased until a force is
developed in spring k1 which equals the constant friction force Ff; then the damper
begins to slide.When the load is increased further, the damper slides and reduces the
effective spring stiffness to k. If the applied load is reduced after reaching its maxi-

N
��
�2�(N� +� 1�)(�N� +� 2�)�
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FIGURE 30.8 Maximum absolute transmissibility for the elastically connected, vis-
cous-damped isolation system shown at C in Table 30.1 as a function of the fraction of
critical damping ζ and the stiffness of the connecting spring. The parameter N is the ratio
of the damper spring stiffness to the stiffness of the principal support spring.
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mum value, the damper no longer dis-
places because the force developed in
the spring k1 is diminished. Upon com-
pletion of the load cycle, the damper will
have been in motion for part of the cycle
and at rest for the remaining part to form
the hysteresis loops shown in Fig. 30.12.

Because of the complexity of the
applicable equations, the equivalent
energy method is used to obtain the
transmissibility and motion response
functions. Applying frequency, damping,
and transmissibility expressions for the
elastically connected viscous damped
system to the elastically connected
Coulomb-damped system, the transmis-
sibility expressions tabulated in Table
30.2 for the latter are obtained.

If the coefficient of the damping term
in each of the transmissibility expres-
sions vanishes, the transmissibility is
independent of damping. By solving for
the frequency ratio ω/ω0 in the coeffi-
cients that are thus set equal to zero, the
frequency ratios obtained define the fre-
quencies of optimum transmissibility.
These frequency ratios are given by Eqs.
(30.13) for the elastically connected vis-
cous damped system and apply equally
well to the elastically connected
Coulomb damped system because the
method of equivalent viscous damping
is employed in the analysis. Similarly,

Eq. (30.14) applies for optimum transmissibility at resonance.
The general characteristics of the system with an elastically connected Coulomb

damper may be demonstrated by successively assigning values to the damping force
while keeping the stiffness ratio N constant. For zero and infinite damping, the trans-
missibility curves are those for undamped systems and bound all solutions. Every
transmissibility curve for 0 < Ff < ∞ passes through the intersection of the two
bounding transmissibility curves. For low damping (less than optimum), the damper
“breaks loose” at a relatively low frequency, thereby allowing the transmissibility to
increase to a maximum value and then pass through the intersection point of the
bounding transmissibility curves. For optimum damping, the maximum absolute
transmissibility has a value given by Eq. (30.14); it occurs at the frequency ratio
(ω/ω0)op

(A) defined by Eq. (30.13). For high damping, the damper remains “locked-
in” over a wide frequency range because insufficient force is developed in the spring
k1 to induce slip in the damper. For frequencies greater than the break-loose fre-
quency, there is sufficient force in spring k1 to cause relative motion of the damper.
For a further increase in frequency, the damper remains broken loose and the trans-
missibility is limited to a finite value. When there is insufficient force in spring k1 to
maintain motion across the damper, the damper locks-in and the transmissibility is
that of a system with the infinite damping.

THEORY OF VIBRATION ISOLATION 30.13

FIGURE 30.9 Motion response for the elasti-
cally connected, viscous-damped isolation sys-
tem shown at C in Table 30.1 as a function of the
frequency ratio ω/ω0 and the fraction of critical
damping ζ. For this example, the stiffness of the
damper connecting spring is 3 times as great as
the stiffness of the principal support spring 
(N = 3). The curves give the resulting motion of
the equipment in terms of the excitation force F
and the static stiffness of the isolator k.
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FIGURE 30.10 Absolute transmissibility with
optimum damping in elastically connected, vis-
cous-damped isolation system shown at C in
Table 30.1 as a function of the frequency ratio
ω/ω0 and the fraction of critical damping ζ.These
curves apply to elastically connected, viscous-
damped systems having optimum damping for
absolute motion. The transmissibility (TA)op is
(x0/u0)op for the motion-excited system and
(FT /F0)op for the force-excited system.

FIGURE 30.11 Relative transmissibility with
optimum damping in the elastically connected,
viscous-damped isolation system shown at C in
Table 30.1 as a function of the frequency ratio
ω/ω0 and the fraction of critical damping ζ.These
curves apply to elastically connected, viscous-
damped systems having optimum damping for
relative motion. The relative transmissibility
(TR)op is (δ0 /u0)op for the motion-excited system.

FIGURE 30.12 Force-deflection characteristics of the elastically connected,
Coulomb-damped isolation system shown at D in Table 30.1. The force-
deflection diagram for a cyclic deflection of the complete isolator is shown at A
and the corresponding diagram for the assembly of Coulomb damper and spring
k1 = Nk is shown at B.
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The break-loose and lock-in frequencies are determined by requiring the motion
across the Coulomb damper to be zero. Then the break-loose and lock-in frequency
ratios are

� �
L

=�� η�(N + 1)
(30.16)

� η� ± N

where η is the damping parameter defined in Table 30.1 with reference to the dis-
placement amplitude u0. The plus sign corresponds to the break-loose frequency,
while the minus sign corresponds to the lock-in frequency. Damping parameters for
which the denominator of Eq. (30.16) becomes negative correspond to those condi-
tions for which the damper never becomes locked-in again after it has broken loose.
Thus, the damper eventually becomes locked-in only if η > (π/4)N.

Displacement Transmissibility. The absolute displacement transmissibility
curve for the stiffness ratio N = 3 is shown in Fig. 30.13 where (TA)D = x0/u0. A small
decrease in damping force Ff below the optimum value causes a large increase in the
transmitted vibration near resonance. However, a small increase in damping force Ff

above optimum causes only small changes in the maximum transmissibility. Thus, it
is good design practice to have the damping parameter η equal to or greater than the
optimum damping parameter ηop.

The relative transmissibility for N = 3 is shown in Fig. 30.14 where (TR)D = δ0 /u0.
All curves pass through the intersection of the curves for zero and infinite damping.
For optimum damping, the maximum relative transmissibility has a value given by

Eq. (30.14); it occurs at the frequency ratio � �op

(R)
defined by Eq. (30.13).

Acceleration Transmissibility. The acceleration transmissibility can be ob-
tained from the expression for displacement transmissibility by substitution of the
effective displacement damping parameter in the expression for transmissibility of
a system whose excitation is constant acceleration amplitude. If ü0 represents the
acceleration amplitude of the excitation, the corresponding displacement ampli-
tude is u0 = −ü0/ω2. Using the definition of the acceleration Coulomb damping
parameter ξ given in Table 30.1, the equivalent displacement Coulomb damping
parameter is

ηeq = − � �
2

ξ (30.17)

Substituting this relation in the absolute transmissibility expression given at j in
Table 30.2, the following equation is obtained for the acceleration transmissibility:

(TA)A = =�1 + � ξ�
2

� � �� �� � − 2� ��
(30.18)
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Equation (30.18) is valid only for the frequency range in which there is relative
motion across the Coulomb damper. This range is defined by the break-loose and
lock-in frequencies which are obtained by substituting Eq. (30.17) into Eq. (30.16):

� �
L

=�� ξ�(N + 1) ± N

(30.19)
ξ

where Eqs. (30.16) and (30.19) give similar results, damping being defined in terms of
displacement and acceleration excitation, respectively. For frequencies not included in
the range between break-loose and lock-in frequencies, the acceleration transmissibil-
ity is that for an undamped system. Equation (30.18) indicates that infinite accelera-
tion occurs at resonance unless the damper remains locked-in beyond a frequency
ratio of unity.The coefficient of the damping term in Eq. (30.18) is identical to the cor-
responding coefficient in the expression for (TA)D at j in Table 30.2.Thus, the frequency
ratio at the optimum transmissibility is the same as that for displacement excitation.

4
�
π

4
�
πω

�
ω0
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FIGURE 30.13 Absolute displacement trans-
missibility for the elastically connected,
Coulomb-damped isolation system illustrated at
D in Table 30.1, for the damper spring stiffness
defined by N = 3.The curves give the ratio of the
absolute displacement amplitude of the equip-
ment to the displacement amplitude imposed at
the foundation, as a function of the frequency
ratio ω/ω0 and the displacement Coulomb-
damping parameter η.

FIGURE 30.14 Relative displacement trans-
missibility for the elastically connected,
Coulomb-damped isolation system illustrated at
D in Table 30.1, for the damper spring stiffness
defined by N = 3.The curves give the ratio of the
relative displacement amplitude (maximum iso-
lator deflection) to the displacement amplitude
imposed at the foundation, as a function of the
frequency ratio ω/ω0 and the displacement
Coulomb-damping parameter η.

8434_Harris_30_b.qxd  09/20/2001  11:41 AM  Page 30.16



An acceleration transmissibility
curve for N = 3 is shown by Fig. 30.15.
Relative motion at the damper occurs in
a limited frequency range; thus, for rela-
tively high frequencies, the acceleration
transmissibility is similar to that for infi-
nite damping.

Optimum Damping Parameters.
The optimum Coulomb damping param-
eters are obtained by equating the opti-
mum viscous damping ratio given by Eq.
(30.15) to the equivalent viscous damp-
ing ratio for the elastically supported
damper system and replacing the fre-
quency ratio by the frequency ratio given
by Eq. (30.13).The optimum value of the
damping parameter η in Table 30.1 is

ηop = �	 (30.20)

To obtain the optimum value of the
damping parameter ξ in Table 30.1, Eq.
(30.17) is substituted in Eq. (30.20):

ξop = �	 (30.21)

Force Transmissibility. The force transmissibility (TA)F = FT /F0 is identical to
(TA)A given by Eq. (30.18) if ξ = ξF, where ξF is defined as

ξF = (30.22)

Thus, the transmissibility curve shown in Fig. 30.15 also gives the force transmissibil-
ity for N = 3. By substituting Eq. (30.22) into Eq. (30.21), the transmitted force is
optimized when the friction force Ff has the following value:

(Ff)op = �	 (30.23)

To avoid infinite transmitted force at resonance, it is necessary that Ff > (π/4)F0.

Comparison of Rigidly Connected and Elastically Connected Coulomb-
Damped Systems. A principal limitation of the rigidly connected Coulomb-
damped isolator is the nature of the transmissibility at high forcing frequencies.
Because the isolator deflection is small, the force transmitted by the spring is negli-
gible; then the force transmitted by the damper controls the motion experienced by

N + 2
�
N + 1

πF0�
4

Ff
�
F0

N + 2
�
N + 1

π
�
4

N + 1
�
N + 2

π
�
2
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FIGURE 30.15 Acceleration transmissibility
for the elastically connected, Coulomb-damped
isolation system illustrated at D in Table 30.1, for
the damper spring stiffness defined by N = 3.The
curves give the ratio of the acceleration ampli-
tude of the equipment to the acceleration ampli-
tude imposed at the foundation, as a function of
the frequency ratio ω/ω0 and the acceleration
Coulomb-damping parameter ξ.
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the equipment. The acceleration transmissibility approaches the constant value
(4/π)ξ, independent of frequency. The corresponding transmissibility for an isolator
with an elastically connected Coulomb damper is (N + 1)/(ω/ω0)2. Thus, the trans-
missibility varies inversely as the square of the excitation frequency and reaches a
relatively low value at large values of excitation frequency.

MULTIPLE DEGREE-OF-FREEDOM SYSTEMS

The single degree-of-freedom systems discussed previously are adequate for illus-
trating the fundamental principles of vibration isolation but are an oversimplification
insofar as many practical applications are concerned.The condition of unidirectional
motion of an elastically mounted mass is not consistent with the requirements in
many applications. In general, it is necessary to consider freedom of movement in all
directions, as dictated by existing forces and motions and by the elastic constraints.
Thus, in the general isolation problem, the equipment is considered as a rigid body
supported by resilient supporting elements or isolators. This system is arranged so
that the isolators effect the desired reduction in vibration.Various types of symmetry
are encountered, depending upon the equipment and arrangement of isolators.

NATURAL FREQUENCIES—ONE PLANE OF SYMMETRY

A rigid body supported by resilient supports with one vertical plane of symmetry has
three coupled natural modes of vibration and a natural frequency in each of these
modes.A typical system of this type is illustrated in Fig. 30.16; it is assumed to be sym-
metrical with respect to a plane parallel with the plane of the paper and extending

through the center-of-gravity of the sup-
ported body. Motion of the supported
body in horizontal and vertical transla-
tional modes and in the rotational mode,
all in the plane of the paper, are coupled.
The equations of motion of a rigid body
on resilient supports with six degrees-of-
freedom are given by Eq. (3.31). By
introducing certain types of symmetry
and setting the excitation equal to zero, a
cubic equation defining the free vibra-
tion of the system shown in Fig. 30.16 is
derived, as given by Eqs. (3.36). This
equation may be solved graphically for
the natural frequencies of the system by
use of Fig. 3.14.

SYSTEM WITH TWO PLANES 

OF SYMMETRY

A common arrangement of isolators is
illustrated in Fig. 30.17; it consists of an
equipment supported by four isolators
located adjacent to the four lower cor-
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FIGURE 30.16 Schematic diagram of a rigid
equipment supported by an arbitrary arrange-
ment of vibration isolators, symmetrical with
respect to a plane through the center-of-gravity
parallel with the paper.
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ners. It is symmetrical with respect to two coordinate vertical planes through the cen-
ter-of-gravity of the equipment, one of the planes being parallel with the plane of the
paper. Because of this symmetry, vibration in the vertical translational mode is decou-
pled from vibration in the horizontal and rotational modes. The natural frequency in
the vertical translational mode is ωz = �	Σkz/m, where Σkz is the sum of the vertical
stiffnesses of the isolators.

Consider excitation by a periodic
force F = Fx sin ωt applied in the direc-
tion of the X axis at a distance � above
the center-of-gravity and in one of the
planes of symmetry. The differential
equations of motion for the equipment
in the coupled horizontal translational
and rotational modes are obtained by
substituting in Eq. (3.31) the conditions
of symmetry defined by Eqs. (3.33),
(3.34), (3.35), and (3.38). The resulting
equations of motion are

mẍ = −4kxx + 4kxaβ + Fx sin ωt (30.24)

Iyβ̈ = 4kxax − 4kxa2β − 4kyb2β − Fx� sin ωt

Making the common assumption that
transients may be neglected in systems
undergoing forced vibration, the transla-
tional and rotational displacements of
the supported body are assumed to be
harmonic at the excitation frequency.
The differential equations of motion
then are solved simultaneously to give

the following expressions for the displacement amplitudes x0 in horizontal transla-
tion and β0 in rotation:

x0 = � � β0 = � � (30.25)

where A1 = � � (ηaz
2 + ax

2 − η�az) − � �
2

A2 = � �
2

+ (az − �) (30.26)

D = � �
4

− �η + η + �� �
2

+ η� �
2

In the above equations, η = kx/kz is the dimensionless ratio of horizontal stiffness to
vertical stiffness of the isolators, ρy = �Iy�/m� is the radius of gyration of the supported
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FIGURE 30.17 Schematic diagram in elevation
of a rigid equipment supported upon four vibra-
tion isolators.The plane of the paper extends ver-
tically through the center-of-gravity; the system is
symmetrical with respect to this plane and with
respect to a vertical plane through the center-of-
gravity perpendicular to the paper. The moment
of inertia of the equipment with respect to an axis
through the center-of-gravity and normal to the
paper is Iy. Excitation of the system is alterna-
tively a vibratory force Fx sin ωt applied to the
equipment or a vibratory displacement u = u0 sin
ωt of the foundation.
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body about an axis through its center-of-gravity and perpendicular to the paper,
ωz = �	Σkz/m is the undamped natural frequency in vertical translation, ω is the forc-
ing frequency, az is the vertical distance from the effective height of spring (mid-
height if symmetrical top to bottom)* to center-of-gravity of body m, and the other
parameters are as indicated in Fig. 30.17.

Forced vibration of the system shown in Fig. 30.17 also may be excited by peri-
odic motion of the support in the horizontal direction, as defined by u = u0 sin ωt. The
differential equations of motion for the supported body are

mẍ = 4kx(u − x − azβ)

Iyβ̈ = −4azkx(u − x − azβ) − 4kzax
2β

(30.27)

Neglecting transients, the motion of the mounted body in horizontal translation and
in rotation is assumed to be harmonic at the forcing frequency. Equations (30.27)
may be solved simultaneously to obtain the following expressions for the displace-
ment amplitudes x0 in horizontal translation and β0 in rotation:

x0 = β0 = (30.28)

where the parameters B1 and B2 are

B1 = η� − � B2 = � �
2

(30.29)

and D is given by Eq. (30.26).

Natural Frequencies—Two Planes of Symmetry. In forced vibration, the
amplitude becomes a maximum when the forcing frequency is approximately equal
to a natural frequency. In an undamped system, the amplitude becomes infinite at
resonance. Thus, the natural frequency or frequencies of an undamped system may
be determined by writing the expression for the displacement amplitude of the sys-
tem in forced vibration and finding the excitation frequency at which this amplitude
becomes infinite. The denominators of Eqs. (30.25) and (30.28) include the parame-
ter D defined by Eq. (30.26). The natural frequencies of the system in coupled rota-
tional and horizontal translational modes may be determined by equating D to zero
and solving for the forcing frequencies:4

× = �η� �
2

�1 + � + 1 ± ��η	�		�
2	�	1	 +			�	+	 1	�

2	 −	 4	η	�		�
2	

(30.30)

where ωxβ designates a natural frequency in a coupled rotational (β) and horizontal
translational (x) mode, and ωz designates the natural frequency in the decoupled

ρy
�
ax

az
2

�
ρy

2

ρy
�
ax

az
2

�
ρy

2

ρy
�
ax

1
�
�2�

ρy
�
ax

ωxβ
�
ωz

ω
�
ωz

ηaz
�
ρy

ω2

�
ωz

2

ax
2

�
ρy

2

u0B2
�
ρyD

u0B1
�

D

30.20 CHAPTER THIRTY

* The distance az is taken to the mid-height of the spring to include in the equations of motion the moment
applied to the body m by the fixed-end spring. If the spring is hinged to body m, the appropriate value for az

is the distance from the X axis to the hinge axis.
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vertical translational mode. The other parameters are defined in connection with
Eq. (30.26). Two numerically different values of the dimensionless frequency ratio
ωxβ /ωz are obtained from Eq. (30.30), corresponding to the two discrete coupled
modes of vibration. Curves computed from Eq. (30.30) are given in Fig. 30.18.

The ratio of a natural frequency in a
coupled mode to the natural frequency
in the vertical translational mode is a
function of three dimensionless ratios,
two of the ratios relating the radius of
gyration ρy to the dimensions az and ax

while the third is the ratio η of horizontal
to vertical stiffnesses of the isolators. In
applying the curves of Fig. 30.18, the
applicable value of the abscissa ratio is
first determined directly from the con-
stants of the system. Two appropriate
numerical values then are taken from
the ordinate scale, as determined by the
two curves for applicable values of az/ρy;
the ratios of natural frequencies in cou-
pled and vertical translational modes are
determined by dividing these values by
the dimensionless ratio ρy /ax.The natural
frequencies in coupled modes then are
determined by multiplying the resulting
ratios by the natural frequency in the
decoupled vertical translational mode.

The two straight lines in Fig. 30.18 for
az/ρy = 0 represent natural frequencies in
decoupled modes of vibration. When 
az = 0, the elastic supports lie in a plane
passing through the center-of-gravity of
the equipment. The horizontal line at a
value of unity on the ordinate scale rep-
resents the natural frequency in a rota-
tional mode. The inclined straight line
for the value az/ρy = 0 represents the nat-
ural frequency of the system in horizon-
tal translation.

Calculation of the coupled natural
frequencies of a rigid body on resilient

supports from Eq. (30.30) is sufficiently laborious to encourage the use of graphical
means. For general purposes, both coupled natural frequencies can be obtained from
Fig. 30.18. For a given type of isolators, η = kx/kz is a constant and Eq. (30.30) may be
evaluated in a manner that makes it possible to select isolator positions to attain
optimum natural frequencies.5 This is discussed under Space-Plots in Chap. 3. The
convenience of the approach is partially offset by the need for a separate plot for
each value of the stiffness ratio kx/kz. Applicable curves are plotted for several val-
ues of kx/kz in Figs. 3.17 to 3.19.

The preceding analysis of the dynamics of a rigid body on resilient supports
includes the assumption that the principal axes of inertia of the rigid body are,
respectively, parallel with the principal elastic axes of the resilient supports. This
makes it possible to neglect the products of inertia of the rigid body. The coupling

THEORY OF VIBRATION ISOLATION 30.21

FIGURE 30.18 Curves of natural frequencies
ωxβ in coupled modes with reference to the nat-
ural frequency in the decoupled vertical trans-
lational mode ωz, for the system shown
schematically in Fig. 30.17. The isolator stiff-
nesses in the X and Z directions are indicated by
kx and kz, respectively, and the radius of gyration
with respect to the Y axis through the center-of-
gravity is indicated by ρy.
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introduced by the product of inertia is not strong unless the angle between the
above-mentioned inertia and elastic axes is substantial. It is convenient to take the
coordinate axes through the center-of-gravity of the supported body, parallel with
the principal elastic axes of the isolators. If the moments of inertia with respect to
these coordinate axes are used in Eqs. (30.24) to (30.30), the calculated natural fre-
quencies usually are correct within a few percent without including the effect of
product of inertia. When it is desired to calculate the natural frequencies accurately
or when the product of inertia coupling is strong, a calculation procedure is available
that may be used for certain conventional arrangements using four isolators.6

The procedure for determining the natural frequencies in coupled modes sum-
marized by the curves of Fig. 30.18 represents a rigorous analysis where the assumed
symmetry exists. The procedure is somewhat indirect because the dimensionless
ratio ρy /ax appears in both ordinate and abscissa parameters and because it is neces-
sary to determine the radius of gyration of the equipment. The relations may be
approximated in a more readily usable form if (1) the mounted equipment can be
considered a cuboid having uniform mass distribution, (2) the four isolators are
attached precisely at the four lower corners of the cuboid, and (3) the height of the
isolators may be considered negligible. The ratio of the natural frequencies in the
coupled rotational and horizontal translational modes to the natural frequency in
the vertical translational mode then becomes a function of only the dimensions of
the cuboid and the stiffnesses of the isolators in the several coordinate directions.
Making these assumptions and substituting in Eq. (30.30),

30.22 CHAPTER THIRTY

FIGURE 30.19 Curves indicating the natural frequencies ωxβ in cou-
pled rotational and horizontal translational modes with reference to
the natural frequency ωz in the decoupled vertical translational mode,
for the system shown in Fig. 30.17. The ratio of horizontal to vertical
stiffness of the isolators is η, and the height-to-width ratio for the
equipment is λ. These curves are based upon the assumption that the
mass of the equipment is uniformly distributed and that the isolators
are attached precisely at the extreme lower corners thereof.
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= � ± ��			�
2	 −			 (30.31)

where η = kx/kz designates the ratio of horizontal to vertical stiffness of the isola-
tors and λ = 2az/2ax indicates the ratio of height to width of mounted equipment.
This relation is shown graphically in Fig. 30.19. The curves included in this figure
are useful for calculating approximate values of natural frequencies and for indi-
cating trends in natural frequencies resulting from changes in various parameters
as follows:

1. Both of the coupled natural frequencies tend to become a minimum, for any
ratio of height to width of the mounted equipment, when the ratio of horizontal to
vertical stiffness kx/kz of the isolators is low. Conversely, when the ratio of horizon-
tal to vertical stiffness is high, both coupled natural frequencies also tend to be
high. Thus, when the isolators are located underneath the mounted body, a condi-
tion of low natural frequencies is obtained using isolators whose stiffness in a hori-
zontal direction is less than the stiffness in a vertical direction. However, low
horizontal stiffness may be undesirable in applications requiring maximum stabil-
ity. A compromise between natural frequency and stability then may lead to opti-
mum conditions.

2. As the ratio of height to width of the mounted equipment increases, the lower
of the coupled natural frequencies decreases. The trend of the higher of the coupled
natural frequencies depends on the stiffness ratio of the isolators. One of the cou-
pled natural frequencies tends to become very high when the horizontal stiffness of
the isolators is greater than the vertical stiffness and when the height of the mounted
equipment is approximately equal to or greater than the width. When the ratio of
height to width of mounted equipment is greater than 0.5, the spread between the
coupled natural frequencies increases as the ratio kx/kz of horizontal to vertical stiff-
ness of the isolators increases.

Natural Frequency—Uncoupled Rotational Mode. Figure 30.20 is a plan view
of the body shown in elevation in Fig. 30.17. The distances from the isolators to the
principal planes of inertia are designated by ax and ay. The horizontal stiffnesses of
the isolators in the directions of the coordinate axes X and Y are indicated by kx and

ky, respectively. When the excitation is
the applied couple M = M0 sin ωt, the
differential equation of motion is

Izγ̈ = −4γax
2ky − 4γay

2kx + M0 sin ωt

(30.32)

where Iz is the moment of inertia of the
body with respect to the Z axis. Neglect-
ing transient terms, the solution of Eq.
(30.32) gives the displacement ampli-
tude γ0 in rotation:

γ0 = (30.33)
M0

���
4(ax

2ky + ay
2kx) − Izω2

12η
�
λ2 + 1

4ηλ2 + η + 3
��

λ2 + 1
4ηλ2 + η + 3
��
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1

�
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FIGURE 30.20 Plan view of the equipment
shown schematically in Fig. 30.17, indicating the
uncoupled rotational mode specified by the
rotation angle γ.
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where the natural frequency ωγ in rotation about the Z axis is the value of ω that
makes the denominator of Eq. (30.33) equal to zero:

ωγ = 2 �	 (30.34)

VIBRATION ISOLATION IN COUPLED MODES

When the equipment and isolator system has several degrees-of-freedom and the
isolators are located in such a manner that several natural modes of vibration are
coupled, it becomes necessary in evaluating the isolators to consider the contribu-
tion of the several modes in determining the motion transmitted from the support to
the mounted equipment or the force transmitted from the equipment to the founda-
tion. Methods for determining the transmissibility under these conditions are best
illustrated by examples.

For example, consider the system shown schematically in Fig. 30.21 wherein a
machine is supported by relatively long beams which are in turn supported at their
opposite ends by vibration isolators. The isolators are assumed to be undamped,
and the excitation is considered to be a force applied at a distance � = 4 in. above
the center-of-gravity of the machine-and-beam assembly. Alternatively, the force is
(1) Fx = F0 cos ωt, Fz = F0 sin ωt in a plane normal to the Y axis or (2) Fy = F0 cos ωt,
Fz = F0 sin ωt in a plane normal to the X axis. This may represent an unbalanced
weight rotating in a vertical plane. A force transmissibility at each of the four isola-
tors is determined by calculating the deflection of each isolator, multiplying the

ax
2ky + ay

2kx
��

Iz
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FIGURE 30.21 Schematic diagram of an equipment mounted upon relatively long beams
which are in turn attached at their opposite ends to vibration isolators. Excitation for the sys-
tem is alternatively (1) the vibratory force Fx = F0 cos ωt, FZ = F0 sin ωt in the XZ plane or (2)
the vibratory force Fy = F0 cos ωt, FZ = F0 sin ωt in the YZ plane.
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deflection by the appropriate isolator stiffness to obtain transmitted force, and
dividing it by F0 /4.

When the system is viewed in a vertical plane perpendicular to the Y axis, the
transmissibility curves are as illustrated in Fig. 30.22.The solid line defines the trans-
missibility at each of isolators B and C in Fig. 30.21, and the dotted line defines the
transmissibility at each of isolators A and D. Similar transmissibility curves for a
plane perpendicular to the X axis are shown in Fig. 30.23 wherein the solid line indi-
cates the transmissibility at each of isolators C and D, and the dotted line indicates
the transmissibility at each of isolators A and B.

Note the comparison of the transmissibility curves of Figs. 30.22 and 30.23 with
the diagram of the system in Fig. 30.21. Figure 30.23 shows the three resonance con-
ditions which are characteristic of a coupled system of the type illustrated.The trans-
missibility remains equal to or greater than unity for all excitation frequencies lower
than the highest resonance frequency in a coupled mode. At greater excitation fre-
quencies, vibration isolation is attained, as indicated by values of force transmissibil-
ity smaller than unity.

The transmissibility curves in Fig. 30.22 show somewhat similar results. The long
horizontal beams tend to spread the resonance frequencies by a substantial fre-
quency increment and merge the resonance frequency in the vertical translational
mode with the resonance frequency in one of the coupled modes. A low transmissi-
bility is again attained at excitation frequencies greater than the highest resonance
frequency. Note that the transmissibility drops to a value slightly less than unity over
a small frequency interval between the predominant resonance frequencies.This is a
force reduction resulting from the relatively long beams, and it constitutes an
acceptable condition if the magnitude of the excitation force in this direction is rel-
atively small. Thus, the natural frequencies of the isolators could be somewhat
higher with a consequent gain in stability; it is necessary, however, that the excitation
frequency be substantially constant.

THEORY OF VIBRATION ISOLATION 30.25

FIGURE 30.22 Transmissibility curves for the system shown in Fig. 30.21
when the excitation is in a plane perpendicular to the Y axis. The solid line indi-
cates the transmissibility at each of isolators B and C, whereas the dotted line
indicates the transmissibility at each of isolators A and D.
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Consider the equipment illustrated in Fig. 30.24 when the excitation is horizontal
vibration of the support. The effectiveness of the isolators in reducing the excitation
vibration is evaluated by plotting the displacement amplitude of the horizontal
vibration at points A and B with reference to the displacement amplitude of the sup-
port. Transmissibility curves for the system of Fig. 30.24 are shown in Fig. 30.25. The
solid line in Fig. 30.25 refers to point A and the dotted line to point B. Note that
there is no significant reduction of amplitude except when the forcing frequency
exceeds the maximum resonance frequency of the system.

A general rule for the calculation of
necessary isolator characteristics to
achieve the results illustrated in Figs.
30.22, 30.23, and 30.25 is that the forcing
frequency should be not less than 1.5 to 2
times the maximum natural frequency in
any of six natural modes of vibration.
In exceptional cases, such as illustrated in
Fig. 30.22, the forcing frequency may be
interposed between resonance frequen-
cies if the forcing frequency is a constant.

Example 30.1. Consider the ma-
chine illustrated in Fig. 30.21. The force
that is to be isolated is harmonic at the
constant frequency of 8 Hz; it is assumed
to result from the rotation of an unbal-
anced member whose plane of rotation
is alternatively (1) a plane perpendicu-
lar to the Y axis and (2) a plane per-
pendicular to the X axis. The distance
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FIGURE 30.23 Transmissibility curves for the system illustrated in Fig. 30.21
when the excitation is in a plane perpendicular to the X axis.The solid line indi-
cates the transmissibility at each of isolators C and D, whereas the dotted line
indicates the transmissibility at each of isolators A and B.

FIGURE 30.24 Schematic diagram of an
equipment supported by vibration isolators.
Excitation is a vibratory displacement u = u0 sin
ωt of the foundation.
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between isolators is 60 in. in the direction of the X axis and 24 in. in the direction of
the Y axis. The center of coordinates is taken at the center-of-gravity of the sup-
ported body, i.e., at the center-of-gravity of the machine-and-beams assembly. The
total weight of the machine and supporting beam assembly is 100 lb, and its radii of
gyration with respect to the three coordinate axes through the center-of-gravity are
ρx = 9 in., ρz = 8.5 in., and ρy = 6 in. The isolators are of equal stiffnesses in the direc-
tions of the three coordinate axes:

η = = = 1

The following dimensionless ratios are established as the initial step in the solution:

az/ρy = −1.333 az/ρx = −0.889

ax/ρy = ±5.0 ay /ρx = ±1.333

(az/ρy)2 = 1.78 (az/ρx)2 = 0.790

(ax/ρy)2 = 25.0 (ay/ρx)2 = 1.78

η(ρy /ax)2 = 0.04 η(ρx/ay)2 = 0.561

The various natural frequencies are determined in terms of the vertical natural fre-
quency ωz. Referring to Fig. 30.18, the coupled natural frequencies for vibration in a
plane perpendicular to the Y axis are determined as follows:

ky
�
kz

kx
�
kz
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FIGURE 30.25 Displacement transmissibility curves for the system
of Fig. 30.24. Transmissibility between the foundation and point A is
shown by the solid line; transmissibility between the foundation and
point B is shown by the dotted line.
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First calculate the parameter

�	 = 0.2

For az/ρy = −1.333, (ωxβ/ωz)(ρy /ax) = 0.19; 1.03. Note the signs of the dimensionless
ratios az/ρy and ax/ρy. According to Eq. (30.30), the natural frequencies are inde-
pendent of the sign of az/ρy. With regard to the ratio ax/ρy, the sign chosen should be
the same as the sign of the radical on the right side of Eq. (30.30). The frequency
ratio (ωxβ/ωz) then becomes positive. Dividing the above values for (ωxβ/ωz)(ρy /ax) by 
ρy /ax = 0.2, ωxβ /ωz = 0.96; 5.15.

Vibration in a plane perpendicular to the X axis is treated in a similar manner. It
is assumed that exciting forces are not applied concurrently in planes perpendicular
to the X and Y axes; thus, vibration in these two planes is independent. Conse-
quently, the example entails two independent but similar problems and similar equa-
tions apply for a plane perpendicular to the X axis:

�	 = 0.75

For az/ρx = 0.889, (ωyα /ωz)(ρx/ay) = 0.57; 1.29. Dividing by ρx/ay = 0.75, ωyα /ωz = 0.76; 1.72.
The natural frequency in rotation with respect to the Z axis is calculated from Eq.

(30.34) as follows, taking into consideration that there are two pairs of springs and
that kx = ky = kz:

ωγ = �� �� � = 3.8ωz

The six natural frequencies are as follows:

1. Translational along Z axis: ωz

2. Coupled in plane perpendicular to Y axis: 0.96ωz

3. Coupled in plane perpendicular to Y axis: 5.15ωz

4. Coupled in plane perpendicular to X axis: 0.76ωz

5. Coupled in plane perpendicular to X axis: 1.72ωz

6. Rotational with respect to Y axis: 3.8ωz

Considering vibration in a plane perpendicular to the Y axis, the two highest nat-
ural frequencies are the natural frequency ωy in the translational mode along the Z
axis and the natural frequency 5.15ωz in a coupled mode. In a similar manner, the
two highest natural frequencies in a plane perpendicular to the X axis are the natu-
ral frequency ωz in translation along the Z axis and the natural frequency 1.72ωz in a
coupled mode. The natural frequency in rotation about the Z axis is 3.80ωz. The
widest frequency increment which is void of natural frequencies is between 1.72ωz

and 3.80ωz. This increment is used for the forcing frequency which is taken as 2.5ωz.
Inasmuch as the forcing frequency is established at 8 Hz, the vertical natural fre-
quency is 8 divided by 2.5, or 3.2 Hz.The required vertical stiffnesses of the isolators
are calculated from Eq. (30.11) to be 105 lb/in. for the entire machine, or 26.2 lb/in.
for each of the four isolators.

4kzg
�

W
ax

2 + ay
2

�
ρz

2

kz
�
ky

ρx
�
ay

kx
�
kz

ρy
�
ax
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INCLINED ISOLATORS

Advantages in vibration isolation sometimes result from inclining the principal elas-
tic axes of the isolators with respect to the principal inertia axes of the equipment, as
illustrated in Fig. 30.26. The coordinate axes X and Z are, respectively, parallel with
the principal inertia axes of the mounted body, but the center of coordinates is taken

at the elastic axis. The location of the
elastic axis is determined by the elastic
properties of the system. If a force is
applied to the body along a line extend-
ing through the elastic axis, the body is
displaced in translation without rota-
tion; if a couple is applied to the body,
the body is displaced in rotation without
translation.

The principal elastic axes r, p of the
isolators are parallel with the paper and
inclined with respect to the coordinate
axes, as indicated in Fig. 30.26. The stiff-
ness of each isolator in the direction of
the respective principal axis is indicated
by kr, kp. The principal elastic axis of an
isolator is the axis along which a force
must be applied to cause a deflection

colinear with the applied force (see the section Properties of a Biaxial Stiffness 
Isolator).

Assume the excitation for the system shown in Fig. 30.26 to be a couple M0 sin ωt
acting about an axis normal to the paper. The equations of motion for the body in
the horizontal translational and rotational modes may be written by noting that the
displacement of the center-of-gravity in the direction of the X axis is x − �β; thus,
the corresponding acceleration is ẍ − �β̈. A translational displacement x produces
only an external force −kxx, whereas a rotational displacement β produces only an
external couple −kββ. The equations of motion are

m(ẍ − �β̈) = −kxx

mρe
2β̈ − m�ẍ = −kββ + M0 sin ωt

(30.35)

where ρe is the radius of gyration of the mounted body with respect to the elastic
axis. The radius of gyration ρe is related to the radius of gyration ρy with respect to a
line through the center-of-gravity by ρe = �ρ�y

2� +� ��2�, where � is the distance between
the elastic axis and a parallel line passing through the center-of-gravity. In the equa-
tions of motion, kx and kβ represent the translational and rotational stiffness of the
isolators in the x and β coordinate directions, respectively.

By assuming steady-state harmonic motion for the horizontal translation x and
rotation β, the following displacement amplitudes are obtained by solving Eqs.
(30.35):

x0 = −M0�ω2

����
m[ρe

2(ω2 − ωβ
2)(ω2 − ωx

2) − �2ω4]
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FIGURE 30.26 Schematic diagram of an
equipment supported by isolators whose princi-
pal elastic axes are inclined to the principal iner-
tia axes of the equipment.
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β0 = −M0 (30.36)
m�ρe

2(ω2 − ωβ
2) − �

where ωx = �k�x/�m� and ωβ = �k�β/�m�ρ�e
2� are hypothetical natural frequencies defined

for convenience. The natural frequencies ωxβ in the coupled x,β modes are deter-
mined by equating the denominator of Eqs. (30.36) to zero and solving for ω (now
identical to ωxβ):

= � (30.37)

where λ1 is a dimensionless ratio given by

λ1 = (30.38)

The hypothetical natural frequency ωx is

ωx = � �cos2 φ + sin2 φ� (30.39)

The relation given by Eq. (30.37) is shown graphically by Fig. 30.27. The parame-
ters needed to evaluate the natural fre-
quencies by using this graph are
calculated from the physical properties
of the system and the relations of Eqs.
(30.38) and (30.39). In addition, the dis-
tance � between a parallel line passing
through the center-of-gravity and the
elastic axis must be known. The distance
� is determined by effecting a small hori-
zontal displacement of the equipment in
the X direction and equating the result-
ing summation of elastic couples to zero:

� = az − (30.40)

where az is the distance between the par-
allel planes passing through the center-
of-gravity of the body and the mid-height
of the isolators, as shown in Fig. 30.26.

DECOUPLING OF MODES

The natural modes of vibration of a
body supported by isolators may be

ax(1 − kp/kr) cot φ
��
(kp/kr) cot2 φ + 1

kr
�
kp

4kp
�
m

(ax/ρe) �	kr/kp
���
cos2 φ + (kr /kp) sin2 φ

1 + λ1
2 ± �(1� +� λ�1

2�)2� −� 4�λ�1
2�[1� −� (��/�ρ�e)�2]�

�����
2[1 − (�/ρe)2]

ωxβ
�
ωx

�2ω4

�
ω2 − ωx

2
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FIGURE 30.27 Curves indicating the natural
frequencies ωxβ in coupled modes with reference
to the natural frequency in the decoupled (ficti-
tious) horizontal translational mode ωx for the
system shown schematically in Fig. 30.26. The
radius of gyration with respect to the elastic axis
is indicated by ρe, and the distance between the
center-of-gravity and the elastic center is �. The
dimensionless parameter λ1 is defined by Eq.
(30.38) and ωx is defined by Eq. (30.39).
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decoupled one from another by proper orientation of the isolators. Each mode of
vibration then exists independently of the others, and vibration in one mode does
not excite vibration in other modes.The necessary conditions for decoupling may be
stated as follows:The resultant of the forces applied to the mounted body by the iso-
lators when the mounted body is displaced in translation must be a force directed
through the center-of-gravity; or, the resultant of the couples applied to the mounted
body by the isolators when the mounted body is displaced in rotation must be a cou-
ple about an axis through the center-of-gravity.

In general, the natural frequencies of a multiple degree-of-freedom system can
be made equal only by decoupling the natural modes of vibration, i.e., by making 
az = 0 in Fig. 30.17. The natural frequencies in decoupled modes are indicated by the
two straight lines in Fig. 30.18 marked az/ρy = 0. The natural frequencies in transla-
tion along the X axis and in rotation about the Y axis become equal at the intersec-
tion of these lines; i.e., when az/ρy = 0, kx/kz = 1 and ρy /ax = 1.The physical significance
of these mathematical conditions is that the isolators be located in a plane passing
through the center-of-gravity of the equipment, that the distance between isolators
be twice the radius of gyration of the equipment, and that the stiffness of each isola-
tor in the directions of the X and Z axes be equal.

When the isolators cannot be located in a plane which passes through the center-
of-gravity of the equipment, decoupling can be achieved by inclining the isolators, as
illustrated in Fig. 30.26. If the elastic axis of the system is made to pass through the
center-of-gravity, the translational and rotational modes are decoupled because the
inertia force of the mounted body is applied through the elastic center and intro-
duces no tendency for the body to rotate. The requirements for a decoupled system
are established by setting � = 0 in Eq. (30.40) and solving for kr /kp:

= (30.41)

The conditions for decoupling defined by Eq. (30.41) are shown graphically in Figs.
30.28 and 3.23. The decoupled natural frequencies are indicated by the straight lines
�/ρe = 0 in Fig. 30.27.The horizontal line refers to the decoupled natural frequency ωx

in translation in the direction of the X axis, while the inclined line refers to the
decoupled natural frequency ωβ in rotation about the Y axis.

PROPERTIES OF A BIAXIAL STIFFNESS ISOLATOR

A biaxial stiffness isolator is represented as an elastic element having a single plane
of symmetry; all forces act in this plane and the resultant deflections are limited by
symmetry or constraints to this plane.The characteristic elastic properties of the iso-
lator may be defined alternatively by sets of influence coefficients as follows:

1. If the two coordinate axes in the plane of symmetry are selected arbitrarily, three
stiffness parameters are required to define the properties of the isolator. These
are the axial influence coefficients* along the two coordinate axes, and a charac-
teristic coupling influence coefficient* between the coordinate axes.

(ax/az) + cot φ
��
(ax/az) − tan φ

kr
�
kp

THEORY OF VIBRATION ISOLATION 30.31

* The influence coefficient κ is a function only of the isolator properties and not of the constraints
imposed by the system in which the isolator is used. Both positive and negative values of the influence coef-
ficient κ are permissible.
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2. If the two coordinate axes in the plane of symmetry are selected to coincide with
the principal elastic axes of the isolator, two influence coefficients are required to
define the properties of the isolator. These are the principal influence coeffi-
cients. If the isolator is used in a system, a third parameter is required to define
the orientation of the principal axes of the isolator with the coordinate axes of
the system.

PROPERTIES OF ISOLATOR WITH RESPECT 

TO ARBITRARILY SELECTED AXES

A schematic representation of a linear biaxial stiffness element is shown in Fig. 30.29
where the X and Y axes are arbitrarily
chosen to define a plane to which all
forces and motions are restricted. In gen-
eral, the deflection of an isolator result-
ing from an applied load is not in the
same direction as the load, and a coupling
influence coefficient is required to define
the properties of the isolator in addition
to the influence coefficients along the X
and Y axes. The three characteristic stiff-
ness coefficients that uniquely describe
the load-deflection properties of a biaxial
stiffness element are:

1. The influence coefficient of the ele-
ment in the X coordinate direction is
κx. It is the ratio of the component of

30.32 CHAPTER THIRTY

FIGURE 30.28 Ratio of stiffnesses kr/kp along principal elastic axes
required for decoupling the natural modes of vibration of the system illus-
trated in Fig. 30.26.

FIGURE 30.29 Schematic diagram of a linear
biaxial stiffness element.
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the applied force in the X direction to the resulting deflection when the isolator
is constrained to deflect in the X direction.

2. The influence coefficient of the element in the Y coordinate direction is κy. It is
the ratio of the component of the applied force in the Y direction to the resulting
deflection when the isolator is constrained to deflect in the Y direction.

3. The coupling influence coefficient is κxy. It represents the force required in the X
direction to produce a unit displacement in the Y direction when the isolator is
constrained to deflect only in the Y direction. (By Maxwell’s reciprocity princi-
ple, the same force is required in the Y direction to produce a unit displacement
in the X direction; i.e., κxy = κyx.)

Consider the isolator shown in Fig. 30.29 where the applied force F has compo-
nents Fx and Fy; the resulting displacement has components δx and δy. From the
above definitions of influence coefficients, the forces in the X and Y coordinate
directions required to effect a displacement δx are

Fxx = κxδx Fyx = κyxδx (30.42)

The forces required to effect a displacement δy in the Y direction are

Fxy = κxyδy Fyy = κyδy (30.43)

The force components Fx and Fy required to produce the deflection having compo-
nents δx, δy are the sums from Eqs. (30.42) and (30.43):

Fx = κxδx + κxyδy

(30.44)
Fy = κyxδx + κyδy

If the three influence stiffness coefficients κx, κy, and κxy = κyx are known for a given
stiffness element, the load-deflection properties are given by Eq. (30.44).

The deflections of the isolator in response to forces Fx, Fy are determined by solv-
ing Eqs. (30.44) simultaneously:

δx =

δy =

(30.45)

These expressions give the orthogonal components of the displacement δ for any
load having the components Fx and Fy applied to a biaxial stiffness isolator. By sub-
stituting the relations of Eqs. (30.45) into Eq. (30.44), the following alternate forms
of the force-deflection equations are obtained:

Fx = �κx − � δx + Fy

Fy = �κy − � δy + Fx

(30.46)

κxy
�
κx

κxy
2

�
κx

κxy
�
κy

κxy
2

�
κy

Fyκx − Fxκxy
��
κxκy − κxy

2

Fxκy − Fyκxy
��
κxκy − κxy

2
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The specific force-deflection equations for a given situation are obtained from these
general load-deflection expressions by applying the proper constraint conditions.

Unconstrained Motion. The general force-deflection equations can be used to
obtain the effective stiffness coefficients when the forces Fx and Fy shown in Fig.
30.29 are applied independently. The resulting deflection of the isolator is uncon-
strained motion, i.e., the isolator is free to deflect out of the line of force application.
The force divided by that component of deflection along the line of action of the
force is the effective stiffness k. When Fy = 0, the effective stiffness kx resulting from
the applied force Fx is obtained from Eq. (30.46):

kx = = �κx − � (30.47)

When Fx = 0, the effective stiffness ky in response to the applied force Fy is

ky = = �κy − � (30.48)

For unconstrained motion, kx/ky = κx/κy; i.e., the ratio of the effective stiffnesses in
two mutually perpendicular directions is equal to the ratio of the corresponding
influence coefficients for the same directions.

Constrained Motion. When the isolator is constrained either by the symmetry of
a system or by structural constraints to deflect only along the line of the applied
force, the effective stiffness is obtained directly by letting appropriate deflections be
zero in Eq. (30.44):

kx = = κx ky = = κy (30.49)

The force required to maintain constrained motion is found by letting appropriate
deflections be zero in Eqs. (30.46). For example, the force that must be applied in the
X direction to ensure that the isolator deflects in the Y direction in response to a
force Fy is

Fx = Fy (30.50)

INFLUENCE COEFFICIENT TRANSFORMATION

Assume the influence coefficients κx, κy, and κxy are known in the X, Y coordinate
system. It may be convenient to work with isolator influence coefficients in the X′,
Y′ coordinate system as shown in Fig. 30.30.The X′, Y′ coordinate system is obtained
by rotating the coordinate axes counterclockwise through an angle θ from the X, Y
system. The influence coefficients with respect to the X′, Y′ axes are related to the
influence coefficients with respect to the X, Y axes as follows:

κx′ = + cos 2θ + κxy sin 2θ
κx − κy
�

2
κx + κy
�

2

κxy
�
κy

Fy
�
δy

Fx
�
δx

κxy
2

�
κx

Fy
�
δy

κxy
2

�
κy

Fx
�
δx
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κx′y′ = sin 2θ + κxy cos 2θ (30.51)

κy′ = − cos 2θ − κxy sin 2θ

The influence coefficient transformation of a biaxial stiffness isolator from one set of
arbitrarily chosen coordinate axes to another arbitrarily chosen set of coordinate axes
is described by the two-dimensional Mohr circle.7 Since the influence coefficient is a
tensor quantity, the following invariants of the influence coefficient tensor give addi-
tional relations between the influence coefficients in the X,Y and the X′, Y′ set of axes:

κx + κy = κx′ + κy′

κxκy − κxy
2 = κx′κy′ − κx′y′

2
(30.52)

PRINCIPAL INFLUENCE COEFFICIENTS

The set of axes for which there exists no coupling influence coefficient are the prin-
cipal axes of stiffness (principal elastic axes). These axes can be found by requiring
κx′y′ to be zero in Eq. (30.51) and solving for the rotation angle corresponding to this
condition. Letting θ′ represent the angle of rotation for which κx′y′ = 0:

tan 2θ′ = (30.53)

By substituting this value of the angle of rotation into the general influence coeffi-
cient expressions, Eqs. (30.51), the following relation is obtained for the principal
influence coefficients:

κp, κq = ± �� �
2

+ κxy
2 (30.54)

where p and q represent the principal axes of stiffness. The principal influence coef-
ficients are the maximum and minimum influence coefficients that exist for a linear

κx − κy
�

2
κx + κy
�

2

2κxy
�
κx − κy

κx − κy
�

2
κx + κy
�

2

κy − κx
�

2
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FIGURE 30.30 (A) Force and (B) displacement transformation dia-
grams for a linear biaxial stiffness element.
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biaxial stiffness isolator. In Eq. (30.54), the plus sign gives the maximum influence
coefficient whereas the minus sign gives the minimum influence coefficient. Either
κp or κq can be the maximum influence coefficient, depending on the degree of axis
rotation and the relative values of κx, κy, and κxy.

INFLUENCE COEFFICIENT TRANSFORMATION 

FROM THE PRINCIPAL AXES

The influence coefficient transformation from the principal axes p, q is of practical
interest. The influence coefficients in the XY frame of reference are determined
from Eq. (30.51) by setting κx′y′ = κpq = 0, κx′ = κp, κy′ = κq, and θ = θ′. The influence
coefficients in the XY frame-of-reference may be expressed in terms of the principal
influence coefficients as follows:

κx = κp cos2 θ′ + κq sin2 θ′ = + cos 2θ′

κxy = (κp − κq) sin θ′ cos θ′ = sin 2θ′ (30.55)

κy = κp sin2 θ′ + κq cos2 θ′ = − cos 2θ′

The transformation from the principal axes in the form of a two-dimensional Mohr’s
circle is shown by Fig. 30.31. This circle provides quick graphical determination of

κp − κq
�

2
κp + κq
�

2

κp − κq
�

2

κp − κq
�

2
κp + κq
�

2
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FIGURE 30.31 Mohr-circle representation of the stiffness transformation from
the principal axes of stiffness of a biaxial stiffness element. The p, q axes represent
the principal stiffness axes and the X,Y axes are any arbitrary set of axes separated
from the p, q axes by a rotation angle θ′.
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the three influence coefficients κx, κy, and κxy for any angle θ′ between the P and X
axes, where θ′ is positive in the sense shown in the inset to Fig. 30.31.

Example 30.2. Consider the system shown schematically by Fig. 30.26. The
transformation theory for the influence coefficient of a biaxial stiffness element may
be applied to develop the effective stiffness coefficients for this system. The center
of coordinates for the XZ axes is at the elastic center of the system. The principal
elastic axes of the isolators p, r are oriented at an angle φ with the coordinate axes X,
Z, respectively.* The position of the elastic center is determined by effecting a small
horizontal displacement δx of the body, letting δz be zero and equating the summa-
tion of couples resulting from the isolator forces. The forces Fx and Fz are deter-
mined from Eqs. (30.44):

Fx = κxδx = κxδx Fz = κzxδx = κzxδx

Each of the forces Fx acts at a distance −aze from the elastic center; the force Fz at the
right-hand isolator is positive and acts at a distance ax from the elastic center
whereas the force Fz at the left-hand isolator is negative and acts at a distance −ax

from the elastic center. Taking a summation of the moments:

−2azeFx + 2axFz = 0

Substituting the above relations between the forces Fx, Fz and the influence coeffi-
cients κz, κzz into Eqs. (30.55), and noting that θ′ = 90° −φ (compare Figs. 30.30 and
30.26), the following result is obtained in terms of principal stiffnesses:

= = =

Substituting � = az − aze in the preceding equation, the relation for � given by Eq.
(30.40) is obtained.

Since the equations of motion are written in a coordinate system passing through
the elastic center, all displacements in this frame-of-reference are constrained.
Therefore, the effective stiffness coefficients for a single isolator may be obtained
from Eq. (30.55) as follows [see Eq. (30.49)]:

kx = κx = kr sin2 φ + kp cos2 φ

kz = κz = kr cos2 φ + kp sin2 φ

These effective stiffness coefficients define the hypothetical natural frequency ωx

given by Eq. (30.39) as well as the uncoupled vertical natural frequency ωz. Since
four isolators are used in the problem represented by Fig. 30.26, the translational
stiffnesses given by the above expressions for kx and kz must be multiplied by 4 to
obtain the total translational stiffness.

The effective rotational stiffness of a single isolator kβ can be obtained by deter-
mining the sum of the restoring moments for a constrained rotation β. When the
body is rotated through an angle β, the displacements at the right isolator are 
δx = −azeβ and δz = axβ, where aze is a negative distance since it is measured in the neg-
ative Z direction.The sum of the restoring moments is (Fzax − Fxaze), where Fx and Fz

(kr − kp) sin φ cos φ
���
kr sin2 φ + kp cos2 φ

κzx
�
κx

Fz
�
Fx

aze
�
ax
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* The properties of a biaxial stiffness element may be defined with respect to any pair of coordinate axes.
In Fig. 30.26, the principal elastic axis q is parallel with the coordinate axis Y; then the analysis considers the
principal elastic axes p, r which lie in the plane defined by the XZ coordinate axes.
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are the forces acting on the right isolator in Fig. 30.26. The forces Fx and Fz may be
written in terms of the influence coefficients and the displacements δx and δz by use
of Eq. (30.44) to produce the following moment equation:

Mβ = kββ = β[kxaze
2 − 2kxzazeax + kzax

2]

where the effective rotational stiffness kβ of a single isolator is

kβ = kxa2 − 2kxzazeax + kzax
2

The distance aze can be eliminated from the expression for rotational stiffness by sub-
stituting aze = axFz/Fx obtained from the summation of couples about the elastic center:

kβ = ax
2� �

The numerator of this expression can be replaced by krkp [see Eq. (30.52)] where the
r, p axes are the principal elastic axes of the isolator and krp = 0. Also, kx can be
replaced by its equivalent form given by Eq. (30.55). Making these substitutions, the
effective rotational stiffness for one isolator in terms of the principal stiffness coef-
ficients of the isolator becomes

kβ =

Since four isolators are used in the problem represented by Fig. 30.26, the rotational
stiffness given by the above expression for kβ must be multiplied by 4 to obtain the
total rotational stiffness of the system.

NONLINEAR VIBRATION ISOLATORS

In vibration isolation, the vibration amplitudes generally are small and linear vibra-
tion theory usually is applicable with sufficient accuracy.* However, the static effects
of nonlinearity should be considered. Even though a nonlinear isolator may have
approximately constant stiffness for small incremental deflections, the nonlinearity
becomes important when large deflections of the isolator occur due to the effects of
equipment weight and sustained acceleration. A vibration isolator often exhibits a
stiffness that increases with applied force or deflection. Such a nonlinear stiffness is
characteristic, for example, of rubber in compression or a conical spring.

In Eq. (30.11) for natural frequency, the stiffness k for a linear stiffness element is
a constant. However, for a nonlinear isolator, the stiffness k is the slope of the force-
deflection curve and Eq. (30.11) may be written

ωn = 2πfn = �	 (30.56)

where W is the total weight supported by the isolator, g is the acceleration of grav-
ity, and dF/dδ is the slope of the line tangent to the force-deflection curve at the
static equilibrium position.Vibration is considered to be small variations in the posi-

g(dF/dδ)
��

W

ax
2kp

���
sin2 φ + (kp/kr) cos2 φ

kxkz − kxz
2

��
kx
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* If the vibration amplitude is large, nonlinear vibration theory as discussed in Chap. 4 is applicable.
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tion of the supported equipment above
and below the static equilibrium posi-
tion, as indicated in Fig. 30.32. Thus, the
natural frequency is determined solely
by the stiffness characteristics in the
region of the isolator deflection.

NATURAL FREQUENCY

In determining the natural frequency of
a nonlinear isolator, it is important to
note whether or not all the load results
from the dead weight of a massive body.
The force F on the isolator may be
greater than the weight W because of a
belt pull or sustained acceleration of a
missile. Then the load on the isolator is

F = ngW (30.57)

where ng is some multiple of the acceleration of gravity. For example, ng may indi-
cate the absolute value of the sustained acceleration of a missile measured in “num-
ber of g’s.”

Characteristic of Tangent Isolator. It is convenient to define the force-
deflection characteristics of a nonlinear isolator having increasing stiffness (harden-
ing characteristic) by a tangent function:8

F = tan� � (30.58)

where F is the total force applied to the isolator, k0 is the stiffness of the isolator at
zero deflection, δ is the deflection of the isolator, and hc is the characteristic height
of the isolator. The force-deflection characteristic defined by Eq. (30.58) is shown
graphically in Fig. 30.33A. The characteristic height hc represents a height or thick-
ness characteristic of the isolator which may be adjusted empirically to obtain opti-
mum agreement, over the deflection range of interest, between Eq. (30.58) and the
actual force-deflection curve for the isolator.

The stiffness of the tangent isolator is obtained by differentiation of Eq. (30.58)
with respect to δ:

k = = k0 sec2� � = k0�1 + � �
2

� (30.59)

The stiffness-deflection relation defined by Eq. (30.59) is shown graphically in Fig.
30.33B.

Replacing the load F by ngW in Eq. (30.59) and substituting the resulting stiffness
relation into Eq. (30.56):

fn �h�c� = 3.13 �2.46ng
2� � + � � (30.60)

k0hc
�
W

W
�
k0 hc

Fπ
�
2k0 hc

πδ
�
2hc

dF
�
dδ

πδ
�
2hc

2k0hc
�

π
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FIGURE 30.32 Typical force-deflection char-
acteristic of a tangent hardening isolator.
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The relation defined by Eq. (30.60) is shown graphically in Fig. 30.34.The ordinate is
the natural frequency fn (Hz) times the square root of the characteristic height of the
isolator (in.). The theoretical and experimental force-deflection curves for the isola-
tor are matched to establish the numerical value of the characteristic height. For a
given value of the acceleration parameter ng, the natural frequency of the isolation
system is determined by hc and W/k0hc.

The deflection of the isolator under a sustained acceleration loading is obtained
by substituting Eq. (30.57) into the general force-deflection expression, Eq. (30.58),
and solving for the dimensionless ratio δ/hc:

30.40 CHAPTER THIRTY

FIGURE 30.33 Elastic properties of a tangent isolator in terms of its characteristic height hc and
stiffness k0 at zero deflection: (A) dimensionless force-deflection curve; (B) dimensionless stiffness-
deflection curve.

FIGURE 30.34 Natural frequency fn of a tangent isolator system when a portion of
the total load applied to the isolator is nonmassive.The weight carried by the isolator is
W and the sustained acceleration parameter is ng, a multiple of the gravitational accel-
eration. The characteristic height is hc and the stiffness at zero deflection is k0.
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= tan−1� ⋅ � = tan−1�15.37� �� (30.61)

A reference natural frequency fn0
is the natural frequency that occurs when the iso-

lator is not deflected by the dead-weight load; i.e., ng = 0. The nomograph of Fig.
30.35 gives the deflection ratio δ/hc and the frequency ratio fn/fn0

.9 The value of the
parameter 15.37(ng /hc fn0

2) is transferred by a horizontal projection to the coordi-
nate system for the curves.Values for the natural frequency ratio fn/fn0

are read from
the lower abscissa scale and values for the deflection ratio δ/hc are read from the
upper abscissa scale.

Example 30.3. A rubber isolator having a characteristic height hc = 0.5 in.
(determined experimentally for the particular isolator design) has a natural fre-
quency fn = 10 Hz for small deflections and a fraction of critical damping ζ = 0.2.The
equipment supported by the isolator is subjected to a sustained acceleration of 11g.
It is desired to determine the absolute transmissibility of the isolation system when
the forcing frequency is 100 Hz, and to determine the deflection of the isolator under
the sustained acceleration.

Referring to the nomograph of Fig. 30.35, a straight line is drawn from a value of
10 on the fn0

scale to 0.5 on the hc scale. A second straight line is drawn from the
intersection of the first line with the R scale through the value ng = 11. The second
line intersects the left side of the coordinate system and is extended horizontally so
that it intersects the solid and dotted curves.The intersection points indicate that the

ng
�
hc fn0

2

2
�
π

W
�
k0hc

πng
�

2
2
�
π

δ
�
hc
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FIGURE 30.35 Nomograph and curve for determining the natural frequency and deflection of an
isolation system incorporating a tangent isolator when a portion of the total load applied to the iso-
lator is nonmassive.
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natural frequency ratio fn/fn0
= 3.5 and the deflection ratio δ/hc = 0.81. The deflection

of the isolator at equilibrium as a result of the sustained acceleration is 0.81hc = 0.405
in. The undamped natural frequency for the sustained acceleration of 11g is fn = 3.5
× 10 = 35 Hz. The natural frequency also can be obtained from Fig. 30.34 by noting
that W/k0 hc = (g/hc)/(2πfn0

)2 = 0.196 [see Eq. (30.60) when ng = 0].Then for ng = 11, fn

= 24.5/�0�.5� = 35 Hz.
From Fig. 30.2 the transmissibility for ζ = 0.2, f/fn = 100/35 = 2.88 is 0.22. In the

absence of the sustained acceleration, the corresponding transmissibility would be
0.042 as obtained from Fig. 30.2 at f/fn = 100/10 = 10. Thus, the transmissibility at 100
Hz under a sustained acceleration of 11g is 5 times as great as that which would exist
for a dead-weight loading of the isolator.

Minimum Natural Frequency. The weight W0 for which a given tangent isola-
tor has a minimum natural frequency is

W0 = = [ fn = minimum] (30.62)

where the minimum natural frequency ( fn)min is defined by

(fn)min = �	 (30.63)

The minimum natural frequency is shown graphically in Fig. 30.36 as a function of
the characteristic height hc and the sustained acceleration parameter ng. The weight
W0 required to produce the minimum natural frequency ( fn)min is shown graphically
in Fig. 30.37 as a function of the initial stiffness k0 and the minimum natural fre-
quency ( fn)min. When the isolator is loaded to produce the minimum natural fre-
quency, the isolator deflection is one-half the characteristic height (δ = hc/2) and the
stiffness under load is twice the initial stiffness (k = 2k0).

ngg
�
πh

1
�
2

k0g
��
2π2( fn)min

2

2k0hc
�
πng
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FIGURE 30.36 Minimum natural frequency
fn(min) of a tangent isolator system as a function of
(1) the characteristic height hc of the isolator and
(2) the sustained acceleration ng expressed as a
multiple of the gravitational acceleration.

FIGURE 30.37 Weight loading W0 required to
cause a tangent isolator to have a minimum nat-
ural frequency fn(min), as a function of the stiffness
k0 at zero deflection.
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ISOLATION OF RANDOM VIBRATION

In random vibration, all frequencies exist concurrently, and the amplitude and phase
relations are distributed in a random manner. A trace of random vibration is illus-
trated in Fig. 11.1A. The equipment-isolator assembly responds to the random vibra-
tion with the substantially single-frequency pattern shown in Fig. 11.1B. This response
is similar to a sinusoidal motion with a continuously and irregularly varying envelope;
it is described as narrow-band random vibration or a random sine wave.

The characteristics of random vibration are defined by a frequency spectrum of
power spectral density (see Chaps. 11 and 22). This is a generic term used to desig-
nate the mean-square value of some magnitude parameter passed by a filter, divided
by the bandwidth of the filter, and plotted as a spectrum of frequency. The magni-
tude is commonly measured as acceleration in units of g; then the particular expres-
sion to use in place of power spectral density is mean-square acceleration density,
commonly expressed in units of g2/Hz. When the spectrum of mean-square acceler-
ation density is substantially flat in the frequency region extending on either side of
the natural frequency of the isolator, the response of the isolator may be determined
in terms of (1) the mean-square acceleration density of the isolated equipment and
(2) the deflection of the isolator at successive cycles of vibration.

The mean-square acceleration densities of the foundation and the isolated equip-
ment are related by the absolute transmissibility that applies to sinusoidal vibration:

Wr( f ) = We( f )TA
2 (30.64)

where Wr( f ) and We( f ) are the mean-square acceleration densities of the equip-
ment and the foundation, respectively, in units of g 2 /Hz and TA is the absolute trans-
missibility for the vibration-isolation system.
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CHAPTER 31
THEORY OF 

SHOCK ISOLATION

R. E. Newton

INTRODUCTION

This chapter presents an analytical treatment of the isolation of shock. Two classes
of shock are considered: (1) shock characterized by motion of a support or founda-
tion where a shock isolator reduces the severity of the shock experienced by equip-
ment mounted on the support and (2) shock characterized by forces applied to or
originating within a machine where a shock isolator reduces the severity of shock
experienced by the support. In the simplified concept of shock isolation, the equip-
ment and support are considered rigid bodies, and the effectiveness of the isolator is
measured by the forces transmitted through the isolator (resulting in acceleration of
equipment if assumed rigid) and by the deflection of the isolator. Linear isolators,
both damped and undamped, together with isolators having special types of nonlin-
ear elasticity are considered.When the equipment or floor is not rigid, the deflection
of nonrigid members is significant in evaluating the effectiveness of isolators.Analy-
ses of shock isolation are included which consider the response of nonrigid compo-
nents of the equipment and floor.

IDEALIZATION OF THE SYSTEM

In the application of shock isolators to actual equipments, the locations of the isola-
tors are determined largely by practical mechanical considerations. In general, this
results in types of nonsymmetry and coupled modes not well adapted to analysis by
simple means. It is convenient in the design of shock isolators to idealize the system
to a hypothetical one having symmetry and uncoupled modes of motion.

UNCOUPLED MOTIONS

The first step in idealizing the physical system is to separate the various translational
and rotational modes, i.e., to uncouple the system. Consider the system of Fig. 31.1

31.1
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consisting of a homogeneous block attached at the corners, by eight identical springs,
to a movable rigid frame. The block and frame are constrained to move in the plane
of the paper.With the system at rest, the frame is given a sudden vertical translation.
Because of the symmetry of both mass and stiffness relative to a vertical plane per-
pendicular to the paper, the response motion of the block is pure vertical translation.
Similarly, a sudden horizontal translation of the frame excites pure horizontal trans-
lation of the block.A sudden rotation about an axis through the geometric center of
the block produces pure rotation of the block about this axis. This set of response
behaviors is characteristic of an uncoupled system.

If the block of Fig. 31.1 is not homoge-
neous, the mass center (or center-of-
gravity) may be at A or B instead of C.
Consider the response to a sudden verti-
cal translation of the frame if the mass
center is at A. If the response were pure
vertical translation of the block, the
dynamic forces induced in the vertical
springs would have a resultant acting ver-
tically through C. However, the “inertia
force” of the block must act through the
mass center at A. Thus, the response can-
not be pure vertical translation, but must
also include rotation. Then the motions
of vertical translation and rotation are
said to be coupled. A sudden horizontal
translation of the frame would still excite

only a horizontal translation of the block because A is symmetrical with respect to the
horizontal springs; thus this horizontal motion remains uncoupled. If the mass center
were at B, i.e., in neither the vertical nor the horizontal plane of symmetry, then a sud-
den vertical translation of the frame would excite both vertical and horizontal transla-
tions of the block, together with rotation. In this case, all three motions are said to be
coupled.

It is not essential that a system have any kind of geometric symmetry in order
that its motions be uncoupled, but rather that the resultant of the spring forces be
either a force directed through the center-of-gravity of the block or a couple. If the
motions are completely uncoupled, there are three mutually orthogonal directions
such that translational motion of the base in any one of these directions excites only
a translation of the body in the same direction. Similarly there are three orthogonal
axes, concurrent at the mass center, having the property that a pure rotation of the
base about any one of these axes will excite a pure rotation of the body about the
same axis. The idealized systems considered in this chapter are assumed to have
uncoupled rigid body motions.

ANALOGY BETWEEN TRANSLATION AND ROTATION

If the motions in translational and rotational modes are uncoupled, motion in the
rotational mode may be inferred by analogy from motion in the translational mode,
and vice versa. Consider the system of Fig. 31.1. Assume that the mass center is at C
and the forces in the four vertical springs have a negligible horizontal component at
all times. For horizontal motion the differential equation of motion is

31.2 CHAPTER THIRTY-ONE

FIGURE 31.1 Schematic diagram of three
degree-of-freedom mounting.
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mδ̈ + 4kδ = −mü (31.1)

where δ = horizontal displacement of mass center of block relative to center-of-
frame, in.

m = mass of block, lb-sec2/in.
k = spring stiffness for each spring, lb/in.
u = absolute horizontal displacement of center-of-frame, in. In the 

equilibrium position the point C lies at the frame center.

Equation (31.1) may be written

δ̈ + ωn
2δ = −ü (31.2)

where ωn = �4�k�/m�, rad/sec, is the angular natural frequency in horizontal vibration.
For rotation of the block the corresponding equation of motion is

Iγ̈r + 4k(a2 + b2)γr = − IG̈ (31.3)

where I = mass moment of inertia of block about axis through C, perpendicular
to plane of paper, lb-in.-sec2

a, b = distances of spring center lines from mass center (see Fig. 31.1), in.
γr = rotation of block relative to frame in plane of paper, rad
G = absolute rotation of frame in plane of figure, rad

Equation (31.3) may be written

γ̈r + ωn1
2 γr = −G̈ (31.4)

where ωn1 = �4�k�(a�2�+� b�2)�/I� is the angular natural frequency in rotation.
Equations (31.2) and (31.4) are analogous; γr corresponds to δ, G corresponds to

u, and ωn1 corresponds to ωn. Because of this analogy, only the horizontal motion
described by Eq. (31.2) is considered in subsequent sections; corresponding results
for rotational motion may be determined by analogy.

CLASSIFICATION OF SHOCK ISOLATION

PROBLEMS

It is convenient to divide shock isolation problems into two major classifications
according to the physical conditions:

Class I. Mitigation of effects of foundation motion
Class II. Mitigation of effects of force generated by equipment

Isolators in the first class include such items as the draft gear on a railroad car, the
shock strut of an aircraft landing gear, the mounts on airborne electronic equipment,
and the corrugated paper used to package light bulbs. The second class includes the
recoil cylinders on gun mounts and the isolators on drop hammers, looms, and recip-
rocating presses.The objectives in the two classes of problems are allied, but distinct.
In Class I the objective is to limit the shock-induced stresses in critical components
of the protected equipment. In Class II the purpose is to limit the forces transmitted
to the support for the equipment in which the shock originates.

THEORY OF SHOCK ISOLATION 31.3
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IDEALIZED SYSTEMS—CLASS I

The simplest approach to problems of Class I is through a study of single degree-of-
freedom systems (see Chap. 2). Consider the system of Fig. 31.2A. The basic ele-
ments are a mass and a spring-dashpot unit attached to the mass at one end. The
block may be taken to represent the equipment (assumed to be a rigid body), and
the spring-dashpot unit to represent the shock isolator.The displacement of the sup-
port is u. The equation of motion is

mδ̈ + F(δ̇,δ) = −mü (31.5)

where m = mass of block, lb-sec2/in.
δ = deflection of spring (δ = x − u; see Fig. 31.2), in.

F(δ̇,δ) = force exerted on mass by spring-dashpot unit (positive when ten-
sile), lb

u = absolute displacement of left-hand end of spring-dashpot unit, in.

In the typical shock isolation problem, the system of Fig. 31.2A is initially at rest (u̇ =
δ̇ = 0) in an equilibrium position (u = δ = 0). An external shock causes the support to
move.The corresponding movement of the left end of the shock isolator is described
in terms of the support acceleration ü. Then Eq. (31.5) may be solved for the result-
ing extreme values of δ and F(δ̇,δ), and these values may be compared with the per-
missible deflection and force transmission limits of the shock isolator. It also is
necessary to determine whether the internal stresses developed in the equipment
are excessive. If the equipment is sufficiently rigid that all parts have substan-
tially equal accelerations, then the internal stresses are proportional to ẍ where 
−mẍ = F(δ̇,δ).

A critical component of the equipment may be sufficiently flexible to have a sub-
stantially different acceleration than that determined by assuming the equipment
rigid. If the total mass of such components is small in comparison with the equip-
ment mass, the above analysis may be extended to cover this case. Equation (31.5) is
first solved to determine not merely the extreme value of F(δ̇,δ) but its time-history.
Then the acceleration ẍ may be determined from the relation ẍ = −F(δ̇,δ)/m. Now
consider the system shown in Fig. 31.2B having a component of mass mc and stiffness-
damping characteristics Fc(δ̇c,δc). The force Fc(δ̇c,δc) transmitted to the mass mc and
the resulting acceleration ẍc = −Fc(δ̇c,δc)/mc may be found by solving an equation 
that is analogous to Eq. (31.5) where ẍ is substituted for ü, δ̈c for δ̈, and Fc(δ̇c,δc) for
F(δ̇,δ).

31.4 CHAPTER THIRTY-ONE

FIGURE 31.2 Idealized systems showing use of isolator with transmitted force F(δ̇,δ) to protect
equipment of mass m from effects of support motion u. In (A) the equipment is rigid and in (B) there
is a flexible component having stiffness-damping characteristics Fc(δ̇c, δc) and mass mc.
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IDEALIZED SYSTEMS—CLASS II

Consider the system of Fig. 31.3A to represent the equipment (mass m) attached to its
support by the shock isolator (spring-dashpot unit).The left end of the spring-dashpot
unit is fixed to the supporting structure and there is a force F applied externally to the
mass.The force F may be a real external force or it may be an “inertia force” generated
by moving parts of the equipment.The equation of motion may be written as

mδ̈ + F(δ̇,δ) = F (31.6)

where F is the external force applied to the mass in pounds and the relative dis-
placement δ of the ends of the spring-dashpot unit is equal to the absolute displace-
ment x of the mass. Assuming the system to be initially in equilibrium (δ̇ = 0, δ = 0),
Eq. (31.6) is solved for extreme values of δ and F(δ̇,δ) since F is a known function of
time. These are to be compared with the displacement and force limitations of the
shock isolator. Often the supporting structure is sufficiently rigid that the maximum
force in the isolator may be considered as a force applied statically to the support.
Then the foregoing analysis is adequate for determining the stress in the support.

The load on the floor may be treated as dynamic instead of static by a simple
analysis if the displacement and velocity of the support are negligible in comparison
with those of the equipment. Consider the system of Fig. 31.3B where the support-
ing structure is represented as a mass mF and a spring-dashpot unit in place of the
rigid support shown in Fig. 31.3A. The force acting on the supporting structure is a
known function of time F(δ̇,δ) as found from the previous solution of Eq. (31.6).
To find the maximum force within the support structure requires a solution of an
equation analogous to Eq. (31.6) where δ̈F is substituted for δ̈, mF for m, FF(δ̇F,δF) for
F(δ̇,δ), and F(δ̇,δ) for F. For engineering purposes it suffices to find the extreme val-
ues of δF and FF(δ̇F,δF). The first is needed to verify the assumption that support
motion is negligible compared with equipment motion, and can be used to determine
the maximum stress in the support. The second is the maximum force applied by the
support structure to its base.

MATHEMATICAL EQUIVALENCE OF CLASS I 

AND CLASS II PROBLEMS

The similarity of shock isolation principles in Class I and Class II is indicated by the
similar form of Eqs. (31.5) and (31.6). The right-hand side (−mü or F) is given as a
function of time, and the extreme values of δ and F(δ̇,δ) are desired.When the actual

THEORY OF SHOCK ISOLATION 31.5

FIGURE 31.3 Idealized systems showing use of isolator with transmitted force F(δ̇,δ) to reduce
force transmitted to foundation when force F is applied to equipment of mass m. In (A) the founda-
tion is rigid and in (B) it has mass mF and stiffness damping characteristics FF(δ̇F,δF).
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system is represented by two separate single degree-of-freedom systems, as shown in
Figs. 31.2B and 31.3B, the time-history of F(δ̇,δ) is also required. Figure 31.4 may be
considered a generalized form of the applicable system. In Class I, F = 0, F1(δ̇1,δ1)
represents the properties of the isolator, and m2,F2(δ̇2,δ2) represents the component
to be protected. In Class II, u = 0, F2(δ̇2,δ2) represents the properties of the isolator,
and m1,F1(δ̇1,δ1) represents the supporting structure.

The system of Fig. 31.4, with the spring-dashpot units nonlinear, requires the use
of a digital computer to investigate performance characteristics. Analytical methods
are feasible if the system is linearized by assuming that each spring-dashpot unit has
a force characteristic in the form

F(δ̇,δ) = cδ̇ + kδ (31.7)

where c = damping coefficient, lb-sec/in., and k = spring stiffness, lb/in. Even with this
simplification, the number of parameters (m1,c1,k1,m2,c2,k2) is so great that it is nec-
essary to confine the analysis to a particular system. If the damping may be neg-
lected [let c = 0 in Eq. (31.7)], then it is feasible to obtain equations in a form suitable
for routine use. Use of this idealization is described in the section on Response of
Equipment with a Flexible Component.

A different form of idealization is indicated when the “equipment” is flexible;
e.g., a large, relatively flexible aircraft subjected to landing shock. Then it is impor-
tant to represent the aircraft as a system with several degrees-of-freedom. To find
resulting stresses, it is necessary to superimpose the responses in the various modes
of motion that are excited.

RESPONSE OF A RIGID BODY SYSTEM 

TO A VELOCITY STEP

PHYSICAL BASIS FOR VELOCITY STEP

The idealization of a shock motion as a simple change in velocity (velocity step) may
form an adequate basis for designing a shock isolator and for evaluating its effec-
tiveness. Consider the two types of acceleration ü vs. time t curves illustrated in Fig.
31.5A. The solid line represents a rectangular pulse of acceleration and the dashed
line represents a half-sine pulse of acceleration. Each pulse has a duration τ. In Fig.

31.6 CHAPTER THIRTY-ONE

FIGURE 31.4 General two degree-of-freedom system.
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31.5B, the corresponding velocity-time
curves are shown. Each of these curves
is defined completely by specifying the
type of acceleration pulse (rectangular
or half-sine), the duration τ, and the
velocity change u̇m. The curves of Fig.
31.5B are repeated in Fig. 31.5C with the
time scale shrunk to one-tenth. If τ is
sufficiently short, the only significant
remaining characteristic of the velocity
step is the velocity change u̇m. The ideal-
ized velocity step, then, is taken to be a
discontinuous change of u̇ from zero to
u̇m. A shock isolator characteristically
has a low natural frequency (long
period), and this idealization leads to
good results even when the pulse dura-
tion τ is significantly long.

GENERAL FORM OF ISOLATOR

CHARACTERISTICS

The differential equation of motion 
for the undamped, single degree-of-
freedom system shown in Fig. 31.6 is

mδ̈ + Fs(δ) = −mü (31.8)

where m represents the mass of the
equipment considered as a rigid body, u
represents the motion of the support
which characterizes the condition of
shock, and Fs(δ) is the force developed
by the isolator at an extension δ (posi-
tive when tensile). Equation (31.8) dif-
fers from Eq. (31.5) in that Fs(δ), which
does not depend upon δ̇, replaces F(δ̇,δ)
because the isolator is undamped. The
effect of a velocity step of magnitude u̇m

at t = 0 is considered by choosing the ini-
tial conditions: At t = 0, δ = 0 and δ̇ = u̇m.

These conditions correspond to a negative velocity step.This choice is made to avoid
dealing with negative values of δ and δ̇. If Fs(δ) is not an odd function of δ, a positive
velocity step requires a separate analysis.

A first integration of Eq. (31.8) yields

δ̇2 = u̇m
2 − �δ

0
Fs(δ)dδ (31.9)

At the extreme value of isolator deflection, δ = δm and the velocity δ̇ of deflection is
zero. Then from Eq. (31.9),

2
�
m

THEORY OF SHOCK ISOLATION 31.7

FIGURE 31.5 Acceleration-time curves (A)
and velocity-time curves (B) and (C) for rect-
angular acceleration pulse (solid curves) and
half-sine acceleration pulse (dashed curves).

FIGURE 31.6 Idealized system showing use of
undamped isolator to protect equipment from
effects of support motion u.
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�δm

0
Fs(δ)dδ = 1⁄2mu̇m

2 (31.10)

The right side of Eq. (31.10) represents the initial kinetic energy of the equipment
relative to the support, and the integral on the left side represents the work done on
the isolator. The latter quantity is equal to the elastic potential energy stored in the
isolator, since there is no damping.

For the special case of a rigid body mounted on an undamped isolator, Eq. (31.10)
suffices to determine all important results. In particular, the quantities of engineer-
ing significance are:

1. The maximum deflection of the isolator δm

2. The maximum isolator force, Fm = Fs(δm) = mẍm

3. The corresponding velocity change u̇m

The interrelations of these three quanti-
ties are shown graphically in Fig. 31.7.
The curve OAB represents the spring
force Fs(δ) as a function of deflection δ.
If point A corresponds to the extreme
excursion, then its abscissa represents
the maximum deflection δm. The shaded
area OAC is proportional to the poten-
tial energy stored by the isolator;
according to Eq. (31.10), this is equal to
the initial kinetic energy mu̇m

2/2. The
maximum ordinate (at A) represents the
maximum spring force Fm. [It is possible
to have a spring force Fs(δ) which attains
a maximum value at δ = δf < δm. Then 
Fm = Fs(δf).]

The design requirements for the isolator usually include as a specification one or
more of the following quantities:

1. Maximum allowable deflection δa

2. Maximum allowable transmitted force Fa

3. Maximum expected velocity step u̇a

It is important to observe that the limits 1 and 2 establish an upper limit Faδa on the
work done on the mass. It follows that u̇a must satisfy the relation

Faδa ≥ mu̇a
2/2

or the specifications are impossible to meet. The specifications may be expressed
mathematically as follows:

δm ≤ δa Fm ≤ Fa u̇m ≥ u̇a (31.11)

In many instances it is advantageous to eliminate explicit reference to the mass
m. Then the allowable absolute acceleration ẍa of the mass is specified instead of the

31.8 CHAPTER THIRTY-ONE

FIGURE 31.7 Typical force-deflection curve
for undamped isolator.
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allowable force Fa where Fa = mẍa. With this substitution the second of Eqs. (31.11)
is replaced by

ẍm ≤ ẍa (31.12)

The acceleration ẍ is determined as a function of time by using δ̇ from Eq. (31.9) and
finding the time t corresponding to a given value of δ:

t = �δ

0
(31.13)

From Eq. (31.13) and the relation ẍ = Fs(δ)/m, the acceleration time-history is
found.

The integrations required by Eqs. (31.9) and (31.13) sometimes are difficult to
perform, and it is necessary to use numerical methods. Then a difficulty arises with
the integral in Eq. (31.13). As δ approaches the extreme value δm, the velocity δ̇ in
the denominator of the integrand approaches zero.The difficulty is circumvented by
first using Eq. (31.13) to integrate up to some intermediate displacement δb less than
δm; then the alternative form, Eq. (31.14), may be used in the region of δ = δm:

t = tb + � δ̇

δ̇
b

(31.14)

where tb is the time at which δ = δb, as determined from Eq. (31.13).
In the next three sections three different kinds of spring force-deflection charac-

teristics Fs(δ) are considered. Equation (31.10) is applied to find the relation
between u̇m and δm. Curves relating u̇m, δm, and ̈xm in a form useful for design or analy-
sis are presented.

EXAMPLES OF PARTICULAR ISOLATOR CHARACTERISTICS

Linear Spring. The force-deflection characteristic of a linear spring is

Fs(δ) = kδ (31.15)

where k = spring stiffness, lb/in. Using the notation

ωn = �� rad/sec (31.16)

the maximum acceleration is

ẍm = ωn
2δm (31.17)

From Eqs. (31.10) and (31.16), the relation between velocity change u̇m and maxi-
mum deflection δm is

u̇m = ωnδm (31.18)

Combining Eqs. (31.18) and (31.17),

ẍm = ωnu̇m (31.19)

k
�
m

dδ̇
�
δ̈

dδ
�
δ̇
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Hardening Spring (Tangent Elasticity). The isolator spring may be nonlinear
with a “hardening” characteristic; i.e., the slope of the curve representing spring
force vs. deflection increases with increasing deflection. Rubber in compression has
this behavior. A representative curve having this characteristic is defined by

Fs(δ) = tan (31.20)

where the constant k is the initial slope of the curve (lb/in.) and a vertical asymptote
is defined by δ = d (in.). Such a curve is shown graphically in Fig. 31.8. Using the
notation of Eq. (31.16) and the relation mẍm = Fs(δm), Eq. (31.20) gives the following
relation between maximum acceleration and maximum deflection:

= tan (31.21)

Note that ωn, the angular natural fre-
quency for a linear system, has the same
meaning for small amplitude (small δm)
motions of the nonlinear system. For
large amplitudes the natural frequency
depends on δm. Using Eq. (31.16), substi-
tuting for Fs(δ) from Eq. (31.20) in Eq.
(31.10), and performing the indicated
integration, the relation between veloc-
ity change and maximum displacement
is

= loge �sec � (31.22)

A graphical presentation relating the
important variables u̇m, ẍm, and δm is con-

venient for design and analysis. Such data are presented compactly as relations
among the dimensionless parameters δm/d, u̇m/ωnd, and ẍmδm/u̇m

2.The physical signif-
icance of the ratio ẍmδm/u̇m

2 is interpreted by multiplying both numerator and
denominator by m. Then the numerator represents the product of the maximum
spring force Fm(= mẍm) and the maximum spring deflection δm. This product is the
maximum energy that could be stored in the spring. The denominator mu̇m

2 is twice
the energy that is stored in the spring. The minimum possible value of the ratio
ẍmδm/u̇m

2 is 1⁄2. Actual values of the ratio, always greater than 1⁄2, may be considered to
be a measure of the departure from optimum capability.

In Fig. 31.9 the solid curve represents u̇m/ωnd as a function of δm/d and the dashed
curve shows the corresponding result for a linear spring [see Eq. (31.18)]. In Fig.
31.10 the solid curve shows ẍmδm/u̇m

2 vs. δm/d for an isolator with tangent elasticity.
The dashed curve in Fig. 31.10 shows ẍmδm/u̇m

2 for a linear spring [see Eqs. (31.17)
and (31.18)]; the ratio is constant at a value of unity because a linear spring is 50 per-
cent efficient in storage of energy, independent of the deflection.

Softening Spring (Hyperbolic Tangent Elasticity). A nonlinear isolator also
may have a “softening” characteristic; i.e., the slope of the curve representing force

πδm�
2d

8
�
π2

u̇m
2

�
ωn

2d2

πδm�
2d

2
�
π

ẍm�
ωn

2d

πδ
�
2d

2kd
�

π
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FIGURE 31.8 Typical force-deflection curve
for hardening spring (tangent elasticity).
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vs. deflection decreases with increasing deflection. The force-deflection characteris-
tic for a typical “softening” isolator is

Fs(δ) = kd1 tanh (31.23)

where k is the initial slope of the curve. Figure 31.11 shows the form of this curve
where the meaning of d1 is evident from the figure. If Fs(δ) is replaced by mẍm, δ by
δm, and k by mωn

2, Eq. (31.23) becomes

= tanh (31.24)

where δm and ẍm are maximum values of
deflection and acceleration, respec-
tively, and ωn may be interpreted as the
angular natural frequency for small val-
ues of δm. To relate u̇m to δm, substitute
Fs(δ) from Eq. (31.23) in Eq. (31.10), let
ωn

2 = k/m, and integrate:

= loge �cosh2 � (31.25)

A graphical presentation of the rela-
tion between u̇m/ωnd1 and δm/d1 is given

δm�
d1

u̇m
2

�
ωn

2d1
2

δm�
d1

ẍm�
ωn

2d1

δ
�
d1
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FIGURE 31.9 Dimensionless representation
of relation between velocity step u̇m and maxi-
mum isolator deflection δm for undamped iso-
lators.

FIGURE 31.10 Dimensionless representation
of relation among velocity step u̇m, maximum
transmitted acceleration ẍm, and maximum isola-
tor deflection δm for undamped isolators.

FIGURE 31.11 Typical force-deflection curve
for softening spring (hyperbolic tangent elas-
ticity).
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by the solid curve of Fig. 31.12. The dashed curve shows the corresponding relation
for a linear spring. In Fig. 31.13 the solid curve represents ẍmδm/u̇m

2 as a function of
δm/d1. Note that, for large values of δm/d1, the ordinate approaches the minimum
value 1⁄2 attainable with an isolator of optimum energy storage efficiency.The dashed
curve shows the same relation for a linear spring.

Linear Spring and Viscous Damping. The addition of viscous damping can
almost double the energy absorption capability of a linear shock isolator. Consider
the system of Fig. 31.2A, with both spring and dashpot linear as defined by Eq.
(31.7). Substituting F(δ̇,δ) from Eq. (31.7) in Eq. (31.5) gives the equation of motion.
The initial conditions are δ̇ = u̇m, δ = 0, when t = 0; for t > 0, ü = 0. Letting cc = 2mωn

and ζ = c/cc [see Eq. (2.12)], the equation of motion becomes

δ̈ + 2ζωnδ̇ + ωn
2δ = 0 (31.26)

Solutions of Eq. (31.26) for maximum deflection δm and maximum acceleration ẍm as
functions of ζ are shown graphically in Figs. 31.14 and 31.15. In Fig. 31.14, the dimen-
sionless ratio ẍm/u̇mωn is plotted as a function of the fraction of critical damping ζ.
Note that the presence of small damping reduces the maximum acceleration. As ζ is
increased beyond 0.25, the maximum acceleration increases again. For ζ > 0.50, the
maximum acceleration occurs at t = 0 and exceeds that for no damping; it is
accounted for solely by the damping force cδ̇ = cu̇m.

31.12 CHAPTER THIRTY-ONE

FIGURE 31.12 Dimensionless representation
of relation between velocity step u̇m and maxi-
mum isolator deflection δm for undamped iso-
lators.

FIGURE 31.13 Dimensionless representation
of energy-storage capabilities of undamped iso-
lators.
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In Fig. 31.15 the parameter ẍmδm/u̇m
2 is plotted as a function of ζ. (As pointed out

with reference to Fig. 31.10, ẍmδm/u̇m
2 is an inverse measure of shock isolator effective-

ness.) Figure 31.15 shows that the presence of damping improves the energy storage
effectiveness of the isolator even beyond ζ = 0.50. In the neighborhood ζ = 0.40, the
parameter ẍmδm/u̇m

2 attains a minimum value of 0.52—only slightly above the theoret-
ical minimum of 0.50. This parameter has the value 1.00 for an undamped linear sys-
tem, and even higher values for a hardening spring (see Fig. 31.10). On the other hand,
ẍmδm/u̇m

2 may approach 0.50 when a softening spring is used.
True viscous damping of the type considered above is difficult to attain except in

electrical or magnetic form. Fluid dampers which depend upon orifices or other con-
stricted passages to throttle the flow are likely to produce damping forces that vary
more nearly as the square of the velocity. Dry friction tends to provide damping
forces which are virtually independent of velocity. The analysis of response to a
velocity step in the presence of Coulomb friction is similar to that described in the
section entitled General Formulas—No Damping.

Example 31.1. Equipment weighing 40 lb and sufficiently stiff to be considered
rigid is to be protected from a shock consisting of a velocity step u̇a = 70 in./sec. The
maximum allowable acceleration is ẍa = 21g (g is the acceleration of gravity) and
available clearance limits the deflection to δa = 0.70 in. Find isolator characteristics
for: linear spring, hardening spring, softening spring, and linear spring with viscous
damping.

Linear Spring. Taking the maximum velocity u̇m equal to the expected velocity
u̇a and using Eqs. (31.18) and (31.11),

THEORY OF SHOCK ISOLATION 31.13

FIGURE 31.14 Dimensionless representation of maximum trans-
mitted acceleration ẍm for an isolator having a linear spring and vis-
cous damping.
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δm = ≤ δa or ωn ≥ = 100 rad/sec

From Eqs. (31.19) and (31.12), ẍm = ωnu̇m ≤ ẍa. Then

ωn ≤ = = 116 rad/sec

Selecting a value in the middle of the permissible range gives ωn = 108 rad/sec [17.2
Hz]. The corresponding maximum isolator deflection is δm = 0.65 in. and the maxi-
mum acceleration of the equipment is ẍm = 7580 in./sec2 = 19.6g.The isolator stiffness
given by Eq. (31.16) is

k = mωn
2 = × (108 rad/sec)2 = 1210 lb/in.

If, as is usually the case, the isolation is provided by several individual isolators in
parallel, then the above value of k represents the sum of the stiffnesses of the indi-
vidual isolators.

Hardening Spring. The tangent elasticity represented by Eq. (31.20) is
assumed. Since the linear spring meets the specifications with only a small margin of

40 lb
��
386 in./sec2

21 × 386 in./sec2

��
70 in./sec

ẍa�
u̇m

70 in./sec
��

0.70 in.
u̇m�
ωn
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FIGURE 31.15 Dimensionless representation of energy absorption
capability of an isolator having a linear spring and viscous damping.
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safety, it is inferred that the poorer energy storage capacity of the hardening spring
shown by Fig. 31.10 will severely limit the permissible nonlinearity. Using the speci-
fied values as maxima,

= = = 1.16

From Fig. 31.10:

= 0.54; thus d = = 1.30 in.

From Fig. 31.9:

= 0.58; thus ωn = = 93 rad/sec [14.8 Hz]

The initial spring stiffness k from Eq. (31.16) is

k = (93)2 = 896 lb/in.

Because the selected linear spring provides a small margin of safety and the hard-
ening spring provides none, superficial comparison suggests that the former is supe-
rior. Various other considerations, such as compactness and stiffness along other
axes, may offset the apparent advantage of the linear spring. Moreover, a shock
more severe than that specified could cause the linear spring to bottom abruptly and
cause much greater acceleration of the equipment.

Softening Spring. The hyperbolic tangent elasticity represented by Eq. (31.23)
is assumed. The softening spring has high energy-storage capacity as shown by 
Fig. 31.13. By working to sufficiently high values of δm/d1, it is possible to utilize this
storage capacity to afford considerable overload capability. Choose ẍm = 20g and 
δm/d1 = 3. From Fig. 31.13, ẍmδm/u̇m

2 = 0.645 at δm/d1 = 3. Then

δm = 0.645 = 0.41 in. d1 = = 0.137 in.

From Fig. 31.12, u̇m/ωnd1 = 2.15 at δm/d1 = 3. Then

ωn = = 238 rad/sec [37.9 Hz]

The initial spring stiffness k from Eq. (31.16) is

k = (238)2 = 5870 lb/in.

This initial stiffness is much greater than those found for the linear spring and
hardening spring. Accordingly, for small shocks (small u̇m) the isolator with the soft-
ening spring will induce much higher acceleration of the equipment than will those

40
�
386

70
��
2.15 × 0.137

δm�
3

(70)2

�
20 × 386

40
�
386

70
��
1.30 × 0.54

u̇m�
ωnd

0.70
�
0.54

δm�
d

(21 × 386) × 0.70
��

(70)2

ẍaδa�
u̇a

2

ẍmδm�
u̇m

2
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with linear or hardening springs. This poorer performance for small shocks is
unavoidable if the isolator with the softening spring is designed to take advantage of
the large energy-storage capability under extreme shocks.

Linear Spring and Viscous Damping. The introduction of viscous damping in
combination with a linear spring [Eq. (31.7)] affords the possibility of large energy
dissipation capacity without deterioration of performance under small shocks. From
Fig. 31.15, the best performance is obtained at the fraction of critical damping ζ = 0.40
where ẍmδm/u̇m

2 = 0.52. If the maximum isolator deflection is chosen as δm = 0.47 in.
(67 percent of δa), then

ẍm = 0.52 = 5450 in./sec2 = 14.1g

This acceleration is 67 percent of ẍa. From Fig. 31.14:

= 0.86 at ζ = 0.40

Then

ωn = = 90 rad/sec [14.3 Hz]

The spring stiffness k from Eq. (31.16) is

k = (90)2 = 840 lb/in.

The dashpot constant c is

c = 2ζmωn = 2 × 0.40 × × 90 = 7.46 lb-sec/in.

RESPONSE OF RIGID BODY SYSTEM 

TO ACCELERATION PULSE

The response of a spring-mounted rigid body to various acceleration pulses provides
useful information. For example, it establishes limitations upon the use of the veloc-
ity step in place of an acceleration pulse and is significant in determining the
response of an equipment component when the equipment support is subjected to a
velocity step. Additional useful information is afforded by comparing the responses
to acceleration pulses of different shapes.

For positive pulses (ü > 0) having a single maximum value and finite duration,
three basic characteristics of the pulse are of importance: maximum acceleration üm,
duration τ, and velocity change u̇c.A typical pulse is shown in Fig. 31.16.The relation
among acceleration, duration, and velocity change is

u̇c = �τ

0
ü dt (31.27)

40
�
386

40
�
386

5450
��
0.86 × 70

ẍm�
u̇mωn

u̇m
2

�
δm
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where the value of the integral corre-
sponds to the shaded area of the figure.
The equivalent rectangular pulse is charac-
terized by (a) the same maximum acceler-
ation üm and (b) the same velocity change
u̇c. In Fig. 31.16, the horizontal and vertical
dashed lines outline the equivalent rect-
angular pulse corresponding to the
shaded pulse. From condition (b) above
and Eq. (31.27), the effective duration τr of
the equivalent rectangular pulse is

τr = �τ

0
ü dt (31.28)

where τr may be interpreted physically as the average width of the shaded pulse.

RESPONSE TO A RECTANGULAR PULSE

The rectangular pulse shown in Fig. 31.17 has a maximum acceleration üm and dura-
tion τ; the velocity change is u̇c = ümτ. The response of an undamped, linear, single

degree-of-freedom system (see Fig.
31.6) to this pulse is found from the dif-
ferential equation obtained by substitut-
ing in Eq. (31.8) Fs(δ) = kδ from Eq.
(31.15) and ωn

2 = k/m from Eq. (31.16):

δ̈ + ωn
2δ = −üm [0 ≤ t ≤ τ] (31.29)

δ̈ + ωn
2δ = 0 [t > τ] (31.30)

Using the initial conditions δ̇ = 0, δ = 0
when t = 0, the solution of Eq. (31.29) is

δ = (cos ωnt − 1) [0 ≤ t ≤ τ] (31.31)

For the solution of Eq. (31.30), it is necessary to find as initial conditions the values 
of δ̇ and δ given by Eq. (31.31) for t = τ. Using these values the solution of Eq.
(31.30) is

δ = [(cos ωnτ − 1) cos ωn(t − τ) − sin ωnτ sin ωn(t − τ)] [t > τ] (31.32)

The motion defined by Eqs. (31.31) and (31.32) is shown graphically in Fig. 31.18 for
τ = π/2ωn, π/ωn, and 3π/2ωn.

In the isolation of shock, the extreme absolute acceleration ẍm of the mass is
important. Since ẍm = ωn

2δm [Eq. (31.17)], ẍm is found directly from the extreme
value of δ. As indicated by Fig. 31.18, for values of τ greater than π/ωn, the extreme
(absolute) value of δ encountered at t = π/ωn is never exceeded. For values of τ
less than π/ωn, the extreme value occurs after the pulse has ended (t > τ) and is 

üm�
ωn

2

üm�
ωn

2

1
�
üm
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FIGURE 31.16 Typical acceleration pulse with
maximum acceleration üm and duration τ.

FIGURE 31.17 Rectangular acceleration pulse.
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the amplitude of the motion repre-
sented by Eq. (31.32). This amplitude
may be written

δm = 2 sin (31.33)

The extreme absolute values of the
acceleration ẍm are plotted as a function
of τ in Fig. 31.19. Note that the extreme
value of acceleration is twice that of the
acceleration of the rectangular pulse.

HALF-SINE PULSE

Consider the “half-sine” acceleration
pulse (Fig. 31.20A) of amplitude üm and
duration τ:

ü = üm sin [0 ≤ t ≤ τ]

ü = 0 [t > τ]

(31.34)

From Eq. (31.28), the effective duration is

τr = τ (31.35)

The response of a single degree-of-
freedom system to the half-sine pulse 
of acceleration, corresponding to Eqs.
(31.31) and (31.32) for the rectangular
pulse, is defined by Eq. (8.32).

2
�
π

πt
�
τ

ωnτ�
2

üm�
ωn

2
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FIGURE 31.18 Response curves for an
undamped linear system subjected to rect-
angular acceleration pulses of height üm and var-
ious durations τ.

FIGURE 31.19 Maximum acceleration spec-
trum for a linear system of angular natural fre-
quency ωn. Support motion is a rectangular
acceleration pulse of height üm.

FIGURE 31.20 Half-sine acceleration pulse (A) and versed sine acceleration pulse (B).
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VERSED SINE PULSE

The versed sine pulse (Fig. 31.20B) is described by

ü = �1 − cos � = üm sin2 [0 ≤ t ≤ τ]

ü = 0 [t > τ]

(31.36)

The effective duration τr given by Eq. (31.28) is

τr = (1⁄2)τ (31.37)

The response of a single degree-of-freedom system to a versed sine pulse is defined
by Eq. (8.33). The responses to a number of other types of pulse and step excitation
also are defined in Chap. 8.

COMPARISON OF MAXIMUM ACCELERATIONS

Velocity Step Approximation. A comparison of values of ẍm resulting from var-
ious acceleration pulses with that resulting from a velocity step is shown in Fig. 31.21.
The maximum acceleration induced by a velocity step is ωnu̇m [see Eq. (31.19)]. The
abscissa ωnτr is a dimensionless measure of pulse duration. The effect of pulse shape
is imperceptible for values of ωnτr < 0.6. For pulses of duration ωnτr < 1.0, the effect
of pulse shape is small and the maximum possible error resulting from use of the
velocity step approximation is of the order of 5 percent.

πt
�
τ

2πt
�

τ
üm�
2
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FIGURE 31.21 Dimensionless representation of maximum transmitted
acceleration ẍm for the undamped linear system of Fig. 31.6.
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FIGURE 31.22 Shock transmissibility for the undamped linear system of Fig. 31.6 as a function of
angular natural frequency ωn and effective pulse duration τr.

Effects of Pulse Shape. The effects of pulse shape upon the maximum response
acceleration ẍm for values of ωnτr > 1.0 are shown in Fig. 31.22. The ordinate ẍm/üm is
the ratio of maximum acceleration induced in the responding system to maximum
acceleration of the pulse. All three pulses produce the highest value of response
acceleration when ωnτr 	 π. Physically, this corresponds to an effective duration τr of
one-half of the natural period of the spring-mass system. For longer pulse durations
the curves for half-sine and versed sine pulses are similar. For pulse durations
beyond the range of Fig. 31.22 (ωnτr > 16), the half-sine and versed sine curves
approach the limiting ordinate ẍm/üm = 1.This corresponds physically to approximat-
ing a static loading of the spring-mass system. A limiting acceleration ratio ẍm/üm = 2
is encountered for all rectangular pulses of duration greater than the half-period of
the spring-mass system. A more extensive study of responses to a variety of pulse
shapes is included in Chap. 8.

SHOCK RESPONSE SPECTRUM

The abscissa ωnτr in Fig. 31.22 may be treated as a measure of pulse duration (pro-
portional to τr) for a given spring-mass system with ωn fixed. Alternatively, the pulse
duration may be considered fixed; then the curves show the effect of varying the nat-
ural frequency ωn of the spring-mass system. Each of the curves of Fig. 31.22 shows
the maximum acceleration induced by a given acceleration pulse upon spring-mass
systems of various natural frequencies ωn; thus, Fig. 31.22 may be used to determine
the required natural frequency of the isolator if ẍm and üm are known, and the pulse
shape is defined.
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THEORY OF SHOCK ISOLATION 31.21

Each curve shown in Fig. 31.22 may be interpreted as a description of a pulse, in
terms of the response induced in a system subjected to the pulse. The curve of maxi-
mum response as a function of the natural frequency of the responding system is
called a shock response spectrum or response spectrum. This concept is discussed
more fully in Chap. 23.A pulse is a particular form of a shock motion; thus, each shock
motion has a characteristic shock response spectrum. A shock motion has a charac-
teristic effective value of time duration τr which need not be defined specifically;
instead, the spectra are made to apply explicitly to a given shock motion by using the
natural frequency ωn as a dimensional parameter on the abscissa. By taking the isola-
tor-and-equipment assembly to be the responding system, the natural frequency of
the isolator may be chosen to meet any specified maximum acceleration ẍm of the
equipment supported by isolators. Spectra of maximum isolator deflection δm also
may be drawn, and are useful in predicting the maximum isolator deflection when the
natural frequency of the isolator is known.

When damping is added to the isolator, the analysis of the response becomes
much more complex. In general, it is possible to determine the maximum value of
the response acceleration ẍm only by calculating the time-history of response accel-
eration over the entire time interval suspected of including the maximum response.
A digital computer has been used to find shock response spectra for “half-sine”
acceleration pulses with various fractions of critical damping in the responding sys-
tem, as shown in Fig. 31.23. Similar spectra could be obtained to indicate maximum
values of isolator deflection. In selecting a shock isolator for a specified application,
it may be necessary to use both maximum acceleration and maximum deflection
spectra. This is illustrated in the following example.

FIGURE 31.23 Shock transmissibility for the system of Fig. 31.2A with
linear spring and viscous damping.
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Example 31.2. A piece of equipment weighing 230 lb is to be isolated from the
effects of a vertical shock motion defined by the spectra of acceleration and deflec-
tion shown in Fig. 31.24. It is required that the maximum induced acceleration not
exceed 7g (2700 in./sec2). Clearances available limit the isolator deflection to 2.25 in.
The curves in Fig. 31.24A represent maximum response acceleration ẍm as a function
of the angular natural frequency ωn of the equipment supported on the shock isola-
tors. The isolator springs are assumed linear and viscously damped, and separate
curves are shown for values of the damping ratio ζ = 0, 0.1, 0.2, and 0.3.The curves in
Fig. 31.24B represent the maximum isolator deflection δm as a function of ωn for the
same values of ζ.

Consider first the requirement that ẍm < 2700 in./sec2. In Fig. 31.24A, the hori-
zontal dashed line indicates this limiting acceleration. If the damping ratio ζ = 0.3,

then the angular natural frequency ωn

may not exceed 38.5 rad/sec on the crite-
rion of maximum acceleration. The
dashed horizontal line of Fig. 31.24B rep-
resents the deflection limit δm = 2.25 in.
For ζ = 0.3, the minimum natural fre-
quency is 30 rad/sec on the criterion of
deflection. Considering both accelera-
tion and deflection criteria, the angular
natural frequency ωn must lie between 30
rad/sec and 38.5 rad/sec. The spectra
indicate that both criteria may be just
met with ζ = 0.2 if ωn is 35 rad/sec.
Smaller values of damping do not permit
the satisfaction of both requirements.

Conservatively, a suitable choice of
parameters is ζ = 0.3, ωn = 35 rad/sec.
This limits ẍm to 2500 in./sec2 and δm to
2.0 in. The spring stiffness k is

k = ωn
2m = (35)2 × = 730 lb/in.

If the equipment is to be supported by
four like isolators, then the required stiff-
ness of each isolator is k/4 = 182.5 lb/in.

RESPONSE OF EQUIPMENT WITH A FLEXIBLE

COMPONENT

IMPACT WITH REBOUND

Consider the system of Fig. 31.4. The block of mass m1 represents the equipment and
m2 with its associated spring-dashpot unit represents a critical component of the equip-
ment.The left spring-dashpot unit represents the shock isolator. It is assumed here that
m1 >> m2 so that the motion of m1 is not sensibly affected by m2; larger values of m2 are
considered in a later section. Consider the entire system to be moving to the left at uni-
form velocity when the left-hand end of the isolator strikes a fixed support (not

230
�
386

FIGURE 31.24 Shock response spectra: (A)
maximum acceleration and (B) maximum isola-
tor deflection for Example 31.2.
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THEORY OF SHOCK ISOLATION 31.23

shown).The isolator will be compressed until the equipment is brought to rest. Follow-
ing this the compressive force in the isolator will continue to accelerate the equipment
toward the right until the isolator loses contact with the support and the rebound is
complete.This type of shock is called impact with rebound. Practical examples include
the shock experienced by a single railroad car striking a bumper at the end of a siding
and that experienced by packaged equipment, shock-mounted inside a container of
small mass, when the container is dropped upon a hard surface and then rebounds.

The procedure for finding the maximum acceleration ẍ2m of the component,
assuming the component stiffness to be linear and neglecting component damping, is:

1. Using the known striking velocity determine, from velocity step results (Figs.
31.9, 31.10, 31.12 to 31.15), the maximum deflection δ1m of the isolator and the
maximum acceleration ẍ1m of the equipment.

2. From Eq. (31.28), find the effective duration τr for the acceleration time-history
ẍ1(t) of the equipment.

3. From the shock spectra corresponding to the acceleration pulse ẍ1(t), find the
maximum acceleration ẍ2m of the component.

Details of the procedure using the isolators of Example 31.1 are considered in
Example 31.3.

Example 31.3. Let the equipment of Example 31.1 weighing 40 lb have a flexi-
ble component weighing 0.2 lb. By vibration testing, this component is found to have
an angular natural frequency ωn = 260 rad/sec and to possess negligible damping. For
the isolators of Example 31.1, it is desired to determine the maximum acceleration
ẍ2m experienced by the mass m2 of the component if the equipment, traveling at a
velocity of 70 in./sec, is arrested by the free end of the isolator striking a fixed sup-
port. The four cases are considered separately. It is assumed that the component has
a negligible effect on the motion of the equipment because m2 << m1.

Linear Spring. From the results of Example 31.1, it is known that ωn = 108 rad/sec
and that the maximum acceleration of the equipment as found from Eq. (31.19) is

ẍ1m = 7580 in./sec2 = 19.6g

This acceleration occurs at the instant when the isolator deflection has the extreme
value δ1m = 0.65 in. [If the equipment (Fig. 31.4) is moving toward the left when the
isolator contacts the support, the extreme value of δ1m is negative. It suffices to deal
here with absolute values.] Subsequently the isolator spring continues to accelerate
the equipment until the isolator force is zero and the rebound is complete. Since
there is no damping, the rebound velocity equals the striking velocity (with opposite
sign). The velocity change ẋ1c is twice the striking velocity and the effective duration
τr [Eq. (31.28)] is

τr = = = 0.0185 sec

The acceleration time-history of the equipment is a half-sine pulse as represented in
Fig. 31.20 (the ordinate is ẍ1 instead of ü).

Since the equipment is the “support” for the component, the response of the lat-
ter may be found from results developed for the response of a rigid body whose sup-
port experiences a half-sine pulse of acceleration. The half-sine curve of Fig. 31.22
gives the desired information if the following interpretations are made: For ẍm/üm

read ẍ2m/ẍ1m; for ωnτr read ωn2τr. Now ωn2τr = 260 × 0.0185 = 4.80. From Fig. 31.22,
ẍ2m/ ẍ1m = 1.66, and ẍ2m = 1.66 × 7580 = 12,600 in./sec2 = 32.6g.

2 × 70
�
7580

ẋ1c�
ẍ1m
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Hardening Spring. From Example 31.1, the maximum equipment acceleration
is ẍ1m = 21g = 8100 in./sec2. Since the velocity change ẋ1c is twice the striking velocity,
the effective duration τr [Eq. (31.28)] is

τr = = = 0.0173 sec

With a hardening isolator spring, the shape of the acceleration pulse ̈x1(t) experienced
by the equipment varies considerably as the maximum deflection δ1m approaches the
upper limit d. Up to δ1m/d = 0.5, the shape is closely approximated by a half-sine pulse.
For δ1m/d = 0.8, a symmetric triangular pulse is a good approximation. For higher val-
ues of δ1m/d, the pulse is very sharply peaked.The maximum response curve for a half-
sine pulse is given in Fig. 31.22. The corresponding curve for a symmetric triangular
pulse (Fig. 8.18b) is similar to that for the versed sine pulse, though lying generally
below the latter. Inasmuch as the curve for the versed sine pulse is below that for the
half-sine pulse, it is conservative to use the half-sine pulse for all values of δ1m/d.
Accordingly, ωn2τr = 260 × 0.0173 = 4.50. From the half-sine curve of Fig. 31.22,
ẍ2m/ẍ1m = 1.69, and ẍ2m = 1.69 × 8100 = 13,700 in./sec2 = 36.4g.

Softening Spring. From Example 31.1, the maximum equipment acceleration
ẍ1m is

ẍ1m = 20g = 7720 in./sec2

The effective duration τr [Eq. (31.28)] is

τr = = = 0.0181 sec

The shape of the acceleration pulse ẍ1(t) for the equipment varies markedly as the
departure from linearity increases (increasing values of δ1m/d1). The pulse shape is
found by first performing the integration of Eq. (31.9) with Fs(δ) as given by Eq.
(31.23). The result supplies the integrand required for Eq. (31.13). A numerical inte-

gration of the latter equation shows that
the pulse shape undergoes a rapid transi-
tion from the half-sine pulse at very
small values of δ1m/d1 to shapes that are
closely approximated by the trapezoidal
pulse of Fig. 31.25. Note that the pulse of
Fig. 31.25 requires three parameters to
fix it completely: the maximum accelera-
tion ẍ1m; the effective duration τr; and the
ratio τr /τ, where τ is the actual duration
and τr = τ − τ1. From results of the numer-
ical integrations of Eq. (31.13), the curve
of Fig. 31.26 is constructed to show τr /τ as
a function of the deflection ratio δ1m/d1.

To find the maximum acceleration
ẍ2m of the component, the maximum

response curves (shock spectra) of Fig. 31.27 are used. These curves are constructed
for symmetric trapezoidal pulses (Fig. 31.25). The top curve (τr /τ = 1.0) corresponds
to the limiting (rectangular) form. The dashed curve (τr /τ = 0.64) represents
response to a half-sine pulse.

2 × 70
�
7720

ẋ1c�
ẍ1m

2 × 70
�
8100

ẋ1c�
ẍ1m
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FIGURE 31.25 Symmetric trapezoidal accel-
eration pulse.
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The value of δ1m/d1 corresponding to the maximum acceleration ẍ1m of the
equipment is (from Example 31.1) δ1m/d1 = 3. From Fig. 31.26: τr /τ = 0.88. Now 
ωnτr = 260 × 0.0181 = 4.7. Using Fig. 31.27, linear interpolation between the curves for

τr /τ = 0.8 and τr /τ = 0.9 gives ẍ2m/ ẍ1m =
1.98 and ẍ2m = 1.98 × 7720 = 15,300
in./sec2 = 39.6g.

Linear Spring and Viscous Damp-
ing. The presence of damping in the
isolator adds several complications: (1)
the rebound velocity is no longer equal
to the striking velocity; (2) the accelera-
tion pulse of the equipment is not sym-
metrical and returns to zero before the
isolator deformation δ1m returns to zero;
and (3) the pulse shape varies greatly
with damping ratio ζ1. Shock response
spectra for acceleration pulse shapes
corresponding to damping ratios of par-
ticular interest (0.10 < ζ1 < 0.40) are not
available. However, for single accelera-

tion pulses which do not change sign, it is conservative to assume that the maximum
acceleration ẍ2m of the component is twice the maximum acceleration ẍ1m of the
equipment. Using the results of Example 31.1, the maximum acceleration of the
component is ẍ2m = 2ẍ1m = 2 × 5450 = 10,900 in./sec2 = 28.2g.

THEORY OF SHOCK ISOLATION 31.25

FIGURE 31.26 Dimensionless representation
of effective duration τr of acceleration pulse
experienced by equipment during impact with
rebound.

FIGURE 31.27 Shock response spectra for component having undamped linear elasticity with
angular natural frequency ωn2.
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IMPACT WITHOUT REBOUND

When impact of the isolator occurs without rebound, it must be recognized that the
equipment-isolator system continues to oscillate until the initial kinetic energy is
dissipated. Consider the system of Fig. 31.4; it consists of equipment m1, shock iso-
lator (left spring-dashpot unit), and flexible component (subsystem 2). The system
is initially at rest. The left end of the shock isolator is attached to a support (not
shown) which is given a velocity step of magnitude u̇m at t = 0. The subsequent
motion of the support is u = u̇mt. Determine the maximum force F1m transmitted by
the isolator, the maximum isolator deflection δ1m, and the maximum acceleration
ẍ2m of the component.

Solutions are available only for linear systems, i.e., linear springs and viscous
damping. Two such simplified analyses of this problem are included in the following
sections: (1) The influence of damping is considered, but the component mass m2 is
assumed of negligible size relative to m1 and (2) damping is neglected but the effect
of the mass m2 of the component upon the motion of the system is considered.

Component Mass Negligible. Assume that m1 >> m2 so that the motion x1 of the
equipment may be determined by neglecting the effect of the component. Then the
extreme value of the force F1m transmitted by the isolator and the extreme deflection
δ1m of the isolator occur during the first quarter-cycle of the equipment motion; they
may be found from Figs. 31.14 and 31.15 in the section on Response of a Rigid Body
System to a Velocity Step. The subsequent motion of the equipment is an exponentially
decaying sinusoidal oscillation or, if there is no damping in the isolator, a constant-
amplitude oscillation. If the component also is undamped, an analytic determination
of the component response is not difficult.The motion consists of harmonic oscillation
at the frequency ωn1 of the equipment oscillation and a superposed oscillation at the
frequency ωn2 of the component system. Since the oscillations are assumed to persist
indefinitely in the absence of damping, the extreme acceleration of the component is
the sum of the absolute values of the maximum accelerations associated with the oscil-
lations at frequencies ωn1 and ωn2. In the particular case of resonance (ωn1 = ωn2), the
vibration amplitude of the component increases indefinitely with time. Because actual
systems always possess damping (usually a considerable amount in the isolator), solu-
tions of this type tend to be unduly conservative for engineering applications.

The equation of motion for the viscous damped component is a special case of
Eq. (31.5) with F(δ̇,δ) as given by Eq. (31.7). If appropriate subscripts are supplied
and customary substitutions are made, the equation is

δ̈2 + 2ζ2ωn2δ̇2 + ωn2
2δ2 = −ẍ1 (31.38)

Analytic solutions of Eq. (31.38) to find the acceleration ẍ2 = ẍ1 + δ̈2 of the compo-
nent are too laborious to be practical. However, computer-generated results are
shown in Fig. 31.28. The ordinate is the ratio of the maximum acceleration ẍ2m of the
component to the maximum acceleration u̇mωn2 [see Eq. (31.19)] that the component
would experience if the shock isolator were rigid. The abscissa is the ratio of the
undamped natural frequency ωn2 of the component to the undamped natural fre-
quency ωn1 of the equipment on the isolator spring. Curves are given for several dif-
ferent values of the fraction of critical damping ζ1 for the isolator. For all curves the
fraction of critical damping for the component is ζ2 = 0.01. The effect of isolator
damping in reducing the maximum acceleration ẍ1m of the component is great in the
neighborhood of ωn2/ωn1 = 1. Above ωn2/ωn1 = 2, small damping (ζ1 ≤ 0.1) in the isola-
tor has little effect and large damping may significantly increase the maximum accel-
eration of the component.
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The ordinate in Fig. 31.28 represents the ratio of the maximum acceleration of
the component to that which would be experienced with the isolator rigid (absent);
thus, it may properly be called shock transmissibility. If shock transmissibility is less
than unity, the isolator is beneficial (for the component considered). An isolator
must have a natural frequency significantly less than that of the critical component
in order to reduce the transmitted acceleration. If there are several critical compo-
nents having different natural frequencies ωn2, each must be considered separately
and the natural frequency of the isolator must be significantly lower than the lowest
natural frequency of a component.

Two Degrees-of-Freedom—No Damping. This section includes an analysis of
the transient response of the two degree-of-freedom system shown in Fig. 31.4,
neglecting the effects of damping but assuming the equipment mass m1 and the com-
ponent mass m2 to be of the same order of magnitude. The equations of motion are

m1δ̈1 + k1δ1 = k2δ2 − m1ü

m2δ̈2 + k2δ2 = −m2δ̈1 − m2ü

(31.39)

where k1 = stiffness of isolator spring, lb/in., and k2 = stiffness of component, lb/in.The
system is initially in equilibrium; at time t = 0, the left end of the isolator spring is

THEORY OF SHOCK ISOLATION 31.27

FIGURE 31.28 Shock transmissibility for a component of a viscously damped system with linear
elasticity, where the effect of the component on the equipment motion is neglected.
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given a velocity step of magnitude u̇m. Initial conditions are: δ̇1 = u̇m, δ̇2 = 0, δ1 = δ2 = 0.
Equations (31.39) may be solved simultaneously for maximum values of the acceler-
ation ẍ2m of the component and maximum deflection δ1m of the isolator:

ẍ2m =
u̇mωn2


� − 1�
2

+ � �
2

�
1/2

(31.40)

1 + �1 + �
δ1m =


� + 1�
2

+ � �
2

�
1/2

(31.41)

where ẍ2m = maximum absolute acceleration of component mass, in./sec2; δ1m =
maximum deflection of isolator spring, in.; ωn1* = angular natural frequency of iso-
lator (k1/m1)1/2, rad/sec; and ωn2* = angular natural frequency of component
(k2/m2)1/2, rad/sec. (The natural frequencies ωn1 and ωn2 are hypothetical in the sense
that they do not consider the coupling between the subsystems.) Equation (31.40) is
shown graphically in Fig. 31.29. The dimensionless ordinate is the ratio of maxi-
mum acceleration ẍ2m of the component to the maximum acceleration u̇mωn2 which
the component would experience with no isolator present. The abscissa is the ratio
of component natural frequency ωn2 to isolator natural frequency ωn1. Separate
curves are given for mass ratios m2/m1 = 0.01, 0.1, 0.3, and 1.0. Equation (31.41) is
shown graphically in Fig. 31.30. The ordinate is the ratio of the maximum isolator
deflection δ1m to the deflection u̇m(1 + m2/m1)1/2/ωn1 which would occur if compo-
nent stiffness k2 were infinite. The abscissa is the ratio of natural frequencies
ωn2/ωn1, and curves are given for values of m2/m1 = 0.1 and 1.0.

Figure 31.29 shows that the effect of the mass ratio m2/m1 upon the maximum
component acceleration ẍ2m is very great near resonance (ωn2/ωn1 	 1). As ωn2/ωn1

increases above resonance, the effect of finite component mass steadily decreases.
Figure 31.30 shows that except for small values of ωn2/ωn1 the effect of finite compo-
nent mass on the maximum isolator deflection δ1m is slight. As ωn2/ωn1 increases, the
curves for all mass ratios asymptotically approach the ordinate 1.0.

The factor (1 + m2/m1)1/2 in the ordinate parameter of Fig. 31.30 is introduced
because the total equipment mass is m1 + m2. For the limiting case of rigid equipment
(k2 infinite), the natural frequency ωn is given by

ωn
2 = ωn =

Substituting this relation in Eq. (31.18) and solving for δ1m:

δ1m = u̇m(1 + m2 /m1)1/2/ωn1

This is in agreement with the result given by Eq. (31.41) as ωn2/ωn1 approaches infinity.
Example 31.4. Equipment weighing 152 lb has a flexible component weighing

3 lb.The angular natural frequency of the component is ωn2 = 130 rad/sec.The equip-
ment is mounted on a shock isolator with a linear spring k1 = 2400 lb/in. and having
a fraction of critical damping ζ1 = 0.10. Find the maximum isolator deflection δ1m and

ωn1��
(1 + m2 /m1)1/2

k1�
m1 + m2

ωn2�
ωn1

m2�
m1

ωn2�
ωn1

u̇m�
ωn1

m2�
m1

ωn2�
ωn1

ωn2�
ωn1

m2�
m1

ωn2�
ωn1
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the maximum component acceleration ẍ2m which result when the base experiences a
velocity step u̇m = 55 in./sec.

Consider first a solution assuming that m2 has a negligible effect on the equip-
ment motion:

m1 = = 0.393 lb-sec2/in.

ωn1 = �� = �� = 78.1 rad/sec [12.4 Hz]

Figure 31.14 gives ẍ1m/u̇mωn1 = 0.88 and Fig. 31.15 gives ẍ1mδ1m/u̇m
2 = 0.76 for ζ1 = 0.1.

Then

δ1m = × = = 0.61 in.

In finding ẍ2m it is assumed that damping of the component has the typical value 
ζ2 = 0.01. Using ωn1/ωn2 = 130/78.1 = 1.67, Fig. 31.28 gives ̈x2m/u̇mωn2 = 1.15; then ẍ2m = 1.15
× 55 × 130 = 8230 in./sec2 = 21.3g.

0.76 × 55
��
0.88 × 78.1

u̇m�
ωn1

0.76
�
0.88

2400
�
0.393

k1�
m1

152 lb
��
386 in./sec2
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FIGURE 31.29 Shock transmissibility for component of system of Fig. 31.4
under impact at velocity u̇m without rebound, where component and isolator
have undamped linear elasticity.
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FIGURE 31.30 Dimensionless representation of maximum isolator deflection
in system of Fig. 31.4 under impact at velocity u̇m without rebound, where com-
ponent and isolator have undamped linear elasticity.

A second solution, taking into consideration the mass m2 of the component, may
be obtained if the damping is neglected. From Eq. (31.41),

1 + �1 + �
δ1m =


� + 1�
2

+ � �
2

�
1/2

= × = 0.71 in.

From Eq. (31.40):

ẍ2m = u̇mωn2 
� − 1�
2

+ � �
2

�
−1/2

= 55 × 130[(0.67)2 + 3⁄152(1.67)2]−1/2

= 10,070 in./sec2 = 26.1g

ωn2�
ωn1

m2�
m1

ωn2�
ωn1

1 + 1.67(1 + 3⁄152)
���
[(2.67)2+ 3⁄152(1.67)2]1/2
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�
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This example is too complex for a practicable solution when damping and the mass
effects are considered together. However, the two above solutions may be taken
conservatively as limiting conditions; it is unlikely that the actual acceleration and
deflection would exceed the maxima of the limiting conditions.

SUPPORT PROTECTION

This section considers conditions in which the shock originates within the equipment
(e.g., guns and drop hammers).Attention is first given to determining the response of
the support for such equipment in the absence of a shock isolator. The effect of a
shock isolator introduced to protect the support from excessive loads is considered
later.

EQUIPMENT RIGIDLY ATTACHED TO SUPPORT

If the equipment is rigidly attached to the support, the support and equipment may
be idealized as a single degree-of-freedom system for purposes of a simplified analy-
sis. Consider the system of Fig. 31.3B with the spring-dashpot unit 2 assumed to be
rigid.The mass m represents the equipment, and the mass mF represents, with spring
and dashpot assembly (1), the support. The force F, applied externally to the equip-
ment, is taken to be a known function of time. The equation of motion is

(mF + m)δ̈ + F(δ̇,δ) = F

Considering only force-time relations F(t) in the form of a single pulse, the analo-
gous mathematical relations of Eqs. (31.5) and (31.6) are used by defining the
impulse J applied by the force F as

J = �τ

0
F dt (31.42)

where τ is the duration of the pulse.

Short-Duration Impulses. If τ is short compared with the half-period of free
oscillation of the system, then the results derived in the section on Response of a
Rigid Body System to a Velocity Step may be applied directly. An impulse J of negli-
gible duration acting on the mass m produces a velocity change u̇m given by

u̇m = (31.43)

The subsequent relative motion of the system is identical with that resulting from a
velocity step of magnitude u̇m.

If the damping capacity of the support is small, then velocity step results derived
for linear springs, hardening springs, and softening springs are applicable. If the
damping of the support may be represented as viscous and the stiffness as linear,
then the linear-spring viscous damping results apply. In most installations it is suffi-
ciently accurate to consider the support an undamped linear system.

A structure used to support an equipment generally has distributed mass and
elasticity; thus the application of an impulse tends to excite the structure to vibrate

J
�
m
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not only in its fundamental mode but also in higher modes of vibration. The mass-
spring-dashpot system shown in Fig. 31.3B to represent the structure would have
equivalent mass and stiffness suitable to simulate only the fundamental mode of
vibration. In many applications, such simulation is adequate because the displace-
ments and strains are greater in the fundamental mode than in higher modes. The
vibration of members having distributed mass is discussed in Chap. 7, and the for-
mulation of models suitable for use in the analysis of systems subjected to shock is
discussed in Chap. 28, Part II.

Long-Duration Impulses. If the duration τ of the applied impulse exceeds about
one-third of the natural period of the equipment-support system, application of
velocity step results may be unduly conservative. Then the results developed in the
section on Response of Rigid Body System to Acceleration Pulse are applicable. The
mathematical equivalence of Eqs. (31.5) and (31.6) is based on identifying −mü in
the former with F in the latter. Accordingly, if the shape of the force F vs. time curve
is similar to the shape of the curve of acceleration ü vs. time, then the response of a
system to an acceleration pulse may be used by analogy to find the response to a
force pulse by making the following substitutions:

üm = τr =

where Fm is the maximum value of F, üm is the maximum value of ü, and τr is the
effective duration. If the mathematical equivalence is literally applied, Fm /m is anal-
ogous to −üm, not üm. Since acceleration pulse results are given in terms of extreme
absolute values, the sign is not important.

EQUIPMENT SHOCK ISOLATED

Idealized System. When a shock isolator is used to reduce the magnitude of the
force transmitted to the support, the idealized system is as shown in Fig. 31.4. Sub-
system 2 represents the equipment (mass m2) mounted on the shock isolator (right-
hand spring-dashpot unit). Subsystem 1 is an idealized representation of the support
with effective mass m1 and with stiffness and damping capacity represented by the
left spring-dashpot unit. The free end of the latter unit is taken to be fixed (u = 0).

It is assumed that the system is initially in equilibrium (δ̇1 = δ̇2 = 0; δ1 = δ2 = 0) and
that force F (positive in the +X direction) applies an impulse J to m2.Analysis is sim-
plified by treating the duration τ of impulse J as negligible. This assumption, always
conservative, usually is warranted if the natural frequency of the shock isolator is
small relative to the natural frequency of the support.

System Separable. In many applications the support motion x1(= δ1) is suffi-
ciently small compared with the equipment motion x2 that the equipment accelera-
tion ẍ2 is closely approximated by δ̈2 where ẍ2 = δ̈2 + ẍ1. Using this approximation, the
analysis is resolved into two separate parts, each dealing with a single degree-of-
freedom system.

If the system consists only of linear elements as defined by Eq. (31.7), the equa-
tion of motion of the equipment mounted on the shock isolator (subsystem 2 of Fig.
31.4) is

J
�
Fm

Fm�
m
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δ̈2 + 2ζ2ωn2δ̇2 + ωn2
2δ2 = 0 (31.44)

where ωn2
2 = k2/m2 and ζ2 = c2/2m2ωn2. The initial conditions are: δ2 = 0, δ̇2 = u̇m = J/m2

when t = 0. Because of the similarity of Eqs. (31.26) and (31.44), and the respective
initial conditions, the maximum equipment acceleration ẍ2m and the maximum isola-
tor deflection δ2m may be found from Figs. 31.14 and 31.15. The differential equation
for the motion of the support in Fig. 31.4 is

δ̈1 + 2ζ1ωn1δ̇1 + ωn1
2δ1 = − ẍ2 (31.45)

where ωn1
2 = k1/m1 and ζ1 = c1/2m1ωn1. The initial conditions are δ̇1 = 0, δ1 = 0.

The solution of Eq. (31.45) is formally identical with that of Eq. (31.38) because
the equations differ only by the interchange of the numerical subscripts and the
presence of the factor m2/m1 on the right-hand side of Eq. (31.45). The solutions of
Eq. (31.45) as obtained by a computer are shown in Fig. 31.31. The ordinate is the
ratio of the maximum force F1m in the support to the quantity Jωn1. The latter quan-
tity is the maximum force which would be developed in an undamped, linear, single
degree-of-freedom support of mass m1 and stiffness k1 if the impulse J were applied
directly to m1.The abscissa in Fig. 31.31 is the ratio of the undamped support natural
frequency ωn1 to the undamped isolator natural frequency ωn2. Curves are drawn for

m2�
m1
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FIGURE 31.31 Dimensionless representation of maximum force in support F1m resulting from
action of impulse J on equipment.
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various values of the fraction of critical damping ζ2 for the isolator, assuming that the
fraction of critical damping ζ1 for the support is constant at ζ1 = 0.01.

Figure 31.31 appears to show that the presence of an isolator increases the maxi-
mum force F1m transmitted by the support if the natural frequencies of isolator and
support are nearly equal.This conclusion is misleading because the analysis assumes
that the support deflection δ1 is small compared with the isolator deflection δ2, a 
condition which is not met in the neighborhood of unity frequency ratio. A more
realistic analysis involves the two degree-of-freedom system discussed in the next
section.

Two Degree-of-Freedom Analysis. This section includes an analysis of the sys-
tem of Fig. 31.4 considered as a coupled two degree-of-freedom system where both
the support and isolator are linear and undamped [F1(δ̇1,δ1) = k1δ1, F2(δ̇2,δ2) = k2δ2].
This analysis makes it possible to consider the effect of deflection of the support on
the motion of the equipment. Fixing the support base (u = 0), the equations of
motion may be written

δ̈1 + ωn1
2δ1 = ωn2

2δ2

δ̈2 + ωn2
2δ2 = −δ̈1

(31.46)

Assuming that the impulse J has negligible duration, the initial conditions are: δ̇1 = 0,
δ̇2 = J/m2, δ1 = δ2 = 0. The solution of Eqs. (31.46) parallels that of Eqs. (31.39); the
resulting expressions for the maximum isolator deflection δ2m and force F1m applied
to the support are

δ2m = 
1 + �
−1/2

(31.47)

F1m = Jωn1 
�1 − �
2

+ �
−1/2

(31.48)

The maximum deflection of the isolator given in Eq. (31.47) is shown graphically
in Fig. 31.32. For small values of the ratio of support natural frequency to isolator
natural frequency, the flexibility of the support may significantly reduce the maxi-
mum isolator deflection, especially if the mass of the support is small relative to the
mass of the equipment. For large values of the frequency ratio, the effect of the mass
ratio is small.

Maximum values of force in the support, given by Eq. (31.48), are shown in Fig.
31.33.The maximum deflection of the floor is the maximum force F1m divided by the
stiffness of the floor. The effect of mass ratio is profound for small values of the fre-
quency ratio.The curves of Figs. 31.31 and 31.33 show corresponding results, the for-
mer including damping and the latter including the coupling effect between the two
systems.The analysis which ignores the coupling effect may grossly overestimate the
maximum force applied to the support at low values of the frequency ratio. At high
values of the frequency ratio, the two analyses yield like results if the fraction of crit-
ical damping in the isolator is less than about ζ2 = 0.10. The two methods are com-
pared in Example 31.5.

Example 31.5. A forging machine weighs 7000 lb exclusive of the 600-lb ham-
mer. It is mounted at the center of a span formed by two 12-in., 50 lb/ft I beams hav-

m2�
m1

ωn1�
ωn2

m2 /m1��
(1 + ωn1/ωn2)2

J
�
m2ωn2

m2�
m1
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ing hinged ends and a span l = 18 ft. The hammer falls freely from a height of 60 in.
before striking the work. Determine:

a. Maximum force F1m in the beams and maximum deflection δ1m of the beams if the
machine is rigidly bolted to the beams.

b. The maximum force F1m in the beams and the maximum deflection δ2m of an iso-
lator interposed between machine and beams.

Solution
a. When the machine is bolted rigidly to the beams, the system may be consid-

ered to have only a single degree-of-freedom. The mass is that of the machine, plus
the hammer, plus the effective mass of the beams. For the machine: m2 = (7000 +
600)/386 = 19.2 lb-sec2/in. The effective mass of the beams is taken as one-half of the
actual mass:

m1 = = 2.33 lb-sec2/in.

m = m1 + m2 = 21.5 lb-sec2/in.

The stiffness of the beams is

2(0.5)(18)(50)
��

386
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FIGURE 31.32 Dimensionless representation of maximum isolator deflec-
tion δ2m resulting from action of impulse J on equipment. Isolator and support
have undamped linear elasticity.
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FIGURE 31.33 Dimensionless representation of maximum force in support
F1m resulting from action of impulse J on equipment.

k = 2 = 2 = 123,000 lb/in.

The natural frequency of the machine-and-beams system is

ωn = �� = �� = 75.6 rad/sec [12.0 Hz]

If the impact between the hammer and work is inelastic and its duration is negligi-
ble, the resulting velocity u̇m of the machine may be found from conservation of
momentum. The impulse J is the product of weight of hammer and time of fall:

J = (600) � �
1/2

= 335 lb-sec

Then u̇m = J/m = 335/21.5 = 15.6 in./sec. If the damping of the beams is neglected, the
maximum beam deflection is found from Eq. (31.18):

δ1m = = = 0.21 in.

The maximum force in the beams is the product of beam stiffness and maximum
deflection:

F1m = kδ1m = 25,300 lb

15.6
�
75.6

u̇m�
ωn

2 × 60
�

386

123,000
�

21.5
k
�
m

48 × (30 × 106) × 302
���

(18 × 12)3

48EI
�

l 3
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b. An isolator having a stiffness k2 = 36,000 lb/in. and a fraction of critical damp-
ing ζ2 = 0.10 is interposed between the machine and beams. The “uncoupled natural
frequencies” defined in connection with Eqs. (31.40) and (31.41) are

ωn2 = �� = �� = 43.3 rad/sec [6.9 Hz]

ωn1 = �� = �� = 230 rad/sec [36.6 Hz]

Consider first that the system is separable. Figures 31.14 and 31.15 give, respectively:
ẍ2m/u̇mωn2 = 0.88; ẍ2mδ2m/u̇m

2 = 0.76. Substituting u̇m = J/m2 = 17.4 in./sec and solving 
for δ2m,

δ2m = = 0.35 in.

Entering Fig. 31.31 at ωn1/ωn2 = 5.3, F1m/Jωn1 = 0.23. Then

F1m = 17,700 lb

Thus, the effect of the isolator is to reduce the maximum load in the beams from
25,300 lb to 17,700 lb.An isolator with less stiffness would permit a further reduction
of this force at the expense of greater machine motion.

Consider now that the floor and machine-isolator systems are coupled, and use
the two degree-of-freedom analysis which neglects damping. From Eq. (31.47):

δ2m = 
1 + m2/m1

�1 + �
2�

−1/2

= 
1 + �
−1/2

= 0.37 in.

From Eq. (31.48):

F1m = Jωn1 
�1 − �
2

+ �
−1/2

= 335 × 230 
(1 − 5.3)2 + �
−1/2

= 14,900 lb

Thus, the two results for the isolator deflection δ2m differ only slightly, but the two
degree-of-freedom analysis gives a maximum load in the beams about 16 percent
smaller than that obtained by assuming the systems to be separable.

19.2
�
2.33

m2�
m1

ωn1�
ωn2

19.2/2.33
��
(1 + 5.3)2

335
��
19.2 × 43.3

ωn1�
ωn2

J
�
m2ωn2

0.76 × 17.4
��
0.88 × 43.3

123,000
�

2.33
k1�
m1

36,000
�

19.2
k2�
m2
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CHAPTER 32
SHOCK AND VIBRATION

ISOLATORS AND
ISOLATION SYSTEMS

Romulus H. Racca

Cyril M. Harris

INTRODUCTION

The first part of this chapter is devoted to various types of shock and vibration iso-
lators, as well as their characteristics. The next topic considered is the properties of
combinations of isolators in series and in parallel. A discussion is presented on the
selection, installation, and specification of isolators. Then consideration is given to
isolators that are combined with masses and damping, forming a vibration control
system that can, for example, permit equipment to function as intended, often
lengthening its operable life; protect sensitive equipment mounted on a structure
from damage as a result of shock and vibration occurring in the structure; and
reduce the level of noise and vibration near the equipment, or provide greater com-
fort to nearby occupants of a building.

The last section of this chapter considers the principles of active vibration control
systems that differ from passive (conventional) control systems, described earlier, in
that they supply additional power (controlled by one or more sensors) that is fed
into the system so as to modify its behavior. In many special cases, this additional
complication is worthwhile in that it can provide the system with benefits not other-
wise obtainable.

TYPES AND CHARACTERISTICS OF ISOLATORS

Isolators are commercially available in many different resilient materials, in count-
less shapes and sizes, and with widely diverse characteristics. In the U.S.A. there are
well over 100 elastomeric isolator manufacturers, each offering a range of models in
a variety of synthetic elastomeric compounds and natural rubbers. The number is
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significantly higher if manufacturers of plastic, metal, pneumatic, and other-material
isolators are included.

The properties of a given isolator are dependent not only on the material of
which it is fabricated, but also on its configuration and overall construction with
respect to the structural material used within the body of the isolator, as explained
below. Data on these parameters can be found in the catalogs of the various isolator
manufacturers.

ELASTOMERIC ISOLATORS

An elastomer is a natural rubber or any polymer having elastic properties similar to
those of natural rubber, described in detail in Chap. 33. Such materials are widely
used in isolators because they may be conveniently molded into many desired
shapes and selected to provide a wide range of stiffnesses, they have more internal
damping than metal springs, they usually require a minimum of space and weight,
and they can be bonded to metallic inserts adapted for simplified attachment to the
isolated structures.

The most commonly used type of isolator is fabricated of an elastomer. Figure
32.1 illustrates some typical elastomeric isolators. Such isolators are able to sustain
large deformations and then return to their approximate original state with virtually
no damage or change of shape. Elastomeric isolators are superior to other types of
isolators in that, for a given amount of elasticity, deflection capacity, energy storage,
and dissipation, they require less space and less weight; also, they may be molded
into many different configurations of many different types—generally at a lower
cost than other types of isolators.

Elastomers have exceptional extensibility and deformability:They can be utilized
at elongations of up to about 300 percent, with ultimate elongations of some elas-
tomers to about 1000 percent. They may be stressed as much as 1000 to 1500 psi
(0.145 to 0.218 Pa) or more before their elastic limit is reached. Their great capacity
for storing energy permits them to tolerate high stress. Upon release of the stress,
there is virtually total recovery from the deformation.The inherent damping of elas-
tomers is often useful in preventing excessive vibration amplitude at resonance; the
amplitude is much lower than if coil metal springs were used.

Of the various elastomers, natural rubber probably embodies the most favorable
combination of mechanical properties, such as minimum drift, maximum tensile
strength, and maximum elongation at failure. Its usefulness is restricted by its limited
resistance to deterioration under the influence of hydrocarbons, ozone, and high
ambient temperatures. Neoprene and Buna N (nitrile) exhibit superior resistance to
hydrocarbons and ozone, Buna N being particularly satisfactory for applications
involving relatively high ambient temperatures. Buna S is a good general-purpose
synthetic rubber for use in vibration isolators.

Silicone rubber is a costly elastomer. Its properties are remarkably stable, and it
provides effective isolation over a very wide temperature range: −65 to +350°F (−54
to 177°C). By comparison, neoprene is limited in use to a range of about −40 to
+200°F (−40 to 93°C).The upper temperature limit depends on the properties of the
particular compound, the degree of deterioration which is permissible as a result of
continued exposure at high temperatures, and the duration of exposure. For silicone,
a temperature substantially greater than 300°F (149°C) is permissible for several
hours. The outstanding ability of silicone elastomers to withstand extremes of tem-
perature is offset somewhat by their inferior strength, tear resistance, and abrasion
resistance.
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FIGURE 32.1 Typical elastomeric isolators. (A) Machinery mount. (B) Marine engine isolator. (C)
Pedestal isolator. (D) Plate form instrument isolator. (E) General-purpose isolator. (F) Cylindrical
stud isolator.

(A)

(B)

(C)

(E)

(F)

(D)
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Isolators fabricated of elastomers are complex in behavior because of the vis-
coelastic nature (somewhere between that of a solid and that of a liquid) of elas-
tomers in performance, because of their indefinite yield point, and because their
physical properties vary with time, temperature, and environment. For example,
rubber is a substantially incompressible material (it has a Poisson’s ratio of approx-
imately 0.5). Thus the stiffness of a rubber spring when it is strained in compression
depends, to a considerable extent, on the area of the surface available for lateral
expansion. In contrast, the stiffness of a rubber spring in shear is substantially inde-
pendent of the shape of the rubber member. As a rough rule of thumb, it may be
assumed that the minimum likely compression stiffness of a given rubber isolator is
five times its shear stiffness. The maximum compression stiffness may be several
times as great as the minimum value if lateral expansion of the rubber is con-
strained.

Fatigue Failure and Premature Failure. Regardless of geometry, both elas-
tomers and metals exhibit fatigue failure as a result of repeated cyclic loadings.
Unlike a metal, an elastomer does not experience catastrophic-type fatigue failure.
Instead, the failure begins as a tear at the point of highest cyclic shear strain, which
is generally on the outer extremity (and therefore visible in many cases), and gradu-
ally propagates through the body of the elastomer. The result is a gradual reduction
in stiffness that usually becomes apparent before there is total failure.

Most elastomeric isolators should not be subject to large static strains over 
long periods of time. An isolator with a large static deflection may give satisfactory
performance temporarily, but the deflection tends to creep (increase) excessively
over a long period. In general, elastomers should not be statically strained continu-
ously more than 10 to 15 percent in compression, or more than 25 to 50 percent in
shear.

A factor contributing to the premature failure of an elastomeric isolator is the
effect of the minimum strain on fatigue life. For elastomers which crystallize under
high strains (such as neoprene and natural rubber), fatigue life is greatly increased if
the minimum cyclic stress is always either plus or minus and never passes through
zero. Proper static precompression of the isolator within the limits specified above is
often an effective way to prevent the minimum cyclic stress from passing through
zero under dynamic conditions. Local stress concentrations, which result in prema-
ture failure, often can be avoided by using fillets, radii, and generous overhangs of
the elastomeric section. For example, sharp corners of metal inserts and support
structures should be carefully rounded off wherever they contact the elastomer.
Metal snubbing washers and/or support structures in contact with the elastomer
should be large enough to prevent their edges from cutting into the elastomeric sur-
faces.

Bonded versus Unbonded Elastomeric Isolators. Elastomeric isolators may be
designed in both bonded and unbonded configurations. In the bonded isolator, metal
inserts are bonded to the elastomer on all load-carrying surfaces. In the unbonded or
semibonded isolator, the elastomeric load-bearing surface rests directly on the sup-
port structure. Bonded parts usually cost more because of the special chemical prepa-
ration required to achieve a bond with strength in excess of that of the elastomer
itself. Bonded parts are generally preferred since they may be more highly stressed
for a given deflection. With higher stress they provide higher spring constants and
higher elastic energy-storage capacity.

Bonded isolators can be designed to provide proper load distribution in shear,
compression, tension, or combination loading. A more uniform stress distribution in
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the elastomer is obtained by bonding inserts on all the load-bearing elastomer sur-
faces.The bonded inserts reduce unit stress by distributing the stress more uniformly
throughout the volume of the elastomer. In contrast, unbonded parts usually fail to
distribute the load uniformly, resulting in local areas of stress concentration in the
elastomer body which shorten the life of the isolator.

A significant difference between bonded and unbonded elastomeric isolators
relates to how elastomers behave under load.When an elastomer pad is compressed
under load, its volume remains constant—only its shape is changed. The rubber
“bulges” under load. When this ability to bulge is controlled, the load-deflection
characteristics of the isolator are controlled. In a bonded isolator, the load-carrying
surfaces have a fixed degree of bulge because the elastomer cannot move along the
bond line, and so it remains in a fixed position regardless of the load or environ-
mental conditions.

In an unbonded isolator, this is not the case. The ability of the elastomer to bulge
depends to a considerable degree on the maintenance of friction at the elastomer–sup-
port structure interface. When all surfaces are clean and dry, the difference between
the ability of a bonded and an unbonded isolator to bulge is negligible. But if oil or
sand works its way into the elastomer-to-metal interface of the unbonded isolator, the
ability of the elastomer to bulge is greatly increased; consequently, its original load-
deflection characteristics no longer exist.Then the isolator can exhibit load-deflection
characteristics that are 50 percent less than when it was new; in many cases, this can
cause the isolator to malfunction. Thus, where consistent load-deflection characteris-
tics are required for the life of the equipment, bonded isolators should be used.
Although the initial cost of unbonded isolators is lower, in many applications the 
cost of extra machining of the support structure and the reduced service life may well
make unbonded isolators a poor selection.

Types of Isolator Loading. Elastomer isolators may be used with different types
of loading: compression, shear, tension, or buckling, or any combination of these
types.

Compression Loading. The word compression is used to indicate a reduction in
the dimension (thickness) of an elastomeric element in the line of the externally
applied force. The stiffness characteristic of elastomers stressed in compression
exhibit a nonlinearity (hardening) which becomes especially pronounced for strains
above 30 percent. Compression loading, illustrated in Fig. 32.2A, is most effective
when used with simple unbonded isolators and is effective where gradual snubbing
(motion limiting) is required. Compression loading is frequently employed to pro-
vide a low initial stiffness for vibration isolation and a relatively high final stiffness
to limit the dynamic deflection under shock excitations. Because of the nonlinear
hardening characteristics of compression loading, it is the least effective type of
loading for energy storage and therefore is not recommended where the attenuation
of force or acceleration transmission is the primary concern. (The energy stored by
any spring is the area under the load-deflection curve.)

Shear Loading. Shear loading, illustrated in Fig. 32.2B, refers to the force
applied to an elastomeric element so as to slide adjacent parts in opposite directions.
An almost linear spring constant up to about 200 percent shear strain is characteris-
tic of elastomer stress in shear. Because of this linear spring constant, shear loading
is the preferred type of loading for vibration isolators because it provides a constant
frequency response for both small and large dynamic shear strains in a simple
spring-mass system. Shear loading is also useful for shock isolators where attenuat-
ing force or acceleration transmission is important, because of its more efficient
energy-storage capacity when compared to compression loading. However, care
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must be taken to ensure that the expected dynamic loads do not result in shear
strains that exceed the limits of the elastomer or that abrupt bottoming of the sup-
ported equipment does not occur.

Torsion Loading. A modification of shear loading that is sometimes listed as a
separate type is torsion loading, shown in Fig. 32.2C. It consists of winding up a sand-
wich of laminated sections to strain the elastomer in torsion. When the strain in tor-
sion exceeds about 150 percent, considerable axial thrust loads on connecting
members are induced, if they are rigidly fixed parallel to each other, because of the
reduction in the axial thickness of the elastomer.

Tension Loading. Tension loading, illustrated in Fig. 32.2D, refers to an
increase in the dimension (thickness) of an elastomeric element in the line of the
externally applied force. Elastomers stressed in tension exhibit a nonlinear (soften-
ing) spring constant. For a given deflection, tension loading stores energy more effi-
ciently than either shear or compression loading. Because of this, tension loading has
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FIGURE 32.2 Load-deflection characteristics of typical elastomeric
isolators.
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been occasionally used for shock isolation systems. However, in general, tension
loading is not recommended because of the resulting loads on the elastomer-to-
metal bond, which may cause premature failure of the material.

Buckling Loading. Buckling loading, illustrated in Fig. 32.2E, occurs when
the externally applied load causes an elastomeric element to warp or bend in the
direction of the applied load. Buckling stiffness characteristics may be used to
derive the benefits of both softening stiffness characteristics (for the initial part of
the load-deflection curve) and hardening characteristics (for the later part of the
load-deflection curve). The buckling mode thus provides high energy-storage
capacity and is useful for shock isolators where force or acceleration transmission
is important and where snubbing (i.e., motion limiting) is required under exces-
sively high transient dynamic loads.This type of stiffness characteristic is exhibited
by certain elastomeric cushioning foam materials and by specially designed elas-
tomeric isolators. However, it is important to note that even simple compressive
elements will buckle when the slenderness ratio (the unloaded length/width ratio)
exceeds 1.6.

Combinations of the types of loading described above are commonly used, which
result in combined load-deflection characteristics. Consider, for example, a com-
pression-type isolator which is installed at an angle instead of in the usual vertical
position. Under these conditions, it acts as a compression-shear type of isolator
when loaded in the vertical downward direction.When loaded in the vertical upward
direction, it acts as a shear-tension combination type of isolator.

Static and Dynamic Stiffness. When the main load-carrying spring is made of
rubber or a similar elastomeric material, the natural frequency calculated using the
stiffness determined from a static load-deflection test of the spring almost invariably
gives a value lower than that experienced during vibration. Thus the dynamic mod-
ulus appears greater than the static modulus. The ratio of moduli is approximately
independent of the velocity of strain, and has a numerical value generally between 1
and 3. This ratio increases significantly as the durometer increases.

Damping Characteristics. Damping, to some extent, is inherent in all resilient
materials. The damping characteristics of elastomers vary widely. A tightly cured
elastomer may (within its proper operating range) store and return energy with
more than 95 percent efficiency, while elastomers compounded for high damping
have less than 30 percent efficiency. Damping increases with decreasing temperature
because of the effects of crystallinity and viscosity in the elastomer. If the isolator
remains at a low temperature for a prolonged period, the increase in damping may
exceed 300 percent. Damping quickly decreases with low-temperature flexure,
because of the crystalline structure deterioration and the heat generated by the high
damping.

Where the nature of the excitation is difficult to predict (for example, random
vibration), it is desirable that the damping in the isolator be relatively high. Damp-
ing in an isolator is of the greatest significance at the resonance frequency. There-
fore, it is desirable that isolators embody substantial damping when they may
operate at resonance, as is the case when the excitation is random over a broad fre-
quency band or even momentary (as in the starting of a machine with an operating
frequency greater than the natural frequency of the machine on its isolators). The
relatively large amplitude commonly associated with resonance does not occur
instantaneously, but rather requires a finite time to build up. If the forcing frequency
is varied continuously as the machine starts or stops, the resonance condition may
exist for such a short period of time that only a moderate amplitude builds. The rate
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of change of forcing frequency is of little importance for highly damped isolators, but
it is of considerable importance for lightly damped isolators.

In general, damping in an elastomer increases as the frequency increases. The
data of Figs. 33.5 and 33.6 can be used to predict transmissibility at resonance by esti-
mating the frequency and the amplitude of dynamic shear strain; then the fraction of
critical damping is obtained from the curves and used with Eq. (30.1) to calculate
transmissibility at resonance.

Hydraulically Damped Vibration Isolators. Hydraulically damped vibration
isolators combine a spring and a damper in a single compact unit that allows tun-
ing of the spring and damper independently. This provides flexibility in matching
the dynamic characteristics of the isolator to the requirements of the application.
Hydraulic mounts have been used primarily as engine and operator cab isolators
in vehicular applications. The hydraulically damped isolator, described in Ref. 2,
has a flexible rubber element that encapsulates an incompressible fluid which 
is made to flow through a variety of ports and orifices to develop the dynamic
characteristics required. The fluid cavity is divided into two chambers with an ori-
fice between, so that motion of the elastomeric element causes fluid to flow from
one chamber to the other, dissipating energy (and thus creating damping in the
system).

Installations that require a soft isolator for good isolation may also require
motion control under transient (shock) inputs or when operating close to the isola-
tion system’s resonant frequency. For good isolation, low damping is required. For
motion control, high damping is required. Fluid-damped isolators accommodate
these conflicting requirements. A hydraulically damped vibration isolator can also
act as a tuned absorber by increasing the length of the orifice into an inertia track
because the inertia of the fluid moving within the isolator acts as a tuned mass at a
specific frequency (which is determined by the length of the orifice).This feature can
be used where vibration isolation at a particular frequency is required.

PLASTIC ISOLATORS

Isolators fabricated of resilient plastics are available and have performance charac-
teristics similar to those of the rubber-to-metal type of isolators of equivalent con-
figuration.The structural elements are manufactured from a rigid thermoplastic and
the resilient element from a thermoplastic elastomer. These elements are compati-
ble in the sense that they are capable of being bonded one to another by fusion. The
most commonly used materials are polystyrene for the structural elements and buta-
diene styrene for the resilient elastomer.The advantages of this type of spring are (1)
low cost, (2) exceptional uniformity in dynamic performance and dimensional sta-
bility, and (3) ability to maintain close tolerances. The disadvantages are (1) limited
temperature range, usually from a maximum of about 180°F (82°C) to a minimum of
−40°F (−40°C), (2) creep of the elastomer element at high static strains, and (3) the
structural strength of the plastic.

METAL SPRINGS

Metal springs are commonly used where large static deflections are required, where
temperature or other environmental conditions make elastomers unsuitable, and (in
some circumstances) where a low-cost isolator is required. Pneumatic (air) springs
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provide unusual advantages where low-frequency isolation is required; they can be
used in many of the same applications as metal springs, but without certain disadvan-
tages of the latter. Metal springs used in shock and vibration control are usually cat-
egorized as being of the following types: helical springs (coil springs), ring springs,
Belleville (conical or conical-disc) springs, involute (volute) springs, leaf and can-

tilever springs, and wire-mesh springs.

Helical Springs (Coil Springs). Heli-
cal springs (also known as coil springs)
are made of bar stock or wire coiled into
a helical form, as illustrated in Fig. 32.3.
The load is applied along the axis of 
the helix. In a compression spring the
helix is compressed; in a tension spring it
is extended. The helical spring has a
straight load-deflection curve, as shown
in Fig. 32.4. This is the simplest and most
widely used energy-storage spring. En-
ergy stored by the spring is represented
by the area under the load-deflection
curve.

Helical springs have the inherent
advantages of low cost, compactness,
and efficient use of material. Springs of
this type which have a low natural fre-
quency when fully loaded are available.
For example, such springs having a nat-
ural frequency as low as 2 Hz are rela-
tively common. However, the static
deflection of such a spring is about 2.4
in. (61 mm). For such a large static
deflection, the spring must have ade-
quate lateral stability or the mounted
equipment will tip to one side. There-
fore, all forces on the spring must be
along the axis of the spring. For a given
natural frequency, the degree of lateral
stability depends on the ratio of coil
diameter to working height. Lateral sta-
bility also may be achieved by the use of
a housing around the spring which re-
stricts its lateral motion. Helical springs
provide little damping, which results 
in transmissibility at resonance of 100 
or higher. They effectively transmit
high-frequency vibratory energy and
therefore are poor isolators for struc-
ture-borne noise paths unless they are
used in combination with an elastomer
which provides the required high-
frequency attenuation, as illustrated in
Fig. 32.5.
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FIGURE 32.3 Cross section of a helical spring
showing the direction of the applied force F.

FIGURE 32.4 Load-deflection curve for a hel-
ical spring.

FIGURE 32.5 Helical spring isolator for
mounting machinery.
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Ring Springs. A ring spring, shown in
Fig. 32.6A, absorbs the energy of motion
in a few cycles, dissipating it as a result 
of friction between its sections. With a
high load capacity for its size and weight,
a ring spring absorbs linear energy with
minimum recoil. It has a linear load-
deflection characteristic, shown in Fig.
32.6B. Springs of this type often are used
for loads of from 4000 to 200,000 lb
(1814 to 90,720 kg), with deflections
between 1 in. (25 mm) and 12 in. (305
mm).

Belleville Springs. Belleville springs
(also called coned-disc springs), illus-
trated in Fig. 32.7, absorb more energy in
a given space than helical springs. Springs
of this type are excellent for large loads
and small deflections. They are available
as assemblies, arranged in stacks. Their
inherent damping characteristics are like
those of leaf springs: Oscillations quickly
stop after impact. The coned discs of this
type of spring have diametral cross sec-
tions and loading, as shown in Fig. 32.7.
The shape of the load-deflection curve
depends primarily on the ratio of the
unloaded cone (or disc) height h to the
thickness t. Some load-deflection curves
are shown in Fig. 32.8 for different values
of h/t, where the spring is supported so
that it may deflect beyond the flattened
position. For a ratio of h/t approximately
equal to 0.5, the curve approximates a
straight line up to a deflection equal to
half the thickness; for h/t equal to 1.5,
the load is constant within a few percent
over a considerable range of deflection.
Springs with ratios h/t approximating 1.5
are known as constant-load or stiffness
springs. Advantages of Belleville springs
include the small space requirement in
the direction of the applied load, the abil-
ity to carry lateral loads, and load-
deflection characteristics that may be
changed by adding or removing discs.
Disadvantages include nonuniformity of
stress distribution, particularly for large
ratios of outside to inside diameter.

Involute Springs. An involute spring, shown in Fig. 32.9A and 32.9B, can be used
to better advantage than a helical spring when the energy to be absorbed is high and
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FIGURE 32.6 Ring spring. (A) Cross section.
(B) Load-deflection characteristic when it is
loaded and when it is unloaded.

FIGURE 32.7 A Belleville spring made up of
a coned disc of thickness t and height h, axially
loaded by a force F.

FIGURE 32.8 The load-deflection character-
istic for a Belleville spring having various ratios
of h/t.
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space is rather limited. Isolators of this type have a nonlinear load-deflection charac-
teristic, illustrated in Fig. 32.9C. They are usually much more complex in design than
helical springs.
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FIGURE 32.11 Wire-mesh spring, shown in section.

FIGURE 32.9 An involute spring. (A) Side view. (B) Cross sec-
tion. (C) Load-deflection characteristic.

Leaf Springs. Leaf springs are some-
what less efficient in terms of energy
storage capacity per pound of metal
than helical springs. However, leaf
springs may be applied to function as
structural members. A typical semiellip-
tic leaf spring is shown in Fig. 32.10.

Wire-Mesh Springs. Knitted wire
mesh acts as a cushion with high damp-

ing characteristics and nonlinear spring constants.A circular knitting process is used
to produce a mesh of multiple, interlocking springlike loops. A wire-mesh spring,
shown in Fig. 32.11, has a multidirectional orientation of the spring loops, i.e., each

FIGURE 32.10 Semielliptic leaf spring.
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loop can move freely in three directions, providing a two-way stretch. Under tensile
or compressive loads, each loop behaves like a small spring; when stress is removed,
it immediately returns to its original shape. Shock loadings are limited only by the
yield strength of the mesh material used. The mesh cushions, enclosed in springs,
have characteristics similar to a spring and dashpot.

Commonly used wire mesh materials include such metals as stainless steel, galva-
nized steel, Monel, Inconel, copper, aluminum, and nickel. Wire meshes of stainless
steel can be used outside the range to which elastomers are restricted, i.e., −65 to
350°F (−53 to 177°C); furthermore, stainless steel is not affected by various environ-
mental conditions that are destructive to elastomers. Wire-mesh springs can be fab-
ricated in numerous configurations, with a broad range of natural frequency,
damping, and radial-to-axial stiffness properties. Wire-mesh isolators have a wide
load tolerance coupled with overload capacity. The nonlinear load-deflection char-
acteristics provide good performance, without excessive deflection, over a wide load
range for loads as high as four times the static load rating.

Stiffness is nonlinear and increases with load, resulting in increased stability and
gradual absorption of overloads. An isolation system has a natural frequency pro-
portional to the ratio of stiffness to mass; therefore, if the stiffness increases in pro-
portion to the increase in mass, the natural frequency remains constant. This
condition is approached by the load-deflection characteristics of mesh springs. The
advantages of such a nonlinear system are increased stability, resistance to bottom-
ing out of the mounting system under transient overload conditions, increased shock
protection, greater absorption of energy during the work cycle, and negligible drift
rate. Critical damping of 15 to 20 percent at resonance is generally considered desir-
able for a wire-mesh spring. Environmental factors such as temperature, pressure,
and humidity affect this value little, if at all. Damping varies with deflection: high
damping at resonance and low damping at higher frequencies.

AIR (PNEUMATIC) SPRINGS

A pneumatic spring employs gas as its resilient element. Since the gas is usually air,
such a spring is often called an air spring. It does not require a large static deflec-
tion; this is because the gas can be compressed to the pressure required to carry the
load while maintaining the low stiffness necessary for vibration isolation. The
energy-storage capacity of air is far greater per unit weight than that of mechanical
spring materials, such as steel and rubber. The advantage of air is somewhat less
than would be indicated by a comparison of energy-storage capacity per pound of
material because the air must be contained. However, if the load and static deflec-
tion are large, the use of air springs usually results in a large weight reduction.
Because of the efficient potential energy storage of springs of this type, their use in
a vibration-isolation system can result in a natural frequency for the system which
is almost 10 times lower than that for a system employing vibration isolators made
from steel and rubber.

An air spring consists of a sealed pressure vessel, with provision for filling and
releasing a gas, and a flexible member to allow for motion. The spring is pressurized
with a gas which supports the load. Air springs generally have lower resonance fre-
quencies and smaller overall length than mechanical springs having equivalent char-
acteristics; therefore, they are employed where low-frequency vibration isolation is
required. Air springs may require more maintenance than mechanical springs and
are subject to damage by sharp and hot objects. The temperature limits are also
restricted compared to those for mechanical springs.
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Figure 32.12 shows four of the most common types of air springs. The air spring
shown in Fig. 32.12A is available with one, two, and three convolutions. It has a
very low minimum height and a stroke that is greater than its minimum height.The
rolling lobe (reversible sleeve) spring shown in Fig. 32.12B has a large stroke capa-
bility and is used in applications which require large axial displacements, as, for
example, in vehicle applications. The isolators shown in Fig. 32.12A and B may
have insufficient lateral stiffness for use without additional lateral restraint. The
rolling diaphragm spring shown in Fig. 32.12C has a small stroke and is employed
to isolate low-amplitude vibration. The air spring shown in Fig. 32.12D has a low
height and a small stroke capability. The thick elastomer sidewall can be used to
cushion shock inputs.

The load F that can be supported by an air spring is the product of the gage pres-
sure P and the effective area S (i.e., F = PS). For a given area, the pressure may be
adjusted to carry any load within the strength limitation of the cylinder walls. Since
the cross section of many types of air springs may vary, it is not always easy to
determine. For example, the spring shown in Fig. 32.12A has a maximum effective
area at the minimum height of the spring and a smaller effective area at the maxi-
mum height.The spring illustrated in Fig. 32.12B is acted on by a piston which is con-
toured to vary the effective area. In vehicle applications this is often done to provide
a low spring stiffness near the center of the stroke and a higher stiffness at both ends
of the stroke in order to limit the travel.The effective areas of the springs illustrated
in Fig. 32.12C and D are usually constant throughout their stroke; the elastomeric
diaphragm of the spring shown in Fig. 32.12D adds significantly to its stiffness. Air
springs are commercially available in various sizes that can accommodate static
loads that range from as low as 25 lb (11.3 kg) to as high as 100,000 lb (45,339 kg)
with a usable temperature range of from −40 to 180°F (−40 to 83°C). System natural
frequencies as low as 1 Hz can be achieved with air springs.
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FIGURE 32.12 Four common types of air springs. (A) Air spring with convolutions. (B) A
rolling lobe air spring. (C) Rolling diaphragm air spring. (D) Air spring having a diaphragm
and an elastomeric sidewall.
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Stiffness. The stiffness of the air
spring of Fig. 32.13 is derived from the
gas laws governing the pressure and vol-
ume relationship. Assuming adiabatic
compression, the equation defining the
pressure-volume relationship is

PV n = PiVi
n (32.1)

where Pi = absolute gas pressure at 
reference displacement

Vi = corresponding volume of
contained gas

n = ratio of specific heats of
gas, 1.4 for air

If the area S is constant, and if the change in volume is small relative to the initial
volume Vi [i.e., if Sδ (where δ is the dynamic deflection) << Vi)], then the stiffness k
is given by

k = (32.2)

Transverse Stiffness. The transverse stiffness (i.e., the stiffness to laterally
applied forces) of the air springs illustrated in Fig. 32.12A and B varies from very
small to moderate; the natural frequencies for such springs vary from 0 to 3 Hz. The
spring illustrated in Fig. 32.12C has a higher transverse stiffness, with natural fre-
quencies ranging from 2 to 8 Hz. The spring illustrated in Fig. 32.12D has a moder-
ate transverse stiffness; the natural frequency varies in the range from 3 to 5 Hz. If
an installation requires the selection of an air spring having insufficient transverse
stiffness, additional springs in the transverse direction are often employed for stabil-
ity, as shown in Fig. 32.14.

At frequencies above 3 Hz, the compression of gases used in air springs tends to
be adiabatic and the ratio of specific heats n for both air and nitrogen has a value of

1.4.At frequencies below approximately
3 Hz, the compression tends to be
isothermal and the ratio of specific heats
n has a value of 1.0, unless the spring is
thermally insulated. For thermally insu-
lated springs, the transition from adia-
batic to isothermal occurs at a frequency
of less than 3 Hz. Gases other than air
which are compatible with the air spring
materials can also be used. For example,
sulfur hexafluoride (SF6) has a value of
n equal to 1.09—a value that reduces the
axial spring stiffness by 22 percent; it
also has a considerably lower perme-
ation (leakage through the air spring

material) rate than air, which may reduce the frequency of recharging (repressuriz-
ing) for a closed (passive) air spring.

Damping. Air springs have some inherent damping that is developed by damping
in the flexible diaphragm or sidewall, friction, damping of the gas, and nonlinearity.

nPiS 2

�
Vi
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FIGURE 32.13 Illustration of a single-acting
air spring consisting of a piston and a cylinder.

FIGURE 32.14 An air spring used to support a
load and provide vibration isolation in the verti-
cal direction. In addition, air springs are pro-
vided on the sides to increase the transverse
stiffness.
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The damping varies with the vibration amplitude; however, it generally is between 1
and 5 percent of critical damping.

Natural Frequency. In U.S. Customary units, the natural frequency fn of an
undamped air spring is expressed by

fn = 3.13 � �
1/2

= δ1
−1/2 (32.3a)

where W = supported weight, lb
k1 = stiffness of the air spring, lb/in.
δ1 = static deflection, in.

In S.I. units, the natural frequency is given by

fn = δ2
−1/2 (32.3b)

where δ2 = static deflection, cm

ISOLATORS IN COMBINATION

When a number of isolators are used in a system, they are usually combined either
in parallel or in series or in some combination thereof.

ISOLATORS IN PARALLEL

Most commonly, isolators are arranged in parallel. Figure 32.15 depicts three isola-
tors schematically as springs in parallel. A number of vibration isolators are said to
be in parallel if the static load supported is divided among them so that each isola-
tor supports a portion of the load. If the stiffness of each of the n isolators in Fig.
32.15 is represented by k, the stiffness of the combination is given by

Stiffness of n isolators in parallel = nk (32.4)

k1�
W
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FIGURE 32.15 Schematic diagram of three
springs in parallel. Individual spring loads are added
to obtain the total weight. With the static load equal
on all springs, the static deflection of each spring is
the same.
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Since in Fig. 32.15 isolator spacing is symmetrical in relation to the center-of-gravity
and the same isolator is used at all support points, the stiffness of the combination is
3 times the stiffness of a single isolator, and the static deflection is the same at each
isolator.

ISOLATORS IN SERIES

When three isolators are combined in
series, as shown in Fig. 32.16, the static
load is transmitted from one isolator to
the next. If the static weight is supported
by n isolators in series, each having the
stiffness k, the stiffness of the combina-
tion is given by

Stiffness of n isolators in series =

(32.5)

Thus, if the mass is supported by three
identical isolators (Fig. 32.16), the stiff-
ness of this combination is one-third the
stiffness of a single isolator, and the static
deflection is the sum of the deflection of
the individual isolators (or 3 times the
static deflection of a single isolator).

ISOLATOR SELECTION

IMPORTANT FACTORS AFFECTING SELECTION

Stiffness and damping are the basic properties of an isolator which determine its use
in a system designed to provide vibration isolation and/or shock isolation. These
properties usually are found in isolator supplier literature. However, the following
other important factors must be considered in the selection of an isolator:

Type and Direction of Disturbance. The source of a dynamic disturbance (shock
or vibration) influences the selection of an isolator in several ways. For example, a
decision can be made whether to isolate the source of the disturbance or to isolate
the item being disturbed. This decision affects which isolator is to be used. Consider
the operation of a heavy punch press which has an adverse effect on a nearby elec-
tronic instrument. Isolation of the punch press would reduce this effect but would
require fairly large isolators which might have to be resistant to grease or oil. In con-
trast, isolation of the instrument would also provide the required protection, but the
required isolators would be smaller and (since grease or oil would not be a consid-
eration) could be fabricated of a preferred elastomer.

A knowledge of the source of the vibration can aid in defining the problem to be
solved.Within a given industry there may be published material describing problems
similar to the one under consideration. Such material may describe possible solu-
tions plus equipment fragility, and/or dynamic characteristics of the equipment.

k
�
n
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FIGURE 32.16 Schematic diagram of three
springs in series. Individual spring deflections
are added to obtain total deflection, but each
spring carries the total load.
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Type of Disturbance. The dynamic environment can be delineated into three
categories: (1) periodic vibration—sinusoidal continuos motion or acceleration
occurring at discrete frequencies, (2) random vibration—the simultaneous existence
of any and all frequencies and amplitudes in any and all phase relationships as exem-
plified by noise, and (3) transient phenomenon (shock)—a nonperiodic sudden
change of velocity, acceleration, or displacement. Usually some combination of these
three categories occurs in most isolation systems. A knowledge of the dynamic dis-
turbance is very important in the choice of an isolator. For example, in the case of an
instrument supported by isolators, the resilient mounts permit the supported body
to “stand still” by virtue of its own inertia while the support structure generates peri-
odic or random vibration. In contrast, shock attenuation involves the storage by the
isolators of the dynamic energy which impacts on the support structure and the sub-
sequent release of the energy over a longer period of time at the natural frequency
of the system. If only a vibration disturbance is present, a small isolator normally is
suitable since vibration amplitudes usually are small relative to shock amplitudes. If
a shock disturbance is the primary problem, then a larger isolator with more inter-
nal space for motion is required.

In selecting an isolator, ensure (1) that there is enough deflection capability in
the isolator to accommodate the maximum expected motions from the dynamic
environment, (2) that the load-carrying capacity of the isolator will not be exceeded;
the maximum loads due to vibration and/or shock should be calculated and checked
against the rated maximum dynamic load capacity of the isolator, and (3) that there
will be no problem as a result of overheating of the isolator or fatigue deterioration
due to long-term high-amplitude loading.

Direction of Disturbance. A factor that must be considered in the selection of
an isolator is that of the directions (axes) of the disturbance. If the vibration or shock
input occurs only in one direction, usually a simple isolator can be selected; its char-
acteristics need be specified along only one axis. In contrast, if the vibration or shock
is expected to occur along more than one axis, then the selected isolator must pro-
vide isolation (and its characteristics must be specified) along all the critical axes.
For example, consider an industrial machine which produces troublesome vibration
in the vertical direction and which must be isolated from its supporting structure. In
this case, a standard plate-type isolator may be used.This type isolator is stiffer in the
horizontal direction than in the vertical direction, which is the axis of the primary
disturbance; the horizontal stiffness does not significantly affect the motion of the
isolator in the vertical direction. Such horizontal stiffness adds to the lateral stability
of the installation.

Allowable Response of a System to the Disturbance. The allowable response
of a system is defined as the maximum allowable transmitted shock or vibration and
the maximum displacements due to such disturbances. The allowable response of a
system can be expressed in any of the following ways:

� Maximum acceleration loading due to a shock input
� Specific system natural frequency and maximum transmissibility at that frequency
� Maximum acceleration, velocity, or displacement allowable over a broad fre-

quency range
� The allowable level of vibration at some critical frequency or frequencies
� Maximum displacement due to shock loading

The maximum acceleration which a piece of equipment can withstand without
damage or malfunction is often called fragility. The definition of some allowable
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response is necessary for an appropriate isolator selection. If fragility data are not
available for the specific equipment or installation at hand, then examples of similar
situations should be used as a starting point. Suppose an isolator were chosen only
for its load-carrying capability, with no regard for the fragility of a piece of equip-
ment in a specific frequency range. Then, the natural frequency of the system might
be incorrectly placed such that a resonance within the equipment might be excited
by the isolation system.

Space and Locations Available for Isolators. Vibration and shock isolation
should be considered as early as possible in the design of a system, and an estimate
of isolator size should be made based on isolator literature. The size of the isolator
depends on the nature and magnitude of the expected dynamic disturbances and the
load to be carried. Typical literature describes the capabilities of isolators based on
such factors.

The location of isolators is very important to the dynamics of the equipment
mounted on them. For example, a center-of-gravity installation, as shown in Fig.
32.17, allows the mounted equipment to move only in straight translational modes
(i.e., a force at the center-of-gravity does not cause rotation of the equipment). This
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FIGURE 32.17 Center-of-gravity installations of vibration isolators: (A) 
Center-of-gravity horizontal support. (B) Center-of-gravity diagonal support.
(C) Symmetrical spacing about the center-of-gravity. (D) Center-of-gravity ver-
tical support. (After Davey and Payne.2)
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minimizes the motion of the corners of the equipment and allows the most efficient
installation from the standpoint of space requirements and isolation efficiency.

If the isolators cannot be located so as to provide a center-of-gravity installa-
tion, then the system analysis is more difficult and more space must be allowed
around the equipment to accommodate rocking motion (i.e., rotational modes) of
the system. Finally, the isolators must be double-checked to ensure that they 
are capable of withstanding the additional loads and motions from the non-
translational movement of the equipment. This is particularly true when the 
center-of-gravity is a significant distance above or below the plane in which the
isolators are located. Rule of thumb: The distance between the isolator plane and
the center-of-gravity should be equal to or less than one-third of the minimum
spacing between isolators. This helps to minimize rocking of the equipment and
the resultant high stress in the isolators.

Weight and Center-of-Gravity of Supported Equipment. The weight and loca-
tion of the center-of-gravity of the supported equipment should be determined. The
location of the center-of-gravity is necessary for calculating the load supported on
each mount. It is best to keep the equipment at least satatically balanced [essentially
equal deflections on all isolators (see Fig. 32.17)]. The preferred approach is to use
the same isolator at all points, choosing isolator locations such that static loads (and
thus deflections) are equalized. If this is not practical, isolators of different load rat-
ings may be required at different support points on the equipment for optimum iso-
lation.The size of the equipment and the mass distribution are important in dynamic
analyses of the isolated system.

Space Available for Equipment Motion. The choice of an isolator may depend
on the space available (commonly called sway space) around a piece of equipment.
The spring constant of the isolator should be chosen carefully so that motion is kept
within defined space limits. The motion which must be considered is the sum of (1)
the static deflection due to the weight supported by the isolator, (2) the deflection
caused by the dynamic environment, and (3) the deflection due to any steady-state
acceleration (such as in a maneuvering aircraft).

If there is a problem of excessive motion of the supported mass on the isolator,
then a snubber (i.e., a device which limits the motion) can be used.A snubber may be
an elastomeric compression element designed into an isolator. Captive-type isola-
tors (see Fail-Safe Installation) have built-in motion-limiting stops. Also, elastomers
stressed in compression have natural snubbing due to the nonlinear load-deflection
characteristics. In some cases it may be necessary to limit motion by separately
installed snubbers such as a compression pad at the point of excessive motion as
shown in Fig. 32.18.The spring constant of such a snubber must be carefully selected
to avoid transmission of high-impact loads into the supported equipment.

Ambient Environment. The environment in which an isolator is to be used
affects its selection in two ways:

1. Some environmental conditions may degrade the physical integrity of the isola-
tor and make it nonfunctional.

2. Some environmental conditions may change the operating characteristics of an
isolator, without causing permanent damage.

This may alter the characteristics of the isolation system of the supported equip-
ment; for example, frequency responses could change significantly with changes in
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the ambient temperature. Thus, it is important to determine the operating environ-
ment of the isolation system and to select isolators that will function with desired
characteristics in this environment.

Available Isolator Materials. Vibration and shock isolators are available in a
wide variety of materials and configurations to fit many different situations.The type
of isolator is chosen for the load and dynamic conditions under which it must oper-
ate. The material from which the isolator is made depends to a great extent on the
ambient environment of an application and somewhat on the dynamic properties
required. Guidance for the choice of isolator materials is given earlier in this chap-
ter. Chapter 33 describes the engineering properties of rubber.

Metal-spring isolators are used primarily where operating temperatures are too
high for elastomeric isolators. They can be used in a variety of applications.

By far, the majority of isolators in use today are elastomeric. The development
of a vast array of elastomeric compounds has made it possible to use this type of
isolator in almost any environment. Within a given type of elastomer, it is a simple
matter to vary the stiffness (modulus, durometer) of the compound; this gives much
flexibility in adapting an isolator to an application without changing the isolator’s
geometry.

Since the selection of material for an isolator depends so much on the environ-
ment in which the mount will be used, it is very important to learn as much as possi-
ble about the operating and storage environments.

Desired Service Life. The expected, or desired, length of service for an isolator
can affect the type and size of the vibration isolator which is selected. For example,
an isolator which must operate for 2000 hours under a given set of conditions typi-
cally is larger than one which must operate for only 500 hours under the same con-
ditions.

32.20 CHAPTER THIRTY-TWO

FIGURE 32.18 A vibration isolator provided with auxiliary elas-
tomeric snubbers to limit the motion of the isolator in the horizontal
and vertical directions; these snubbers provide a “cushion” stop to pro-
vide a lower shock force on the equipment than would be experienced
with a metal-to-metal stop.
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In general, empirical data are used to estimate the operating life of an isolator.
Accurate descriptions of the dynamic disturbances and ambient operating environ-
ment expected are needed to make an estimate of isolator life. A knowledge of the
specific material and design factors in an isolator is necessary to make an estimate of
fatigue life. Such information is best provided by the original manufacturer or
designer of the isolator.

Requirement for Fail-Safe Operation. Many pieces of equipment must be
mounted on isolators on which the equipment remains supported (in place) in the
event of mechanical failure of the isolator, i.e., until it can be replaced. This feature
may be provided by a metal-to-metal interlock, or it may be provided by snubbers,
as illustrated in Fig. 32.18.A snubber is a component in a resilient isolator which lim-
its the displacement of the isolator in the event of its failure.

Interaction with Support Structure. The support structure characteristics 
can also affect the selection of isolators. An isolator must deflect if it is to isolate
vibration; generally the greater the deflection, the greater the isolation. The isolator
functions by being soft enough to allow relative vibration amplitudes without trans-
mitting excessive force to the support structure. It is often assumed, in the selection
of vibration isolators, that the support structure is a rigid mass with infinite stiffness.
This assumption is not true since if the foundation were infinitely stiff, it would not
respond to a dynamic force and the isolator would not be needed. Since the founda-
tion does respond to dynamic forces, its response must affect the components that
are flexibly attached to it. In reality the support structure is a spring in series with the
isolator (see Isolators in Combination above) and springs in series carry the same
force and deflect proportionally to their respective spring constants.Thus if the stiff-
ness of the isolator is high compared to the stiffness of the foundation, the founda-
tion will deflect more than the isolator and actually nullify or limit the isolation
provided from the isolator itself. To achieve maximum efficiency from the selected
isolator, the spring constant of the support structure should be at least 10 times that
of the spring constant of the isolator attached to it. This will assure that at least 90
percent of the total system spring constant is contributed by the isolators and only
10 percent by the support structure.

Because the structure supporting a piece of equipment has inherent flexibility, it
has resonances which could cause amplification of vibration levels; these resonance
frequencies must be avoided in relation to isolated system natural frequencies.

HOW TO SELECT ISOLATORS

The isolator selection process should proceed in the following steps:

Step 1. Required isolation efficiency. First, indicate the percentage of isolation
efficiency that is desired. In general, an efficiency of 70 to 90 percent is desirable and
is usually possible to attain.

Step 2. Transmissibility. From Table 32.1 determine the maximum transmissi-
bility T of the system at which the required vibration isolation efficiency of Step 1
will be provided.

Step 3. Forcing frequency. Determine the value of the lowest forcing frequency
f (i.e., the frequency of vibration excitation). For example, in the case of a motor, the
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forcing frequency depends on the rotational speed, given in revolutions per minute
(rpm); the rotational speed must be divided by 60 sec/minute to obtain the forcing
frequency in cycles per second (Hz). The lowest forcing frequency is used because
this is the worst condition, resulting in the lowest value of f/fn (see Table 32.1). If a
satisfactory value of isolation efficiency is attained at this frequency, the vibration
reduction at higher frequencies will be even greater.

Step 4. Natural frequency. From Fig. 32.19, find the natural frequency fn of the
isolated system (i.e., the mass of the equipment supported on isolators) required to
provide a transmissibility T, determined in Step 2 (which is equivalent to a corre-
sponding percent vibration isolation efficiency) for a forcing frequency of f Hz
(determined in Step 3).

Step 5. Static deflection. From Fig. 32.19, determine the static deflection
required to provide a natural frequency of Step 4.

Step 6. Stiffness of isolation system. From Eq. (32.6), calculate the stiffness k
required to provide a natural frequency fn determined in Step 4:

fn = (32.6)

where W = the weight in pounds of the supported mass
g = the acceleration due to gravity in inches per second per second

Step 7. Stiffness of the individual vibration isolators. Determine the stiffness of
each of the n isolators from Eq. (32.4) or Eq. (32.5) depending on whether the vibra-
tion isolators are in parallel or in series. In general, they are in parallel so that the
required stiffness of each vibration isolator is 1/n times the value obtained in Step
6—assuming that all isolators share the load equally.

Step 8. Load on individual vibration isolators. Now calculate the load on each
individual isolator.

Step 9. Isolator selection. From a manufacturer’s catalog, elect a vibration iso-
lator which meets the stiffness requirement determined in Step 7 and which has a
load-carrying capacity (i.e., load rating) equal to the value obtained in Step 8. The
preferred approach is to use the same type and size isolator at all points of support;

[kg/W]1/2

��
2π
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TABLE 32.1 Ratio of (f/fn) Required to Achieve 
Various Values of Vibration Isolation Efficiency

Isolation Maximum
efficiency, % transmissibility Required f/fn

90 0.1 3.32
80 0.2 2.45
70 0.3 2.08
60 0.4 1.87
50 0.5 1.73
40 0.6 1.63
30 0.7 1.56
20 0.8 1.50
10 0.9 1.45
0 1.0 1.41
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choose isolator locations such that static loads (and thus deflections) are equalized.
If this is not practical, isolators of different load ratings may be required at different
support points on the equipment. If the vibration occurs only in one direction, usu-
ally a simple isolator can be selected; its characteristics need be specified along only
one axis. In contrast, if the vibration is expected to occur along more than one direc-
tion, then the selected isolator must provide isolation along all the critical axes.

EXAMPLES

The following examples present specific applications. They show how isolators may
be selected for some simple shock and vibration problems, but the steps used are
basic and can be extended to many other situations. In the solution of these prob-
lems, the following simplifying assumptions are made:
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FIGURE 32.19 Isolation efficiency chart. The vibration efficiency, in percent, is given as a function
of natural frequency of the isolated system (along the horizontal axis) and the forcing frequency, i.e.,
the frequency of excitation (along the vertical axis). The use of this chart is restricted to applications
where the vibration isolators are supported by a floor structure having a vertical stiffness of at least
15 times the total stiffness of the isolation system. This may require that the isolated structure be
placed along the length of a floor beam or that an additional floor beam be added to the structure.
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1. The effect of damping is negligible, a valid assumption for many isolator applica-
tions.

2. All modes of vibration are uncoupled, i.e., the isolators are symmetrically located
with respect to the mass center-of-gravity.

3. The static and dynamic spring constants of the isolators are equal, valid for low
modulus elastomers with little damping.

Example 32.1: Vibration Isolation. When a shock or vibration disturbance orig-
inates in the supported equipment, isolators which support the equipment reduce
the transmission of force to the supporting structure, thus protecting the structure or
foundation, for example, in isolating a vehicle chassis from the vibration of an inter-
nal combustion engine or in reducing the transmission of machine vibration to adja-
cent structures.

Problem. An electric motor and pump assembly, rigidly mounted on a com-
mon base, rotates at a speed of 1800 rpm and transmits vibration to other compo-
nents of a hydraulic system. The weight of the assembly and base is 140 lb (63 kg).
Four isolators are to be located at the corners of the rectangular base. The center-
of-gravity is centrally located in the horizontal plane near the base. The lowest
vibratory forcing frequency is 1800 rpm and is a result of rotational unbalance.
There also are higher frequencies due to magnetic and pump forces. The excitation
is in both the horizontal and vertical directions.

Objective. To reduce the amount of vibration transmitted to the supporting
structure and thus to other system components.A vibration isolation efficiency of 70
to 90 percent is usually possible to attain.

Solution:

1. Select a vibration isolation efficiency midway between 70 and 90 percent, i.e.,
80 percent.

2. Find the transmissibility T which corresponds to an isolation efficiency of 80
percent. From Eq. (32.7) or Fig 32.19, this is a value of T = 0.2.

Isolation efficiency = 100(1 − T) in percent (32.7)

where T = transmissibility.

3. Determine the lowest forcing frequency f by dividing the rotational speed in
rpm by 60, yielding a value of 30 Hz.

4. Next calculate the natural frequency fn required to provide the transmissibil-
ity T = 0.2 for a forcing frequency f = 30 Hz. According to Eq. (32.8), this is a value
of 12.2 Hz.

T = (32.8)

where f = the forcing frequency (also called disturbing frequency) in Hz
fn = system natural frequency in Hz

5. Then calculate the static deflection required to provide a natural frequency of
12.2 Hz. According to Eq. (32.9), this is a value of δst = 0.066 in. (1.67 mm).

1
��
( f/fn)2 − 1
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fn = (32.9)

where δst = the static deflection in inches
δst = 0.066 in. (1.67 mm)

[The same results may be obtained by using the isolation efficiency chart, Fig.
32.19, as follows. Find the point at which the horizontal line for a forcing frequency 
f = 30 Hz intersects the diagonal line for an isolation efficiency of 80 percent. From 
the point of intersection, project a vertical line to read the values of δst = 0.066 in.
(1.67 mm).]

6. Determine the stiffness of the required isolation system (i.e., combination of
four isolators) required to provide a natural frequency of fn. According to Eq.
(32.6), the value of stiffness of the system, for a weight of 140 lb, is 2120 lb/in. (371
N/mm).

7. Calculate the stiffness of individual isolators if one is placed in each corner by
dividing the value for the combination of isolators by 4, since all four support the
load.

8. The load on the individual isolator is equal to the total weight of the load
divided by the number of supporting isolators, i.e., 140/4 = 35 lb (15.8 kg) per iso-
lator.

Example 32.2: Shock Isolation. Mechanical shock may be transmitted through a
supporting structure to equipment, causing it to move. The transmitted motion and
force are reduced by mounting the equipment on isolators, for example, to protect
equipment from impacts during shipment.

Problem. A business machine is to be isolated so that it will not experience
damage during normal shipping. The unit can withstand 25g of shock without dam-
age.The suspended weight of 125 lb (56.2 kg) is to be equally distributed on four iso-
lators. The disturbances expected are those from normal transportation handling,
with no damage allowed after a 30-in. (762-mm) flat bottom drop. The peak vibra-
tion disturbances are normally in the range of 2 to 7 Hz.

Objective. To limit acceleration on the machine to 25g using the drop test as a
simulation of the worst expected shock conditions. A natural frequency between 7
and 10 Hz is desired to avoid the peak vibration frequency range and still provide
good shock protection.

Solution:

1. First, solve for the dynamic deflection δd (displacement) of the machine
required to limit acceleration to XF (expressed in g’s) when the item is dropped from
a height (h = 30 in.) using:

δd = (32.10)

Here ẍF = the fragility factor = 25g, so that δd = 2.4 in. (61 mm).

2h
�
ẍF

3.13
�
(δst)1/2

SHOCK AND VIBRATION ISOLATORS AND ISOLATION SYSTEMS 32.25

8434_Harris_32_b.qxd  09/20/2001  12:32 PM  Page 32.25



2. Then determine the required dynamic natural frequency fn to result in a
dynamic deflection δd from Eq. (32.11), using a fragility ẍF = 25g, h = 30 in., W = 125 lb
(56.2 kg), and δd = 2.4 in.:

fn = � (32.11)

fn = 10 Hz (a value also given by use of Fig. 32.19).
3. Calculate the system dynamic spring constant k required to provide a dynamic

deflection δd from:

k = = (32.12)

k = 1302 lb/in. (228 N/mm) for the system.
4. From Eq. (32.4), calculate the system static spring constant of the n natural

rubber isolators (for which the static and dynamic values are approximately equal).
Here n = 4, yielding a stiffness value of k for each individual isolator of 325 lb/in.
(56.9 N/mm).

5. Since the total weight is distributed equally on four identical isolators, the load
per isolator is 125 lb divided by 4 or 31 lb (14 kg).

6. Sandwich-type isolators are often used to protect fragile items during ship-
ment. The construction is typically two flat plates, bonded on either side of an elas-
tomeric pad. Determine the minimum thickness of the elastomer (between the
plates) needed to keep dynamic strain at an acceptable level. Use the following rule
of thumb for rubber:

tmin = (32.13)

For δd = 2.4 in. (61 mm), the minimum elastomer thickness is 1.6 in. (40.6 mm).
7. Now choose a sandwich isolator for this application. Sandwich configuration

permits sufficient deflection in two directions (shear) to absorb high shock loads.
Sandwich isolators are readily available in a wide range of sizes, spring constants,
and elastomers. From a catalog, select a part that has the capacity to support a static
shear load of 31 lb (14 kg), has a minimum elastomer thickness of 1.6 in. (40.6 mm),
and has a shear spring constant of 325 lb/in. (56.9 N/mm).

8. In designing or choosing the container, certain criteria must be considered.
The four isolators should be installed equidistant from the center-of-gravity in the
horizontal plane, oriented to act in shear in the vertical and fore-and-aft directions.
The isolators should be attached on one end to a cradle which carries the machine
and on the other end to the shipping container.There must be enough space allowed
between the mounted unit and the container to prevent bottoming (contact) at
impact, allowing a clearance space of at least 1.4δd.

Example 32.3: Combined Shock and Vibration Isolation 
Problem. A portable engine-driven air compressor, with a total weight of 2500

lb (1126 kg), is noisy in operation. An isolation system is required to isolate engine
disturbances and to protect the unit from over-the-road shock excitation.

The engine and compressor are mounted on a common base which is to be sup-
ported by four isolators. The weight is not equally distributed. At the engine end the
static load per isolator is 750 lb (338 kg); at the compressor end the static load per

δd�
1.5

ẍFW
�

δd

force
��
deflection

ẍFg
�
δd

1
�
2π
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isolator is 500 lb (225 kg). The lowest frequency of the disturbance is at engine
speed. The idling speed is 1400 rpm, and the operating speed is 1800 rpm. The unit is
expected to be subjected to shock loads due to vehicle frame twisting when trans-
ported over rough roads.

Objective. To control force excitation vibration and provide secondary shock
isolation. A compromise is required; the isolation system must have a stiffness that
is low enough to isolate engine idling disturbance but high enough to limit shock
motion. A system having a natural frequency of 12 to 20 Hz in the vertical direction
is usually adequate. (Note: The tires and basic vehicle suspension will provide the
primary shock protection.)

Solution:

1. First assume that the natural frequency of the system in the vertical direction
is 12 Hz.

2. Next, convert the engine speeds to hertz (cycles per second) for use in the cal-
culations. Divide the rpm values by 60 sec/min, yielding force frequencies f of 23.3
Hz at idling speed and 30 Hz at operating speed.

3. Then calculate the transmissibility T for fn = 12 Hz from Eq. (32.8). At idling
speed, using f = 23.3 Hz, yields T = 0.36 (36 percent). At operating speed, using 
f = 30 Hz, yields T = 0.19 (19 percent).Table 33.1 gives a vibration isolation T of 0.64
(64 percent) at idling speed and 0.81 (81 percent) under normal operation. For both
conditions, performance with a natural frequency of 12 Hz is satisfactory.

4. Now determine the required static deflection δst to provide a natural fre-
quency fn from Eq. (32.9). For fn = 12 Hz, this yields δst = 0.068 in. (1.73 mm).

5. Select a general-purpose isolator (see Fig. 32.1E) for both ends of the unit.
This type of isolator is simple and rugged and gives protection against shock loads
expected here. It should be installed so that the axis of the bolt is vertical and the
static weight rests on the disk portion. This isolator provides cushioning against
upward (rebound) shock loads as well as against downward loads, and the isolation
system is fail-safe. Each of the two isolators at the engine end should have a static
load-carrying capacity of at least 750 lb (338 kg). Each of the two isolators at the
compressor end should be able to support at least a 500-lb (225-kg) static load. For
all isolators the static deflection should be close to 0.068 in. (1.73 mm) to give the
desired natural frequency of 12 Hz.

AVOIDING ISOLATOR INSTALLATION PROBLEMS

There are usually two primary causes for unsatisfactory performance of an isolation
system: (1) The isolator has been selected improperly or some important system
parameter has been overlooked and (2) the isolator has been installed improperly.
The following criteria can help obviate problems that can otherwise cause poor per-
formance:

1. Do not overload the isolator, i.e., do not exceed the loading specified by the
manufacturer. Overloading may shorten isolator life and affect performance.

2. In the case of coil-spring isolators, provide adequate space between coils at
normal static load so that adjacent coils do not touch and there is no possibility of
bottoming at the maximum load.

3. In the case of elastomeric compression-type isolators, do not overload the iso-
lator so that it bulges excessively—the ratio of deflection at the static load to the
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original rubber thickness should not exceed 0.15. As indicated earlier, overloading
an isolator may affect its performance. An elastomeric element loaded in compres-
sion has a nonlinear stiffness. Therefore, its effective dynamic stiffness (i.e., its effec-
tive stiffness when it is vibrating) will be higher than the published value. This raises
the natural frequency and reduces its efficiency of isolation.

4. In the case of an elastomeric shear-type isolator, the ratio of the static deflec-
tion in shear (i.e., with metal plates moving parallel to one another) to the original
thickness usually should not exceed 0.30.

5. To minimize rocking of the equipment and the resultant high stress in the iso-
lators, the distance between the isolator plane and the center-of-gravity should be
equal to or less than one-third of the minimum spacing between isolators.

6. The isolators and isolated equipment should be able to move freely under
vibration and shock excitation. No part of the isolation system should be short-
circuited by a direct connection rather than a resilient support.

7. The vibrating equipment should not contact adjacent equipment or a struc-
tural member. Space should be provided to avoid contact.

8. If an elastomeric pad has been installed beneath a machine, the resilient pad
should not be short-circuited by hard-bolting the machine to its foundation.

9. The load on the isolator should be along the axis designed to carry the load.
The isolator should not be distorted. Unless the isolator has built-in misalignment
capability, installation misalignment can affect performance and shorten isolator
life.

10. If an elastomeric mount is used, provide adequate clearance so that there is
no solid object cutting the elastomer. There should be no evidence of bond separa-
tion between the elastomer and metal parts in the isolator. Cuts and tears in the elas-
tomer surface can propagate during operation and destroy the spring element. If
there are bonded surfaces in the isolator, a bond separation also can cause problems;
growth in the separation can affect the performance of the isolator and ultimately
cause failure.

11. The static deflection of all isolators should be approximately the same.There
should be no evidence of improper weight distribution. Excessive tilt of the mounted
equipment may affect its performance. For economic reasons and simplicity in
installation, it is desirable to use the same isolator at all points in the system. In such
a case, it is not usually a problem if the various isolators have slightly unequal static
deflections. However, if one or more isolators exhibit excessive deflection, then cor-
rective measures are required. If the spacing between isolators has been determined
improperly, a correction of the spacing to equalize the load may be all that is
required. If this is impractical, an isolator having a higher spring constant can be
used at points supporting a higher static load. This will tend to equalize deflection.

SHOCK AND VIBRATION ISOLATOR

SPECIFICATIONS

Often, shock and vibration isolators are overspecified; this can cause needless com-
plication and increased cost. Overspecification is the practice of arbitrarily increas-
ing shock or vibration load values to be safe (to make certain that the isolators have
been chosen with a high margin of safety at the maximum load capability). The best
isolator specification is one which defines the critical properties of the isolation sys-
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tem and the specific environment in which the system will operate. Extraneous
requirements cause needless complications. For example, if the vibration level is an
acceleration of +1g, it is not advisable to specify +2g to be safe. Likewise, it is inad-
visable to rigidly apply an entire specification to an isolator installation when only a
small part of the specification is applicable.

Typically, specifications to which vibration and shock isolators are designed will
include requirements regarding (1) vibration amplitudes, (2) shock amplitudes, (3)
load to be carried, (4) required protection for equipment, (5) temperatures to be
encountered (environmental factors, in general), and (6) steady acceleration loads
superimposed on dynamic loading.

ACTIVE VIBRATION CONTROL SYSTEMS

The preceding sections of this chapter consider only passive vibration control sys-
tems and their components; active vibration control systems differ significantly from
such conventional vibration control systems. An active vibration control system is a
system in which one or more sensors is required to measure the absolute value or
change in a physical quantity (such as position, motion, temperature, etc.); then such
a change is converted to a signal used to modify the behavior of the system. Such
modification requires the addition of external power, in contrast to a conventional
(passive) vibration control system which does not require the addition of external
power or the use of sensors. But in special cases, these additional complications,
required in an active vibration control system, may be outweighed by benefits that
can otherwise not be obtained with a conventional system, as illustrated in the fol-
lowing examples.

AN ACTIVE SYSTEM FOR RESILIENTLY SUPPORTING A BODY AT

GIVEN POSITION DESPITE VARIATIONS IN THE APPLIED LOAD

Consider the active vibration control system shown in Fig. 32.20. A mass m is sup-
ported by a spring of stiffness k, with a damping coefficient c. Force F is slowly
applied to the mass, as illustrated, causing the spring to stretch, resulting in a down-
ward displacement δ of the mass. A sensor responds to the displacement, causing it
to generate a signal proportional to the relative motion of the system. As a result,
power is supplied by a servo-controlled motor that moves the supporting frame
upward until the body returns to its original position with respect to the supporting
plane. This active vibration control system thus maintains the supported body in its
equilibrium position, despite the applied load, until another change in the force
occurs. Thus there is zero displacement of the mass in the presence of a constant
force F. This is a type of negative feedback regulation, so called because the servo-
controlled motor applies a “feedback” force to the supported body which opposes
its movement.A feedback control system is a system in which the value of some out-
put quantity is controlled by feeding back the value of the controlled quantity and
using it to manipulate an input quantity to bring the controlled quantity closer to the
desired value. (In contrast, a feedforward control system is a system in which changes
are detected at the process input, and anticipating correction is made before the
process output is affected.)

The active vibration isolation system illustrated in Fig. 32.20 seeks as its equilib-
rium position a location at a distance h above the reference lane of the support, inde-

SHOCK AND VIBRATION ISOLATORS AND ISOLATION SYSTEMS 32.29

8434_Harris_32_b.qxd  09/20/2001  12:32 PM  Page 32.29



pendent of the origin and magnitude of
a steady force applied to the supported
body. While there is no change in the
position of the body in response to a
very slowly applied load, if the applied
load is suddenly removed, the servo-
mechanism (providing the regulation)
may be unable to respond fast enough to
compensate for the tendency of the sup-
ported body to change position relative
to the support; then the isolator can
experience a significant deflection.

This example demonstrates that
where the damped natural frequency of
the isolation system must be relatively
low, with the additional requirement
that the supported body be maintained
at a relatively constant distance from the
base to which it is attached, the applica-
tion of an active vibration control sys-
tem may be of considerable benefit.

Controller Gain; Integral Control; Pro-
portional Control. The computational
element for the elimination of the isola-
tor static deflection is that of an integra-
tor and scaling term called a controller

gain. This combination of sensing, computation, and actuation provides what is
known as integral control, since the feedback force is proportional to the time inte-
gral of the sensor response. The computational elements for the control of the sys-
tem resonance and low-frequency vibration isolation require only a scaling term.
This combination of control elements is called proportional control, since the feed-
back force is proportional to the sensor response.The feedback elements added to a
conventional isolation system must have an overall characteristic such that the out-
put force is proportional to the sensed function times the control function of the
computational element. The control function describes the operation of the compu-
tational element, which can be a simple constant as in proportional control, an inte-
gration function as in integral control, or an equation describing the action of one or
more electric circuits. This corresponds to a spring which provides an output force
proportional to the deflection of the spring, a viscous damper which provides a force
proportional to the rate of deflection of the damper, or an electric circuit which pro-
duces a force signal proportional to the dynamics of a spring and viscous damper, in
series, undergoing a motion proportional to the sensor response.

The sensing and actuation devices which provide integral control of the isolator
relative displacement may take many forms. For example, the sensing element which
measures the position of the supported body (relative to the reference plane of the
support) may be a differential transformer which produces an electrical signal pro-
portional to its extension relative to a neutral position. The sensing element is
attached at one end to the supported body and at the other end to the isolator sup-
port structure in a manner such that the sensor is in its neutral position when the
supported body is at its desired operating height. The electrical signal is integrated
and amplified in the computational element, providing electric power to operate an
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FIGURE 32.20 Schematic diagram of an
active vibration-isolation system which main-
tains the supported body m a fixed distance h
from the reference plane of the support, irre-
spective of the steady force F applied to the sup-
ported body.
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electric motor actuation device. The differential transformer-integrator-motor sys-
tem produces a force proportional to the integral of the signal from the differential
transformer. The operation of this servomechanism can be visualized in the follow-
ing manner:

1. A force F of constant magnitude F0 is applied to the supported body, causing a
relative deflection of the isolator spring element.

2. The sensing element (in this case a differential transformer) applies an electrical
signal that is proportional to the isolator relative displacement to the integration
and scaling functions in the computational element.

3. The response of the computational integration function generates an electrical
signal that continues to increase in magnitude so long as the relative displace-
ment δ is not zero.

4. The signal from the computational element is applied to the motor element,
which generates a force in a direction that decreases the isolator deflection; the
motor force follows the computational element signal and continues to increase
in magnitude so long as the relative deflection δ is not zero.

5. At some point in time the force from the motor output will exactly equal the con-
stant force F0, requiring a relative displacement of zero.

6. The output from the differential transformer is zero; thus the output from the
computational element integration function no longer increases but is main-
tained constant at the magnitude required for the motor element to generate a
force exactly equal to the constant force F0 applied to the supported body.

The isolation system remains in this equilibrium condition until the force applied
to the supported body changes and causes a nonzero signal to be generated by the
sensing element; then the process starts all over again. Alternatively, a proportion-
ally scaled signal from the differential transformer may be used to operate an
electromechanical servo valve, the flow response of the servo valve being propor-
tional to its excitation signal. The servo-valve fluid-flow output is directed into the
chamber of an air spring to produce the desired force applied to the supported body.
The control function remains integral in nature since the actuator’s internal pressure
responds to the volume output from the servo valve, which is the integral of its flow
output.Thus, in this case, no electrical integration of the sensor signal is needed. It is
also possible to operate a mechanical servo valve through a direct mechanical cou-
pling in such a way that the motion of the suspended body with respect to its support
is used directly to provide the required servo-valve actuation. The possible combi-
nations of elements and control devices are almost limitless.The choice of a suitable
combination of sensor, computation element, and actuator is dictated by the type of
power available, the supported body size, the weight, and the type of application,
e.g., spacecraft, aircraft, automotive, or industrial.

AN ACTIVE SYSTEM FOR CONTROLLING ITS SYSTEM

RESONANCE AND LOW-FREQUENCY VIBRATION ISOLATION

The mechanical system shown in Fig. 32.21 provides active control of its system res-
onance and the vibration isolation it provides at low frequencies. This system con-
sists of a velocity sensor (for example, see Chap. 12), a proportional computational
element, and a motor actuation device that also may take on many forms.The veloc-
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ity of the supported body may be sensed by an electromagnetic sensor which meas-
ures velocity directly, or it may be obtained by integrating the response of an
accelerometer. Figure 32.21 illustrates the elements of this servomechanism; the
servo amplifier contains the system electronic devices which form the computational
elements and the power elements required to operate the force actuator. The motor
element is contained partly in the servo amplifier and partly in the force actuator.
This shows that the three basic elements of a servomechanism are not always self-
contained devices, but may be made up of the combined operation of system hard-
ware components.The force actuator usually consists of an electrodynamic vibration
exciter similar to those described in Chap. 25. Electronic amplifiers which drive the
force motor must have a frequency response extending down to zero frequency, so
as not to introduce timing errors into the control signal that can significantly alter
the response of the servomechanism. The velocity sensor-amplifier-motor system
making up this servomechanism applies a force to the supported body that is pro-
portional to the body’s velocity and thus acts in the same manner as a viscous
damper connected to the supported body at one end and to motionless fixed space
at the other end.This produces a form of damping within the active vibration control
system which cannot be synthesized using passive damping elements alone. The
action of this velocity-controlled servomechanism is referred to as active damping,
and the active damping scaling term G2, relating the supported body velocity to the
force applied to the mass m, when divided by the critical damping term for the pas-
sive spring and mass elements 2�k�m�, is commonly referred to as the active fraction
of critical damping G2/cc.

An active vibration-isolation system usually is described by a cubic or higher-
order differential equation; because of the complexity of these equations, it is diffi-
cult to visualize the effect of changes in the system constants on the performance of
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FIGURE 32.21 Schematic diagram of an active vibration control system
which acts like a passive vibration-isolation mass and spring element with a
viscous damping element connected between the supported body and
motionless fixed space. The active damping servomechanism can eliminate
the isolation system resonance, thereby providing vibration isolation start-
ing at zero frequency.
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the isolation system. This is particularly true when the actual nonideal response
characteristics of the system sensing, computational, and motor elements are
included in the system differential equation of motion and when additional compu-
tational elements, called compensation circuits, are added. The compensation cir-
cuits are used to alter the system frequency response, i.e., resonance frequency and
peak transmissibility. In working with active vibration control systems of the type
presented here, it is not uncommon to have differential equations as high as the
twelfth order or more. The field of automatic control system synthesis has devised
methods to deal with differential equations of such high orders from both a theoret-
ical analysis and an actual system hardware point of view.

Because integral feedback of displacement requires that energy be fed into the
control system, it is possible to make the active system dynamically unstable by
improper proportioning of its constants. An active vibration control system that is
dynamically unstable will undergo continuously increasing mechanical oscillations
which, when not limited by available power, will increase until the system is
destroyed. Therefore, one of the factors in achieving a satisfactory active vibration
control system is the determination of the margin of dynamic stability of the entire
system. Here too, the field of automatic control systems has devised methods to
establish the system margin of dynamic stability.The margin of dynamic stability is a
measure of the degree of change in system constants that is required for the active
vibration control system to become unstable.

In the case of a conventional passive vibration control system, it is possible to
determine many of the performance characteristics from the constants appearing in
the differential equation. For example, the transmissibility T of a conventional sys-
tem at the condition of resonance is approximately

Tr � = where c/cc < 0.2 (32.14)

Similarly, the resonance frequency ωr is approximately equal to the undamped natu-
ral frequency:

ωr � �� where c/cc < 0.2 (32.15)

At high frequencies (ω >> ωn), the transmissibility of a conventional system ap-
proaches the asymptotic value

Ti = where ω >> ωn (32.16)

The transmissibility curve of a conventional isolator may be estimated from Eqs.
(32.14) to (32.16) without plotting the transmissibility equation point by point.
Somewhat similar relationships can be obtained for an active system if its equation
of motion is not higher than the second order. A convenient way to obtain rules of
thumb for the design of an active vibration control system is to compare the charac-
teristic properties of a conventional vibration control system with those of the same
isolation system but with active elements which provide integral relative displace-
ment force feedback and proportional velocity force feedback added in parallel with
a spring isolation element. The velocity feedback gain G2 generally has a larger
effect on the system response than the relative displacement gain term G1.The feed-
back gain terms relate the sensed system motion term to the force applied to the
supported body; therefore, the units of the velocity feedback gain term G2 are the

c/cc�
ω/ωn

k
�
m

1
�
2(c/cc)

�k�m��
c
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same as those for a viscous damper, or force per unit velocity; the gain term G1 for
the integral relative displacement feedback has no passive counterpart and has units
of force per unit displacement multiplied by time. The active damping term domi-
nates the system differential equation, affecting the system response both above and
below the undamped natural frequency, while the effect of the relative displacement
feedback on system performance is confined mainly to the frequency region below
the undamped natural frequency. Setting the integral relative displacement gain
term G1 to zero gives an approximation for the transmissibility of the active vibra-
tion control system:

T = � (32.17)

Using the above equation, the following response estimations can be formulated.
The system transmissibility T at a frequency equal to the undamped natural fre-
quency ωn, formed by the passive spring and mass elements k and m, is

Tn = where ω = ωn (32.18)

The resonance frequency is less than the system undamped natural frequency, and
with an active fraction of critical damping term of 1 or larger, there is no system res-
onance; i.e., at all frequencies the system transmissibility is less than 1. In the case
where the relative displacement feedback gain is not zero, the mechanics of the sys-
tem must always form a resonance condition. At excitation frequencies well above
the system undamped natural frequency, the transmissibility of the active isolation
system approaches the asymptotic value

Ti = (ω/ωn)2 where ω >> ωn (32.19)

In the above response estimation relationship function, the system transmissibil-
ity at the undamped natural frequency is less than unity when the velocity feedback
gain exceeds a value giving an active fraction of critical damping of 0.5; i.e., G2/cc =
0.5.With an active fraction of critical damping of unity, the system transmissibility at
the undamped natural frequency is 0.5. Active vibration control systems of this type
typically exhibit velocity feedback gain magnitudes yielding an active fraction of
critical damping ranging from a low of about 0.5 to a high of about 5. The incorpo-
ration of the integral relative displacement feedback servomechanism in conjunc-
tion with the velocity feedback servomechanism and the passive system elements
forms a system described by a third-order differential equation. A resonance condi-
tion occurs well below the undamped natural frequency when the active fraction of
critical damping is 0.5 or more. The simplified response estimations of transmissibil-
ity are valid for frequencies at and above the system undamped natural frequency in
instances where the active fraction of critical damping is 0.5 or greater.As the active
fraction of critical damping is decreased, the resonance frequency approaches the
undamped natural frequency with an increasing peak transmissibility and an even-
tual dynamically unstable system.

In an ideal active vibration control system, the resonance frequency and peak
transmissibility are a function of the passive system constants and the two feedback
gain terms. In a nonideal active vibration control system, there are many other factors
that influence the system resonance characteristics, such as the low-frequency
response of the velocity sensor or a more complex passive system formed from many
mass and spring elements. The resonance characteristics of the active vibration con-
trol system are manipulated through compensation functions formed using electric

1
�
2G2/cc

1
����
[1 − (ω/ωn)2]2 + [2(G2/cc)(ω/ωn)]2
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networks in the computation element of the velocity servomechanism. The function
of these compensation networks is to alter the nature of the velocity feedback signal
applied to the motor element, in a manner that provides for a dynamically stable sys-
tem, and to raise or lower the resonance frequency, peak transmissibility, and trans-
missibility frequency response above the resonance frequency. The use of system
compensation circuitry is extensive in the field of automatic control system synthesis
as well as with active vibration control systems, which are a type of automatic control
system. The result of system compensation is active vibration control systems with
response characteristics similar but not limited to the response of the ideal system.
The analysis of the transient and frequency-response characteristics of an active
vibration control system having ideal elements shows many of the advantages of
actual active vibration control systems when compared to the response of passive sys-
tem elements alone.

In an active vibration control system, the element that provides integral control
of relative displacement strives to maintain the supported body at a constant dis-
tance from the support base to which it is attached. When a step function of force is
applied to the supported body, the response of the system gives a measure of the ele-
ment’s effectiveness in performing the desired function. A comparison of the tran-
sient response of the active vibration control system, i.e., one having integral relative
displacement and absolute velocity force feedback, with that of the conventional
passive vibration control system illustrates the advantage obtained from integral
relative displacement feedback.

Transient Response. The equation of motion for the mass m of the passive con-
trol system is

mẍ + cẋ + kx = F(t) (32.20)

where the force F(t) is a step function of force having a magnitude F = F0 when t > 0
and F = 0 when t < 0. Writing the Laplace transform of Eq. (32.20),

L[x(t)] = X(s) = (32.21)

where X(s) designates the Laplace transform of x, a function of time. Letting 
c/m = 2(c/cc)ωn and k/m = ωn

2, Eq. (32.21) may be written as

X(s) = (32.22)

The time solution of Eq. (32.22) is a damped sinusoid offset by the deflection of the
spring caused by the constant force F0. A typical time solution is shown by curve A
of Fig. 32.22. The deflection of the isolator can be calculated by applying the final
value theorem of Laplace transformations. This theorem states that if the Laplace
transform of x(t) is X(s) and if the limit x(t) as t → ∞ exists, then

lim
s→0

sX(s) = lim
t→∞

x(t) (32.23)

Applying the final value theorem using the Laplace transform of the passive isolator
responding to the step function of force, Eq. (32.22), shows that the final deflection
of the isolator is

lim
s→0

sX(s) = lim
t→∞

x(t) = (32.24)
F0�

mωn
2

1
���
s2 + 2(c/cc)ωns + ωn

2

F0�
ms

1
��
s2 + (c/m)s + k/m

F0�
ms

SHOCK AND VIBRATION ISOLATORS AND ISOLATION SYSTEMS 32.35

8434_Harris_32_b.qxd  09/20/2001  12:32 PM  Page 32.35



3
2
.3

6

FIGURE 32.22 (A) Transient response of a passive vibration-isolation system to a step in force. (B), (C), and (D) show the transient
response of an active vibration-isolation system to the same force step for different values of integral relative displacement and pro-
portional velocity gains. The response is changed by changes in the feedback gain magnitude. In (D) the system is unstable as a result
of the improper selectfion of the servomechanism constants; as a result, oscillations become increasingly large.
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From Eq. (32.24), the mass takes a new position of static equilibrium at a distance
F0 /(mωn

2) from the original position as t → ∞.The final deflection term may be elim-
inated from Eq. (32.24) by adding an integral relative displacement control servo-
mechanism. This added element produces a force proportional to the integral of
displacement x with respect to time. The system damping element is replaced by an
active damping control servomechanism. Active damping in this case acts in the
same manner as the passive damping element used for Eq. (32.20) since x is the only
system motion. The differential equation of motion for the supported body of the
active vibration control system is

mẍ + G2ẋ + kx + G1 	 x dt = F(t) (32.25)

The Laplace transform of the active vibration control system differential equation is

L[x(t)] = X(s) = (32.26)

Placing the above equation in a form similar to Eq. (32.22) gives

X(s) = (32.27)

The term G2/cc represents the active fraction of critical damping. The term contain-
ing the active relative displacement feedback gain G1/mωn

3 is called the dimension-
less relative displacement feedback gain. The use of the dimensionless gain terms,
active fraction of critical damping and dimensionless relative displacement feedback
gain, allows the response characteristics of the active vibration control system to be
represented in a generalized manner where the numerical values of the passive sys-
tem elements are not required.

Applying the final value theorem to the transient response of the active vibration
control system represented by Eq. (32.27) gives the deflection of the supported body
in its final equilibrium position:

lim
s→0

sX(s) = lim
t→∞

x(t) = 0 (32.28)

The final equilibrium position for the supported body of the active vibration control
system is zero so long as the dimensionless relative displacement feedback gain is not
zero. The final position of the supported body is zero even with a very small dimen-
sionless relative displacement feedback gain because of the integration operation
provided by the relative displacement servomechanism. The magnitudes of the two
servomechanism gain terms affect the motion of the supported body during the tran-
sient. Figure 32.22A shows the transient response of a passive vibration control sys-
tem to a step in force which is applied to the supported body. In Fig. 32.22B, C, and D
the transient response of an active system subjected to the same step force is shown
for various values of the dimensionless feedback gain. The two servomechanisms in
the active vibration control system interact, but their effect can be generalized:

1. Increasing the magnitude of the dimensionless relative displacement gain
increases the rate at which the system relative displacement approaches the final
equilibrium position.

2. Increasing the active fraction of critical damping decreases the peak magnitude
of the system relative displacement during the transient event and lowers the
damped natural frequency.

1
����
s3 + 2(G2/cc)s2 + ωn

2s + (G1/mωn
3)ωn

3

F0�
m

1
���
s2 + (G2/m)s + k/m + G1/ms

F0�
ms
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The degree of oscillation exhibited by the active vibration control system is a
function of the magnitude and relative magnitude of the dimensionless gains of the
two servomechanisms. In general, small magnitudes of the dimensionless relative
displacement gain and large magnitudes of the active fraction of critical damping
lead to little system oscillation, as depicted by the curve of Fig. 32.22B. Likewise,
large magnitudes of the dimensionless relative displacement gain and small magni-
tudes of the active fraction of critical damping tend to increase the amount of oscil-
lation. The dimensionless relative displacement gain can be increased too much in
relation to the active fraction of critical damping and will then produce a condition
of instability, as shown by the curve of Fig. 32.22D. The conditions resulting in system
instability are presented in the last part of this section.

The relative displacement response of this ideal active vibration control system
to constant acceleration of the isolator support, such as that produced by gravity or
by the sustained acceleration of a missile, cannot be represented by applying a con-
stant force to the supported body, as is frequently done with passive vibration con-
trol systems. The reason for this is that active vibration control systems which utilize
absolute motion feedback, as in active damping of the type presented in this chap-
ter, respond differently to forces applied to the supported body than to a constant
acceleration of the support. In the case of a constant force applied to the supported
body, presented above, the velocity servomechanism output force approaches zero
as the transient motions of the system die out. In the case of a constant acceleration
of the support, the velocity of the supported body continually increases in a manner
similar to the increase in velocity of the support. The output of the velocity servo-
mechanism increases constantly with time since the output force is proportional to
the velocity of the supported body. This leads to a system which cannot work
because the velocity servomechanism will rapidly reach its maximum force output,
at which time all active damping is lost. In this situation, active vibration control is
reobtained by placing an electric filter in the active damping servomechanism com-
putational element.The filter forms a control function which produces a zero output
for a ramp input. The use of such a filter is part of the compensation process often
required with automatic control systems; this process is presented in more detail in
the next section.

Many active vibration control systems of the ideal type presented in this chapter
are used to isolate angular vibration, on which gravity has no effect. The active iso-
lation of angular vibration uses the same system equations presented above except
that the motions are angular, the mass is a moment of inertia, and the passive spring
element applies a torque to the supported body that is proportional to the relative
rotational displacement between the supported body and the support. The integral
relative displacement servomechanism operates by measuring the rotation of the
supported body relative to the support and applying a torque to the supported body
that is proportional to the time integral of the sensed rotation. The relative angular
displacement may be sensed using a rotational differential transformer or a linear
potentiometer.

The active damping servomechanism operates by sensing the absolute rota-
tional velocity of the supported body using a rate gyroscope which has an output
response proportional to its rotational velocity. The active damping torque applied
to the supported body is proportional to the output of the rate gyroscope. Many
times the passive spring element is replaced by a servomechanism where the inte-
gral relative displacement control function in the computational element of the ser-
vomechanism is modified to produce an output proportional to the sum of the
relative displacement and its first integral. Such a servomechanism has propor-
tional plus integral control.
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Steady-State Response. A comparison of the steady-state response of the active
and passive vibration control systems illustrates some of the advantages and disad-
vantages associated with a servo-controlled vibration control system. In Fig. 32.21,
assume that F(t) = 0 and that the vibration excitation is caused by the motion u(t) of
the support base. Then the equation of motion for the supported body of the active
vibration control system having both the active damping servomechanism shown by
Fig. 32.21 and the integral relative displacement control servomechanism shown 
by Fig. 32.20 is

mẍ + G2ẋ + kx + G1 	 x dt = ku + G1 	 u dt (32.29)

The response of this isolation system, when the vibration excitation u(t) is sinu-
soidal in nature and steady with respect to time, may be expressed in terms of
transmissibility:

T = � (32.30)

Figure 32.23 is a plot of Eq. (32.30) for four values of the relative displacement
dimensionless gain term and six values of the velocity dimensionless gain term,
G1/(mωn

3) and G2/cc, respectively. The corresponding expression for the transmissi-
bility for the conventional passive vibration control system differs from that for an
active system, i.e., Eq. (32.30), because of the nature of the force feedback terms act-
ing upon the supported body.At frequencies well above the vibration control system
undamped natural frequency ωn, the active and passive system transmissibility equa-
tions differ because of the presence of a damping term in the numerator of the pas-
sive system equation.At these higher frequencies, the passive system transmissibility
has the characteristic that as ω → ∞, T → 2(c/cc) (ωn/ω). The active system, however,
tends to act as an undamped vibration control system wherein the transmissibility at
high frequencies has the characteristic that as ω → ∞, T → ωn

2/ω2. Thus the active
vibration control system provides a lower transmissibility at frequencies above the
system natural frequency, especially for large values of the active and passive damp-
ing terms.

At excitation frequencies close to the system natural frequency, both the active
and passive vibration control systems exhibit a resonance condition when the system
damping terms are small.The peak value of the system transmissibility at the system
resonance frequency is controllable by the addition of damping. In the passive vibra-
tion control system, as the fraction of critical damping is increased, the peak trans-
missibility is lowered, reaching a value of unity for an infinite value of the fraction of
critical damping. Although the passive system damping controls the peak transmis-
sibility, high values of damping greatly degrade the system’s main function of isolat-
ing vibration; in fact, very large magnitudes of the system damping term yield little
to no vibration isolation, since the damper tends to become a rigid link between the
control system vibrating base and the supported body. The effect of damping on the
active vibration control system is similar to that on the passive vibration-isolation
system when the active fraction of critical damping is small. However, as the active
system damping is increased, an increasingly more rigid link is placed between the
supported body and motionless space; thus, increasing the active fraction of critical
damping always decreases the system transmissibility at frequencies above the nat-
ural frequency. With a relative displacement gain G1 of zero, the active system reso-
nance will disappear when the active fraction of critical damping exceeds unity, as is
shown by the curve of Fig. 32.23A. With an active fraction of critical damping of
unity, the peak transmissibility is also unity and occurs at zero frequency, and for all

(G1/mωn
3)2 + (ω/ωn)2

������
(ω/ωn − ω3/ωn

3)2 + [G1/mωn
3 − 2(G2/cc)(ω2/ωn

2)]2
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FIGURE 32.23 Steady-state frequency response for an active vibration control system having an ideal active damping servomechanism.
The transmissibility is plotted against the frequency ratio ω/ωn. In (A) there is no integral relative displacement control servomechanism,
i.e., G1/mωn

3 = 0; in (B), (C), and (D) such a control mechanism has been added and this ratio has values of 0.1, 0.2, and 0.5, respectively.
For each of these illustrations a set of curves is shown for the following values of the ratio G2/Cc: 0.2, 0.5, 1, 2, 5, and 10. Changes in the ser-
vomechanism feedback constants affect the response characteristics through their dynamic interactions, which alter the frequency
response at low excitation frequencies.
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other frequencies the system transmissibility is less than 1, having the approximate
magnitude of 1/[2(G2/cc) (ω/ωn)] at frequencies from zero to about twice the system
natural frequency and ωn

2/ω2 at higher frequencies.
The addition of the relative displacement integral control has little influence on

transmissibility at high frequencies and thus has no important effect on the ability of
the complete system to isolate vibration. However, the effect at lower frequencies is
significant, as is shown in Fig. 32.23B, C, and D. As the dimensionless gain G1/mωn

3

of the displacement control loop is increased, the transmissibility of the system in
the region of resonance increases. If the dimensionless displacement gain term
equals twice the active fraction of critical damping, the active vibration control sys-
tem becomes dynamically unstable. Under these conditions, if the supported body
receives the slightest disturbance, a system oscillation will develop and continue
indefinitely, as would be the case with a passive system without damping. Increasing
the relative displacement gain term above this critical value results in a condition
where the system’s automatic control functions continually add energy to the sup-
ported body and passive spring element in the form of ever-increasing oscillations,
which continue to increase in amplitude until motor saturation or destruction of the
system occurs.

Stability of Active Vibration Control Systems. Operation of a dynamically
unstable active vibration control system exhibits one or more of the following char-
acteristics:

1. The active vibration control system acts like an undamped passive vibration con-
trol system.

2. The system exhibits oscillations that increase with time and can become very
large in magnitude.

3. The system moves to one of its excursion stroke limits and stays there.

The ensurance of a dynamically stable active vibration control system is impor-
tant at both the design and hardware stages of development and can become a com-
plex design task. Much of the field of automatic control system analysis and
synthesis deals with establishing the limits of feedback gains beyond which the sys-
tem becomes unstable.
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CHAPTER 33
MECHANICAL PROPERTIES 

OF RUBBER

Ronald J. Schaefer

INTRODUCTION

Rubber is a unique material that is both elastic and viscous. Rubber parts can there-
fore function as shock and vibration isolators and/or as dampers. Although the term
rubber is used rather loosely, it usually refers to the compounded and vulcanized
material. In the raw state it is referred to as an elastomer. Vulcanization forms chem-
ical bonds between adjacent elastomer chains and subsequently imparts dimen-
sional stability, strength, and resilience. An unvulcanized rubber lacks structural
integrity and will “flow” over a period of time.

Rubber has a low modulus of elasticity and is capable of sustaining a deformation
of as much as 1000 percent. After such deformation, it quickly and forcibly retracts
to its original dimensions. It is resilient and yet exhibits internal damping. Rubber
can be processed into a variety of shapes and can be adhered to metal inserts or
mounting plates. It can be compounded to have widely varying properties.The load-
deflection curve can be altered by changing its shape. Rubber will not corrode and
normally requires no lubrication.

This chapter provides a summary of rubber compounding and describes the static
and dynamic properties of rubber which are of importance in shock and vibration
isolation applications. It also discusses how these properties are influenced by envi-
ronmental conditions.

RUBBER COMPOUNDING

Typical rubber compound formulations consist of 10 or more ingredients that are
added to improve physical properties, affect vulcanization, prevent long-term dete-
rioration, and improve processability. These ingredients are given in amounts based
on a total of 100 parts of the rubber (parts per hundred of rubber).
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ELASTOMERS

Both natural and synthetic elastomers are available for compounding into rubber
products. The American Society for Testing and Materials (ASTM) designation and
composition of some common elastomers are shown in Table 33.1. Some elastomers
such as natural rubber, Neoprene, and butyl rubber have high regularity in their
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TABLE 33.1 Designation and Composition of Common Elastomers

ASTM designation Common name Chemical composition

NR Natural rubber cis-Polyisoprene

IR Synthetic rubber cis-Polyisoprene

BR Butadiene rubber cis-Polybutadiene

SBR SBR Poly (butadiene-styrene)

IIR Butyl rubber Poly (isobutylene-isoprene)

CIIR Chlorobutyl rubber Chlorinated poly 
(isobutylene-isoprene)

BIIR Bromobutyl rubber Brominated poly 
(isobutylene-isoprene)

EPM EP rubber Poly (ethylene-propylene)

EPDM EPDM rubber Poly (ethylene-propylene-
diene)

CSM Hypalon Chloro-sulfonyl-polyethylene

CR Neoprene Poly chloroprene

NBR Nitrile rubber Poly (butadiene-acrylonitrile)

HNBR Hydrogenated nitrile rubber Hydrogenated poly 
(butadiene-acrylonitrile)

ACM Polyacrylate Poly ethylacrylate

ANM Polyacrylate Poly (ethylacrylate-
acrylonitrile)

T Polysulfide Polysulfides

FKM Fluoroelastomer Poly fluoro compounds

FVMQ Fluorosilicone Fluoro-vinyl polysiloxane

MQ Silicone rubber Poly (dimethylsiloxane)

VMQ Silicone rubber Poly (methylphenyl-siloxane)

PMQ Silicone rubber Poly (oxydimethyl silylene)

PVMQ Silicone rubber Poly (polyoxymethylphenyl-
silylene)

AU Urethane Polyester urethane

EU Urethane Polyether urethane

GPO Polyether Poly (propylene oxide-allyl 
glycidyl ether)

CO Epichlorohydrin homopolymer Polyepichlorohydrin

ECO Epichlorohydrin copolymer Poly (epichlorohydrin-ethylene 
oxide)
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backbone structure. They will align and crystallize when a strain is applied, with
resulting high tensile properties. Other elastomers do not strain-crystallize and
require the addition of reinforcing fillers to obtain adequate tensile strength.1

Natural rubber is widely used in shock and vibration isolators because of its high
resilience (elasticity), high tensile and tear properties, and low cost. Synthetic elas-
tomers have widely varying static and dynamic properties. Compared to natural rub-
ber, some of them have much greater resistance to degradation from heat, oxidation,
and hydrocarbon oils. Some, such as butyl rubber, have very low resilience at room
temperature and are commonly used in applications requiring high vibration damp-
ing. The type of elastomer used depends on the function of the part and the envi-
ronment in which the part is placed. Some synthetic elastomers can function under
conditions that would be extremely hostile to natural rubber. An initial screening of
potential elastomers can be made by determining the upper and lower temperature
limit of the environment that the part will operate under.The elastomer must be sta-
ble at the upper temperature limit and maintain a given hardness at the lower limit.
There is a large increase in hardness when approaching the glass transition tempera-
ture. Below this temperature the elastomer becomes a “glassy” solid that will frac-
ture upon impact.

Further screening can be done by determining the solvents and gases that the
part will be in contact with during normal operation and the dynamic and static
physical properties necessary for adequate performance.

REINFORCEMENT

Elastomers which do not strain-crystallize need reinforcement to obtain adequate
tensile properties. Carbon black is the most widely used material for reinforcement.
The mechanism of the reinforcement is believed to be both chemical and physical in
nature.2 Its primary properties are surface area and structure. Smaller particle-size
blacks having a higher surface area give a greater reinforcing effect. Increased 
surface area gives increased tensile, modulus, hardness, abrasion resistance, tear
strength, and electrical conductivity and decreased resilience and flex-fatigue life.
The same effects are also found with increased levels (parts per hundred rubber) of
carbon black, but peak values occur at different levels. Structure refers to the high-
temperature fusing together of particles into grape-like aggregates during manufac-
ture. Increased structure will increase modulus, hardness, and electrical conductivity
but will have little effect on tensile, abrasion resistance, or tear strength.

ADDITION OF OILS

Oils are used in compounding rubber to maintain a given hardness when increased
levels of carbon black or other fillers are added. They also function as processing
aids and improve the mixing and flow properties (extrudability, etc.).

ANTI-DEGRADENTS

Light, heat, oxygen, and ozone accelerate the chemical degradation of elastomers.
This degradation is in the form of chain scission or chemical cross-linking depending
on the elastomer. Oxidation causes a softening effect in NR, IR, and IIR. In most
other elastomers the oxygen causes cross-linking and the formation of stiffer com-
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pounds. Ozone attack is more severe and leads to surface cracking and eventual
product failure. Cracking does not occur unless the rubber is strained. Elastomers
containing unsaturation in the backbone structure are most vulnerable. Anti-
degradents are added to improve long-term stability and function by different chem-
ical mechanisms. Amines, phenols, and thioesters are the most common types of
antioxidants, while amines and carbamates are typical anti-ozonants. Paraffin waxes
which bloom to the surface of the rubber and form protective layers are also used as
anti-ozonants.

VULCANIZING AGENTS

Vulcanization is the process by which the elastomer molecules become chemically
cross-linked to form three-dimensional structures having dimensional stability. The
effect of vulcanization on compound properties is shown in Fig. 33.1. Sulfur, perox-
ides, resins, and metal oxides are typically used as vulcanizing agents. The use of sul-
fur alone leads to a slow reaction, so accelerators are added to increase the cure rate.
They affect the rate of vulcanization, cross-link structure, and final properties.3

MIXING

Adequate mixing is necessary to obtain a compound that processes properly, cures
sufficiently, and has the necessary physical properties for end use.4 The Banbury
internal mixer is commonly used to mix the compound ingredients. It contains two
spiral-shaped rotors that operate in a completely enclosed chamber.A two-step pro-
cedure is generally used to ensure that premature vulcanization does not occur.
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FIGURE 33.1 Vulcanizate properties as a function of the extent of vulcanization. (Eirich
and Coran.3)
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Most of the ingredients are mixed at about 120°C in the first step. The vulcanizing
agents are added at a lower temperature in the second step.

MOLDING

Compression, transfer, and injection-molding techniques are used to shape the final
product. Once in the mold, the rubber compound is vulcanized at temperatures
ranging from 100 to 200°C. The cure time and the temperature are determined
beforehand with a curemeter, such as the oscillating disk rheometer.5 After removal
from the mold, the rubber product is sometimes postcured in an autoclave. The
postcuring gives improved compression-set properties.

STATIC PHYSICAL PROPERTIES

Rubber has properties that are drastically different from other engineering materi-
als. Consequently, it has physical testing procedures that are unique.6 Rubber has
both elastic and viscous properties. Which of these properties predominates fre-
quently depends on the testing conditions. A summary of the characteristic proper-
ties of different elastomers is shown in Table 33.2.

HARDNESS

Hardness is defined as the resistance to indentation. The durometer is an instrument
that measures the penetration of a stress-loaded metal sphere into the rubber. Hard-
ness measurements in rubber are expressed in Shore A or Shore D units according
to ASTM test procedures.7 Because of the viscoelastic nature of rubber, a durome-
ter reading reaches a maximum value as soon as the metal sphere reaches maximum
penetration into the specimen and then decreases the next 5 to 15 sec. Hand-held
spring-loaded durometers are commonly used but are very subject to operator error.
Bench-top dead-weight-loaded instruments reduce the error to a minimum.8

STRESS-STRAIN

Rubber is essentially an incompressible substance that deflects by changing shape
rather than changing volume. It has a Poisson’s ratio of approximately 0.5. At very
low strains, the ratio of the resulting stress to the applied strain is a constant
(Young’s modulus).This value is the same whether the strain is applied in tension or
compression. Hooke’s law is therefore valid within this proportionality limit. How-
ever, as the strain increases, this linearity ceases, and Hooke’s law is no longer appli-
cable.Also the compression and tension stresses are then different.This is evident in
load-deflection curves run on identical samples in compression, shear, torsion, ten-
sion, and buckling, as shown in Fig. 32.2. Rubber isolators and dampers are typically
designed to utilize a combination of these loadings. However, shear loading is most
preferred since it provides an almost linear spring constant up to strains of about 200
percent. This linearity is constant with frequency for both small and large dynamic
shear strains.The compression loading exhibits a nonlinear hardening at strains over
30 percent and is used where motion limiting is required. However, it is not recom-
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TABLE 33.2 Relative Properties of Various Elastomers

VMQ
MQ,

IIR EPM ACM PMQ, AU CO
ASTM designation NR BR SBR CIIR EPDM CSM CR NBR HNBR ANM T FKM FVMQ PVMQ EU GPO ECO

Durometer range 30–90 40–90 40–80 40–90 40–90 45–100 30–95 40–95 35–95 40–90 40–85 60–90 40–80 30–90 35–100 40–90 40–90
Tensile max, psi 4500 3000 3500 3000 2500 4000 4000 4000 4500 2500 1500 3000 1500 1500 5000 3000 2500
Elongation max., % 650 650 600 850 600 500 600 650 650 450 450 300 400 900 750 600 350
Compression set A B B B B-A C-B B B B-A B D B-A C-B B-A D B-A B-A
Creep A B B B C-B C B B B C D B B C-A C-A B B
Resilience High High Med. Low Med. Low High Med.-Low Med. Med. Low Low Low High-Low High-Low High Med.-Low
Abrasion resistance A A A C B A A A A C-B D B D B A B C-B
Tear resistance A B C B C B B B B D-C D B D C-B A A C-A
Heat aging at 212°F C-B C B A B-A B-A B B A A C-B A A A B B-A B-A
Tg, °C −73 −102 −62 −73 −65 −17 −43 −26 −32 −24, −54 −59 −23 −69 −127, −86 −23, −34 −67 −25, −46
Weather resistance D-B D D A A A B D A A B A A A A A B
Oxidation resistance B B C A A A A B A A B A A A B B B
Ozone resistance NR-C NR NR A A A A C A B A A A A A A A
Solvent resistance

Water A A B-A A A B B B-A A D B A A A C-B C-B B
Ketones B B B A B-A B C D D D A NR D B-C D C-D C-D
Chlorohydrocarbons NR NR NR NR NR D D C C B C-A A B-A NR C-B A-D A-B
Kerosene NR NR NR NR NR B B A A A A A A D-C B A-C A
Benzol NR NR NR NR NR C-D C-D B B C-B C-B A B-A NR C-B NR B-A
Alcohols B-A B B B-A B-A A A C-B C-B D B C-A C-B C-B B C A
Water glycol B-A B-A B B-A A B B B A C-B A A A A C-B B C
Lubricating oils NR NR NR NR NR A-B B-C A A A A A A B-C A-B D A

A = excellent, B = good, C = fair, D = use with caution, NR = not recommended

SOURCE: Seals Eastern, Inc.
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mended where energy storage is required. Tension-loading stores energy more effi-
ciently than either compression-loading or shear-loading but is not recommended

because of the resulting stress loads 
on the rubber-to-metal bond, which 
may cause premature failure. Buckled-
loading is a combination of tension- and
compression-loading and derives some
of the benefits of both.

The stress-strain properties of rub-
ber compounds are usually measured
under tension as per ASTM proce-
dures.9 Either molded rings or die-cut
“dumbbell”-shaped specimens are used
in testing. Stress measurements are
made at a specified percentage of elon-
gation and reported as modulus values.
For example, 300 percent modulus is
defined as the stress per unit cross-
sectional area (in psi or MPa units) at
an elongation of 300 percent. Also
measured are the stress at failure (ten-
sile) and maximum percentage elonga-
tion. These are the most frequently
reported physical properties of rubber
compounds.

The stiffness (spring rate) is the ratio
of stress to strain expressed in newtons
per millimeter. It is dependent not only
on the rubber’s modulus but also on the
shape of the specimen or part being
tested. Since rubber is incompressible,
compression in one direction results in
extension in the other two directions,
the effect of which is a bulging of the
free sides. The shape factor is calculated
by dividing one loaded area by the total
free area.

TEAR

Vibration isolators and dampers that are subjected to cyclical loads frequently fail
due to a fracturing of the rubber component. A fracture may initiate in an area
where stress concentration is at a maximum. After initiation, the fracture increases
in size and progresses into a tearing action. Tear properties are therefore important
in some applications. Tensile tests are run on dumbbell-shaped samples containing
no flaws. The stress is therefore evenly distributed across the sample. Tear-testing
procedures concentrate the stress in one area, either through sample design or by
cutting a nick in the sample.10 Samples are die cut (die A, B, or C) from tensile test-
ing sheets. The peak force and sample thickness are recorded. Tear values are
reported in units of pounds per inch or kilonewtons per meter. Tear and tensile test-
ing provide the same rank ordering of different types of rubbers.
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FIGURE 33.2 Increase in torsional modulus
of elasticity of various elastomers as a function
of temperature. (After Gehman.16)
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COMPRESSION SET AND CREEP

Dimensional stability is necessary for vibration isolators and dampers that function
under applied loads, i.e., the static deflection of an isolator should not increase with
time. Such an increase is a result of creep and compression set. Compression set is
the change in dimension with an applied strain; creep is the change in dimension with
an applied force. Compression set and excessive creep will induce a large change in
stiffness and dynamic properties over a period of time. Compression set is deter-
mined by compressing a specimen (of specified size) to a preset deflection and
exposing it to an elevated temperature.11 After exposure the specimen is allowed to
recover for one-half hour and the thickness is measured. Percent compression set is
the decrease in thickness divided by the original deflection and multiplied by 100.
Typical rubber compounds used for vibration isolation have compression set values
of from 10 to 50 percent. The exposure time is usually 22 or 70 hours at a tempera-
ture relevant to the intended use of the isolator or damper. Creep is determined by
placing a specimen in a compression device, applying a compressive force, and
exposing it to an elevated temperature.12 Percent creep is the decrease in thickness
divided by the original thickness and multiplied by 100.

ADHESION

Adequate rubber-to-metal adhesion is imperative in the fabrication of most vibra-
tion isolators and dampers. Adhesive is first applied to the metal; then the rubber is
bonded to the metal during vulcanization. Various adhesives are available for all
types of elastomers. In testing for adhesion, a strip of rubber is adhered to the face
of a piece of adhesive-coated metal.13 After vulcanization (and possible aging), the
rubber is pulled from the metal at an angle of 45° or 90°, and the adhesion strength
is measured. The mode of failure is also recorded.

Another ASTM method14 is used to determine the rubber-to-metal adhesion
when the rubber is bonded after vulcanization, i.e., for postvulcanization bonding. In
this procedure a vulcanized rubber disk is coated on both sides with an adhesive and
assembled between two parallel metal plates. Then the assembly is heated under
compression for a specified period of time. The metal plates are then pulled apart
until rupture failure.

LOW-TEMPERATURE PROPERTIES

Rubber becomes harder, stiffer, and less resilient with decreasing temperature.
These changes are brought about by a reduction in the “free volume” between
neighboring molecules and a subsequent reduction in the mobility of the elastomer
molecules. When approaching the glass transition temperature (Tg), its rubber-like
characteristic is lost and the rubber becomes leathery. Finally it changes to a hard,
brittle glass. The glass transition temperature is a second-order transition as
opposed to crystallization, which is a first-order transition. A first-order transition
is accompanied by a abrupt change in a physical property, while a second-order
transition is accompanied by a change in the rate of change. The glass transition
temperature can be detected by differential scanning calorimetry or changes in
static or dynamic mechanical properties.This is described in the section on dynamic
properties of rubber.

33.8 CHAPTER THIRTY-THREE
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The effect of temperature on stiffness is measured using a Gehman apparatus.15

It provides torque to a strip of rubber by a torsion wire. The measurement is first
made at 23°C and then at reduced temperatures. The relative modulus at any tem-
perature is the ratio of the modulus at that temperature to the modulus at 23°C.The
results are expressed as the temperatures at which the relative moduli are 2, 5, 50,
and 100. Figure 33.2 shows the effect of temperature on the relative torsional modu-
lus of various elastomers.16 Young’s modulus can also be measured at low tempera-
ture using a flexural procedure.17

HIGH-TEMPERATURE PROPERTIES

Some vibration isolators and dampers function in high-temperature environments.
The rubber compounds used in these applications must have resistance to high-
temperature degradation. The stability at high temperatures is related to the chemi-
cal structure of the elastomer and the chemical cross-linking bonds formed during
vulcanization. Elastomers containing no unsaturation (chemical double-bonds) in
the backbone have better high-temperature properties. Rubber compounds con-
taining EPDM, for example, have better high-temperature resistance than ones con-
taining natural rubber or SBR. In a sulfur cure, mono or disulfide cross-linking
bonds have better high-temperature stability than polysulfide bonds. Cure system
modifications are therefore used to improve high-temperature stability.

The high-temperature resistance of rubber compounds is determined by measur-
ing the percentage of change in tensile strength, tensile stress at a given elongation,
and ultimate elongation after aging in a high-temperature oven as per ASTM pro-
cedure.18

OIL AND SOLVENT RESISTANCE

Some vibration isolators and dampers, particularly those used in automotive prod-
ucts, have contact with oils or solvents. The effect of a liquid on a particular rubber
depends on the solubility parameters of the two materials. The more the similarity,
the larger the effect.A liquid may cause the rubber to swell, it may extract chemicals
from it, or it may chemically react with it.Any of these can lead to a deterioration of
the physical properties of rubber. The effect of liquids on rubber is determined by
measuring changes in volume or mass, tensile strength, elongation, and hardness
after immersion in oils, fuels, service fluids, or water.19

EXPOSURE TO OZONE AND OXYGEN

Ozone is a constituent of smog; in some areas, ozone may occur in concentrations that
are deleterious to rubber. Vibration isolators and dampers also may be exposed to
ozone generated by the corona discharge of electrical equipment. Elastomers contain-
ing unsaturation in their backbone structure are especially prone to ozone cracking,
since ozone attacks the elastomer at the double bonds. Elastomers such as NR, SBR,
BR, and NBR have poor resistance, while EPDM and GPO have excellent resistance
to ozone cracking. Ozone cracking will not occur if the rubber is unstrained.There is a
critical elongation at which the cracking is most severe.These strains are 7 to 9 percent
for NR, SBR, and NBR, 18 percent for CR, and 26 percent for IIR.20 Both static21 and
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dynamic22 testing procedures are used. In the static test the sample is given a specified
strain. Results are expressed as cracking severity using arbitrary scales or as time until
first cracks appear. In Method A, the dynamic procedure tests strips of rubber in ten-
sion at 0.5 Hz. Method B adheres the test strips to a rubber belt that is rotated around
two pulleys at 0.67 Hz.The number of cycles to initial cracking is reported.

DYNAMIC PROPERTIES

VISCOELASTICITY

Rubber has elastic properties similar to those of a metallic spring and has energy-
absorbing properties like those of a viscous liquid.23 These viscoelastic properties
allow rubber to maintain a constant shape after deformation, while simultaneously
absorbing mechanical energy. The viscosity (which varies with different elastomers)
increases with reduced temperature. The elasticity follows Hooke’s law and in-
creases with increased strain, while the viscosity follows Newton’s law and increases
with increased strain rate. Therefore, when applying a strain, the resultant stress will
increase with increasing strain rate.

Springs or dashpots are frequently used to make theoretical models which illus-
trate the interaction of the elastic and viscous components of rubber. The springs
and dashpots can be combined in series or in parallel, representing the Maxwell or
Voigt elements (see Table 36.2). Rubber actually consists of an infinite number of
such models with a wide spectrum of spring constants and viscosities.

MEASUREMENT OF DYNAMIC PROPERTIES

Resilience, measured by several relatively simple tests, is sometimes used for esti-
mating the dynamic properties of a rubber compound. In these test methods a strain
is applied to a rubber test sample by a free-falling indentor. Resilience is defined as
the ratio of the energy of the indentor after impact to its energy before impact
(expressed as a percentage). Two widely used methods include the pendulum24 and
the falling weight methods.25 Although resilience is a crude measurement of the
dynamic properties of rubber, it is attractive because of its simplicity and cost.

In free vibration methods, the rubber sample is allowed to vibrate at its natural
frequency.26 To change the natural frequency the sample size or added weights must
be changed. Since it is a free vibration, the amplitude A decreases with each oscilla-
tion. Resilience is defined as A3/A2, expressed as a percentage.

In forced vibration methods, the dynamic properties (or viscoelasticity) of a rub-
ber compound are determined by measuring its response to a sinusoidally varying
strain.27 In this manner, both the strain and the strain rate vary during a complete
cycle.The ratio of the energy dissipated in overcoming internal friction to the energy
stored is a function of the viscoelasticity of the rubber. In a simple apparatus for
measuring dynamic properties, a sinusoidally varying strain is applied to the sample
by means of a motor-driven eccentric. The resultant force is measured at the oppo-
site end of the sample with a dynamometer ring or electronic measuring device. The
angular distance between the input strain and the resultant stress is measured by
mechanical or electronic methods. A graph of the sinusoidal strain and resultant
stress, both plotted as a function of time or angle, is shown in Fig. 33.3.The measured
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maximum stress amplitude precedes the maximum strain amplitude by the phase
angle δ.The stress amplitude (F0) is composed of contributions from both the elastic
stress (F1) and the viscous stress (F2). The amount contributed by each is a function
of the phase angle. Following Hooke’s Law, the resultant stress due to the elastic
portion of the rubber is in phase with, and proportional to, the strain. When the
imposed strain reaches a peak value, the resultant elastic stress also reaches a peak
value. The resultant stress due to the viscous portion of the rubber is governed by
Newton’s law and is 90° out of phase with the imposed strain.When the strain is at a
maximum value, the strain rate (slope of the strain curve) is zero. Consequently, the
resultant viscous stress is zero.At zero strain, the strain rate is at a maximum, and the

MECHANICAL PROPERTIES OF RUBBER 33.11
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FIGURE 33.3 The applied sinusoidal strain and the resultant stress plotted as a function of time or
phase angle. The maximum elastic and viscous stress, and the elastic and viscous modulus values are
calculated using simple trigonometry. (After Schaefer.23)
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resultant viscous stress is at a peak value. The only values measured are the stress
amplitude and the phase angle δ. The complex modulus is calculated by dividing the
resultant maximum stress amplitude by the maximum imposed strain amplitude.
Both the maximum elastic stress amplitude and the maximum viscous stress ampli-
tude are calculated from the measured stress amplitude and the phase angle δ using
simple trigonometric functions. Dividing these stress values by the strain gives the
elastic modulus (E′) and the loss modulus (E″). Tan δ equals E″/E′. The value of tan
δ (the ratio of the viscous to the elastic response) is a measurement of damping or
hysteresis.

INFLUENCE OF COMPOUNDING INGREDIENTS

ELASTOMERS

The dynamic properties of an elastomer are determined by its glass transition tem-
perature (Tg). Elastomers having the lowest Tg will have the lowest tan δ (or highest
resilience). Natural rubber has a fairly low Tg (−60°C) and thus has a low tan δ. Butyl
rubber has a low Tg (−60°C), but the transition region extends above ambient tem-
perature. It consequently has a high tan δ and is frequently used in vibration damping
applications.The effect of temperature on the dynamic stiffness (dynamic spring rate)
and damping of compounds containing different elastomers is shown in Fig. 33.4.

CARBON BLACK

Carbon black has a major influence on the dynamic properties of compounded rub-
ber.28 It is a source of hysteresis or damping. The amount of damping increases with
the surface area of the carbon black and the level used in the compound.

VIBRATION ISOLATION AND DAMPING

Dynamic properties, which are a function of the elastomer and other compounding
variables, determine the vibration isolation and damping characteristics of a rubber
compound. Springs and dashpots are used to describe how the viscoelastic proper-
ties relate to the vibration isolation and damping properties.29 The quantity tan δ,
being the ratio of the viscous to elastic response, can be substituted for ζ = c/cc in the
equations for transmissibility derived in Chap. 2. Figure 33.5 summarizes the effect
of dynamic properties on transmissibility. Transmissibility curves of different com-
pounded elastomers are shown in Fig. 33.6.30 The NR, EPDM, CR, and SBR rubbers
have low Tg’s and therefore have low damping properties. As a result they have the
highest transmissibility at the resonating frequency and the lowest transmissibility at
higher frequencies.The opposite effect is seen with IIR and NBR, which have higher
damping properties. As shown in Fig. 33.7, increased levels of carbon black increase
damping and thus decrease the transmissibility at the resonance frequency.
Increased levels also increase the compound’s stiffness, with a resulting increase in
resonance frequency. For further information on the effect of viscoelastic properties
on vibration isolation and damping, see Refs. 31 and 32.

33.12 CHAPTER THIRTY-THREE

8434_Harris_33_b.qxd  09/20/2001  12:30 PM  Page 33.12



FIGURE 33.4 The effect of temperature on (A) the dynamic stiffness (spring rate)
and (B) the damping coefficient of typical isolating and damping compounds using
several elastomers.
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FATIGUE FAILURE

Rubber shock and vibration isolators and dampers fail in service due to either exces-
sive drift (creep) or mechanical fracture as a result of fatigue. Static drift or set test-
ing is described above in the section on compression set. The effect of temperature
on the drift of a natural rubber compound is shown in Fig. 33.8.33 The drift properties
of rubber can be tested using static or dynamic methods.

MECHANICAL PROPERTIES OF RUBBER 33.15
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Mechanical fractures occur when a rubber part is subjected to a cyclic stress or
strain.The initial crack usually originates in an area of high stress concentration and
grows until complete fracture occurs. Both the time until initial crack appearance
and the growth rate increase with increasing temperature and increased stress or
strain amplitudes.

Several procedures are available for the dynamic testing of laboratory-prepared
samples. The most common is the DeMattia flex machine which can test for crack
initiation or the growth of an induced cut.34 The Ross Flexer machine also tests for
cut growth.35 Although the data can be used for relative comparisons, all of these
procedures show poor correlation with product performance. Dynamic fatigue test-
ing is therefore frequently performed on the actual part. Because of time con-
straints, the applied energy input (cyclic stress and strain amplitudes) is increased to
much larger values than what the part experiences in actual service. The effect of
energy input on fatigue life is shown in Fig. 33.9.36 At low-energy input the SBR com-
pound has better fatigue resistance than the NR compound. However, when the
strain and resulting input energy is increased, the curves cross over, and the NR
compound has the better fatigue resistance.37 Therefore, caution must be exercised
when interpreting such data.

Reinforcing fillers and vulcanization systems also have definite effects on fatigue
properties.38 Smaller particle-size carbon blacks typically give increased reinforce-
ment and improved fatigue resistance. Vulcanization systems that produce high lev-
els of polysulfide crosslinks give optimum fatigue resistance.

33.16 CHAPTER THIRTY-THREE

FIGURE 33.9 Fatigue curves of carbon-black-filled natural rubber and SBR plotted as a function
of extension ratio (A) and strain energy (B). (After Babbit.36)

(B)(A)
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CHAPTER 34
ENGINEERING PROPERTIES

OF METALS

James E. Stallmeyer

INTRODUCTION

The design of equipment to withstand shock and vibration requires (1) a determina-
tion of the loads and resultant stresses acting on the equipment, and (2) the selection
of a suitable material. The loads and stresses may be determined from an appropri-
ate model of the equipment as described in Chap. 41.This chapter describes some of
the considerations required to adapt the results from the model analysis to the selec-
tion of suitable materials, including such engineering properties as the stress-strain
properties of metals and metal fatigue.

The selection of an appropriate material often involves an evaluation of the types
of stress condition to which the equipment will be subjected. If a small number of
severe stresses constitute the most critical situation, the most important considera-
tion is to design the equipment for adequate strength. For equipment that will be
subjected to sustained vibration or a large number of repeated applications of a
load, fatigue strength is likely to be the critical design parameter.The relative impor-
tance of these types of loading must be determined for each application.

When strength is the primary design factor, an appropriate balance between
stress and ductility is the most important consideration. Analytical models gener-
ally indicate the maximum stress based on linear properties of the material. If non-
ductile materials are used or if permanent deformation cannot be tolerated, the
equipment must be designed in such a way that the stress does not exceed the elas-
tic limit of the material. In some cases, permanent deformation may not be accept-
able because it would cause misalignment of parts whose proper operation depends
on accurate alignment. In other cases, permanent deformation of some structural
members may be acceptable. Several empirical procedures have been developed
for these cases.

One procedure, for members subjected to bending, is to permit some predeter-
mined percentage of the cross section to yield. Ductility of the material is required
for this procedure. The permanent deformation of the member, after the load has
been removed, will be less than the maximum deflection because the core of an elas-
tic material tends to restore the member to its original shape. This procedure is not

34.1
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easily adapted to members subjected to loading other than bending.Another proce-
dure establishes a maximum allowable stress equal to the yield point plus some
incremental percentage of the difference between the yield point and the ultimate
strength of the material. As the incremental percentage increases, the magnitude of
permanent deformation increases. Consequently, the magnitude of the incremental
percentage will depend upon the function of the particular member and the ability
to make adjustments or repairs. For bolts which are inaccessible for retightening, the
increment is generally zero. In cases where dimensional stability is important, but
some yielding can be tolerated, only a small percentage increment may be permissi-
ble. When significant yielding can be tolerated, the increment may be as much as 50
percent. For bearing surfaces or where permanent deformation is permissible, the
ultimate strength of the material may be used for design.

Design of equipment subject to vibration or repeated load applications requires a
more detailed evaluation of the stress versus time response for the life of the structure.
Three fatigue analysis procedures are available: the stress-life method, the strain-life
method, and the fracture-mechanics method. Which of the three procedures is applica-
ble will depend on the stress-time history. Knowledge of all three methods allows the
engineer to choose the most appropriate method for the specific application.

STRESS-STRAIN PROPERTIES

STATIC PROPERTIES

The important static properties are yield strength, ultimate tensile strength, elonga-
tion at failure, and reduction of area. A standard tensile test specimen, defined by
ASTM Specification A370,1 is used to evaluate these properties. The rate of loading
and the procedure for evaluation of properties are defined in the specification.
Under dynamic loading the yield strength and the ultimate strength depend upon
the strain rate, which in turn depends upon the geometry of the structure and the
type of loading. Dynamic properties are not standardized easily. There is little infor-
mation about these properties for the wide range of available metals.

The standard tensile test provides a plot of stress versus strain from which many
of the mechanical properties may be
obtained. A typical stress-strain curve is
presented in Fig. 34.1. For materials
which are linearly elastic, the elongation
e is directly proportional to the length of
the test bar l and the stress σ. The pro-
portionality constant is called the modu-
lus of elasticity E. The plot of stress
versus strain usually deviates from lin-
ear behavior at the proportional limit,
which depends on the sensitivity of the
instrumentation. Most metals can be
stressed slightly higher than the propor-
tional limit without showing permanent
deformation upon removal of the load.
This point is referred to as the elastic
limit. Mild steels exhibit a distinct yield
point, at which permanent deformation
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FIGURE 34.1 Typical stress-strain diagram
for a metal with a yield point.
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begins suddenly and continues with no increase in stress. For materials which exhibit
a nonlinear stress-strain relationship, the term yield strength is generally used. The
yield strength of a material is that stress which produces, on unloading, a permanent
strain of 0.002 in./in. (0.2 percent).

Beyond the yield strength, large permanent deformations occur at a reduced
modulus, the strain-hardening modulus. The strain-hardening modulus decreases at
increasing loads until the cross-sectional area of the test bar begins to decrease,
necking, at the ultimate load. Beyond this point further extension takes place with
decreasing force. This ability of the material to flow without immediate rupture is
called ductility, which is defined as the percent reduction of cross-sectional area
measured at the section of fracture.Another measure of ductility is the percent elon-
gation of the gage length. This value depends on the shape and size of the specimen
and the gage length.

Other static properties of materials find application in the design of equipment to
withstand shock and vibration. The modulus of rigidity G is the ratio of shear stress
to shear strain; it may be determined from the torsional stiffness of a thin-walled
tube of the material.The value of G for steel is 12 × 106 lb/in.2. Poisson’s ratio ν is the
ratio of the lateral unit strain to the normal unit strain in the elastic range of the
material. This ratio evaluates the deformation of a material that occurs perpendicu-
lar to the direction of application of load. The value of ν for steel is 0.3. More com-
plete data on materials and their properties as used in machine and equipment
design are compiled in available references.2–4 Values of the static properties of typ-
ical engineering materials are given in Tables 34.1 to 34.3. (All values of σ, G, and E
in these and later tables may be converted to SI units by MPa = 145 lb/in.2.)

ENGINEERING PROPERTIES OF METALS 34.3

TABLE 34.1 Mechanical Properties of Typical Cast Irons (A. Vallance and V. Doughtie.2)

Endur-
ance

Ultimate strength
limit in

Modulus of elasticity
Elon-

Ten- Com- reversed Brinell Tension gation
sion, pression, bending hard- and Shear in

lb/in.2, lb/in.2, lb/in.2, ness compression, lb/in.2, 2 in.,
Material σu† σu σe number lb/in.2, E G %

Gray, ordinary 18,000 80,000 9,000 100–150 10–12,000,000 4,000,000 0–1
Gray, good* 24,000 100,000 12,000 100–150 12,000,000 4,800,000 0–1

16,000
Gray, high grade 30,000 120,000 15,000 100–150 14,000,000 5,600,000 0–1
Malleable, S.A.E. 32510 50,000 120,000 25,000 100–145 23,000,000 9,200,000 10
Nickel alloys:

Ni-0.75, C-3.40, Si-1.75, 32,000 120,000 16,000 200 15,000,000 6,000,000 1–2
Mn-0.55* 24,000 175

Ni-2.00, C-3.00, Si-1.10, 40,000 155,000 20,000 220 20,000,000 8,000,000 1–2
Mn-0.80* 31,000 200

Nickel-chromium alloys:
Ni-0.75, Cr-0.30, C-3.40, 32,000 125,000 16,000 200 15,000,000 6,000,000 1–2

Si-1.90, Mn-0.65
Ni-2.75, Cr-0.80, C-3.00, 45,000 160,000 22,000 300 20,000,000 8,000,000 1–2

Si-1.25, Mn -0.60

* Upper figures refer to arbitration test bars. Lower figures refer to the center of 4-in. round specimens.
† Flexure: For cast irons in bending, the modulus of rupture may be taken as 1.75 σu (tension) for circular sec-

tions, 1.50 σu for rectangular sections and 1.25 σu for I and T sections.
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TEMPERATURE AND STRAIN-RATE EFFECTS

The static properties of most engineering materials depend upon the testing tem-
perature.As the testing temperature is increased above room temperature, the yield
point, ultimate strength, and modulus of elasticity decrease. For example, the yield
point of structural carbon steel is about 90 percent of the room-temperature value at
400°F (204°C), 60 percent at 800°F (427°C), 50 percent at 1000°F (538°C), 20 percent
at 1300°F (704°C), and 10 percent at 1600°F (871°C).The corresponding changes for
ultimate strength are 100 percent of the room-temperature value at 400°F, 85 per-
cent at 800°F, 50 percent at 1000°F, 15 percent at 1300°F, and 10 percent at 1600°F.
Changes in the modulus of elasticity are 95 percent of the room-temperature value
at 400°F, 85 percent at 800°F, 80 percent at 1000°F, 70 percent at 1300°F, and 50 per-
cent at 1600°F. As a result of these changes in properties, the ductility is increased
significantly.

When materials are tested in temperature ranges where creep of the material
occurs, the creep strains will contribute to the inelastic deformation. The magnitude
of the creep strain increases as the speed of the test decreases. Consequently, tests at
elevated temperatures should be conducted at a constant strain rate, and the value

34.4 CHAPTER THIRTY-FOUR

TABLE 34.2 Mechanical Properties of Typical Carbon Steels (A. Vallance and V. Doughtie.2)

Yield strength

Ten- Endur-
sion ance
and limit 

Modulus of elasticity
Ultimate strength

com- in re- Tension Elon-
Ten- pres- versed Brinell and com- ga-
sion, Shear, sion, Shear, bending hard- pression, Shear, tion

lb/in.2, lb/in.2, lb/in.2, lb/in.2, lb/in.2, ness lb/in.2, lb/in.2, 2 in.,
Material σu σu σy σy σe number E G %

Wrought iron 48,000 50,000 27,000 30,000 25,000 100 28,000,000 11,200,000 30–40
Cast steel:

Soft 60,000 42,000 27,000 16,000 26,000 110 30,000,000 12,000,000 22
Medium 70,000 49,000 31,500 19,000 30,000 120 30,000,000 12,000,000 18
Hard 80,000 56,000 36,000 21,000 34,000 130 30,000,000 12,000,000 15

SAE 1025:
Annealed 67,000 41,000 34,000 20,000 29,000 120 30,000,000 12,000,000 26
Water-quenched* 78,000 55,000 41,000 24,000 43,000 159 30,000,000 12,000,000 35

90,000 63,000 58,000 34,000 50,000 183 27
SAE 1045:

Annealed 85,000 60,000 45,000 26,000 42,000 140 30,000,000 12,000,000 20
Water-quenched* 95,000 67,000 60,000 35,000 53,000 197 30,000,000 12,000,000 28

120,000 84,000 90,000 52,000 67,000 248 15
Oil-quenched* 96,000 67,000 62,000 35,000 53,000 192 30,000,000 12,000,000 22

115,000 80,000 80,000 45,000 65,000 235 16
SAE 1095:

Annealed 110,000 75,000 55,000 33,000 52,000 200 30,000,000 12,000,000 20
Oil-quenched* 130,000 85,000 66,000 39,000 68,000 300 30,000,000 11,500,000 16

188,000 120,000 130,000 75,000 100,000 380 10

* Upper figures: steel quenched and drawn to 1300°F. Lower figures: steel quenched and drawn to 800°F.
Values for intermediate drawing temperatures may be approximated by direct interpolation.
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ENGINEERING PROPERTIES OF METALS 34.5

TABLE 34.3 Mechanical Properties of Copper-Zinc Alloys (Brass) 
(A. Vallance and V. Doughtie2)

Modulus of
elasticity 

Elon- Ultimate Yield
Brinell Tension gation

strength strength
Endurance hard- and com- in

Tension, Tension, limit, ness pression, 2 in.,
Type of material lb/in.2, σu lb/in.2, σe lb/in.2, σe number lb/in.2, E %

Commercial bronze 
(90 Cu, 10 Zn):

Rolled, hard 65,000 63,000 18,000 107 15,000,000 18
Rolled, soft 35,000 11,000 12,000 52 15,000,000 56
Forged, cold 40,000–65,000 25,000–61,000 12,000–16,000 62–102 15,000,000 55–20

Red brass 
(85 Cu, 15 Zn):

Rolled, hard 75,000 72,000 20,000 126 15,000,000 18
Rolled, soft 37,000 14,000 14,000 54 15,000,000 55
Forged, cold 42,000–62,000 22,000–54,000 14,000–18,000 63–120 15,000,000 47–20

Low brass 
(80 Cu, 20 Zn):

Rolled, hard 75,000 59,000 22,000 130 15,000,000 18
Rolled, soft 44,000 12,000 15,000 56 15,000,000 65
Forged, cold 47,000–80,000 20,000–65,000 63–133 15,000,000 30–15

Spring brass 
(75 Cu, 25 Zn):

Hard 84,000 64,000 21,000 107* 14,000,000 5
Soft 45,000 17,000 17,000 57* 18,000,000 58

Cartridge brass 
(70 Cu, 30 Zn):

Rolled, hard 100,000 75,000 22,000 154 15,000,000 14
Rolled, soft 48,000 30,000 17,000 70 15,000,000 55

Deep-drawing brass 
(68 Cu, 32 Zn):

Strip, hard 85,000 79,000 21,000 106* 15,000,000 3
Strip, soft 45,000 11,000 17,000 13* 15,000,000 55

Muntz metal 
(60 Cu, 40 Zn):

Rolled, hard 80,000 66,000 25,000 151 15,000,000 20
Rolled, soft 52,000 22,000 21,000 82 15,000,000 48

Tobin bronze
(60 Cu, 39.25 Zn, 0.75 Sn):

Hard 63,000 35,000 21,000 165 15,000,000 35
Soft 56,000 22,000 90 15,000,000 45

Manganese bronze 
(58 Cu, 40 Zn):

Hard 75,000 45,000 20,000 110 15,000,000 20
Soft 60,000 30,000 16,000 90 15,000,000 30

* Rockwell hardness F.
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used should be reported along with the results. Creep strains may be significant at
room temperature for materials with low melting temperatures.

The yield strength and the ultimate strength of certain metals, as well as the
entire stress level of the stress-strain curve, are increased when the rate of deforma-
tion is increased. Figure 34.2 presents information on the static and dynamic values
of the ultimate strength of several metals when the dynamic strength is determined
at impact velocities of 200 to 2500 ft/sec (60 to 76 m/s).5 The influence of strain rate

on the tensile properties of mild steel at room temperature is shown in Fig. 34.3.The
marked difference between the yield stress and ultimate stress at low rates of strain
disappears at high rates of strain.6 Figure 34.3 also shows that the ultimate stress
remains practically unchanged for strain rates below 1 in./in./sec. In this limited
range the stress-strain curve of most engineering metals is not raised appreciably.7

Mild steel is an exception in which the yield stress in influenced markedly by strain
rate in the range from 0 to 1 in./in./sec.

Although the yield strength and ultimate strength of mild steel show an increase
as the rate of strain increases, as illustrated in Fig. 34.3, this effect is of very limited
significance in the design of equipment to withstand shock and vibration. In general,
a strain rate great enough to cause a significant increase in strength occurs only
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FIGURE 34.2 Static and dynamic values of the ultimate strength of several
metals when the dynamic strengths were obtained at impact velocities of 200 to
250 ft/sec. (D. S. Clark and D. S. Wood.5)
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closely adjacent to a source of shock, as
at the point of impact of a projectile on
armor plate. Equipment seldom is sub-
jected to shock of this nature. In a typi-
cal installation, the structure interposed
between the equipment and the source
of shock is unable to transmit large
forces suddenly enough to cause high
strain rates at the equipment. Further-
more, the response of a structure to a
shock is oscillatory; maximum strain
rate occurs at zero strain, and vice 
versa. The data of Fig. 34.3 represent
conditions where maximum stress and
maximum rate of strain occur simultane-
ously; thus, they do not apply directly to
the design of shock-resistant equipment.
The use of statically determined yield

strength and ultimate strength for design purposes is a conservative (but not overly
conservative) practice.

TOUGHNESS AND DUCTILITY

It is useful to evaluate the total energy needed to fracture a test bar under tension;
this energy is a measure of the toughness of the material. The area under the typical
stress-strain diagram shown in Fig. 34.1 gives an approximate measure of the fracture
energy per unit volume of material. However, the true fracture energy depends upon
the true stress and true strain characteristics, which take into account the nonuniform
strain resulting from the reduction of area upon necking of the test bar. Calculated
values of the fracture energy for various metals are given in Table 34.4. Tough mate-
rials (e.g., wrought iron and low- or medium-carbon steel) exhibit high unit elonga-
tion and are considered to be ductile. By contrast, cast iron exhibits practically no
elongation and is considered to be brittle. If only the elastic strain energy up to the
proportional limit is included, the resulting stored energy per unit volume is called
the modulus of resilience. Values of this property are also given in Table 34.4.

CRITICAL STRAIN VELOCITY

When a large load is applied to a structure very suddenly, failure of the structure
may occur with a relatively small overall elongation. This has been interpreted as a
brittle fracture, and it has been said that a material loses its ductility at high strain
rates. However, an examination of the failure shows normal ductility (necking) in a
region close to the application of load. Large stresses are developed in this region by
the inertia of the material remote from the application of the load, and failure occurs
before the plastic stress waves are transmitted away from the point of load applica-
tion. This effect is important only where loads are applied very suddenly, as in a
direct hit by a projectile on armor plate. In general, equipment is mounted upon
structures that are protected from direct hits; the resilience of such structures pre-
vents a sufficiently rapid application of load for the above effect to be of significance
in the design of equipment.

ENGINEERING PROPERTIES OF METALS 34.7

FIGURE 34.3 Effect of strain rate on mechan-
ical properties of mild steel. (M. J. Manjoine.6)
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DELAYED INITIATION OF YIELD

Sudden application of load may not immediately result in yielding of a structure
made of ductile material. Rather, yielding may occur after some time delay. This
delay in initiation of yield is a function of the material, stress level, rate of load appli-
cation, and temperature. Consequently, a material may be stressed substantially
above its yield strength for a short period of time without yielding. For mild steel at
room temperature, the delay time is of the order of 0.001 sec. For repeated applica-
tions of load, the material has a memory; i.e., the durations of load are additive to
determine the time of yielding. Equipment subjected to shock or vibration experi-
ences an oscillatory stress pattern wherein the higher stresses occur repeatedly. The
durations of these stresses quickly add up to a time greater than the delay time for
common materials; thus, the effect is of little significance in the design of equipment
to withstand shock and vibration.

FATIGUE

The strength properties discussed up to this point are important to ensure structural
integrity in the event of a single application of severe loading. Most structures, how-
ever, will be subjected to many applications of loads that may be considerably below
the static-load capacity of the member or structure. Under such circumstances, local-
ized permanent changes in the material may lead to the initiation of small cracks,
which propagate under subsequent applications of cyclic load. Cracks may initiate
from crystal imperfections, dislocations, microcracks, lack of penetration, porosity,
etc.The rate of propagation increases as the crack grows in size. If the crack becomes
sufficiently large, the static load capacity of the member may be exceeded, resulting
in a ductile failure. If a critical crack length is reached, the member may fail by brit-
tle fracture at some stress significantly below the ultimate strength of the material.
The critical crack length is a function of stress level, temperature, and material prop-
erties.A comprehensive discussion of the factors which contribute to brittle fracture
can be found in Ref. 11.
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TABLE 34.4 Fracture Energy or Toughness of Different Materials (J. M. Lessells.8)

Toughness
Yield Tensile Unit elon- or fracture Modulus of

strength, strength, gation, energy, resilience,
Material Condition lb/in.2, σy lb/in.2, σu in./in., � in.-lb/in.3 in.-lb/in.3

Wrought iron As received 24,000 47,000 0.50 17,700 7
Steel (0.13% C) As received 26,000 54,000 0.44 17,600 11
Steel (0.25% C) As received 44,000 76,000 0.36 21,600 24
Steel (0.53% C) Oil-quenched 86,000 134,000 0.11 12,000 100

and drawn
Steel (1.2% C) Oil-quenched 130,000 180,000 0.09 10,800 280

and drawn
Steel (spring) Oil-quenched 140,000 220,000 0.03 4,400 320

and drawn
Cast iron As received . . . 20,000 0.005 70 1
Nickel cast iron As received 20,000 50,000 0.10 3,500 9
Rolled bronze As received 40,000 65,000 0.20 10,500 60
Duralumin Forged and 30,000 52,000 0.25 10,200 17

heat-treated
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Fatigue behavior is affected by a variety of factors. Some of the more important
parameters which influence the fatigue response are the properties of the material,
rate of cyclic loading, stress magnitude, residual stresses, size effect, geometry, and
prior strain history. The basic parameters in fatigue tests are the stress level and the
number of cycles to failure. The effects of other parameters are studied by evaluat-
ing the changes which occur in the relationship between stress and cycles to failure
as these parameters are introduced.

The tensile properties of a material serve as a guide in selecting materials. They
are used quantitatively to proportion members to resist static loading. There is no
equivalent set of fatigue properties available to the designer whose structure must
resist cyclic loading. Fatigue theories attempt to relate stress-strain properties to
fatigue behavior, but complexities which arise during fatigue have thwarted these
attempts. The design of equipment to resist repetitive load cycles is based on empir-
ical data or on the application of crack propagation laws.

Fatigue tests are conducted by subjecting a test specimen to a stress pattern in
which the stress varies with time. The test specimen may be subjected to alternating
bending stress, as in the case of the rotating beam specimen, or to alternating axial
stress. Most fatigue tests are conducted under conditions in which the stress varies
sinusoidally with time. However, the use of servo-controlled hydraulic testing
machines permits the variation of stress with time to follow any desired pattern.Tests
may be carried out under alternating tension and compression, alternating torsion,
alternating tension superimposed upon cyclic alternating tension, and many others.

Most fatigue data available in the literature have been obtained from tests which
involve cycling between maximum and minimum stress levels of constant value.
These are referred to as constant-amplitude tests. Parameters of interest are the stress
range, ∆σ; and the average of the maximum and minimum stress in the stress range,
σm. One-half the stress range is called the stress amplitude, σa.The mathematical for-
mulations for these basic definitions are

∆σ = σmax − σmin (34.1)

σm = (34.2)

σa = (34.3)

The ratio σmax/σmin is referred to as the stress ratio, R, and the ratio between σa and
σm is referred to as the amplitude ratio,A. Completely reversed stressing describes the
case in which σm = 0, for which R = −1. The term zero-to-tension stressing is applied
to the case in which σmin = 0, and hence R = 0.

Most fatigue data are presented in the form of a stress (or strain) parameter ver-
sus the cycles to failure (S-N curves) obtained in laboratory tests. A schematic S-N
curve is shown in Fig. 34.4. The stress parameter in this plot is the stress range, ∆σ.
The maximum stress in the test specimen is also used for this parameter.

Cycles to failure reported in the fatigue literature depend upon the definition of
failure used in the particular investigation. Failure may be defined as the first
appearance of an observable crack. A crack of a specific length may also be used as
a failure criterion. Finally, the inability to resist the applied load without significant
crack extension or corresponding load relaxation in a constant-amplitude deforma-
tion test may be used to denote failure.

Figure 34.4 also contains plots which represent the portion of the total life con-
tributed by the crack initiation phase and by the crack propagation phase. At high
levels of stress the major portion of the life consists of crack propagation, while at

∆σ
�
2

σmax + σmin��
2
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low stress levels crack initiation constitutes the major portion of the life. Design pro-
cedures for structural components which may have surface irregularities different
from those of the test specimens or which may contain cracklike discontinuities or
flaws must take this difference in behavior into account.

The lowest value of stress or stress amplitude for which the crack propagation is
so small that the number of cycles to failure appears to be infinite, run-out, is com-
monly referred to as the endurance limit. Representative values of the endurance
limit for a variety of materials are presented in Tables 34.5 and 34.6. The effects of
geometry and corrosive environment on the relationship between fatigue strength
and ultimate strength of steels are shown in Fig. 34.5.

Three design approaches are presented in the following sections. The stress-life
method was the first approach employed and has been the standard method for
many years. It is still widely used in applications in which the applied stress is within
the elastic range. It does not work well where the applied strains have a significant
plastic component, low-cycle fatigue. A strain-life approach is more appropriate in
this case. A more recent development in the evaluation of fatigue life incorporates
the concepts of fracture mechanics to analyze the crack growth from some initial
flaw size as cyclic stresses are applied. In this approach, failure may be defined as the
development of a crack of some specific dimension. Detailed discussions of the dif-
ferent methods are given in Refs. 10 and 11.

STRESS-LIFE METHOD

The first procedure used to design structural components utilizes a design fatigue
curve which characterizes the basic unnotched fatigue properties of the material and

34.10 CHAPTER THIRTY-FOUR
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FIGURE 34.4 Schematic S-N curve divided into initiation and propagation components. (J. M.
Barsom and J. T. Rolfe, p. 251, Ref. 11.)
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a fatigue-strength reduction factor. Parameters characteristic of the specific compo-
nent which make it more susceptible to fatigue failure than the unnotched specimen
are reflected in the strength-reduction factor. Early applications of this method were
based on the results of rotating bending tests. The application of such tests, in which
mirror-polished specimens were subjected to reversed bending, requires considera-
tion of a number of factors which present themselves in design situations. Among
these factors are size, type of loading, surface finish, surface treatments, temperature,
and environment.

In the rotating beam test, a relatively small volume of material is subjected to the
maximum stress. For larger rotating beam specimens, the volume of material is
greater, and therefore there will be a greater probability of initiating a fatigue crack.
Similarly, an axially loaded specimen which has no gradient will exhibit an
endurance limit smaller than that obtained from the rotating beam test. Surface fin-
ish will have a similar effect. Surface finish is more significant for higher-strength
steels. At shorter lives (high stress levels), surface finish has a smaller effect on the
fatigue life. Surface treatment, temperature, and environment have similar effects.

The effect of mean stress on fatigue life is conveniently represented in the form
of a modified Goodman fatigue diagram (Fig. 34.6). In this figure, the ordinate is the
maximum stress, and the abscissa is the minimum stress. Radial lines indicate the
stress ratio. The curves n1, n2, etc., represent failure at various lives.

Many design specifications12–15 contain provisions for repeated loadings based
on laboratory tests. In these specifications, fabricated details are categorized for

ENGINEERING PROPERTIES OF METALS 34.11

TABLE 34.5 Tensile and Fatigue Properties of Steels (J. M. Lessells.8)

Endur-
Yield Tensile ance

strength, strength, Reduc- limit,
lb/in.2, lb/in.2, Elonga- tion of lb/in.2, Ratio

Material State σy σu tion, % area, % σe σe/σu

0.02% C As received 19,000 42,400 48.3 76.2 26,000 0.61
Wrought iron As received 29,600 47,000 35.0 29.0 23,000 0.49
0.24% C As received 38,000 60,500 39.0 64.0 25,600 0.425
0.24% C Water-quenched 45,600 67,000 38.0 71.0 30,200 0.45

and drawn
0.37% C Normalized 34,900 71,900 29.4 53.5 33,000 0.46
0.37% C Water-quenched 63,100 94,200 25.0 63.0 45,000 0.476

and drawn
0.52% C Normalized 47,600 98,000 24.4 41.7 42,000 0.43
0.52% C Water-quenched 84,300 111,400 21.9 56.6 55,000 0.48

and drawn
0.93% C Normalized 33,400 84,100 24.8 37.2 30,500 0.36
0.93% C Oil-quenched 67,600 115,000 23.0 39.6 56,000 0.487

and drawn
1.2% C Normalized 60,700 116,900 7.9 11.6 50,000 0.43
1.2% C Oil-quenched 130,000 180,000 9.0 15.2 92,000 0.51

and drawn
0.31% C, 3.35% Ni Normalized 53,500 104,000 23.0 45.0 49,500 0.47
0.31% C, 3.35% Ni Oil-quenched 130,000 154,000 17.0 49.0 63,500 0.41

and drawn
0.24% C, 3.3% Ni, Oil-quenched 128,000 138,000 18.2 61.8 68,000 0.49

0.87% Cr and drawn
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design purposes and fatigue-strength stress ranges are given for different fatigue
lives.

The following procedure16 has been used to determine an allowable fatigue
design stress range, SR. Four different loading histograms, shown in Fig. 34.7, were
used to describe the frequency distribution of the ratio of the cyclic stress range to
the maximum cyclic stress range. The four conditions are defined in Table 34.7; the
first three represent beta-distribution probability density functions that have shape
factors q and r as shown. The allowable fatigue design stress range SR may be deter-
mined from

SR = SrRF CL (34.4)

34.12 CHAPTER THIRTY-FOUR

TABLE 34.6 Tensile and Fatigue Properties of Nonferrous Metals (J. M. Lessells.8)

Endurance
limit or

Tensile fatigue N1,* N2
†

strength, strength, millions millions
lb/in.2, lb/in.2, of of Ratio

Material State σu σe cycles cycles σe /σu

Aluminum 22,600 10,500 100 6 0.46
Duralumin Rolled 51,000 14,000 400 >400 0.27
Duralumin Annealed 25,200 10,000 200 >200 0.40
Duralumin Tempered 51,300 12,000 400 41⁄2 0.24
Magnesium Extruded 32,500 8,000 200 2 0.25
Magnesium alloy 35,200 12,000 600 1⁄2 0.34

(4% Al)
Magnesium alloy 39,000 15,000 100 1 0.38

(4% Al, 0.25% Mn)
Magnesium alloy 41,200 13,000 600 1⁄2 0.31

(6.5% Al)
Magnesium alloy 44,500 15,000 100 1⁄2 0.34

(6.5% Al, 0.25% Mn)
Magnesium alloy 39,000 12,000 600 1⁄2 0.31

(10% Cu)
Electron metal 36,600 17,000 200 30 0.47
Copper Annealed 32,400 10,000 500 20 0.31
Copper Cold-drawn 56,200 10,000 500 >500 0.18
Brass (60–40) Annealed 54,200 22,000 500 >500 0.44
Brass (60–40) Cold-drawn 97,000 26,000 500 50 0.27
Naval brass 68,400 22,000 300 10 0.32
Aluminum bronze As cast 59,200 23,000 60 3 0.39

(10% Al)
Aluminum bronze Heat-treated 77,800 27,000 40 1 0.35

(10% Al)
Bronze (5% Sn) Annealed 45,600 23,000 1000 10 0.50
Bronze (5% Sn) Cold-drawn 85,000 27,000 500 50 0.32
Manganese bronze As cast 70,000 17,000 150 20 0.24
Nickel Annealed 70,000 28,000 100 50 0.40
Monel metal Hot-rolled 90,000 32,000 450 >450 0.36

* N1 = cycles on which σe is based.
† N2 = cycles at which σ-N curve becomes and remains horizontal.
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FIGURE 34.6 Modified Goodman diagram for various lives and stress ranges.

34.13

FIGURE 34.5 Relationship between the fatigue limit
and ultimate tensile strength of various steels. (Battelle
Memorial Institute.9)
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TABLE 34.7 Random Loading Coefficients CL

Type Load description (see Fig. 34.7) Coefficient CL

I Primarily light loading cycles: mean range of stress 2.75
030% of maximum (q = 3, r = 7)

II Medium loading cycles: mean range of stress 1.85
50% of maximum (q = 7, r = 7)

III Primarily heavy loading cycles: mean range of stress 1.35
70% of maximum (q = 7, r = 3)

IV Constant loading cycles: stress range constant 1.00
and equal to 100% of maximum

TABLE 34.8 Reliability Factors RF

Level of Reliability
reliability Structural importance of detail factor RF

90% Secondary details for which fatigue cracking is 0.67
of little structural significance

95% Major structural details for which fatigue cracking 0.60
is important: members in redundant structures

99% Major structural details in fracture-critical members 0.45
where fatigue cracking is critical

FIGURE 34.7 Loading frequency distributions. (W. H. Munse and S. T. Rolfe, Sect. 4 of Ref. 16.)
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where Sr = mean constant-cycle fatigue stress range for desired life
RF = reliability factor based on a statistical fatigue analysis for 

survival, Table 34.8
CL = loading coefficient to be selected for load type, Table 34.7

The stress-life method works quite well for the design for long-life and constant-
amplitude stress histories.

STRAIN-LIFE METHOD

At high load levels, at which plastic strains are likely to occur, the response and
material behavior are best modeled under strain-controlled conditions. Engineered
structures almost always contain points of stress concentration which cause plastic
strains to develop. The constraint imposed by the surrounding elastic material pro-
duces an essentially strain-controlled environment. For these conditions, tests under
strain control are used to simulate fatigue damage at points of stress concentration.
The strain-life method does not account for crack growth. Consequently, such meth-
ods may be considered initiation life estimates. For components in which the exis-
tence of a crack may be an overly conservative criterion, fracture mechanics may be
employed to assess the crack propagation life from some assumed initial crack size.

Cyclic inelastic loading of a material produces a hysteresis loop.The stress range,
∆σ, is the total height of the loop. The total width of the loop is ∆�, the total strain
range. The strain amplitude, �a, can be expressed by

�a = (34.5)

and the stress amplitude, σa, is

σa = (34.6)

The sum of the elastic and plastic strain ranges is the total strain, ∆�. This may be
expressed mathematically as

∆� = ∆�e + ∆�p (34.7)

In terms of amplitudes

= + (34.8)

The elastic term may be replaced by ∆σ/E by applying Hooke’s law, so that

= + (34.9)

Under repeated cycling the stress-strain response may exhibit cyclic hardening,
cyclic softening, cyclic stability, or a mixed behavior (softening or hardening depend-
ing upon the stress range).

∆�p�
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From experimental data, the following relationship between total strain range
and the number of reversals to failure has been developed:

= (2Nf)b + �′f (2Nf)c (34.10)

where ∆� = total strain range
σ′f = fatigue strength coefficient

2Nf = reversals to failure
b = fatigue strength exponent

�′f = fatigue ductility coefficient
c = fatigue ductility exponent

The fatigue strength coefficient, σ′f, is approximately equal to the true fracture
strength. The fatigue strength exponent, b, varies between −0.05 and −0.12. The
fatigue ductility coefficient, �′f, is approximately equal to the true fracture ductility.
The fatigue ductility exponent, c, varies between −0.5 and −0.07. Additional discus-
sion of these parameters and approximate formulations for the fatigue strength
coefficient and the fatigue ductility coefficient are presented in Ref. 10.

Cyclic properties are generally obtained from completely reversed, constant-
amplitude, strain-controlled tests. The effects of mean strain have been studied by
various investigators, and modifications of Eq. (34.10) have been proposed.

This method of analysis is obviously more complicated than the stress-life
approach. Notch root strains must be evaluated by application of some method of
analysis. Since it is based on strain cycling of constant magnitude, it applies only in
the immediate region of the notch and predicts the initiation life for a fatigue crack.

FRACTURE MECHANICS METHOD

Fracture mechanics is the study of the performance of structures with cracklike
defects. The distribution of stress components at the crack tip are related to a con-
stant called the stress intensity factor, characterized by the applied stress and the
dimensions of the crack. In addition to the applied stress, the design process using
fracture mechanics incorporates flaw size and fracture toughness properties of the
material. Fracture toughness replaces strength as the relevant material property.

As noted earlier, fatigue life is divided into an initiation phase and a propagation
phase.The fracture mechanics method can be used to determine the propagation life
on the assumption of some initial crack or defect size. The strain-life approach may
be used to determine the initiation life for an evaluation of the total fatigue life.

Fatigue crack growth under constant-amplitude cyclic loading can be represented
schematically as shown in Fig. 34.8. Such data can be presented in terms of crack
growth rate per cycle of loading, da/dN, and the fluctuation of the stress intensity fac-
tor, ∆K1. The most common presentation of fatigue crack growth data is as a log-log
plot of the rate of fatigue crack growth per cycle of load fluctuation, da/dN, and the
fluctuation of the stress intensity factor, ∆K1. Such a plot shows three distinct regions.
At low values of ∆K, the rate of crack propagation is extremely small, essentially
zero. The value of ∆K for this condition is referred to as the fatigue-threshold cyclic
stress intensity factor fluctuation, ∆Kth, below which cracks do not propagate. There
are sufficient data available to demonstrate the existence of this threshold, but more
work is needed to determine the factors which affect its magnitude for use in design.

The second stage in the crack propagation versus stress intensity factor relation-
ship represents the fatigue crack propagation behavior above ∆Kth. In this region the
relationship can be defined as

σ′f�
E

∆�
�
2
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= A(∆K)m (34.11)

where a = crack length
N = number of cycles

∆K = stress intensity factor range

and A and m are constants that depend on the properties of the material.
The third stage in the crack propagation versus stress intensity factor relationship

shows a very rapid increase in the rate of crack propagation.
Fatigue crack propagation may be affected by the mean stress, cyclic frequency,

waveform, and environment. Extensive discussion of the effect of these parameters,
as well as values of A and m for different materials, is presented in Ref. 11.

Equation (34.11) can be used, with appropriate values of A and m, to analyze
fatigue crack growth as a function of cyclic loading between some assumed initial
crack size and some critical crack dimension assumed to represent the ultimate con-
dition. The critical crack dimension may be chosen on the basis of the limiting static
strength or on the basis of the crack size which may result in brittle fracture. The
procedure requires the integration of Eq. (34.11) from an initial crack size, a0, which
corresponds to an initial value of ∆K. An increment of crack growth must be incor-
porated, during which stage the value of ∆K remains constant. The value of ∆K is
then revised and the process is continued until the crack reaches the limiting critical
dimension. An example of this procedure is presented in Ref. 11.

VARIABLE-AMPLITUDE LOADING

Most laboratory fatigue tests are conducted at constant values of maximum and
minimum stress. Most structures, on the other hand, are subjected to loading cycles
with variable minimum and maximum stresses over the course of their life. Proce-

da
�
dN
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FIGURE 34.8 Schematic representation of fatigue crack growth curve
under constant-amplitude loading. (J. M. Barsom and S. T. Rolfe, p. 279,
Ref. 11.)
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dures are required to relate the behavior under constant cyclic loading obtained in
laboratory tests and the variations of stress history over time which occur in an
actual structure. It is also necessary to convert the complicated time-history of a real
structure into some equivalent number of individual stress cycles for the evaluation
of their cumulative effect.

DAMAGE RULES

Damage during the initiation phase of fatigue is difficult to assess, as it occurs on a
microscopic level and is not easily observed or evaluated. During the propagation
phase, damage can be related to an observable and measurable crack length. Both
linear and nonlinear damage rules for the accumulation of fatigue damage have
been proposed. Only the linear damage rule will be discussed here.

The most commonly applied linear damage rule was originally proposed in 1924
and was developed further by Miner.17 The method is referred to simply as Miner’s
rule. Damage under cyclic loading is defined as the ratio of the number of applied
cycles, ni, at stress level σi to the number of cycles to failure, Ni, in a constant-
amplitude test conducted at σi. The hypothesis states that failure occurs when the
accumulated damage reaches 1. Mathematically,

Σ = + + + . . . ≥ 0 (34.12)

This linear damage rule is easily applied after an appropriate counting method has
been established. It has the shortcoming, however, that it does not consider the
sequence of loading and assumes that damage in any individual stress cycle is inde-
pendent of what has preceded it. Furthermore, it assumes that damage accumulation
is independent of stress amplitude.

CYCLE COUNTING

Some method of cycle counting is required in order to determine the number of
cycles at a specific stress range. The tabulation of stress cycles at the various stress
ranges is referred to as the stress spectrum. Several counting methods have been
proposed, and a summary of these methods is contained in Ref. 18.The two counting
methods most commonly used are the rainflow counting method and the reservoir
method. The following example from Ref. 19 demonstrates the procedures.

The rainflow counting method employs the analogy of raindrops flowing down a
pagoda roof. Peaks and troughs for one loading event are presented in Fig. 34.9A.
The maximum and minimum stresses are indexed in Fig. 34.9B. The following rules
apply to rainflow counting:

1. A drop flows left from the upper side of a peak or right from the upper side of
a trough and onto subsequent “roofs” unless the surface receiving the drop is formed
by a peak that is more positive for left flow or a trough that is more negative for right
flow. For example, a drop flows left from point 1 off points 2, 4, and 12 until it stops
at the end of the loading event at point 22, since no peak is encountered that is more
positive than point 1. On the other hand, a drop flows right from point 2 off point 3
and stops, since it encounters a surface formed by a trough (point 4) that is more
negative than point 2.

n3�
N3

n2�
N2

n1�
N1

ni�
Ni
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2. The path of a drop cannot cross the path of a drop that has fallen from above.
For example, a drop flowing left from point 3 stops at the horizontal position of point
2 because it encounters a path coming from point 2.

3. The horizontal movement of a raindrop, measured in units of stress from its
originating peak to its stop position, is counted as one-half of a cycle in the stress
spectrum.

The stress variation of Fig. 34.9A is rotated 90° in Fig. 34.9C for application of the
rainflow counting method. The values of the peaks for the stress history shown in
Fig. 34.9 are given in Table 34.9. Table 34.10 contains the values of the half-cycle
magnitudes which result from application of the rules above.
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FIGURE 34.9 Variable-amplitude loading for analysis. (A) An example of stress variation in an ele-
ment due to one loading event. (B) Peaks and troughs numbered for one loading event. (C) Rainflow
analysis. (D) Reservoir analysis.
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TABLE 34.9 Stress Values for Fig. 34.9

Peak/trough no. Stress, MPa

1 93
2 18
3 55
4 10
5 85
6 10
7 37
8 18
9 37

10 10
11 46
12 6
13 55
14 46
15 74
16 8
17 55
18 18
19 65
20 39
21 83
22 0

TABLE 34.10 Rainflow Counting

To horizontal distance of Half cycle,
From peak or trough no. point no. MPa

1 22 93
2 3 37
3 2 37
4 5 75
5 6 75
6 11 36
7 10 27
8 9 19
9 8 19

10 9 27
11 10 36
12 21 77
13 14 9
14 13 9
15 16 66
16 15 66
17 18 37
18 17 37
19 20 26
20 19 26
21 12 77
22 1 93
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The reservoir method employs an analogy of water contained in reservoirs
formed by peaks draining successively out of the troughs. The lowest trough is
drained first, followed by successively higher troughs until the reservoir is empty.
Figure 34.9D demonstrates the reservoir method, and the corresponding values for
the stress range are presented in Table 34.11.

Rainflow counting and reservoir counting give identical results provided that
rainflow counting begins with the highest peak in the loading event, as is shown in
Fig. 34.9. Rainflow counting is more suited to computer analyses or long stress his-
tories, whereas the reservoir method is most convenient for graphical analyses of
short histories.

Table 34.12 presents the results of an analysis according to the Miner linear dam-
age rule assuming 1 million loading sequences of the stress history of Fig. 34.9. The
cyclic fatigue lives presented in the second column are taken from a typical S-N curve
for a beam in which manually welded longitudinal fillet welds are used to connect the
flanges to the web. The analysis indicates that the fatigue evaluation has failed.
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TABLE 34.11 Reservoir Counting Method

Drain from trough no. Water level at peak Stress range, MPa

22 1 93
12 21 77
4 5 75

16 15 66
2 3 37

18 17 37
10 11 36
6 7 27

20 19 26
8 9 19

14 13 9

TABLE 34.12 Cumulative Damage Using Miner’s Rule

Stress range, Fatigue resistance, Damage due to 1 × 106 loading
∆σ, MPa N = (100/∆σ)3, 2 × 106 cycles events, ni/N

93 2,490,000 0.402
77 4,381,000 0.228
75 4,741,000 0.211
66 6,957,000 0.144
37 (twice) 39,480,000 0.051
36 42,870,000 0.023
27 101,600,000 0.010
26 113,800,000 0.009
19 292,600,000 0.003
9 2.7 × 109 0.000

Damage summation: Σni/N = 1.08 ≥ 1.0
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The cyclic fatigue lives in Table 34.12 do not reflect the existence of an endurance
limit or constant-amplitude fatigue limit. Because the Miner rule does not account
for the effect of load sequence, some designers choose to extend the finite life region
of the S-N curve and assume that all cyclic variations contribute to damage accumu-
lation. The opposite extreme would be to neglect all cyclic variations smaller than
the constant-amplitude fatigue limit. A third variation of the procedure employed
by some designers assumes a change in the slope of the experimentally determined
S-N curve at some large number of cycles. For example, between 5 × 106 cycles and
108 cycles the slope of the S-N curve might be reduced, and the constant-amplitude
fatigue limit might be assumed to occur at 108 cycles. In view of the lack of test data
at very long fatigue lives, there is no agreement on which of the three procedures is
most appropriate.
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CHAPTER 35
ENGINEERING PROPERTIES

OF COMPOSITES

Keith T. Kedward

INTRODUCTION

Composite materials are simply a combination of two or more different materials
that may provide superior and unique mechanical and physical properties.The most
attractive composite systems effectively combine the most desirable properties of
their constituents and simultaneously suppress the least desirable properties. For
example, a glass-fiber reinforced plastic combines the high strength of thin glass
fibers with the ductility and environmental resistance of an epoxy resin; the inherent
damage susceptibility of the fiber surface is thereby suppressed whereas the low
stiffness and strength of the resin is enhanced.

The opportunity to develop superior products for aerospace, automotive, and
recreational applications has sustained the interest in advanced composites. Currently
composites are being considered on a broader basis, specifically, for applications that
include civil engineering structures such as bridges and freeway pillar reinforcement,
and for biomedical products such as prosthetic devices. The recent trend toward
affordable composite structures with a somewhat decreased emphasis on performance
will have a major impact on the wider exploitation of composites in engineering.

BASIC TYPES OF COMPOSITES

Composites typically comprise a high-strength synthetic fiber embedded within a
protective matrix.The most mature and widely used composite systems are polymer
matrix composites (PMCs), which will provide the major focus for this chapter. Con-
temporary PMCs typically use a ceramic type of reinforcing fiber such as carbon,
Kevlar, or glass in a resin matrix wherein the fibers make up approximately 60 per-
cent of the PMC volume. Metal or ceramic matrices can be substituted for the resin
matrix to provide a higher-temperature capability. These specialized systems are
termed metal matrix composites (MMCs) and ceramic matrix composites (CMCs); a

35.1
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general qualitative comparison of the relative merits of all three categories is sum-
marized in Table 35.1.

SHORT FIBER/PARTICULATE COMPOSITES

The fibrous reinforcing constituent of composites may consist of thin continuous
fibers or relatively short fiber segments, or whiskers. However, reinforcing effective-
ness is realized by using segments of relatively high aspect ratio, which is defined as
the length-to-diameter ratio. Nevertheless, as a reinforcement for PMCs, these short
fiber or whisker systems are structurally less efficient and very susceptible to dam-
age from long-term and/or cyclic loading. On the other hand, the substantially lower
cost and reduced anisotropy on the macroscopic scale render these composite sys-
tems appropriate in structurally less demanding industrial applications.

Randomly oriented short fiber or particulate-reinforced composites tend to
exhibit a much higher dependence on polymer-based matrix properties, as com-
pared to typical continuous fiber reinforced PMCs. Elastic modulus, strength, creep,
and fatigue are most susceptible to the significant limitations of the polymer matrix
constituent and fiber-matrix interface properties.1

CONTINUOUS FIBER COMPOSITES

Continuous fiber reinforcements are generally required for structural or high-
performance applications. The specific strength (strength-to-density ratio) and spe-
cific stiffness (elastic modulus-to-density ratio) of continuous fiber reinforced PMCs,
for example, can be vastly superior to conventional metal alloys, as illustrated in Fig.
35.1.These types of composite can also be designed to provide other attractive prop-
erties, such as high thermal or electrical conductivity and low coefficient of thermal
expansion (CTE). In addition, depending on how the fibers are oriented or inter-
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TABLE 35.1 Composite Design Comparisons

PMC CMC MMC

Specific strength Generally excellent if Highest potential for Moderately high for 
and stiffness exclusively unidirectional high-temperature dominantly axial loads and

reinforcement is avoided applications intermediate temperatures
Fatigue Excellent for designs that Good for high- Potential concern for other

characteristics avoid out-of-plane loads temperature than dominantly axial
applications loads

Nonlinear Usually not important Significant effect after Can be significant,
effects for continuous fiber first matrix and particularly for 

reinforcements interface cracks have multidirectional 
developed and off-axis loads

Temperature Less than 600°F Potential for maximum Potential for maximum
capability values between 1000 values up to 1000°F

and 2000°F
Degree of Extreme, particularly Can develop signifi- Not usually a major issue

anisotropy considering out-of-plane cantly during loading, where interface effects
properties and conse- due to matrix and are negligible
quent coupling effects interface breakdown
in minimum-gage 
configurations
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woven within the matrix, these composites can be tailored to provide the desired
structural properties for a specific structural component. Anisotropy is a term used
to define such a material that can exhibit properties varying with direction. Thus
designing for, and with, anisotropy is a unique aspect of contemporary composites in
that the design engineer must simultaneously design the structure and the material
of construction. Of course, anisotropy brings problems as well as unique opportuni-
ties, as is discussed in a later section. With reference to Fig. 35.1, it should be appre-
ciated that the vertical bars representing the conventional metals signify the
potential variation in specific strength that may be brought about by changes in alloy
constituents and heat treatment. The angled bars for the continuous fiber compos-
ites represent the range of specific properties from the unidirectional, all 0° fiber ori-
entation at the upper end to the pseudo-isotropic laminate with equal proportions of
fibers in the 0°, +45°, −45°, and 90° orientations at the lower end. In the case of the
composites, the variations between the upper or lower ends of the bars are achieved
by tailoring in the form of laminate design.

SPECIAL DESIGN ISSUES AND OPPORTUNITIES

Product design that involves the utilization of composites is most likely to be effective
when the aspects of materials, structures, and dynamics technologies are embraced in

ENGINEERING PROPERTIES OF COMPOSITES 35.3
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the process of the development of mechanical systems. One illustrative example was
cited in the introductory chapter of this handbook (see Chap. 1), which introduces the
technique of reducing the vibration response of a fan blade by alteration of the natu-
ral frequency. In the design of composite fan blades for aircraft, this approach has been
achieved by tailoring the frequency and the associated mode shape.2 Such a tailoring
capability can assist the designer in adjusting flexural and torsional vibration and
fatigue responses, as well as the damping characteristics explained later.

A more challenging issue that frequently arises in composite hardware design for
a majority of the more geometrically complex products is the potential impact of the
low secondary or matrix-influenced properties of these strongly nonisotropic mate-
rial forms.The transverse (in-plane) tensile strength of the unidirectional composite
laminate is merely a few percent of the longitudinal tensile strength (as observed
from Tables 35.2 and 35.3). Consequently, it is of no surprise that the through-
thickness or short-transverse tensile strength of a multidirectional laminate is of the
same order, but even lower than the transverse tensile strength of the individual lay-
ers. Thus, the importance of the designer’s awareness of such limitations cannot be
overemphasized. In fact, the large majority of the failures in composite hardware
development testing has arisen due to underestimated or unrecognized out-of-plane
loading effects and interrelated regions of structural joints and attachments. Due to
the many common adverse experiences with delaminations induced by out-of-plane
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TABLE 35.2 Properties of Typical Continuous, Fiber-Reinforced Composites and Structural Metals

Unidirectional composite
(60% fiber/40% resin, by volume) Metals

HS
E-glass/ Kevlar/ carbon/ UHM Gr./ 7075-T6 4130

Property resin resin epoxy epoxy aluminum steel

Elastic

Density, lb/in.3 0.070 (1.9) 0.047 (1.3) 0.058 (1.6) 0.060 (1.7) 0.100 (2.77) 0.284 (7.86)
(103 kg/m3)

EL, 106 lb/in.2

(103 MPa) 6.5 (45) 11.0 (75.8) 19.5 (134) 40.0 (276) 10.3 (71.0) 30.0 (207)
ET, 106 lb/in.2

(103 MPa) 1.8 (12) 1.0 (6.9) 1.5 (10) 1.2 (8.3) 10.3 (71.0) 30.0 (207)
GLT, 106 lb/in.2

(103 MPa) 0.7 (4.8) 0.4 (2.8) 0.9 (6.2) 0.65 (4.5) 4.0 (27.6) 12.0 (82.7)
νLT 0.32 0.33 0.30 0.28 0.30 0.28

Strength 

FL
tu, 103 lb/in.2

(MPa) 180 (1240) 220 (1520) 200 (1380) 100 (689) 79 (545) 100 (689)
FT

tu, 103 lb/in.2

(MPa) 6 (41) 4.5 (31) 7 (48) 5 (34) 77 (531) 100 (689)
FL

cu, 103 lb/in.2

(MPa) 120 (827) 45 (310) 170 (1170) 90 (620) 70 (483) 130 (896)
FT

cu, 103 lb/in.2

(MPa) 20 (138) 20 (138) 20 (138) 20 (138) 70 (483) 130 (896)
Fsu

LT, 103 lb/in.2

(MPa) 8 (55) 4 (28) 10 (69) 9 (62) 47 (324) 60 (414)
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load components, this section will be devoted to the identification of the numerous
sources of out-of-plane load development and the candidate approaches to elimi-
nate or minimize their influence.

First, a general overview of many of the common problems created for the engi-
neering designer that are consequences of low-matrix-dominated, elastic, and
strength properties are summarized in Table 35.4. Several of the most common
sources will now be discussed in more detail. Figure 35.2 illustrates these major
sources, which may be broadly categorized as follows:

Category A: Curved sections including curved segments, rings, hollow cylinders,
and spherical vessels that are representative of angle bracket design details,
curved frames, and internally or externally pressurized vessels.

ENGINEERING PROPERTIES OF COMPOSITES 35.5

TABLE 35.3 Typical Unidirectional Properties for a Carbon/Epoxy System

Stiffness properties Strength properties Thermal properties

EL, 106 lb/in.2 20.0 FL
tu, 103 lb/in.2 240.0 αL, µε/°F −0.3

(103 MPa) (138) (MPa) (1650) (µε/K) (−0.54)

ET, 106 lb/in.2 1.4 FL
cu, 103 lb/in.2 200.0 αT, µε/°F 17.0

(103 MPa) (9.6) (MPa) (1380) (µε/K) (30.6)

GLT, 106 lb/in.2 0.8 FT
tu, 103 lb/in.2 7.0 KL, Btu in./h ft2 °F 40.0

(103 MPa) (5.5) (MPa) (48) (W/m K) (5.76)

νLT 0.28 FT
tu, 103 lb/in.2 20.0 KT, Btu in./h ft2 °F 4.5
(MPa) (138) (W/m K) (0.65)

Fisu
LT, 103 lb/in.2 10.0
(MPa) (69)

νLT/EL = νTL/ET Fisu, 103 lb/in.2 9.0
(MPa) (62)

TABLE 35.4 General Overview of Problems Created by the Low Secondary (Matrix-
Dominated) Properties of Advanced Composites

Controlling 
property Problem

Fisu Failure induced by shear in beams under flexural loading.
Premature torsional failures.
Premature crippling failure in compression.*
Failure of adherends in structural bonded joints.*
Failure of laminae due to free-edge effects, e.g., cutouts, ply drops.*

FT
tu Failure induced by transverse tensile fracture of curved beams in flexure.

Shock waves during normal impacts.
GLT Reduction in flexural and torsional stiffness.

Reduction in resonant frequencies of plate and beam members.
Reduction of elastic buckling capability.
Interpretation of experimental stress analysis data.

αT Distortion at fillets due to high expansion coefficient (through-thickness).
αTFT

tu Failure due to thermal stresses in thick-walled composite cylinders.

*For these problems, the controlling properties are both F isu and F tu
T .
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Category B:Tapers and transitions including local changes of section that are rep-
resentative of laminate layer terminations, doublers, and stiffener terminations,
as well as the end details of bonded and bolted joints.

As mentioned earlier, commonplace structural details of both categories have
contributed to numerous unanticipated failures in composite hardware components.
In some cases, such failures can propagate catastrophically after initiation and may
therefore be a serious safety threat. Other instances have arisen where initial fail-
ures may self-arrest resulting in benign failures, but with some degree of local stiff-
ness degradation. Subsequent load distribution may, however, precipitate eventual
catastrophic failure depending on the load spectrum characteristics.

COMPOSITE PROPERTIES

The class of composites which forms the focus of this chapter is polymer matrix com-
posites (PMCs) with continuous fiber reinforcement. In this type of composite, the
properties of an arbitrary laminated composite architecture are derived from the
elastic and strength properties of a unidirectional layer. The unidirectional layer
properties can be derived from the constituent properties of the fiber and matrix
that typically range between 50 and 65 percent by volume of the fiber reinforcement
phase. Here a nominal value of 60 percent by volume of fiber will be adopted.

Fiber reinforcements most commonly encountered in contemporary composites
include carbon or graphite fibers, Kevlar fibers, and glass fibers, all of which can be
obtained in similar diameters, i.e., 0.0003–0.0005 in. Both the carbon/graphite and
Kevlar fibers are inherently anisotropic in themselves, although it is the axial (fiber
direction) properties that dominate the in-plane behavior of unidirectional and, gen-
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erally, multidirectional fiber arrays or laminates. Typical fiber properties are pre-
sented in Table 35.5, where the degree of individual fiber anisotropy is indicated.

GENERAL PROPERTIES

The properties of polymer matrices range over a much smaller spectrum in Table
35.6, and the relatively low stiffness and strength properties rarely dominate the com-
posite behavior, with certain exceptions. The most notable exceptions are the inter-
laminar shear strength and the thickness-direction interlaminar tensile strength, to be
discussed later, wherein the fiber-to-matrix interface may play an important role. For
these reasons, the greatest attention is placed on the macroscopic composite proper-
ties that are of most direct interest to the mechanical or structural engineer. Typical
values for such properties are provided in Table 35.2 for the three different, but all
widely used composites. One well-established carbon fiber/epoxy composite system
is chosen to illustrate typical properties and degrees of anisotropy in elastic, strength,
and thermal properties in Table 35.3. Engineers responsible for design and structural
evaluation should take particular note of the degree of anisotropy in both the
strength and stiffness properties. Usually the matrix-dominated properties, such as
the shear and transverse tensile strengths, are very low and the avoidance of matrix-
dominated failure modes represents a major challenge for the structural designer. It
is also worthy of note that compression strength in the fiber direction, FL

cu, is signifi-
cantly lower than the equivalent tensile strength, FL

tu, due to a microfiber instability
mechanism. In fact, the ratio of these two strengths, FL

cu/FL
tu, may be much lower for

some other systems, e.g., Kevlar/epoxy and more recently developed high strain-to-
failure carbon fibers.The lower compression strengths relative to the tensile strengths
is also influenced by the fiber diameter and the matrix properties that are themselves
affected by moisture, temperature, interface integrity, and porosity.

IN-SITU PROPERTIES

An important fundamental aspect of multidirectional composite laminates is the
manner in which the individual unidirectional layer or lamina properties translate

ENGINEERING PROPERTIES OF COMPOSITES 35.7

TABLE 35.5 Typical Fiber Properties

Axial elastic Transverse elastic Tensile
Density, lb/in.3 modulus, 106 lb/in.2 modulus, 106 lb/in.2 strength, 103 lb/in.2

Fiber (103 kg/m3) (103 MPa) (103 MPa) (103 MPa)

E-glass 0.091 (2.5) 10.5 (72.4) 10.5 (72.4) 500 (3.4)
S-glass 0.090 (2.5) 12.4 (85.5) 12.4 (85.5) 600 (4.1)
Kevlar 49 0.052 (1.4) 18.0 (124) 1.3 (8.96) 400 (2.8)
AS4 carbon 0.064 (1.8) 35.0 (241) 2.0 (13.8) 350 (2.4)

TABLE 35.6 Typical Properties for Polymer Matrices

Density, Elastic modulus, Tensile strength,
lb/in.3 106 lb/in.2 103 lb/in.2 Poisson’s

Polymer (103 kg/m3) (103 MPa) (MPa) ratio

HERCULES 3501-6 epoxy 0.044 (1.2) 0.62 (4.3) 12.0 (82.7) 0.34
NARMCO 5208 epoxy 0.044 (1.2) 0.50 (3.4) 11.0 (75.8) 0.35
EPON 828 epoxy 0.044 (1.2) 0.47 (3.2) 13.0 (89.6) 0.35

8434_Harris_35_b.qxd  09/20/2001  12:29 PM  Page 35.7



into laminate properties. For all the thermoelastic properties, this translation is
accomplished by the usual rules for transformation of stress and strain. However, the
strength properties tend to be modified by the mutual constraint imposed by adjacent
layers, and therefore is a function of the individual layer thickness.The result is a need
to modify the basic unidirectional properties, one of the most significant being the
ultimate transverse strain to failure in tension of individual layers. Unidirectional
layer compressive strength and the associated ultimate strain to failure is also influ-
enced to a significant degree by the mutual support offered by adjacent transverse or
angled layers.As a consequence, correction factors are sometimes introduced to com-
pensate for these effects, but more routine tests are conducted on the actual laminate
configuration in an effort to establish reliable allowables for its use in design.

LAMINATED COMPOSITE DESIGN

For the simultaneous design of material and structure that is the basic philosophy for
composite structures development, laminated plate theory (LPT) and the associated
computer codes represent the fundamental tool for the composite designer. The
anatomy of a composite laminate indicating the translation from the constituent
fiber and matrix properties to those of a built-up laminate is illustrated in Fig. 35.3.
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FIGURE 35.3 The anatomy of a composite laminate.
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Values contained in this figure compare with those presented in Table 35.3. Figure
35.3 also illustrates the use of an alternative form of material, a fabric laminate that
can provide similar, but slightly inferior, properties in a reduced thickness. The abil-
ity to produce a single layer comprised of equal proportions of fibers woven into 0°
and 90° orientations is offered by this approach. Such a textile system therefore rep-
resents a valuable composite form. A state of plane stress and, for bending, plane
sections remain plane, is assumed in most conventional theoretical treatments.

To remain within the scope and purpose of this chapter, the full treatment of
conventional laminated plate theory will not be repeated here since it appears in
numerous established texts on the subject (see Refs. 3 through 8). However, the
essential information on conventional notations, whereby laminates are specified
together with the physical behavioral insights concerning coupling phenomena, will
be presented herein.

LAMINATE CONFIGURATION NOTATION

A method for specifying a given multidirectional laminate configuration has been
established and is now routinely used on engineering drawings and documents. The
following items essentially explain this laminate orientation notation:

1. Each layer or lamina is denoted by the angle representing the orientation (in
degrees) between its fiber orientation and the reference structural axis in the x
direction of the laminate.

2. Individual adjacent angles, if different, are separated by a slash (/).
3. Layers are listed in sequence starting with the first layer laid up, adjacent to the

tool surface.
4. Adjacent layers of the same angle are denoted by a numerical subscript.
5. The total laminate is contained between square brackets with a subscript indicat-

ing that it is the total laminate (subscript T) or one-half of a symmetric laminate
(subscript S).

6. Positive angles are assumed clockwise looking toward the lay-up tool surface, and
adjacent layers of equal and opposite signs are specified with + or − signs as
appropriate.

7. Symmetrical laminates with an odd number of layers are denoted as symmetric
laminates with an even number of plies, but with the center layer overlined.

The notations for some commonly used laminate configurations are illustrated in
Fig. 35.4.

In essence, lamination theory is involved in the transformation of the individual
stiffnesses of each layer in the principal directions to the direction of orientation in
the laminate, thereby providing the stiffness characterization for the specified lami-
nate configuration. Subsequently, application of a given system of loads is broken
down into individual layer contributions and referred back to the principal direc-
tions in each layer.A failure criterion is then used to assess the margin-of-safety aris-
ing in each layer. The complete process is illustrated in Fig. 35.5.

FAILURE CRITERIA

Although much debate and development has occurred with regard to the most
appropriate failure criteria for composite laminates, the most widely adopted

ENGINEERING PROPERTIES OF COMPOSITES 35.9
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FIGURE 35.4 Examples of laminates and conventional notations.
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approach in composite applications is the maximum strain criterion. The application
of this relatively simple criterion requires an experimental database for the ultimate
strains for each of the three fundamental loading directions for the individual
orthotropic layer comprising the laminate.The three fundamental loading directions
refer to axial loading in the fiber direction, axial loading transverse to the fiber direc-
tion, and in-plane shear associated with the former directions. However, it should be
acknowledged that the ultimate strain values may be markedly different for tension
and compression both in the fiber direction and transverse to it. Thus a total of the
following five ultimate strains are required to facilitate application of the maximum
strain criterion:

1. εL
tu is the ultimate tensile strain in the fiber direction.

2. εL
cu is the ultimate compressive strain in the fiber direction.

3. εT
tu is the ultimate tensile strain transverse to the fiber direction.

4. εT
cu is the ultimate compressive strain transverse to the fiber direction.

5. γsu
LT is the ultimate shear strain associated with directions parallel and normal to

the fiber direction.

In connection with the actual values used for (1) through (5), see the previous dis-
cussion on In-Situ Properties, which explains how the individual layer properties
must be adjusted to represent the strength or ultimate strain values of a given layer
that is contained within a multidirectional laminate. The prudent approach in engi-
neering development work is to identify special laminate configurations that may be
used to establish representative “in situ” properties for the range of potential candi-
date laminates for application to a specific design.

ENGINEERING PROPERTIES OF COMPOSITES 35.11

FIGURE 35.5 Procedure for strength determination.
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COUPLING, BALANCE, AND SYMMETRY

The mathematical relationships obtained in laminated plate theory define all the
coupling relationships arising in the arbitrary laminate. However, a discussion of the
physical aspects of such coupling phenomena and the laminate designs that may be
invoked to suppress these responses is helpful to the structural engineer.

Extension-Shear Coupling. First, the in-plane coupling between extension and
shear or vice versa arises in the case of any off-axis layer, for example,

γxy = S16σx or εx = S16τxy (35.1)

or, for the inverse situation,

σx = Q16γxy or τxy = Q16εx (35.2)

where S16 and Q16 are, respectively, the compliance and stiffness terms defining the
coupling magnitudes.3 From a physical point of view, the shear deformation induced
by an axial tensile stress is caused by the tendency for the layer to contract along the
diagonals by unequal amounts due to differences in the Poisson’s ratio in these two
directions. Alternatively, considering the special case of a +45° layer, the axial stress
may be resolved into planes at +45° and −45° to the direction of applied stress. The
resulting strains due to equal resolved stress components along these directions are
obviously different.

Intuitively, it is easily rationalized that the use of a [±θ]T laminate will result in the
mutual suppression of the tension-induced shear deformation in each individual
layer. In the general case, equal numbers of layers in the off-axis, +θ and −θ, layers
will suppress this coupling; the resulting laminate is termed a balanced laminate.

Extension-Torsion Coupling. For this the previous balanced laminate [±θ]T is
considered. The spatial separation in the thickness direction results in equal and
opposite deformations in the shear deformation induced by an axial tensile stress.
This deformation situation therefore results in twisting of the laminate, a condition
that is illustrated in Fig. 35.6. From a simplistic viewpoint, the illustration presented
in Fig. 35.7 provides a type of designers’ guide to coupling evaluations, which facili-
tates rational judgments in laminate design.All the responses indicated in these two
figures can be confirmed by use of conventional lamination theory. Suppression of
the twisting deformation is achieved by use of a symmetric laminate in which the off-
axis layers below the central plane are mirrored by an identical off-axis layer at the
same distance above the central plane (see Fig. 35.7).

Extension-Bending Coupling (Related through B11 and B22 Matrix Compo-
nents). The simplest form of laminate, exhibiting a coupling between in-plane
extension (or compression) and bending deformation, is the [0°, 90°]T unsymmetri-
cal laminate. This response can be rationalized, on a physical basis, by recognizing
that the neutral plane for this two-layer laminate will be located within the stiffest 0°
layer, giving rise to a bending moment produced by the in-plane forces applied at the
midplane and the associated effect between the two planes. For this case, it is clearly
seen that the coupling would be suppressed by use of a four-layer symmetric lami-
nate, i.e., [0°, 90°]s, or a three-layer symmetric laminate such as [0°, 9�0�°]s, where the
bar over the 90° layers signifies that this layer orientation is not repeated.
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In-Plane Shear-Bending Coupling (Related through B16 and B26 Matrix Com-
ponents). To visualize the mechanism associated with this mode of coupling, con-
sider a [±45°]T unsymmetrical, two-layer laminate subjected to in-plane shear loads.
By recognizing that the in-plane shear is equivalent to a biaxial tension and com-
pression loading with the tensile direction in the lower layer aligned with the fiber
direction and, in the upper layer, transverse to the fiber direction, it will be realized
that the plate will assume a torsional deformation (see Fig. 35.6).

Bending-Torsion Coupling (Related through D16 and D26 Matrix Components).
For this mode of coupling, a four-layer balanced symmetric laminate, i.e., [±θ]s, is
considered.The application of a bending moment, and an associated strain gradient,
to this laminate will induce different degrees of shear coupling to the outer and
inner layers.As a consequence, the response of the outer layers will dominate due to
the higher strain levels in these layers, resulting in a net torsional deformation, as
illustrated in Fig. 35.6. For qualitative assessment of this mode of coupling, the mag-
nitude of the shear responses can be considered to exert an internal couple on the
laminated plate as illustrated in Fig. 35.7. A similar rationale can be used to design a
laminate that would not exhibit this coupling. For example, an eight-layer laminate
of the configuration

[(�θ)s/(�θs)]T or [�θ, �θ, �θ, �θ]T

will not exhibit bending-torsion coupling.
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GENERAL LAMINATE DESIGN PHILOSOPHY

The recommended approach for laminates that are required to support biaxial loads
is conveyed in the family of laminates represented by the shaded area in Fig. 35.8.
This figure merely provides guidelines for selecting suitable laminates that have
been shown to be durable and damage-tolerant. However, the form of presentation
is also adopted for a system of carpet plots that can be very useful in the design and
analysis of laminates for a specific composite system. These carpet plots facilitate
reasonable predictions of the elastic and strength properties, and the coefficients of
thermal expansion for a family of practicable laminates that comprise 0°, +45°, and
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90° fiber orientations of any proportions in an assumed balanced, symmetric lami-
nate arrangement. Examples of these carpet plots are presented in Ref. 3 and in
most of the texts referenced previously. Even for highly directional loading, a nomi-
nal (approx. 10 percent) amount of layers, in each of the 0°, 90°, +45°, and −45° direc-
tions, should be included for the following reasons:

1. Providing restraints that inhibit development of microcracks that typically form
in directions parallel to fibers.

2. Improved resistance to handling loads and enhanced damage tolerance (this is
especially relevant for relatively thin laminates, i.e., less than 0.200 in. thick).

3. More manageable values of the major Poisson’s ratio (vxy), particularly where
interfaces exist with other materials or laminates with values in the 0.30 range.

4. Compatibility between the thermal expansion coefficients with respect to adja-
cent structure.

Other commonly adopted and recommended practices include laminate designs that
minimize the subtended angle between adjacent layers and use of the minimum prac-
ticable number of layers of the same orientation in one group. To illustrate the for-
mer, a laminate configuration of [0°, +45°, 0°, −45°, 90°]s is preferred over a laminate
such as [0°, +45°, −45°, 0°, 90°]s even though the in-plane thermoelastic properties
would be identical for these two laminates. For the latter, the length of transverse
microcracks tends to be limited by the existence of the layer boundaries; hence a [0°,
+45°, 0°, −45°, 0°, 9�0�°]s laminate is preferred over a [0°3, +45°, −45°, 9�0�°]s laminate.

FATIGUE PERFORMANCE

The treatment of fatigue and damage accumulation in composite design is greatly
complicated by the heterogeneity and anisotropy of the material in the laminated

ENGINEERING PROPERTIES OF COMPOSITES 35.15

100%
P

E
R

C
E

N
T

 0
° 

LA
Y

E
R

S

80%

60%

40%

20%

20% 40% 60% 80% 100%

PERCENT ±45° LAYERS10%  0°
20%  ±45°
70%  90°

70%  0°
20%  ±45°
10%  90°

ISOTROPIC POINT
25%  0°
50%  ±45°
25%  90°

RANGE OF RECOMMENDED
LAMINATE CONFIGURATION

10%  0°
80%  ±45°
10%  90°

FIGURE 35.8 General guidelines for the selection of durable, damage-
tolerant laminate design.

8434_Harris_35_b.qxd  09/20/2001  12:29 PM  Page 35.15



form. As a consequence, there is a multiplicity of mechanisms for the initiation and
propagation of damage and, understandably, the approaches, such as Miner’s cumu-
lative damage rule discussed in Chap. 34, are not recommended. For similar reasons
the test results obtained from small laboratory test coupons can rarely be used
directly in support of design for prediction of fatigue performance. Nevertheless,
such test coupon data can serve the purpose of obtaining preliminary indications of
the fatigue performance of specific laminate design configurations.

Basic failure mechanisms that occur in laminated composites, in general, include
the following:

1. Transverse cracking of individual layers in multidirectional laminates which will
typically arrest at the interlaminar boundaries.

2. Fiber-matrix debonding which often can contribute to premature transverse
cracking.

3. Delamination between layers due to interlaminar shear and/or tensile stress com-
ponents that can be initiated by the aforementioned transverse cracks. Out-of-
plane or bending loads on the structure will tend to give rise to such delamination.

4. Fiber breakage which will usually occur in the later stages of damage growth
under monotonic static loading or under cyclic loading. However, most reinforc-
ing fibers are not, in themselves, fatigue sensitive.

The first two initiating mechanisms motivate the above general laminate design phi-
losophy advocated in the previous section, as illustrated in Fig. 35.8. A common
sequence of failure events is illustrated for a quasi-isotropic, [±45°, 0°, 90°]s, car-
bon/epoxy laminate, also summarized in Fig. 35.9 (adapted from Ref. 9).

It may be stated, with some confidence, that the composites industry is able to
design polymer matrix composite (PMC) laminates of uniform thickness in a reli-
able manner. Extensive experience with PMCs has taught us to use fiber-dominated
laminate designs, which are most often specified in the [0°/±45°/90°]s or pseudo-
isotropic form with respect to the in-plane directions. In-plane compression failure
is somewhat of an exception since the matrix and the degradation thereof can
develop delaminations and influence premature failure mechanisms. However, by
far the largest number of development and in-service problems with composite
hardware are associated with matrix-dominated phenomena, that is, interlaminar
shear and out-of-plane tension forces. This is a major concern in that failure con-
tributed by either one or a combination of these matrix-dominated phenomena are
susceptible to the following:

1. High variability contributed by sensitivity to processing and environmental con-
ditions.

2. Brittle behavior, particularly for early, i.e., 1970s era, epoxy matrix systems.
3. Inspectability of local details where flaws or defects may exist.
4. Low reliability associated with the lack of acceptable or representative test meth-

ods and complex, highly localized, stress states (the use of the transverse tensile
strength of a unidirectional laminate for out-of-plane or thickness tensile
strength is generally unconservative).

5. Potential degradation of residual static strength after fatigue/cyclic load exposure.

The development of stress components that induce interlaminar shear/out-of-
plane tension failures was illustrated in Fig. 35.2, where commonplace generic fea-
tures of composite hardware designs that frequently experience delaminations are
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shown. It is at such details that PMC structures are particularly vulnerable both under
static and fatigue loading. The propensity for delamination and localized matrix-
dominated failures that represents a general characteristic of many PMCs is that
notch sensitivity may be reduced after fatigue load cycling for local through-thickness
penetrations. On the other hand, this demands that a fatigue life methodology should
be available to deal with composite structures that are subjected to out-of-plane load
components. Naturally, the capability of predicting the fatigue life is an essential ele-
ment in the process of qualifying, or certifying, composite products and systems.

The design requirements generally specified for qualifying and/or certifying a
composite product typically include (a) static strength, (b) fatigue/durability, and (c)
damage tolerance. All of these requirements rely on a comprehensive appreciation
of failure modes; the variability (or scatter); discontinuities caused by notches, holes,
and fasteners; and environmental factors, particularly damage caused by the impact
of foreign objects, machining, and assembly phenomena.

ENGINEERING PROPERTIES OF COMPOSITES 35.17

+ +
x

y

z

– –90 900 0

+ +–90 900 0

FIGURE 35.9 A common sequence of fatigue failure
events for a [±45/0/90]s pseudo-isotropic carbon/epoxy
laminate: transverse cracking of 90° plies; edge de-
lamination at 0° → 90° interfaces; transverse cracking
of ±45° plies; delaminations at 45° → +45° then at
45° → 0° interfaces; fiber failures in 0° plies. (Adapted
from Ref. 9.)

8434_Harris_35_b.qxd  09/20/2001  12:29 PM  Page 35.17



In the case of fatigue, three potential design approaches are considered. The par-
ticular selection may be based on the nature of usage, economics, safety implications,
and the specific hardware configuration. Often some combination of approaches
may be adopted particularly during the developmental phase. These three general
categories of approach are the (a) Safe Life/Reliability Method, (b) Fail Safe/Dam-
age Tolerance Method, and (c) Wearout Model.

SAFE LIFE/RELIABILITY METHOD

Statistically based qualification methodologies9–11 provide a means for determining
the strength, life, and reliability of composite structures. Such methods rely on the
correct choice of population models and the generation of a sufficient behavioral
database. Of the available models, the most commonly accepted for both static and
fatigue testing is the two-parameter Weibull distribution. The Weibull distribution is
attractive for a number of reasons, including the following:

1. Its simple functional form is easily manipulated.
2. Censoring and pooling techniques are available.
3. Statistical significance tests have been verified.

The cumulative probability of the survival function is given by 

Ps(x) = exp [(−x/β)αs] (35.3)

where αs is the shape parameter and β is the scale parameter.
For composite materials, αs and β are typically determined using the maximum-

likelihood estimator.15 In addition, the availability of pooling techniques is especially
useful in composite structure test programs where tests conducted in different envi-
ronments may be combined. Statistical significance tests are used in these cases to
check data sets for similarity.

The following paragraphs present a review of the statistical method of Ref. 10.
The development tests required to generate the behavioral database are outlined,
followed by a discussion of the specific requirements for static strength and fatigue
life testing. Special attention is given to the effect that matrix- and fiber-dominated
failure modes have on test requirements.

A key to the successful application of any statistical methodology is the genera-
tion of a sufficiently complete database. The tests must range from the level of
coupons and elements to full-scale test articles in a building-block approach. Addi-
tionally, the test program must examine the effects of the operating environment
(temperature, moisture, etc.) on static and fatigue behavior. The coupon and subele-
ment tests are used to establish the variability of the material properties. Although
they typically focus on the in-plane behavior, it is also important to include the trans-
verse properties. This is especially important in the case of research and develop-
ment programs. The resulting data can be pooled as required and estimates of the
Weibull parameters made. Thus, the level and scatter of the possible failure modes
can be established. The transverse data are characterized by the highest degree of
scatter. Element and subcomponent tests can be used to identify the structural fail-
ure modes. They may also be used to detect the presence of competing failure
modes. Higher-level tests, such as tests of components, can be used to investigate the
variability of the structural response resulting from fabrication techniques. The
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resulting database should describe, to the desired level of confidence, the failure
mode, the data scatter, and the response variability of a composite structure. These
data along with full-scale test articles can be used in the argument to justify qualifi-
cation.

Out-of-plane failure modes can complicate the generation of the database. Well-
proven and reliable transverse test methods are few. The typically high data scatter
makes higher numbers of tests desirable. In addition, the increased environmental
sensitivity in the thickness direction can cause failure mode changes, negating the
ability to pool data and possibly resulting in competing failure modes.Thus, a design
whose structural capability is limited by transverse strength can lead to increased
testing requirements and qualification difficulties.

The static strength of a composite structure is typically demonstrated by a test to
the design ultimate load (DUL), which is 1.5 times the maximum operating load, that
is, the design limit load (DLL). Figure 35.10 shows the reliability achieved for a sin-
gle static ultimate test to 150 percent of the DLL for values of the static strength
shape parameter from 0 to 25. For fiber-dominated failure with αs values near 20,
such a test would demonstrate an A-basis value, which is defined as the value above
which at least 99 percent of the population is expected to fall, with a confidence of
95 percent (a statistical tolerance limit as detailed in Chap. 20). However, for matrix-
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dominated failure modes, with αs ranging from 5 to 10, a test to 150 percent of the
DLL would not demonstrate an A-basis value.Two options are available to increase
the demonstrated reliability, namely, (a) increasing the number of test specimens, or
(b) increasing the load level. The most effective choice is to increase the load level
beyond 150 percent of the DLL, whereas increasing the number of test specimens
yields little benefit and is expensive.

The two most applicable methods of statistical qualification approaches for
fatigue are the life factor (also known as the scatter factor) and the load enhancement
factor. The life factor approach relies on a knowledge of the fatigue life scatter fac-
tor from the development test program and full-scale test or tests. The factor gives
the number of lives that must be demonstrated in tests to yield a given level of reli-
ability at the end of one life. A plot of life factor NF against the fatigue life shape
parameter αL is given in Fig. 35.11 for a typical scenario. A single full-scale test to
demonstrate the reliability of the B-basis value, defined as that value above which at

35.20 CHAPTER THIRTY-FIVE

20

LI
F

E
 F

A
C

T
O

R
 N

F

15

10

5

1

10

FATIGUE LIFE SHAPE PARAMETER αL

30

25

2 3 4 5 6 7 8 9 10

FIGURE 35.11 Plot of the life factor required to demonstrate the reliability of
the B-basis results at the end of one life against the fatigue life shape parameter
using a single full-scale test article.

8434_Harris_35_b.qxd  09/20/2001  12:29 PM  Page 35.20



least 90 percent of the population is expected to fall, with a confidence of 95 percent
at the end of one life, is to be conducted. The curve shows that as the shape parame-
ter approaches 1.0, the number of lives rapidly becomes excessive. Such is the case
of an in-plane fatigue failure (αL = 1.25). Although few data for transverse fatigue
are available, other than perhaps for bonded parts, it is reasonable to assume that the
value of the shape parameter will be the same or less. Hence, it is apparent that the
life factor approach is not acceptable for the certification of composites, especially
where out-of-plane failure modes are dominant.

An alternative approach to life certification is the load enhancement factor,
wherein the loads are increased during the fatigue test to demonstrate the desired
level of reliability. Figure 35.12 illustrates the effect of the fatigue life shape param-
eter αL and the residual-strength shape parameter αR on the load enhancement fac-
tor F required to demonstrate B-basis reliability for one life using a single full-scale
fatigue test to one lifetime. It is obvious that the required factor does not change sig-
nificantly for fatigue life shape parameters in the range of 5 to 10. However, as the
shape parameter approaches 1.0, as is the case for composites, the required load
enhancement factor increases noticeably, especially for small values of the residual-
strength shape parameter. This curve illustrates well the potential problems that
may arise from dominant out-of-plane failure modes. Such failure modes tend to
have low values of αL (near 1.0) and also low values of αR (in the range from 5.0 to
10.0).These values would make the required load enhancement factors prohibitively
large. It is evident that for failure modes that exhibit a high degree of static and
fatigue scatter, the life factor and load enhancement factor approaches can result in
impossible test requirements. A combined approach can be achieved through the
manipulation of the functional expressions. The resulting method allows some lati-
tude in balancing the test duration and the load enhancement factor to demonstrate
a desired level of reliability.
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Figure 35.13 gives the curves of load enhancement factor against life factor for
the cases of fiber- and matrix-dominated failures. Typical values for the fatigue life
and residual-strength shape parameter were employed. The curves show the possi-
ble combinations of life factor (or test duration) and load enhancement factor to
demonstrate the B-basis reliability at the end of one lifetime using a single full-scale
fatigue test article. The curve for fiber-dominated failure modes exhibits quite rea-
sonable values of life factor and load enhancement factor. For test durations ranging
from 1 to 5 lifetimes, the load enhancement factor ranges from 1.18 down to 1.06.
However, the test requirements for matrix-dominated failure are more severe. Over
the range of life factor from 1 to 5, the load enhancement factor ranges from 1.4
down to 1.19. An environmental compensation factor would further complicate the
test of a matrix-dominated failure. Such a factor must be combined with the load
level. As is well known in composites, the adverse effects of environment on matrix
properties are much more severe than on fiber-dominated properties, and the result-
ing factor may be significant.

Further illustration of the problems induced by a matrix-dominated failure is
possible by assuming a limit exists on the load enhancement factor. Such limits may
exist because of failure mode transitions at higher load levels. For instance, assuming
a load enhancement factor of 1.2 is the maximum allowable value, it is obvious that
a successful one-lifetime test for a fiber-dominated failure will demonstrate the reli-
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ability better than a B-basis test. For matrix-dominated failure, the same reliability
would require a test duration of about 4.5 lives.

Two important aspects of the statistical qualification methodology are the gener-
ation of an adequate database and the proper execution of a full-scale demonstration
test. The development test program must be conducted in a “building block”
approach that produces confident knowledge of the material shape parameters, envi-
ronmental effects, failure modes, and response variability. Perhaps the most impor-
tant result should be the ability to predict the failure mode and know the scatter
associated with it. Structures that exhibit transverse failures, which can result in com-
peting modes and a high degree of scatter, may render the application of this fatigue
methodology impractical. This result has been illustrated by the effect of shape
parameters on both the static and fatigue test requirements.The requirements clearly
show that a well-designed structure that exhibits fiber-dominated failure modes will
be more easily qualified than one constrained by matrix-dominated effects.

FAIL SAFE/DAMAGE TOLERANCE METHOD

The damage tolerance philosophy assumes that the largest undetectable flaw exists
at the most critical location in the structure, and the structural integrity is main-
tained throughout the flaw growth until detected by periodic inspection.12 In this
approach, the damage tolerance capability covering both the flaw growth potential
and the residual strength is verified by both analysis and test. Analyses would
assume the presence of flaw damage placed at the most unfavorable location and
orientation with respect to applied loads and material properties. The assessment of
each component should include areas of high strain, strain concentration, a mini-
mum margin of safety, a major load path, damage-prone areas, and special inspec-
tion areas. The structure selected as critical by this review should be considered for
inclusion in the experimental and test validation of the damage tolerance proce-
dures. Those structural areas identified as critical after the analytical and experi-
mental screening should form the basis for the subcomponent and full-scale
component validation test program. Test data on the coupon, element, detail sub-
component, and full-scale component level, whichever is applicable, should be
developed or be available to (a) verify the capability of the analysis procedure to
predict damage growth/no growth and residual strength, (b) determine the effects of
environmental factors, and (c) determine the effects of repeated loads. Flaws and
damage will be assumed to exist initially in the structure as a result of the manufac-
turing process, or to occur at the most adverse time after entry into service.

A decision to employ proof testing must take the following factors into consider-
ation:

1. The loading that is applied must accurately simulate the peak stresses and stress
distributions in the area being evaluated.

2. The effect of the proof loading on other areas of the structure must be thoroughly
evaluated.

3. Local effects must be taken into account in determining both the maximum possi-
ble initial flaw/damage size after testing and the subsequent flaw/damage growth.

The most probable life-limiting failure experienced in composite structure, particu-
larly in nonplanar structures where interlaminar stresses are present, is delamina-
tion growth. Potential initiation sites are free edges, bolt-holes, and ply terminations
(see Fig. 35.2), in addition to existing manufacturing defects and subsequent impact
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damage. Hence, an analysis technique for the evaluation of growth/no growth of
delaminations is an essential tool for the evaluation of the damage tolerance of com-
posite structures. A numerical method is available through the use of finite element
analysis (see Chap. 28, Part II) and the crack closure integral technique from frac-
ture mechanics.13 Prerequisites for an evaluation are as follows:

1. A structural analysis made in sufficient detail to indicate the locations where the
critical interlaminar stresses exist.

2. Experimentally based critical interlaminar strain energy release rates Gic, GIic,
and a subcritical growth law, that is, da/dN, where da/dN is the rate of change of
the crack length or damage zone size a with the number of cycles N, against ∆G
for each mode (see Chap. 34).

3. A mixed mode I/mode II fracture criterion.

The test specimens used to generate the required mode I and mode II fracture
toughness parameters are described in detail in Ref. 14. The application of this
approach requires a significant analysis and test effort to evaluate hot spots within
the structure and to generate the necessary fracture toughness data. One limita-
tion is the absence of a reliable mixed-mode fracture criterion, and consequently
this method is not considered sufficiently mature to warrant a recommendation
for wide general application, particularly for developmental composite hardware
evaluations.

THE WEAROUT MODEL

Wearout is defined as the deterioration of a composite structure to the point where
it can no longer fulfill its intended purpose. The wearout methodology was devel-
oped in the early 1970s and is comprehensively summarized in Ref. 15.The essential
features are portrayed in Fig. 35.14. This methodology was previously used by the
military aircraft command for the certification of several composite aircraft compo-
nents. In essence, the wearout approach recognizes the probability of progressive
structural deterioration of a composite structure.The approach utilizes the develop-
ment test data on the static strength and the residual strength, after a specified
period of use, in conjunction with proof testing of all product hardware items to
characterize this deterioration and protect the structure against premature failures.
It has become evident that the residual stiffness is an indicator of the extent of the
structural deterioration and can be an important performance parameter with
regard to the natural frequencies of oscillation of the aerodynamic surfaces. Thus, in
some instances, it may be prudent to incorporate a residual-stiffness requirement in
an adopted methodology to evaluate the tolerance of the structure to component
stiffness degradation.

The difficulties in the implementation of the methodology include the determi-
nation of the critical load conditions to be applied for static and residual strength
and stiffness testing and for the proof load specification. Similar difficulties would
arise in the case of all candidate methodologies considered here, and indeed empha-
size the importance of a representative structural analysis. However, the advantage
of the wearout approach for advanced composite hardware development projects
resides in the ability to assign gates for safe flight testing as the flight envelope is
progressively expanded.

Since the era of the initial development and interest in the wearout approach,
there appears to have been minimal development or usage. Nevertheless, the poten-
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tial motivation for a methodology of this type calls for a brief review of the physical
and theoretical basis for the important concepts. Further detail can be found in Refs.
15 and 16.

By combining several basic assumptions regarding the behavior of a composite
structure under load with basic Weibull statistics, a kinetic fracture model can be
derived. This model serves to assist in predicting the fatigue wearout behavior of
composite structures. The first assumption concerns the growth rate of an inherent
or real material flaw, da/dt, which is deemed to be proportional to the strain energy
release rate G of the material system raised to some power r, where r is to be deter-
mined experimentally. Thus

da/dt ∝ Gr (35.4)

where a is the flaw length. As the cyclic load, F(t), is applied to the flawed body, the
internally stored strain energy will occasionally exceed the critical level required to
overcome the local resistance of the material to flaw growth or damage accumula-
tion, and flaw or damage growth will occur. Impediments to further development
have been related to those cited in Chap. 34, as it pertained to the fracture mechan-
ics method for metals, i.e., the need for further data to define the growth rate and/or
threshold level below which the damage area does not grow. One important wearout
parameter r is defined as the slope of the da/dN curve, or may be derived from the
S-N curve for the failure/damage mode in question.

Various relationships have been proposed15 relating the initial Weibull static
shape parameter, α0, and the fatigue life shape parameter, αf, both of which tend to
be a function of the damage size exponent alone. Specifically, available relationships
are given by

α0 = 2r + 1 and αf = (35.5)
α0�

2(r − 1)
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FIGURE 35.14 Essential features of the “wearout model” relating static
failure, load history, and fatigue failure.

8434_Harris_35_b.qxd  09/20/2001  12:29 PM  Page 35.25



Postulating that the composite system will lose strength at a uniform rate with
respect to a logarithmic scale of cycles or time, then from the specific fatigue curve
expressed as

NF γ
b = BN or tF γ

b = Bt (35.6)

the slope of the fatigue curve is given by γ = −1/2. In Ref. 16, a compilation of data on
damage growth rate exponents from a broad range of literature items, including var-
ious types of polymer composite systems and composite bonded structures, were
found to range between 4.3 and 6.6.

DAMPING CHARACTERIZATION

The major sources of damping in polymer matrix composites (PMCs) are associated
with the visco-elastic or microplastic phenomena of the polymer matrix constituent
and, to some degree for some composite systems, with weak fiber-matrix interfaces
to microslip mechanisms. Other sources of damping, such as matrix microcracking
and delamination resulting from poor fabrication conditions or service damage, can
also create increased damping in certain cases. Very little or no damping is con-
tributed by the fiber-reinforcement constituent with the possible exception of
aramid, i.e., Kevlar, fibers. Environmental factors, such as temperature, moisture,
and frequency, on the other hand, can have a significant effect on damping.

Two-phase materials therefore tend to derive any damping from the polymer
matrix phase in a large majority of composite systems. Consequently, matrix-
influenced deformations, such as the interlaminar shear and tension components,
are the significant contributors. For the basic unidirectional composite, some closed-
form predictive methods are available, but generally the micromechanics theories
have been found to be unreliable for damping determinations, although reasonable
for modulus predictions. Structural imperfections at the constituent level are con-
sidered to be the main contributors to this situation.

As mentioned earlier, micromechanics-based theories are available to give some
indication of the effects of fiber volume content on damping parameters for unidi-
rectional materials. One example based on conventional visco-elasticity assumption
was formulated in Ref. 11 for the case of longitudinal shear deformation. For this
case the specific damping capacity (SDC), ψ12, for longitudinal shear can be
expressed17 as

ψ12 = (35.7)

where ψm = the SDC for the matrix
G = the ratio of fiber shear modulus to that of the matrix
Vf = the fiber volume fraction

For the condition of flexural vibration of composite beams, the damping due to
transverse shear effects that are highly matrix-dominated exhibit up to two orders of
magnitude greater damping than pure axial, fiber-direction effects. Specific data,
adapted from Ref. 18, on the SDC for the flexural vibration of unidirectional beams,

ψm(1 − Vf)[(G + 1)2 + Vf(G − 1)2]
�����
[G(1 − Vf) + (1 − Vf)][G(1 − Vf) + (1 + Vf)]
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over a range of aspect ratios (length �/thickness h), are compared to theoretical pre-
dictions in Fig. 35.15. Here the steady increase in damping for progressively lower
beam aspect ratios is clearly due to the shear deformation which indicates a much
stronger effect on damping than on the flexural modulus. The discrepancies in the
theoretically predicted SDC in Fig. 35.15 is generally attributed again to imperfec-
tions in the composite at the constituent level.

The damping trends for the other matrix-influenced deformational mode of
transverse tension (at 90° to the fiber direction) in a unidirectional composite is
illustrated in Fig. 35.16 for an E-glass fiber-reinforced epoxy over a wide range of
fiber volume fractions Vf. Substantial damping can also occur in the deformation of
an off-axis, unbalanced lamina or laminate, due to shear-induced deformation cre-
ated by coupling under tension, compression, or flexural loading directed at an angle
to the fiber direction. In Ref. 19, good correlation between the theoretical prediction
and experimental measurements is demonstrated for a complete range of fiber ori-
entations from 0° to 90° (see Fig. 35.17). Based on the flexural vibration of a high-
modulus carbon-fiber/epoxy matrix system with Vf = 0.5, Fig. 35.17 compares both
the flexural modulus and SDC. The latter damping parameter was predicted using
the approximate relationship

ψθ = Ex� sin4 θ + sin2 θ cos2 θ� (35.8)

where x = the axial direction of the beam
θ = the angle between the fiber direction and the axis of the beam

E2, ψ2 = the elastic modulus and SDC, respectively, in the transverse direc-
tion of the fiber

G12, ψ12 = the shear modulus and shear-induced SDC, respectively, referred
to directions parallel and perpendicular to the fibers

ψ12�
G12

ψ2�
E2
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FIGURE 35.15 Variation of flexural damping with aspect
ratio for high-modulus carbon fiber in DX209 epoxy resin Vf =
0.5, SDC, shear damping contribution.
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In this relationship the modulus Ex is given by

= + − + (35.9)

With the above correlation as background, predictive methods for the damping of
laminated beam specimens based on the classical laminate analysis method refer-
enced above (see Ref. 3), the damping terms were incorporated and presented in
Ref. 20 and summarized in Ref. 18. The approach involved formulation of the over-
all SDC, ψov, to yield the total energy dissipated divided by the total energy stored as

ψov = = (35.10)

where ∆Z1 = ψ1 ⋅ Z1 is the energy dissipation in the 1-direction, the axial being paral-
lel to the fiber direction in a given layer.

Predicted values obtained by this approach are compared with measured values
for a balanced, angle-ply laminated beam of high-modulus carbon-fiber/epoxy in
flexural vibration in Fig. 35.18. In this figure, the SDC approaches 10 percent maxi-
mum at a fiber orientation of ±45°, where the dynamic flexural modulus, however, is

ψ1Z1 + ψ2Z2 + ψ21Z12���
Z1 + Z2 + Z12

Σ∆Z
�ΣZ

cos2 θ sin2 θ
��

G12

2v12 cos2 θ sin2 θ
��

E1

sin4 θ
�

E2

cos4 θ
�

E1

1
�
Ex
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FIGURE 35.17 Variation of flexural modulus and specific damping capacity with fiber orientation
for a carbon/epoxy, off-axis laminate in flexure.
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very small. Damping predictions are again shown to be below measured values, but
the discrepancy is much smaller in this case and the general trend with respect to
fiber orientation is predicted extremely well.

The above theoretical treatment has subsequently been extended to laminated
composite plates, again with reasonable correlation. SDC values ranged from just
below 1 percent up to around 7 percent, with lower damping exhibited by the car-
bon/epoxy-laminated plates configured to provide essentially isotropic elastic modu-
lus in the plane of the plate. Reference 18 contains extensive comparisons, including
mode shapes, for both carbon/epoxy- and glass/epoxy-composite laminates.

35.30 CHAPTER THIRTY-FIVE

FIGURE 35.18 Variation of flexural modulus and specific damping capacity with fiber orientation
for a carbon/epoxy, angle-ply laminate [±θ]s in flexure.
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CHAPTER 36
MATERIAL DAMPING AND

SLIP DAMPING

L. E. Goodman

INTRODUCTION

The term damping as used in this chapter refers to the energy-dissipation properties
of a material or system under cyclic stress, but excludes energy-transfer devices such
as dynamic absorbers. With this understanding of the meaning of the word, energy
must be dissipated within the vibrating system. In most cases a conversion of
mechanical energy to heat occurs. For convenience, damping is classified here as (1)
material damping and (2) system damping. Material properties and the principles
underlying the measurement and prediction of damping magnitude are discussed in
this chapter. For application to specific engineering problems, see Chap. 37.

MATERIAL DAMPING

Without a source of external energy, no real mechanical system maintains an undi-
minished amplitude of vibration. Material damping is a name for the complex phys-
ical effects that convert kinetic and strain energy in a vibrating mechanical system
consisting of a volume of macrocontinuous (solid) matter into heat. Studies of mate-
rial damping are employed in solid-state physics as guides to the internal structure
of solids. The damping capacity of materials is also a significant property in the
design of structures and mechanical devices; for example, in problems involving
mechanical resonance and fatigue, shaft whirl, instrument hysteresis, and heating
under cyclic stress. Three types of material that have been studied in detail are:

1. Viscoelastic materials.1 The idealized linear behavior generally assumed for this
class of materials is amenable to the laws of superposition and other conven-
tional rheological treatments including model analog analysis. In most cases lin-
ear (Newtonian) viscosity is considered to be the principal form of energy
dissipation. Many polymeric materials, as well as some other types of materials,
may be treated under this heading.

2. Structural metals and nonmetals.2 The linear dissipation functions generally
assumed for the analysis of viscoelastic materials are not, as a rule, appropriate

36.1
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for structural materials. Significant nonlinearity characterizes structural materi-
als, particularly at high levels of stress.A further complication arises from the fact
that the stress and temperature histories may affect the material damping prop-
erties markedly; therefore, the concept of a stable material assumed in viscoelas-
tic treatments may not be realistic for structural materials.

3. Surface coatings. The application of coatings to flat and curved surfaces to
enhance energy dissipation by increasing the losses associated with fluid flow is a
common device in acoustic noise control. These coatings also take advantage of
material and interface damping through their bond with a structural material.

They are treated in detail in Chap. 37.

Material damping of macrocontinu-
ous media may be associated with such
mechanisms as plastic slip or flow,
magnetomechanical effects, dislocation
movements, and inhomogeneous strain
in fibrous materials. Under cyclic stress
or strain these mechanisms lead to the
formation of a stress-strain hysteresis
loop of the type shown in Fig. 36.1. Since
a variety of inelastic and anelastic mech-
anisms can be operative during cyclic
stress, the unloading branch AB of the
stress-strain curve falls below the initial
loading branch OPA. Curves OPA and
AB coincide only for a perfectly elastic
material; such a material is never
encountered in actual practice, even at
very low stresses. The damping energy
dissipated per unit volume during one
stress cycle (between stress limits ±σd or
strain limits ±�d) is equal to the area
within the hysteresis loop ABCDA.

SLIP DAMPING

In contrast to material damping, which occurs within a volume of solid material, slip
damping3 arises from boundary shear effects at mating surfaces, or joints between dis-
tinguishable parts. Energy dissipation during cyclic shear strain at an interface may
occur as a result of dry sliding (Coulomb friction), lubricated sliding (viscous forces),
or cyclic strain in a separating adhesive (damping in a viscoelastic layer between mat-
ing surfaces).

SIGNIFICANCE OF MECHANICAL DAMPING 

AS AN ENGINEERING PROPERTY

Large damping in a structural material may be either desirable or undesirable,
depending on the engineering application at hand. For example, damping is a desir-
able property to the designer concerned with limiting the peak stresses and extend-
ing the fatigue life of structural elements and machine parts subjected to

36.2 CHAPTER THIRTY-SIX

FIGURE 36.1 Typical stress-strain (or load-
deflection) hysteresis loop for a material under
cyclic stress.
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near-resonant cyclic forces or to suddenly applied forces. It is a desirable property if
noise reduction is of importance. On the other hand, damping is undesirable if inter-
nal heating is to be avoided. It also can be a source of dynamic instability of rotating
shafts and of error in sensitive instruments.

Resonant vibrations of large amplitude are encountered in a variety of modern
devices, frequently causing rough and noisy operation and, in extreme cases, leading
to seriously high repeated stresses. Various types of damping may be employed to
minimize these resonant vibration amplitudes. Although special damping devices of
the types described in Chap. 6 may be used to transfer energy from the system, there
are many situations in which auxiliary dampers are not practical.Then accurate esti-
mation of material and slip damping becomes important.

When an engineering structure is subjected to a harmonic exciting force Fg sin ωt,
an induced force Fd sin (ωt − ϕ) appears at the support. The ratio of the amplitudes,
Fd/Fg, is a function of the exciting frequency ω. It is known as the vibration amplifi-

cation factor. At resonance, when ϕ =
90°, this ratio becomes the resonance
amplification factor4 Ar:

Ar = (36.1)

This condition is pictured schematically
in Fig. 36.2 for low, intermediate, and
high damping (curves 1, 2, 3, respec-
tively).

The magnitude of the resonance
amplification factor varies over a wide
range in engineering practice.5 In labo-
ratory tests, values as large as 1000 have
been observed. In actual engineering
parts under high stress, a range of 500 to
10 is reasonably inclusive. These limits
are exemplified by an airplane pro-
peller, cyclically stressed in the fatigue
range, which displayed a resonance
amplification factor of 490, and a double
leaf spring with optimum interface slip
damping which was observed to have a
resonance amplification factor of 10.
Because of the wide range of possible
values of Ar, each case must be consid-
ered individually.

METHODS FOR MEASURING DAMPING

PROPERTIES

STRESS-STRAIN (OR LOAD-DEFLECTION) HYSTERESIS LOOP

The hysteresis loop illustrated in Fig. 36.1 provides a direct and easily interpreted
measure of damping energy. To determine damping at low stress levels requires

Fd�
Fg
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FIGURE 36.2 Effect of material and slip
damping on vibration amplification. Curve (1)
illustrates case of small material and slip damp-
ing; (2) one damping is large while other is small;
(3) both material and slip damping are large.
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instruments of extreme sensitivity. For example, the width (DB in Fig. 36.1) of the
loop of chrome steel at an alternating direct-stress level of 103 MPa* is less than 2 ×
10−6. High-sensitivity and high-speed transducers and recording devices are required
to attain sufficient accuracy for the measurement of such strains. For metals in gen-
eral, extremely long gage lengths are required to measure damping in direct stress
by the hysteresis loop method if the peak stress is less than about 60 percent of the
fatigue limit. Under torsional stress, however, greater sensitivity is possible and the
hysteresis loop method is applicable to low stress work.

PROCEDURES EMPLOYING A VIBRATING SPECIMEN

The following methods of measuring damping utilize a vibrating system in which the
deflected member, usually acting as a spring, serves as the specimen under test. For
example, one end of the specimen may be fixed and the other end attached to a mass
which is caused to vibrate; alternatively, a freely supported beam or a tuning fork
may be used as the specimen vibrating system.6 In any arrangement the damping is

computed from the observed vibratory
characteristics of the system.

In one class of these procedures the
rate of decay of free damped vibration 
is measured. Typical vibration decay
curves are shown in Fig. 36.3. The meas-
ure of damping usually used, the log-
arithmic decrement, is the natural
logarithm of the ratio of any two succes-
sive amplitudes [see Eq. (2.19)]:

∆ = ln � (36.2)

The relation between logarithmic decre-
ment and other units used to measure
damping is given in Eq. (36.16). Vibra-
tion decay tests can be performed under
a variety of stress and temperature con-
ditions, and may utilize many different
procedures for releasing the specimen
and recording the vibration decay. It is
essential to minimize the loss of energy
either to the specimen supports or in
acoustic radiation.

A second class of vibrating specimen
procedures makes use of the fact, illus-

trated in Fig. 36.2, that higher damping is associated with a broader peak in the fre-
quency response or resonance curve. If the exciting force is held constant and the
exciting frequency varied, measurement of the steady-state amplitude of motion (or
stress) yields a curve similar to those shown in Fig. 36.2. The damping is then deter-
mined by measuring the width of the curve at an amplification factor equal to 

∆x
�
xn

xn�
xn + 1
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FIGURE 36.3 Typical vibration decay curves:
(A) low decay rate, small damping, and (B) high
decay rate, large damping.

* 1 MPa = 106 N/m2 = 146.5 lb/in.2 (103 MPa = 15,000 lb/in.2).
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0.707Ar. If a horizontal line drawn at this ordinate intercepts the resonance curve at
frequency ratios f1/fn and f2/fn ,

∆ = π � − � (36.3)

The quantity (f2 − f1) is the bandwidth at the half-power point. This procedure has the
advantage of requiring only steady-state tests. As in the case of the free-decay pro-
cedure, only the relative amplitude of the response need be measured. However, the
procedure does impose a particular stress history. If the system behavior should be
markedly nonlinear, the shape of the resonance curve will not be that assumed in the
derivation of Eq. (36.3).

If a system is operated exactly at resonance, the resonance amplification factor Ar

is the ratio of the (induced) force Fd to the exciting force Fg [see Eq. (36.1)]. In direct
application of this equation, Fg is usually made controllable and Fd computed from
strain or displacement measurements. The principle has been applied to the meas-
urement of damping in a large structure7 and in simple test specimens. It can take
account of high stress magnitude and of stress history as controlled variables. The
natural frequency of vibration of a specimen can be altered so that damping as a
function of frequency may be studied, but it is usually difficult to make such meas-
urements over a wide frequency range.This technique requires accurately calibrated
apparatus since measurements are absolute and not relative.

LATERAL DEFLECTION OF ROTATING CANTILEVER METHOD

The principle of the lateral deflection method is illustrated in Fig. 36.4. If test speci-
men S is loaded by arm-weight combination A—W, the target T deflects vertically
downward from position 1 to position 2. If the arm-specimen combination is rotated
by spindle B, as in a rotating cantilever-beam fatigue test, target T moves from posi-

tion 2 to position 3 for clockwise rotation. If the direction of rotation is counterclock-
wise, the target moves from position 3 horizontally to position 4. The horizontal
traversal H is a direct measure of the total damping absorbed by the rotating system.8

A modification of the lateral deflection method is the lateral force method. The
end of the rotating beam is confined and the lateral confining force is measured
instead of the lateral deflection H. This modification is particularly useful for meas-
urements of low modulus materials, such as plastic and viscoelastic materials.9

f1�
fn

f2�
fn
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FIGURE 36.4 Principle of rotating cantilever beam method for measuring damping.
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The advantages of the rotating cantilever beam method are (1) the test variables,
stress magnitude, stress history, and frequency, may be easily and independently con-
trolled so that this method is satisfactory for intermediate and high stress levels, and
(2) it yields not only data on damping but also fatigue and elasticity properties.

The disadvantages of this method are (1) the tests are rather time-consuming, (2)
accuracy is often questionable at low stress levels (below about 20 percent of the
fatigue limit) due to the small value of the horizontal traversal H, and (3) the
method can be used under rotating-bending conditions only.

HIGH-FREQUENCY PULSE TECHNIQUES

A sequence of elastic pulses generated by a transducer such as a quartz crystal
cemented to the front face of a specimen is reflected at the rear face and received
again at the transducer. The frequencies are in the megacycle range. The velocity of
such waves provides a measure of the elastic constants of the specimen; their decay
rates provide a measure of the material damping.10 This technique has been widely
employed in the study of the viscoelastic properties of polymers and the elastic
properties of crystals. So far as measurement of damping is concerned, it is open to
the objection that the attenuation may be due to scattering by imperfections rather
than to internal friction.

FUNDAMENTAL RELATIONSHIPS

Two general types of units are used to specify the damping properties of structural
materials: (1) the energy dissipated per cycle in a structural element or test specimen
and (2) the ratio of this energy to a reference strain energy or elastic energy.
Absolute damping energy units are:

D0 = total damping energy dissipated by entire specimen or structural element
per cycle of vibration, N⋅m/cycle

Da = average damping energy, determined by dividing total damping energy D0

by volume V0 of specimen or structural element which is dissipating energy,
N⋅m/m3/cycle

D = specific damping energy, work dissipated per unit volume and per cycle at a
point in the specimen, N⋅m/m3/cycle

Of these absolute damping energy units, the total energy D0 usually is of greatest
interest to the engineer.The average damping energy Da depends upon the shape of
the specimen or structural element and upon the nature of the stress distribution in
it, even though the specimens are made of the same material and have been sub-
jected to the same stress distribution at the same temperature and frequency. Thus,
quoted values of the average damping energy in the technical literature should be
viewed with some reserve.

The specific damping energy D is the most fundamental of the three absolute
units of damping since it depends only on the material in question and not on the
shape, stress distribution, or volume of the vibrating element. However, most of the
methods discussed previously for measuring damping properties yield data on total
damping energy D0 rather than on specific damping energy D. Therefore, the devel-
opment of the relationships between these quantities assumes importance.
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RELATIONSHIP BETWEEN D0, Da, AND D

If the specific damping energy is integrated throughout the stressed volume,

D0 = �V0

0
D dV (36.4)

This is a triple integral; dV = dx dy dz and D is regarded as a function of the space
coordinates x, y, z. If there is only one nonzero stress component, the specific damp-
ing energy D may be considered a function of the stress level σ. Then

D0 = �σd

0
D dσ (36.5)

In this integration, V is the volume of material whose stress level is less than σ. The
integration is a single integral, and σd is the peak stress. The integrands may be put
in dimensionless form by introducing Dd, the specific damping energy associated
with the peak stress level reached anywhere in the specimen during the vibration
(i.e., the value of D corresponding to σ = σd). Then

D0 = DdV0α (36.6)

where α = �1

0 � � d � � (36.7)

The average damping energy is

Da = = Ddα (36.8)

The relationship between the damping energies D0, Da, and D depends upon the
dimensionless damping energy integral α. The integrand of α may be separated into
two parts: (1) a damping function D/Dd which is a property of the material and (2) a
volume-stress function d(V/V0)/d(σ/σd) which depends on the shape of the part and
the stress distribution.

RELATIONSHIP BETWEEN SPECIFIC DAMPING ENERGY 

AND STRESS LEVEL

Before the damping function D/Dd can be determined, the specific damping energy
D must be related to the stress level σ. Data of this type for typical engineering
materials are given in Figs. 36.10 and 36.11. These results illustrate the fact that the
damping-stress relationship for all materials cannot be expressed by one simple
function. For a large number of structural materials in the low-intermediate stress
region (up to 70 percent of σe the fatigue strength at 2 × 107 cycles), the following
relationship is reasonably satisfactory:

D = J � �
n

(36.9)

Values of the constants J and n are given in Table 36.5 and Fig. 36.10. In general,
n = 2.0 to 3.0 in the low-intermediate stress region but may be much larger at high
stress levels. Where Eq. (36.9) is not applicable, as in the high stress regions of Figs.

σ
�
σe

D0�
V0

σ
�
σd

d(V/V0)�
d(σ/σd)

D
�
Dd

dV
�
dσ
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36.10 and 36.11 or in the case of the 403 steel alloy of Fig. 36.9, analytical expressions
are impractical and a graphical approach is more suitable for the computation of α.

VOLUME-STRESS FUNCTION

The volume-stress function (V/V0) may be visualized by referring to the dimension-
less volume-stress curves shown in Fig. 36.5. The variety of specimen types included
in this figure [tension-compression member (1) to turbine blade (9)] is representa-
tive of those encountered in practice. These curves give the fraction of the total vol-
ume which is stressed below a certain fraction of the peak stress. In a torsion
member, for example, 30 percent of the material is at a stress lower than 53 percent
of the peak stress. The volume-stress curves for a part having a reasonably uniform
stress, i.e., having most of its volume stressed near the maximum stress, are in the
region of this diagram labeled H. By contrast, curves for parts having a large stress

36.8 CHAPTER THIRTY-SIX

FIGURE 36.5 Volume-stress functions for various types of parts. (See Table 36.1 for additional
details on parts.)

8434_Harris_36_b.qxd  09/20/2001  12:28 PM  Page 36.8



gradient (such as a notched beam in which very little volume is at the maximum
stress and practically all of the volume is at a very low stress) are in the G region.

In order to illustrate representative values of α for several cases of engineering
interest, the results of selected analytical and graphical computations11 are summa-
rized in Table 36.1 and in Fig. 36.6. In Fig. 36.6 the effect of the damping exponent n
on the value of α for different types of representative specimens is illustrated. Note
the wide range of α encountered for n = 2.4 (representative of many materials at low
and intermediate stress) and for n = 8 (representative of materials at high stress, as
shown in the next section).

RATIO OF DAMPING ENERGY TO STRAIN ENERGY

Owing to the complexity of the sources of material damping, the use of relative
damping energy units does not produce all the advantages that might otherwise be
associated with a nondimensional quantity. One motivation for the use of such units,
however, is their direct relation to several conventional damping tests. The logarith-

MATERIAL DAMPING AND SLIP DAMPING 36.9

FIGURE 36.6 Damping exponent n in equation D = J(σ/σe)n.
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TABLE 36.1 Expressions and Values for α and β/α for Various Stress Distribution and Damping Functions

Dimensionless damping energy integral α
Dimen-

for various damping functions
sionless
strain 
energy β/α

Type of specimen and loading Volume-stress function
For special case D = J(σ/σe)n

integral if
as designated in Fig. 36.1 V/V0 General case D = f(σ) For any value of n n = 2.4 n = 8 β n = 8

1 Tension-compression member 1 1 1 1 1.0 1

2 Cylindrical torsion member or 
� �

2

�1 + �
−1

0.45 0.20 0.5 2.5rotating beam

3 Rectangular beam under uniform �1 + �
−1

0.29 0.11 0.33 3.0
bending

4 Cylindrical beam under uniform � �	1 − � �
2

+ sin−1� �� 0.21 0.055 0.24 4.5
bending

5 Diamond beam under uniform 
2 − � �

2

�1 + + �
−1

0.13 0.022 0.17 7.7
bending

6
Rectangular beam

Mx = M0 �1 − loge � �1 + + �
−1

0.088 0.012 0.11 9.1

having bending
moment shown

7 Mx = � �
2

M0 2 �	 − �1 + + �
−1

0.051 0.0065 0.067 10.0

8 Tuning fork in bending K �1 − loge � K�1 + + �
−1

→ 0.091 0.0099 0.089 9.0

Note: β/α = 1 for all cases if n = 2.
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mic decrement ∆ is defined by Eq. (36.2). Other energy ratio units are tabulated and
defined below. In this chapter, the energy ratio unit termed loss factor is used as the
reference unit.

In defining the various energy ratio units, it is important to distinguish between
loss factor ηs of a specimen or part (having a variable stress distribution) and the loss
factor η for a material (having a uniform stress distribution). By definition the loss
factor of a specimen (identified by subscript s) is

ηs = (36.10)

where the total damping D0 in the specimen is given by Eq. (36.6). The total strain
energy in the part is of the form

W0 = �V0

0 � � dV = � � V0β (36.11)

where E denotes a modulus of elasticity and β is a dimensionless integral whose
value depends upon the volume-stress function and the stress distribution:

β = �1

0 � �
2

d � � (36.12)

On substituting Eq. (36.6) and Eq. (36.11) in Eq. (36.10), it follows that

ηs = (36.13)

If the specimen has a uniform stress distribution, α = β = 1 and the specimen loss fac-
tor ηs becomes the material loss factor η; in general, however,

η = = ηs (36.14)

Other energy ratio (or relative energy) damping units in common use are defined
below:

For specimens with variable stress distribution:

ηs = (tan φ)s = = = � �s
= = = � � (36.15)

For materials or specimens with uniform stress distribution:

η = tan φ = = = = = = Q−1 = (36.16)

where η = loss factor of material = dissipation factor (high loss factor signi-
fies high damping)

tan φ = loss angle, where φ is phase angle by which strain lags stress in
sinusoidal loading

ψ = πη = specific damping capacity
δω/ωn = (bandwidth at half-power point)/(natural frequency) [see Eq.

(36.3)]
Ar = resonance amplification factor [see Eq. (36.1)]
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Q = 1/η = measure of the sharpness of a resonance peak and amplification
produced by resonance

The material properties are related to the specimen properties as follows:

ψ = ψs ∆ = ∆s Ar = (Ar)s (36.17)

Thus, the various energy ratio units, as conventionally expressed for specimens,
depend not only on the basic material properties D and E but also on β/α. The ratio
β/α depends on the form of the damping-stress function and the stress distribution in
the specimen.As in the case of average damping energy, Da, the loss factor or the log-
arithmic decrement for specimens made from exactly the same material and exposed
to the same stress range, frequency, temperature, and other test variables may vary
significantly if the shape and stress distribution of the specimen are varied. Since data
expressed as logarithmic decrement and similar energy ratio units reported in the
technical literature have been obtained on a variety of specimen types and stress dis-
tributions, any comparison of such data must be considered carefully. The ratio β/α
may vary for specimens of exactly the same shape if made from materials having dif-
ferent damping-stress functions. For different specimens made of exactly the same
materials, the variation in β/α also may be large, as shown in Fig. 36.7. For example,

α
�
β

β
�
α

β
�
α

36.12 CHAPTER THIRTY-SIX

FIGURE 36.7 Effect of damping exponent n on ratio β/α for D = Jσn. Curves
are (1) tension-compression member; (2) solid circular torsion member or rotat-
ing beam; (3) rectangular beam–constant moment; (4) solid circular beam–con-
stant moment; (5) diamond beam–constant moment; (6) rectangular beam–linear
moment distribution; and (7) rectangular beam–quadratic moment distribution.
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for a material and stress region for which the damping exponent n = 2.4 (characteris-
tic of metals at low and intermediate stress), the value of β/α shown in Table 36.1
varies from 1 for a tension-compression member to 1.6 for a rectangular beam with
quadratic moment distribution. If n = 8 (characteristic of materials at high stress), the
variation is from 1 to 10, and larger for beams with a higher stress gradient.

It is possible, for a variety of types of beams, to separate the ratio β/α into two fac-
tors:12 (1) a cross-sectional shape factor Kc which quantitatively expresses the effect of
stress distribution on a cross section, and (2) a longitudinal stress distribution factor Ks

which expresses the effect of stress distribution along the length of the beam.Then

= KsKc (36.18)

If material damping can be expressed as an exponential function of stress, as in Eq.
(36.9), some significant generalizations can be made regarding the pronounced
effect of the damping exponent n on each of these factors. Some of the results are
shown in Fig. 36.8 for beams of constant cross-section. These curves indicate that
high values of Ks and Kc are associated with a high damping exponent n, other fac-
tors being equal; Kc is high when very little material is near peak stress. For example,
compare the diamond cross-section shape with the I beam, or compare the uniform
stress beam with the cantilever.

In much of the literature on damping, the existence of the factors α and β (or Ks

and Kc) is not recognized; the unstated assumption is that α = β = 1. As discussed
above, this assumption is true only for specimens under homogeneous stress.

β
�
α

MATERIAL DAMPING AND SLIP DAMPING 36.13

FIGURE 36.8 Effect of damping exponent n on longitudinal stress distribution factor and cross-
sectional shape factor of selected examples.
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Relative damping units such as logarithmic decrement depend on the ratio of two
energies, the damping energy and the strain energy. Since strain energy increases
with the square of the stress for reasonably linear materials, the logarithmic decre-
ment remains constant with stress level and is independent of specimen shape and
stress distribution only for materials whose damping energy also increases as the
square of the stress [n = 2 in Eq. (36.9)]. For most materials at working stresses, n
varies between 2 and 3 (see Fig. 36.10), but for some (Fig. 36.9) it is highly variable.
In the high stress region, n lies in the range 8.0–20.0 (Fig. 36.10). In view of the broad
range of materials and stresses encountered in design, the case n = 2 must be
regarded as exceptional. Thus, logarithmic decrement is a variable rather than a
“material constant.” Its magnitude generally decreases significantly with stress
amplitude.When referring to specimens such as beams in which all stresses between
zero and some maximum stress occur simultaneously, the logarithmic decrement is
an ambiguous average value associated with some mean stress. Published data
require careful analysis before suitable comparisons can be made.

36.14 CHAPTER THIRTY-SIX

FIGURE 36.9 Comparison of internal friction and damping values for dif-
ferent inelastic mechanisms.
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FIGURE 36.10 Specific damping energy of various materials as a function of amplitude of reversed
stress and number of fatigue cycles. Number of cycles is 10 to power indicated on curve. For example,
a curved marked 3 is for 103 or 1,000 cycles. Note: 6.895 kN⋅m/m3 = 1 in.-lb/in.3 and 1 MPa = 103 N/m2

= 10−3 kN/mm2 = 146.5 lb/in.2.
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VISCOELASTIC MATERIALS

Some materials respond to load in a way that shows a pronounced influence of the
rate of loading. Generally the strain is larger if the stress varies slowly than it is if the
stress reaches its peak value swiftly. Among materials that exhibit this viscoelastic
behavior are high polymers and metals at elevated temperatures, as well as many
glasses, rubbers, and plastics.13 As might be expected, these materials usually also
exhibit creep, an increasing deformation under constant applied load.

When a sinusoidal exciting force is applied to a viscoelastic solid, the strain is
observed to lag behind the stress. The phase angle between them, denoted by ϕ, is
the loss angle. The stress may be separated into two components, one in phase with
the strain and one leading it by a quarter cycle.The magnitudes of these components
depend upon the material and upon the exciting frequency, ω. For a specimen sub-
ject to homogeneous shear (α = β = 1),

γ = γ0 sin ωt (36.19)

σ = γ0 [G′(ω) sin ωt + G″(ω) cos ωt] (36.20)

This is a linear viscoelastic stress-strain law.The theory of linear viscoelasticity is the
most thoroughly developed of viscoelastic theories. In Eq. (36.20), G′(ω) is known as
the “storage modulus in shear” and G″(ω) is the “loss modulus in shear” (the sym-
bols G1 and G2 are also widely used in the literature). The stiffness of the material
depends on G′ and the damping capacity on G″. In terms of these quantities the loss
angle ϕ = tan−1 (G″/G′ ).The complex, or resultant, modulus in shear is G* = G′ + iG″.
In questions of stress analysis, complex moduli have the advantage that the form of
Hooke’s law is the same as in the elastic case except that the elastic constants are
replaced by the corresponding complex moduli. Then a correspondence principle
often makes it possible to adapt an existing elastic solution to the viscoelastic case.
For details of viscoelastic stress analysis, see Ref. 31.

The moduli of linear viscoelasticity are readily related to the specific damping
energy D introduced previously. For a specimen in homogeneous shear of peak mag-
nitude γ0, the energy dissipated per cycle and per unit volume is

D = �2π/ω

0
σ� � dt (36.21)

In view of Eqs. (36.19) and (36.20) this becomes

D = �2π/ω

0
γ0

2ω(G′ sin ωt + G″ cos ωt) cos ωt dt

= πγ0
2G″(ω) (36.22)

It is apparent from Eq. (36.22) that linear viscoelastic materials take the coefficient
n = 2 in Eq. (36.9). These materials differ from metals, however, by having damping
capacities that are strongly frequency- and temperature-sensitive.1

DAMPING PROPERTIES OF MATERIALS

The specific damping energy D dissipated in a material exposed to cyclic stress is
affected by many factors. Some of the more important are:

dγ
�
dt

36.16 CHAPTER THIRTY-SIX
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1. Condition of the material
a. In virgin state: chemical composition; constitution (or structure) due to ther-

mal and mechanical treatment; inhomogeneity effects
b. During and after exposure to pretreatment, test, or service condition:

Effect of stress and temperature histories on aging, precipitation, and other
metallurgical solid-state transformations

2. State of internal stress
a. Initially, due to surface-finishing operations (shot peening, rolling, case 

hardening)
b. Changes caused by stress and temperature histories during test or service

3. Stress imposed by test or service conditions
a. Type of stress (tension, compression, bending, shear, torsion)
b. State of stress (uniaxial, biaxial, or triaxial)
c. Stress-magnitude parameters, including mean stress and alternating compo-

nents; loading spectrum if stress amplitude is not constant
d. Characteristics of stress variations including frequency and waveform
e. Environmental conditions: temperature (magnitude and variation) and the

surrounding medium and its (corrosive, erosive, and chemical) effects

Factors tabulated above, such as stress magnitude, history, and frequency, may be
significant at one stress level or test condition and unimportant at another. The
deformation mechanism that is operative governs the sensitivity to the various fac-
tors tabulated.

Many types of inelastic mechanisms and hysteretic phenomena have been identi-
fied, as shown in Table 36.2. The various damping phenomena and mechanisms may
be classified under two main headings: dynamic hysteresis and static hysteresis.

Materials which display dynamic hysteresis (sometimes identified as viscoelastic,
rheological, and rate-dependent hysteresis) have stress-strain laws which are
describable by a differential equation containing stress, strain, and time derivatives
of stress or strain. This differential equation need not be linear, though, to avoid
mathematical complexity, much of the existing theory is based on the linear vis-
coelastic law described in the previous section. One important type of dynamic hys-
teresis, a special case identified as anelasticity14, 15 or internal friction, produces no
permanent set after a long time. This means that if the load is suddenly removed at
point B in Fig. 36.1, after cycle OAB, strain OB will gradually reduce to zero as the
specimen recovers (or creeps negatively) from point B to point O.

A distinguishing characteristic of anelasticity and the more general case of vis-
coelastic damping is its dependence on time-derivative terms. The hysteresis loops
tend to be elliptical in shape rather than pointed as in Fig. 36.1. Furthermore, the
loop area is definitely related to the dynamic or cyclic nature of the loading and the
area of the loop is dependent on frequency. In fact, the stress-strain curve for an ide-
ally viscoelastic material becomes a single-valued curve (no hysteretic loop) if the
cyclic stress is applied slowly enough to allow the material to be in complete equi-
librium at all times (oscillation period very much longer than relaxation times). No
hysteretic damping is produced by these mechanisms if the material is subjected to
essentially static loading. Stated differently, the static hysteresis is zero.

Static hysteresis, by contrast, involves stress-strain laws which are insensitive to
time, strain, or stress rate.The equilibrium value of strain is attained almost instantly
for each value of stress and prior stress history (direction of loading, amplitudes,
etc.), independent of loading rate. Hysteresis loops are pointed, as shown in Fig. 36.1,
and if the stress is reduced to zero (point B) after cycle OAB, then OB remains as a
permanent set or residual deformation.The two principal mechanisms which lead to
static hysteresis are magnetostriction and plastic strain.

MATERIAL DAMPING AND SLIP DAMPING 36.17
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TABLE 36.2 Classification of Types of Hysteretic Damping of Materials

Types of material damping

Name used here Dynamic hysteresis Static hysteresis

Other names Viscoelastic, rheological, and rate-dependent hysteresis Plastic, plastic flow, plastic strain, and rate-independent 
hysteresis

Nature of stress- Essentially linear. Differential equation involving stress, Essentially nonlinear, but excludes time derivatives of
strain laws strain, and their time derivatives stress or strain

Special cases Anelasticity. Special because no permanent set after 
and description sufficient time. Called “internal friction”

Simplest
representative
mechanical
model

Frequency dependence Critically at relaxation peaks No, unless other mechanisms present

Primary mechanisms Solute atoms, grain boundaries. Micro- and macro-thermal Magnetoelasticity Plastic strain
and eddy currents. Molecular curling and uncurling in
polymers.

Value of n in D = JSn 2 3—up to coercive force 2–3 up to σL

2 to >30 above σL

Variation of η with stress No change, since n − 2 = 0 Proportional to σ since Small increase up to σL

n − 2 = 1 Large increase above σL

Typical values for η Anelasticity: <0.001 to 0.01 0.01 to 0.08 0.001 to 0.05 up to σL

Viscoelasticity: <0.1 to >1.5 0.001 to >0.1 above σL

Stress range of Anelasticity—low stress Low and medium. Medium and high stress
engineering importance Viscoelasticity—all stresses Sometimes high

Effect of fatigue cycles No effect No effect No effect up to σL

Large changes above σL

Effect of temperature Critical effects near relaxation peaks Damping disappears at Mixed. Depends on type of 
Curie temperature comparison

Effect of static preload Large reduction for Either little effect or
small coercive force increase
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Table 36.2 also shows the simplest representative mechanical models for each of
the behaviors classified. In these models, k is a spring having linear elasticity (linear
and single-valued stress-strain curve), C is a linear dashpot which produces a resist-
ing force proportional to velocity, and D is a Coulomb friction unit which produces
a constant force whenever slip occurs within the unit, the direction of the force being
opposite to the direction of relative motion. More sophisticated models have been
found to predict reliably the behavior of some materials, particularly polymeric
materials.

Any one of the mechanisms to be discussed may dominate, depending on the
stress level. For convenience, low stress is defined here as a (tension-compression)
stress less than 1 percent of the fatigue limit; intermediate stress levels are those
between 1 percent and 50 percent of the fatigue limit of the material; and high stress
levels are those exceeding 50 percent of the fatigue limit.

DYNAMIC HYSTERESIS OF VISCOELASTIC MATERIALS

The linearity limits of a variety of plastics and rubbers are summarized in Table 36.3.
While the stress limits are of the same order of magnitude for plastics and rubbers,
the strain limits are much smaller for the former class of materials.Within these lim-
its the dynamic storage and loss moduli of linear viscoelasticity may be used.

One distinguishing characteristic of the dynamic behavior of viscoelastic materi-
als is a strong dependence on temperature and frequency.1, 16 At high frequencies (or
low temperature) the storage modulus is large, the loss modulus is small, and the
behavior resembles that of a stiff ideal material.This is known as the “glassy” region
in which the “molecular curling and uncurling” cannot occur rapidly enough to fol-

low the stress.Thus the material behaves essentially “elastically.”At low frequencies
(or high temperature) the storage modulus and the loss modulus are both small.This
is the “rubbery” region in which the molecular curling and uncurling follow the
stress in phase, resulting in an equilibrium condition not conducive to energy dissi-
pation. At intermediate frequencies and temperatures there is a “transition” region
in which the loss modulus is largest. In this region the molecular curling and uncurl-
ing is out of phase with the cyclic stress and the resulting lag in the cyclic strain pro-
vides a mechanism for dissipating damping energy.The loss factor also shows a peak

MATERIAL DAMPING AND SLIP DAMPING 36.19

TABLE 36.3 Linearity Limits for a Variety of Plastics and Rubber

Stress limit in creep, Strain limit
Material MPa in relaxation

Polymethylmethacrylate 10
Polystyrene 5
Plasticized polyvinyl chloride 1 0.1–1.0%
Polythene 12
Phenolic resins 10
Polyisobutylene 50%
Natural rubber 1–10 �100%
GR-S 100%

Note: 1 MPa = 106 N/m2 = 146.5 lb/in.2.
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in this region, although at a somewhat lower frequency than the peak in G″. Since
the damping energy is proportional to G″, the specific damping curve also has its
maximum in the transition region. Most engineering problems involving vibration
are associated with the transition and glassy regions. In Table 36.4, values of G′ and
G″ are given for a variety of rubbers and plastics. References 17 to 20 contain addi-
tional useful information.

Metals at low stress exhibit certain properties that constitute dynamic hysteresis
effects. Peaks are observed in curves of loss factors vs. frequency of excitation. For
example, under conditions that maximize the internal friction associated with grain
boundary effects, polycrystalline aluminum will display a loss factor peak as high as
η = 0.09. But for most metals, the peak values are less than 0.01. Although the rheo-

36.20 CHAPTER THIRTY-SIX

TABLE 36.4 Typical Moduli of Viscoelastic Materials

(Two values are given: the upper value is G′; the bottom value is G″. Moduli units are mega-
pascals, MPa.)

Frequency, Hz Tempera-
Material 10 100 1000 4000 ture, °C

Polyisobutylene 0.512 1.31 2.36 −60–100
0.410 1.76 4.50

M 169A Butyl gum 0.480 1.40 2.70 21–65
0.502 1.32 2.88

Du Pont fluoro rubber, 2.00 4.54 7.93 0–100
(Viton A) 1.60 8.41 27.0

Silicon rubber gum 0.05 0.08 21–65
0.02 0.04

Natural rubber 0.33 0.50 25
0.02 0.02

3M tape No. 466 0.81 2.52 15.3 25
(adhesive) 0.95 4.59 13.0

3M tape No. 435 0.28 0.55 0.87 −40–60
(sound damping tape) 0.16 0.37 0.63

Natural rubber 3.91 4.91 −30–75
(tread stock) 0.68 0.97

Thiokol M-5 7.86 8.34 −30–75
3.91 10.27

Natural gum 0.73 −30–75
(tread stock) 0.07

Filled silicone rubber 2.00 2.50 3.41 21–65
0.26 0.44 0.58

Polyvinyl chloride 1.26 3.20 6.60 21–65
acetate 1.44 2.32 5.78

X7 Polymerized tung oil 17.0 39.0 21–65
with polyoxane liquid 9.45 20.8

Du Pont X7775 pyralin 4.50 12.0 45.0 −45–100
2.51 9.45 28.3

Polyvinyl butyral 30.0 200.0 600.0 −45–100
3.1 12.5 37.6

Polyvinyl chloride with 0.35 0.65
dimethyl thianthrene 0.21 0.97

Note: 1 MPa = 106 N/m2 = 10−3 kN/mm2 = 146.5 lb/in.2.
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logical properties of metals at low stress can be described in terms of anelastic prop-
erties (rheology without permanent set), a more general approach which includes
provisions for permanent set is required to specify the rheological properties of met-
als at high stress. This approach is best described in terms of static hysteresis.

STATIC HYSTERESIS

The metals used in engineering practice exhibit little internal damping at low stress
levels. At intermediate and high stress levels, however, magnetostriction and plastic
strain can introduce appreciable damping. The former effect is considered first.

Ferromagnetic metals have significantly higher damping at intermediate stress
levels than do nonferromagnetic metals. This is because of the rotation of the mag-
netic domain vectors produced by the alternating stress field. If the specimen is mag-
netized to saturation, most of the damping disappears, indicating that it was due
primarily to magnetoelastic hysteresis. Figure 36.9 shows the loss factor for three
metals, each heat-treated for maximum damping. The damping of 403 steel (ferro-
magnetic material with 12% Cr and 5% Ni) is much higher than that of 310 steel
(nonferromagnetic with 25% Cr and 20% Ni). Most structural metals at low and
intermediate stress exhibit loss factors in the general range of 310 steel until the hys-
teresis produced by plastic strain becomes significant. The alloy Nivco 1021 (ap-
proximately 72% Co and 23% Ni), developed to take maximum advantage of
magnetoelastic hysteresis, displays significantly larger damping than other metals.

The damping energy dissipated by magnetoelastic hysteresis increases as the
third power of stress up to a stress level governed by the magnetomechanical coer-
cive force; thus, the loss factor should increase linearly with stress. Nivco 10 follows
this relationship for the entire range of stress shown in Fig. 36.9. Beyond an alter-
nating stress governed by the magnetomechanical coercive force, i.e., beyond
approximately 34.5 MPa (5,000 lb/in.2) for the 403 steel, the damping energy dissi-
pated becomes constant. Since the elastic energy W0 continues to increase as the
square of the alternating stress, the value of loss factor (ratio of the two energies)
decreases with the inverse square of stress. The curve for 403 steel in Fig. 36.9 at
stresses between 62 MPa (9,000 lb/in.2) and 103 MPa (15,000 lb/in.2) demonstrates
this behavior.

Magnetoelastic damping is independent of the excitation frequency, at least in
the frequency range that is of engineering interest. Magnetoelastic damping
decreases only slightly with increasing temperature until the Curie temperature is
reached, when it decreases rapidly to zero. Static stress superposed on alternating
stress reduces magnetoelastic damping.21, 22

It is not entirely clear what mechanisms are encompassed by the terms plastic
strain, localized plastic deformation, crystal plasticity, and plastic flow in a range of
stress within the apparent elastic limit. On the microscopic scale, the inhomogeneity
of stress distribution within crystals and the stress concentration at crystal boundary
intersections produce local stress high enough to cause local plastic strain, even
though the average (macroscopic) stress may be very low. The number and volume
of local sites so affected probably increase rapidly with stress amplitude, particularly
at stresses approaching the fatigue limit of a material. On the submicroscopic scale,
the role of dislocations, their kind, number, dispersion, and lattice anchorage in the
deformation process still remains to be determined. The processes involved in these
various inelastic behaviors may be included under the general term “plastic strain.”

At small and intermediate stress, the damping caused by plastic strain is small,
probably of the same order as some of the internal friction peaks discussed previ-
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ously and much smaller than magnetoelastic damping in many materials. In this
stress region, damping generally is not affected by the stress or strain history. How-
ever, as the stress is increased, the plastic strain mechanism becomes increasingly
important and at stresses approaching the fatigue limit it begins to dominate as a
damping mechanism. This is shown by the curves for titanium in Fig. 36.9.22 In the
region of high stress, microstructural changes and metallurgical instability appear
to be initiated and promoted by cyclic stress. This occurs even though the stress
amplitude may lie below the apparent elastic limit (that observed by conventional
methods) and the fatigue limit of the material. This means that damping in the high
stress region is a function not only of stress amplitude but also of stress history. In
Fig. 36.9, for example, the lower of the two curves for titanium indicates the damp-
ing of the virgin specimen and the upper curve gives the damping after 10,000 stress
cycles.

The general position as regards stress history is given in Fig. 36.10. Below a cer-
tain peak stress, σL, known as the “cyclic stress sensitivity limit,” the curve of damp-
ing vs. stress is a straight line on a log-log plot and displays no stress-history effect.
The limit stress σL usually falls somewhat below the fatigue strength of the material.
Above σL, stress-history effects appear; the curve labeled 1.3 indicates the damping
energy after 101.3 = 20 cycles and the curve labeled 6 after 106 or 1 million cycles. To
facilitate comparisons between the reference damping units, loss factor η and D
under uniform stress (α/β = 1), the loss factor also is plotted in Fig. 36.10. Since the
relationship between D and η depends on the value of Young’s modulus of elasticity
E, a family of lines for the range of E = 34 × 103 to 205.0 × 103 MPa (5 × 106 to 30 ×
106 lb/in.2) is shown for η = 1. The lines for the other values of η correspond to a
value of E = 102.0 × 103 MPa (15 × 106 lb/in.2).

36.22 CHAPTER THIRTY-SIX

TABLE 36.5 Static, Hysteretic, Elastic, and Fatigue Properties of a Variety of Metals

Static properties Fatigue behavior

Cyclic
Modulus Yield stress

of stress sensi-
elasticity (0.2% Tensile Fatigue tivity Stress

E, offset), strength, strength limit ratio
Material* MPa 10−4 MPa MPa σe, MPa σL, MPa σL/σe

N-155 (superalloy) 20. 410. 810. 360. 220. 0.62
Lapelloy (superalloy) 22. 764. 880. 490. 490. 1.00
Lapelloy (480°C) 17.5 270. 310. 1.14
RC 130B (titanium) 11.5 950. 1,040. 590. 650. 1.10
RC 130B (320°C) 9.9 430. 340. 0.81
Sandvik (O & T) steel 19.9 1,210. 1,400. 630. 680. 1.09
SAE 1020 steel 20.1 320. 490. 240. 200. 0.85
Gray iron 13.2 140. 65. 44. 0.69
24S-T4 aluminum 7.2 330. 500. 180. 160. 0.88
J-1 magnesium 4.4 230. 310. 120. 55. 0.47
Manganese-copper alloy 410. 610. 130. 120. 0.95

Note: 1 MPa = 106 N/m2 = 146 lb/in.2.
(Includes test temperature if above room temperature.)
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COMPARISON OF VARIOUS MATERIAL DAMPING MECHANISMS

AND REPRESENTATIVE DATA FOR ENGINEERING MATERIALS

The general qualitative characteristics of the various types of damping are summa-
rized in Table 36.2 by comparing the effects of different testing variables. The data
tabulated indicate that, in general, anelastic mechanisms do not contribute signifi-
cantly to total damping at intermediate and high stresses; in these regions magne-
toelastic and plastic strain mechanisms probably are the most important from an
engineering viewpoint.

Damping vs. stress ratio data have been determined for a variety of common
structural materials at various temperatures.2,4 Some of these data are listed in Table
36.5 (all tests at 0.33 Hz). For a large variety of structural materials (not particularly
selected for large magnetoelastic or plastic strain damping), the data are found to lie
within a fairly well-established band shown in Fig. 36.11. The approximate geomet-
ric-mean curve is shown. Up to the fatigue limit, that is up to σd = σe, the specific
damping energy D is given with sufficient accuracy by the expression

D = J � �
2.4

(36.23)

where J = 6.8 × 10−3 if D is expressed in SI units of MN⋅m/m3/cycle, and the value of
J = 1.0 if D is expressed in units of in.-lb/in.3/cycle.

The approximate bandwidth about the geometric mean curve in Fig. 36.11 for the
various structural materials included in the band is as follows: from 1⁄3 to 3 times the
mean value at a stress ratio of 0.2 or less; from 1⁄5 to 5 times at a ratio of 0.6; from 1⁄10

to 10 times at a ratio of 1.0.

σ
�
σe
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Damping properties, kN⋅m/m3/cycle

D = J � �

n

,

σ ≤ σL D at σ/σe = 1 D at σ/σe = 1.2

n, After After After Maximum
dimen-

D D

101.3 106 101.3 number of
J sionless

= 1 = 0.6
cycles cycles cycles cycles

8.8 2.5 2.7 2.7 310. 170. 1,230. 1,500.
30.* 2.4* 10.9 4.0 11. 11. 55. 170.
24. 2.2 34. 8.2 26. 26. 41. 48.
14. 2.0 14. 4.4 12. 12. 18. 24.
17. 1.9 12. 6.1 13. 34. 30. 170.
16. 2.3 19. 5.5 16. 16. 31. 200.
4.3 2.0 3.1 1.6 4.5 140. 34. 680.

12. 2.4 4.5 3.4 14. 8.2 22. 16.
3.9 2.0 3.0 1.4 6.8 4.1 6. 15.
3.1 2.0 0.7 0.9 7.5 3.4 24. 7.

96. 2.8 82. 22. 89. 89. 170. 140.

Note: 1 kN⋅m/m3/cycle = 0.146 in.-lb/in.3/cycle.
* Up to σ = 96 MPa (14,000 lb/in.2); at σ = 204 MPa (30,000 lb/in.2) n = 1.5.

σ
�
σe

σ
�
σL

σ
�
σe
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Also shown in Fig. 36.11 for comparison purposes are data for four materials
having especially high damping. Materials 1 and 2 are the magnetoelastic alloys
Nivco 10 and 403. Nivco 10 retains its high damping up to the stresses shown (data
not available at higher stresses). However, the 403 alloy reaches its magnetoelastic
peak at a stress ratio of approximately 0.2 and increases less rapidly beyond this
point; when plastic strain damping becomes dominant (at stress ratio of approxi-
mately 0.8), damping increases very rapidly. By contrast, material 3, a manganese-
copper alloy with large plastic strain damping, retains its high damping up to and
beyond its fatigue strength.23 Material 4 is a “typical” viscoelastic adhesive (G″ =
0.95 MPa = 138 lb/in.2), assuming that the permissible cyclic shear strain is unity
(experiments show that a shear strain of unity does not cause deterioration in this
adhesive even after millions of cycles).24 The magnetoelastic material has a damp-
ing thirty times as large as the average structural material in the stress range shown
in Fig. 36.11, and the viscoelastic damping is over ten times as large as the magne-
toelastic damping.

The range of D observed for common structural materials stressed at their
fatigue limit is 0.003 to 0.7 MN⋅m/m3/cycle with a mean value of 0.05 (0.5 to 100 in.-
lb/in.3/cycle with a mean value of 7). For materials stressed at a rate of 60 Hz under
a uniform stress distribution (tension-compression), 16.4 cm3 (1 in.3) of a typical
material will safely absorb and dissipate 48 watts (0.064 hp). Some high damping
materials can absorb almost 746 watts (1 hp) in the safe-stress range, assuming no
significant frequency or stress-history effects.25–27

36.24 CHAPTER THIRTY-SIX

FIGURE 36.11 Range of damping properties for a variety of structural materials.The shaded band
defines the damping for most structural materials. 1 kN⋅m/m3 = 0.146 in.-lb/in.3.
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SLIP DAMPING

In some cases the hysteretic damping in a structural material is sufficient to keep
resonant vibration stresses within reasonable limits. However, in many engineering
designs, material damping is too small and structural damping must be considered.A
structural damping mechanism which offers excellent potential for large energy dis-
sipation is that associated with the interface shear at a structural joint.

The initial studies28–30 on interface shear damping considered the case of
Coulomb or dry friction. Under optimum pressure and geometry conditions, very
large energy dissipation is possible at a joint interface. However, the application of
the general concepts of optimum Coulomb interface damping to engineering struc-
tures introduces two new problems. First, if the configuration is optimum for maxi-
mum Coulomb damping, the resulting slip can lead to serious corrosion due to
chafing; this may be worse than the high resonance amplification associated with
small damping. Second, for many types of design configurations, the interface pres-
sure or other design parameters must be carefully optimized initially and then accu-
rately maintained during service; otherwise, a small shift from optimum conditions
may lead to a pronounced reduction in total damping of the configuration. Since it
usually is difficult to maintain optimum pressure, particularly under fretting condi-
tions, other types of interface treatment have been developed. One approach is to
lubricate the interface surfaces. However, the maintenance of a lubricated surface
often is difficult, particularly under the large normal pressure and shear sometimes
necessary for high damping. Therefore, a more satisfactory form of interface treat-
ment is an adhesive separator placed between mating surfaces at an interface. The
function of the separating adhesive layer is to distort in shear and thus to dissipate
energy with no significant Coulomb friction or sliding and therefore no fretting cor-
rosion. The design of such layers is discussed in Chap. 37.

DAMPING BY SLIDING

The nature of interface shear damping can be explained by considering the behavior
of two machine parts or structural elements which have been clamped together. The
clamping force, whether it is the result of externally applied loads, of accelerations
present in high-speed rotating machinery, or of a press fit, produces an interface com-
mon to the two parts. If an additional exciting force Fg is now gradually imposed, the
two parts at first react as a single elastic body. There is shear on the interface, but not
enough to produce relative slip at any point.As Fg increases in magnitude, the result-
ing shearing traction at some places on the interface exceeds the limiting value per-
mitted by the friction characteristics of the two mating surfaces. In these regions
microscopic slip of adjacent points on opposite sides of the interface occurs. As a
result, mechanical energy is converted into heat. If the mechanical energy is energy of
free or forced vibration, damping occurs. The slipped region is local and does not, in
general, extend over the entire interface. If it does extend over the entire interface,
gross slip is said to occur. This usually is prevented by the geometry of the system.

The force-displacement relationship for systems with interface shear damping is
shown in Fig. 36.12. Since there are many displacements which can be measured,
the displacement which corresponds to the exciting force that acts on the system is
taken as a basis. Then the product of displacement and exciting force, integrated
over a complete cycle, is the work done by the exciting force and absorbed by the
structural element.As shown in Fig. 36.12, there is an initial linear phase OP during
which behavior is entirely elastic. This is followed, in general, by a nonlinear transi-
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tion phase PB during which slip pro-
gresses across the contact area. The
phase PB is nonlinear, not because of
any plastic behavior, but simply because
the specimen is changing in stiffness as
slip progresses. After the nonlinear
phase PB, there may be a second linear
phase BC during which slip is present
over the entire interface. The existence
of such a phase requires some geomet-
ric constraint which prevents gross
motion even after slip has progressed
over the entire contact area. If no such
constraint is provided, Fg cannot be

allowed to exceed the value corresponding to point B. If it should exceed this gross
value, slip would occur.

If the clamping force itself does not produce any shear on the interface and if the
exciting force does not affect the clamping pressure, the force-displacement curve is
symmetrical about the origin O. These conditions are at least approximately fulfilled
in many cases. If they are not fulfilled, the exciting force in one direction initiates slip
at a different magnitude of load than the exciting force in the opposite direction.
This is the case pictured in Fig. 36.12. With negative exciting force, slip is initiated at
P′ which corresponds to a force of considerably smaller magnitude than point P.
However, the force-displacement curve is always symmetrical about the mid-point
of PP′ (intersection of dashed lines in Fig. 36.12).

The force-displacement curve has been followed from point O to point C. If now
a reduction in the exciting force occurs, the curve proceeds from C in a direction par-
allel to its initial elastic phase. Eventually, as unloading proceeds, slip is initiated
again. Its sense is now opposite to that which was produced by positive force. The

curve continues to point B′, where slip is
complete, and then along a linear stretch
to C′, where the exciting force has its
largest negative value. As the force
reverses, the curve becomes again linear
and parallel to OP. Slip eventually
occurs again and covers the interface at
B. The hysteresis loop is closed at C.

The energy dissipated in local slip can
be found by computing the area
enclosed by the force-displacement hys-
teresis loop. It usually is simpler, how-
ever, to determine the energy loss at a
typical location on the interface by
analysis, and then to integrate over the
area of the interface. In this mode of pro-
cedure, interest centers on the frictional
force per unit area µσ and the relative
displacement ∆s of initially adjacent
points on opposite sides of the interface.

The so-called “slip-curve” illustrating
the relationship between µσ and ∆s is
shown in Fig. 36.13. Before the exciting
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FIGURE 36.12 Force-displacement hysteresis
loop under Coulomb friction.

FIGURE 36.13 Friction force-slip relationship
under Coulomb friction.
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force is applied, conditions are represented by point O″ which corresponds to point O
in Fig. 36.12. The initial elastic phase during which there is no slip is represented by
O″P″ (note that the normal pressure σ may change during this phase).The phase dur-
ing which slip occurs only over part of the interface is represented by the curved line
P″B″; it corresponds to PB in Fig. 36.12.After slip has progressed over the entire inter-
face, the normal force vs. relative-displacement relation is linear. This phase is repre-
sented by the curve B″C″ in Fig. 36.13 and by BC in Fig. 36.12.When the exciting force
has reached its maximum value, a second nonslip phase C″D″ ensues.This is followed
by slip along the curve D″E″F″ until the exciting force reaches its maximum negative
value. As the exciting force completes its period, there is a nonslip phase F″G″ fol-
lowed by slip along G″C″. The lengths C″D″ and F″G″ are equal and the curves G″C″
and D″F″ are congruent (F″ corresponds to C″ and D″ corresponds to G″).

If the point in question is at an element of area dx dz of the xz interface, the energy
dissipated in slip is proportional to the area enclosed by the slip curve. Because of the
congruence of the curved portions of the diagram and the parallelism of the linear
portions, this area can be expressed in terms of the total slip and the pressures at two
instants during the loading cycle. Integrating over the entire interface,

D0 = −µ � �[σ(E″ ) + σ(Q″ )] ∆ stot dx dy (36.24)

In this expression, the parameters σ(E″ ) and σ(Q″ ) and the total slip ∆ stot are func-
tions of x and z. They are the normal stresses at points E″ and Q″ in Fig. 36.13,
located midway between the vertical lines G″F″ and C″D″. Since the pressures σ are
always compressive (negative) and the total slip is always taken as a positive quan-
tity, the negative sign is required to ensure a positive energy dissipation. Equation
(36.24) is of little engineering value in itself because the stresses are functions of Fg

as well as of x and z. In many of the problems which are of design interest, however,
the shear on the interface is produced primarily by the exciting force and not by the
initial clamping pressure. Conversely, the clamping pressure is not greatly affected
by the addition of the time-varying exciting force. Under these circumstances, the
slip curve of Fig. 36.13, like the force-displacement curve of Fig. 36.12, is symmetric
about the point O″. Points P″ and Q″ then coincide, and the mean ordinate of the
slip curve is that corresponding to point O″. Then Eq. (36.24) reduces to

D0 = −4µ ��σ(O″ ) ∆smax dx dz (36.25)

where σ(O″ ) is the clamping stress corresponding to zero exciting force. It may be
determined by any of the well-known methods of stress analysis. In most cases,
σ(O″ ) can be determined without any reference to the existence of an interface.The
term ∆ smax represents the arc length of the maximum relative displacement, the so-
called “scratch path.” It is a function of the maximum value of Fg as well as of posi-
tion on the interface. It may be inferred from Eq. (36.25) that energy dissipation due
to interface shear is small both at very low clamping pressures and at very high ones.
In the former case, σ(O″ ) = 0; in the latter case, ∆ smax = 0. It follows that, for any dis-
tribution of clamping pressure, there is an optimum intensity of clamping force at
which the energy dissipation due to interface shear is a maximum. The maintenance
of this optimum pressure is essential to the utilization of this form of damping. From
the shape of the force-displacement curve OPBC shown in Fig. 36.12, it is evident
that systems in which interface shear damping plays a significant role behave like
softening springs.This means that instability and jump phenomena may occur at fre-
quencies below the nominal resonant frequency.

In the case of plane stress, the thickness of the material is t and Eq. (36.25)
becomes
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D0 = −4µt �σ(O″ ) ∆ smax dx (36.26)

The slip can be related to stress through Hooke’s law:

∆ s = E−1 �(∆ σx) dx (36.27)

This indicates that any discontinuity in displacement is associated with a discontinu-
ity in the component of stress parallel to the interface. These displacement disconti-
nuities due to slip are members of a class of generalized dislocations whose existence
has been demonstrated theoretically.32 If Eq. (36.27) is substituted in Eq. (36.26), the
energy dissipation can be expressed in terms of stress alone:

D0 = −4µE−1t �l

0
σ(O″ ) ��

x

0
(∆σx)max dx′�dx (36.28)

The computation of energy dissipation per cycle D0 is the first step in the predic-
tion of the dynamic amplification factor to be expected in service. For interface
shear damping, an elementary theory permits the dynamic amplification factor to be
estimated even though the system behavior is nonlinear. The technique employs an
averaging method. Denoting the displacement corresponding to the exciting force
by the symbol v,

v = vd cos ωt and Fg = Fm cos (ωt + ϕ) (36.29)

where vd is the peak dynamic displacement, Fm is the peak exciting force, and ϕ is the
loss angle. One relationship between these quantities is obtained by making the
average value of the virtual work vanish during each half-cycle of the steady-state
forced vibration:

�π/ω

0
[mv + kv − Fg ] cos ωt dt = 0 (36.30)

In this integration, the stiffness k changes as slip progresses across the interface. If
the hysteresis loop of Fig. 36.12 is replaced by a parallelogram, only two phases, elas-
tic and fully slipped, need be considered. Denoting the stiffness (i.e., the ratio of
exciting force to displacement) in the unslipped condition by the symbol ke and the
reduced stiffness in the fully slipped condition by the symbol ks, the phase angle ϕ
and the dynamic amplification factor A may be related by Eq. (36.30) to the dura-
tion of the elastic phase t′:

�1 − � (ωt′ + sin ωt′ ) = π � + � (36.31)

where A is the conventional dynamic amplification factor, i.e., A = vdke /Fm. The dura-
tion of the elastic phase is given by the first of Eqs. (36.29) with v = vd − 2vs, where vs

is the displacement at which slip first occurs. Then eliminating t′ from Eq. (36.31):

= �1 − ��2 �1 + + cos−1�1 − 2 �� − (36.32)

Equation (36.32) gives the relation between phase lag ϕ and amplification factor A.
A second relationship between these quantities is found from the consideration that
the energy dissipated during each half cycle of forced motion must be D0/2:

�π/ω

0
Fg dt = 1⁄2D0 or sin ϕ = (36.33)

D0ke�
πFm
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dv
�
dt
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Equations (36.32) and (36.33) serve to determine the dynamic amplification factor
A, after D0 has been estimated. Conversely, they serve to estimate the amount of
energy which must be dissipated per cycle to produce a given reduction in the ampli-
fication factor by interface shear. A detailed analysis of the response to a parallelo-
gram hysteresis loop has been made.33 Hysteresis loops other than parallelograms
also have been studied.34 At resonance, ϕ = 90° and

A = Ar = (36.34)

In general, the energy dissipation does not increase as rapidly as the square of the
peak exciting force; consequently, the resonance amplification factor decreases as
the exciting force increases. As a result, structures in which interface shear predom-
inates tend to be self-limiting in their response to an external excitation.

The foregoing discussion is based on the premise that changes in the exciting
force do not materially affect the size of the contact area.There is an important class
of problems for which this assumption is not valid, namely, those in which even the
smallest exciting force produces some slip. An example of this type of joint is the
press-fit bushing on a cylindrical shaft. If the ends of the shaft are subjected to a
cyclic torque, part of this torque is transmitted to the bushing. Each part of the com-
pound torque tube carries a moment proportional to its stiffness. Transmission of
torque from the shaft to the bushing is effected by slip over the interface.The length
of the slipped region grows in proportion to the applied torque. There is no initial
elastic region such as OP or O″P″ in Figs. 36.12 and 36.13. If the peak value of the
exciting torque is not too large, the fully slipped region BC or B′C′ in Fig. 36.12 never
occurs. In these cases, Eqs. (36.31) to (36.34) are not applicable because there are no
assignable constant values of ks and ke. A variety of simple cases of this type which
occur in design practice have been analyzed. They include the cylindrical shaft and
bushing in tension and torsion, and the flexure of a beam with cover plate.

Another important case in which the smallest exciting force may produce slip
arises in the contact of rounded solids. If these are pressed together by normal forces
along the line joining their centers, a small contact region is formed. Subsequent
application of a cyclic tangential force produces slip over a portion of the contact
region even if the peak tangential force is not great enough to effect gross slip or
sliding. This situation has been analyzed and verified experimentally.3, 36
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CHAPTER 37
APPLIED DAMPING

TREATMENTS

David I. G. Jones

INTRODUCTION TO THE ROLE 

OF DAMPING MATERIALS

The damping of an element of a structural system is a measure of the rate of energy
dissipation which takes place during cyclic deformation. In general, the greater the
energy dissipation, the less the likelihood of high vibration amplitudes or of high
noise radiation, other things being equal. Damping treatments are configurations of
mechanical or material elements designed to dissipate sufficient vibrational energy
to control vibrations or noise.

Proper design of damping treatments requires the selection of appropriate
damping materials, location(s) of the treatment, and choice of configurations which
assure the transfer of deformations from the structure to the damping elements.
These aspects of damping treatments are discussed in this chapter, along with rele-
vant background information including:

� Internal mechanisms of damping
� External mechanisms of damping
� Polymeric and elastomeric materials
� Analytical modeling of complex modulus behavior
� Benefits of applied damping treatments
� Free-layer damping treatments
� Constrained-layer damping treatments
� Integral damping treatments
� Tuned dampers and damping links
� Measures or criteria of damping
� Methods for measuring complex modulus properties
� Commercial test systems 
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MECHANISMS AND SOURCES OF DAMPING

INTERNAL MECHANISMS OF DAMPING

There are many mechanisms that dissipate vibrational energy in the form of heat
within the volume of a material element as it is deformed. Each such mechanism is
associated with internal atomic or molecular reconstructions of the microstructure
or with thermal effects. Only one or two mechanisms may be dominant for specific
materials (metals, alloys, intermetallic compounds, etc.) under specific conditions,
i.e., frequency and temperature ranges, and it is necessary to determine the precise
mechanisms involved and the specific behavior on a phenomenological, experimen-
tal basis for each material specimen. Most structural metals and alloys have rela-
tively little damping under most conditions, as demonstrated by the ringing of sheets
of such materials after being struck. Some alloy systems, however, have crystal struc-
tures specifically selected for their relatively high damping capability; this is often
demonstrated by their relative deadness under impact excitation. The damping
behavior of metallic alloys is generally nonlinear and increases as cyclic stress ampli-
tudes increase. Such behavior is difficult to predict because of the need to integrate
effects of damping increments which vary with the cyclic stress amplitude distribu-
tion throughout the volume of the structure as it vibrates in a particular mode of
deformation at a particular frequency. The prediction processes are complicated
even further by the possible presence of external sources of damping at joints and
interfaces within the structure and at connections and supports. For this reason, it is
usually not possible, and certainly not simple, to predict or control the initial levels
of damping in complex built-up structures and machines. Most of the current tech-
niques of increasing damping involve the application of polymeric or elastomeric
materials which are capable (under certain conditions) of dissipating far larger
amounts of energy per cycle than the natural damping of the structure or machine
without added damping.

EXTERNAL MECHANISMS OF DAMPING

Structures and machines can be damped by mechanisms which are essentially exter-
nal to the system or structure itself. Such mechanisms, which can be very useful for
vibration control in engineering practice (discussed in other chapters), include:

1. Acoustic radiation damping, whereby the vibrational response couples with the
surrounding fluid medium, leading to sound radiation from the structure

2. Fluid pumping, in which the vibration of structure surfaces forces the fluid
medium within which the structure is immersed to pass cyclically through narrow
paths or leaks between different zones of the system or between the system and
the exterior, thereby dissipating energy

3. Coulomb friction damping, in which adjacent touching parts of the machine or
structure slide cyclically relative to one another, on a macroscopic or a micro-
scopic scale, dissipating energy

4. Impacts between imperfectly elastic parts of the system

POLYMERIC AND ELASTOMERIC MATERIALS

A mechanism commonly known as viscoelastic damping is strongly displayed in
many polymeric, elastomeric, and amorphous glassy materials. The damping arises

37.2 CHAPTER THIRTY-SEVEN
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from the relaxation and recovery of the molecular chains after deformation. A
strong dependence exists between frequency and temperature effects in polymer
behavior because of the direct relationship between temperature and molecular
vibrations. A wide variety of commercial polymeric damping material compositions
exist, most of which fit one of the main categories listed in Table 37.1.

TABLE 37.1 Typical Damping Material Types

Acrylic rubber Natural rubber Polysulfone
Butadiene rubber Nitrile rubber (NBR) Polyvinyl chloride (PVC)
Butyl rubber Nylon Silicone
Chloroprene (e.g., Neoprene) Polyisoprene Styrene-butadiene (SBR)
Fluorocarbon Polymethyl methacrylate Urethane
Fluorosilicone (Plexiglas) Vinyl

Polysulfide

Polymeric damping materials are available commercially in the following cate-
gories:

1. Mastic treatment materials
2. Cured polymers
3. Pressure sensitive adhesives
4. Damping tapes
5. Laminates

Some manufacturers of damping material are given as a footnote.* Data related
to the damping performance is provided in many formats. The current internation-
ally recognized format, used in many databases, is the temperature-frequency
nomogram, which provides modulus and loss factor as a function of both frequency
and temperature in a single graph, such as that illustrated in Fig. 37.1.1,2 The user
requiring complex modulus data at, say, a frequency of 100 Hz and a temperature of
50°F (10°C) simply follows a horizontal line from the 100-Hz mark on the right ver-
tical axis until it intersects the sloping 50°F (10°C) isotherm, and then projects verti-
cally to read off the values of the Young’s modulus E and loss factor η.

APPLIED DAMPING TREATMENTS 37.3

* Manufacturers of damping materials and systems, from whom information on specific materials and
damping tapes may be obtained, include:

Antiphon Inc. (U.S.A.) Leyland & Birmingham Rubber Company (U.K.)
Arco Chemical Company (U.S.A.; www.arco.com) MSC Laminates (U.S.A.)
Avery International (U.S.A.; www.avery.com) Morgan Adhesives (U.S.A.; www.mactac.com)
CDF Chimie (France) Mystic Tapes (U.S.A.)
Dow Corning (U.S.A.; www.dowcorning.com) Shell Chemicals (U.S.A.; www.shellchemicals.com)
EAR Corporation (U.S.A.) SNPE (France; www.snpe.com)
El duPont deNemours (U.S.A.; www.DuPont.com) Sorbothane Inc. (U.S.A.; www.sorbothane.com)
Farbwercke-Hoechst (Germany) Soundcoat Inc. (U.S.A.; www.soundcoat.com)
Flexcon (U.S.A.; www.flexcon.com) United McGill Corporation (U.S.A.;
Goodyear (U.S.A.; www.goodyear.com) www.unitedmcgillcorp.com)
Goodfellow (U.K.; www.goodfellow.com) Uniroyal (U.S.A.; www.uniroyalchem.com)
Imperial Chemical Industries (U.K.) Vibrachoc (France; www.vibrachoc.com)
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ANALYTICAL MODELING OF COMPLEX MODULUS BEHAVIOR

It is very convenient to be able to mathematically describe the complex modulus
properties of damping polymers, not only in the form of a nomogram as just
described, but also by algebraic equations which can be folded into finite element
and other computer codes for predicting dynamic response to external excitation
(see Chap. 28). Such models include the standard model, comprising a distribution of
springs and viscous dashpots in series and parallel configurations3 for which the
complex Young’s modulus E* (and equally the shear modulus G*) can be described
in the frequency domain by a series such as

E* = �
N

n = 1 
(37.1)

or a fractional derivative model4 for which the series becomes

E* = �
N

n = 1 
(37.2)

where an, bn, and cn are numerical parameters, which may be real or complex, the βn

are fractions of the order of 0.5, and αT is a shift factor which depends on tempera-
ture. Both models work, but Eq. (37.1) will usually require many terms, often 10 or
more, to properly model actual material behavior, whereas Eq. (37.2) usually
requires only one term for a good fit to the data.The shift factor αT is determined as
a function of temperature for each material from the test data, and is usually mod-
eled by a Williams-Landel-Ferry (WLF) relationship1,5 of the form

an + bn(i f αT)βn

��
1 + cn(i f αT)βn

an + bn(i f αT)
��
1 + cn(i f αT)
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FIGURE 37.1 Temperature-frequency nomogram for butyl rubber composition.
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log [αT] = (37.3)

or by an Arrhenius relationship1,5 of the form

log [αT] = TA � −  � (37.4)

where C1 and B1 are numerical parameters, the temperatures T and T0 (the reference
temperature) are in degrees absolute, and TA is a numerical parameter related to the
activation energy.The behavior of each specific polymer composition dictates which
expression is most appropriate, and simple statistical methods may be applied for
determining “best estimates” of each parameter in these equations.6

BENEFITS OF APPLIED DAMPING TREATMENTS

When the natural damping in a system is inadequate for its intended function, then
an applied damping treatment may provide the following benefits:

Control of vibration amplitude at resonance. Damping can be used to control
excessive resonance vibrations which may cause high stresses, leading to prema-
ture failure. It should be used in conjunction with other appropriate measures to
achieve the most satisfactory approach. For random excitation it is not possible to
detune a system and design to keep random stresses within acceptable limits
without ensuring that the damping in each mode at least exceeds a minimum
specified value. This is the case for sonic fatigue of aircraft fuselage, wing, and
control surface panels when they are excited by jet noise or boundary layer 
turbulence-induced excitation. In these cases, structural designs have evolved
toward semiempirical procedures, but damping levels are a controlling factor and
must be increased if too low.
Noise control. Damping is very useful for the control of noise radiation from
vibrating surfaces, or the control of noise transmission through a vibrating sur-
face. The noise is not reduced by sound absorption, as in the case of an applied
acoustical material, but by decreasing the amplitudes of the vibrating surface. For
example, in a diesel engine, many parts of the surface contribute to the overall
noise level, and the contribution of each part can be measured by the use of the
acoustic intensity technique or by blanketing off, in turn, all parts except that of
interest. If many parts of an engine contribute more or less equally to the noise,
significant amplitude reductions of only one or two parts (whether by damping or
other means) leads to only very small reductions of the overall noise, typically 1
or 2 dB.
Product acceptance. Damping can often contribute to product acceptance, not
only by reducing the incidence of excessive noise, vibration, or resonance-
induced failure but also by changing the “feel” of the product. The use of mastic
damping treatments in car doors is a case in point. While the treatment may
achieve some noise reduction, it may be the subjective evaluation by the cus-
tomer of the solidity of the door which carries the greater weight.
Simplified maintenance. A useful by-product from reduction of resonance-
induced fatigue by increased damping, or by other means, can be the reduction of
maintenance costs.

1
�
T0

1
�
T

−C1(T − T0)
��
B1 + T − T0
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TYPES OF DAMPING TREATMENTS

FREE-LAYER DAMPING TREATMENTS

The mechanism of energy dissipation in a free-, or unconstrained-, layer treatment is
the cyclic extensional deformation of the imaginary fibers of the damping layer dur-
ing each cycle of flexural vibration of the base structure, as illustrated in Fig. 37.2.
The presence of the free layer changes the apparent flexural rigidity of the base
structure in a manner which depends on the dimensions of the two layers involved
and the elastic moduli of the two layers. The treatment depends for its effectiveness
on the assumption, usually well-founded, that plane sections remain plane.The treat-
ment fiber labeled yy is extended or compressed during each half of a cycle of flex-
ural deformation of the base structure surface, in a manner which depends on the
position of the fiber in the treatment and the radius of curvature of the element of
length ∆l, and can be calculated on the basis of purely geometric considerations. One
fiber in particular does not change length during each cycle of deformation and is
referred to as the neutral axis. For the uncoated plate or beam, the neutral axis is the
center plane, but when the treatment is added, it moves in the direction of the treat-
ment and its new position is calculated by the requirement that the net in-plane load
across any section remain unchanged during deformation. The basic equations for
predicting the modal loss factor η for the given damping layer loss factor η2 and for
predicting the direct flexural rigidity (EI)D as a function of the flexural rigidity E1I1

of the base beam are well known.1,7

The simplest expression relating the damping of a structure, in a particular mode,
to the properties of the structure and the damping material layer is8

= (37.5)

where η is the damped structure modal loss factor, η2 is the loss factor of the damp-
ing material, E2 is the Young’s modulus of the damping material and E1 is that of the
structure (e = E2/E1), and h2 and h1 are the thicknesses of damping layer and struc-
ture, respectively (h = h2/h1).

To calculate η, the user estimates η2 and E2 at the frequency and temperature of
interest (from a nomogram), then calculates h and e, and then inserts these values
into Eq. (37.5). Change thickness (h) or material (e) if the calculated value of η is not

eh(3 + 6h + 4h2 + 2eh3 + e2h4)
����
(1 + eh)(1 + 4eh + 6eh2 + 4eh3 + e2h4)

η
�
η2
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FIGURE 37.2 Free-layer treatment. (A) Undeformed. (B) Deformed.
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adequate, and continue the process until satisfied. Figure 37.3 illustrates how η/η2

varies with E2/E1 and with h2/h1, as calculated using the Oberst equations.

Limitations of Free-Layer Treatment Equations. The classical equations for
free-layer treatment behavior are approximate.The main limitation is that the equa-
tions are applicable to beams or plates of uniform thickness and uniform stiff
isotropic elastic characteristics with boundary conditions which do not dissipate or
store energy during vibration. These boundary conditions include the classical
pinned, free, and clamped conditions. Another limitation is that the deformation of
the damping material layer is purely extensional with no in-plane shear, which
would allow the “plane sections remain plane” criterion to be violated. This restric-
tion is not very important unless the damping layer is very thick and very soft (h2/h1

> 10 and E2/E1 < 0.001). A third limitation is that the treatment must be uniformly
applied to the full surface of the beam or plate, and especially that it be anchored
well at the boundaries so that plane sections remain plane in the boundary areas
where bending stresses can be very high and the effects of any cuts in the treatment
can be very important. Other forms of the equations can be derived for partial cov-
erage or for nonclassical boundary conditions.

Effect of Bonding Layer. Free-layer damping treatments are usually applied to
the substrate surface through a thin adhesive or surface treatment coating. This
adhesive layer should be very thin and stiff in comparison with the damping treat-
ment layer in order to minimize shear strains in the adhesive layer which would alter
the behavior of the damping treatment. The effect of a stiff thin adhesive layer is
minimal, but a thick softer layer alters the treatment behavior significantly.

Amount of Material Required. Local panel weight increases up to 30 percent
may often be needed to increase the damping of the structure in several modes of
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FIGURE 37.3 Graphs of η/η2 vs. h2/h1, for a free-layer treatment.

8434_Harris_37_b.qxd  09/20/2001  12:26 PM  Page 37.7



vibration to an acceptable level. Greater weight increases usually lead to diminish-
ing returns. This weight increase can be offset to some degree if the damping is
added early in the design, by judicious weight reductions achieved by proper sizing
of the structure to take advantage of the damping.

CONSTRAINED-LAYER DAMPING TREATMENTS

The mechanism of energy dissipation in a constrained-layer damping treatment is
quite different from the free-layer treatment, since the constraining layer helps
induce relatively large shear deformations in the viscoelastic layer during each cycle
of flexural deformation of the base structure, as illustrated in Fig. 37.4. The presence
of the constraining viscoelastic layer-pair changes the apparent flexural rigidity of the
base structure in a manner which depends on the dimensions of the three layers
involved and the elastic moduli of the three layers, as for the free-layer treatment, but
also in a manner which depends on the deformation pattern of the system, in contrast
to the free-layer treatment. A useful set of equations which may be used to predict
the flexural rigidity and modal damping of a beam or plate damped by a full-coverage
constrained-layer treatment are given in Ref. 1. These equations give the direct (in-
phase) component (EI )D of the flexural rigidity of the three-layer beam, and the
quadrature (out-of-phase) component (EI)Q as a function of the various physical
parameters of the system, including the thicknesses h1, h2, and h3, the moduli E1 (1 +
jη1), E2 (1 + jη2), E3 (1 + jη3), and the shear modulus of the damping layer G2 (1 + jη2).

Shear Parameter. The behavior of the damped system depends most strongly on
the shear parameter

g = (37.6)

which combines the effect of the damping layer modulus with the semiwavelength
(λ /2) of the mode of vibration, the modulus of the constraining layer, and the thick-
nesses of the damping and constraining layers. The other two parameters are the
thickness ratios h2/h1 and h3/h1. Figure 37.5 illustrates the typical variation of ηn/η2

G2(λ/2)2

�
E3h3h2π2
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FIGURE 37.4 Additive layered damping treatments. (A) Constrained-
layer treatment. (B) Multiple constrained-layer treatment.
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and (EI)D/E1I1 with the shear parameter g for particular values of h2/h1 and h3/h1.
These plots may be used for design of constrained layer treatments. Note that ηn will
be small for both large and small values of g. For g approaching zero, G2 or λ/2 may
be very small or E3, h3, and h2 may be very large.This could mean that while G2 might
appear at first sight to be sufficiently large, the dimensions h2 and h3 are nevertheless
too large to achieve the needed value of g. This could happen for very large struc-
tures, especially for high-order modes. On the other hand, for g approaching infinity,
G2 or λ/2 may be large, or E3, h2, or h3 may be very small.

Effects of Treatment Thickness. In general, increasing h2 and h3 will lead to
increased damping of a beam or plate with a constrained-layer treatment, but the
effect of the shear parameter will modify the specific values.The influence of h3/h1 is
stronger than that of h2/h1, and as h2/h1 approaches zero, ηn/η2 does not approach
zero but a finite value. This behavior seems to occur in practice and accounts for the
very thin damping layers, 0.002 in. (0.051 mm) or less, used in damping tapes.A prac-
tical limit of 0.001 in. (0.025 mm) is usually adopted to avoid handling problems.

Effect of Initial Damping. If the base beam is itself damped, with η1 not equal to
zero, then the damping from the constrained-layer treatment will be added to η1 for
small values of η1. The general effect is readily visualized, but specific behavior
depends on treatment dimensions and the value of the shear parameter.

Integral Damping Treatments. Some damping treatments are applied or added
not after a structure has been partly or fully assembled but during the manufactur-
ing process itself. Some examples are illustrated in Fig. 37.6. They include laminated
sheets which are used for construction assembly, or for deep drawing of structural
components in a manner similar to that for solid sheets, and also for faying surface
damping which is introduced into the joints during assembly of built-up, bolted, riv-
eted, or spot-welded structures. The conditions at the bolt, rivet, or weld areas criti-
cally influence the behavior of the damping configurations and make analysis
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FIGURE 37.5 Typical plots of η/η2 versus shear parameter g(h2/h1 = 0.10, η2 = 0.1).
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particularly difficult because of the limited control of conditions at these points.
Finite element analysis may be one of the few techniques for such analysis.

Damping Tapes. Constrained layer treatments are sometimes available in the
form of a premanufactured combination of an adhesive layer and a constraining
layer, which may be applied to the surface of a vibrating panel in one step, as
opposed to the several steps required when the adhesive and constraining layers are
applied separately. Such damping tapes are available from several companies,
including the 3M Company, Avery International, and Mystic Tapes, to name a few.
An example of such a damping tape is the 3M 2552 damping foil product, which
consists of a 0.005-in.-thick layer of a particular pressure-sensitive adhesive pre-
bonded to a 0.010-in.-thick aluminum constraining layer, with an easy-release paper
liner protecting the adhesive layer. One limitation of damping tapes is at once evi-
dent, namely, that the particular adhesive is effective over a specific temperature
range and the adhesive and constraining layer thicknesses are fixed. The choice of
adhesive is particularly important, since it must be selected in accordance with the
required temperature range of operation, and the available thicknesses may not be
ideal for all applications. Constrained layer treatments such as those illustrated in
Fig. 37.4 could be built up conventionally, with adhesive and constraining layers
applied separately, or by means of damping tapes. In each case, the adhesive mate-
rial and thickness, and the constraining layer thickness, must be chosen to ensure
optimal damping for the temperature range required by each application.The Ross-
Kerwin-Ungar (RKU) equations1 may be used to estimate, even if roughly, the best
combination of dimensions and adhesive for each application, whether by means of
damping tapes or conventional treatments, applying the complex modulus proper-
ties of the adhesive as described by a temperature-frequency nomogram or by a
fractional derivative equation.
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FIGURE 37.6 Some basic integral damping treatments. (A) Laminate. (B)
Faying surface damping.
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Tuned Dampers. The tuned damper is essentially a single degree-of-freedom
mass-spring system having its resonance frequency close to the selected resonance
frequency of the system to be damped, i.e., tuned. As the structure vibrates, the
damper elastomeric element vibrates with much greater amplitude than the struc-
ture at the point of attachment and dissipates significant amounts of energy per
cycle, thereby introducing large damping forces back to the structure which tend to
reduce the amplitude.The system also adds another degree of freedom, so two peaks
arise in place of the single original resonance. Proper tuning is required to ensure
that the two new peaks are both lower in amplitude than the original single peak.
The damper mass should be as large as practicable in order to maximize the damper
effectiveness, up to perhaps 5 or 10 percent of the weight of the structure at most,
and the damping capability of the resilient element should be as high as possible.The
weight increase needed to add significant damping in a single mode is usually
smaller than for a layered treatment, perhaps 5 percent or less.

Damping Links. The damping link is another type of discrete treatment, joining
two appropriately chosen parts of a structure. Damping effectiveness depends on
the existence of large relative motions between the ends of the link and on the exis-
tence of unequal stiffnesses or masses at each end. The deformation of the structure
when it is bent leads to deformation of the viscoelastic elements.These deformations
of the viscoelastic material lead to energy dissipation by the damper.

RATING OF DAMPING EFFECTIVENESS

MEASURES OR CRITERIA OF DAMPING

There are many measures of the damping of a system. Ideally, the various measures
of damping should be consistent with each other, being small when the damping is
low and large when the damping is high, and having a linear relationship with each
other.This is not always the case, and care must be taken, when evaluating the effects
of damping treatments, to ensure that the same measure is used for comparing
behavior before and after the damping treatment is added. The measures discussed
here include the loss factor η, the fraction of critical damping (damping ratio) ζ, the
logarithmic decrement ∆, the resonance or quality factor Q, and the specific damp-
ing energy D. Table 37.2 summarizes the relationship between these parameters, in
the ideal case of low damping in a single degree-of-freedom system. Some care must
be taken in applying these measures for high damping and/or for multiple degree-of-
freedom systems and especially to avoid using different measures to compare
treated and untreated systems.

Loss Factor. The loss factor η is a measure of damping which describes the rela-
tionship between the sinusoidal excitation of a system and the corresponding sinu-
soidal response. If the system is linear, the response to a sinusoidal excitation is also
sinusoidal and a loss factor is easily defined, but great care must be taken for non-
linear systems because the response is not sinusoidal and a unique loss factor cannot
be defined. Consider first an inertialess specimen of linear viscoelastic material
excited by a force F(t) = F0 cos ωt, as illustrated in Fig. 37.7.The response x(t) = x0 cos
(ωt − δ) is also harmonic at the frequency ω as for the excitation but with a phase lag
δ. The relationship between F(t) and x(t) can be expressed as
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F = kx + (37.7)

where k = F0 /x0 is a stiffness and η = tan δ is referred to as the loss factor. The phase
angle δ varies from 0° to 90° as the loss factor η varies from zero to infinity, so a one-
to-one correspondence exists between η and δ. Equation (37.7) is a simple relation-
ship between excitation and response which can be related to the stress-strain
relationship because normal stress σ = F/S and extensional strain ε = x/l. This is a
generalized form of the classical Hooke’s law which gives F = kx for a perfectly elas-
tic system.The loss factor, as a measure of damping, can be extended further to apply
to a system possessing inertial as well as stiffness and damping characteristics. Con-
sider, for example, the one degree-of-freedom linear viscoelastic system shown in
Fig. 37.8A. The equation of motion is obtained by balancing the stiffness and damp-
ing forces from Eq. (37.7) to the inertia force m(d 2x/dt 2):

m + kx + = F0 cos ωt (37.8)

The steady-state harmonic response, after any start-up transients have died away,
is illustrated in Fig. 2.22. If k and η depend on frequency as is the case for real
materials, then the maximum amplitude at the resonance frequency ωr = �k�/m� is equal
to F0 /k(ωr)η(ωr), while the static response, at ω = 0, is equal to F0 /k(0) ��1 + η2(0).The
amplification factor A is approximately equal to 1/η(ωr), provided that η2 (0) << 1.
Furthermore, the ratio ∆ω/ωr, where ∆ω is the separation of the frequencies for which
the response is 1/�2� times the peak response, is known as the half-power bandwidth
(see Fig. 2.22). It is also equal to η, provided that η2 << 1. In summary, therefore,

η = = (37.9)
∆ω
�
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TABLE 37.2 Comparison of Damping Measures

Damping Loss Log Quality Spec Amp
Measure ratio factor dec factor damping factor

Damping ratio ζ

Loss factor 2ζ η

Log decrement πζ 2πη ∆

Quality factor Q A*

Spec damping 4πUζ 2πUη 4U∆ D

Amp factor Q A*

* For single degree-of-freedom system only.
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This relationship between η and 1/A is applicable only for a single degree-of-
freedom system and may not be directly applicable for more complex systems such
as beams, plates, or more complex structures. The measure ∆ω/ωr is applicable for
more complex systems, as well as single degree-of-freedom systems. For large values
of η, on the order of 0.2 or greater, none of these measures of damping agree exactly,
even for an ideal linear single degree-of-freedom system, but each measure is at
least self-consistent. The stiffness and loss-factor parameters defined here do not
specify any particular model of material behavior. For example, k and η could be
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FIGURE 37.8 Single degree-of-freedom system with:
(A) viscoelastic damping; (B) viscous damping.

FIGURE 37.7 Linear viscoelastic behavior of a sample under sinusoidal loading,
described in terms of response and excitation as functions of time. (A) Specimen. (B)
Response and excitation.
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constants as for hysteretic damping, or they could be functions of frequency, tem-
perature, specimen composition and shape, or amplitude as for a nonlinear material.
The model with constant k and η is not too useful over a wide frequency range, and
such behavior is impossible over an infinite frequency range, but these parameters
can vary quite slowly with frequency for some particular material compositions. If k
and η vary strongly with frequency, or amplitude, then the various definitions of the
loss factor must be used with great care, since each measure gives different results.

Fraction of Critical Damping. The fraction of critical damping (damping ratio) is
a measure of one very specific mechanism of damping, i.e., viscous damping which is
proportional to velocity. If the damping forces acting on a single degree-of-freedom
mass-spring system, illustrated in Fig. 37.8B, satisfy this type of relationship, then the
equation of motion for harmonic excitation is

m + c + kx = F0 cos ωt (37.10)

The response depends on m, k, and a parameter c/2�k�m� which involves c, k, and m
and is known as the fraction of critical damping (damping ratio). This parameter,
labeled ζ, controls the peak amplitude, the half-power bandwidth, and the resonance
frequency ωr:

xmax = x(0) =

ωr = �(k�/m�)(�1� −� ζ�2)� = 2ζ

(37.11)

The plot of x(ω) versus frequency ω, for specific values of m and k is very similar to
those for the viscoelastic damping, provided that η � 2ζ. The distinction between
viscous and hysteretic damping (constant k, and η) is not at once apparent. Equa-
tions (37.8) and (37.10) convey the difference, since the damping coefficient in Eq.
(37.8) decreases in proportion to 1/ω as ω increases, while that in Eq. (37.10) is con-
stant with frequency, at least for the hypothetical cases considered here. Figure 37.9
shows plots of response versus frequency based on the solutions of these equations
of motion for each type of damping. Some differences arise at low frequency, but
they are not very great except for very high values of damping. For high values of
damping, neither η nor ζ are linearly related to the bandwidth ratio ∆ω/ωr. Figure
37.10 shows the variation of ∆ω/ωr with η and 2ζ for values of η which are not small.
Limits exist beyond which the ratio ∆ω/ωr does not give a good estimate of η or ζ.

Logarithmic Decrement. When a damped system is struck by an impulsive load
or is released from a displaced position relative to its equilibrium state, a decaying
oscillation usually takes place as illustrated in Fig. 2.8. A measure of damping called
logarithmic decrement ∆ is defined as the natural logarithm of the ratio of ampli-
tudes of successive peaks [see Eq. (2.19)]:

∆ = ln = ln (37.12)

This definition is useful only if these ratios are equal for the various cycles, i.e., for
specific types and amounts of damping. The measure is useful for viscous and hys-
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FIGURE 37.10 Variation of loss factor (η) and 2 times the fraction of critical damping
(2ζ) of a single degree-of-freedom system with ∆ω/ωr.

FIGURE 37.9 Comparison of viscous and hysteretic damping of a single
degree-of-freedom system with (A) low damping (η = 0.1, ζ = 0.05); (B) high
damping (η = 1.0, ζ = 0.5).
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teretic damping, within limits. For viscous damping, the solution of Eq. (37.10) for an
impulsive excitation F δ(t) is obtained.

x = e−t �k/�m� sin t�(k�/m�)(�1� −� ζ�2)� (37.13)

so that

∆ = (37.14)

for small ζ. If ζ approaches 1.0, the response becomes aperiodic and a logarithmic
decrement cannot be defined or related to ζ. The loss factor in Eq. (37.7) also can
be related to the transient response of a single degree-of-freedom mass-spring sys-
tem, subject to an impulsive excitation. Consider the impulsive excitation F(t) to be
modeled as a spike of the form of a delta function at time t = 0. Then the equation
of motion, in the form of Eq. (37.8), cannot be written directly, but if F(t) and x(t)
are both described in terms of their corresponding Fourier transforms, then F̄(ω) =
	∞

−∞
F(t) exp(−jωt) dt = F and x̄ = F/(k − mω2 + jkη). The inverse Fourier transform

gives

x(t) = 	∞

−∞
(37.15)

This equation contains real and imaginary parts, but using the fact that exp(jωt) = cos
ωt + j sin ωt and if k(ω) = k(−ω) and η(−ω) = −η(ω), then it may be shown that x(t) is
given by

x(t) = 	∞

0
dω (37.16)

For k and η constant over all frequencies from zero to infinity, problems arise
regarding x(t) being finite for values of t less than zero, i.e., before the impulse is
applied, and this is physically impossible.The problem is that k and η cannot be con-
stants for real systems over any extremely wide frequency range, no matter how
close to constant they may be over a limited frequency range. For small values of η,
however, a useful and accurate solution is given by

x(t) = e−1/2ηt�k/�m� sin t�k�/m� (37.17)

∆ = πη/2 (37.18)

Comparing Eqs. (37.14) and (37.18) gives

η = 2ζ (37.19)

Quality Factor. The quality factor Q is defined as ωr/∆ω, so

Q = (37.20)

For a single degree-of-freedom Q = A [where A is defined in Eq. (37.9)], but this is
not the case for multiple degree-of-freedom systems.
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Specific Damping Energy. Another useful measure of material damping is the
amount of energy dissipated per unit volume per cycle, known as the specific damp-
ing energy. For a damping material specimen subject to an applied external force
F(t) = F0 cos ωt the specific damping energy D is equal to

D = 
 F dx = 	2π/ω

0
F dt (37.21)

For a viscoelastic material obeying Eq. (37.7)

D = F0x0kη �1� +� η�2� (37.22)

But F0 = kx0 �1� +� η�2�, also from Eq. (37.7), so

D = πx0
2 kη (37.23)

The specific damping energy D increases as the square of the amplitude of vibration
x0 for linear viscoelastic materials, so it is clearly desirable to ensure that the damp-
ing material is strained as vigorously as possible in order to maximize D and hence
the damping of the system. This has an important bearing on the choice of location
within a vibrating system for application of a damping treatment. Furthermore, both
k and η must be as large as possible to ensure maximum energy dissipation in the
system, but this can be done only to the extent that further increases of k and η do
not reduce x0. While D is related to k and η for linear viscoelastic materials, this is
not possible for nonlinear materials or for high cyclic strain levels where nonlinear
behavior occurs; the value of D is then, of itself, often used as a measure of overall
damping performance.

COMPARISON OF DAMPING MEASURES

The damping measures described in this section are related to each other as follows
(Table 37.2):

η = 2ζ = = = = = (37.24)

These various equations relate η, ∆, and ζ for viscous and viscoelastic damping of
single degree-of-freedom systems. The relationships usually agree well for low
values of η and ζ (η < 0.2 or so), but for higher values the comparisons are not so
precise.

It is important, when analyzing tests to determine the effects of damping treat-
ments on dynamic response, to be consistent in the use of these damping measures
and to recognize that they are not completely equivalent, especially over wide fre-
quency ranges or for multimodal response.

Effects of Mass and Stiffness. Changing the mass or stiffness of a single degree-
of-freedom mass-spring system without changing any other parameters leads to a
change of resonance frequency, and when the frequency changes over a wide range,
the differences of viscous and hysteretic damping become more apparent. For vis-
cous damping, the fraction of critical damping ζ = c/2�k�m� changes as k or m change,
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whereas for hysteretic damping η does not change, at least within a limited fre-
quency range.Although viscous and hysteretic damping measures are related by the
simple relationship η = 2ζ for a single mode at a particular frequency, they do not
remain equivalent as the frequency changes, and significant differences in response
may be observed.

METHODS FOR MEASURING COMPLEX MODULUS PROPERTIES

Vibrating Beam Test Methods. The vibrating beam test methods are frequently
used to measure the extensional or shear complex modulus properties of damping
materials.1,6 The dynamic response behavior of the beam, first in the undamped
uncoated form and then with an added damping layer or added constrained configu-
ration, is measured for several modes of vibration and over a range of temperatures.
At each temperature, the measured damped resonance frequency fn, the undamped
resonance frequency fon, and the loss factor ηn in the nth mode of vibration are meas-
ured and used in an appropriate set of equations to deduce the Young’s modulus E, or
the shear modulus G, and the loss factor η of the damping material at a number of dis-
crete frequencies and temperatures.

Various configurations of cantilever beams are used to measure viscoelastic
material damping properties in tension-compression or shear at low cyclic strain
amplitudes. Figure 37.11 illustrates some of the configurations used. The damping
layers are bonded to the base beams by means of a stiff adhesive such as an epoxy.
This bonding is very important and must be done well using an adhesive which is
stiff in comparison to the damping layer and is very thin. The thickness ratio h2/h1

generally lies in the range 0.1 ≤ h2/h1 ≤ 2.0, and the length l is about 5 to 10 in. (12.7
to 25.4 cm). The base beam material is typically aluminum, steel, or a stiff epoxy or
epoxy matrix composite material having low intrinsic damping. Great care must be
taken to ensure that the temperature range of the tests is not excessive in relation to
the behavior of the base beam, and in particular to allow for the effect of tempera-
ture on the base beam properties such as Young’s modulus, the resonance frequen-
cies, and the modal loss factor in the absence of the damping layer.The vibration test
is conducted allowing the specimen to soak at each selected temperature for several
minutes, often 30 minutes, to be sure of thermal equilibrium; then the beam is
excited by means of a noncontacting transducer or by impact, and the resulting
response in the frequency domain is measured, either through swept sine-wave exci-
tation or FFT analysis of the transient response signal in the time domain. At each
temperature, several resonance frequencies and modal loss factors are measured
over a wide range of frequencies.The test is then repeated after thermal equilibrium
has been reached at the next selected temperature. The data obtained for the first
mode is usually not used because of the low frequency involved and the high ampli-
tudes and high modal damping of the base beam, as well as because of errors in the
analysis when sandwich beams are used. Such vibrating beam tests are widely used
for measuring viscoelastic material damping properties for shear and extensional
deformation.9,10

Geiger Thick-Plate Test Method. The Geiger thick-plate method is of impor-
tance because it is widely used to describe damping materials in the automotive
industry. It makes use of a large flat plate, suspended freely from four points selected
to be at or near the nodal lines of the first free-free mode, to which is bonded the
damping layer being evaluated. The rate of decay of vibration amplitude (expressed
in decibels per second) is measured and serves as a measure of the effectiveness of
the damping layer. Figure 37.12 illustrates a typical test setup. The system can be

37.18 CHAPTER THIRTY-SEVEN

8434_Harris_37_b.qxd  09/20/2001  12:27 PM  Page 37.18



excited by an impulsive force, measured through a force gage, and applied by a
hammer, by an electromagnetic exciter, an electrically actuated impeller, or by sine-
wave or random excitation. The response can be picked up by an electromagnetic
transducer, in which case cross talk with the excitation transducer must be avoided
by adequate separation or by the use of capacitative or electro-optical transducers
or by a miniature accelerometer. The measured output can be displayed in many
ways, including a decaying sinusoidal trace representing response to an impulsive
excitation (a measure of the logarithmic decrement), or a frequency domain display
in the region of the fundamental free-free mode (loss factor measure).The observed
logarithmic decrement or loss factor value is a measure of the damping of the
plate/damping material system and depends on the plate and treatment thicknesses.
The free-layer treatment equations used for the vibrating beam tests may also be
used with the Geiger plate test provided that the same conditions are satisfied. In
particular, the treatment thickness must be sufficient to make the ratio of the
stiffness of the coated plate to that of the uncoated plate greater than about 1.05.
The size of the specimen and the use of only one mode makes this condition
somewhat less restrictive than for the beam tests, for which the specimens are much
smaller.

APPLIED DAMPING TREATMENTS 37.19

FIGURE 37.11 Cantilever beam damping material test configurations. (A)
Nonsymmetric Oberst beam. (B) Symmetric modified Oberst beam. (C)
Symmetric sandwich beam. (D) Symmetric constrained-layer beam.
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Single Degree-of-Freedom Resonance Tests. Digital test instrumentation and
data analysis techniques make it relatively easy to conduct vibration tests directly on
relatively small samples of damping materials and to readily determine the damping
properties. Typical test configurations are illustrated in Fig. 37.13. For a resonance
type of test, the specimen is driven inertially by a large vibration table (see Chap.
25), usually by swept sine-wave excitation. The input and output accelerations are
usually measured by accelerometers, and the response parameter of interest is the
amplification A = x/x0 as a function of frequency, where x is the amplitude of dis-
placement of the mass and x0 is that of the shaker table.At resonance, the maximum
value of A = x/x0 is observed along with the resonance frequency ωR for each tem-
perature. The loss factor and modulus in both the tension-compression and shear
loading of the specimen material are determined from

η = (37.25)

E = (37.26)

G = (37.27)

For tension-compression loading, l is the length and S1 = wh is the cross-sectional
area of the load-carrying member, where w is the cross-section width and h is the
cross-section thickness, as illustrated in Fig. 37.13. For shear loading, h is the thick-
ness of the shear layer and S2 = 2wl is the cross-sectional area of the shear member,
where l is now the breadth of the load-carrying area, again as illustrated in Fig. 37.13.
The effective mass me includes the added mass m and the effective mass of the spec-
imen damping material, which is about one-third of its actual mass. For the exten-
sional specimen, the ratio l/h or l/w, whichever is smaller, must be greater than 1.0 or
shape effects will have to be taken into account. For the shear configuration, the
ratio h/l must be less than 0.2 for the same reason. For highly damped materials, for
which x/x0 does not exceed 1.0 by a significant amount, considerable error in meas-
uring A and η will be encountered, but the method is very effective for values of η
less than about 0.5. In this method, data are obtained at only one frequency; the mass
m must be changed to obtain data at other frequencies. Care must be taken to avoid
sagging or creep of the specimen at high temperatures and to ensure that thermal
equilibrium has been achieved. A thermocouple placed within the volume of the
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FIGURE 37.12 Geiger plate test configuration.
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specimen material may be necessary, particularly for tests at high strain amplitudes
where internal heating of the specimen by energy dissipation from damping may
lead to wide differences between true specimen temperature and the temperature of
the surroundings.

Impedance Tests. If the specimens are excited by a driver through a force gage,
then the response measure used to characterize the system behavior is the compli-
ance or receptance x/F, where F is the driving force measured by the force gage and
x is the response at the same point, measured by an accelerometer, for example. If
the mass m is large compared with the mass of the specimen, as illustrated in Fig.
37.14, then one may add one-third the mass of the specimen to m to give the effec-
tive mass me of the equivalent single degree-of-freedom system, so that

= (37.28)

If this is expressed instead in terms of the ratio F/x, the dynamic stiffness at the driv-
ing point, which is directly related to the driving-point impedance, then

κ = k − meω2 + jkη (37.29)

which shows that the direct dynamic stiffness is a linear function of ω2 and the quad-
rature dynamic stiffness κQ = kη. It is not difficult to obtain good measurements of k

1
��
k(1 + jη) − meω2

x
�
F
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FIGURE 37.14 Impedance test concepts.

FIGURE 37.13 Resonance test concepts.
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and η by this type of test approach from about 0.2ωr to 3ωr, so data can be obtained
quite easily over about a decade of frequency instead of at only a single frequency as
for the resonance method. Analytical mass corrections may also have to be made to
account for inertial effects at the force gage.

COMMERCIAL TEST SYSTEMS

Many commercial systems are available for measuring the complex modulus prop-
erties of viscoelastic damping materials.11–13 All are based on some kind of deforma-
tion mode of a sample of the material, measurement of the corresponding excitation
forces and displacements, and analysis of the data to obtain the material properties.
Each system has advantages and disadvantages, but when due care is exercised, good
results usually can be obtained with each system. Particular care should be taken to
read, understand, and follow the manufacturer’s instructions. For example, in some
tests such as monitoring cure cycles of epoxies, the temperature sweep rate can be
quite high in order to keep up with the reaction.This is acceptable if one is monitor-
ing the progress of the cure cycle, but it may not be acceptable if one seeks to mea-
sure the damping properties at a state approximating thermal equilibrium. For
thermal equilibrium to be maintained, temperature sweep rates well below 1°F
(0.5°C) per minute are usually recommended, and even lower rates may be required
for large specimens. A dwell period at each temperature is recommended before
performing the test.
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CHAPTER 38
TORSIONAL VIBRATION IN

RECIPROCATING AND
ROTATING MACHINES

Ronald L. Eshleman

INTRODUCTION

Torsional vibration is an oscillatory angular motion causing twisting in the shaft of a
system; the oscillatory motion is superimposed on the steady rotational motion of a
rotating/reciprocating machine. Even though the vibration cannot be detected with-
out special measuring equipment, its amplitude can be destructive. For example,
gear sets that alter speeds of power transmission systems transmit the vibration to
the casing. Similarly, slider crank mechanisms in engines and compressors convert
torques to radial forces that are discernable to human perception but are not meas-
urable because of the insensitivity of test equipment and background noise. If gear-
boxes or reciprocating machines are part of a drive train, excess noise and vibration
can indicate trouble. Standards and measurement methods dealing with acceptable
magnitudes of radial vibration are provided in Chap. 19.

Motion is rarely a concern with torsional vibration unless it affects the function of
a system. It is stresses that affect the structural integrity and life of components and
thus determine the allowable magnitude of the torsional vibration.Torsional vibratory
motions can produce stress reversals that cause metal fatigue. Components tolerate
less reversed stress than steady stress. In addition, stress concentration factors associ-
ated with machine members decrease the effectiveness of load-bearing materials.

Figure 38.1 illustrates the twisting of a shaft of an electric motor-compressor sys-
tem. The torsional mode shape associated with the first torsional natural frequency
is shown in Fig. 38.2. A coupling in the power train allows for misalignment in the
assembly. The mode shape shows that the stiffness of the coupling is much less than
that of other shaft sections. This is indicated by the large slope (change in angular
displacement) of the mode shape at the coupling. The coupling will be the predomi-
nant component in the motor-compressor system governing the torsional natural
frequency associated with the mode.

Torsional vibration is usually a complex vibration having many different fre-
quency components. For example, shock resulting from abrupt start-ups and unload-
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ing of gear teeth causes transient torsional vibration in some systems; start-up of
synchronous electric motor systems may cause torsional resonance. Random tor-
sional vibrations caused by gear inaccuracies and ball bearing defects are relatively
common in rotating machines.

MODELING

The torsional elastic system of a drive unit and its associated machinery is a com-
plicated arrangement of mass and elastic distribution. The complete mechanical
system can include the drive unit, couplings, gearboxes or other speed-changing
devices, and one or more driven units. This complicated system is made amenable
to mathematical treatment by representing it as a model—a simpler system that 
is substantially equivalent dynamically. The equivalent system usually consists of
lumped masses which are connected by massless torsionally elastic springs as illus-
trated in Fig. 38.3. The masses are placed at each crank center and at the center
planes of actual flywheels, rotors, propellers, cranks, gears, impellers, and arma-
tures.1

The torsional calculation is made not for the drive unit alone but for the com-
plete system, including all driven machinery. On an engine, it is usually possible to
consider such parts as camshafts, pumps, and blowers either as detached from the
engine (if they are driven elastically) or as additional rigid masses at the point of
attachment to the crankshaft (if the driver is relatively rigid). If there is doubt, these
parts should be included in the torsional calculation as elastically connected masses
and removed if the natural frequencies do not change after the parts are removed
from the model.

38.2 CHAPTER THIRTY-EIGHT

FIGURE 38.1 Schematic drawing illustrating the twisting of
the shaft of a motor-compressor system.

FIGURE 38.2 Torsional mode shape for the motor-
compressor system shown in Fig. 38.1.
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CALCULATION OF POLAR MOMENTS OF INERTIA

Circular Disc or Cylinder Rotating about a Perpendicular Axis. The polar
moment of inertia, essential in modeling torsional vibration, often is easy to calcu-
late.The general form is J = ∫r 2 dm, where r is the instantaneous radius, and dm is the
differential mass. The formula for the polar moment of inertia of a circular disc or
cylinder rotating about a perpendicular axis is

J = lb-in.-sec2 (38.1)

where J = polar moment of inertia,
lb-in.-sec2

γ = material density, lb/in.3

d = diameter of disc or cylin-
der, in.

l = axial length of disc or
cylinder, in.

g = acceleration due to gravity,
386.1 in./sec2

Piston and Connecting Rod. The pis-
ton and connecting rod shown schemati-
cally in Fig. 38.4 introduce a
variable-mass problem, the solution of
which is complex. The exact solution
shows that the effect of the piston and
connecting rod can be closely approxi-
mated by representing them as a concen-
trated rotor of polar inertia J defined by

J = � + Wc�1 − �� lb-in.-sec2 (38.2)

where WP = weight of piston, piston pin, and cooling fluid, lb
Wc = weight of connecting rod, lb

h = fraction of rod length from crank pin to center-of-gravity
R = crank radius, in.

R2

�
g

h
�
2

WP�
2

πd4lγ
�
32g
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FIGURE 38.3 A model of the motor-compressor
system shown in Fig. 38.1, consisting of a series of
masses connected by massless torsionally elastic
springs (K = stiffness, lb⋅in./rad; J = polar moment of
inertia, lb⋅in.⋅sec2).

FIGURE 38.4 Schematic diagram of a crank
and connecting rod.
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Crankshaft. The polar inertias of the crank webs (see Fig. 38.5), the crankpin,
and the journal sections are added to that given by Eq. (38.2). These polar inertias

should be calculated with the best
obtainable accuracy. The following pro-
cedure is recommended:

Let the crank web be intercepted by
a series of concentric cylinders of radius
R. The polar inertia of the crank web is
defined by

J = � �Rm

Rb
R2S dR� + Jb (38.3)

where γ = specific weight of the
crank web, lb/in.3

Rm = maximum radius of the
crank web, in.

Rb = radius of base cylinder
(see Fig. 38.5), in.

Jb = polar inertia of portion
of crank web within base
cylinder, lb-in.-sec2

The integral in the above expression for
J is the area of the R2S curve between
the values of radii Rb and Rm.

For the crank web shown in Fig. 38.5 the area S is defined as S = bRθ/57.3, where
� is measured in degrees. The polar inertia can then be expressed as

J = � �Rm

Rb
bR3� dR� + Jb lb-in.-sec2 (38.4)

The same procedure is used to calculate the polar inertia of propellers and other
irregular parts. In a marine propeller of ogival sections, i.e., flat driving face, circular
arc back, and elliptically developed outline (do not use for other shapes), the polar
inertia (excluding hub) is given by

J = 0.0046 lb-in.-sec2

where n = number of blades
D = diameter of propeller, in.
b = maximum blade width, in.
t = maximum blade thickness at one-half radius (axis to tip), in.

Propellers. For propellers, pumps, and hydraulic couplings an addition must be
made for the virtual inertia of the entrained fluid. For marine propellers this is ordi-
narily assumed at 26 percent of the propeller inertia. Virtual inertias for pumps are
not known accurately, but it can be assumed that half the casing is filled with rotat-
ing fluid.

nD3bt
�

g

γ
�
57.3g

γ
�
g
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FIGURE 38.5 View of a crank web in a plane
normal to the crankshaft axis.
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EXPERIMENTAL DETERMINATION OF POLAR MOMENT OF INERTIA

For complex shaft elements such as couplings or small flywheels, it is often easier to
determine the polar moment of inertia
experimentally than to calculate it. In
one experimental technique the element
is suspended from three equally spaced
vertical wires as shown in Fig. 38.6. The
element whose polar moment of inertia
is to be measured is hung on the cables
and set into torsional motion. Then the
period of vibration is measured. The
experimentally determined period of
torsional vibration, the weight of the
element, the length of the suspending
cables, and the radius of attachment of
the cables are used to determine the
polar moment of inertia from the fol-
lowing formula:

J = lb-in.sec2 (38.5)

where J = polar moment of inertia
τ = period of vibration, sec/cycle

W = weight of element, lb
l = length of cables, in.
r = radius of suspending cables, in.

CALCULATION OF STIFFNESS

Shaft. The stiffness of a circular shaft is the most common elastic element encoun-
tered in the modeling process.Table 38.1 shows some common formulas used to cal-
culate torsional stiffness of a hollow circular shaft, a tapered circular shaft, and two
geared shafts.The stiffness is referred to the rotational speed of shaft No. 1.The iner-
tia of geared shafts is obtained in a similar manner.

Crankshaft. The crankshaft stiffness is the most uncertain element in a torsional
vibration calculation. Shaft stiffness can be measured experimentally either by twist-
ing a shaft with a known torque or from the observed values of the critical speeds in
a running engine. Alternatively, it can be calculated from semiempirical formulas
such as those given in Ref. 1. Those given by Eqs. (38.6), (38.7), and (38.8) are rec-
ommended. Refer to Fig. 38.7 for definitions of the dimensions; le is the length of a
solid shaft of diameter Ds equal in torsional stiffness to the section of crankshaft
between crank centers.
Wilson’s formula2

= + + (38.6)
r − 0.2(Ds + Dc)
��

hW 3

a + 0.4Dc��
Dc

4 − dc
4

b + 0.4ds�
Ds

4 − ds
4

le�
Ds

4

Wr 2� 2

�
(6.28)2l
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FIGURE 38.6 Experimental determination of
the polar moment of inertia. An element of
weight W is suspended by three wires and the
period of the torsional motion is determined.
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Ziamanenko’s formula

= + + (38.7)

Constant’s formula

= � + + � (38.8)

where α1, α2, α3, and α4 are modifying factors, determined as follows:

α1 = 1 −
0.0825

� + − 0.32 (38.9)Wc − dc�
2Wc

Ws − ds�
2Ws

0.94
�
hW 3

a
�
Dc

4 − dc
4

b
�
Ds

4 − ds
4

1
�
α1α2α3α4

le�
Ds

4

r 3 / 2

��
hW 3Dc

1/2

0.8a + 0.2(W/r)Ds
��

Dc
4 − dc

4

b + 0.6hDs /b
��

Ds
4 − ds

4

le
�
Ds

4
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TABLE 38.1 Formulas for Torsional Stiffness
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If the shaft is solid, assume α1 = 0.9. The factor α2 is a web-thickness modification
determined as follows: If 4h/l is greater than 2⁄3, then α2 = 1.666 − 4h/l. If 4h/l < 2⁄3,
assume α2 = 1. The factor α3 is a modification for web chamfering determined as fol-
lows: If the webs are chamfered, estimate α3 by comparison with the cuts on Fig. 38.7:

Cut AB and A′B′, α3 = 1.000; cut CD alone, α3 = 0.965; cut CD and C′D′, α3 = 0.930;
cut EF alone, α3 = 0.950; cut EF and E′F ′, α3 = 0.900; if ends are square, α3 = 1.010.
The factor α4 is a modification for bearing support given by

α4 = + B (38.10)

For marine engine and large stationary engine shafts: A = 0.0029, B = 0.91
For auto and aircraft engine shafts: A = 0.0100, B = 0.84
If α4 as given by Eq. (38.10) is less than 1.0, assume a value of 1.0.

The Constant’s formula, Eq. (38.8), is recommended for shafts with large bores
and heavy chamfers.

Changes in Section. The shafting of an engine system may contain elements such
as changes of section, collars, shrunk and keyed armatures, etc., which require the
exercise of judgment in the assessment of stiffness. For a change of section having a
fillet radius equal to 10 percent of the smaller diameter, the stiffness can be esti-
mated by assuming that the smaller shaft is lengthened and the larger shaft is short-
ened by a length λ obtained from the curve of Fig. 38.8. This also may be applied to
flanges where D is the bolt diameter. The stiffening effect of collars can be ignored.

Shrunk and Keyed Parts. The stiffness of shrunk and keyed parts is difficult to
estimate as the stiffening effect depends to a large extent on the tightness of the
shrunk fit and keying. The most reliable values of stiffness are obtained by neglect-
ing the stiffening effect of an armature and assuming that the armature acts as a con-
centrated mass at the center of the shrunk or keyed fit. Some armature spiders and
flywheels have considerable flexibility in their arms; the treatment of these is dis-
cussed in the section Geared and Branched Systems.

Elastic Couplings. Properties of numerous types of torsionally elastic couplings
are available from the manufacturers and are given in Ref. 1.

Al 3w
�
Dc

4 − dc
4
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FIGURE 38.7 Schematic diagram of one crank of a crankshaft.
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GEARED AND BRANCHED SYSTEMS

The natural frequencies of a system containing gears can be calculated by assuming
a system in which the speed of the driver unit is n times the speed of the driven
equipment. Multiply all the inertia and elastic constants on the driven side of the sys-
tem by 1/n2, and calculate the system’s natural frequencies as if no gears exist. In any
calculations involving damping constants on the driven side, these constants also are
multiplied by 1/n2. Torques and deflections thus obtained on the driven side of this
substitute system, when multiplied by n and 1/n, respectively, are equal to those in
the actual geared system.Alternatively, the driven side can be used as the reference;
multiply the driver constants by n2.

Where two or more drivers are geared to a common load, hydraulic or electrical
couplings may be placed between the driver and the gears. These serve as discon-
nected clutches; they also insulate the gears from any driver-produced vibration.
This insulation is so perfect that the driver end of the system can be calculated as if
terminating at the coupling gap. The damping effect of such couplings upon the
vibration in the driver end of the system normally is quite small and should be dis-
regarded in amplitude calculations.

The majority of applications without hydraulic or electrical couplings involve two
identical drivers. For such systems the modes of vibration are of two types:

1. The opposite-phase modes in which the drivers vibrate against each other with
a node at the gear. These are calculated for a single branch in the usual manner, ter-
minating the calculation at the gear. The condition for a natural frequency is that 
β = 0 at the gear.

2. The like-phase modes in which the two drivers vibrate in the same direction
against the driven machinery.To calculate these frequencies, the inertia and stiffness
constants of the driver side of one branch are doubled; then the calculation is made

38.8 CHAPTER THIRTY-EIGHT

FIGURE 38.8 Curve showing the decrease in stiffness resulting from a
change in shaft diameter.The stiffness of the shaft combination is the same
as if the shaft having diameter D1 is lengthened by λ and the shaft having
diameter D2 is shortened by λ. (F. Porter.3)
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as if there were only a single driver. The condition for a natural frequency is zero
residual torque at the end.

If the two identical drivers rotating in the same direction are so phased that the
same cranks are vertical simultaneously, all orders of the opposite-phase modes will
be eliminated. The two drivers can be so phased as to eliminate certain of the like-
phase modes. For example, if the No. 1 cranks in the two branches are placed at an
angle of 45° with respect to each other, the fourth, twelfth, twentieth, etc., orders, but
no others, will be eliminated. If the drivers are connected with clutches, these phas-
ing possibilities cannot be utilized.

In the general case of nonidentical branches the calculation is made as follows:
Reduce the system to a 1:1 gear ratio. Call the branches a and b. Make the sequence
calculation for a branch, with initial amplitude β = 1, and for the b branch, with the
initial amplitude the algebraic unknown x. At the junction equate the amplitudes
and find x. With this numerical value of the amplitude x substituted, the torques in
the two branches and the torque of the gear are added; then the sequence calcula-
tion is continued through the last mass.

The branch may consist of a single member elastically connected to the system.
Examples of such a branch are a flywheel with appreciable flexibility in its spokes or
an armature with flexibility in the spider. Let I be the moment of inertia of the fly-
wheel rim and k the elastic constant of the connection. Then the flexibly mounted
flywheel is equivalent to a rigid flywheel of moment of inertia

I′ = (38.11)

NATURAL FREQUENCY CALCULATIONS

If the model of a system can be reduced to two lumped masses at opposite ends of a
massless shaft, the natural frequency is given by

fn = �� Hz (38.12)

The mode shape is given by θ2/θ1 = −J1/J2.
For the three-mass system shown in Fig. 38.9, the natural frequencies are

fn = 	A
 ±
 (
A
2
−
 B
)1
/2
 Hz (38.13)

where A = +

B =

In Eqs. (38.12) and (38.13) the ks are torsional stiffness constants expressed in 
lb-in./rad. The notation k12 indicates that the constant applies to the shaft between
rotors 1 and 2. The polar inertia J has units of lb-in.-sec2.

(J1 + J2 + J3)k12k23
��

J1 J2 J3

k23(J1 + J2)
��

2J1J2

k12(J1 + J2 )
��

2J1J2

1
�
2π

(J1 + J2)k
��

J1J2

1
�
2π

I
��
1 − Iω2/k
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The above formulas and all the
developments for multimass torsional
systems that follow also apply to sys-
tems with longitudinal motion if the
polar moments of inertia J are replaced
by the masses m = W/g and the torsional
stiffnesses are replaced by longitudinal
stiffnesses.

TRANSFER MATRIX METHOD

The transfer matrix method4 is an extended and generalized version of the Holzer
method. Matrix algebra is used rather than a numerical table for the analysis of tor-
sional vibration problems. The transfer matrix method is used to calculate the natu-
ral frequencies and critical speeds of other eigenvalue problems.

The transfer matrix and matrix iteration (Stodola) methods are numerical proce-
dures. The fundamental difference between them lies in the assumed independent
variable. In any eigenvalue problem, a unique mode shape of the system is associ-
ated with each natural frequency. The mode shape is the independent variable used
in the matrix iteration method. A mode shape is assumed and improved by succes-
sive iterations until the desired accuracy is obtained; its associated natural frequency
is then calculated.

A frequency is assumed in the transfer matrix method, and the mode shape of
the system is calculated. If the mode shape fits the boundary conditions, the
assumed frequency is a natural frequency and a critical speed is derived. Determin-
ing the correct natural frequencies amounts to a controlled trial-and-error process.
Some of the essential boundary conditions (geometrical) and natural boundary
conditions (force) are assumed, and the remaining boundary condition is plotted vs.
frequency to obtain the natural frequency; the procedure is similar to the Holzer
method. For example, if the torsional system shown in Fig. 38.10 were analyzed, the
natural boundary conditions would be zero torque at both ends. The torque at sta-
tion No. 1 is made zero, and the torsional vibration is set at unity.Then M4 as a func-
tion of ω is plotted to find the natural frequencies. This plot is obtained by utilizing
the system transfer functions or matrices. These quantities reflect the dynamic
behavior of the system.

38.10 CHAPTER THIRTY-EIGHT

FIGURE 38.9 Schematic diagram of a shaft
represented by three masses.

FIGURE 38.10 Typical torsional vibration model.

No accuracy is lost with the transfer matrix method because of coupling of mode
shapes.Accuracy is lost with the matrix iteration method, however, because each fre-
quency calculation is independent of the others. A minor disadvantage of the trans-
fer matrix method is the large number of points that must be calculated to obtain an
M4 vs ω curve. This problem is overcome if a high-speed digital computer is used.

A typical station (No. 4) from a torsional model is shown in Fig. 38.10. This gen-
eral station and the following transfer matrix equation, Eq. (38.14), are used in a way
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similar to the Holzer table to transfer the effects of a given frequency ω across the
model.

� �
n

= � �
n
� �

n − 1

(38.14)

where θ = torsional motion, rad
M = torque, lb-in.
ω = assumed frequency, rad/sec
J = station inertia, lb-in.-sec2

k = station torsional stiffness, lb-in./rad

The stiffness and polar moment of inertia of each station are entered into the equa-
tion to determine the transfer effect of each element of the model.Thus, the calcula-
tion begins with station No. 1, which relates to the first spring and inertia in the
model of Fig. 38.10. The equation gives the output torque M1 and output motion θ1

for given input values, usually 0 and 1, respectively. The equation is used on station
No. 2 to obtain M2 output and θ2 output as a function of M1 output and θ1 output.
This process is repeated to find the value of M and θ at the end of the model. This
calculation is particularly suited for the digital computer with spreadsheet programs.

FINITE ELEMENT METHOD

The finite element method is a numerical procedure (described in Chap. 28, Part II)
to calculate the natural frequencies, mode shapes, and forced response of a dis-
cretely modeled structural or rotor system. The complex rotor system is composed
of an assemblage of discrete smaller finite elements which are continuous structural
members. The displacements (angular) are forced to be compatible, and force
(torque) balance is required at the joints (often called nodes).

θ
M

1/k
−(ω2J/k) + 1

1
−ω2J

θ
M
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θ(t)

θ1(t) M1(t) θ2(t)M(t)

JOINT 1 JOINT 2

ρ, I, G, A,

M2(t)

FIGURE 38.11 Finite element for torsional vibration in local
coordinates.

Figure 38.11 shows a uniform torsional element in local coordinates. The x axis is
taken along the centroidal axis. The physical properties of the element are density
(ρ), area (A), shear modulus of elasticity (G), length (l), and polar area moment (I).
M(t) are the torsional forcing functions.
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The torsional displacement within the element can be expressed in terms of the
joint rotations �1(t) and �2(t) as

�(x,t) = U1(x)�1(t) + U2(x)�2(t) (38.15)

where U1(x) and U2(x) are called shape functions. Since �(0,t) = �1(t) and �(l,t) =
�2 (t), the shape functions must satisfy the boundary conditions:

U1(0) = 1 U1(l) = 0

U2(0) = 0 U2(l) = 1

The shape function for the torsional element is assumed to be a polynomial with
two constants of the form

Ui(x) = ai + bix where i = 1,2 (38.16)

Selection of the shape function is performed by the analyst and is a part of the engi-
neering art required to conduct accurate finite element modeling.

Thus with four known boundary conditions the values of ai and bi can be deter-
mined from Eq. (38.16):

U1(x) = 1 − U2(x) =

Then from Eq. (38.15)

�(x,t) = �1 − � �1(t) + �2(t)

The kinetic energy, strain energy, and virtual work are used to formulate the finite
element mass and stiffness matrices and the force vectors, respectively. These quan-
tities are used to form the equations of motion.These matrices, derived in Ref. 4, are

{J} = � �
{K} = � �

�M = M1(t)� =  �l

0
M(x,t)�1 − �dx �M2(t) �l

0
M(x,t)� �dx

where {J} = mass matrix
{K} = stiffness matrix

�M = torque vector
ρ = density
I = area polar moment

G = shear modulus
l = length of element

x
�
l

x
�
l

−1
1

1
−1

GI
�

l

1
2

2
1

ρIl
�
6

x
�
l

x
�
l

x
�
l

x
�
l
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As noted, the previously described finite elements are in local coordinates. Since
the system as a whole must be analyzed as a unit, the elements must be transformed
into one global coordinate system. Figure 38.12 shows the local element within a
global coordinate system. The mass and stiffness matrices and joint force vector of
each element must be expressed in the global coordinate system to find the vibration
response of the complete system.

TORSIONAL VIBRATION IN RECIPROCATING AND ROTATING MACHINES 38.13

Using transformation matrices,4 the mass and stiffness matrices and force vectors
are used to set up the system equation of motion for a single element in the global
coordinates:

[J]e {Θ̈(t)} + [K]e {Θ̈(t)} = {Me(t)}

The complete system is an assemblage of the number of finite elements it
requires to adequately model its dynamic behavior. The joint displacements of the
elements in the global coordinate system are labeled as Θ1(t), Θ2(t), . . . , Θm(t), or
this can be expressed as a column vector:


Θ1(t)

�Θ2(t)

{Θ(t)} = ⋅
⋅
⋅

Θm(t)

X

GLOBAL
AXIS

Y

Z

i

j

e

Θi(t)

Θj(t)

x (LOCAL AXIS)

Θ

FIGURE 38.12 Local and global joint displacements of element, l.
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Using global joint displacements, mass and stiffness matrices, and force vectors,
the equations of motion are developed:

[J]nxn{Θ̈ }nx1 + [K]nxn{Θ}nx1 = {M}nx1

where n denotes the number of joint displacements in the system.
In the final step prior to solution, appropriate boundary conditions and con-

straints are introduced into the global model.
The equations of motion for free vibration are solved for the eigenvalues (natu-

ral frequencies) using the matrix iteration method (Chap. 28, Part I). Modal analysis
is used to solve the forced torsional response.The finite element method is available
in commercially available computer programs for the personal computer. The ana-
lyst must select the joints (nodes, materials, shape functions, geometry, torques, and
constraints) to model the system for computation of natural frequencies, mode
shapes, and torsional response. Similar to other modeling efforts, engineering art and
a knowledge of the capabilities of the computer program enable the engineer to
provide reasonably accurate results.

CRITICAL SPEEDS

The crankshaft of a reciprocating engine or the rotors of a turbine or motor, and all
moving parts driven by them, comprise a torsional elastic system. Such a system has
several modes of free torsional oscillation. Each mode is characterized by a natural
frequency and by a pattern of relative amplitudes of parts of the system when it is
oscillating at its natural frequency. The harmonic components of the driving torque
excite vibration of the system in its modes. If the frequency of any harmonic compo-
nent of the torque is equal to (or close to) the frequency of any mode of vibration, a
condition of resonance exists and the machine is said to be running at a critical
speed. Operation of the system at such critical speeds can be very dangerous, result-
ing in fracture of the shafting.

The number of complete oscillations of the elastic system per unit revolution of
the shaft is called an order of the operating speed. It is an order of a critical speed if
the forcing frequency is equal to a natural frequency. An order of a critical speed
that corresponds to a harmonic component of the torque from the engine as a whole
is called a major order. A critical speed also can be excited that corresponds to the
harmonic component of the torque curve of a single cylinder. The fundamental
period of the torque from a single cylinder in a four-cycle engine is 720°; the critical
speeds in such an engine can be of 1⁄2, 1, 11⁄2, 2, 21⁄2, etc., order. In a two-cycle engine
only the critical speeds of 1, 2, 3, etc., order can exist. All critical speeds except those
of the major orders are called minor critical speeds; this term does not necessarily
mean that they are unimportant. Therefore the critical speeds occur at

rpm (38.17)

where fn is the natural frequency of one of the modes in Hz, and q is the order num-
ber of the critical speed. Although many critical speeds exist in the operating range
of an engine, only a few are likely to be important.

A dynamic analysis of an engine involves several steps. Natural frequencies of the
modes likely to be important must be calculated.The calculation is usually limited to
the lowest mode or the two lowest modes. In complicated arrangements, the calcula-
tion of additional modes may be required, depending on the frequency of the forces

60fn�
q
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causing the vibration.Vibration amplitudes and stresses around the operating range
and at the critical speeds must be calculated. A study of remedial measures is also
necessary.

VIBRATORY TORQUES

Torsional vibration, like any other type of vibration, results from a source of excita-
tion. The mechanisms that introduce torsional vibration into a machine system are
discussed and quantified in this section. The principal sources of the vibratory
torques that cause torsional vibration are engines, pumps, propellers, and electric
motors.

GENERAL EXCITATION

Table 38.2 shows some ways by which torsional vibration can be excited. Most of
these sources are related to the work done by the machine and thus cannot be
entirely removed. Many times, however, adjustments can be made during the design

TORSIONAL VIBRATION IN RECIPROCATING AND ROTATING MACHINES 38.15

TABLE 38.2 Sources of Excitation of Torsional Vibration

Amplitude in 
Source terms of rated torque Frequency

Mechanical

Gear runout 1 ×, 2 ×, 3 × rpm
Gear tooth machining tolerances No. gear teeth × rpm
Coupling unbalance 1 × rpm
Hooke’s joint 2 ×, 4 ×, 6 × rpm
Coupling misalignment Dependent on drive 

elements

System function

Synchronous motor start-up 5–10 2 × slip frequency
Variable-frequency induction motors 0.04–1.0 6 ×, 12 ×, 18 × line 

(six-step adjustable frequency (LF)
frequency drive)

Induction motor start-up 3–10 Air gap induced at 60 Hz
Variable-frequency induction motor 0.01–0.2 5 ×, 7 ×, 9 × LF, etc.

(pulse width modulated)
Centrifugal pumps 0.10–0.4 No. vanes × rpm 

and multiples
Reciprocating pumps No. plungers × rpm 

and multiples
Compressors with vaned diffusers 0.03–1.0 No. vanes × rpm
Motor- or turbine-driven systems 0.05–1.0 No. poles or blades × rpm
Engine geared systems 0.15–0.3 Depends on engine design  

with soft coupling and operating conditions;
can be 0.5n and n × rpm

Engine geared system 0.50 or more Depends on engine design 
with stiff coupling and operating conditions

Shaft vibration n × rpm
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process. For example, certain construction and installation sources—gear runout,
unbalanced or misaligned couplings, and gear-tooth machining errors—can be
reduced.

In Table 38.2 note that the pulsating torque during start-up of a synchronous
motor is equal to twice the slip frequency. The slip frequency varies from twice the
line frequency at start-up to zero at synchronous speed. Many mechanical drives
exhibit characteristics of pulsating torque during operation due to their design func-
tion. Electric motors with variable-frequency drives induce pulsating torques at fre-
quencies that are harmonics of line frequency. Blade-passing excitations can be
characterized by the number of blades or vanes on the wheel:The frequency of exci-
tation equals the number of blades multiplied by shaft speed. The amplitude of a
pulsating torque is often given in terms of percentage of average torque generated
in a system.

ENGINE EXCITATION

In more complex cases, diesel gasoline engines for example, the multiple frequency
components depend on engine design and power output. The power output, crank-
shaft phasing, and relationship between gas torque and inertial torque influence the
level of torsional excitation.

Inertia Torque. A harmonic analysis of the inertia torque of a cylinder is closely
approximated by1

M = Ω2 r� sin � − sin 2� − λ sin 3� − sin 4� ⋅⋅⋅� (38.18)

where W = Wp + hWc [see Fig. 38.4 and Eq.(38.2)]
λ = R/l [see Fig. 38.4 and Eq. (38.2)]
Ω = angular speed, rad/sec
R = crank radius, in.
l = connecting rod length, in.
� = crank angle, radians

Wp = weight of piston, lb
Wc = weight of connecting rod, lb

It is usual to drop all terms above the third order.

Gas-Pressure Torque. A harmonic
analysis of the turning effort curve yields
the gas-pressure components of the excit-
ing torque. The turning effort curve is
obtained from the indicator card of the
engine by the graphical construction
shown in Fig. 38.13.

For a given crank angle θ, let the gas
pressure on the piston be P. Erect a per-
pendicular to the line of action of the
piston from the crank center, intersect-

ing the line of the connecting rod. Let the intercept Oa on this perpendicular be y.
Then the torque M for angle θ is given by

λ2

�
4

3
�
4

1
�
2

λ
�
4

W
�
g

38.16 CHAPTER THIRTY-EIGHT

FIGURE 38.13 Schematic diagram of crank
and connecting rod used in plotting torque
curve.
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M = PSy (38.19)

where S is the piston area. A gas pressure versus rotation curve analyzed to obtain
harmonic gas coefficients is required to conduct a gas-pressure torque calibration.
Harmonic gas coefficients are often available from engine manufacturers.

FORCED VIBRATION RESPONSE

The torsional vibration amplitude of a modeled system is determined by the magni-
tude, points of application, and phase relations of the exciting torques produced by
engine or compressor gas pressure and inertia and by the magnitudes and points of
application of the damping torques. Damping is attributable to a variety of sources,
including pumping action in the engine bearings, hysteresis in the shafting and
between fitted parts, and energy absorbed in the engine frame and foundation. In a
few cases, notably marine propellers, damping of the propeller predominates. When
an engine is fitted with a damper, the effects of damping dominate the torsional
vibrations.

Techniques available for calculation of vibration amplitudes include the exact
solution of differential equations, the energy balance method, the transfer matrix
method, and modal analysis.The techniques are implemented on lumped parameter
or finite-element models.

EXACT METHOD FOR TWO DEGREE-OF-FREEDOM SYSTEMS

The lowest mode of vibration of some systems, particularly marine installations, can
be approximated with a two-mass system; an excitation is applied at one end and
damping at the other.

Referring to Fig. 38.14, the torque equations for rotors I1 and I2 are

I1ω2θ1 − k(θ1 − θ2) + Me = 0

I2ω2θ2 + k(θ1 − θ2) − jcωθ2 = 0

The natural frequency is given by

ω2 =

The shaft torque is M12 = k(θ1 − θ2). If the above equations are solved, the amplitude
of M12 at resonance is

|M12| = k|θ1 − θ2| = Me ��1 + (38.20)

Since with usual damping the second term under the radical is large compared with
unity, Eq. (38.20) reduces to

|M12| � ��(I1 + I2) (38.21)
I2k�
I1

I2�
I1

Me�
c

kI2(I1 + I2)��
I1c2

I2�
I1

k(I1 + I2)��
I1I2
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The torsional damping constant c of a marine propeller is a matter of some uncer-
tainty. It is customary to use the “steady-state” value. This is an approximation:

c = in.-lb/rad/sec

where Ω = angular speed of shaft in radi-
ans per second. Considerations of oscil-
lating airfoil theory indicate that this is
too high and that a better value would be

c = in.-lb/rad/sec (38.22)

Equation (38.21) is applicable only
when I1/I2 > 1. If used outside this range
with other types of damping neglected,
fictitiously large amplitudes will be
obtained. Equation (38.21) gives the res-

onance amplitude, but the peak may not occur exactly at resonance. The complete
amplitude curve is computed by the methods discussed in the following section.

ENERGY BALANCE METHOD

Both rational and empirical formulas for the resonance amplitudes of systems with-
out dampers can be based on the energy balance at resonance. It is assumed that the
system vibrates in a normal mode and that the displacement is in a 90° phase rela-
tionship to the exciting and damping torques. The energy input by the exciting
torques is then equal to the energy output by the damping torques. Unless the damp-
ing is extremely large, this assumption gives a very close approximation to the ampli-
tude at resonance.

Figure 38.15 shows a curve of relative amplitude in the first mode of vibration.
Assume that a cylinder acts at A. Let the actual amplitude at A be θa and the ampli-
tude relative to that of the No. 1 cylinder be β. The β values are taken from the col-
umn opposite each rotor number in the sequence calculation for the natural
frequency calculation. At a point such as B, where damping may be applied, let the
actual amplitude be θd and the amplitude relative to the No. 1 cylinder be βd.

2.3Mmean�
Ω

4Mmean�
Ω
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FIGURE 38.14 Schematic diagram of a shaft
with two rotors, showing positions of excitation
and damping.

FIGURE 38.15 Diagram of actual amplitude θ and relative amplitude β as a
function of position along shaft. Excitation is at A, and B is the position where
damping is applied. The No. 1 cylinder is at the free end of the crankshaft.
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The energy input to the system from the cylinder acting at A is

πMeθa in.-lb/cycle

and the energy output to the damper is

πcωθd
2 in.-lb/cycle

where c* is the damping constant action of the damper at B. Equating input to 
output,

Meθa = cωθd
2 (38.23a)

Let θ′ be the amplitude at the No. 1 cylinder produced by the cylinder acting at A.
Then θe/θ′ = β and θd/θ′ = βd. Substituting in Eq. (38.23a) gives

θ′ = (38.23b)

If all the cylinders act, and if damping is applied at a variety of points, the total
amplitude at the No. 1 cylinder is

θ = Σθ′ = (38.24)

where Σβ is taken over the cylinders and Σcβd
2 is taken over the points at which

damping is applied. This formula can be applied directly when the magnitude and
points of application of the damping torques are known. For the great majority of
applications, where the damping is unknown, a number of empirical formulas have
been proposed with coefficients based on engine tests. These formulas may give an
amplitude varying 30 percent or more from test results if applied to a variety of
engines. Better agreement should not be expected, for even identical engines may
have amplitudes differing as much as 2 to 1, depending on length of service, bearing
fits, mounting, variation in the harmonic excitation because of different combustion
rates, and other unknown factors.

Good results have been obtained using the Lewis formula5

Mm = �MeΣβ (38.25)

The maximum torque at resonance in any part of the system is Mm; the exciting
torque per cylinder is Me. R is a constant from Table 38.3. The vector sum over the
cylinders of the relative amplitudes as taken from the mode shape for a natural fre-
quency is Σβ. It is determined as follows.

For a four-cycle engine construct a phase diagram, Table 38.4, of the firing
sequence in which 720° corresponds to a complete cycle of a single cylinder, or two
revolutions. The phase relationship for a critical of order number q is obtained by
multiplying the angles in this diagram by 2q, with the No. 1 crank held fixed. The β
values assigned to each direction then are obtained from the values corresponding
to each cylinder in the mode shape β. Then Σβ is the vector sum. The summation
extends only to those rotors on which exciting torques act.

In a two-cycle engine the β phase relations are determined by multiplying the
crank diagram by q, holding the No. 1 cylinder fixed.

MeΣβ
�
ωΣcβd

2

Meβ�
cωβd

2
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* The symbol c is used in this chapter to denote a torsional damping coefficient.
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Table 38.4 shows the Σβ phase diagrams and Σβ values for the one-noded mode
with a firing sequence 1, 6, 2, 5, 8, 3, 7, 4. The firing sequence is drawn first; then the
angles of this diagram are multiplied by 2, 3, 4, etc., in succeeding diagrams.After mul-
tiplication by 8 for the fourth order, the diagrams repeat. Diagrams which are equidis-
tant in order number from the 2, 6, 10, etc., orders are mirror images of each other and
have the same Σβ.The numerical values of Σβ in Table 38.4 have been obtained by cal-
culation, summing the vertical and horizontal components.

The empirical factor � is determined by the measurement of amplitudes in run-
ning engines (Table 38.3).

38.20 CHAPTER THIRTY-EIGHT

TABLE 38.4 Phase Diagrams and Deflections, β, for a Calculated Torsional Mode

TABLE 38.3 Empirical Factors 
for Engine Amplitude Calculations

Bore Stroke �

20 in. × 24 in. or larger 50–60
8 in. × 10 in. 40–50
4 in. × 6 in. or smaller 35
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The exciting torque per cylinder, Me in Eq. (38.24) is composed of the sum of the
torques produced by gas pressure, inertia force, gravity force, and friction force. The
gravity and friction torques are of negligible importance; and the inertia torque is of
importance only for first-, second-, and third-order harmonic components.

TRANSFER MATRIX METHOD FOR FORCED RESPONSE

A calculation of the nonresonant or “forced” vibration amplitude is required in
some cases to define the range of the more severe critical speeds, particularly with
geared drives; it also is required in the design of dampers. The calculation6 is readily
made by an extension of the transfer matrix method. In the calculation the initial
amplitude is treated as an algebraic unknown θ. At each station where an exciting
torque acts, this torque is added. Assume first that there are no damping torques.
Then the residual torque after the last rotor is of the form aθ + b, where a and b are
numerical constants resulting from the calculation. Since the residual torque is zero,
θ = −b/a.

The amplitude and torque at any point of the system are found by substituting
this numerical value of θ at the appropriate point in the calculation. At frequencies
well removed from resonance, damping has little effect and can be neglected. Damp-
ing can be added to the system by treating it as an exciting torque equal to the imag-
inary quantity −jcωθ, where c is the damping constant and θ is the amplitude at the
point of application. Relative damping between two inertias can be treated as a
spring of a stiffness constant equal to the imaginary quantity of +jcω.

For the major critical speeds the exciting torques are all in-phase and are real
numbers. For the minor critical speeds the exciting torques are out-of-phase; they
must be entered as complex numbers of amplitude and phase as determined from
the phase diagram (discussed under Energy Balance) for the critical speed of the
order under consideration. With damping and/or out-of-phase exciting torques
introduced, a and b in the equation aθ + b = 0 are complex numbers, and θ must be
entered as a complex number in the calculation in order to determine the angle and
torque at any point.The angles and torques are then of the form r + js, where r and s
are numerical constants and the amplitudes are equal to 	r 2
 +
 s
2
.

APPLICATION OF MODAL ANALYSIS TO ROTOR SYSTEMS

Classical modal analysis of vibrating systems (see Chap. 21) can be used to obtain
the forced response of multistation rotor systems in torsional motion. The natural
frequencies and mode shapes of the system are found using the transfer matrix
method. The response of the rotor to periodic phenomena (not necessarily a har-
monic or shaft frequency) is determined as a linear weighted combination of the
mode shapes of the system. Heretofore with this technique, damping has been
entered in modal form; the damping forces are a function of the various modal
velocities.The formation of equivalent viscous damping constants that are some per-
centage of critical damping is required. The critical damping factor is formed from
the system modal inertia.7

The modal analysis technique can be used for a torsional distributed mass model
of engine systems using modal damping; nonsynchronous speed excitations are
allowed. The shaft sections of the modeled rotor have distributed mass properties
and lumped end masses (including rotary inertia). A transfer matrix analysis is per-
formed to obtain a finite number of natural frequencies. The number required

TORSIONAL VIBRATION IN RECIPROCATING AND ROTATING MACHINES 38.21
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depends on the range of forcing frequencies used in the problem. The natural fre-
quencies are substituted back into the transfer matrices to obtain the mode shapes.
A function consisting of a weighted average of the mode shapes is formed and sub-
stituted into

θ(x, t) = �
N

n = 1
an(x)fn(t)

where θ = torsional response
an = normal modes
fn = periodic time-varying weighting factors

The function fn(t) is determined from the ordinary differential equations of motion
and is a function of the forcing functions, rotor speed, modal damping constants, and
mode shapes of the system.

DIRECT INTEGRATION

Direct integration of equations of motion of a system utilize first- or second-order
differential equations.The method is fundamental for linear and nonlinear response
problems.8 Any digitally describable vibration or shock excitation can be carried out
with this method.

Direct integration can be used on nonlinear models and arbitrary excitation, so it
is one of the most general techniques available for response calculation. However,
large computer storage is required, and large computer costs are usually incurred
because small time- or space-step sizes are needed to maintain numerical stability.
An adjustable step integration routine such as predictor-corrector helps to alleviate
this problem. Such a numerical integration must be started with another routine
such as Runge-Kutta.

Direct integration is particularly useful when nonlinear components such as elas-
tomeric couplings are involved or when the excitation force varies in frequency and
magnitude. Direct integration is used for analysis of synchronous motor start-ups in
which the magnitude of the torque varies with rotor speed and the frequency is 2
times the slip frequency—starting at twice the line frequency and ending at zero
when the rotor is locked on synchronous speed. Examples of this type of analysis are
given in Refs. 8 and 9.

PERMISSIBLE AMPLITUDES

Failure caused by torsional vibration invariably initiates in fatigue cracks that start
at points of stress concentration—e.g., at the ends of keyway slots, at fillets where
there is a change of shaft size, and particularly at oil holes in a crankshaft. Failures
can also start at corrosion pits, such as occur in marine shafting.At the shaft oil holes
the cracks begin on lines at 45° to the shaft axis and grow in a spiral pattern until fail-
ure occurs. Theoretically the stress at the edges of the oil holes is 4 times the mean
shear stress in the shaft, and failure may be expected if this concentrated stress
exceeds the fatigue limit of the material. The problem of estimating the stress
required to cause failure is further complicated by the presence of the steady stress
from the mean driving torque and the variable bending stresses.

38.22 CHAPTER THIRTY-EIGHT
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In practice the severity of a critical speed is judged by the maximum nominal tor-
sional stress

τ =

where Mm is the torque amplitude from torsional vibration and d is the crankpin
diameter. This calculated nominal stress is modified to include the effects of
increased stress and is compared to the fatigue strength of the material.

U.S. MILITARY STANDARD

A military standard10 issued by the U.S. Navy Department states that the limit of
acceptable nominal torsional stress within the operating range is

τ = for steel

τ = for cast iron

If the full-scale shaft has been given a fatigue test, then

τ = for either material

Such tests are rarely, if ever, possible.
For critical speeds below the operating range which are passed through in start-

ing and stopping, the nominal torsional stress shall not exceed 13⁄4 times the above
values.

Crankshaft steels which have ultimate tensile strengths between 75,000 and
115,000 lb/in.2 usually have torsional stress limits of 3000 to 4600 lb/in.2

For gear drives the vibratory torque across the gears, at any operating speed, shall
not be greater than 75 percent of the driving torque at the same speed or 25 percent
of full-load torque, whichever is smaller.

AMERICAN PETROLEUM INSTITUTE

Sources of torsional excitation considered by American Petroleum Institute11 (API)
include but are not limited to the following: gear problems such as unbalance, pitch
line runout, and eccentricity; start-up conditions resulting from inertial impedances;
and torsional transients from synchronous and induction electric motors.

Torsional natural frequencies of the machine train shall be at least 10 percent
above or below any possible excitation frequency within the specified operating
speed range. Torsional critical speeds at integer multiples of operating speeds (e.g.,
pump vane pass frequencies) should be avoided or should be shown to have no
adverse effect where excitation frequencies exist.Torsional excitations that are non-
synchronous to operating speeds are to be considered. Identification of torsional
excitations is the mutual responsibility of the purchaser and the vendor.

When torsional resonances are calculated to fall within the ±10 percent margin
and the purchaser and vendor have agreed that all efforts to remove the natural fre-
quency from the limiting frequency range have been exhausted, a stress analysis

torsional fatigue limit
���

2

torsional fatigue limit
���

6

ultimate tensile strength
���

25

16Mm�
πd 3

TORSIONAL VIBRATION IN RECIPROCATING AND ROTATING MACHINES 38.23

8434_Harris_38_b.qxd  09/20/2001  12:26 PM  Page 38.23



shall be performed to demonstrate the lack of adverse effect on any portion of the
machine system.

In the case of synchronous motor driven units, the vendor is required to perform
a transient torsional vibration analysis with the acceptance criteria mutually agreed
upon by the purchaser and the vendor.

TORSIONAL MEASUREMENT

Torsional vibration is more difficult to measure than lateral vibration because the
shaft is rotating. Procedures for signal analysis are similar to those used for lateral
vibration.Torsional response—both strains and motions—can be measured at inter-
mediate points in a system. But sensors cannot be placed at a nodal point; for this
reason the transfer matrix method is valuable for calculating mode shapes prior to
sensor location selection.

SENSORS

Strain gauges, described in Chap. 17, are available in a variety of sizes and sensitivi-
ties and can be placed almost anywhere on a shaft.They can be calibrated to indicate
instantaneous torque by using static torque loads on drive shafts. If calibration is not
possible, stresses and torques can be calculated from strength of materials theory.
Strain gauges are usually mounted at 45° angles so that shaft bending does not influ-
ence torque measurements. The signal must be processed by a bridge-amplifier unit
that can be arranged to compensate for temperature. Because strain gauge signals
are difficult to take from a rotating shaft, such techniques are not common diagnos-
tic tools.

Slip rings can be used to obtain a vibration signal from a shaft. Wireless teleme-
try is also available. A small transmitter mounted on the rotating shaft at a conven-
ient location broadcasts a signal to a nearby receiver. Commercial torque
transducers are available for torsional measurement. However, they must be
inserted in the drive line and thus may change the dynamic characteristics of the sys-
tem. If the natural frequency of the system is changed, the vibration response will
not accurately reflect the properties of the system.

The velocity of torsional vibration is measured using a toothed wheel and a fixed
sensor.12 The signal generated by the teeth of the wheel passing the fixed sensor has
a frequency equal to the number of teeth multiplied by shaft speed. If the shaft is
undergoing torsional vibration, the carrier frequency will exhibit frequency modula-
tion (change in frequency) because the time required for each tooth to pass the fixed
pickup varies.

DATA ACQUISITION

The frequency change (velocity) is converted to a voltage change by a demodulator
and integrated to obtain angular displacement. Angular displacement can be meas-
ured at the end of a shaft with encoders or at intermediate points with a gear-
magnetic pickup or proximity probe arrangement. The frequency of the carrier
signal (e.g., number of teeth on a gear × rpm) must be at least 4 times the highest fre-
quency to be measured. In most cases, the raw torsional signal is tape recorded prior
to processing and analysis. Because the output of the magnetic pickup is speed
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dependent and the gap between the magnetic pickup and the toothed wheel is less
than 0.025 in. the proximity probe is preferred—especially in synchronous motor
startups.

TORSIONAL ANALYSIS

A torsional signal must be analyzed for frequency components using a spectrum
analyzer, described in Chap. 14. Figure 38.16 shows a torsional response spectrum
for a variable-frequency motor-driven pump. The pump ran at 408 rpm. The tor-
sional vibration response excited by the variable frequency motor is 0.23° at a fre-
quency of 38 Hz.

TORSIONAL VIBRATION IN RECIPROCATING AND ROTATING MACHINES 38.25
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FIGURE 38.16 Torsional response of a variable-frequency motor-driven pump at
408 rpm. There are significant peaks at 6.8 and 38.0 Hz.

MEASURES OF CONTROL

The various methods which are available for avoiding a critical speed or reducing
the amplitude of vibration at the critical speed may be classified as:

1. Shifting the values of critical speeds by changes in mass and elasticity
2. Vector cancellation methods
3. Change in mass distribution to utilize the inherent damping in the system
4. Addition of dampers of various types

SHIFTING OF CRITICAL SPEEDS

If the stiffness of all the shafting to a system is increased in the ratio a, then all the
frequencies will increase in the ratio a, provided that there is no corresponding
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increase in the inertia. It is rarely possible to increase the crankshaft diameters on
modern engines; in order to reduce bearing pressures, bearing diameters usually are
made as large as practical. If bearing diameters are increased, the increase in the crit-
ical speed will be much smaller than indicated by the a ratio because a considerable
increase in the inertia will accompany the increase in diameter. Changes in the stiff-
ness of a system made near a nodal point will have maximum effect. Changes in iner-
tia near a loop will have maximum effect, while those near a node will have little
effect.

By the use of elastic couplings it may be possible to place certain critical speeds
below the operating speed where they are passed through only in starting and stop-
ping; this leaves a clear range above the critical speed. This procedure must be used
with caution because some critical speeds, for example the fourth order in an eight-
cylinder, four-cycle engine, are so violent that it may be dangerous to pass through
them. If the acceleration through the critical speed is sufficiently high, some reduc-
tion in amplitude may be attained, but with a practical rate the reduction may not be
large. The rate of deceleration when stopping is equally important. In some cases
mechanical clutches disconnect the driven machinery from the engine until the
engine has attained a speed above dangerous critical speeds. Elastic couplings may
take many forms including helical springs arranged tangentially, flat leaf springs
arranged longitudinally or radially, various arrangements using rubber, or small-
diameter shaft sections of high tensile steel.1

VECTOR CANCELLATION METHODS

Choice of Crank Arrangement and Firing Order. The amplitude at certain
minor critical speeds sometimes can be reduced by a suitable choice of crank
arrangement and firing order (i.e., firing sequence).These fix the value of the vector
sum Σβ in Eq (38.25), Mm = �MeΣβ. But considerations of balance, bearing pres-
sures, and internal bending moments restrict this freedom of choice. Also, an
arrangement which decreases the amplitude at one order of critical speed invariably
increases the amplitude at others. In four-cycle engines with an even number of
cylinders, the amplitude at the half-order critical speeds is fixed by the firing order
because this determines the Σβ value.Tables 38.5 and 38.6 list the torsional-vibration
characteristics for the crank arrangements and firing orders, for eight-cylinder two-
and four-cycle engines having the most desirable properties.

The values of Σβ are calculated by assuming β = 1 for the cylinder most remote
from the flywheel, assuming β = 1/n for the cylinder adjacent to the flywheel (where
n is the number of cylinders), and assuming a linear variation of β there between. In
any actual installation Σβ must be calculated by taking β from the relative modal
curve; however, if the Σβ as determined above is small, it also will be small for the
actual β distribution. These arrangements assume equal crank angles and firing
intervals. The reverse arrangements (mirror images) have the same properties.

V-Type Engines. In V-type engines, it may be possible to choose an angle of the V
which will cancel certain criticals. Letting φ be the V angle between cylinder banks,
and q the order number of the critical, the general formula is

qφ = 180°, 540°, 1080°, etc. (38.26)

For example, in an eight-cylinder engine the eighth order is canceled at angles of
221⁄2°, 671⁄2°, 1121⁄2°, etc.
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In four-cycle engines, φ is to be taken as the actual bank angle if the second-bank
cylinders fire directly after the first and as 360° + φ if the second-bank cylinders omit
a revolution before firing. In the latter case the cancellation formula is

(φ + 360°)q = n × 180° (38.27)

where n = 1, 3, 5, etc. For example, to cancel a 4.5-order critical the bank angle should
be

φ = = 40° for direct firing

or

φ = − 360° = 80° for the 360° delay

Cancellation by Shift of the Node. If an engine can be arranged with approxi-
mately equal flywheel (or other rotors) at each end so that the node of a particular

11 × 180°
��

4.5

180°
�
4.5
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TABLE 38.5 Torsional-Vibration Characteristics for Eight-Cylinder, Four-
Cycle Engine Having 90° Crank Spacing

TABLE 38.6 Torsional-Vibration Characteristics for Eight-Cylinder, Two-
Cycle Engine Having 45° Crank Spacing

Σβ of orders

Firing order 1, 7, 9 2, 6, 10 3, 5, 11 4, 12 8, 16

1, 8, 2, 6, 4, 5, 3, 7 0.056 0 0.79 2.0 4.5
1, 7, 4, 3, 8, 2, 5, 6 0.175 0 1.61 0 4.5
1, 6, 5, 2, 7, 4, 3, 8 0.112 0 1.58 0.5 4.5

* Values of 0 in the ∑β column indicate small but not necessarily 0 values for actual β
distribution.
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mode is at the center of the engine, Σβ will cancel for the major orders of that mode.
This procedure must be used with caution because the double flywheel arrangement
may reduce the natural frequency in such a manner that low-order minor criticals of
large amplitudes take the place of the canceled major criticals.

Reduction by Use of Propeller Damping in Marine Installations. From Eq.
(38.21) it is evident that the torque amplitude in the shaft can be reduced below any
desired level by making the flywheel moment of inertia I1 of sufficient magnitude.
The ratio of the propeller amplitude to the engine amplitude increases as the fly-
wheel becomes larger; thus the effectiveness of the propeller as a damper is
increased.

DAMPERS

Many arrangements of dampers can be employed (see Chap. 6). In each type there
is a loose flywheel or inertia member which is coupled to the shaft by:

1. Coulomb friction (Lanchester damper)
2. Viscous fluid friction
3. Coulomb or viscous friction plus springs
4. Centrifugal force, equivalent to a spring having a constant proportional to the

square of the speed (pendulum damper) (see Chap. 6)

Each of these types acts by generating torques in opposition to the exciting torques.
The Lanchester damper illustrated in Fig. 6.35 has been entirely superseded by

designs in which fluid friction is utilized. In the Houdaille damper, Fig. 38.17, a fly-
wheel is mounted in an oiltight case with small clearances; the case is filled with sili-
cone fluid. The damping constant is

c = 2πµ � + � in.-lb-sec (38.28)

where µ is the viscosity of the fluid and r1, r2, b, h1, and h2 are dimensions indicated in
Fig. 38.17.

r2
4 − r1

4

�
h1

1
�
2

r2
3b

�
h2
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FIGURE 38.17 Schematic diagram of dampers. (A) Houdaille type. (B) Paddle type.
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The paddle-type damper illustrated in Fig. 38.17 utilizes the engine lubricating oil
supplied through the crankshaft. It has the damping constant

c =
3µd 2(r2

2 − r1
2)2n

h3� + + �
in.-lb-sec (38.29)

where n is the number of paddles, µ is the viscosity of the fluid, and b1, b2, r1, r2, and
d are dimensions indicated in Fig. 38.17. Other types of dampers are described in
Ref. 2.

The effectiveness of these dampers
may be increased somewhat by connect-
ing the flywheel to the engine by a
spring of proper stiffness, in addition to
the fluid friction. In one form, Fig. 38.18,
the connection is by rubber bonded
between the flywheel and the shaft
member. The rubber acts both as the
spring and by hysteresis as the energy
absorbing member. See Chaps. 32 and
34 for discussions of damping in rubber.
Dampers without and with springs are
defined here as untuned and tuned vis-
cous dampers, respectively.

In many cases the mode of vibration
to be damped is essentially internal to
the engine. Then the damper is located
at the end of the engine remote from the

flywheel. If the mode to be damped is essentially one between driven masses, other
locations may be desirable or necessary.

Design of the Untuned Viscous Damper, Exact Procedure. The first step in
the design procedure is to make a tentative assumption of the polar moment of iner-
tia of the floating inertia member. If the damper is attached to the forward end of the
crankshaft with the primary purpose of damping vibration in the engine, the size
should be from 5 to 25 per cent, depending on the severity of the critical to be

damped, of the total inertia in the
engine part of the system, excluding the
flywheel.

Usually it is advantageous to mini-
mize the torque in a particular shaft sec-
tion. This may be done as follows: For a
series of frequencies plot the resonance
curve of this torque, first without the
floating damper mass and then with the
damper mass locked to the damper hub.
Plot the curves with all ordinates posi-
tive. The nature of such a plot is shown
in Fig. 38.19. The point of intersection is
called the fixed point. The plot is shown
as if there were only one resonant fre-

4(r2 − r1)�
b1 + b2

d
�
b3

d
�
b1
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FIGURE 38.18 Schematic diagram of bonded
rubber damper.

FIGURE 38.19 Resonance curves for various
conditions of auxiliary mass dampers: (1)
damper free, c = 0; (2) damper locked, c = ∞; (3)
auxiliary mass coupled to shaft by damping.
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quency. Usually only one is of interest, and the curves are plotted in its vicinity. If the
plot were extended, there would be a series of fixed points.

If a damping constant is assigned to the damper and the new resonance curve
plotted, it will be similar to curve 3 in Fig. 38.19 and will pass through the fixed point.
If there is no other damping in the system except that in the damper, all of the reso-
nance curves will pass through the fixed points, independent of the value assigned to
the damping constant.13 Therefore, the amplitude at the fixed point is the lowest that
can be obtained for the assumed damper size. If this amplitude is too large, it will be
necessary to increase the damper size; if the amplitude is unnecessarily small, the
damper size can be decreased.When a satisfactory size of damper has been selected,
it is necessary to find the damping constant which will put the resonance curve
through the fixed point with a zero slope. Assume a value of ω2 slightly lower than
its value at the fixed point, and compute the amplitude at that value of ω2 with the
damping constant c entered as an algebraic unknown. Equating this amplitude to
that at the fixed point, the unknown damping constant c can be calculated. Repeat
the calculation with a value of ω2 higher than the fixed point value by the same incre-
ment. The mean of the two values of c thus obtained will be as close to the optimum
value as construction of the damper will permit. In constructing these resonance
curves, it is not necessary to construct complete curves over a wide range of fre-
quencies but only over a short interval in the vicinity of the fixed point.

Two-Mass Approximation. If the system is replaced by a two-mass system in the
manner utilized to make a first estimate (see the section Natural Frequency Calcula-
tions) of the one-noded mode, the results are further approximated by the following
formulas:

For such a two-mass plus damper system the amplitude at the fixed point is given
by13

M12 = MeΣβ � � (38.30)

where Me = Srh is the exciting torque per cylinder. The optimum damping is

c = � �
1/2

in.-lb/rad/sec (38.31)

where I1 = polar moment of inertia for flywheel or generator
I2 = 40 percent of engine polar moment of inertia taken up to flywheel
Id = polar moment of inertia of damper floating element
k = stiffness from No. 1 crank to flywheel

Tuned Viscous Dampers. The procedure for the design of a tuned viscous
damper is as follows:

1. Assume a polar inertia and a spring constant for the damper.As a first assump-
tion, adjust the spring constant so that if f is the frequency of the mode to be sup-
pressed and fn is the natural frequency of the damper, assuming the hub as a fixed
point,

= 0.8
fn
�
f

KI2Id
2(2I1 + 2I2 + Id)���

I1(I2 + Id)(2I3 + Id)

2I2 + Id�
Id
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2. Plot the resonance curves of M for a particular section, first for the damper
locked, then with zero damping but the damper spring in place. All ordinates are
plotted positive.The curves have the general form of those shown in Fig. 38.20.They

intersect in two fixed points through
which all resonance curves pass, irre-
spective of the damping constant in the
damper. If the fixed point a is higher
than b, assume a lower constant for the
damper spring and recalculate the M
curve. If a is lower than b, do the reverse.
Thus adjust the damper spring constant
until a and b are of equal height. If this
amplitude M is higher than desired, it is
necessary to repeat the calculation with
a larger damper.

With the spring and damper mass
adjusted, a direct calculation (similar to
that for the untuned damper) can be
made to determine the damping con-
stant cr which will give the resonance
curve the same ordinate at an intermedi-
ate frequency indicated by point c as at a
and b. Figure 38.20B shows the reso-
nance curve of an ideally adjusted
damper.

3. For a range of frequencies, using
the inertia, spring, and damping con-
stants as determined above, compute the
amplitude of the damper mass relative
to its hub by a forced-vibration calcula-
tion. In this calculation the damper

spring constant becomes the complex number (k + jcω). The load for which the
damper springs must be designed is k times the relative amplitude of the damper
mass to its hub. The torque on the damper is approximately MeΣβ. For a discussion
on an untuned viscous damper, see Ref. 6.

Pendulum Dampers. The principle of a pendulum damper is shown in Fig.
38.21A. (Also see Chap. 6.) The hole-pin construction usually used, which is equiva-
lent to that of Fig. 38.21A, is shown in Fig. 38.21B. It is undesirable to have any fric-
tion in the damper. The damper produces an effect equivalent to a fixed flywheel,
and the inertia of this flywheel is different for each order of vibration.

The design formulas for the pendulum damper are as follows:1 If the length L is
made equal to

L = (38.32)

the damper is said to be tuned to order q0. For excitation of q0 cycles per revolution,
it will act as an infinite flywheel, keeping the shaft at its point of attachment to uni-
form rotation insofar as q0 order vibrations are concerned. But other orders of vibra-
tion may exist in the shaft.

R
�
1 + q0

2
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FIGURE 38.20 Curves of torque vs. square of
frequency for auxiliary mass damper.
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If the shaft at the point of attachment
of the damper is vibrating with order q
and amplitude θ, the maximum link
angle � (see Fig. 38.21) is

� = rad (38.33)

The torque exerted by a single ele-
ment of the damper is

M = � � in.-lb

(38.34)

where W is the weight of an element and
J is the polar inertia of an element about its own center-of-gravity. The J term is
equivalent to an addition to the damper hub. Dropping this term, the damper is
equivalent to a flywheel of polar inertia

Jd = in.2-lb (38.35)

For q < q0 this is a positive flywheel, for q = q0 an infinite flywheel, and for q > q0 a
negative flywheel. Omitting the J term and eliminating θ between Eqs. (38.33) and
(38.34),

� = rad (38.36)

In-Line Diesel Engine. As applied to a diesel engine, the above procedure is
much more difficult. The exciting torques in diesel engines are nearly independent
of speed. Hence from Eq. (38.36) it is evident that � will be inversely proportional to
Ω2.Thus for a variable-speed engine the damper size is fixed by the low-speed end of
the range; if � is kept in the 20 to 30° limit, the size may be excessive. This difficulty
usually can be overcome by tuning the damper as a negative flywheel, thus acting to
raise the undesired critical above the operating range while keeping � to a reason-
able limit at low speed. The procedure is as follows:

Assuming a damper size and a q/q0 ratio, a forced-vibration calculation is made
starting at the flywheel end, for the maximum speed of the engine. In this calculation
the damper is treated as a fixed flywheel of polar inertia n{[WRe(1 − q2/q0

2)−1] + J}
plus the inertia of the fixed carrier which supports the moving weights, where n is the
number of weights. This calculation will yield θ, the amplitude at the damper hub,
and the maximum torque in the engine shaft.Then � is given by Eq. (38.33). If either
the shaft torque or the damper amplitude � is too large, it is necessary to increase the
damper size and possibly adjust the q/q0 ratio as well. A similar check for � is made
at the low-speed end of the range with further adjustment of WRe and q/q0 if neces-
sary.

With a pendulum damper fitted, the equivalent inertia is different for each order
of vibration so that each order has a different frequency. A damper tuned as a nega-
tive flywheel for one order becomes a positive flywheel for lower orders; thus, it
reduces the frequencies of those orders, with possibly unfortunate results.

M(1 + q0
2)g

��
q0

2WR2Ω2

WR2

��
1 − q2/q0

2

q2Ω2θ
�

g
WR2

��
1 − q2/q0

2 + J

θq 2(1 + q0
2 )

��
q0

2 − q2
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FIGURE 38.21 Pendulum-type damper. The
arrangement is shown in principle at A, and the
Chilton construction is shown schematically at B.
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In in-line engines the application of a pendulum damper may be further compli-
cated by the necessity of suppressing several orders of vibration, thus requiring sev-
eral sets of damper weights. Alternatively, both a pendulum- and viscous-type
damper may be fitted to an engine.

In general, the pendulum-type dampers are more expensive than the viscous
types.Wear in the pins and their bushings changes the properties of the damper, thus
requiring replacement of these parts at intervals.
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CHAPTER 39, PART I
BALANCING OF

ROTATING MACHINERY

Douglas G. Stadelbauer

INTRODUCTION

The demanding requirements placed on modern rotating machines and equip-
ment—for example, electric motors and generators, turbines, compressors, and
blowers—have introduced a trend toward higher speeds and more stringent accept-
able vibration levels. At lower speeds, the design of most rotors presents few prob-
lems which cannot be solved by relatively simple means, even for installations in
vibration-sensitive environments. At higher speeds, which are sometimes in the
range of tens of thousands of revolutions per minute, the design of rotors can be an
engineering challenge which requires sophisticated solutions of interrelated prob-
lems in mechanical design, balancing procedures, bearing design, and the stability
of the complete assembly. This has made balancing a first-order engineering prob-
lem from conceptual design through the final assembly and operation of modern
machines.

This chapter describes some important aspects of balancing, such as the basic
principles of the process by which an optimum state of balance is achieved in a rotor,
balancing methods and machines, and definitions of balancing terms. The discussion
is limited to those principles, methods, and procedures with which an engineer
should be familiar in order to understand what is meant by “balancing.” Finally, a list
of definitions is presented at the end of it.

In addition to unbalance, there are many other possible sources of vibration in
rotating machinery; some of them are related to or aggravated by unbalance, and so,
under appropriate conditions, they may be of paramount importance. However, this
discussion is limited to the means by which the effect of once-per-revolution com-
ponents of vibration (i.e., the effects due to mass unbalance) can be minimized.

BASIC PRINCIPLES OF BALANCING

Descriptions of the behavior of rigid or flexible rotors are given as introductory 
material in standard vibration texts, in the references listed at the end of Part I of this
chapter, and in the few books devoted to balancing. A similar description is included
here for the purpose of examining the principles which govern the behavior of rotors
as their speed of rotation is varied.

39.1
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RIGID-ROTOR BALANCING—STATIC UNBALANCE

Rigid-rotor balancing is important because it comprises the majority of the balanc-
ing work done in industry. By far the greatest number of rotors manufactured and
installed in equipment can be classified as “rigid” by definition. All balancing
machines are designed to perform rigid-rotor balancing.*

Consider the case in which the shaft axis is not coincident with the principal axis,
as illustrated in Fig. 39.3. In practice, with even the closest manufacturing tolerances,

the journals are never concentric with
the principal axis of the rotor. If concen-
tric rigid bearings are placed around the
journals, thus forcing the rotor to turn
about the connecting line between the
journals, i.e., the shaft axis, a variable
force is sensed at each bearing.

The center-of-gravity is located on
the principal axis, and is not on the axis
of rotation (shaft axis). From this it fol-
lows that there is a net radial force act-

ing on the rotor which is due to centrifugal acceleration.The magnitude of this force
is given by

F = m�ω2 (39.1)

PERFECT BALANCE

Consider a rigid body which is rotating at a uniform speed about one of its three
principal inertia axes. Suppose that the forces which cause the rotation and support
the body are neglected; then it will rotate about this axis without wobbling, i.e., the
principal axis (which is fixed in the body) coincides with a line fixed in space (Fig.
39.1). Now construct circular, concentric journals around the axis at the points where
the axis protrudes from the body, i.e., on the stub shafts whose axes coincide with the
principal axis. Since the axis does not wobble, the newly constructed journals also
will not wobble. Next, place the journals in bearings which are circular and concen-
tric to the principal axis (Fig. 39.2). It is assumed that there is no dynamic action of
the elasticity of the rotor and the lubricant in the bearings. A rigid rotor constructed
and supported in this manner will not wobble; the bearings will exert no forces other
than those necessary to support the weight of the rotor. In this assembly, the radial
distance between the center-of-gravity of the rotor and the shaft axis (i.e., a straight
line connecting the journal axes) is zero. The principal axis and the shaft axis coin-
cide. This rotor is said to be perfectly balanced.

39.2 CHAPTER THIRTY-NINE, PART I

PRINCIPAL AXIS

FIGURE 39.1 Rigid body rotating about prin-
cipal axis.

PRINCIPAL AXIS
BEARING

JOURNAL

FIGURE 39.2 Balanced rigid rotor.

PRINCIPAL AXIS c.g.

BEARING

AXIS OF ROTATION (JOURNAL AXIS)

FIGURE 39.3 Unbalanced rigid rotor.

* Field balancing equipment is specifically excluded from this category since it is designed for use with
both rigid and flexible rotors.

8434_Harris_39_b.qxd  09/20/2001  12:24 PM  Page 39.2



where m is the mass of the rotor, � is the eccentricity or radial distance of the center-
of-gravity from the axis of rotation, and ω is the rotational speed in radians per sec-
ond. Since the rotor is assumed to be rigid and thus not capable of distortion, this
force is balanced by two reaction forces. There is one force at each bearing. Their
algebraic sum is equal in magnitude and opposite in sense. The relative magnitudes
of the two forces depend, in part, upon the axial position of each bearing with
respect to the center-of-gravity of the rotor. In simplified form, this illustrates the
“balancing problem.” One must choose a practical method of constructing a per-
fectly balanced rotor from this unbalanced rotor.

The center-of-gravity may be moved to the shaft axis (or as close to this axis as is
practical) in one of two ways.The journals may be modified so that the shaft axis and
an axis through the center-of-gravity are moved to essential coincidence. From the-
oretical considerations, this is a valid method of minimizing unbalance caused by the
displacement of the center-of-gravity from the shaft axis, but for practical reasons it
is difficult to accomplish. Instead, it is easier to achieve a radial shift of the center-of-
gravity by adding mass to or subtracting it from the mass of the rotor; this change in
mass takes place in the longitudinal plane which includes the shaft axis and the cen-
ter-of-gravity. From Eq. (39.1), it follows that there can be no net radial force acting
on the rotor at any speed of rotation if

m′r = m� (39.2)

where m′ is the mass added to or subtracted from that of the rotor and r is the radial
distance to m′. There may be a couple, but there is no net force. Correspondingly,
there can be no net bearing reaction. Any residual reactions sensed at the bearings
would be due solely to the couple acting on the rotor.

If this rotor-bearing assembly were supported on a scale having a sufficiently
rapid response to sense the change in force at the speed of rotation of the rotor, no
fluctuations in the magnitude of the force would be observed. The scale would reg-
ister only the dead weight of the rotor-bearing assembly.

This process of effecting essential coincidence between the center-of-gravity of the
rotor and the shaft axis is called “single-plane (static) balancing.” The latter name for
the process is more descriptive of the end result than of the procedure that is followed.

If a rotor which is supported on two bearings has been balanced statically, the
rotor will not rotate under the influence of gravity alone. It can be rotated to any
position and, if left there, will remain in that position. However, if the rotor has not
been balanced statically, then from any position in which the rotor is initially placed,
it will tend to turn to that position in which the center-of-gravity is lowest.

As indicated below, single-plane balancing can be accomplished most simply (but
not necessarily with great accuracy) by supporting the rotor on flat, horizontal ways
and allowing the center-of-gravity to seek its lowest position. It also can be accom-
plished in a centrifugal balancing machine by sensing and correcting for the unbal-
ance force characterized by Eq. (39.1).

RIGID-ROTOR BALANCING—DYNAMIC UNBALANCE

When a rotor is balanced statically, the shaft axis and principal inertia axis may not
coincide; single-plane balancing ensures that the axes have only one common point,
namely, the center-of-gravity.Thus, perfect balance is not achieved.To obtain perfect
balance, the principal axis must be rotated about the center-of-gravity in the longi-
tudinal plane characterized by the shaft axis and the principal axis. This rotation can

BALANCING OF ROTATING MACHINERY 39.3
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be accomplished by modifying the journals (but, as before, this is impractical) or by
adding masses to or subtracting them from the mass of the rotor in the longitudinal
plane characterized by the shaft axis and the principal inertia axis. Although adding
or subtracting a single mass may cause rotation of the principal axis relative to the
shaft axis, it also disturbs the static balance already achieved. From this it can be
deduced that a couple must be applied to the rotor in the longitudinal plane. This is
usually accomplished by adding or subtracting two masses of equal magnitude, one
on each side of the principal axis (so as not to disturb the static balance) and one in
each of two radial planes (so as to produce the necessary rotatory effect). Theoreti-
cally, it is not important which two radial planes are selected since the same rotatory
effect can be achieved with appropriate masses, irrespective of the axial location of
the two planes. Practically, the choice of suitable planes may be important. Usually,
it is best to select planes which are separated axially by as great a distance as possi-
ble in order to minimize the magnitude of the masses required.

The above process of bringing the principal inertial axis of the rotor into essential
coincidence with the shaft axis is called “two-plane (dynamic) balancing.” If a rotor is
balanced in two planes, then, by definition, it is balanced statically; however, the con-
verse is not true.

FLEXIBLE-ROTOR BALANCING1

If the bearing supports are rigid, then the forces exerted on the bearings are due
entirely to centrifugal forces caused by the unbalance. Dynamic action of the elas-
ticity of the rotor and the lubricant in the bearings has been ignored.

The portion of the overall problem in which the dynamic action and interaction
of rotor elasticity, bearing elasticity, and damping are considered is called flexible
rotor or modal balancing.

Critical Speed. Consider a long, slender rotor, as shown in Fig. 39.4. It represents
the idealized form of a typical flexible rotor, such as a paper machinery roll or tur-
bogenerator rotor. Assume further that all unbalances occurring along the rotor
caused by machining tolerances, inhomogeneities of material, etc. are compensated
by correction weights placed in the end faces of the rotor, and that the balancing is
done at a low speed as if the rotor were a rigid body.

Assume there is no damping in the rotor or its bearing supports. Consider a thin
slice of this rotor perpendicular to the shaft axis (see Fig. 39.5A). This axis intersects
the slice at its geometric center E when the rotor is not rotating, provided that
deflection due to gravity forces is ignored. The center-of-gravity of the slice is dis-
placed by δ from E due to an unbalance in the slice (caused by machining tolerances,
inhomogeneity, etc., mentioned above) which was compensated by correction
weights in the rotor’s end planes. If the rotor starts to rotate about the shaft axis with
an angular speed ω, then the slice starts to rotate in its own plane at the same speed
about an axis through E. Centrifugal force mδω2 is thus experienced by the slice.This
force occurs in a direction perpendicular to the shaft axis and may be accompanied

39.4 CHAPTER THIRTY-NINE, PART I

FIGURE 39.4 Idealized flexible rotor.

8434_Harris_39_b.qxd  09/20/2001  12:24 PM  Page 39.4



by similarly caused forces at other cross sections along the rotor; such forces are
likely to vary in magnitude and direction.They cause the rotor to bend, which in turn
causes additional centrifugal forces and further bending of the rotor.

At every speed ω, equilibrium conditions require that for one slice, the centrifu-
gal and restoring forces be related by

m(δ + x)ω2 = kx (39.3)

where x is the deflection of the shaft (the radial distance between the geometric cen-
ter and the shaft axis) and k is the shaft stiffness (Fig. 39.5B). In Fig. 39.5, the cen-
trifugal and restoring forces are plotted for various speeds (ω1 < ω2 < ω3 < ω4 < ω5).
The point of intersection of the lines representing the two forces denotes the equi-
librium condition for the rotor at the given speeds. For this ideal example, as the
speed increases, the point which denotes equilibrium will move outward until, at say
ω3, a speed is reached at which there is no resulting force and the lines are parallel.
Since equilibrium is not possible at this speed, it is called the critical speed. The crit-
ical speed ωn of a rotating system corresponds to a resonant frequency of the system.

At speeds greater than ω3 (�ωn), the lines representing the centrifugal and
restoring forces again intersect. As ω increases, the slope of the line mω2(x + δ)
increases correspondingly until, for speeds which are large, the deflection x
approaches the value of δ, i.e., the rotor tends to rotate about its center-of-gravity.

BALANCING OF ROTATING MACHINERY 39.5

FIGURE 39.5 Rotor behavior below, at, and above first critical speed.
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Unbalance Distribution. Apart from any special and obvious design features, the
axial distribution of unbalance in the slices previously examined along any rotor is
likely to be random.The distribution may be significantly influenced by the presence
of large local unbalances arising from shrink-fitted discs, couplings, etc. The rotor
may also have a substantial amount of initial bend, which may produce effects simi-
lar to those due to unbalance.The method of construction can influence significantly
the magnitude and distribution of unbalance along a rotor. Rotors may be machined
from a single forging, or they may be constructed by fitting several components
together. For example, jet-engine rotors are constructed by joining many shell and
disc components, whereas paper mill rolls are usually manufactured from a single
piece of material.

The unbalance distributions along two nominally identical rotors may be similar
but rarely identical.

Contrary to the case of a rigid rotor, distribution of unbalance is significant in a
flexible rotor because it determines the degree to which any bending or flexural
mode of vibration is excited. The resulting modal shapes are reduced to acceptable
levels by flexible-rotor balancing, also called “modal balancing.”*

Response of a Flexible Rotor to Unbalance. In common with all vibrating sys-
tems, rotor vibration is the sum of its modal components. For an undamped flexible
rotor which rotates in flexible bearings, the flexural modes coincide with principal
modes and are plane curves rotating about the axis of the bearing. For a damped
flexible rotor, the flexural modes may be space (three-dimensional) curves rotating
about the axis of the bearings. The damping forces also limit the flexural amplitudes
at each critical speed. In many cases, however, the damped modes can be treated
approximately as principal modes and hence regarded as rotating plane curves.

The unbalance distribution along a rotor may be expressed in terms of modal
components.The vibration in each mode is caused by the corresponding modal com-
ponent of unbalance. Moreover, the response of the rotor in the vicinity of a critical
speed is usually predominantly in the associated mode. The rotor modal response is
a maximum at any rotor critical speed corresponding to that mode. Thus, when a
rotor rotates at a speed near a critical speed, it is disposed to adopt a deflection
shape corresponding to the mode associated with this critical speed. The degree to
which large amplitudes of rotor deflection occur in these circumstances is deter-
mined by the modal component of unbalance and the amount of damping present in
the rotor system.

If the modal component of unbalance is reduced by a number of discrete correc-
tion masses, then the corresponding modal component of vibration is similarly
reduced.The reduction of the modal components of unbalance in this way forms the
basis of the modal balancing technique.

Flexible-Rotor Mode Shapes. The stiffnesses of a rotor, its bearings, and the
bearing supports affect critical speeds and therefore mode shapes in a complex man-
ner. For example, Fig. 39.6 shows the effect of varying bearing and support stiffness
relative to that of the rotor.The term “soft” or “hard” bearing is a relative one, since
for different rotors the same bearing may appear to be either soft or hard. The
schematic diagrams of the figure illustrate that the first critical speed of a rotor sup-
ported in a balancing machine having soft-spring-bearing supports occurs at a lower
frequency and in an apparently different shape than that of the same rotor sup-

39.6 CHAPTER THIRTY-NINE, PART I

* All modal balancing is accomplished by multiplane corrections; however, multiplane balancing need not
be modal balancing, since multiplane balancing refers only to unbalance correction in more than two planes.
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ported in a hard-bearing balancing machine where the bearing support stiffness
approximates service conditions.

To evaluate whether a given rotor may require a flexible-rotor balancing proce-
dure, the following rotor characteristics must be considered:

1. Rotor configuration and service speed.
2. Rotor design and manufacturing procedures. Rotors which are known to be flex-

ible or unstable may still be capable of being balanced as rigid rotors.

Rotor Elasticity Test. This test is designed to determine if a rotor can be consid-
ered rigid for balancing purposes or if it must be treated as flexible. The test is car-
ried out at service speed either under service conditions or in a high-speed,
hard-bearing balancing machine whose support-bearing stiffness closely approxi-
mates that of the final supporting system. The rotor should first be balanced. A
weight is then added in each end plane of the rotor near its journals; the two weights
must be in the same angular position. During a subsequent test run, the vibration is
measured at both bearings. Next, the rotor is stopped and the test weights are moved
to the center of the rotor, or to a position where they are expected to cause the
largest rotor distortion; in another run the vibration is again measured at the bear-
ings. If the total of the first readings is designated x, and the total of the second read-
ings y, then the ratio (y − x)/x should not exceed 0.2. Experience has shown that if
this ratio is below 0.2, the rotor can be corrected satisfactorily at low speed by apply-
ing correction weights in two or three selected planes. Should the ratio exceed 0.2,
the rotor usually must be checked at or near its service speed and corrected by a
modal balancing technique.

High-Speed Balancing Machines. Any technique of modal balancing requires a
balancing machine having a variable balancing speed with a maximum speed at least
equal to the maximum service speed of the flexible rotor. Such a machine must also
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FIGURE 39.6 Effect of ratio of bearing stiffness to rotor stiffness on mode shape at critical
speeds.
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have a drive-system power rating which takes into consideration not only accelera-
tion of the rotor inertia but also windage losses and the energy required for a rotor
to pass through a critical speed. For some rotors, windage is the major loss; such
rotors may have to be run in vacuum chambers to reduce the fanlike action of the
rotor and to prevent the rotor from becoming excessively hot. For high-speed bal-
ancing installations, appropriate controls and safety measures must be employed to
protect the operator, the equipment, and the surrounding work areas.

Flexible-Rotor Balancing Techniques. Flexible-rotor balancing consists essen-
tially of a series of individual balancing operations performed at successively greater
rotor speeds:

At a low speed, where the rotor is considered rigid. (Low-speed balancing of flex-
ible rotors usually is performed only in a balancing machine.)
At a speed where significant rotor deformation occurs in the mode of the first
flexural critical speed. (This deformation may occur at speeds well below the crit-
ical speed.)
At a speed where significant rotor deformation occurs in the mode of the second
flexural critical speed. (This applies only to rotors with a maximum service speed
affected significantly by the mode shape of the second flexural critical speed.)
At a speed where significant rotor deformation occurs in the mode of the third
critical speed, etc.
At the maximum service speed of the rotor.

The balancing of flexible rotors requires experience in determining the size of
correction weights when the rotor runs in a flexible mode. The process is consider-
ably more complex than standard low-speed balancing techniques used with rigid
rotors. Primarily this is due to a shift of mass within the rotor (as the speed of rota-
tion changes), caused by shaft and/or body elasticity, asymmetric stiffness, thermal
dissymmetry, incorrect centering of rotor mass and shifting of windings and associ-
ated components, and fit tolerances and couplings.

Before starting the modal balancing procedure, the rotor temperature should be
stabilized in the lower- or middle-speed range until unbalance readings are repeat-
able. This preliminary warmup may take from a few minutes to several hours
depending on the type of rotor, its dimensions, its mass, and its pretest condition.

Once the rotor is temperature-stabilized, the balancing process can begin. Sev-
eral weight corrections in both end planes and along the rotor surface are required.
In the commonly practiced, comprehensive modal balancing technique, unbalance
correction is performed in several discrete modes, each mode being associated with
the speed range in which the rotor is deformed to the mode shape corresponding to
a particular flexural critical speed. Figure 39.7 shows a rotor deformed in five of the
mode shapes of Fig. 39.6; the location of the weights which provide the proper cor-
rection for these mode shapes is indicated.

First, the rotor is rotated at a speed less than one-half the rotor’s first flexural crit-
ical speed and balanced using a rigid-rotor balancing technique. Balancing correc-
tions are performed at the end planes to reduce the original amount of unbalance to
three or four times the final balance tolerance.

Correction for the First Flexural Mode (V Mode). The balancing speed is
increased until rotor deformation occurs, accompanied by a rapid increase in unbal-
ance indication at the same angular position for both end planes. Unbalance correc-
tions for this mode are made in at least three planes. Due to the bending of the rotor,
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the unbalance indication is not directly proportional to the correction to be applied.
A new relationship between unbalance indication and corresponding correction
weight must be established by test with trial weights. A weight is first added in the
correction plane nearest the middle of the rotor. For large turbo-generator rotors
such a trial weight should be in the range of 30 to 60 oz-in./ton of rotor weight. Two
additional corrections are added in the end planes diametrically opposite to the cen-
ter weight, each equal to one-half the magnitude of the center weight. This process
may have to be repeated a number of times, each run reducing the magnitude of the
weight applications until the residual unbalance is approximately 1 to 3 oz-in./ton of
turbo-generator rotor weight. Then the speed is increased slowly to the maximum
service speed; at the same time, the unbalance indicator is monitored. If an excessive
unbalance indication is observed as the rotor passes through its first critical speed,
further unbalance corrections are required in the V mode until the maximum ser-
vice speed can be reached without an excessive unbalance indication. If a second
flexural critical speed is observed before the maximum service speed is reached, the
additional balancing operation in the S mode must be performed, as indicated
below.

Correction for the Second Flexural Mode (S Mode). The rotor speed is
increased until significant rotor deformation due to the second flexural mode is
observed. This is indicated by a rapid increase in unbalance indication measured in
the end planes at angular positions opposite to each other. Unbalance corrections
for this S mode are made in at least four planes, as indicated in Fig. 39.7.The weights
placed in the end correction planes must be diametrically opposed; on the idealized
symmetrical rotor, each end-plane weight must be equal to one-half the correction
weight placed in one of the inner planes. Of primary concern is that the S-mode
weight set not have any influence on the previously corrected mode shape. The cor-
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FIGURE 39.7 Rotor mode shapes and correction weights.
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rection weight in each inner plane must be diametrically opposed to its nearest end-
plane correction weight. The procedure to determine the relationship between
unbalance indication and required correction weight is similar to that used in the 
V-mode procedure, described above. The S-mode balancing process must be
repeated until an acceptable residual unbalance is achieved. If a third critical speed
is observed before the maximum service speed is reached, the additional balancing
operation in the W mode must be performed, as indicated below.

Corrections for the Third Flexural Mode (W Mode). The rotor speed is
increased further until significant rotor deformation due to the third flexural mode
is observed. Corrections are made in the rotor with a five-weight set (shown in Fig.
39.7) and in a manner similar to that used in correcting for the first and second flex-
ural modes.

If the service-speed range requires it, higher modes (those associated with the nth
critical speed, for example) may have to be corrected as well. For each of these
higher modes, a set of (n + 2) correction weights is required.

Final Balancing at Service Speed. Final balancing takes place with the rotor at
its service speed. Correction should be made only in the end planes.The final balance
tolerance for large turbo-generators, for example, will normally be on the order of 1
oz-in./ton of rotor weight. If the rotor cannot be brought into proper balance toler-
ances, the S-mode, V-mode, and W-mode corrections may require slight adjustment.

To achieve repeatability of the correction effects, the same balancing speed for
each mode must be accurately maintained. Depending on the size of the rotor, the
number of modes that must be corrected, and the ease with which weights can be
applied, the entire process may take anywhere from 3 to 30 hours.

The relative position of the unbalance correction planes shown in Fig. 39.7
applies to symmetrical rotors only. Rotors with axial asymmetry generally require
unsymmetrically spaced correction planes. In the case of assembled rotors which
may “take a set” at or near service speed (e.g., shrunk-on turbine stages find their
final position), only preliminary unbalance corrections are made at lower speeds
to enable the rotor to be accelerated to service or overspeed, the latter being usu-
ally 20 percent above maximum service speed. Since the “set” creates new unbal-
ance, the normal balancing procedure is commenced only after the initial
high-speed run.

Computer programs are available which facilitate the selection of the most
appropriate correction planes and the computation of correction weights by the
influence coefficient method. Other flexible-rotor balancing techniques rely 
mostly on experience data available from previously manufactured rotors of the
same type, or correct only for flexural modes if no low-speed balancing equipment is
available.

SOURCES OF UNBALANCE

Sources of unbalance in rotating machinery may be classified as resulting from

1. Dissymmetry (core shifts in castings, rough surfaces on forgings, unsymmetrical
configurations)

2. Nonhomogeneous material (blowholes in cast rotors, inclusions in rolled or
forged materials, slag inclusions or variations in crystalline structure caused by
variations in the density of the material)

3. Distortion at service speed (blower blades in built-up designs)
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4. Eccentricity ( journals not concentric or circular, matching holes in built-up
rotors not circular)

5. Misalignment of bearings
6. Shifting of parts due to plastic deformation of rotor parts (windings in electric

armatures)
7. Hydraulic or aerodynamic unbalance (cavitation or turbulence)
8. Thermal gradients (steam-turbine rotors, hollow rotors such as paper mill rolls)

Often, balancing problems can be minimized by careful design in which unbal-
ance is controlled. When a part is to be balanced, large amounts of unbalance
require large corrections. If such corrections are made by removal of material, addi-
tional cost is involved and part strength may be affected. If corrections are made by
addition of material, cost is again a factor and space requirements for the added
material may be a problem.

Manufacturing processes are a major source of unbalance. Unmachined portions
of castings or forgings which cannot be made concentric and symmetrical with
respect to the shaft axis introduce substantial unbalance. Manufacturing tolerances
and processes which permit any eccentricity or lack of squareness with respect to the
shaft axis are sources of unbalance.Tolerances necessary for economical assembly of
several elements of a rotor permit radial displacement of parts of the assembly and
thereby introduce unbalance.

Limitations imposed by design often introduce unbalance effects which cannot
be corrected adequately by refinement in design. For example, electrical design lim-
itations impose a requirement that one coil be at a greater radius than the others in
a certain type of electric armature. It is impractical to design a compensating unbal-
ance into the armature.

Fabricated parts, such as fans, often distort nonsymmetrically under service con-
ditions. Design and economic considerations prevent the adaptation of methods
which might eliminate this distortion and thereby reduce the resulting unbalance.

Ideally, rotating parts always should be designed for inherent balance, whether a
balancing operation is to be performed or not. Where low service speeds are
involved and the effects of a reasonable amount of unbalance can be tolerated, this
practice may eliminate the need for balancing. In parts which require unbalanced
masses for functional reasons, these masses often can be counterbalanced by design-
ing for symmetry about the shaft axis.

MOTIONS OF UNBALANCED ROTORS

In Fig. 39.8 a rotor is shown spinning freely in space. This corresponds to spinning
above resonance in soft bearings. In Fig. 39.8A only static unbalance is present and
the center line of the shaft sweeps out a cylindrical surface. Figure 39.8B illustrates
the motion when only couple unbalance is present. In this case, the center line of the
rotor shaft sweeps out two cones which have their apexes at the center-of-gravity of
the rotor. The effect of combining these two types of unbalance when they occur in
the same axial plane is to move the apex of the cones away from the center-of-
gravity. In most cases, there will be no apex and the shaft will move in a more com-
plex combination of the motions shown in Fig. 39.8. Such a condition comes about
through a random combination of static and couple unbalance called dynamic
unbalance.
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OPERATING PRINCIPLES OF BALANCING

MACHINES2,3

This section describes the basic operating principles and general features of the var-
ious types of balancing machines which are available commercially.With this type of
information, it is possible to determine the basic type of machine required for a
given application.

Every balancing machine must determine by some technique both the magnitude
of a correction weight and its angular position in each of one, two, or more selected
balancing planes. For single-plane balancing this can be done statically, but for two-
or multiplane balancing it can be done only while the rotor is spinning. Finally, all
machines must be able to resolve the unbalance readings, usually taken at the bear-
ings, into equivalent corrections in each of the balancing planes.

On the basis of their method of operation, balancing machines and equipment
can be grouped in two general categories:

1. Gravity balancing equipment
2. Centrifugal balancing machines and field balancing equipment

In the first category, advantage is taken of the fact that a body that is free to rotate
always seeks that position in which its center-of-gravity is lowest. Gravity balancing
equipment, also called nonrotating balancers, includes horizontal ways, knife-edges
or roller arrangements, spirit-level devices (“bubble balancers”), and vertical pen-
dulum types. All are capable of detecting and/or indicating only static unbalance.

In the second category, the amplitude and phase of motions or reaction forces
caused by once-per-revolution centrifugal forces resulting from unbalance are
sensed, measured, and indicated by appropriate means. Field balancing equipment
provides sensing and measuring instrumentation only; the necessary measurements
for balancing a rotor are taken while the rotor runs in its own bearings and under
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FIGURE 39.8 Effect of static and couple unbalance on free rotor motion.
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its own power. However, on a centrifugal balancing machine, the rotor is supported
by the machine and rotated around a horizontal or vertical axis by the machine’s
drive motor. Balancing-machine instrumentation differs from field balancing
equipment in that it includes specific features which simplify the balancing process.
A centrifugal balancing machine (also called a rotating balancing machine) is usu-
ally capable of measuring static unbalance (a single-plane rotating balancing
machine) or static and dynamic unbalance (a two-plane rotating balancing
machine). Only a two-plane rotating balancing machine can detect couple unbal-
ance or dynamic unbalance.

GRAVITY BALANCERS

First, consider the simplest type of balancing—usually called “static” balancing,
since the rotor is not spinning. In Fig. 39.9A, a disc-type rotor on a shaft is shown
resting on knife-edges. The mass added to the disc at its rim represents a known
unbalance. In this illustration, in Fig. 39.8, and in the illustrations which follow, the
rotor is assumed to be balanced without this added unbalance weight. In order for
this balancing procedure to work effectively, the knife-edges must be level, parallel,
hard, and straight.

In operation, the heavier side of the disc will seek the lowest level—thus indicat-
ing the angular position of the unbalance.Then, the magnitude of the unbalance usu-
ally is determined by an empirical process, adding mass in the form of wax or putty
to the light side of the disc until it is in balance, i.e., until the disc does not stop at the
same angular position.

In Fig. 39.9B, a set of balanced rollers or wheels is used in place of the knife-
edges.These have the advantage of permitting the rotor to turn without, at the same
time, moving laterally.

In Fig. 39.9C, a setup for another type of static, or “nonrotating,” balancing pro-
cedure is shown. Here the disc to be balanced is supported by a flexible cable, fas-
tened to a point on the disc which coincides with the center of the shaft and is
slightly above the normal plane containing the center-of-gravity. As shown in Fig.
39.9C, the heavy side will tend to seek a lower level than the light side, thereby indi-
cating the angular position of the unbalance. The disc can be balanced by adding
weight to the diametrically opposed side of the disc until it hangs level. In this case,
the center-of-gravity is moved until it is directly under the flexible support cable.

In Fig. 39.9D, a modified version of this setup is shown. The cable is replaced by
a hardened ball-and-socket arrangement (used on many automobile wheel “bubble
balancers”) or by a spherical air bearing (used on some industrial and aerospace bal-
ancers). The inclination of the wheel is then indicated with a centrally mounted
spirit level.

Static balancing is satisfactory for rotors having relatively low service speeds
and axial lengths which are small in comparison with the rotor diameter. A pre-
liminary static unbalance correction may be required on rotors having a combined
unbalance so large that it is impossible in a dynamic, soft-bearing balancing
machine to bring the rotor up to its proper balancing speed without damaging the
machine. If the rotor is first balanced statically by one of the methods just out-
lined, it is usually possible to decrease the combined unbalance to the point where
the rotor may be brought up to balancing speed and the residual unbalance mea-
sured. Such preliminary static correction is not required on hard-bearing balancing
machines.

BALANCING OF ROTATING MACHINERY 39.13

8434_Harris_39_b.qxd  09/20/2001  12:24 PM  Page 39.13



39.14 CHAPTER THIRTY-NINE, PART I

FIGURE 39.9 Static (single-plane) balancing devices.

FIGURE 39.10 Motion of unbalanced rotor and
bearings in flexible-bearing, centrifugal balancing
machine.

(A)

(C) (D)

(B)
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CENTRIFUGAL BALANCING MACHINES

The following procedures may be used to balance the rotor shown in Fig. 39.8B.
First, select the planes in which the correction weights are to be added; these planes
should be as far apart as possible and the weights should be added as far out from
the shaft as feasible to minimize the size of the weights. Next, by a balancing tech-
nique, determine the size of the required correction weight and its angular position
for each correction plane. To implement these procedures, two types of machines,
soft-bearing and hard-bearing balancing machines, which are described below, are
employed.

Soft-Bearing Balancing Machines. Soft-bearing balancing machines permit the
idealized free rotor motion illustrated in Fig. 39.8B, but on most machines the
motion is restricted to a horizontal plane (as shown in Fig. 39.10). Furthermore, the
bearings (and the directly attached components) vibrate in unison with the rotor,
thus adding to its mass. The restriction of the vertical motion does not affect the
amplitude of vibration in the horizontal plane, but the added mass of the bearings
does. The greater the combined rotor-and-bearing mass, the smaller will be the dis-
placement of the bearings, and the smaller will be the output of the devices which
sense the unbalance.

Consider the following example.Assume a balanced disc (see Fig. 39.11) having a
weight W of 1,000 grams, rotating freely in space. An unbalance weight w of 1 gram
is then added to the disc at a radius of 10 mm. The unbalance causes the center-of-
gravity of the disc to be displaced from the shaft axis by

e = = 0.00999 mm

Since the addition of the weight of the unbalance to the rotor causes only an insignif-
icant difference, the approximation e ≈ wr/W is generally used. Then e ≈ 0.01 mm.

If the same disc with the same unbalance is rotated on a single-plane balancing
machine having a bearing and bearing housing weight W′ of 1,000 grams, the dis-
placement of the center-of-gravity will be significantly reduced because the bearing
and housing weight is added to the weight W of the disc.The center-of-gravity of the
combined vibrating components will now be displaced by

e′ = ≈ 0.005 mm

The conversion of unbalance into displacement of center-of-gravity as shown in

wr
�
W + W′

wr
�
W + w
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FIGURE 39.11 Displacement of center-of-gravity because of unbalance.

8434_Harris_39_b.qxd  09/20/2001  12:24 PM  Page 39.15



the example above also holds true for rotors of greater axial length which normally
require correction in two planes. However, such rotors are prone to have unbalance
other than static unbalance, causing an inclination of the principal inertia axis from
the shaft axis. In turn, this results in a displacement of the principal inertia axis from
the shaft axis in the bearing planes of the rotor, causing the balancing machine bear-
ings to vibrate.

To find the bearing displacement or bearing vibration amplitude resulting from a
given unbalance is more involved than finding the center-of-gravity displacement,
because other factors come into play, as is illustrated by Fig. 39.12.The weight and
inertia of the balancing machine bearings and directly attached vibratory compo-
nents are usually not known. In any case, they are usually small in relation to the
weight and the inertia of the rotor and can generally be ignored. On this basis, the
following formula may be used to find the approximate bearing displacement d:

d ≈ +

where d = displacement at bearing of principal inertia axis from shaft axis
r = distance from shaft axis to unbalance weight
h = distance from center-of-gravity to unbalance plane
s = distance from center-of-gravity to bearing plane
g = gravitational constant
Ix = moment of inertia around transverse axis X
Iz = moment of inertia around principal axis Z

wrhs
�
g(Ix − Iz)

wr
�
W
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FIGURE 39.12 Displacement of principal axis of inertia from shaft axis at bearing.

From the above it can be seen that the relationship between bearing motion and
unbalance in a soft-bearing balancing machine is complex. Therefore, a direct
indication of unbalance can be obtained only after calibrating the indicating ele-
ments to a given rotor by use of calibration weights which produce a known
amount of unbalance.

Hard-Bearing Balancing Machines. Hard-bearing balancing machines are
essentially of the same construction as soft-bearing balancing machines except
that their bearing supports are significantly stiffer in the horizontal direction.
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This results in a horizontal critical speed for the machine which is several orders of
magnitude greater than that for a comparable soft-bearing balancing machine. The
hard-bearing balancing machine is designed to operate at speeds well below its hor-
izontal critical speed. In this speed range, the output from the sensing elements
attached to the balancing-machine bearing supports is directly proportional to the
centrifugal force resulting from unbalance in the rotor. The output is not influenced
by bearing mass, rotor weight, or inertia, so that a permanent relation between
unbalance and sensing element output can be established. Unlike with soft-bearing
balancing machines, the use of calibration weights to calibrate the machine for a
given rotor is not required.

Measurement of Amount and Angle of Unbalance. Both soft- and hard-
bearing balancing machines use various types of sensing elements at the rotor-
bearing supports to convert mechanical vibration into an electrical signal. On
commercially available balancing machines, these sensing elements are usually
velocity-type pickups, although on certain hard-bearing balancing machines, magne-
tostrictive or piezoelectric pickups have also been employed.

Three basic methods are used to obtain a reference signal by which the phase
angle of the amount-of-unbalance indication signal may be correlated with the
rotor. On end-drive machines (where the rotor is driven via a universal joint driver
or similarly flexible coupling shaft), a phase reference generator, directly coupled to
the balancing machine drive spindle, is used. On belt-drive machines (where the
rotor is driven by a belt over the rotor periphery) or on air-drive or self-drive
machines, a small light source projects a narrowly focused beam onto the rotor (usu-
ally the shaft). Its reflection is picked up by a photoelectric cell. Placement of a non-
reflecting mark on the shaft surface will momentarily interrupt the reflection and
thereby furnish the starting point from which the angular position of unbalance in
the rotor is counted. (Stroboscopic lamps, flashing once per rotor revolution, are no
longer considered satisfactory for angle accuracy.) The outputs from the phase-
reference sensor and the pickups at the rotor bearing supports are processed in var-
ious ways by different manufacturers. Generally, the processed signals result in an
indication representing the amount of unbalance and its angular position. In Fig.
39.13 block diagrams are shown for typical balancing instrumentation. In Fig. 39.13A
an indicating system is shown which uses switching between correction planes (i.e.,
single-channel instrumentation). This is generally employed on low-cost balancing
machines. In Fig. 39.13B an indicating system with two-channel instrumentation is
shown. Combined indication of amount of unbalance and its angular position is pro-
vided on a vectormeter having an illuminated target projected on a screen.Two vec-
tormeters give a simultaneous indication for both unbalance correction planes.
Displacement of a target from the central zero point provides a direct visual repre-
sentation of the displacement of the principal inertia axis from the shaft axis. Con-
centric circles on the screen indicate the amount of unbalance, and radial lines
indicate its angular position. Current balancing machines use computerized instru-
mentation with video screens on which the amount and angle of unbalance are indi-
cated in digital format.

Indicated and Actual Angle of Unbalance. An unbalanced rotor is a rotor in
which the principal inertia axis does not coincide with the shaft axis. When rotated
in its bearings, an unbalanced rotor will cause periodic vibration of, and will exert a
periodic force on, the rotor bearings and their supporting structure. If the structure
is rigid, the force is larger than if the structure is flexible. In practice, supporting
structures are neither rigid nor flexible but somewhere in between. The rotor-
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FIGURE 39.13 Block diagrams of typical balancing-machine instrumentations. (A) Amount of unbalance
indicated on analog meters, angle by strobe light. (B) Combined amount and angle indication on vectormeters.
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bearing support offers some restraint, forming a spring-mass system with damping
having a single resonance frequency. When the rotor speed is below this frequency,
the principal inertia axis of the rotor moves outward radially. This condition is illus-
trated in Fig. 39.14. If a pencil or other marking device is moved toward the rotor
until it touches the rotor, the so-called “high spot” is marked at the same angular
position as the unbalance.When the rotor speed is increased, there is a small time lag
between the instant at which the unbalance passes the pencil and the instant at
which the rotor moves out enough to contact it.This is due to the damping in the sys-
tem. The angle between these two points is called the “angle of lag.” (See Fig.
39.14B.) As the rotor speed is increased further, resonance of the rotor and its sup-
porting structure will occur; at this speed the angle of lag is 90°. As the rotor passes
through resonance, there are large vibration amplitudes, and the angle of lag
changes rapidly. As the speed is increased to approximately twice the resonance
speed, the angle of lag approaches 180°.At speeds greater than approximately twice
the resonance speed, the rotor tends to rotate about its principal inertia axis; the
angle of lag (for all practical purposes) is 180°.

The changes in the relative position of pencil mark and unbalance shown in Fig.
39.14 for a statically unbalanced rotor occur in the same manner on a rotor with
dynamic unbalance. However, the center-of-gravity shown in the illustrations then
represents the position of the principal inertia axis in the plane at which the pencil is
applied to the rotor. Thus, the indicated angle of lag and displacement amplitude
refer only to that particular plane and generally differ from those for any other
plane in the rotor.

Angle of lag is shown as a function of rotational speed in Fig. 39.15: (A) for soft-
bearing balancing machines whose balancing-speed ranges start at approximately
twice the resonance speed; and (B) for hard-bearing balancing machines.The effects
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FIGURE 39.14 A pencil or marker is held against an unbalanced rotor. (A)
A high spot is marked. (B) The angle of lag. Angle of lag between unbalance
and high spot increases from 0° (A) to 180° (D) as rotor speed increases.

8434_Harris_39_b.qxd  09/20/2001  12:24 PM  Page 39.19



of damping also are illustrated. Here the resonance frequency of the combined
rotor-bearing support system is usually more than three times greater than the max-
imum balancing speed.

Plane Separation. Consider the rotor in Fig. 39.10 and assume that only the
unbalance weight on the left is attached to the rotor.This weight causes not only the
left bearing to vibrate but to a lesser degree the right. This influence is called “cross
effect.” If a second weight is attached in the right plane of the rotor as shown in Fig.
39.10, then the direct effect of the weight in the right plane combines with the cross
effect of the weight in the left plane, resulting in a composite vibration of the right
bearing. If the two unbalance weights are at the same angular position, the cross
effect of one weight has the same angular position as the direct effect in the other
rotor end plane; thus, their direct and cross effects are additive (Fig. 39.16A). If the
two unbalance weights are 180° out of phase, their direct and cross effects are sub-
tractive (Fig. 39.16B). In a hard-bearing balancing machine, the additive or subtrac-
tive effect depends entirely on ratios between the axial positions of the correction
planes and bearings. On a soft-bearing machine, this is not true, because the masses
and inertias of the rotor and its bearings must be taken into account.

If the two unbalance weights on the rotor (Fig. 39.10) have an angular relation-
ship other than 0 or 180°, then the cross effect in the right bearing has a different
phase angle from the direct effect from the right weight. Addition or subtraction of
these effects is vectorial. The net bearing vibration is equal to the resultant of the
two vectors, as shown in Fig. 39.17. The phase angle indicated by the bearing vibra-
tion does not coincide with the angular position of either weight. This is the most
common type of unbalance (dynamic unbalance of random amount and angular
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FIGURE 39.15 Phase angle (angle of lag) and displacement amplitude vs. rota-
tional speed in soft-bearing and hard-bearing balancing machines.
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FIGURE 39.16 Influence of cross effects in rotors with static and couple unbalance.

FIGURE 39.17 Influence of cross effects in rotors with dynamic unbalance. All vectors seen from right side of
rotor.
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position). This interaction of direct and
cross effects could cause the balancing
process to be a trial-and-error proce-
dure. To avoid this, balancing machines
incorporate a feature called “plane sep-
aration” which eliminates the influence
of cross effect.

Cross effect may be eliminated by
supporting the rotor in a cradle which
rests on a knife-edge and spring arrange-
ment, as shown in Fig. 39.18. Either the
bearing-support members of the cradle
or the pivot point are movable, so that
one unbalance correction plane always

can be brought into the plane of the knife-edge. Any unbalance in this plane is pre-
vented from causing the cradle to vibrate. Unbalance in one end plane of the rotor is
measured and corrected. The rotor is turned end for end, so that the knife-edge is in
the plane of the first correction.Any vibration of the cradle is now due solely to unbal-
ance present in the plane that was first over the knife-edge. Corrections are applied to
this plane until the cradle ceases to vibrate. The rotor is now in balance. If it is again
turned end for end, there will be no vibration. Mechanical plane separation cradles
restrict the rotor length, diameter, and location of correction planes; thus, modern
machines use electronic circuitry to accomplish the function of plane separation.

CLASSIFICATION OF CENTRIFUGAL BALANCING

MACHINES

Centrifugal balancing machines may be categorized by the type of unbalance the
machine is capable of indicating (static or dynamic), the attitude of the shaft axis of
the workpiece (vertical or horizontal), and the type of rotor-bearing-support system
employed (soft- or hard-bearing). The four classes (I to IV) included in Table 39.1
are described below.

Class I: Trial-and-Error Balancing Machines. Machines in this class are of the
soft-bearing type. They do not indicate unbalance directly in weight units (such as
ounces or grams in the actual correction planes) but indicate only displacement
and/or velocity of vibration at the bearings. The instrumentation does not indicate
the amount of weight which must be added or removed in each of the correction
planes. Balancing with this type of machine involves a lengthy trial-and-error proce-
dure for each rotor, even if it is one of an identical series. The unbalance indication
cannot be calibrated for specified correction planes because these machines do not
have the feature of plane separation. Field balancing equipment without a micro-
processor usually falls into this class.

Class II: Calibratable Balancing Machines Requiring a Balanced Prototype
Rotor. Machines in this class are of the soft-bearing type using instrumentation
which permits plane separation and calibration for a given rotor type, if a balanced
master or prototype rotor is available. However, the same trial-and-error procedure
as for class I machines is required for the first of a series of identical rotors.

Class III: Calibratable Balancing Machines Not Requiring a Balanced Proto-
type Rotor. Machines in this class are of the soft-bearing type using instrumentation
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FIGURE 39.18 Plane separation by mechani-
cal means.
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which includes an integral electronic
unbalance compensator. Any (unbal-
anced) rotor may be used in place of a
balanced master rotor. In turn, plane sep-
aration and calibration can be achieved
with the aid of precisely weighed calibra-
tion weights temporarily attached in each
of two correction planes of the first of a
series of rotors. This class includes soft-
bearing machines with electrically driven
shakers fitted to the vibratory part of
their rotor supports, and machines with
microprocessor instrumentation using
influence coefficients.

Class IV: Permanently Calibrated
Balancing Machines. Machines in this
class are of the hard-bearing type. They
are permanently calibrated by the manu-
facturer for all rotors falling within the
weight and speed range of a given

machine size. Unlike the machines in other classes, these machines indicate unbal-
ance in the first run without individual rotor calibration. This is accomplished by the
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TABLE 39.1 Classification of Balancing Machines

Principle Unbalance Attitude of Available
employed indicated shaft axis Type of machine Classes

Vertical Pendulum

Gravity Static
(nonrotating) (single-plane) Knife-edges

Horizontal
Roller sets

Soft-bearing
Not classified

Static
Vertical

Hard-bearing(single-plane)

Horizontal Not commercially
available

Centrifugal

Dynamic Vertical
Soft-bearing II, III

(rotating)

(two-plane);
also suitable

Hard-bearing III, IV

for static

Horizontal
Soft-bearing I, II, III

(single-plane)

Hard-bearing* IV

* When suitably equipped, these machines may also be used for balancing flexible rotors.

FIGURE 39.19 A permanently calibrated bal-
ancing machine, showing five rotor dimensions
used in computing unbalance. (See Class IV.)
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incorporation of an analog or digital computer into the instrumentation associated
with the machine.The following five rotor dimensions (see Fig. 39.19) are fed into the
computer: distance from left correction plane to left support; distance between cor-
rection planes; distance from right correction plane to right support; and radii r1 and
r2 of the correction weights in the left and right planes, respectively.The instrumenta-
tion then indicates the magnitude and angular position of the required correction
weight for each of the two selected planes.

The null-force balancing machine is in this class. Although no longer manufac-
tured, it is still used. It balances at the same speed as the natural frequency or reso-
nance of its suspension system (including the rotor).

BALANCING-MACHINE EVALUATION 4

To evaluate the suitability of a balancing machine for a given application, it is 
first necessary to establish a precise description of the required machine capacity
and performance. Such description often becomes the basis for a balancing-machine
purchase specification. It should contain details on the range of workpiece weight,
the diameter, length, journal diameter, and service speed, and whether the rotors are
rigid or flexible, their application, available line voltage, etc. Such information
enables the machine vendor to propose a suitable machine. Next, the vendor’s pro-
posal must be evaluated not only on compliance with the purchase specification but
also on the operation of the machine and its features. In describing the machine, the
vendor should conform with the applicable standards. Once the machine is pur-
chased and ready for shipment, compliance with the purchase specification and ven-
dor proposal should be verified. Depending on circumstances, such verification is
usually repeated after installation of the machine at the buyer’s facility.

Precise testing procedures vary for different fields of application. Table 39.2 lists
a number of standards for testing balancing machines used in the United States and
Canada.

UNBALANCE CORRECTION METHODS

Corrections for rotor unbalance are made either by the addition of weight to the
rotor or by the removal of material (and in some cases, by relocating the shaft axis).
The selected correction method should ensure that there is sufficient capacity to
allow correction of the maximum unbalance which may occur. The ideal correction
method permits reduction of the maximum initial unbalance to less than balance tol-
erance in a single correction step. However, this is often difficult to achieve.The more
common methods, described below, e.g., drilling, usually permit a reduction of 10:1 in
unbalance if carried out carefully. The addition of weight may achieve a reduction as
great as 20:1 or higher, provided the weight and its position are closely controlled. If
the method selected for reduction of maximum initial unbalance cannot be expected
to bring the rotor within the permissible residual unbalance in a single correction
step, a preliminary correction is made. Then a second correction method may be
selected to reduce the remaining unbalance to less than its permissible value.

UNBALANCE CORRECTION BY THE ADDITION 

OF WEIGHT TO THE ROTOR

1. The addition of wire solder. It is difficult to apply the solder so that its center-of-
gravity is at the desired correction location. Variations in diameter of the solder
wire introduce errors in correction.
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2. The addition of bolted or riveted washers. This method is used only where mod-
erate balance quality is required.

3. The addition of cast iron, lead, or lead weights. Such weights, in incremental
sizes, are often used to correct large initial unbalance.

4. The addition of welded weights. Resistance welding provides a means of attach-
ing large correction weights, although the total weight and center-of-gravity may
be changed somewhat due to the weld. Care must be taken to avoid distorting the
rotor with heat from the welding process.

UNBALANCE CORRECTION BY THE REMOVAL OF WEIGHT

1. Drilling. Material is removed from the rotor by a drill which penetrates the
rotor to a measured depth, thereby removing the intended weight of material
with a high degree of accuracy. A depth gage or limit switch can be provided on
the drill spindle to ensure that the hole is drilled to the desired depth. This is
probably the most effective method of unbalance correction.

2. Milling, shaping, or fly cutting. This method permits accurate removal of weight
when the rotor surfaces, from which the depth of cut is measured, are machined
surfaces and when means are provided for accurate measurement of the cut with
respect to those surfaces; used where relatively large corrections are required.

3. Grinding. In general, grinding is used as a trial-and-error method of correction.
It is difficult to evaluate the actual weight of the material which is removed. This
method is usually used only where the rotor design does not permit a more eco-
nomical type of correction.

BALANCING OF ROTATING MACHINERY 39.25

TABLE 39.2 Standards for Testing Balancing Machines

Application Title Issuer Document no.

General industrial Balancing Machines— International DIS 2953
balancing machines Description and Standards

Evaluation Organization (ISO)

Jet engine rotor Balancing Machines— Society of ARP 4048
balancing machines Evaluation, Horizontal, Automotive
(for two-plane Two-Plane, Hard-Bearing Engineers,
correction) Type for Gas Turbine Inc. (SAE)

Rotors

Jet engine rotor Balancing Machines— Society of ARP 4050
balancing machines Description and Automotive
(for single-plane Evaluation, Engineers,
correction) Vertical, Two-Plane, Inc. (SAE)

Hard-Bearing Type for
Gas Turbine Rotors

Gyroscope rotor Balancing Machine— Defense FSN 6635–
balancing machines Gyroscope Rotor General 450–2208

Supply Center, NT
Richmond, Va.

Field balancing Field Balancing Equip- International ISO 2371
equipment ment—Description Standards

and Evaluation Organization (ISO)
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MASS CENTERING

A procedure known as “mass centering” is used to reduce unbalance effects in
rotors. A rotor is mounted in a balanced cage or cradle which, in turn, is rotated in a
balancing machine. The rotor is adjusted radially with respect to the cage until the
unbalance indication is zero; this provides a means for bringing the principal inertia
axis of the rotor into essential coincidence with the shaft axis of the balanced cage.
Center drills (or other suitable tools guided along the axis of the cage) provide a
means of establishing an axis in the rotor about which it is in balance. The beneficial
effects of mass centering are reduced by any subsequent machining operations on
the rotor.

BALANCING OF ROTATING PARTS

MAINTENANCE AND PRODUCTION BALANCING MACHINES

Balancing machines of this type fall into three general categories: (1) universal bal-
ancing machines, (2) semiautomatic balancing machines, and (3) fully automatic bal-
ancing machines with automatic transfer of work. Each of these has been made in
both the nonrotating and rotating types.The rotating type of balancer is available for
rotors in which corrections for balance are required in either one or two planes.

Universal balancing machines are adaptable for balancing a considerable variety
of sizes and types of rotors.These machines commonly have a capacity for balancing
rotors whose weight varies as much as 100 to 1 from maximum to minimum.The ele-
ments of these machines are adapted easily to new sizes and types of rotors. The
amount and location of unbalance are observed on indicating instruments of various
types by the machine operator as the machine performs its measuring functions.This
category of machine is suitable for maintenance or job-shop balancing as well as for
many small and medium lot-size production applications.

Semiautomatic balancing machines are of many types. They vary from an almost
universal machine to an almost fully automatic machine. Machines in this category
may perform automatically any one or all of the following functions in sequence or
simultaneously: (1) retain the amount of unbalance indication for further reference,
(2) retain the angular location of unbalance indication for further reference, (3)
measure and store the amount and position of unbalance, (4) couple the balancing-
machine driver to the rotor, (5) initiate and stop rotation, (6) set the depth of a cor-
rection tool from the indication of amount of unbalance, (7) index the rotor to a
desired position from the indication of the unbalance location, (8) apply correction
of the proper magnitude at the indicated location, (9) inspect the residual unbalance
after correction, and (10) uncouple the balancing-machine driver. Thus, the most
fully equipped semiautomatic balancing machine performs the complete balancing
process and leaves only loading, unloading, and cycle initiation to the operator.
Other semiautomatic balancing machines provide only means for retention of meas-
urements to reduce operator fatigue and error. The equipment which is economi-
cally feasible on a semiautomatic balancing machine may be determined only from
a study of the rotor to be balanced and the production requirements.

Fully automatic balancing machines with automatic transfer of the rotor are also
available. These machines may be either single- or multiple-station machines. In
either case, the parts to be balanced are brought to the balancing machine by con-
veyor, and balanced parts are taken away from the balancing machine by conveyor.
All the steps of the balancing process and the required handling of the rotor are per-
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formed without an operator. These machines also may include means for inspecting
the residual unbalance as well as monitoring means to ensure that the balance
inspection operation is performed satisfactorily.

In single-station automatic balancing machines all functions of the balancing
process (unbalance measurement, location, and correction) as well as inspection of
the complete process are performed in a single check at a single station. In a multi-
ple-station machine, the individual steps of the balancing process may be done at
individual stations. Automatic transfer is provided between stations at which the
amount and location of unbalance are determined; then the correction for unbal-
ance is applied; finally, the rotor is inspected for residual unbalance. Such machines
generally have shorter cycle times than single-station machines.

FIELD BALANCING EQUIPMENT

Many types of vibration indicators and measuring devices are available for field bal-
ancing operations.Although these devices are sometimes called “portable balancing
machines,” they never provide direct means for measuring the amount and location
of the correction required to eliminate the vibration produced by the rotor at its sup-
porting bearings. It is intended that these devices be used in the field to reduce or
eliminate vibration produced by the rotating elements of a machine under service
conditions. Basically, such a device consists of a combination of a transducer and an
indicator unit which provides an indication proportional to the vibration magnitude.
The vibration magnitude may be indicated in terms of displacement, velocity, or
acceleration, depending on the type of transducer and readout system used. The
transducer can be hand-held by an operator against the housing of the rotating
equipment, clamped to it, or mounted with a magnetic welder. A transducer thus
held against the vibrating machine is presumed to produce an output proportional
to the vibration of the machine. At frequencies below approximately 15 Hz, it is
almost impossible to hold the transducer sufficiently still to give stable readings. Fre-
quently, the results obtained depend upon the technique of the operator; this can be
shown by obtaining measurements of vibration magnitude on a machine with the
transducer held with varying degrees of firmness. The principles of vibration meas-
urement are discussed more thoroughly in Chaps. 12, 13, 15, and 16.

A transducer responds to all vibration to which it is subjected, within the useful
frequency range of the transducer and associated instruments. The vibration
detected on a machine may come through the floor from adjacent machines, may be
caused by reciprocating forces or other forces inherent in normal operation of the
machine, or may be due to wear and tear in various machine components. Location
of the transducer on the axis of angular vibration of the machine can eliminate the
effect of a reciprocating torque; however, a simple vibration indicator cannot dis-
criminate between the other vibrations unless the magnitude at one frequency is
considerably greater than the magnitude at other frequencies. For balancing, the
magnitude may be indicated in units of displacement, velocity, or acceleration.

Velocity and acceleration are functions of frequency as well as amplitude; there-
fore, suitable integrating devices must be introduced between the transducer and the
meter.A suitable filter following the output of an electromechanical transducer may
be introduced to attenuate frequencies other than the wanted frequency.

The approximate location of the unbalance may be determined by measuring
the phase of the vibration. Phase of vibration may be measured by a stroboscopic
lamp flashed each time the output of an electrical transducer changes polarity in a
given direction. Phase also may be determined by use of a phase meter, wattmeter,
or photocell.
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BALANCING OF ASSEMBLED MACHINES

The balancing of rotors assembled of two or more individually balanced parts and
the balancing of rotors in complete machines are done frequently to obtain maxi-
mum reduction in vibration due to unbalance. In many cases the complete machine
is run under service conditions during the balancing procedure.

Assembly balance often is made necessary by conditions dictated by machining
operations and assembly procedures. For example, a balanced flywheel mounted on
a balanced crankshaft may not produce a balanced assembly.When pistons and con-
necting rods are added to the above assembly, more unbalance is introduced. Such
resultant unbalance effects can sometimes only be reduced by balancing the engine
in assembly. The probable variation of unbalance in an assembly of balanced com-
ponents is best determined by statistical methods.

Assemblies such as gyros, superchargers, and jet engines often run on antifriction
bearings. The inner races of these bearings may not have perfectly concentric inside
and outside surfaces.The eccentricity of the bearing races makes assembly balancing
on the actual bearings desirable. In many cases such balancing is done with the sta-
tor supporting the antifriction bearings. This ensures that balance is achieved with
the bearing race exactly in the position of final assembly. Precise bearing alignment
and preload may also become very important to reach very small balance tolerances.

PRACTICAL CONSIDERATIONS IN TOOLING A

BALANCING MACHINE

SUPPORT OF THE ROTOR

The first consideration in tooling a balancing machine is the means for supporting
the rotor.Various means are available, such as twin rollers, plain bearings, rolling ele-
ment bearings (including slave bearings), gas bearings, nylon V-blocks, etc.The most
frequently used and easiest to adapt are twin rollers. A rotor should generally be
supported at its journals to assure that balancing is carried out around the same axis
on which it rotates in service.

Rotors which are normally supported at more than two journals may be balanced
satisfactorily on only two journals provided that

1. All journal surfaces are concentric with respect to the axis determined by the two
journals used for support in the balancing machine.

2. The rotor is rigid at the balancing speed when supported on only two bearings.
3. The rotor has equal stiffness in all radial planes when supported on only two jour-

nals.

If the other journal surfaces are not concentric with respect to the axis deter-
mined by the two supporting journals, the shaft should be straightened. If the rotor
is not a rigid body or if it has unequal stiffness in different radial planes, the rotor
should be supported in a (nonrotating) cradle at all journals during the balancing
operation.This cradle should supply the stiffness usually supplied to the rotor by the
machine in which it is used.The cradle should have minimum weight when used with
a soft-bearing machine to permit maximum balancing sensitivity.

Rotors with stringent requirements for minimum residual unbalance and which
run in antifriction bearings should be balanced in the antifriction bearings which will
ultimately support the rotor. Such rotors should be balanced either (1) in special
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machines where the antifriction bearings are aligned and the outer races held in
half-shoe-type bearing supports, rigidly connected by tie bars, or (2) in standard
machines having supports equipped with V-roller carriages.

Frequently, practical considerations make it necessary to remove antifriction
bearings after balancing, to permit final assembly. If this cannot be avoided, the
bearings should be match-marked to the rotor and returned to the location used
while balancing.Antifriction bearings with considerable radial play or bearings with
a quality less than ABEC (Annular Bearing Engineers Committee) Standard grade
3 tend to cause erratic indications of the balancing machine. In some cases the outer
race can be clamped tightly enough to remove excessive radial play. Only indifferent
balancing can be done when rotors are supported on bearings of a grade lower than
ABEC 3.

When maintenance requires antifriction bearings to be changed occasionally on
a rotor, it is best to balance the rotor on the journal on which the inner race of the
antifriction bearings fits. The unbalance introduced by axis shift due to eccentricity
of the inner race of the bearing then can be minimized by use of high-quality bear-
ings to ensure minimum eccentricity.

BALANCING SPEED

The second consideration in tooling a balancing machine for a specific rotor is the
balancing speed. For rigid rotors the balancing speed should be the lowest speed at
which the balancing machine has the required sensitivity. Low speeds reduce the
time for acceleration and deceleration of the rotor. If the rotor distorts nonsymmet-
rically at service speed, the balancing speed should be the same as the service speed.
Rotors in which aerodynamic unbalance is present may require balancing under
service conditions. Some machines show the effect of unbalance produced by vary-
ing electrical fields caused by changes in air gap and the like. Such disturbance can
be reduced by balancing (at service speed) only if the disturbing frequency is identi-
cal to the service speed.

DRIVE FOR ROTOR

A final consideration in tooling a balancing machine for a specific rotor is the means
for driving the rotor. For balancing rotors which do not have journals, the balancing
machine may incorporate in its spindle the necessary journals, as is the case on ver-
tical balancing machines; alternatively, an arbor may be used to provide the journal
surfaces. An adapter must be provided to adapt the shaftless rotor to the balancing-
machine spindle or arbor. This adapter should provide the following:

1. Rotor locating surfaces which are concentric and square with the spindle or arbor
axis.

2. Locating surfaces which hold the rotor in the manner in which it is held in final
assembly.

3. Locating surfaces which adjust the fit tolerance of the rotor to suit final assembly
conditions.

4. A connection between driving elements and rotor to ensure that a fixed angular
relation is maintained between them.

5. Means for correcting unbalance in the adapter itself.
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If the rotor to be tooled has its own journals, it may be driven through: (1) a uni-
versal joint or flexible coupling drive from one end of the rotor, (2) a belt over the
periphery of the rotor, or over a pulley attached to the rotor, or (3) air jets or other
power means by which the rotor is normally driven in the final machine assembly.

The choice of universal joint or flexible coupling drive attached to one end of the
rotor can affect the residual unbalance substantially. Careful attention must be given
to the surfaces on the rotor to which the coupling is attached to ensure that the rotor
journal axis and coupling are concentric (for example, within 0.001 in. total indicator
reading) when all fit tolerances and eccentricities have been considered. The weight
of that part of the balancing machine drive which is supported by the rotor during
the balancing operation, expressed in ounces (and in this example multiplied by one-
half of the total indicator reading, or 0.0005 in.) must be considerably less than the
permissible residual unbalance in ounce-inches.Adjustable means must be provided
in the coupling drive of the balancing machine to apply corrections for balancing the
coupling. The adjustments may have to be effective in each of the correction planes
of the rotor in an amount equal to at least twice the permissible residual unbalance.
For convenience, the coupling should be designed for easy attachment to the rotor
and so that it can be indexed on the rotor shaft by 180° for a balance check (called
index balancing). Furthermore, the coupling must locate from surfaces of the rotor
which are concentric with the journal axis because an accumulation of fit tolerances
and eccentricities introduces an error in the result.

A belt drive can transmit only limited torque to the rotor. Driving belts must be
extremely flexible and of uniform thickness. Driving pulleys attached to the rotor
should be used only when it is impossible to transmit sufficient driving torque by
running the belt over the rotor. Pulleys must be as light as possible, must be dynam-
ically balanced, and should be mounted on surfaces of the rotor which are square
and concentric with the journal axis. The belt drive should not cause disturbances in
the unbalance indication exceeding one-quarter of the permissible residual unbal-
ance. Rotors driven by belt should not drive components of the balancing machine
(e.g., angle indicating devices) by means of any mechanical connection.

The use of electrical means or air for driving rotors may influence the unbalance
readout. To avoid or minimize such influence, great care should be taken to bring in
the power supply through very flexible leads, or have the airstream strike the rotor,
at right angles to the direction of the vibration measurement.

If the balancing machine incorporates filters tuned to a specific frequency only, it
is essential that means be available to control the rotor speed to suit the filter setting.

BALANCE CRITERIA

Achieving close balance tolerances in rotors requires careful analysis of all factors
that may introduce balance errors; therefore, it is often difficult for an engineer nor-
mally conversant with balancing methods and techniques to decide which particular
balancing method to employ, the rotational speed for balancing to be used, and at
what particular point in a production line the balancing procedure should be
inserted.The appropriate choice of a balance criterion is likely to be an even greater
problem.

A suitable criterion of the quality of balancing required would appear to be the
running smoothness of the complete assembly; however, many other factors than
unbalance contribute to uneven running of machines (for example, bearing dissym-
metries, runouts, misalignment, aerodynamic and hydrodynamic effects, etc.). In
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addition, there is no simple relation between rotor unbalance and vibration ampli-
tude measured on the bearing housing. Many factors, such as proximity of resonant
frequencies, fits, machining errors, bearing and process-related vibration, environ-
mental vibration, etc. may influence overall vibration levels considerably. There-
fore, a measurement of the vibration amplitude will not indicate directly the
magnitude of unbalance or whether an improved state of unbalance will cause the
machine to run smoother. For certain classes of machines, particularly electric
motors and large turbines and generators, voluminous data have been collected
which can be used as a guide for the establishment of vibration criteria for such
installations.

Table 39.3 and Fig. 39.20 show a classification system for various types of repre-
sentative rotors, based on a document—ISO Standard 1940-1986. Balance quality
grades are grouped according to numbers with the prefix G; the vertical scales in Fig.
39.20 indicate the maximum permissible residual unbalance per unit of rotor weight
(at various maximum service speeds shown on the bottom scale) expressed in
English and SI units. The residual unbalance is equivalent to a displacement of the
center-of-gravity.The recommended balance quality grades are based on experience
with various rotor types, sizes, and service speeds; they apply only to rotors which are
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TABLE 39.3 Balance Quality Grades for Various Groups of Rigid Rotors5

Balance quality
grade Type of rotor

G4,000 Crankshaft drives of rigidly mounted slow marine diesel engines with 
uneven number of cylinders.

G1,600 Crankshaft drives of rigidly mounted large two-cycle engines.

G630 Crankshaft drives of rigidly mounted large four-cycle engines; crankshaft
drives of elastically mounted marine diesel engines.

G250 Crankshaft drives of rigidly mounted fast four-cylinder diesel engines.

G100 Crankshaft drives of fast diesel engines with six or more cylinders; com-
plete engines (gasoline or diesel) for cars and trucks.

G40 Car wheels, wheel rims, wheel sets, drive shafts; crankshaft drives of elas-
tically mounted fast four-cycle engines (gasoline or diesel) with six or 
more cylinders; crankshaft drives for engines of cars and trucks.

G16 Parts of agricultural machinery; individual components of engines (gaso-
line or diesel) for cars and trucks.

G6.3 Parts or process plant machines; marine main-turbine gears; centrifuge 
drums; fans; assembled aircraft gas-turbine rotors; fly wheels; pump 
impellers; machine-tool and general machinery parts; electrical arma-
tures, paper machine rolls.

G2.5 Gas and steam turbines; rigid turbo-generator rotors; rotors; turbo-
compressors; machine-tool drives; small electrical armatures; turbine-
driven pumps.

G1 Tape recorder and phonograph drives; grinding-machine drives.

G0.4 Spindles, disks, and armatures of precision grinders; gyroscopes.

Note: In general, for rigid rotors with two correction planes, one-half the recommended residual unbal-
ance is to be taken for each plane; these values apply usually for any two arbitrarily chosen planes, but the
state of unbalance may be improved upon at the bearings; for disc-shaped rotors, the full recommended
value holds for one plane. For repair work, it is often recommended to balance to the next, lower grade.
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rigid throughout their entire range of service speeds. Balance criteria for flexible
rotors are discussed in ISO 11342.

DEFINITIONS 6

Amount of Unbalance. The quantitative measure of unbalance in a rotor
(referred to a plane) without referring to its angular position; obtained by taking the
product of the unbalance mass and the distance of its center of gravity from the shaft
axis. Units of unbalance are usually ounce-inches, gram-inches, or gram-millimeters.

Angle of Unbalance. Given a polar coordinate system fixed in a plane perpen-
dicular to the shaft axis and rotating with the rotor, the polar angle at which an
unbalance mass is located with reference to the given coordinate system.

39.32 CHAPTER THIRTY-NINE, PART I

FIGURE 39.20 Residual unbalance corresponding to various balancing
quality grades, G. Notes: (1) 1 gram⋅mm/kg is equivalent to a displacement of
the center-of-gravity of 0.001 mm = 40 µin. (2) lb⋅in./lb or oz⋅in./oz is equiva-
lent to a displacement of the center-of-gravity in inches.
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Balance Quality Grade. For rigid rotors, the product, in millimeters per sec-
ond, of the specific unbalance and the maximum service angular velocity of the
rotor, in radians per second.

Balancing. A procedure by which the mass distribution of a rotor is checked
and, if necessary, adjusted to ensure that the residual unbalance or vibration of the
journals and/or forces on the bearings at a frequency corresponding to service speed
are within specified limits.

Balancing Machine. A machine that provides a measure of the unbalance in a
rotor which can be used for adjusting the mass distribution of that rotor mounted on
it so that once-per-revolution vibratory motion of the journals or forces on the bear-
ings can be reduced if necessary.

Bearing Support. The part, or series of parts, that transmits the load from the
bearing to the main body of the structure.

Center-of-Gravity (Mass Center). The point in a body through which passes
the resultant of the weights of its component particles for all orientations of the
body with respect to a uniform gravitational field.

Correction Plane Interference (Cross Effect). The change of balancing-
machine indication at one correction plane of a given rotor which is observed for a
certain change of unbalance in the other correction plane.

Correction Plane Interference Ratios. The interference ratios (IAB, IBA) of two
correction planes A and B of a given rotor are defined by the following relation-
ships:

IAB =

where UAB and UBB are the unbalances referring to planes A and B, respectively,
caused by the addition of a specified amount of unbalance in plane B; and

IBA =

where UBA and UAA are the unbalances referring to planes B and A, respectively,
caused by the addition of a specified amount of unbalance in plane A.

Critical Speed. A characteristic speed at which resonances of a system are
excited. (The significant effect at critical speed may be motion of the journals or
flexure of the rotor—depending on the relative magnitudes of the bearing stiff-
nesses.)

Couple Unbalance. That condition of unbalance for which the central principal
axis intersects the shaft axis at the center of gravity.

Dynamic (Two-Plane) Balancing Machine. A centrifugal balancing machine
that furnishes information for performing two-plane balancing.

Dynamic Unbalance. The condition in which the central principal axis neither
is parallel to nor intersects the shaft axis.

Field Balancing Equipment. An assembly of measuring instruments for pro-
viding information for performing balancing operations on assembled machinery
which is not mounted in a balancing machine.

Flexible Rotor. A rotor not satisfying the definition of a rigid rotor.
Flexural Critical Speed. A speed of a rotor at which there is maximum bend-

ing of the rotor and at which flexure of the rotor is more significant than the motion
of the journals.

Flexural Principal Mode. For undamped rotor–bearing systems, that mode
shape which the rotor takes up at one of the (rotor) flexural critical speeds.

UBA�
UAA

UAB�
UBB
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High-speed Balancing (Relating to Flexible Rotors). A procedure of balanc-
ing at speeds where the rotor to be balanced cannot be considered rigid.

Initial Unbalance. Unbalance of any kind that exists in the rotor before bal-
ancing.

Journal Axis. The straight line joining the centroids of cross-sectional contours
of a journal.

Low-speed Balancing (Relating to Flexible Rotors). A procedure of balanc-
ing at a speed where the rotor to be balanced can be considered rigid.

Minimum Achievable Residual Unbalance. The smallest value of residual
unbalance that a balancing machine is capable of achieving.

Modal Balancing. A procedure for balancing flexible rotors in which unbal-
ance corrections are made to reduce the amplitude of vibration in the separate sig-
nificant principal flexural modes to within specified limits.

Multiplane Balancing. As applied to the balancing of flexible rotors, any bal-
ancing procedure that requires unbalance correction in more than two correction
planes.

Perfectly Balanced Rotors. An ideal rotor which has zero unbalance.
Permanent Calibration. That feature of a hard-bearing balancing machine

which permits it to be calibrated once and for all, so that it remains calibrated for
any rotor within the capacity and speed range of the machine.

Plane Separation. Of a balancing machine, the operation of reducing the 
correction-plane interference ratio for a particular rotor.

Principal Inertia Axis. In balancing, the term used to designate the central
principal axis (of the three such axes) most nearly coincident with the shaft axis of
the rotor; sometimes referred to as the balance axis or the mass axis.

Residual Unbalance. Unbalance of any kind that remains after balancing.
Rigid Rotor. A rotor is considered rigid when its unbalance can be corrected in

any two (arbitrarily selected) planes and, after the correction, its unbalance does not
significantly change (relative to the shaft axis) at any speed up to maximum service
speed and when running under conditions which approximate closely those of the
final supporting system.

Rotor. A body capable of rotation, generally with journals which are supported
by bearings.

Shaft Axis. The straight line joining the journal centers.
Single-plane (Static) Balancing Machine. A gravitational or centrifugal bal-

ancing machine that provides information for accomplishing single-plane balancing.
Static Unbalance. That condition of unbalance for which the central principal

axis is displaced only parallel to the shaft axis.
Unbalance. That condition which exists in a rotor when vibratory force or

motion is imparted to its bearings as a result of centrifugal forces.
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CHAPTER 39, PART II
SHAFT MISALIGNMENT OF

ROTATING MACHINERY

John Piotrowski

INTRODUCTION

Shaft misalignment is said to occur when the centerlines of rotation of two
machine shafts are supposed to be collinear but are not in line with each other.
Thus, misalignment is the deviation of relative shaft position from a collinear axis
of rotation (measured at the points of power transmission) when machinery is run-
ning at normal operating conditions. For example, consider a motor shaft which is
connected to a pump shaft, with centerlines that are not collinear. Such shaft mis-
alignment may result in excessive vibration, although there is not a direct rela-
tionship between the magnitude of vibration and shaft misalignment. (In some
cases, a slight amount of misalignment may actually reduce the magnitude of
vibration.) In addition, shaft misalignment may be the cause of any or a combina-
tion of the following conditions:

� Shaft failure resulting from cyclic fatigue
� Cracking of the shafts at, or close to, the coupling hubs or bearings
� Increased wear of the bearings, seals, or coupling, leading to premature failure
� Loose foundation bolts
� Loose or broken coupling bolts
� A coupling that runs hot
� High temperature of the casing or of the oil discharge near the bearings
� Excessive grease or oil on the inside of the coupling guard
� Excessive power consumption by the rotating equipment

The objective of shaft alignment is to reduce these detrimental effects and thereby
extend the operating life span of the rotating machinery.

This part of this chapter describes the types of misalignment, describes the use of
spectrum analysis of vibration as an aid in identifying shaft misalignment, provides a
“tolerance guide” as a rough indication as to whether alignment is necessary in cou-
pled rotating machinery, and outlines the basic steps that should be taken in aligning
rotating machinery.
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TYPES OF SHAFT MISALIGNMENT

Figure 39.21A shows a motor used to drive a pump.A hub is shown at the end of each
shaft.The coupling between the two shafts, which connects the two hubs under normal
operating conditions, has been removed. Figure 39.21B shows a detail of the driving
shaft (on the left) and the driven shaft (on the right); the angle between the centerlines
of the two misaligned shafts is represented as φ.The distance between points of power
transmission is shown in Fig. 39.21C. Under operating conditions there will be a dis-
tortion of the shafts when the loads are transferred from one shaft to the other.

Two types of shaft misalignment are illustrated in Fig. 39.22: (1) angular mis-
alignment, where the driving shaft and the driven shaft are in the same plane but at
an angle φ with respect to each other, and (2) parallel misalignment, where the driv-
ing shaft and the driven shaft are parallel to each other, but offset. Conditions of
pure angular misalignment (Fig. 39.22A) or pure parallel misalignment (Fig. 39.22B)
are rare. Instead, the usual condition is combined misalignment (Fig. 39.22C), a com-
bination of parallel and angular misalignment.

If the misalignment between the driving and driven shafts is slight, a flexible cou-
pling between the shafts will accommodate it. The greater the misalignment, the
greater will be the flexing of the flexible elements in the coupling.

USE OF SPECTRUM ANALYSIS IN STUDYING

SHAFT MISALIGNMENT

Spectrum analysis of vibration of rotating machinery often can be useful in 
detecting faults such as shaft misalignment. This technique is described in Chap.
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FIGURE 39.21 An illustration of shaft misalignment. (A) A
motor (on the left) used to drive a pump (on the right); there is a
hub at the end of each shaft. (B) A detail showing the centerlines
of rotation of the drive shaft and the driven shaft; φ is the angle of
misalignment. (C) The distance between points of power trans-
mission.
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16, which includes discussions of the
parameter to be measured (displace-
ment, velocity, or acceleration), suitable
vibration pickups to be mounted on the
rotating machinery, suitable locations
for the transducers, the selection of an
appropriate spectrum analyzer, deter-
mination of appropriate analyzer band-
width for fault detection in rotating
machinery, and spectrum interpretation
and fault diagnosis. For example, the
Trouble-Shooting Chart of Table 16.1
indicates that the dominant frequency
in the spectrum of misaligned rotating
machinery is often 1 or 2 times the rpm,
and sometimes 3 or 4 times the rpm.
Chapter 16 also points out that in inter-
preting a vibration spectrum, it is often
difficult to separate faults caused by
misalignment, unbalance, bent shaft,
eccentricity, and cracks in a rotating
shaft; this is because these various
faults may be mechanically related. The
results of vibration spectrum analysis
of misaligned rotating machinery show,
for example, that the spectra are differ-
ent for (1) different types of couplings
and (2) different types of bearings
which support the machinery shafts.

TOLERANCE GUIDE FOR FLEXIBLY COUPLED

ROTATING MACHINERY

Whether a measured value of shaft misalignment in flexibly coupled machinery is
acceptable or not depends not only on the magnitude of the misalignment but on the
rotational speed of the shaft, among other factors. A rough guide as to how much
misalignment is acceptable is given in Fig. 39.23. This illustration may be used to
determine, approximately, whether or not shaft realignment is required under most
circumstances. The vertical axis represents the amount of misalignment relative to
the distance between points of power transmission (left scale); this value may also be
expressed as the angle φ (see Fig. 39.21C), which is shown on the right vertical axis.

BASIC STEPS IN SHAFT ALIGNMENT

Before starting the shaft alignment, obtain relevant information on the equipment
being aligned, ensure that all possible safety precautions have been taken, perform
preliminary checks such as inspecting the coupling (between the driver shaft and the
driven shaft) for damage or worn components, find and correct any problems with
the foundation or baseplate, perform bearing clearance or looseness checks, meas-
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FIGURE 39.22 Types of shaft misalignment:
(A) angular misalignment, (B) parallel misalign-
ment, and (C) the most common combination of
parallel and angular misalignment.

(A)

(B)

(C)
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ure shaft and/or coupling runout, eliminate excessive stresses caused by piping or
conduit connected to the machine, and find and correct any poor surface contact
between the underside of the machine feet and the baseplate or frame. Then con-
tinue as follows1:

1. Check to ensure that all foot bolts are tight.
2. Remove the coupling between the shafts (although removal is not always

required, it is advisable), then measure the maximum offsets of the shafts to an
accuracy of ±0.001 in. (0.025 mm) in the horizontal and vertical planes.Appropri-
ate devices for making such measurements include a dial indicator (a gage or
meter having a circular face which is calibrated to give readings of displacement),
a laser shaft-alignment system, a proximity probe such as a capacitance-type
transducer (Chap. 12), an angular or linear resolver/encoder, or a charge-coupled
device.

3. Using Fig. 39.23, determine if realignment is necessary.
4. If the machinery is not within adequate alignment tolerance and realignment is

required, determine the current positions of the centerlines of rotation of the
machinery components.

5. Determine which way, and by how much, the machinery components must be
moved in order to reduce the misalignment to an acceptable value.

6. Observe any movement restrictions imposed on the machines or control points.
For example, if a lateral movement greater than that permitted on the baseplate
may be required, it may be necessary to move both machines to achieve the align-
ment goal.
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FIGURE 39.23 A shaft alignment tolerance guide for flexibly coupled
equipment indicating, approximately, whether or not realignment is
required under most circumstances. The vertical axis represents the
amount of misalignment relative to the distance between points of power
transmission (left scale); this value may also be expressed as the angle φ
(see Fig. 39.21C) (right scale). Tolerance guidelines are plotted as a func-
tion of misalignment and shaft speed.
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7. Reposition the machine to be moved (or both machines) in the vertical, lateral,
and axial directions. Check the new positions to ensure that the alignment is
within the tolerance guidelines.

8. Install the coupling between the driving and driven shafts, and then turn on the
rotating machinery.

9. With the equipment operating as aligned, check and record the magnitudes of
vibration, bearing and coupling temperatures, bearing loads, and other pertinent
operating parameters; these data will be useful the next time an alignment is car-
ried out.
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CHAPTER 40
MACHINE-TOOL VIBRATION

E. I. Rivin

INTRODUCTION

Machining and measuring operations are invariably accompanied by relative vibra-
tion between workpiece and tool.These vibrations are due to one or more of the fol-
lowing causes: (1) inhomogeneities in the workpiece material; (2) variation of chip
cross section; (3) disturbances in the workpiece or tool drives; (4) dynamic loads
generated by acceleration/deceleration of massive moving components; (5) vibra-
tion transmitted from the environment; (6) self-excited vibration generated by the
cutting process or by friction (machine-tool chatter).

The tolerable level of relative vibration between tool and workpiece, i.e., the
maximum amplitude and to some extent the frequency, is determined by the
required surface finish and machining accuracy as well as by detrimental effects of
the vibration on tool life (see The Effect of Vibration on Tool Life) and by the noise
which is frequently generated.

This chapter discusses the sources of vibration excitation in machine tools,
machine-tool chatter (i.e., self-excited vibration which is induced and maintained by
forces generated by the cutting process), and methods of control of machine-tool
vibration.

SOURCES OF VIBRATION EXCITATION

VIBRATION DUE TO INHOMOGENEITIES IN THE WORKPIECE

Hard spots or a crust in the material being machined impart small shocks to the tool
and workpiece, as a result of which free vibrations are set up. If these transients are
rapidly damped out, their effect is usually not serious; they simply form part of the
general “background noise” encountered in making vibration measurements on
machine tools. Cases in which transient disturbances do not decay but build up to
vibrations of large amplitudes (as a result of dynamic instability) are of great practi-
cal importance, and are discussed later.

When machining is done under conditions resulting in discontinuous chip
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removal, the segmentation of chip elements results in a fluctuation of the cutting
thrust. If the frequency of these fluctuations coincides with one of the natural fre-
quencies of the structure, forced vibration of appreciable amplitude may be excited.
However, in single-edge cutting operations (e.g., turning), it is not clear whether the
segmentation of the chip is a primary effect or whether it is produced by other vibra-
tion, without which continuous chip flow would be encountered.

The breaking away of a built-up edge from the tool face also imparts impulses to
the cutting tool which result in vibration. However, marks left by the built-up edge
on the machined surface are far more pronounced than those caused by the ensuing
vibration; it is probably for this reason that the built-up edge has not been studied
from the vibration point of view. The built-up edge frequently accompanies certain
types of vibration (chatter), and instances have been known when it disappeared as
soon as the vibration was eliminated.

VIBRATION DUE TO CROSS-SECTIONAL VARIATION 

OF REMOVED MATERIAL

Variation in the cross-sectional area of the removed material may be due to the
shape of the machined surface (e.g., in turning of a nonround or slotted part) or to
the configuration of the tool (e.g., in milling and broaching when cutting tools have
multiple cutting edges). In both cases, pulses of appreciable magnitude may be
imparted to the tool and to the workpiece, which may lead to undesirable vibration.
The pulses have relatively shallow fronts for turning of nonround or eccentric parts,
and steep fronts for turning of slotted parts and for milling/broaching. These pulses
excite transient vibrations of the frame and of the drive whose intensity depends on
the pulse shape and the ratio between the pulse duration and the natural periods of
the frame and the drive (Chap. 8). If the vibrations are decaying before the next
pulse occurs, they can still have a detrimental effect on tool life and leave marks on
the machined surface. In cylindrical grinding and turning, when a workpiece which
contains a slot is machined, visible marks frequently are observed near the “leaving
edge” of the slot or keyway. These are due to a “bouncing” of the grinding wheel or
the cutting tool on the machined surface. They may be eliminated or minimized by
closing the recess with a plug or with a filler.

When the transients do not significantly decay between the pulses, dangerous res-
onance vibrations of the frame and/or the drive can develop with the fundamental
and higher harmonics of the pulse sequence. The danger of the resonance increases
with higher cutting speeds.

Simultaneous engagement of several cutting edges with the workpiece results in an
increasing dc component of the cutting force and effective reduction of the pulse
intensity,1 while runout of a multiedge cutter and inaccurate setup of the cutting edges
enrich the spectral content of the cutting force and enhance the danger of resonance.
Computational synthesis of the resulting cutting force is reasonably accurate.

DISTURBANCES IN THE WORKPIECE AND TOOL DRIVES

Forced vibrations result from rotating unbalanced masses; gear, belt, and chain
drives; bearing irregularities; unbalanced electromagnetic forces in electric motors;
pressure oscillations in hydraulic drives; etc.

Vibration Caused by Rotating Unbalanced Members. Forced vibration in-
duced by rotation of some unbalanced member may affect both surface finish and
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tool life, especially when its rotational speed falls near one of the natural frequencies
of the machine-tool structure. This vibration can be eliminated by careful balancing,
the procedure being basically similar to that described in Chap. 39-I, or by self-
centering due to resilient mounting of bearings.2,3

When a new machine is designed, a great deal of trouble can be forestalled by
placing rotating components in a position in which the detrimental effect of their
unbalance is likely to be relatively small. Motors should not be placed on the top of
slender columns, and the plane of their unbalance should preferably be parallel to
the plane of cutting. In some cases, vibration resulting from rotating unbalanced
members can be eliminated by mounting them using vibration-isolation techniques
(Chaps. 30 and 32).

Grinding and boring are most sensitive to vibration because of the high surface
finish resulting from the operations. In cylindrical grinding, marks resulting from
unbalance of the grinding wheel or of some other component are readily recogniza-
ble. They appear in the form of equally spaced, continuous spirals with a constant
slope, as shown in Fig. 40.1A. From these marks, the machine component responsi-

ble for their existence is found by consider-
ing that its speed in rpm must be equal to
πDn/a, where D is the workpiece diameter
in inches (millimeters), a is the pitch of the
marks in inches (millimeters), and n is the
workpiece speed in rpm.An analogous pro-
cedure also can be applied to peripheral
surface grinding. Marks produced in one
pass of the wheel are shown in Fig. 40.1B.
The speed of the responsible component in
rpm is equal to the number of marks (pro-
duced in one pass) which fall into a distance
equal to that traveled by the workpiece (or
wheel) in 1 min.

Since centrifugal force magnitudes are
proportional to the square of rpm, high-
speed machine tools are more sensitive to
unbalance of toolholders and small asym-
metrical tools (e.g., boring bars). Lathes
may be sensitive to workpiece unbalance
due to asymmetrical geometry or the
nonuniform allowance (e.g., forged parts).

Marks Caused by Inhomogeneities in
the Grinding Wheel. Although grinding
marks usually indicate the presence of a
vibration, this vibration may not necessarily

be the primary cause of the marks. Hard spots on the cutting surface of the wheel
result in similar, though generally less pronounced, marks. Grinding wheels usually
are not of equal hardness throughout.A hard region on the wheel circumference rap-
idly becomes glazed in use and establishes itself as a high spot on the wheel (since it
retains the grains for a longer period than the softer parts). These high spots eventu-
ally break down or shift to other parts of the wheel; in cylindrical grinding, this man-
ifests itself as a sudden change in the slope of the spiral marks. Marks which appear
to be due to an unbalanced member rotating at two or three times the speed of the
wheel and which are nonuniformly spaced are always due to two or three hard spots.

MACHINE-TOOL VIBRATION 40.3

FIGURE 40.1 Grinding marks resulting
from unbalance of grinding wheel or some
other component. (A) Cylindrical grinding;
(B) peripheral grinding. Marks which are un-
equally spaced or which have a varying slope
are due to inhomogeneities in the wheel.
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The Effect of Vibration on the Wheel Properties. If vibration exists between
wheel and workpiece, normal forces are produced which react on the wheel and
tend to alter the wheel shape and/or the wheel’s cutting properties. In soft wheels
the dominating influence of vibration appears to be inhomogeneous wheel wear,
and in hard wheels inhomogeneous loading (i.e., packing of metal chips on and in
crevasses between the grits). These effects result in an increased fluctuation of the
normal force, which produces further changes in the wheel properties. The overall
effect is that a vibration once initiated tends to grow.4 When successive cuts or
passes overlap, the inhomogeneous wear and loading of the wheel may cause a
regenerative chatter effect which makes the cutting process dynamically unstable
(see Dynamic Stability).

Drives. Spindle and feed drives can be important sources of vibration caused by
motors, power transmission elements (gears, traction drives, belts, screws, etc.), bear-
ings, and guideways.

Electric motors can be sources of both rectilinear and torsional vibrations. Recti-
linear vibrations are due to a nonuniform air gap between the stator and rotor,
asymmetry of windings, unbalance, bearing irregularities, misalignment with the
driven shaft, etc. Torsional vibrations (torque ripple) are due to various electrical
irregularities.5 Misalignment- and bearing-induced vibrations of spindle motors are
reduced by integrating the spindle with the motor shaft.

Gear-induced vibrations can also be both rectilinear and torsional. They are due
to production irregularities (pitch and profile errors, eccentricities, etc), assembly
errors (eccentric fit on the shaft, key/spline errors, and backlash), or distortion of
mesh caused by deformations of shafts, bearings, and housings under transmitted
loads. Tight tolerances of the gears and design measures reducing their sensitivity to
misalignment (crowning, flanking) should be accompanied by rigid shafts and hous-
ings and accurate fits. All gear faults, eccentricities, pitch errors, profile errors, etc.,
produce nonuniform rotation, which in some cases adversely affects surface finish,
geometry, and possibly tool life. In precision machines, where a high degree of sur-
face finish is required, the workpiece or tool spindle usually is driven by belts or by
directly coupled motors.

In some high-precision systems, inertia drives are used, in which the energy is
supplied to the flywheel between the cutting operations, but the cutting process is
energized by the flywheel disconnected from the motor/transmission system. Such a
system practically eliminates transmission of drive vibrations into the work zone.

Belt drives, used in some applications as filters to suppress high-frequency vibra-
tions (especially torsional), can induce their own forced vibrations, both torsional
and rectilinear. Any variation of the effective belt radius, i.e., the radius of the neu-
tral axis of the belt around the pulley axis, produces a variation of the belt tension
and the belt velocity.This causes a variation of the bearing load and of the rotational
velocity of the pulley. The effective pulley radius can vary as a result of (1) eccen-
tricity of the pulley or (2) variation of belt profile or inhomogeneity of belt material.
Another source of belt-induced vibrations is variation of the elastic modulus along
the belt length, which may excite parametric vibration (Chap. 5). Flat belts generate
less vibration than V belts because of their better homogeneity and because the dis-
turbing force is less dependent on the belt tension.

Grinding is particularly sensitive to disturbances caused by belts. Seamless belts
or a direct motor drive to the main spindle is recommended for high-precision
machines.4 Vibration is minimized when the belt tension and the normal grinding
force point in the same direction, as shown in Fig. 40.2A. The clearance between
bearing and spindle is thus eliminated. With the arrangement shown in Fig. 40.2B,
large amplitudes of vibration may arise when the normal grinding force is substan-
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tially equal to the belt tension and/or the peripheral surface of the wheel is nonuni-
form. Tests indicate that with the arrangement shown in Fig. 40.2C, vibration due to
the centrifugal force is likely to be caused by an unbalance of the wheel.4 The spin-
dle pulley should preferably be placed between the spindle bearings (Fig. 40.3A) and
not at the end of the spindle (Fig 40.3B), unless the pulley is “unloaded” (supported
by its own bearings), as in Fig. 40.3C.3

Chain drives have inherent nonuniformity of transmission ratio and are a signifi-
cant source of vibration, even when used for auxiliary drives.

Bearings. Dimensional inaccuracies of the components of ball or roller bearings
and/or surface irregularities on the running surfaces (or the bearing housing) may
give rise to vibration trouble in machines when high-quality surface finish is
demanded. From the frequency of the vibration produced, it is sometimes possible to
identify the component of the bearing responsible (Chap. 16). For conventional bear-
ings frequently used in machine tools, the outer race is stationary and the inner race
rotates at ni rpm; the cage velocity is of the order of nc � 0.4 ni, and the velocity of the
balls or rollers is about nb � 2.4ni. In some cases, a disturbing frequency of the order
of nz � znc also can be detected, where z is the number of rolling elements.This is the
frequency with which successive rolling elements pass through the “loaded zone” of
the bearing, which is determined by the direction of the load. These disturbing fre-
quencies are less pronounced with bearings having two rows of rolling elements, each
unit of which lies halfway between units of the neighboring row. Because of the
importance of spindle bearings’ influence on accuracy of machining and on vibrations
in the work zone, especially for precision and high-speed machine tools, both races
and rolling bodies of spindle bearings must have high dimensional accuracy.

From the point of view of vibration control, both stiffness and damping of bear-
ings should be maximized. Stiffness can be maximized by using roller bearings (with
tapered or cylindrical rollers), by using rollers with two rows of rolling elements, by
preloading the bearings in the radial direction, and by improving fits between bear-
ings and shafts/housings.3 Preloading eliminates clearances (play) in bearings, besides
increasing their stiffness. However, increased preload is accompanied by decreased
damping,3 as well as by an increase in heat generation and a likely decrease in bear-
ing life. Optimal preload values are recommended by bearing manufacturers. Roller
bearings usually have higher damping than ball bearings. Sliding, and especially
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FIGURE 40.2 Direction of driving belt and its influence on performance. (A)
Vibration is minimized when belt tension and normal grinding force point in the
same direction. (B) Large amplitudes may arise when the normal grinding force is
substantially equal to the belt tension. (C) Vibration due to centrifugal force is
likely to be caused by an unbalance of the wheel. (S. Doi.4)
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hydrostatic, bearings have a greater
damping capacity than antifriction bear-
ings and are therefore superior with
respect to vibration. Machine tools with
hydrostatic bearings have extremely high
chatter resistance.

Guideways (Slides). The uniformity
of feed motions is often disturbed by a
phenomenon known as stick-slip, which
is described in Chap. 5.When motion of a
tool support is initiated, elastic deforma-
tions of the feed drive elements increase
until the forces transmitted exceed the
static frictional resistance of the tool sup-
port. Subsequently, the support com-
mences to move, and the friction drops to
its dynamic value. As a result of the drop
of the friction force, the support receives
a high acceleration and overshoots be-
cause of its inertia. At the end of the
“jump,” the transmission is wound up in
the opposite sense; before any further
motion can take place, this deformation
must be unwound. This occurs during a
period of standstill of the support. Subse-
quently, the phenomenon repeats itself.
The physical sequence described falls
into the category generally known as
“relaxation oscillations” (Chap. 5).

The occurrence of stick-slip depends
on the interaction of the following factors:
(1) the mass of the sliding body, (2) the
drive stiffness, (3) the damping present in
the drive, (4) the sliding speed, (5) the sur-
face roughness of the sliding surfaces, and
(6) the lubricant used. It is encountered
only at low sliding speeds; slide drives
designed for stick-slip-free motion have
small moving masses and a high drive
stiffness. Excellent results also may be
achieved by using cast iron and a suitable
plastic material as mating surfaces. By

keeping the oil film between the mating surfaces under a certain pressure (hydrostatic
lubrication), the possibility of mixed dry and viscous friction is eliminated,and stick-slip
cannot arise. High damping is another advantage of hydrostatic slides.

Rolling friction slides6 do not exhibit stick-slip but may generate high-frequency
vibrations because of the shape and dimensional imperfections of the rolling bodies.
These can be reduced by increasing their dimensional accuracy and by introducing
damping. Rolling friction slides have very low damping and as a result can amplify
vibrations from other sources if their frequencies are close to resonance frequencies
of the slide. High-precision systems require extremely low friction as well as the
absence of vibration.7
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FIGURE 40.3 Effect of relative position of
grinding wheel, bearings, and driving pulley on
grinding performance. (A) Driving pulley should
be placed between bearings, as shown in (A).
Arrangement shown in (B) is constructionally
simpler but is more liable to cause trouble. (After
S. Doi.4) (C) Supporting of pulley by independ-
ent bearings eliminates bending and rectilinear
vibrations of spindle by belt-induced forces.
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IMPACTS FROM MASSIVE PART REVERSALS

Some machine tools have reciprocating massive parts whose reversals produce sharp
impacts which excite both low-frequency solid-body vibrations of the machine (the
system “machine on its mounts”) and high-frequency structural modes. Such effects
occur both in machine tools, such as surface grinders, and in high-speed computer
numerically controlled (CNC) machining centers and coordinate measuring machines
(CMM). In the CMMs the working process is associated with start-stop operations; in
machining centers it is associated with changing magnitude and/or directions of feed
motions of heavy tables, slides, spindle heads, etc., with accelerations as high as 2g.The
driving forces causing such changes in magnitudes and directions of momentum of the
massive units have impulsive character and cause free decaying vibrations in both
solid-body and structural modes (Chap. 8). These vibrations excite relative displace-
ments in the work zone between the workpiece and the cutting or measuring tool. Fig-
ure 40.4 shows oscillograms of the acceleration of the table of a surface grinder during
its reversal (A) and the resulting relative displacements between the grinding wheel
and the table (workpiece) for two cases of installation: the machine installed on rigid
steel wedges (B) and on vibration isolators (C). In the latter case the relative displace-
ments during the reversal process are much higher, although they are decaying at a
faster rate due to higher damping in the isolators.The peak magnitude of acceleration,
7.9 m/s2 ≅ 0.8g, is typical for surface grinders, CMMs, etc. If these displacements exceed
allowable limits, the working process cannot start before the vibrations decay. This
adversely affects the machine productivity.

Reduction in the adverse effects of the impulsive forces can be achieved by
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FIGURE 40.4 Effect of mounts on relative displacements
between grinding wheel and table during reversal of table of sur-
face grinder. (A) Acceleration of table; (B)(C) relative displace-
ments [(B), machine installed on steel wedge mounts; (C),
machine installed on vibration isolators]; table velocity 20
m/min. (After Kaminskaya from Ref. 6.)
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enhancing the structural stiffness and natural frequencies, thus reducing the sensitiv-
ity of the machine to impulsive forces and accelerating the decay. A similar effect
results from an increase in “solid-body frequencies” (the natural frequencies of the
machine on its mounts) in the direction of the impulsive forces and from decoupling
of vibratory modes in the vibration-isolation system, e.g., by increasing the distance
between the mounts in the direction of acceleration. Increase of structural damping
as well as damping of mounting elements (vibration isolators) also results in a reduc-
tion in the decay time.

VIBRATION TRANSMITTED FROM THE ENVIRONMENT

Shock and vibration generated in presses, machine tools, internal-combustion
engines, compressors, cranes, carts, rail and road vehicles, etc., are transmitted
through the foundation to other machines, which they may set into forced vibration.
Vibration of the shop floor contains a wide frequency spectrum. It is almost
inevitable that one of these frequencies should fall near a natural frequency of a par-
ticular machine tool. Although the amplitudes of the floor vibration usually are
small, they may adversely affect precision machine tools and measuring instruments.
The undesirable effects include irreversible shifts in structural joints of machine
tools and their mounts, shape and surface finish distortions of machined parts, erro-
neous readings of measuring instruments, and chipping of cutting inserts.19

Vibration transmitted through the floor may be reduced by vibration isolation
(Chaps. 30 and 32), i.e., the stationary machines which generate the vibration are
placed upon vibration isolators. However, precision machine tools and measuring
instruments are isolated to provide further reduction.

When applying vibration isolators to machine tools, some care must be exercised.
The foundation constitutes the “end condition” of the machine-tool structure. Any
alteration of the end condition affects equivalent stiffness and damping, and thus the
natural frequencies and vibratory modes of the structure.3

If vibration isolators are not properly selected and located, the machine tool may
become more susceptible to internal exciting forces, and its chatter behavior also
may be affected in an undesirable way,8 usually at the lower modes of vibration.
Many undesirable effects can be eliminated or significantly reduced by using vibra-
tion isolators having a natural frequency that is independent of weight loads on iso-
lators (“constant natural frequency” isolators); by using isolators with high damping;
by assigning the mounting points locations that enhance the effective stiffness of the
machine-tool frame; by increasing the stiffness of isolators and the distance between
them in the directions of movements of heavy reciprocating masses; and by reducing
modal coupling in the isolation system.3 In general, machine-tool structures which
are very stiff by themselves (i.e., without being bolted down) can be placed on vibra-
tion isolators safely (milling machines, grinding machines, and some lathes).

MACHINE-TOOL CHATTER

The cutting of metals is frequently accompanied by violent vibration of workpiece
and cutting tool which is known as machine-tool chatter. Chatter is a self-excited
vibration which is induced and maintained by forces generated by the cutting
process. It is highly detrimental to tool life and surface finish, and is usually accom-
panied by considerable noise. Chatter adversely affects the rate of production since,
in many cases its elimination can be achieved only by reducing the rate of metal
removal. Cutting regimes for nonattended operations (such as computer numeri-
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cally controlled machine tools and flexible manufacturing systems) are frequently
assigned conservatively in order to avoid the possibility of chatter.

Machine-tool chatter is characteristically erratic since it depends on the design
and configuration of both the machine and the tooling structures, on workpiece
and cutting tool materials, and on machining regimes. Chatter resistance of a
machine tool is usually characterized by a maximum stable (i.e., not causing chat-
ter vibration) depth of cut blim. Forced vibration effects in machine tools are more
frequently detected in the development stage or during final inspection, and can
be reduced or eliminated. The tendency for a certain machine to chatter may
remain unobserved in the plant of the machine-tool manufacturer unless the
machine is thoroughly tested.9,10 If this tendency is encountered at the user facility,
its elimination from a particular machining process may be highly time-consuming
and laborious.

A distinction can be drawn8 between regenerative and nonregenerative chatter.
The former occurs when there is an overlap in the process of performing successive
cuts such that part of a previously cut surface is removed by a succeeding pass of the
cutter. Under regenerative cutting, a displacement of the tool can result in a vibra-
tion of the tool relative to the workpiece, resulting in a variation of the chip thick-
ness. This in turn results in a variation in the cutting force during following
revolutions. The regenerative chatter theory explains a wide variety of practical
chatter situations in such operations as normal turning and milling.

An important characteristic feature of regenerative chatter is a “lobing”
dependence of the maximum stable depth of cut blim on cutting speed (rpm of tool
or workpiece).8,11 This dependence is shown as the solid line in Fig. 40.5.8,11 There is
an area of absolute stability below the lobes’ envelope, which is shown as a broken
line in Fig. 40.5. The position of this envelope depends on the material and geome-
try of the cutting tool as well as the workpiece material. The lobing shape indicates
that some speeds are characterized by much higher stability (larger blim).

Nonregenerative chatter is found in such operations as shaping, slotting, and
screw-thread cutting. In this type of cutting, chatter has been explained through the
principle of mode coupling.8 If a machining system can be modeled by a two degree-
of-freedom mass-spring system, with orthogonal axes of major flexibilities and with
a common mass, the dynamic motion of the tool end can take an elliptical path. If the
major axis of motion (axis with the greater compliance) lies within the angle formed
by the total cutting force and the normal to the workpiece surface, energy can be
transferred into the machine-tool structure, thus producing an effective negative
damping.The depth of cut for the threshold of stable operation is directly dependent
upon the difference between the two principal stiffness values, and chatter tends to
occur when the two principal stiffnesses are close in magnitude.

DYNAMIC STABILITY

Machine-tool chatter is essentially a problem of dynamic stability. A machine tool
under vibration-free cutting conditions may be regarded as a dynamical system in
steady-state motion. Systems of this kind may become dynamically unstable and break
into oscillation around the steady motion. Instability is caused by an alteration of the
cutting conditions produced by a disturbance of the cutting process (e.g., a hard spot in
the material).As a result, a time-dependent thrust element dP is superimposed on the
steady cutting thrust P. If this thrust element is such as to amplify the original distur-
bance, oscillations will build up and the system is said to be unstable.

This chain of events is most easily investigated theoretically by considering that the
incremental thrust element dP is a function not only of the original disturbance but
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also of the velocity of this disturbance. Forces which are dependent on the velocity of
a displacement are damping forces; they are additive to or subtractive from the damp-
ing present in the system (e.g., structural damping or damping introduced by special
antivibration devices). When the damping due to dP is positive, the total damping
(structural damping plus damping due to altered cutting conditions) also is positive
and the system is stable. Any disturbance will then be damped out rapidly. However,
the damping due to dP may be negative, in which case it will decrease the structural
damping, which is always positive. If the negative damping due to dP predominates,
the total damping is negative. Positive damping forces are energy-absorbing. Negative
damping forces feed energy into the system; when the total damping is negative, this
energy is used for the maintenance of oscillations (chatter).

From the practical point of view, the fully developed chatter vibration (self-induced
vibration) is of little interest. Production engineers are almost entirely concerned with
conditions leading to chatter (dynamic instability).The build-up of chatter is very dif-
ficult to observe, and experimental work has to be carried out mainly under conditions
which are only indirectly relevant to the problem being investigated. Experimental
results obtained from fully developed chatter vibration may, in some instances, be not
really relevant to the problem of dynamic stability.

The influence of the machine-tool structure on the dynamic stability of the cut-
ting process is of great importance. This becomes clear by considering that with a
structure (including tool and workpiece) of infinite stiffness, the cutting process
could not be disturbed in the first place because hard spots, for example, would not
be able to produce the deflections necessary to cause such a disturbance. Further-
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more, it is clear that were the structural damping infinite, the total damping could
not become negative and the cutting process would always be stable.This discussion
indicates that an increase in structural stiffness and/or damping always has benefi-
cial effects from the point of view of chatter.

In practically feasible machines, the interrelation between structural stiffness,
damping, and dynamic stability is of considerable complexity. This is because
machine-tool structures are systems with distributed mass, elasticity, and damping;
their vibration is described by a large set of partial differential equations which can
be analyzed using simplified models or more precise large finite-element models.
Stiffness and damping play similar roles in determining the stability of a machine
tool. The maximum stable depth of cut blim is proportional to a product of effective
stiffness and effective damping coefficients. The cutting angles and the number and
shape of the cutting edges of the cutting tool are important.

THE EFFECT OF VIBRATION ON TOOL LIFE

Inasmuch as the cutting speed and the chip cross section vary during vibration, it is
to be expected that vibration affects tool life. The magnitude of this effect is unex-
pectedly large, even when impact loading of the tool is excluded. Elimination of
vibration may significantly enhance tool life. Ceramic and diamond tools are espe-
cially sensitive to impact loading.

The life of face-mill blades may suffer considerably owing to torsional vibration
executed by the cutter. The torsional vibration need not necessarily be caused by
dynamic instability of the cutting process but may be forced vibration, because of
resonance caused by one of the harmonics of impact excitation from interrupted
chip removal, by tool runout, etc. Judiciously applied forced vibration of the tool
and/or the workpiece may also significantly enhance tool life by reducing cutting
forces, leading to enhanced dynamic stability.12

VIBRATION CONTROL IN MACHINE TOOLS

The vibration behavior of a machine tool can be improved by a reduction of the
intensity of the sources of vibration, by enhancement of the effective static stiffness
and damping for the modes of vibration which result in relative displacements
between tool and workpiece, and by appropriate choice of cutting regimes, tool
design, and workpiece design. Abatement of the sources is important mainly for
forced vibrations. Stiffness and damping are important for both forced and self-
excited (chatter) vibrations. Both parameters, especially stiffness, are critical for
accuracy of machine tools, stiffness by reducing structural deformations from the
cutting forces, and damping by accelerating the decay of transient vibrations. In
addition, the application of vibration dampers and absorbers is an effective tech-
nique for the solution of machine-vibration problems. Such devices should be con-
sidered as a functional part of a machine, not as an add-on to solve specific problems.

STIFFNESS

Static stiffness ks is defined as the ratio of the static force Po, applied between tool
and workpiece, to the resulting static deflection As between the points of force appli-
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cation.A force applied in one coordinate direction is causing displacements in three
coordinate directions; thus the stiffness of a machine tool can be characterized by a
stiffness matrix (three proper stiffnesses defined as ratios of forces along the coordi-
nate axes to displacements in the same directions, and three reciprocal stiffnesses
between each pair of the coordinate axes). Frequently only one or two stiffnesses are
measured to characterize the machine tool.3, 6

Machine tools are characterized by high precision, even at heavy-duty regimes
(high magnitudes of cutting forces). This requires very high structural stiffness.
While the frame parts are designed for high stiffness, the main contribution to defor-
mations in the work zone (between tool and workpiece) comes from contact defor-
mations in movable and stationary joints between components (contact stiffness3,14).
Damping is determined mainly by joints (log decrement ∆ ≅ 0.15), especially for
steel welded frames (structural damping ∆ ≅ 0.001). Cast iron parts contribute more
to the overall damping (∆ ≅ 0.004), while material damping in polymer-concrete (∆ ≅
0.02) and granite (∆ ≅ 0.015) is much higher. While the structure has many degrees-
of-freedom, dangerous forced and self-excited vibrations occur at a few natural
modes which are characterized by high intensity of relative vibrations in the work
zone. Since machine tools operate in different configurations (positions of heavy
parts, weights, dimensions, and positions of workpieces) and at different regimes
(spindle rpm, number of cutting edges, cutting angles, etc.), different vibratory
modes can be prominent depending on the circumstances.

The stiffness of a structure is determined primarily by the stiffness of the most flex-
ible component in the path of the force. To enhance the stiffness, this flexible compo-
nent must be reinforced. To assess the influence of various structural components on
the overall stiffness, a breakdown of deformation (or compliance) at the cutting edge
must be constructed analytically or experimentally on the machine.3 Breakdown of
deformation (compliance) in torsional systems (transmissions) can be critically influ-
enced by transmission ratios between the components.3 In many cases the most flexi-
ble components of the breakdown are local deformations in joints, i.e., bolted
connections between relatively rigid elements such as column and bed, column and
table, etc. Some points to be considered in the design of connections are illustrated in
Fig. 40.6.13 To avoid bending of the flange in Fig. 40.6A, the bolts should be placed in
pockets or between ribs, as shown in Fig. 40.6B. Increasing the flange thickness does

not necessarily increase the stiffness of the
connection, since this requires longer bolts,
which are more flexible. There is an opti-
mum flange thickness (bolt length), the
value of which depends on the elastic
deformation in the vicinity of the connec-
tion. Deformation of the bed is minimized
by placing ribs under connecting bolts.13

The efficiency of bolted connections,
and other static and dynamic structural
problems, is conveniently investigated by
scaled model analysis13 and finite-element
analysis techniques described in Chap. 28,
Part II. Figure 40.7 shows the results of
successive stages of a model experiment in
which the effect of the design of bolt con-
nections on the bending rigidity (X and Y
directions) and the torsional rigidity of a
column were investigated. The relative
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FIGURE 40.6 Load transmission between
column and bed. (A) Old design, relatively
flexible owing to deformation of flange. (B)
New design, bolt placed in a pocket (A) or
flange stiffened with ribs on both sides of bolt
(B). (After H. Opitz.13)
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rigidities are shown by the length of bars. In the design of Fig. 40.7A, the connection
consists of 12 bolts (diameter of 5⁄8 in.) arranged in pairs along both sides of the col-
umn. In the design of Fig. 40.7B, the number of bolts is reduced to 10, arranged as
shown.With the addition of ribs, shown in succeeding figures, the bending stiffness in
the direction X was raised by 40 percent, that in the direction Y by 45 percent, and the
torsional stiffness by 53 percent, compared to the original design.13

MACHINE-TOOL VIBRATION 40.13

FIGURE 40.7 Successive stages in the improvement of a flange connection. (H. Opitz.13)

FIGURE 40.8 Influence of a hole in the wall of a box column on the static stiffness and natural fre-
quency. (A) Static stiffness; (B) natural frequency. (H. Opitz.13)
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Openings in columns should be as small as possible. Figure 40.8 shows the loss of
static flexural stiffness ksx, ksy, and torsional stiffness ksθ, and the decrease of the flex-
ural natural frequencies fx, fy, resulting from the introduction of a hole in a box-type
column. Smaller holes result in relatively smaller decreases of stiffness and natural
frequency than larger ones. The torsional rigidity ksθ of a box-type column is partic-
ularly sensitive to openings, as shown in Fig. 40.9.13 Lids or doors used for covering
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FIGURE 40.9 Torsional stiffness of box columns with different holes in walls. (H. Opitz.13)

FIGURE 40.10 Influence of cover plate and lid on static stiffness of box column. (A) Col-
umn without holes, (B) one hole uncovered, (C) hole covered with cover plate, and (D) hole
covered with substantial lid, firmly attached. (After H. Opitz.13)
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these openings do not restore the stiffness. The influence of covers depends on their
thickness, mode of attachment, and design, as shown in Fig. 40.10.13 However, covers
may increase damping and thereby partly compensate for the detrimental effect of
loss of stiffness.

Welded structural components are usually stiffer than cast iron components but
have a lower damping capacity. Some damping is generated because welds are never
perfect; consequently, rubbing takes place between joined members. A considerable
increase in damping can be achieved by using interrupted welds, but at a price of
reduced stiffness. Welded ribs may be necessary not so much to increase rigidity as
to prevent “drumming” (membrane vibration) of large unsupported areas.

Not all deformations in machine tools are objectionable, but only those which
influence relative displacements in the work zone between the tool and the work-
piece. The magnitude of the relative displacement in the work zone under external
or internal forces (weight, cutting force, inertia force) determines effective stiffness.

Effective stiffness of machine-tool frames is significantly influenced by their
interaction with the supporting structures (foundations). For large, low-aspect-
ratio machine-tool frames, a rigid attachment to a properly dimensioned6 founda-
tion substantially improves dynamic stability. Medium- and small-size machine
tools are usually attached to the reinforced floor plate by discrete mounts (rigid
wedge or screw mounts or vibration isolators). A rational assignment of number
and location of mounts noticeably enhances the effective stiffness of machine
tools and in some cases may allow direct mounting of rather large machine tools
on vibration isolators. Examples of influence of number and location of mounts on
the effective stiffness are given in Fig. 40.11, which shows three schematics of a
mounting for a jig borer on rigid wedge mounts. The table of the jig borer is in the
lower end of the illustration. Relative displacements in the work zone when the
table travels from right to left for the scheme in Fig. 40.11C are three times smaller
than for Fig. 40.11A and 1.5 times smaller than for Fig. 40.11B, notwithstanding the
fact that in the latter case there are seven mounts vs. three mounts in Fig. 40.11C.
In the case shown in Fig. 40.11A, the large weight of the moving table creates a
twisting of the supporting frame about the single front mount, while the column is
rigidly positioned by two mounts. In case of Fig. 40.11C, the front end is well sup-
ported, but the column can tilt on its single mount and follow small deformations
of the front part, thus resulting in smaller relative deformations and higher effec-
tive stiffness. For example, in the case of a precision grinder having a bed 3.8 m
long, it was found that mounting the grinder on seven carefully located (offset
from the ends) vibration isolators resulted in higher effective stiffness than instal-
lation on 15 rigid mounts.3

The effective static stiffness of a machine tool may vary within wide limits. High
stiffness values are ensured by the use of steady rests, by placing tool and workpiece
in a position where the relative dynamic displacement between them is small (i.e., by
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FIGURE 40.11 Mounting schemes of a jig borer. (After V.
Kaminskaya from Ref. 6.)
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placing them near the main column, etc.), by using rigid tools and clamps, by using
jigs which rigidly clamp (and if necessary support) the workpiece, by clamping
securely all parts of the machine which do not move with respect to each other, etc.,
and by the optimization of mounting conditions mentioned above.

The static and dynamic behavior of machine tools is influenced significantly by
the design of the spindle and its bearings.The static deflection of the spindle consists
of two parts, X1 and X2, as shown in Fig. 40.12. The deflection X1 corresponds to the
deflection of a flexible beam on rigid supports, and X2 corresponds to the deflection
of a rigid beam on flexible supports which represent the flexibility of the bearings.
The deflection of the spindle amounts to 50 to 70 percent of the total deflection, and
the bearings 30 to 50 percent of the total, depending on the relation of spindle cross
section to bearing stiffness and span. The stiffness of antifriction bearings depends
on their design, accuracy, preload, and the fit between the outer race and the hous-
ing (responsible for 10 to 40 percent of the bearing deformation3).

The distance between the bearings has considerable influence on the effective
stiffness of the spindle, as shown in Fig. 40.13.The ordinate of the figure corresponds
to the deflection in inches per pound, and the abscissa represents the ratio of bear-
ing distance b to cantilever length a. The straight line refers to the deflection of the
spindle, and the hyperbola refers to the deflection of the bearings. The total deflec-
tion is obtained by the addition of the two curves; the minimum of the curve of total
deflection corresponds to the optimum bearing distance. For a short cantilever
length a, the optimum value of b/a lies between 3 and 5; for a long cantilever length
a, the optimum b/a = ∼2.

It is often important to consider the dynamic behavior of a spindle before estab-
lishing an optimum bearing span. Maximizing the stiffness of a spindle at one point
does not establish its dynamic properties. Care must be taken to investigate both
bending and rocking modes of the spindle before accepting a final optimum span.
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FIGURE 40.12 Deflection of machine-tool
spindle and bearings. A machine-tool spindle
can be regarded as a beam on flexible supports.
The total deflection under the force P consists of
the sum of (A) the deflection X1 of a flexible
beam on rigid supports and (B) the deflection X2

of a rigid beam on flexible supports. (H. Opitz.13)

FIGURE 40.13 Deflection of a beam on elas-
tic supports as a function of the bearing distance.
Bearing stiffness kA and kB, spindle stiffness ko.
(After H. Opitz.13)
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For example, a large overhang on the rear of a spindle could produce an undesirable
low-frequency rocking mode of the spindle even if the “optimum span” as defined
previously were satisfied.The optimum bearing span for minimum deflection as well
as the dynamic characteristics of spindles may be computed with the help of avail-
able computer programs.

The influence of the ratio of bore diameter to outside diameter on the stiffness of
a hollow spindle is shown in Fig. 40.14.13 A 25 percent decrease in stiffness occurs
only at a diameter ratio of d/D = 0.7, where D is the outside diameter and d the bore
diameter. This is important for the dynamic behavior of the spindle. A solid spindle
has nearly the same stiffness, but a substantially greater mass. Consequently, the nat-
ural frequency of the solid spindle is considerably lower, which is undesirable.A stiff
spindle does not always assure the required high stiffness at the cutting edge of the
tool because of potentially large contact deformations in the toolholder/spindle
interface. Measurements have shown that in a tapered connection, these deforma-
tions may constitute up to 50 percent of the total deflection at the tool edge.3 These
deformations can be significantly reduced by replacing tapered connections by face
contact between the toolholder and the spindle.The face connection must be loaded
by a high axial force.12

A significant role (frequently up to 50 percent) in the breakdown of deforma-
tions between various parts of machine tool structures is played by contact defor-
mations between conforming (usually flat, cylindrical, or tapered) contacting
surfaces in structural joints and slides.3,14 Contact deformations are due to surface
imperfections on contacting surfaces. These deformations are highly nonlinear and
are influenced by lubrication conditions. Figure 40.15 shows contact deformation
between flat steel parts as a function of contact pressure for different lubrication
conditions in the joint. Joints are also responsible for at least 90 percent of structural

damping in machine-tool frames due to
micromotions in the joints during vibra-
tory processes. Contact deformations
for the same contact pressure can be sig-
nificantly reduced by increasing accu-
racy (fit) and improving the surface
finish of the mating surfaces. The non-
linear load-deflection characteristic of
joints, Fig. 40.15, allows enhancement of
their stiffness by preloading. However,
preloading reduces micromotions in 
the joints and thus results in a lower
damping.

This explains why in some cases old
machines are less likely to chatter than
new machines of identical design. The
situation may result from wear and tear
of the slides, which increases the damp-
ing and effects an improvement in per-
formance. Also, in some cases chatter is
eliminated by loosening the locks of
slides. However, it would be wrong to
conclude that lack of proper attention
and maintenance is desirable. Proper
attention to slides, bearings (minimum
play), belts, etc., is necessary for satisfac-
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FIGURE 40.14 Effect of bore diameter on
stiffness of hollow spindle where k1 = stiffness of
solid spindle, k2 = stiffness of hollow spindle, D =
outer spindle diameter, d = bore diameter, J2 =
second moment of area of hollow spindle, and J1

= second moment of area of solid spindle. The
curve is defined by k2/k1 = J2/J1 = 1 − (d/D).4 (H.
Opitz.13)
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tory performance. It would be wrong also to conclude that a highly polluted work-
shop atmosphere is desirable because some new machines exposed to workshop dirt
for a sufficiently long time, even when not used, appear to improve in their chatter
behavior. The explanation is that dirty slides increase the damping.

When the rigidity of some machine element is intentionally reduced, but this
reduction is accompanied by a greater damping at the cutter, the increase in damp-
ing may outweigh the reduction in rigidity.3 Although a loss of rigidity in machine
tools is generally undesirable, it may be tolerated when it leads to a desirable shift in
natural frequencies or is accompanied by a large increase in damping or by a bene-
ficial change in the ratio of stiffnesses along two orthogonal axes, which can result in
improved nonregenerative chatter stability.8

A very significant improvement in chatter resistance can be achieved by an inten-
tional measured reduction of stiffness in the direction along the cutting speed
(orthogonal to the direction of the principal component of cutting force). The bene-
fits of this approach have been demonstrated for turning and boring operations.12,15

DAMPING

The overall damping capacity of a structure with cast iron or welded steel frame com-
ponents is determined only to a small extent by the damping capacity of its individual
components. The major part of the damping results from the interaction of joined
components at slides or bolted joints.3,14 The interaction of the structure with the
foundation or highly damped vibration isolators also may produce a noticeable
damping.3,8 A qualitative picture of the influence of the various components of a lathe
on the total damping is given in Fig. 40.16.The damping of the various modes of vibra-
tion differs appreciably; the values of the logarithmic decrement shown in the figure
correspond to an average value for all the modes which play a significant part.

The overall damping of various types of machine tool differs, but the log decre-
ment is usually in the range of from 0.15 to 0.3. While structural damping is signifi-
cantly higher for frame components made of polymer-concrete compositions or
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granite (see above), the overall damping does not change very significantly since the
damping of even these materials is small compared with damping from joints.

A significant damping increase can be achieved by filling internal cavities of the
frame parts with a granular material, e.g., sand. For cast parts it can also be achieved
by leaving cores in blind holes inside the casting. A similar, sometimes even more
pronounced, damping enhancement can be achieved by placing auxiliary longitudi-
nal structural members inside longitudinal cavities within a frame part, with offset
from the bending neutral axis of the latter.The auxiliary structural member interacts
with the frame part via a high viscous layer, thus imparting energy dissipation during
vibrations.

Damping can be increased without impairing the static stiffness and machining
accuracy of the machine by the use of dampers and dynamic vibration absorbers.
These are basically similar to those employed in other fields of vibration control
(Chaps. 6, 32, and 41). Dampers are effective only when placed in a position where
vibration amplitudes are significant.

The tuned dynamic vibration absorber (Chap. 6) has been employed with consid-
erable success on milling machines, machining centers, radial drilling machines, gear
hobbing machines, grinding machines, and boring bars.15,17 A design variant of this
type of absorber is shown in Fig. 40.17. In this design a plastic ring element combines
both the elastic and the damping elements of the absorber. The auxiliary mass may
be attached to the top of a column (Fig. 40.17C), as shown in Fig. 40.17A. Alterna-
tively, the auxiliary mass may be suspended on the underside of a table (Fig. 40.17C),
using the design shown in Fig. 40.17B. In either case, several plastic ring elements
may support one large auxiliary mass, as shown in Fig. 40.17C. In a boring bar, shown
in Fig. 40.18A, elastic and damping properties are combined in O-rings made of a
high-damping rubber. Tuning of the absorber can be changed by varying the radial
preload force on the O-ring. The natural frequency of this absorber can be varied
over a range of more than 3:1.

A variation of the Lanchester damper (Chap. 6) is frequently used in boring bars
to good advantage.16 This consists of an inertia weight fitted into a hole bored in the
end of a quill. To ensure effective operation, a relatively small radial clearance of

MACHINE-TOOL VIBRATION 40.19

FIGURE 40.16 Influence of various components on total damping of lathes. The major part of
the damping is generated at the mating surfaces of the various components. (K. Loewenfeld.16)
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about 1 to 5 × 10−3d must be provided, where d is the diameter of the inertia weight.
An axial clearance of about 0.006 to 0.010 in. (0.15 to 0.25 mm) is sufficient. A
smooth surface finish of both plug and hole is desirable. The clearance values given
refer to dry operation, using air as the damping medium. Oil also can be used as a
damping medium, but it does not necessarily result in improved performance.When
applying oil, clearance gaps larger than those stated above have to be ensured,
depending on the viscosity of the oil. In general, Lanchester dampers are less effec-
tive than tuned vibration absorbers.

Since the effectiveness of both Lanchester dampers and tuned vibration
absorbers depends on the mass ratio between the inertia mass and the effective mass
of the structure (Chap. 6), heavy materials such as lead and, especially, machinable
sintered tungsten alloys are used for inertia masses in cases where the dimensions of
the inertia mass are limited (as in the case of boring bars in Fig. 40.18). The mass
ratio and the effectiveness of the absorber can be significantly enhanced by using a
combination structure. In such a struc-
ture the overhang segment of the boring
bar or other cantilever structure, which
does not significantly influence its stiff-
ness but determines its effective mass, is
made of a light material, while the root
segment, which determines the stiffness
but does not significantly influence the
effective mass, is made from a high
Young’s modulus material.15

Dynamic absorbers can be active
(servo-controlled). Such devices can be
designed to be self-optimizing (capable
of self-adjustment of the spring rate to
minimize vibration amplitude under
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FIGURE 40.17 Auxiliary mass damper with combined elastic and damping element. The
combined element lies between two retainer rings, of which one (3) is attached with bolt 1 to
the machine structure. The other ring (2) takes the weight of the auxiliary mass. (A) Arrange-
ment when auxiliary mass is being supported. (B) Arrangement when auxiliary mass is being
suspended. (C) Application of both types of arrangements to a hobbing machine. (After 
F. Eisele and H. W. Lysen.17)

FIGURE 40.18 Lanchester damper for the
suppression of boring bar vibration. (After R. S.
Hahn.18)
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changing excitation conditions) or to use a vibration cancellation approach.The self-
optimizing feature is achieved by placing vibration transducers on both the absorber
mass and the main system. A control circuit measures the phase angle between the
motions and activates a spring-modifying mechanism to maintain a 90° phase differ-
ence between the two measured motions. It has been demonstrated that the 90°
phase relationship guarantees minimum motion of the main vibrating mass. In the
vibration-cancellation devices, the actuator applies force to the structure which is
opposite in phase to structural vibrations.

Dynamic analysis of a machine tool structure can identify potentially unstable
natural modes of vibration and check the effectiveness of the applied treatments. In
another approach, transfer functions between the selected points on the machine
tool are measured and processed through a computational technique which indi-
cates at which location stiffness and/or damping should be modified or a dynamic
vibration absorber installed in order to achieve specified dynamic characteristics of
the machine tools.3

Tool Design. Sharp tools are more likely to chatter than slightly blunted tools. In
the workshop, the cutting edge is often deliberately dulled by a slight honing. Con-
sequently, a beveling of the leading face of a lathe tool has been suggested. This
bevel has a leading edge of −80° and a width of about 0.080 in. (0.2 mm). Tests show
that the negative bevel does not in all cases eliminate vibration and that the life of
the bevel is short. Appreciably worn cutting edges cause violent chatter.

Since narrow chips are less likely to lead to instability, a reduction of the
approach angle of the cutting tool results in improved chatter behavior. With lathe
tools, an increase in the rake angle may result in improvement, but the influence of
changes in the relief angle is relatively small.

Reduction of both forced and chatter vibrations in cutting with tools having mul-
tiple cutting edges (e.g., milling cutters, reamers) can be achieved by making the dis-
tance between the adjacent cutting edges nonequal and/or making the helix angle of
the cutting edges different for each cutting edge. However, such treatment results in
nonuniform loading of the cutting edges and may lead to a shortened life of the
more heavily loaded edges as well as deteriorating surface finish as a result of dif-
ferent deformations of the tool when lighter or heavier loaded edges are engaged.

Reduction of cutting forces by low-friction (e.g., diamond) coating of the tool or
by application of ultrasonic vibrations to the tool usually improves chatter resistance.

Variation of Cutting Conditions. In the elimination of chatter, cutting condi-
tions are first altered. In some cases of regenerative chatter, a small increase or
decrease in speed may stabilize the cutting process. In high-speed or unattended
computer numerically controlled machine tools, this can be achieved by continuous
computer monitoring of vibratory conditions and, as chatter begins to develop, a
shifting of the spindle rpm toward the stable area.

Cutting with a variable cutting speed (constant speed modulated by a sinusoidal
or other oscillatory component) acts similarly with regard to undulations in the posi-
tioning of the cutting edges (see above) and results in increased chatter resistance.
The dots in Fig. 40.5 show the stabilizing effect of the sinusoidal modulation of the
cutting speed.11

An increase in the feed rate is also beneficial in some types of machining
(drilling, face milling, and the like). For the same cross-sectional area, narrow chips
(high feed rate) are less likely to lead to chatter than wide chips (low feed rate),
since the chip thickness variation effect results in a relatively smaller variation of the
cross-sectional area in the former (smaller dynamic cutting force).

MACHINE-TOOL VIBRATION 40.21
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CHAPTER 41
EQUIPMENT DESIGN

Karl A. Sweitzer

Charles A. Hull

Allan G. Piersol

INTRODUCTION

Equipment is defined here as any assembly of parts that form a single functional unit
for the purposes of manufacturing, maintenance, and/or recordkeeping, e.g., an elec-
tronic package or a gearbox. Designing equipment for shock and vibration environ-
ments is a process that requires attention to many details. Frequently, competing
requirements must be balanced to arrive at an acceptable design. This chapter
guides the equipment designer through the various phases of a design process, start-
ing with a clear definition of the requirements and proceeding through final testing,
as illustrated in Fig. 41.1.

ENVIRONMENTS AND REQUIREMENTS

The critical first step in the design of any equipment is to understand and clearly define
where the equipment will be used and what it is expected to do.The principal environ-
ments of interest in this handbook are shock and vibration (dynamic excitations), but
the equipment typically will be exposed to many other environments (see Table 20.1).
These other environments may occur in sequence or simultaneously with the dynamic
environments. In either case, they can adversely affect the dynamic performance of the
materials used in a design. For example, a thermal environment can directly affect the
strength, stiffness, and damping properties of materials. Other environments can also
indirectly affect the dynamic performance of an equipment design. For example, ther-
mal environments can produce differential expansions and contractions that may suf-
ficiently prestress critical structural elements to make the equipment more susceptible
to failure under dynamic loading.

The preceding example illustrates the need to understand all of the design
requirements, not just the dynamic requirements. A comprehensive set of require-

41.1
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FIGURE 41.1 Steps in equipment design procedure for shock and vibration environments.
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ments (or equipment specifications) must be developed so that no aspect of the
design’s performance is left uncontrolled. Unfortunately, different types of require-
ments often lead to difficult design tradeoffs that must be resolved. Priorities must
be established in these situations. For example, a low-cost weak material may be pre-
ferred over a more expensive stronger material if the operational stresses can be
kept low. This example reflects the fact that many requirements are not purely tech-
nical. Cost, schedule, and safety issues are additional requirements that are always
on the mind of project management. Still other requirements can be more emotional
(e.g., aesthetic appeal).

The approach to equipment design presented in this chapter is the systems engi-
neering concept of minimizing the life cycle cost, where the life cycle is defined as all
activities associated with the equipment from its initial design through its final dis-
posal after service use. Stated simply, the design process should consider and mini-
mize the costs incurred over the complete life of the equipment. Extra effort put
forth early in the design phase can often have a large payoff later in the life of the
equipment. For example, the cost of correcting a problem in manufacturing can be
many times greater than the cost of making the correction during the design phase.
Additional costs, such as disposal and recycling of the equipment after it has passed
its useful life, can be minimized with proper attention early in the design phase.

DYNAMIC ENVIRONMENTS

Shock and/or vibration (dynamic) environments cover a wide range of frequencies
from quasi-static to ultrasonic. Examples of different dynamic environments and the
frequency ranges over which they typically occur are detailed in the various chapters
and references listed in Table 28.1.The classification of vibration sources and details
on how measured and predicted data should be quantified are presented in Chap. 22.
From a design viewpoint, dynamic excitations can be grouped as follows.

Quasi-Static Acceleration. Quasi-static acceleration includes pure static acceler-
ation (e.g., the acceleration due to gravity) as well as low-frequency excitations. The
range of frequencies that can be considered quasi-static is a function of the first nor-
mal mode of vibration of the equipment (see Chap. 21).Any dynamic excitation at a
frequency less than about 20 percent of the lowest normal mode (natural) frequency
of the equipment can be considered quasi-static. For example, an earthquake excita-
tion that could cause severe dynamic damage to a building could be considered
quasi-static to an automobile radio.

Shock and Transient Excitations. Shock (or transient) excitations are character-
ized as having a relatively high magnitude over a short duration. Many shock exci-
tations have enough high-frequency content to excite at least the first normal mode
of the equipment structure, and thus produce substantial dynamic response (see
Chap. 8). The transient nature of a shock excitation limits the number of response
cycles experienced by the structure, but these few cycles can result in large displace-
ments that could cause snubbing, yielding, or tensile failures if the magnitude of the
excitation is sufficiently large. Frequent transients can also result in low-cycle fatigue
failures (see Chap. 34).

Periodic Excitations. Periodic excitations are of greatest concern when they
drive a structure to respond at a normal mode frequency where the motions can be
dramatically amplified (see Chap. 2). Of particular concern is the repetitive nature
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of the response that can accumulate enough cycles to cause fatigue failures at exci-
tation levels less than those required to cause immediate yielding or fracture. The
most basic form of a periodic excitation is the sinusoidal excitation caused by rotat-
ing equipment. However, other periodic excitations may include strong harmonics
that might be damaging, e.g., the vibrations produced by reciprocating engines
and gearboxes (see Chap. 38). All harmonics of the periodic excitation must be 
considered.

Random Excitations. Random excitations occur typically in environments that
are related to turbulence phenomena (e.g., wave and wind actions, and aerodynamic
and jet noise). Random excitations are of concern because they typically cover a
wide frequency range. All natural frequencies of the structure within the frequency
bandwidth of a random excitation will respond simultaneously. Assuming the struc-
ture is linear, the response will be approximately Gaussian, as defined in Chap. 11,
meaning that large instantaneous displacements, as well as damaging fatigue
stresses, may occur.

Mixed Periodic and Random Excitations. Mixed excitations typically occur
when rotating equipment induces periodic excitations that are combined with exci-
tations from some flow-induced source. An example would be a propeller airplane,
where the periodic excitation due to the propeller is superimposed on the random
excitation due to the airflow over the fuselage (see Chap. 29, Part III). It is important
to compute the stresses in the equipment due to both excitations applied simultane-
ously. The same is true of shock excitations that may occur during the vibration
exposure.

OTHER ENVIRONMENTS

Other environments may have an effect on material properties and/or help define
what materials and finishes can be used during the design and construction of the
equipment. The more important environments that should be considered are as fol-
lows.

Temperature. Material properties can change dramatically with temperature. Of
particular concern for dynamic design are the material stiffness changes, especially
in nonmetallic materials such as plastics and elastomers (see Chap. 33). Most plastics
show a dramatic reduction in stiffness at higher temperatures. Material strength and
failure modes will also change with temperature. Some metals will exhibit high-
strength ductile behavior at room temperature, and then shift to low-strength brittle
behavior at low temperatures (see Chap. 34). Thermal strains can also induce
stresses and deformations in structures that need to be considered as part of the
design process. A thorough understanding of the expected operating and nonoper-
ating temperatures, plus the amount of exposure time in each temperature range, is
required when designing equipment structures for dynamic environments.

Humidity. Humidity can have an effect on material properties, especially plastics,
adhesives, and elastomers (see Chap. 33). Some nonmetallic materials can swell in
humid environments, resulting in changes in stiffness, strength, and mass. Humid
environments can also lead to corrosion in some materials that ultimately produce
lower strengths.

41.4 CHAPTER FORTY-ONE

8434_Harris_41_b.qxd  09/20/2001  12:23 PM  Page 41.4



EQUIPMENT DESIGN 41.5

Salt/Corrosion. Ocean and coastal environments are of particular concern because
the corrosion they commonly produce can lower the strength of a material. Corrosion
and oxidation can also cause clogging or binding in flexible joints. Protective finishes,
seals, and naturally corrosive resistant materials are needed when equipment is
designed to withstand long durations in ocean and coastal environments. Corrosive
environments can also occur in power plants and chemical processing industries.

Other. Other environments might affect the dynamic performance of equipment.
Two such examples are vacuum and electromagnetic fields. Vacuum environments
(e.g., space vehicles or aircraft at high altitudes) can cause pressure differentials in
sealed structures, which produce static stresses that are superimposed on the stresses
due to dynamic responses.Vacuum environments also lack the damping provided by
the interaction of the structure with the air. Electromagnetic fields can interfere with
the functional performance of electronic subassemblies, and sometimes induce
vibration of steel panels.

LIFE-CYCLE ANALYSIS

Dynamic design typically concentrates on the service environment, but there are
other conditions during the life of a product that may require special consideration.
The definition of all of the different conditions (environment magnitudes and dura-
tion) that the equipment will be exposed to during its total life, from manufacture to
disposal, is commonly referred to as a life-cycle analysis.

Manufacturing Conditions. The life of equipment typically begins when it is
manufactured. Manufacturing-induced residual stresses and strains due to plastic
deformations, excessive cutting speeds, elevated adhesive cure temperatures, or
welding can adversely affect the initial strength of materials. Understanding the
material properties after manufacturing-induced excitations (and possible rework)
is a critical first step in a life-cycle analysis.

Test Conditions. Equipment often undergoes factory acceptance or environmen-
tal stress screening tests (see Chap. 20) before it is put into service. These test envi-
ronments can induce initial stresses and strains that reduce the resultant strength.
An example is a pull test of a wire bond. The test should produce failure in a poor
bond, but may also cause permanent plastic deformation in the ductile wire. When
predicting the overall fatigue life of an item of equipment, any initial tests must be
considered as excitations that will accumulate damage.

As discussed in Chap. 20, at least one sample item of any new equipment must
pass a qualification test to verify that it can survive and function correctly during
its anticipated shock and/or vibration environments. This qualification test gener-
ally represents the most severe dynamic environment the equipment will experi-
ence, and hence the equipment must be designed for this test environment.
However, since the sample item used for the qualification test is not delivered for
service use, the qualification test does not have to be included in the life-cycle
analysis.

Shipping and Transportation. Once an equipment item is manufactured, it
probably will be transported to its operating destination. This transportation envi-
ronment can often induce excitations that will not be seen in service use. Examples
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include shock excitations from handling between shipping phases (e.g., dropped
packages when unloading a truck), and low-frequency vibration excitations induced
by repeated roadway imperfections as seen by a ground transportation vehicle. Spe-
cial features may need to be added to the equipment, such as additional support
parts, to help it survive shipping excitations. One example is a temporary part that is
installed between two assemblies that would normally be vibration-isolated in use.
The temporary part eliminates excessive displacements due to large low-frequency
shipping excitations. Once the system arrives at its destination, the temporary part is
removed so the two assemblies can then move freely.

In some cases, the transportation environments may be so much more severe
than the service environment that special shipping containers need to be designed to
attenuate the transportation excitations. Vibration-isolated shipping containers are
often used when transporting sensitive equipment (see Chaps. 30 through 32).

Service Conditions. The most obvious condition to understand is the service
environment of the equipment.A significant portion of the design process should be
devoted to accurately determining the dynamic environments under which the
equipment must operate. A thorough understanding of the service dynamic envi-
ronments will help to ensure that the equipment will function both properly and
economically. Standard dynamic environments that have been developed for vari-
ous commercial and military applications may be used to help determine the service
excitations (see Chap. 19). These standards, however, should be used with care
because they often provide conservative shock and/or vibration estimates that may
result in equipment that is overdesigned and more costly than necessary.

When the equipment is to be used in multiple locations, a larger set of dynamic
environments must be considered. For each environment, the type, magnitude, dura-
tion, and other conditions (e.g., temperature range) should be itemized. For items of
equipment that will be produced in large quantities, a statistical approach that
groups the dynamic environments into histograms should be considered (see Chap.
20). While the specification of service environment magnitudes and durations is
often the responsibility of another organization, the designer must review the
desired requirement thoroughly and often request additional information.

DYNAMIC RESPONSE CONSTRAINTS AND FAILURE CRITERIA

Important requirements that need to be defined before equipment is designed are
the allowable dynamic responses and failure criteria. Often there will be multiple
constraints that need to be satisfied.

Displacement. Displacements due to dynamic excitations must always be consid-
ered when the equipment is made up of several subassemblies. The overall motion
(or sway space) of an equipment item must also be considered when it will be
mounted near other structures.This is often a concern with vibration-isolated equip-
ment. Displacements can also be a concern for position-sensitive equipment such as
printing, placement, optical, and measurement devices.

Velocity. Velocity response is of concern for all structures, because the modal (rel-
ative) velocity of the structural response at a normal mode is directly proportional
to modal stress.1 This fact can be used to estimate the stress due to the response of a
structure at any given normal mode frequency, as will be detailed later.
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Acceleration. Some products are most susceptible to acceleration responses. For
example, an electrical relay or switch may unlatch when the acceleration acting on
the mass of the contact is large enough to cause it to change state. Furthermore,
quasi-static acceleration excitations are proportional to stress in the equipment
structure.

Permanent Deformation and Factors of Safety. A critical part of the require-
ments definition process for dynamic environments is to clearly state the allowable
amount of permanent deformation that the equipment will tolerate. Some equip-
ment can still function acceptably after being subjected to brief, high-excitation con-
ditions that cause some plastic deformation. Other equipment may not tolerate any
yielding that could cause misalignment or interference. Some customers may specify
factors of safety that must be met as part of a development specification. These are
typically calculated based on stresses relative to the allowable material yield and/or
tensile strengths.

Fracture, Fatigue, and Reliability. Equipment intended for use over a relatively
long-exposure duration should carry with it some clearly defined fatigue and/or reli-
ability requirement.The equipment design team should establish a reliability goal in
terms of fatigue life. This is of particular concern when a premature failure of the
equipment can result in severe economic damage or personal injury.

STRUCTURAL REQUIREMENTS

Structural and physical requirements must be defined before the start of a design.
For equipment that will be used as part of a larger system, the physical requirements
may be negotiable, especially in terms of mounting points and final geometry. These
requirements are typically specified as part of an interface agreement, often called
an interface control document (ICD), between the product development teams.

Volume. The overall volume requirement for an equipment item is an obvious
requirement, but it may necessitate some design study. One example would be a
combination of a minimum natural frequency and a radiating thermal environment
requirement. A smaller design typically has a higher natural frequency due to the
stiffness vs. length cubed effect in bending (see Chap. 1). However, this is contrary to
the need for a large surface area to facilitate radiation heat transfer. As with most
design problems, these effects need to be balanced within the allowable volume.The
volume should also include allowances for any displacements that may occur over
the life of the equipment.

Mass. Mass or weight requirements can conflict with other equipment require-
ments. For example, equipment that has a maximum mass requirement may also
have a shock and/or vibration-isolation requirement (see Chaps. 30 through 32).The
resulting equipment will need to be designed with a low-stiffness isolation system
such that the required level of isolation can be reached while still meeting the max-
imum mass requirement. Other conflicting requirements are minimizing mass while
maximizing stiffness and conduction heat transfer. When a mass needs to be con-
trolled accurately, care should be given to the control of both the density and geom-
etry of the parts, especially when the materials used are alloys of high-density metals
or composites.
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Materials. High-strength, low-weight metals are typically the materials of choice
for equipment that is exposed to dynamic environments. While this is usually a wise
choice, other factors should be considered. In many cost- and time-conscious indus-
tries, procurement organizations limit the number of materials from which a product
can be made. This is a practice that can save money and limit inventories of expen-
sive specialty materials. The designer needs to understand this situation and learn 
to work with the available choices of materials.A second concern is that these mate-
rials must often be selected in certain stock thicknesses and shapes. One benefit of
these measures is that the physical properties of standard materials are often well
documented. If not, the designer should strive to work toward a common material
property database that can be linked to the available material choices.

Damping properties can be measured for polymers, elastomers, and adhesives
using the procedures detailed in Chap. 37. The damping properties of adhesives are
an important factor to consider when choosing between options.Adhesives that join
lightly damped members can significantly reduce the overall response of the equip-
ment assembly. Fatigue (or fracture) properties for most common materials can be
found in Chaps. 34 and 35, as well as Refs. 2 to 4.

Finally, the designer should review the other required environmental conditions
that may cause further constraints on the available choices of materials. When feasi-
ble, the designer should use common materials that have well-defined properties.
Materials that are more exotic should be considered only when they are essential
and their properties are well-documented and controlled.

OTHER REQUIREMENTS

It is important to consider other requirements that can adversely affect the finished
equipment if not considered early in the design process.

Safety. For those items of equipment where a failure or malfunction during serv-
ice use might result in severe economic damage or personal injury, safety must be a
primary concern. Safety issues should also receive top priority during all other life
cycle phases, including manufacturing, handling, and transportation. A qualified
safety engineer should be involved in all phases of the design process.

Cost and Schedule. Cost is an important concern that must be considered by
every designer developing new equipment. Of particular importance is the life cycle
cost of the equipment. It is often less expensive overall to spend time early in the
design phase to define and understand the equipment requirements. This can often
reduce costly changes to the design further along in its development. However, as
previously discussed, safety requirements must always receive careful consideration
in making cost and schedule decisions.

Disposal/Recycle. Disposal and recycling requirements should always be consid-
ered in the design. Some markets now require that the final disposal of an equip-
ment item include recycling of its materials. Products may also be remanufactured,
that is, some types of equipment that have completed their service life might be
refurbished, with worn parts repaired or replaced, and then returned to service.

Other. The designer should be aware that equipment needs to function well in
ways other than its prime task. Additional features that will help other groups work
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with the equipment should be considered early in the design phase. Included here
are such features as handles, additional holes for lifting equipment, modular design,
and adjustable interfaces. When conflicting requirements make a straightforward
design difficult, it is sometimes desirable to convene a design team comprised of
engineers in such disciplines as systems operation analysis and testing, electromag-
netic compatibility, high-reliability parts, cost control, manufacturing, and thermal
analysis, as well as shock and vibration.

METHODS OF CONSTRUCTION

Equipment designed to withstand shock and/or vibration excitations must typically
be stronger than equipment that only has to withstand gravity or static acceleration
loads. This dictates that the equipment have a well-defined primary structure that
can withstand the dynamic excitations, as well as carry the additional excitations that
might be internally generated. Basic construction methods should be considered
early in the design process to facilitate the modeling and analysis procedures dis-
cussed later.

PRIMARY STRUCTURE

Primary structures are those that carry the greatest loads and support the secondary
structures and subassemblies. The design and analysis of any product should start
with particular attention to primary structure.The primary structural elements often
have to be designed early in the product development cycle to allow for long lead-
time material and tooling acquisition. Simple lumped parameter (see Chap. 2) or
beam/plate finite element models (see Chap. 28, Part II) can be used to perform ini-
tial stiffness and natural frequency calculations for primary structures. There are
many ways to build primary structures.

Machined Parts. Machined parts are often used for primary structures. The
machining operations can be customized to place holes and attachment points for
secondary structures where needed. For economic reasons, machine operations can
be used to remove unnecessary material or allow thicker sections where needed.
Machined parts are typically used for low-volume production. Unfortunately,
machining operations can also reduce the strength of the parent material by intro-
ducing microcracks that might lead to fatigue or fracture. Machined parts may need
to be heat-treated after machining to develop the necessary strength and ductility
for the intended use.

Castings/Forging. Casting or forged parts are typically used for high-production-
volume structural elements because they usually can be formed in near-final shapes
that reduce the need for machining operations. Cast materials typically have lower
strength and ductility than wrought or forged materials (see Chap. 34). Cast mate-
rials also can suffer from various manufacturing defects, such as porosity and shrink-
age, which can increase part variability. This variability should be factored into the
stress and strength analysis of the part.

Forged parts typically have higher strengths than cast and wrought materials.The
forging process can shape material grain and orient the strength along specific part
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FIGURE 41.2 Illustration of stiffened primary structure for equipment with
a shock-mounted subassembly. (H. M. Forkois and K. E. Woodward.5)

directions. Forged parts are used when the very highest strengths are needed to
resist high excitations, e.g., in aircraft landing gear and construction equipment link-
ages. The forging process does tend to be expensive because of the hard tooling that
is needed to form parts under high temperatures and pressures.

Plates/Sheet Metal. Sheet and plate parts are often used for primary structures,
especially when they are formed into more rigid three-dimensional shapes. Sheet
and plate material can often be bent, cut, and then joined to other parts to give
strength and stiffness where needed. Automobile bodies are excellent examples of
how sheet metal can be used to form rigid and reliable structures. Modern com-
puter-controlled laser and water-jet cutting techniques can be used to form compli-
cated sheet or plate metal geometries economically for even low-volume
production. The important thing to remember with sheet or plate metal construc-
tion is that parts need to be stiffened in the out-of-plane (normal to the surface)
direction. Care should also be given to minimizing large unsupported areas that can
vibrate, especially with acoustic excitation. An example of stiffened construction
for the base of an equipment item with a shock-isolated subassembly is shown in
Fig. 41.2.

Beam Frames. Beam and tube construction is a very efficient way to make pri-
mary structures that span large distances, especially when built into trusses or
frames. Beams and tubes also have the advantage of high material strength because
of the manufacturing processes, such as extrusions, that form them into their contin-
uous cross sections. The most difficult part of designing a beam or tube structure is
determining the best way to join the pieces.Welding can often reduce the strength of
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the material at the joints, requiring additional fittings or gussets to maintain the nec-
essary overall strength. Care should also be given to locating any holes or secondary
attachment points at low-stress locations on the beams.

Composite Structures. Composite structures have proven to be efficient pri-
mary structures, especially when high strength and low weight are prime concerns.
Composite materials can be laid up into plate, beam, and large thin-wall structures.
Boat hulls and filament-wound pressure vessels are good examples of large com-
posite thin-wall structures. Composite materials can be mixed, taking advantage of
different strength, stiffness, thermal conductivity, and thermal expansion properties
for each layer. However, care is required when designing joints for composite struc-
tures. See Chap. 35 for details on the properties of composite materials.

SECONDARY STRUCTURES

Secondary structures are those structures used to attach subassemblies to primary
structures. Secondary structures typically do not have the more stringent strength
and stiffness requirements of the primary structures, so they can be designed later in
the development cycle, often allowing changes in geometry to accommodate
changes in subassemblies. Secondary structures can also evolve as more cost-
efficient materials or manufacturing processes are developed.

Plates/Sheet Metal. Plate and sheet metal parts are often used for nonstructural
members such as covers. In this case, the products need only to support their own
weight or some minor additional weight due to cables, sensors, or other secondary
assemblies. As with all plate structures, care should be given to minimizing large
unsupported areas.

Composite Structures. Composite structures can also be used for secondary
structures.Their high strength-to-weight ratios make them attractive options for cov-
ers and other molded thin-wall sections that need to support some subassemblies.

Plastic Parts. Plastic parts can be used for both primary and secondary structures.
Plastics can form adequate primary structures, especially for smaller, low-weight
consumer products that are not subjected to extreme conditions. When combined
with other materials, such as metal stiffeners in selected areas, plastics can be used
effectively for even larger products. The wide range of colors, finishes, and shapes
make plastic materials a common choice for secondary structures that are visible to
the consumer. They also make excellent low-cost parts when they do not need to be
exposed to intense shock and/or vibration excitations.

INTERFACES AND JOINTS

Interfaces are the junctions between the various structural elements that form the
equipment. The manner in which the structural elements are jointed together at
interfaces is very important in the construction of equipment because the interface
friction at joints is the primary source of the damping (energy dissipation) in the
equipment that restricts its dynamic response to vibration and, to a lesser degree,
shock excitations. There are five basic devices used to make joints in the construc-
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tion of equipment, namely, (a) continuous welds, (b) spot welds, (c) rivets, (d) bolts,
and (e) adhesives.Typical values of the damping ratio in fabricated equipment using
these various types of interface joints are summarized in Table 41.1.

Welded Joints. Welded joints must be well designed, and effective quality con-
trol must be imposed upon the welding conditions. The most common defect is
excessive stress concentration which leads to low fatigue strength and, consequently,
to inferior capability of withstanding shock and vibration. Stress concentration can
be minimized in design by reducing the number of welded lengths in intermittent
welding. For example, individual welds in a series of intermittent welds should be at
least 11⁄2 in. long with at least 4 in. between welds. Internal crevices can be eliminated
only by careful quality control to ensure full-depth welds with good fusion at the
bottom of the welds. Welds of adequate quality can be made by either the electric
arc or gas flame process. Subsequent heat-treatment to relieve residual stress tends
to increase the fatigue strength. See Refs. 6 and 7 for further information on welded
joints.

Spot-Welded Joints. Spot welding is quick, easy, and economical but should be
used only with caution when the welded structure may be subjected to shock and
vibration. Basic strength members supporting relatively heavy components should
not rely upon spot welding. However, spot welds can be used successfully to fasten a
metal skin or covering to the structural framework. Even though improvements in
spot welding techniques have increased the strength and fatigue properties, spot
welds tend to be inherently weak because a high stress concentration exists in the
junction between the two bonded materials when a tension stress exists at the weld.
Spot-welded joints are satisfactory only if frequent tests are conducted to show that
proper welding conditions exist. Quality can deteriorate rapidly with a change from
proved welding methods, and such deterioration is difficult to detect by observation.
However, accepted quality-control methods are available and should be followed
stringently for all spot welding. See Refs. 6 and 7 for further information on spot-
welded joints.

Riveted Joints. Riveting is an acceptable method of joining structural members
when riveted joints are properly designed and constructed. Rivets should be driven
hot to avoid excessive residual stress concentration at the formed head and to
ensure that the riveted members are tightly in contact. Cold-driven rivets are not
suitable for use in structures subjected to shock and vibration, particularly rivets
that are set by a single stroke of a press as contrasted to a peening operation. Cold-
driven rivets have a relatively high probability of failure in tension because of resid-
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TABLE 41.1 Typical Damping Ratios for Equipment with
Various Types of Joints

Method of Typical damping ratio
construction for equipment

Welded and spot-welded 0.01
Riveted 0.025
Bolted 0.05
Bonded 0.01 to 0.05*

* Heavily dependent on the type of adhesive and its thickness.
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ual stress concentration, and tend to spread between the riveted members with con-
sequent lack of tightness in the joint. Joints in which slip develops exhibit a rela-
tively low fatigue strength. See Refs. 6 and 7 for further information on riveted
joints.

Bolted Joints. Except for the welded joints of principal structures, the bolted
joint is the most common type of joint. A bolted joint is readily detachable for
changes in construction, and may be effected or modified with only a drill press and
wrenches as equipment. However, bolts tend to loosen and require a means to main-
tain tightness. Furthermore, bolts are not effective in maintaining alignment of
bolted connections because slippage may occur at the joint; this can be prevented by
using dowel pins in conjunction with bolts or by precision fitting the bolts; i.e., fitting
the bolts tightly in the holes of the bolted members. See Refs. 6 and 7 for further
information on bolted joints.

Adhesives. Adhesives are gaining increased usage as a method of attaching struc-
tural elements.When stringent manufacturing controls are used to ensure consistent
material properties and area coverage, adhesives can be used in most joints between
structures. Adhesives have an advantage over other types of joints when some flexi-
bility and damping is needed in the joint. Adhesives are also good at filling uneven
gaps in parts manufactured to wider tolerances. See Ref. 7 for details.

SUBASSEMBLIES

Most types of equipment, especially large items, require subassemblies to perform
various functions to satisfy the overall function of the equipment. These subassem-
blies must be supported on the primary or secondary structures in a way that ensures
they will function correctly. Subassemblies can often be treated as lumped masses,
but they may need additional dynamic analysis when they are large or sensitive to
dynamic effects. Subassemblies and their support structures often need to have their
own requirements allocated to them. Examples are given below.

Electronic Assemblies. Many equipment items include one or more electronic
assemblies. The designer must ensure that the environment seen by the electronic
assembly is low enough for it to function correctly for the intended duration. Often,
electronic assemblies will be purchased with specific dynamic requirements that, if
exceeded, may cause malfunction or permanent damage. The design of support
structures for the electronic assembly must ensure that the input dynamic environ-
ment to the assembly is within the specified dynamic requirements. Otherwise, the
assembly must be mounted to the equipment through shock or vibration isolators
(see Chaps. 30 to 32).

When it is necessary to design new electronic assemblies, several specific proce-
dures need to be followed. First, the designer should establish a dynamic require-
ment for the assembly, as discussed earlier. Then, parts that can withstand this
requirement must be selected. If some parts cannot be procured (at a reasonable
cost) to withstand these levels, then isolation of a subassembly or the whole assem-
bly must be considered. Finally, the design of the electronic circuit boards to which
parts will be mounted requires specific attention.

Electronic circuit boards, also called printed wiring boards (PWBs) or printed
wiring assemblies (PWAs), are often constructed of laminated fiberglass or other
composite materials. These boards form a flexible plate that, if not supported ade-
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quately, can deflect easily and deform or break sensitive electrical part connection
leads. Frequent attachment points, stiffening ribs, heat sinks, and plates should be
considered early in the design of the electronics. It is often desirable to take advan-
tage of the damping characteristics of adhesives used to bond stiffeners and heat
sinks to boards to reduce dynamic deflection. See Ref. 8 for details on the design of
electronic equipment for vibration environments.

Mechanical Assemblies. Mechanical assemblies require special attention when
they deliver dynamic excitations to the structures that support them. Mechanical
items, such as hydraulic cylinders or electrical motors, can induce large dynamic exci-
tations to their support structures. Structural fittings need to withstand these excita-
tions and often allow removal or adjustment of the mechanical assembly after its
original manufacture. Dynamic excitations can also affect the performance of
mechanical assemblies. For example, dynamic accelerations can act on imbalanced
masses in rotating equipment to cause additional shaft displacement or speed errors.
These disturbances need to be either limited or isolated.

Optical Assemblies. Optical assemblies need special consideration when used in
dynamic environments. Optics must often be mounted using strain-free exact con-
straints. Overly constrained mounts are statically indeterminate, causing unpre-
dictable and unwanted deformations. The dynamic parameters of the optical
elements by themselves must also be well understood so that the effects of any
dynamic excitations can be kept to an acceptable level. Of considerable concern is
the lightly damped and brittle nature of glass optics.

SHOCK AND VIBRATION CONTROL SYSTEMS

As mentioned in several of the previous sections, many systems need to be designed
to provide some sort of vibration isolation for sensitive assemblies contained within
them. Shock and/or vibration isolation is typically achieved by what is essentially a
low-pass mechanical filter (see Chaps. 30 through 32).These isolation systems can be
very effective and should be considered early in the equipment design cycle, but are
often considered later as a fix for a poor design. Passive shock and vibration control
can also be achieved by careful attention to the damping characteristics of the mate-
rials used in the construction of the structure (see Chap. 36). Finally, applied damping
treatments can be used to suppress unwanted dynamic responses (see Chap. 37).

DESIGN CRITERIA

Based upon a thorough evaluation of the environments and requirements summa-
rized in the preceding section, specific design criteria must now be formulated.These
criteria may cover any or all of the environments previously summarized, but it is the
shock and vibration (dynamic excitations) environments that are of concern in this
handbook. The dynamic environments are usually specified as motion excitations
(commonly acceleration) at the mounting points of the equipment to its supporting
structure. However, there may be situations where the equipment is directly exposed
to fluid flow, wind, or aeroacoustic loads, which cause fluctuating pressure excita-
tions over its exterior surfaces that can produce a significant contribution to the
dynamic response of the equipment. An example would be a relatively light item of
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equipment with a large exterior surface area mounted in a space vehicle during
launch. In this case, the dynamic excitation design criteria must also include pressure
excitations over the exterior surface of the equipment, as detailed in Chap. 29, Part
III. Nevertheless, attention here is restricted to dynamic inputs in the form of motion
excitations at the mounting points of the equipment. It is assumed these dynamic
excitations will be described by an appropriate frequency spectrum, as summarized
in Table 20.2.

DESIGN EXCITATION MAGNITUDE

The procedures for deriving the magnitude of the dynamic excitations for design
purposes are essentially the same as those used to derive qualification test levels in
Chap. 20. The principal steps in the procedure are as follows:

Determination of Excitation Levels. When the structural system to which the
equipment is to be mounted is available, the shock and vibration levels should be
directly measured in terms of an appropriate frequency spectrum (see Table 20.2) at
or near all locations where the equipment might be mounted. If the structural sys-
tem is not available, the shock and vibration levels must be predicted in terms of an
appropriate frequency spectrum at or near all locations where the equipment might
be mounted using one or more of the prediction procedures detailed in other chap-
ters of this handbook and summarized in Chap. 20. These measurements or predic-
tions should be made separately for the shock and/or vibration environments during
each of the life-cycle phases discussed in the previous section.

Determination of Maximum Expected Environments. For each life-cycle
phase, the measurements or predictions of the shock and/or vibration environments
made at all locations at or near the mounting points of the equipment to its sup-
porting structure should be grouped together. Often design criteria are derived for
two or more equipment items in a similar structural region. Hence, a dozen or more
measurements or predictions may be involved in each grouping of data (called a
zone in Chap. 20). A limiting (maximum) value of the spectra for the measured or
predicted shock and/or vibration data at all frequencies is then determined, usually
by computing a statistical tolerance limit defined in Eq. (20.2). The statistical toler-
ance limit given by Eq. (20.2) provides the spectral value at each frequency that will
exceed the values of the shock and/or vibration spectra at that frequency for a
defined portion β of all points in the structural region with a defined confidence
coefficient γ. This limiting spectrum is called the maximum expected environment
(MEE) for the life-cycle phase considered.

The MEE will generally be different for each life-cycle phase. From a design
viewpoint, since the equipment response is heavily dependent on the frequency of
the excitation, it is the largest MEE at each frequency (that is, the envelope of the
MEEs for all life-cycle phases) that is important.This envelope of the MEEs is called
the maximax environment. This same concept of a maximax spectrum is commonly
used to reduce the time-varying spectra for nonstationary vibration environments,
as defined in Chap. 22, to a single stationary spectrum that represents the maximum
spectral values at all times and frequencies.

Equipment Loading Effects. The shock and/or vibration measurements or pre-
dictions used to compute the maximax excitation spectral levels at the mounting
points of the equipment are commonly made without the equipment present on the
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mounting structure. Even when the equipment is present for the measurements or
modeled for the predictions, the computations required to determine MEEs and the
final maximax spectrum smooth the detailed variations in the spectral level with fre-
quency. However, if the equipment is relatively heavy compared to its mounting
structure, then when the equipment is actually mounted on the structure, the shock
and/or vibration levels at the equipment mounting points are modified. This is par-
ticularly true at the normal mode frequencies of the equipment where it acts like a
dynamic absorber, as detailed in Chap. 6. The result is a spectrum for the input exci-
tation from the supporting structure that may be substantially reduced in level at the
normal mode frequencies of the equipment. If this effect is ignored, the maximax
spectrum might cause a severe overdesign of the equipment.

The equipment excitation problem can be addressed in two ways. First, if there is
a sufficient knowledge of the details of the supporting structure, the input excitation
spectra at the equipment mounting points can be analytically corrected using the
mechanical impedance concepts detailed in Chap. 10. Specifically, let Zs( f ) and
Ze( f ) denote the mounting point impedance of the supporting structure and the
driving point impedance of the equipment, respectively. Then for a periodic vibra-
tion

Lc( f ) = (41.1a)

where Lc( f ) and Lr( f ) are the line spectra, as defined in Eq. (22.5), for the response
of the equipment mounting structure with and without the equipment present,
respectively. For a random vibration,

Wcc( f ) = (41.1b)

where Wcc( f ) and Wrr( f ) are the power spectra, as defined in Eq. (22.8), for the
response of the equipment mounting structure with and without the equipment
present, respectively. For those situations where the driving point impedance of the
equipment is small compared to the mounting point impedance of the structure, that
is, Ze( f ) << Zs( f ), it is seen from Eq. (41.1) that the vibration response of the equip-
ment mounting structure is only slightly altered when the equipment is attached.
However, if Ze( f ) approaches Zs( f ), as it often will at the normal mode frequencies
of equipment mounted on relatively flexible structures, then the vibration of the
mounting structure will be significantly modified by the presence of the equipment,
and a correction of the design levels for the equipment loading will be required.
Again assuming there is a sufficient knowledge of the details of the supporting struc-
ture, a second way to correct for the equipment loading problem is to include at least
a portion of the supporting structure in the equipment model that will be used for
the equipment response analysis to be discussed later.

DESIGN LIFE

For equipment that is designed for a long service life, the potential for a time-
dependent failure (e.g., fatigue damage) is generally of primary concern. Hence, the
total duration of the dynamic excitation exposure during all of the life-cycle phases
must be determined. For shock environments, the problem reduces to simply esti-
mating the total number of shocks that will occur during each of the life-cycle

Wrr( f)
���
|1 + [Ze( f )/Zs( f )]|2

Lr( f )
��
|1 + [Ze( f )/Zs( f )]|
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phases. For vibration environments, however, an equivalent duration for the vibra-
tion excitations during each life-cycle phase must be computed. If the vibration envi-
ronment during a life-cycle phase were stationary, the task would be simple.
However, vibration environments during life-cycle phases are often nonstationary
(see Chap. 22). A common approach in this case is to assume any time-dependent
failure of the equipment follows the inverse power law given by Eq. (20.6), where a
value of b = 8 is often assumed for metal structures with no stress concentrations,
and b = 4 is commonly assumed for electrical and electronic equipment, as well as
metal structures with substantial stress concentrations. Using Eq. (22.6), vibration
environments of different magnitudes and durations can be collapsed to a single sta-
tionary vibration environment with an equivalent damaging potential using Eqs.
(20.7) and (20.8), as illustrated for automotive equipment in Table 20.4. In addition,
this procedure is often used to collapse the vibration environments during each of
the life-cycle phases into a single spectrum with an equivalent total duration for
design purposes.

DESIGN MARGINS

Given the maximax spectra for the shock and/or vibration excitations at the mount-
ing points of the equipment, perhaps with a correction for the loading effects of the
equipment on its supporting structure, it is common to further increase the levels to
allow for uncertainties in the derived maximax levels. This increase in the levels is
called the design margin, and is commonly selected to be between +3 and +6 dB. For
a periodic vibration described by a line spectrum, as defined in Eq. (22.5), or a shock
described by a shock response spectrum, as defined in Eq. (23.33), +3 dB and +6 dB
correspond to a multiplication of the spectral values by �2� and 2, respectively. For a
random vibration described by a power spectrum, as defined in Eq. (22.8), +3 dB and
+6 dB correspond to a multiplication of the spectral values by 2 and 4, respectively.
Of course, other design margins, either larger or smaller, might be selected depend-
ing on the designer’s confidence in the derived maximax spectrum. In any case, the
maximax spectrum plus the design margin gives the final shock and/or vibration
design magnitudes.

METHODS OF ANALYSIS

The analysis of structures for design purposes must involve an analytical model.This
section outlines the different types of analysis methods and gives advice on how to
use them for the design of equipment.

MODELING

Modeling is an essential part of the design process. Models allow designers to under-
stand the dynamic behavior of the equipment and conduct trade-off studies and
experiments without committing to hardware. Options range from the single degree-
of-freedom model (see Chap. 2) to finite element method (FEM) models with thou-
sands of degrees-of-freedom (see Chap. 28, Part II). Modern computers allow very
large numerical analysis models to be created. In the limit, every detail of a structure
can be analyzed. However, the economic wisdom of such a pursuit is questionable.
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The decision of how much detail to incorporate into a model should be driven by
a clearly defined objective related to a specific design requirement or constraint.The
designer must determine the required output of the modeling effort and ensure
appropriate design features are adequately represented in the model. For example,
the model format and size will depend upon the need for stress results. In general,
much less detail is required for displacement models than for stress models. Stress
concentration resolution generally requires extensive modeling detail.

Sometimes multiple models are appropriate. For example, lumped parameter
models may be sufficient in preliminary design and for conducting system sway
space budget exercises. A beam model may be appropriate for a shock or vibration
isolation system and excitation path design. In most cases, a finite element model is
necessary to resolve stresses in detailed features. Engineering judgment must be
applied to assess the need for modeling nonlinear properties and detailed features.
Planning and data management are also important elements of the modeling
process. The designer should consider all of the potential uses of the model prior to
model construction.

Lumped Parameter Models. The simplest type of dynamic model is the single-
degree-of-freedom system, for which tabulated and charted solutions are widely
available (see Chaps. 1 and 2). Lumped parameter models can be used to accurately
represent many mechanical structures. These include structures in which one struc-
tural element is much more flexible than the remaining structure. In such a case, the
rigid portion of the structure may be adequately represented as a lumped mass con-
nected to the equivalent spring stiffness of the flexible element. The behavior of
complex structures often can be represented by very simple dynamic models.
Designers should seek to recognize and exploit such simplifications wherever possi-
ble, as is illustrated later.

Distributed Parameter Models. Sometimes the mass of a structure is evenly dis-
tributed over a large span of the structure. In these cases, a lumped parameter model
may require a very large number of degrees-of-freedom, and a distributed modeling
approach is preferred. Distributed parameter models are on the next level of com-
plexity in the hierarchy of modeling tools. Classical beam, plate, and shell theory
provide the basis for such modeling. Poles, wings, frames, and the leads of electronic
devices may be considered as beams, while printed circuit boards, panels, covers, and
doors may be viewed as plates. Modeling techniques for distributed systems are pro-
vided in Chaps. 1 and 7.

Finite Element Method Models. Systems with multiple distributed parameter
components become difficult to solve as geometry becomes even modestly complex.
Fortunately, user-friendly software tools exist which enable designers to obtain com-
puter solutions to distributed parameter models using the finite element method
(FEM) of analysis. See Chap. 28, Part II, for details on FEM models and Chap. 27 for
a discussion of the computer implementation of FEM models.

FEM models can vary widely in complexity depending on the desired results.
Because FEM models can place substantial demands on computer and human
resources, it is important not to make the model any more complex than needed for
the application. Relatively simple models that involve only a few hundred degrees-
of-freedom are often adequate to compute estimates for the first few normal modes
of a structure. On the other hand, models involving 10,000 or more degrees-of-
freedom are often required to obtain accurate stress predictions, particularly if the
structure has nonlinear characteristics. This variation in the complexity of an FEM
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model for different applications is illus-
trated in Fig. 41.3. A drawing of a
ground-based radar unit in a stowed
position for transportation is shown in
Fig. 41.3A. A simple (400 degrees-of-
freedom) beam approximation for the
structure, which is adequate to estimate
the first few normal mode frequencies
of the equipment, is illustrated in Fig.
41.3B. In contrast, a complex (10,000+
degrees-of-freedom) model used for
stress analysis is depicted in Fig. 41.3C.
Construction and execution times of the
two models are vastly different.The sim-
ple model in Fig. 41.1B was constructed
in a day or so, and can be executed on
the computer in a few minutes. Hence, it
can be very useful in preliminary design
where numerous analyses can be made
with various different structural config-
urations to select a basic structural
design that will have certain desired
normal mode characteristics. On the
other hand, the complex model, which
includes nonlinear features, may take
weeks of effort to construct and require
hours of computer time to execute, mak-
ing it practical only for final design.
Model architectures must be carefully
planned for specific objectives.

Statistical Energy Analysis Models.
Even the most detailed FEM model
becomes increasingly inaccurate at fre-
quencies above about the 50th normal
mode frequency of the structure. For
equipment that is exposed to relatively
high-frequency dynamic excitations, such
as aeroacoustic excitations (see Chap.
29, Part III) or pyroshock excitations
(see Chap. 26, Part II), FEM analysis
procedures usually become costly and
ineffective. In such cases, statistical en-
ergy analysis (SEA) procedures become

attractive (see Chap. 11). However, SEA procedures have three important limita-
tions, as follows:

1. They provide a vibration response averaged over a structural region, rather than
at specific locations on the structure.

2. They provide a vibration response averaged over frequency bandwidths that
each cover several normal modes of the structure (commonly 1⁄3-octave band-
widths), rather than at specific frequencies.
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FIGURE 41.3 Illustration of FEM models for
ground-based radar unit: (A) diagram of unit,
(B) simple FEM model, (C) complex FEM
model. (Courtesy of Lockheed Martin Corpora-
tion.)
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3. They provide accurate results only when there are at least five normal modes of
the structure in the frequency bandwidth used for the analysis.

The above limitations make it difficult to translate SEA results into stresses at spe-
cific locations on the equipment structure. Nevertheless, SEA can yield valuable
descriptions of the average shock and/or vibration response of structural elements in
the equipment as a coarse function of frequency. Furthermore, since SEA models do
not require structural details, they can be used effectively during the preliminary
design phase.

PRELIMINARY DESIGN PROCEDURES

Based upon all the considerations and requirements discussed earlier, an initial
design for the equipment should be made, perhaps with the assistance of a standard
design handbook (e.g., Ref. 7), relevant reference books (e.g., Refs. 8 and 9), and/or
specialized reference documents (e.g., Ref. 5). This initial design should be modeled
by any of the procedures discussed earlier, although FEM and SEA models are pre-
ferred. A simple FEM model can be used to estimate the first few normal modes of
the equipment, as well as the maximum displacements, velocities, and accelerations
induced by the design shock and/or vibration excitations at frequencies up through
the first few normal mode frequencies. An SEA model can be used to estimate the
average accelerations of various elements of the equipment induced by the design
shock and/or vibration excitations at the higher frequencies where there are at least
several normal modes of the equipment in the SEA analysis bandwidths (usually 1⁄3-
octave bandwidths). In either case, all of these responses can be evaluated by exe-
cuting the model(s) for various different structural configurations.

Of particular concern early in the design process is the identification of the
potential for excessive stresses in the equipment structure due to the design shock
and/or vibration excitations. Since the maximum stresses in equipment structures
exposed to shock and/or vibration excitations are generally due to the responses of
the normal modes of the equipment, preliminary estimates of stress can be made
using the relationship between maximum modal bending stress and maximum
modal (relative) velocity given by1,10

σm ≈ CEvm/c ≈ Cvm �Eρ� (41.2)

where σm = maximum modal bending stress in the structure
vm = maximum modal velocity of the structural response

c = speed of sound (longitudinal wavespeed) in the structural material
E = Young’s modulus of the structural material
ρ = mass density of the structural material
C = constant of proportionality

The coefficient C in Eq. (41.2) is C ≈ 2 for all normal modes of homogeneous plates
and beams,10 but can vary widely for complex equipment structures depending on the
geometric details and the specific normal mode of the response.11 Nevertheless, a
value of C in the range 4 < C < 8 is often assumed for the first normal mode response
of typical equipment designs.12 The first normal mode frequency of the equipment
can be estimated early in the design using a simple FEM model, as illustrated in Fig.
41.3B. Equation (41.2) can then be applied to estimate the maximum stress in the
response of any arbitrary equipment structure by assuming the following:
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1. The maximum stress in the basic structure of the equipment occurs due to the
response of the equipment at its first normal mode frequency.

2. The response of the equipment at its first normal mode frequency can be mod-
eled by a base-excited single-degree-of-freedom system (oscillator), as illustrated
in Fig. 23.5.

It is emphasized that this approach provides only crude estimates for maximum
stress that are intended to provide guidance on desirable natural frequencies and
damping ratios for the equipment design, and the possible need for a shock or vibra-
tion isolation system in the final design. Furthermore, it does not provide any infor-
mation concerning the possibility of functional failures in electrical, electronic, or
optical subassemblies in the equipment.

Shock Excitations. Consider a shock environment where the design excitation is
described by a relative displacement shock response spectrum, as given by the max-
imum value of Eq. (23.33), which is denoted here as δm( fn,ζ) where fn is the natural
frequency and ζ is the damping ratio of the single-degree-of-freedom system. Since
the shock response spectrum is defined as the maximum response of a single-
degree-of-freedom system as a function of its natural frequency and damping ratio,
it can be used directly with Eq. (41.2) to predict the maximum stress in the structure
of equipment due to a response at its first normal mode frequency, specifically,

σm = CE(2πfn)δm( fn,ζ)/c (41.3)

where all terms are as defined in Eq. (41.2) and the (2πfn) term is needed to convert
the relative displacement shock response spectrum to an approximate relative
velocity shock response spectrum, commonly referred to as a pseudovelocity shock
response spectrum because it is an exact relative velocity shock response spectrum
only for ζ = 0. From Chaps. 8 and 23, for simple pulse-type transients, the SRS values
vary only slightly with damping ratio for ζ ≤ 0.05. Hence, for such transients, the
value of the damping ratio used to compute the SRS is not of major importance.
However, for more complex transients like pyroshocks (see Chap. 26, Part II), the
assumed damping ratio has a greater influence on the SRS value and, hence, must be
more accurately defined.

For example, assume an item of equipment must be designed to survive the U.S.
Navy high-intensity shock test for lightweight equipment, i.e., a weight of less than
350 lb (159 kg), which constitutes one of the most severe shock environments any
equipment would experience in a service environment. The test machine is dia-
grammed in Fig. 26.6, and the SRS for the shock computed with a damping ratio of
about ζ = 0.01 is shown in Fig. 26.7. Further assume the equipment is to be con-
structed from a high-quality aluminum alloy, such as 2024-T3, that has a yield and
ultimate strength of 50,000 psi (345 MPa) and 70,000 psi (483 MPa), respectively.2

For aluminum, E ≈ 10 × 106 psi (6.9 × 104 MPa) and c ≈ 2 × 105 in./sec (5100 m/sec).
From Fig. 26.7, if the first normal mode of the equipment were at 100 Hz, the veloc-
ity SRS value [2π(100)δm) would be about 400 in./sec (10 m/sec). Hence, from Eq.
(41.3), even assuming an optimistic value of C = 4 and adding no design margin, the
maximum stress in the equipment structure would be about σm = 80,000 psi (552
MPa). Although this stress is in the nonlinear region of the material, it probably
would cause a structural failure. It follows that the designer should proceed assum-
ing a shock isolation system (see Chap. 31) will be needed in the final design. On the
other hand, if the first normal mode frequency of the equipment were above 400 Hz
where the velocity SRS value from Fig. 26.7 is 180 in./sec (4.6 m/sec), then the maxi-
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mum stress would be about 36,000 psi (248 MPa) and the equipment might survive
without a shock isolation system. However, it would be difficult to design equipment
with a first normal mode frequency above 400 Hz unless the equipment is relatively
small.

Periodic Vibration Excitation. Consider a periodic vibration environment where
the design excitation is described by a line spectrum, La( f ), with the units of g
(acceleration in gravity units) versus frequency in Hz, as defined in Eq. (22.5). In the
unlikely case where the fundamental frequency f1 of the excitation is fixed, then the
stress in the equipment response can be suppressed simply by pursuing a design with
no normal modes of the equipment at frequencies near f1, or any significant har-
monics thereof. In many cases, however, the fundamental frequency of periodic
vibration environments varies with time, e.g., rotating machinery and reciprocating
engines that produce periodic vibration environments often operate at various dif-
ferent rpms. Hence, the designer must usually assume that at least one of the har-
monic frequencies of the periodic excitation will correspond to a normal mode
frequency of the equipment, at least on some occasions. From Eqs. (2.41) and (41.2),
and assuming a damping ratio of ζ < 0.1, the maximum stress in the equipment struc-
ture for a periodic excitation at the equipment natural frequency is given by

σm = (41.4)

where gLa( fn)/(2πfn) converts the periodic excitation in gravity units to velocity, and
all other terms are as defined in Eq. (41.2).

For example, assume an item of equipment must be designed to survive a peri-
odic excitation with an amplitude of 5g and a frequency, at least on some occasions,
of 100 Hz. Further assume the equipment has a fundamental normal mode at fn = 100
Hz with a damping ratio of ζ = 0.025, and the equipment structure is a steel alloy
where E = 30 × 106 psi (2.1 × 105 MPa) and c = 2 × 105 in./sec (5100 m/sec). Using an
average value of C = 6, the maximum stress in the equipment structure is approxi-
mated by Eq. (41.4) as σm = 55,000 psi (380 MPa). A maximum stress of this magni-
tude would probably not cause an immediate fracture of a high-quality steel alloy,
but it might ultimately lead to a fatigue failure.A preliminary estimate of the poten-
tial for a fatigue failure could be evaluated by estimating the number of cycles dur-
ing the design life when the periodic component is at the normal mode frequency of
the equipment, and then making a prediction of the fatigue life using the procedures
detailed in Chap. 34.

Equation (41.4) provides important guidance to the designer of equipment that
will be exposed to a periodic excitation at its fundamental normal mode frequency.
Specifically, the maximum stress in the equipment structure is inversely proportional
to the damping ratio of the structure. Hence, unlike pulse-type shock excitations,
applied damping treatments (see Chap. 37) constitute a powerful design tool for
reducing the maximum stress levels induced by periodic excitations.

Random Vibration Excitation. Consider a random vibration environment where
the design excitation magnitude is described by a power spectrum, Waa( f ), with the
units of g 2/Hz versus frequency in Hz, as defined in Eq. (22.8). Assume the random
excitation has a frequency bandwidth that covers at least the fundamental normal
mode frequency of the equipment. From Eqs. (11.35) and (41.2), and assuming a
damping ratio of ζ < 0.1, the rms value of the maximum stress in the equipment
structure due to its response at the first normal mode frequency is approximated by

CEgLa( fn)/c
��

4πfnζ
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σrms = �� (41.5)

where g 2Waa(fn)/(2πfn)2 converts the power spectrum from g 2/Hz to v2/Hz, where v
is velocity in in./sec (m/sec) and all other terms are as defined in Eq. (41.2).

As an illustration, assume an item of equipment must be designed to survive a
random vibration excitation with a magnitude (including a design margin) of
0.2g 2/Hz at its fundamental normal mode frequency. Further assume the equipment
has a fundamental normal mode at fn = 50 Hz with a damping ratio of ζ = 0.025, and
the equipment structure is an aluminum alloy where E = 10 × 106 psi (6.9 × 104 MPa)
and c = 2 × 105 in./sec (5100 m/sec). Using a conservative value of C = 8, the maxi-
mum rms stress in the equipment structure is approximated by Eq. (41.5) as σm =
8,700 psi (60 MPa). However, this is an rms stress. The maximum stress must be esti-
mated in terms of a probability function. From Ref. 13, the maximum stress level that
will be exceeded at least once during an exposure duration of T sec with a probabil-
ity of P(T) is estimated by

σm = σrms�2 ln ����� (41.6)

where ln [ ] is the natural logarithm of [ ]. For example, if the total exposure duration
at the design magnitude is T = 5 h (18,000 sec), the stress level that might be
exceeded with a probability of P(T) = 5 percent would be about 50,000 psi (345
MPa). This maximum stress probably would not cause an instantaneous fracture of
the structure, assuming it is fabricated from a high-quality aluminum alloy such as
2024-T3 that has an ultimate strength of 70,000 psi (483 MPa),2 but it might cause a
fatigue failure over a sufficiently long exposure time.

It should be noted that Eq. (41.6) is unbounded, that is, there is no limit on the
maximum stress as the duration T increases. However, experience suggests that this
equation yields reasonable results for durations up to the equivalent of about 1 × 106

cycles, assuming the structural response is linear. For longer-duration environments,
the potential for a structural failure should be evaluated using the fatigue prediction
procedure detailed in Chap. 11 for a narrow bandwidth structural response, or a nar-
row bandwidth random fatigue curve.12

Equation (41.5) provides important guidance to the designer of equipment that
will be exposed to a random vibration excitation at its fundamental normal mode
frequency. Specifically, the maximum stress in the equipment structure is inversely
proportional to the square root of the damping ratio of the structure, rather than the
first power of the damping ratio, as for periodic vibrations in Eq. (41.4). Hence,
applied damping treatments (see Chap. 37) do not provide as powerful a design tool
for reducing the maximum stress levels induced by random excitations.

FINAL DESIGN PROCEDURES

The final design of equipment for shock and/or vibration excitations is best accom-
plished using a detailed finite element method (FEM) model, as illustrated in Fig.
41.3C. By applying the design excitations to the FEM model, the stresses at critical
locations on the equipment structure, as well as the displacements and accelerations
at those locations where equipment motions are critical, can be predicted for any
modeled structural configuration. The designer can simply modify various elements
of the structure to minimize the stress, displacement, and/or acceleration responses

fnT�
P(T)

g 2Waa(fn)��πfnζ
CE
�
4c
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at all locations of concern to arrive at a final design. Specialized computer programs
are available to facilitate these final design procedures (see Chaps. 27 and 28, Part
II). Of course, all of the environments and requirements discussed earlier must be
integrated into the design. In particular, the effects of the temperature environment
on the strength and stiffness of all elements of the design that are temperature-
sensitive must be carefully incorporated into the structural properties.

Fatigue Damage. For equipment being designed for a long service life, a primary
step in the final design process is a fatigue life prediction. This can be accomplished
in one of two ways, as follows:

1. For either periodic or random vibration excitations, the design excitation can be
applied to the FEM model, and a sample time-history for the stress response at
any location of concern can be computed. This sample time-history can then be
used to predict the fatigue life using the procedures given for metals in Chap. 34
or composites in Chap. 35.

2. For random vibration excitations, the design excitation can be applied to the
FEM model and the spectrum for the stress response at any location of concern
can be computed.This spectrum can then be used to make a statistical prediction
for the fatigue life using the procedures given in Chap. 11 and Ref. 14.

Higher-Order Response Modes. Some design shock and/or vibration excitations
may have substantial energy in the frequency range of the higher-order normal
modes of the equipment. Examples include motions of the equipment mounting
structure induced by pyroshocks (see Chap. 26, Part II) and aeroacoustic excitations
(see Chap. 29, Part III). In these cases, statistical energy analysis (SEA) models can
provide valuable support to the design process, starting in preliminary design.
Specifically, the SEA model can be used much like an FEM model to modify struc-
tural elements so as to minimize the motion response of the structure at any location
of interest. As previously mentioned, it is difficult to obtain accurate stress predic-
tions using an SEA model. However, the primary source of shock- and/or vibration-
induced stresses in structural elements is usually due to the structural response in its
lower-order modes. Hence, the FEM model will generally provide all the required
stress data needed for a proper design.

Other Sources of Information. There are many specialized technical handbooks
that cover the design of equipment for dynamic excitations that address specific
equipment applications or specific types of equipment. For example, Ref. 15 is the
NASA Technical Handbook that covers the design and testing of equipment for
space vehicle shock and vibration environments. When available, such specialized
handbooks should be consulted to support the equipment design process for shock
and/or vibration environments.

DESIGN REVIEWS

Following both the preliminary and final design activities, there should be a thor-
ough review of the design details. Following preliminary design, the review should
include a study of all considerations that went into the design, including the assumed
environments and requirements, the formulation of the design criteria, the planned
methods of construction, the preliminary design analysis, and the planned final
design analysis. Following final design, the final design analysis procedures and
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results should be carefully checked. These reviews should be performed by an inde-
pendent group of engineers that were not directly involved in the design process. In
smaller organizations, employing an independent contractor for the design review
should be considered. This is particularly desirable if a failure or malfunction of the
equipment during its service use could result in major economic damage or personal
injury.

DESIGN VERIFICATION

Uncertainty is always present in the modeling and analysis of any dynamic system.
By necessity, simplifying assumptions are introduced to make the analysis tractable.
Naturally, unmodeled and unexpected phenomena will be present in a given equip-
ment design. The significance of these effects is uncertain. Testing is often the only
way to confidently confirm compliance with requirements. Furthermore, testing may
also be used as a design tool for structures lacking suitable models, such as those
with highly nonlinear response characteristics.

As in other phases of the equipment development, testing should be performed
with a clear set of objectives. Since hardware testing can be expensive, careful plan-
ning is important to maximize benefits and efficiency. Some organizations separate
testing activities from the design functions. Nevertheless, the designer should partic-
ipate in determining the verification tests that will be performed. Shock and vibra-
tion test facilities are expensive to maintain and not available to many small
companies and agencies. Commercial test facilities are available for such organiza-
tions. Chapter 19 describes general shock and vibration standards and Chap. 20 dis-
cusses the derivation of shock and vibration test criteria from measured or predicted
excitation data.

MODEL-TEST CORRELATION

Dynamic testing often begins at low excitation levels in order to preview structural
behavior and ensure proper instrumentation and test control without causing signif-
icant damage to the equipment (see Development Testing in Chap. 20). Data col-
lected in the early phases of testing can be used to validate or refute models that may
have been used to make design decisions. Full dynamic excitation tests also yield
data useful for model correlation purposes, for example, the detection of nonlinear
properties that were not modeled.

Frequency response functions, as defined in Chap. 21, are particularly well suited
for model-test correlation purposes. In general terms, frequency response functions
show input-output relationships. They are useful in relating inputs, such as force or
motion, to outputs such as motion or strain. Frequency response functions can be
experimentally generated from a variety of tests, including modal hammer impact
tests and laboratory vibration tests. When properly determined, frequency response
functions provide the modal parameters of the equipment, namely, natural frequen-
cies (eigenvalues), mode shapes (eigenvectors), and damping ratios. Chapter 21
describes experimental modal analysis and modal parameter estimation techniques.

The frequency response functions for a printed wiring assembly computed
using a simple FEM model (a few hundred degrees-of-freedom) and measured in
a laboratory vibration test are compared in Fig. 41.4. A drawing of the printed
wiring assembly is shown in Fig. 41.4A, and the frequency response functions com-
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puted using the FEM model and the laboratory vibration test are presented in Fig.
41.4B. The comparison shows good agreement for the lower-frequency modes,
although the correlation degrades with increasing mode number. A more complex
FEM model would provide better agreement for the higher-frequency modes, but
often a confirmation of the first few modes is adequate for model verification pur-
poses.
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FIGURE 41.4 Comparison of FEM-computed and laboratory-measured
frequency response functions for a printed wiring assembly: (A) diagram of
assembly, (B) comparison of FEM and test data. (Courtesy of Lockheed Mar-
tin Corporation.)

(A)

(B)
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QUALIFICATION TESTING

A qualification test, as defined in Chap. 20, gives the designer and the customer con-
fidence that the equipment will function properly in its expected service environ-
ment. It is usually a contractual requirement and commonly involves the application
of all environments the equipment will experience in service, applied either in
sequence or simultaneously. In particular, for equipment that will experience tem-
perature extremes in service, a temperature test is often performed simultaneously
with a vibration test using a combined temperature-vibration test facility. In any
case, shock and/or vibration qualification tests occur too late in the design process to
allow the cost-effective implementation of design changes. Thus, it is common prac-
tice to perform preliminary qualification-like tests before the design phase is com-
pleted to ensure the design will pass the qualification test requirement.

Qualification testing requires more than just the structural survival of the equip-
ment within acceptable damage limits. A structure can survive the environment, but
be rendered operationally useless by dynamic disturbances. Sometimes operational
performance is restored when the dynamic excitation is removed, e.g., electrical cir-
cuitry can malfunction under dynamic excitation, intermittent problems can occur as
gaps open and close, disruptive electrical noise can be generated, optical surfaces
can be distorted, and servo-positioning systems can become unstable. The opera-
tional performance of the equipment must be closely monitored during the qualifi-
cation test to identify any such malfunctions.

RELIABILITY GROWTH TESTING

A reliability growth test, as defined in Chap. 20, involves the following steps:

1. Assuming a sample item of equipment has passed the specified qualification test
with no failures or malfunctions, increase the magnitude of the test level by some
increment, usually 3 dB, and repeat the test.

2. If the equipment item again passes the test at this higher level, increase the mag-
nitude of the test level again by the same increment and repeat the test.

3. Continue repeating the test at step-wise increased test levels until a failure or
malfunction occurs.

4. If possible, repair the equipment to function properly and continue the testing at
piece-wise increased test levels until another failure occurs.

5. Again, if possible, repair the equipment and continue the testing at piece-wise
increased test levels until it is no longer feasible to make repairs that will allow
the equipment to function correctly.

6. Report to the designer the details of all failures identified by the testing that
could be repaired. Often simple changes in the design can be made that will sup-
press or eliminate the failures revealed by the tests.

The theory behind a reliability enhancement test described above is as follows.
Even if the equipment is adequately designed to function properly during the qual-
ification test, which represents a conservative simulation of the anticipated service
shock and/or vibration environment, increasing the ability of the equipment to func-
tion properly during more extreme dynamic excitations will improve the reliability
of the equipment in its service environment. Furthermore, by establishing the maxi-
mum shock and/or vibration excitations that the equipment can endure, it may be
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possible to use the equipment at a later time for another application involving more
severe shock and/or vibration excitations without the need for a redesign and new
qualification testing.
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CHAPTER 42
EFFECTS OF SHOCK AND
VIBRATION ON HUMANS

Henning E. von Gierke

Anthony J. Brammer

INTRODUCTION

This chapter considers the following problems: (1) the determination of the struc-
ture and properties of the human body regarded as a mechanical as well as a bio-
logical system, (2) the effects of shock and vibration forces on this system, (3) the
protection required by the system under various exposure conditions and the
means by which this protection is to be achieved, and (4) tolerance criteria for
shock and for vibration exposure. Man, as a mechanical system, is extremely com-
plex and his mechanical properties readily undergo change. There is limited reli-
able information on the magnitude of the forces required to produce mechanical
damage to the human body.To avoid damage to humans while obtaining such data,
it is necessary to use cadavers, experimental animals, or simulations for most stud-
ies on mechanical injury. However, the data so obtained must be subjected to care-
ful scrutiny to determine the degree of their applicability to humans. Occasionally
it is possible to obtain useful information from situations involving accidental
injuries to man, but while the damage often can be assessed, the forces producing
the damage usually cannot, and so only rarely are useful data obtained in this way.
It is also very difficult to obtain reliable data on the effects of mechanical forces on
the performance of various tasks and on subjective responses to these forces
largely because of the wide variation in the human being in both physical and
behavioral respects. Measurement of some of the mechanical properties of man is,
however, often practicable since only small forces are needed for such work. The
difficulty here is in the variability and lability of the system and in the inaccessi-
bility of certain structures.

One section of this chapter introduces methods used for mechanical shock and
vibration studies on man and animals. Subsequent sections deal with the mechanical
characteristics of the body, the effects of shock and vibration forces on man, the
methods and procedures for protection against these forces, and safety criteria.

For general background material on the effects of shock and of vibration on man,
see Refs. 1 through 4.
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DEFINITIONS AND CHARACTERIZATION OF FORCES

Characterization of Forces. Forces may be transmitted to the body through a
gas, liquid, or solid.They may be diffuse or concentrated over a small area.They may
vary from tangential to normal and may be applied in more than one direction. The
shape of a solid body impinging on the surface of the human is as important as the
position or shape of the human body itself. All these factors must be taken into
account in comparing injuries produced by vehicle crashes, explosions, blows, vibra-
tion, etc. Laboratory studies often permit fairly accurate control of force application,
but field situations are apt to be extremely complex. Therefore it is often very diffi-
cult to predict what will happen in the field on the basis of laboratory studies. It is
equally difficult to interpret field observations without the benefit of laboratory
studies.

Shock. The term shock is used differently in biology and medicine than in engi-
neering; therefore one must be careful not to confuse the various meanings given to
the term. In this chapter the term shock is used in its engineering sense as defined in
Chap. 1 of this Handbook, that is, for a nonperiodic excitation characterized by sud-
denness and severity. A shock wave is a discontinuous pressure change propagated
through a medium at velocity greater than that of sound in the medium. In general,
forces reaching peak values in less than a few tenths of a second and of not more
than a few seconds’ duration may be considered as shock forces in relation to the
human system.

The term impact (i.e., a blow) refers to a force applied when the human body
comes into sudden contact with a solid body and when the momentum transfer is
considerable, as in rapid deceleration in a vehicle crash or when a rapidly moving
solid body strikes a human body.

Vibration. Biological systems may be influenced by vibration at all frequencies if
the amplitude is sufficiently great. This chapter is concerned primarily with the fre-
quency range from about 1 Hz to 1 kHz.

METHODS AND INSTRUMENTATION

Most quantitative investigations of the effects of shock and vibration on humans are
conducted in the laboratory in controlled, simulated environments. Meaningful
results can be obtained from such tests only if measurement methods and instru-
mentation are adapted to the particular properties of the biological system under
investigation to ensure noninterference of the measurement with the system’s
behavior. This behavior may be physical, physiological, and psychological although
these parameters should be studied separately if possible. The complexity of a living
organism makes such separation, even assuming independent parameters, only an
approximation at best. In many cases if extreme care is not exercised in planning and
conducting the experiment, uncontrolled interaction between these parameters can
lead to completely erroneous results. For example, the dynamic elasticity of tissue of
a certain area of the body may depend on the simultaneous vibration excitation of
other parts of the body; or the elasticity may change with the duration of the meas-
urement since the subject’s physiological response varies; or the elasticity may be
influenced by the subject’s psychological reaction to the test or to the measurement
equipment.

42.2 CHAPTER FORTY-TWO
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Control of, and compensation for, the nonuniformity of living systems is
absolutely essential because of the variation in size, shape, sensitivity, and respon-
siveness of people and because these factors, for a single subject, vary with time,
experience, and motivation. The use of adequate statistical experimental design is
necessary and almost always requires a large number of observations and carefully
arranged controls.

A range of mechanical and hydraulic vibration exciters have been developed
specifically for human laboratory experiments with extensive safety systems. Simi-
larly, acceleration and deceleration sleds have been developed for use in impact
tests with human subjects.

PHYSICAL MEASUREMENTS

In determining the effects of shock and vibration on humans, the mechanical force
environment to which the human body is exposed must be clearly defined. Force and
vibration amplitudes should be specified for the area of contact with the body.
Vibration measurements of the body’s response should be made whenever possible
by noncontact methods. X-ray methods can be used successfully to measure the dis-
placement of internal organs. Optical, cinematographic, and stroboscopic observa-
tion can give the displacement amplitudes of parts of the body. If vibration pickups
in contact with the body are used, they must be small and light enough so as not to
introduce a distorting mechanical load.This usually places a weight limitation on the
pickup of a few grams or less, depending on the frequency range of interest and the
effective mass to which the pickup is attached. Figure 42.1 illustrates the effect of

EFFECTS OF SHOCK AND VIBRATION ON HUMANS 42.3

FIGURE 42.1 Amplitude distortion due to accelerometers of different mass m and size which
are attached to a body surface over soft tissue of human subject exposed to vibration. The graph
gives the ratio AL/AF of the response of the loaded to the unloaded surface for accelerometers
having three different radii r. (Values calculated from unpublished mechanical surface impedance
data of E. K. Franke and H. E. von Gierke.)
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mass and size on the response of accelerometers attached to the skin overlying soft
tissue.The lack of rigidity of the human body as a supporting structure makes meas-
urements of acceleration usually preferable to those of velocity or displacement.The
mechanical impedance of a sitting, standing, or supine subject is extremely useful for
calculating the vibratory energy transmitted to the body by the vibrating structure.
The mechanical impedance of small areas of the body surface can be measured in
different ways (see Chap. 12), for example by vibrating pistons, resonating rods, and
acoustical impedance tubes.

If the entire body is exposed to a pressure or blast wave in air or water, exact def-
inition of the pressure environment is essential. The pressure distribution should be
measured if possible. If the environment deviates from free-field conditions, it
should be carefully specified because of its effect on peak pressure and pressure vs.
time-history.

SIMULATION OF HUMAN SUBJECTS

The establishment of limits of human tolerance to mechanical forces, and the explana-
tion of injuries produced when these limits are exceeded, frequently requires experi-
mentation at various degrees of potential hazard. To avoid unnecessary risks to
humans, animals are used first for detailed physiological studies. As a result of these
studies, levels may be determined which are, with reasonable probability, safe for
human subjects. However, such comparative experiments have obvious limitations.
The different structure, size, and weight of most animals shift their response curves to
mechanical forces into other frequency ranges and to other levels than those observed
on humans. These differences must be considered in addition to the general and par-
tially known physiological differences between species. For example, the natural fre-
quency of the thorax-abdomen system of a human subject is between 3 and 4 Hz; for a
mouse the same resonance occurs between 18 and 25 Hz. Therefore maximum effect
and maximum damage occur at different vibration frequencies and different shock-
time patterns in a mouse than in a human. However, studies on small animals are well
worth making if care is taken in the interpretation of the data and if scaling laws are
established. Dogs, pigs, and primates are used extensively in such tests.

Many kinematic processes, physical loadings, and gross destructive anatomical
effects can be studied on dummies which approximate a human being in size, form,
mobility, total weight, and weight distribution in body segments. In contrast to those
used only for load purposes, dummies simulating basic static and dynamic properties
of the human body are called anthropometric or anthropomorphic dummies. Several
such dummies have been designed for specific simulations.5 For automobile frontal
collisions, the Hybrid III dummy shown in Fig. 42.2 has become the de facto stan-
dard, and is used in North America and Europe to simulate occupants in crash tests
and tests of safety restraint systems. The original dummy was constructed to corre-
spond to a 50th-percentile North American male. It possesses a metal “skeleton”
covered with a vinyl skin and foam to produce the appropriate external shape, with
a rubber lumbar spine curved to mimic a sitting posture, and a shoulder structure
capable of supporting safety belt loads.The head, neck, chest, and knee responses of
the Hybrid III are designed to mimic human responses, namely, the head accelera-
tion resulting from forehead and side-of-the-head impacts, the fore-and-aft and lat-
eral bending of the neck, the deflection of the chest to distributed forces on the
sternum, and impacts on the knee.4 The instrumentation required to record these
responses together with local axial compressional loads is described in Fig. 42.2 and
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results in 37 channels of data if head rotation is included. Hybrid III dummies are
now available representing adult-sized small (5th-percentile) females and large
(95th-percentile) males, as well as infants and children. A related dummy, SID (for
Side-Impact Dummy), is available for automobile side collisions together with dum-
mies developed for this purpose in Europe [EUROSID-1 and BIOSID (BIOfidelic
Side-Impact Dummy)].An advanced dummy,ADAM (Advanced Dynamic Anthro-
pomorphic Manikin), has been developed for use in aircraft ejection seats, helicop-
ter seats, and parachute tests. In addition to modeling body segments, surface
contours, weights, centers of gravity, moments of inertia, and joint center locations,
ADAM replicates human joint motion and the biodynamic response of the spine to
vertical accelerations for both small-amplitude vibration and large impacts.

Efforts have also been made to simulate the mechanical properties of the
human head in order to study the physical phenomena occurring in the brain dur-
ing crash conditions.Although these head forms only approximate the human head,
they are useful in the evaluation of the protective features of crash, safety, and
antibuffet helmets. Plastic head forms, conforming to standard head measurements,
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FIGURE 42.2 Hybrid III dummy designed for use in motor vehicle frontal crash tests. (AGARD-
AR-330.5)
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are designed to fracture in the same energy range as that established for the human
head. A cranial vault is provided to house instrumentation and a simulated brain
mass with comparable weight and consistency (e.g., a mixture of glycerin, ethylene
glycol, etc.). The static properties of the skin and scalp tissue are simulated with
polyvinyl foam.

The static and dynamic breaking strength of bones, ligaments, and muscles and
the forces producing fractures in rapid decelerations have been studied frequently
on cadaver material. Extreme caution must be exercised in applying elastic and
strength properties obtained in this way to a situation involving the living organ-
ism.The differences observed between properties of wet, dry, and embalmed mate-
rials are considerable; changes in these properties also result in changes in the
force distribution of a composite structure. Thus a number of physiological,
anatomical, and physical factors must be considered for each specific situation in
which the use of animals, dummies, or cadavers as substitutes for live human sub-
jects is planned.

MECHANICAL CHARACTERISTICS OF THE BODY

PHYSICAL DATA

This section summarizes the passive mechanical responses of the human body and
tissues exposed to vibration and impact. The data can be used to calculate quantita-
tively the transmission and dissipation of vibratory energy in human body tissue, to
estimate vibration amplitudes and pressures at different locations of the body, and
to predict the effectiveness of various protective measures. Table 42.1 lists some
dynamic mechanical characteristics of the body and indicates some of the fields
where these data find application. In cases where detailed quantitative investiga-
tions are lacking, the information may serve as a guide for the explanation of
observed phenomena or for the prediction of results to be expected. Most physical
characteristics of the human body presented in this section (except for the strength
data) have been derived from the analysis of experimental data in which it is
assumed that the body is a linear, passive mechanical system. This is an idealization
which holds only for very small amplitudes. Therefore these data may not apply in
analyses of mechanical injury to tissue.There is actually considerable nonlinearity of
response well below amplitudes required for the production of damage. This is indi-
cated, for example, by the data given in Fig. 42.3, which shows how the mechanical
stiffness and resistance of soft tissue vary with static deflection. Bone behaves more
or less like a normal solid; however, soft elastic tissues such as muscle, tendon, and
connective tissue resemble elastomers with respect to their Young’s modulus and 
S-shaped stress-strain relation. These properties have been studied in connection
with the quasi-static pressure-volume relations of hollow organs such as arteries, the
heart, and the urinary bladder, assuming linear properties in studying dynamic
responses. Then soft tissue can be described phenomenologically as a viscoelastic
medium; plastic deformation need be considered only if injury occurs. Physical prop-
erties of human body tissue are summarized in Table 42.2 for frequencies less than
100 kHz.

The fatigue life of bone and soft tissue in response to cyclic dynamic stress at fre-
quencies between 0.5 and 4 Hz is summarized in Fig. 42.4. In this diagram, the num-
ber of cycles to failure N of in vitro preparations is expressed as a function of the
ratio of the applied dynamic stress to the ultimate static stress σ/σu.The straight lines
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in Fig. 42.4 represent the functions N = (σ/σu)−x, where the value of the index x in the
relationship is indicated.

The combination of soft tissue and bone in the structure of the body together
with the body’s geometric dimensions results in a system which exhibits different
types of response to vibratory energy depending on the frequency range:At low fre-
quencies (below approximately 100 Hz), the body can be described for most pur-
poses as a lumped parameter system; resonances occur due to the interaction of
tissue masses with purely elastic structures. At higher frequencies, through the
audio-frequency range and up to about 100 kHz, the body behaves more as a com-
plex distributed parameter system—the type of wave propagation (shear waves, sur-
face waves, or compressional waves) being strongly influenced by boundaries and
geometrical configurations.

EFFECTS OF SHOCK AND VIBRATION ON HUMANS 42.7

TABLE 42.1 Application of Mechanical Studies of Body

Dynamic mechanical quantity investigated Field of application

Skull resonances and viscosity of brain tissue Head injuries; bone-conduction hearing

Impedance of skull and mastoid Matching and calibration of bone-conduction
transducers; ear protection

Sound transmission through skull and tissue Bone-conduction hearing

Mechanical properties of outer, middle, Theory of hearing; correction of hearing
and inner ear deficiencies

Resonances of mouth, nasal, and pharyn- Theory of speech generation; correction of 
geal cavities speech deficiencies; oxygen mask design

Resonance of lower jaw Bone-conduction hearing

Response of mouth-thorax system Blast-wave injury; respirators

Propagation of pulsed cardiac pressure Circulatory physiology; hemodynamics

Heart sounds Physiology of heart; diagnosis

Suspension of heart Ballistocardiography; injury from severe
vibrations and crash

Response of the thorax-abdominal mass Severe vibration and crash injury; crash
system protection

Impedance of subject sitting, standing, or Isolation and protection against vibration
lying on vibration platform and short-time accelerations; ballistocar-

diography

Hand-arm impedance Isolation and protection against hand-
transmitted vibration; design of power 
tools; design of test fixtures for hand-tool 
vibration assessment

Impedance of body surface, surface wave Theory of energy transmission and attenua-
velocity, sound velocity in tissue, absorp- tion in tissue; determination of tissue elas-
tion coefficient of body surface ticity, viscosity and compressibility; deter-

mination of acoustic and vibratory energy 
entering the body; vibration isolation;
design of vibration pickups; transfer of 
vibratory energy to inner organs and sen-
sory receptors; soft tissue and organ 
imaging
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LOW-FREQUENCY RANGE

Simple mechanical systems, such as the
one shown in Fig. 42.5 for a standing and
sitting man, are usually sufficient to
describe and understand the important
features of the response of the human
body to low-frequency vibrations.6,7 Nev-
ertheless it is difficult to assign numerical
values to the elements of the model,
since they depend critically on the kind
of excitation, the body type of the sub-
ject, and his posture and muscle tone.
Large intersubject variability is there-
fore to be expected and is observed. Of
the various factors influencing whole-
body biodynamic responses, a reduction
in intersubject variability can often be
obtained by normalizing measured val-
ues by a subject’s static mass.1

Subject Exposed to Vibrations in the
Longitudinal Direction. The mechan-
ical impedance of a man standing or sit-
ting on a vertically vibrating platform,
that is, the complex ratio between the
dynamic force applied to the body and
the velocity at the interface where vibra-

tion enters the body, is shown in Fig. 42.6. Below approximately 2 Hz the body acts as
a unit mass. For the sitting man, the first resonance is between 4 and 6 Hz; for the
standing man, resonance peaks occur at about 6 and 12 Hz. The numerical value of
the impedance together with its phase angle provides data for the calculation of the
total energy transmitted to the subject.

42.8 CHAPTER FORTY-TWO

FIGURE 42.3 Mechanical stiffness and resist-
ance of soft tissue, per square centimeter, as a
function of indentation (i.e., static deflection).
The nonlinearity shows the effect of loading of
body surface on surface impedance of soft tis-
sues for two experimental human subjects A and
B. (After Franke: USAF Tech. Rept. 6469, 1959.)

TABLE 42.2 Physical Properties of Human Tissue at Frequencies Less Than 100 kHz

Bone, compact

Tissue, soft Fresh Embalmed, dry

Density, gm/cm3 1–1.2 1.93–1.98 1.87
Young’s modulus, dyne/cm2 7.5 × 104 2.26 × 1011 1.84 × 1011

Volume compressibility,* dyne/cm2 2.6 × 1010 ... 1.3 × 1011

Shear elasticity,* dyne/cm2 2.5 × 104 ... 7.1 × 1010

Shear viscosity,* dyne-sec/cm2 1.5 × 102 ... ...
Sound velocity, cm/sec 1.5–1.6 × 105 3.36 × 105 ...
Acoustic impedance, dyne-sec/cm3 1.7 × 105 6 × 105 6 × 105

Tensile strength, dyne/cm2 ... 9.75 × 108 1.05 × 109

Shearing strength, dyne/cm2, parallel ... 4.9 × 108 ...
Shearing strength, dyne/cm2, per- ... 1.16 × 109 5.55 × 108

pendicular

* Lamé elastic moduli.
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FIGURE 42.4 Fatigue failure of human tissue. The number of cycles of
repeated stress N to failure of in vitro preparations is shown as a function of
the ratio of the applied dynamic stress to the ultimate static stress σ/σu. (von
Gierke.6)
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FIGURE 42.5 Lumped parameter biodynamic model of the standing and sitting human body
for calculating motion of body parts and some physiological and subjective responses to verti-
cal vibration.The approximate resonance frequencies of various subsystems are indicated by fo.
(von Gierke.6)
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The resonances at 4 to 6 Hz and 10 to 14 Hz are suggestive of mass-spring combi-
nations of (1) the entire torso with the lower spine and pelvis and (2) the upper torso
with forward flexion movements of the upper vertebral column.The expectation that
flexion of the upper vertebral column occurs is supported by observations of the tran-
sient response of the body to vertical impact loads and associated compression frac-
tures. The greatest loads occur in the region of the twelfth thoracic to the second
lumbar vertebra, which therefore can be assumed as the hinge area for flexion of the
upper torso. Since the center-of-gravity of the upper torso is considerably forward of
the spine, flexion movement will occur even if the force is applied parallel to the axis
of the spine. Changing the direction of the force so that it is applied at an angle with
respect to the spine (for example, by tilting the torso forward) influences this effect
considerably. Similarly the center-of-gravity of the head can be considerably in front
of the neck joint which permits forward-backward motion. This situation results in
forward-backward rotation of the head instead of pure vertical motion.

Between 20 and 30 Hz the head exhibits a mechanical resonance. When subject
to vibration in this range, the head displacement amplitude can exceed the shoulder
amplitude by a factor of 3. This resonance is of importance in connection with the
deterioration of visual acuity under the influence of vibration. Another frequency
range of disturbances between 60 and 90 Hz suggests an eyeball resonance.

Typical values of mechanical impedance and seat-to-head transmissibility, that is,
the ratio of the response amplitude and phase of the head to steady-state forced
vibration of a seated person at that frequency, are described in an international stan-
dard.8 They are based on a synthesis of measured values from different experimental
studies, each of which was conducted under closely related, controlled measurement

42.10 CHAPTER FORTY-TWO

FIGURE 42.6 Mechanical impedance of a standing and sitting human subject vibrating in the
direction of his longitudinal axis as a function of frequency. The effects of body posture and of a
semirigid protective envelope around the abdomen are shown. The impedance of a mass m also
is given. (After Coermann: Human Factors, 4:227, 1962, and Coermann et al.: Aerospace Med.,
31:443, 1960.)
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conditions, and involved a number of male subjects.The need for precise definition of
measurement conditions, and hence the restricted applicability of the results, stems
from the dependence of the biodynamic responses on body shapes (e.g., mass and
height), posture, support (i.e., of buttocks, back, and/or feet), and state of ankle and
knee joints.The remaining unexplained differences between the results of these stud-
ies, a situation commonly encountered in biodynamic experiments, led to the specifi-
cation of the most probable values for the impedance and transmissibility as a
function of frequency by an upper and lower envelope that encompasses the mean
values of all data sets. The envelopes, which are shown by the thick continuous lines
in Figs. 42.7 and 42.8, define a range of idealized values that characterize the bio-

EFFECTS OF SHOCK AND VIBRATION ON HUMANS 42.11

FIGURE 42.7 Driving-point mechanical impedance of the seated human
body in the vertical direction (z-direction of Fig. 42.24), expressed as magni-
tude and phase. Maximum and minimum envelopes of mean values from the
studies included in the data synthesis are shown by thick continuous lines,
while the mean of these data sets is shown by the thin continuous line. The
response of a three-degree-of-freedom biodynamic model is shown by the
dashed line. (ISO 5982.8)
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dynamic response of a seated person when the back is unsupported and the feet are
resting on a surface supporting a rigid seat. Note that data from some individuals will
fall outside the range between the two envelopes, as a consequence of their definition
(compare with Fig. 42.6). The mean value of all data sets is shown by the thin contin-
uous line in these diagrams, and serves as a target for applications, such as mechani-
cal simulation of the response of the seated human body to vertical vibration, or the
development of seats for reducing impacts transmitted to the body. Also shown by
the dotted lines in Figs. 42.7 and 42.8 are values calculated using the biodynamic
model illustrated in Fig. 42.9.8 The components of the model do not correspond to
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FIGURE 42.8 Seat-to-head transmissibility of the seated human body in the
vertical direction (z-direction of Fig. 42.24), expressed as magnitude and phase.
Maximum and minimum envelopes of mean values from the studies included in
the data synthesis are shown by thick continuous lines, while the mean of these
data sets is shown by the thin continuous line.The response of a three-degree-of-
freedom biodynamic model is shown by the dashed line. (ISO 5982.8)
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those of identifiable body parts, though the motion of mass m2 is taken to represent
that of the head for the calculation of seat-to-head transmissibility.

The mechanical impedance of the human body, lying on its back on a rigid surface
and vibrating in the direction of its longitudinal axis, has been determined in con-
nection with ballistocardiograph studies. For tangential vibration, the total mass of
the body behaves as a simple mass-spring system with the elasticity and resistance of
the skin. For the average subject the resonance frequency is between 3 and 3.5 Hz,
and the Q of the system is about 3. If the subject’s motion is restricted by clamping
the body at the feet and at the shoulders between plates connected to the table, the
resonance is shifted to approximately 9 Hz and the Q is about 2.5.

One of the most important subsystems of the body, which is excited in the stand-
ing and sitting positions as well as in the lying position, is the thorax-abdomen sys-
tem. The abdominal viscera have a high mobility due to the very low stiffness of the
diaphragm and the air volume of the lungs and the chest wall behind it. Under the
influence of both longitudinal and transverse vibration of the torso, the abdominal
mass vibrates in and out of the thoracic cage.Vibrations take place in other than the
(longitudinal) direction of excitation; during the phase of the cycle when the abdom-
inal contents swing toward the hips, the abdominal wall is stretched outward and 
the abdomen appears larger in volume; at the same time, the downward deflection
of the diaphragm causes a decrease of the chest circumference. At the other end of
the cycle the abdominal wall is pressed inward, the diaphragm upward, and the chest
wall is expanded. This periodic displacement of the abdominal viscera has a sharp
resonance between 3 and 3.5 Hz, as can be seen from Fig. 42.10. The oscillations of
the abdominal mass are coupled with the air oscillations of the mouth-chest system.
Measurements of the impedance of the latter system at the mouth (by applying
oscillating air pressure to the mouth) show that the abdominal wall and the anterior
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FIGURE 42.9 Three degree-of-freedom biodynamic model
for the driving point mechanical impedance, apparent mass,
and seat-to-head transmissibility of the seated human body in
the vertical direction (z-direction of Fig. 42.24). The model is
driven at its base (x0). The parameters of this model do not
possess direct anatomical correlates. (ISO 5982.8)
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chest wall respond to this pressure. The magnitude of the impedance is minimum
and the phase angle is zero between 7 and 8 Hz.The abdominal wall has a maximum
response between 5 and 8 Hz, the anterior chest wall between 7 and 11 Hz.Vibration
of the abdominal system resulting from exposure of a sitting or standing subject is
detected clearly as modulation of the air flow velocity through the mouth (Fig.
42.10). Therefore at large amplitudes of vibration, speech can be modulated at the
exposure frequency.A lumped parameter model of the thorax-abdomen-airway sys-
tem is used successfully to explain and predict these detailed physiological responses
(Fig. 42.11).7 The same model can also be used, when appropriately excited, to
describe the effects of blast, infrasound, and chest impact and to derive curves of
equal injury potential, i.e., tolerance curves.

Subject Exposed to Vibrations in the Transverse Direction. The physical
response of the body to transverse vibration—i.e., horizontal in the normal upright
position—is quite different from that for vertical vibration. Instead of thrust forces
acting primarily along the line of action of the force of gravity on the human body,
they act at right angles to this line. Therefore the distribution of the body masses is
of the utmost importance. There is a greater difference in response between sitting
and standing positions for transverse vibration than for vertical vibration where the
supporting structure of the skeleton and the spine are designed for vertical loading.

For a standing subject, the displacement amplitudes of vibration of the hip, shoul-
der, and head are about 20 to 30 percent of the table amplitude at 1 Hz and decrease
with increasing frequency.The sitting subject exhibits amplification of the hip (1.5 Hz)
and head (2 Hz) amplitudes. All critical resonant frequencies are between 1 and 
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FIGURE 42.10 Typical response curves of the thorax-abdomen system of a human
subject in the supine position exposed to longitudinal vibrations. The displacement of
the abdominal wall (2 in. below umbilicus), the air volume oscillating through the
mouth, and the variations in thorax circumference are shown per g longitudinal accel-
eration. (Coermann et al.: Aerospace Med., 31:443, 1960.)
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3 Hz. The transverse vibration patterns of the body can be described as standing
waves, i.e., as a rough approximation one can compare the body with a rod in which
transverse flexural waves are excited. Therefore there are nodal points on the body
which become closer to the feet as the frequency of excitation increases, since the
phase shift between all body parts and the table increases continuously with increas-
ing frequency.At the first resonant frequency (1.5 Hz), the head of the standing sub-
ject has a 180° phase shift with respect to the table; between 2 and 3 Hz this phase
shift is 360°.

There are longitudinal head motions excited by the transverse vibration in addi-
tion to the transverse head motions.The head performs a nodding motion due to the
anatomy of the upper vertebrae and the location of the head’s center-of-gravity.
Above 5 Hz, the head motion for sitting and standing subjects is predominantly ver-
tical (about 10 to 30 percent of the horizontal table motion).

Vibrations Transmitted from the Hand. The mechanical impedance of the
hand-arm system measured at a hand grip under conditions representative of those
associated with power-tool operation is shown in Fig. 42.12 for vibration directed
essentially along the long axis of the forearm, that is, approximately in the direction
of thrust. The precise direction is the Z component of the standardized coordinate
system for the hand shown in Fig. 42.13, Zh. Typical values of impedance have again
been defined by a synthesis of measured values from different experimental studies,
as described previously for whole-body impedance and transmissibility. The most
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FIGURE 42.11 Five degree-of-freedom body model. The model is used to calculate
body deformations (thorax compression, pressure in the lungs, airflow into and out of
the lungs, diaphragm and abdominal mass movement) as a function of external longitu-
dinal forces (vibration or impact) and pressure loads (blast, infrasonic acoustic loads).
It has also been used to calculate thorax dynamics under impacts to the chest wall, mw.
(von Gierke.7)
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FIGURE 42.12 Mechanical impedance of the hand-arm system,
expressed as magnitude and phase, in the Zh direction specified in
Fig. 42.13. Maximum and minimum envelopes of mean values
from studies included in the data synthesis are shown by continu-
ous lines, while the mean of these data sets is shown by the dotted
line. The response of a 4-degree-of-freedom biodynamic model is
shown by the dashed line. (ISO 10068.9)

FIGURE 42.13 Standardized biodynamic (open cir-
cles—continuous lines) and basicentric (closed circles—
dashed lines) coordinate systems for the hand. (ISO
5349.35)
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probable values of impedance magnitude and
phase are specified by an upper and lower enve-
lope (the continuous lines in Fig. 42.12) and
define a range of idealized impedances.9 The
mean of the data sets is shown by the dotted line.
Also shown in the diagram are impedance values
calculated by the 4 degree-of-freedom biody-
namic model illustrated in Fig. 42.14. Equivalent
data are available for the two orthogonal direc-
tions of the hand-arm coordinate system not
shown in Fig. 42.12 (Xh and Yh).9 It should be
noted that the parameters of these biodynamic
models do not possess direct anatomical corre-
lates, and, together with the idealized impedances,
are intended to facilitate the development of
devices for reducing vibration transmitted to the
hands and of test rigs with which to measure
power-tool handle vibration.

The mechanical impedance of the hand-arm
system generally increases in magnitude with fre-
quency, with a maximum at a frequency from 20
to 70 Hz. The model values suggest that reso-
nances occur in structures within the hand, result-
ing in relative motion between tissue layers, and
between tissue and the bone.The coupled mass in
contact with the handle and subject to the vibra-
tion input is typically less than 20 grams. Small
increases in impedance magnitude have been
observed with increases in grip force (from the
value of 25 N used for the data synthesis), which
leads to increased indentation of the skin (see Fig.
42.3).The influence of the translational force with
which the hand presses the handle (i.e., the thrust

force) appears to be insignificant at frequencies above 100 Hz and to introduce vari-
ations in mechanical impedance magnitude and phase of less than 10 percent at fre-
quencies between 20 and 70 Hz.

For hand tools involving a palm grip, the vibration amplitude decreases from the
palm to the back of the hand. Further reductions in amplitude occur from the hand
to the elbow and from the elbow to the shoulder.

MIDDLE-FREQUENCY RANGE (WAVE PROPAGATION)

Above about 100 Hz, simple lumped parameter models become more and more
unsatisfactory for describing the vibration of tissue. At higher frequencies it is nec-
essary to consider the tissue as a continuous medium for vibration propagation.

Skull Vibrations. The vibration pattern of the skull is approximately the same as
that of a spherical elastic shell. The nodal lines observed suggest that the funda-
mental resonance frequency is between 300 and 400 Hz and that resonances for the
higher modes are around 600 and 900 Hz. The observed frequency ratio between
the modes for the skull is approximately 1.7, while the theoretical ratio for a sphere
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is 1.5. From the observed resonances, the calculated value of the elasticity of skull
bone (a value of Young’s modulus = 1.4 × 1010 dynes/cm2) agrees reasonably well
with static test results on dry skull preparations but is somewhat lower than the
static test data obtained on the femur (Table 42.2). Mechanical impedances of small
areas on the skull over the mastoid area have been measured to provide informa-
tion for bone-conduction hearing. The impedance of the skin lining in the auditory
canal has been investigated and used in connection with studies on ear protectors.

Vibration of the lower jaw with respect to the skull can be explained by a simple
mass-spring system, which has a resonance, relative to the skull, between 100 and
200 Hz.

Mechanical Impedance of Soft Human Tissue. Mechanical impedance meas-
urements of small areas (1 to 17 cm2) over soft human body tissue have been made
with vibrating pistons between 10 Hz and 20 kHz.At low frequencies this impedance
is a large elastic reactance. With increasing frequency the reactance decreases,
becomes zero at a resonance frequency, and becomes a mass reactance with a further
increase in frequency (Fig. 42.15).10 These data cannot be explained by a simple
lumped parameter model, but require a distributed parameter system including a
viscoelastic medium—such as the tissue constitutes for this frequency range.The high
viscosity of the medium makes possible the use of simplified theoretical assumptions,
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FIGURE 42.15 Resistance and reactance of circular area,
2 cm in diameter, of soft tissue body surface as a function of
frequency. Crosses and circles indicate measured values for
reactance and resistance. Smooth curves calculated for 2-cm-
diameter sphere vibrating in (A) viscoelastic medium with
properties similar to soft tissue (parameters as in Table 42.2),
(B) frictionless compressible fluid, and (C) incompressible vis-
cous fluid. (From von Gierke et al.10)
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such as a homogeneous isotropic infinite medium and a vibrating sphere instead of a
circular piston.The results of such a theory agree well with the measured characteris-
tics.As a consequence it is possible to assign absolute values to the shear viscosity and
the shear elasticity of soft tissue (Table 42.2). The theory together with the measure-
ments show that, over the audio-frequency range, most of the vibratory energy is
propagated through the tissue in the form of transverse shear waves—not in the form
of longitudinal compression waves.The velocity of the shear waves is about 20 meters
per second at 200 Hz and increases approximately with the square root of the fre-
quency.This may be compared with the constant sound velocity of about 1500 meters
per second for compressional waves. Some energy is propagated along the body sur-
face in the form of surface waves which have been observed optically. Their velocity
is of the same order as the velocity of shear waves.10

Multibody and Finite Element Biodynamic Models.5,11 In a multibody biody-
namic model, the human is represented by a three-dimensional coupled system of
rigid bodies and joints. The Articulated Total Body Model (ATBM) represents the
human body by, typically, 15 ellipsoidal-shaped segments connected by 14 joints.The
body segments possess masses and moments of inertia derived from human data,
while the joints possess appropriate mechanical properties. When a representation
of the immediate environment, such as a seat and safety harness, is included, the
models can predict the gross body motion and forces resulting from external accel-
erations occurring, for example, during motor vehicle and aircraft crashes, and air-
craft seat ejection. Models have also been developed to predict the response of the
anthropometric dummies commonly used in motor vehicle testing.

Models that include finite elements (FEs) permit more detailed simulation of the
interaction between the occupant of a motor vehicle, or aircraft, and the immediate
environment, as well as the detailed response of some body parts.38 The most sophis-
ticated models include the active and passive behavior of muscles. The MAthemati-
cal and DYnamical MOdel (MADYMO) was originally developed for motor vehicle
crash simulation, and can include the crash behavior of structural components. Ele-
ments that have been modeled with FE structures include the seat, seat frame, and
vehicle interior (including padding).While it is at present impractical to construct an
FE model for the complete human body, FE models of human body subsystems,
such as the head and spine, can generate detailed information on, for example, the
mechanical loads at each vertebra along the spinal column.11

HIGH-FREQUENCY RANGE

Above several hundred thousand Hz, in the ultrasound range, most of the vibratory
energy is propagated through tissue in the form of compressional waves; for these
conditions, geometrical acoustics offer a good approximation for the description of
their path. Since the tissue dimensions under consideration are almost always large
compared to the wavelength (about 1.5 mm at 1 MHz), the mechanical impedance of
the tissue is equal to the characteristic acoustic impedance, i.e., sound velocity times
density. This value for soft tissue differs only slightly from the characteristic imped-
ance of water. The most important factor in this frequency range is the tissue viscos-
ity, which brings about an increasing energy absorption with increasing frequency.

At very high frequencies this viscosity also generates shear waves at the bound-
aries of the medium, at the boundary of the acoustic beams, and in the areas of wave
transition to media with somewhat different properties (e.g., boundary of muscle to
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fat tissue, or soft tissue to bone). These shear waves are attenuated so rapidly that
they are of no importance for energy transport but are noticeable as increased local
absorption, i.e., heating.11

EFFECTS OF SHOCK AND OF VIBRATION

The motions and mechanical stresses resulting from the application of mechanical
forces to the human body have several possible effects: (1) the motion may interfere
directly with physical activity; (2) there may be mechanical damage or destruction;
(3) there may be secondary effects (including subjective phenomena) operating
through biological receptors and transfer mechanisms, which produce changes in the
organism.Thermal and chemical effects are usually unimportant, except in the ultra-
sonic frequency range.

EFFECTS OF MECHANICAL VIBRATION

Mechanical Damage. Damage is produced when the accelerative forces are of
sufficient magnitude. Mice, rats, and cats have been killed by exposure to vibration.12

There is a definite frequency dependence of the lethal accelerations coincident with
resonance displacement of the visceral organs. Mice are killed at accelerations of 10
to 20g within a few minutes in the range 15 to 25 Hz; above and below this frequency
range, the survival time is longer. Rats and cats may be killed within 5 to 30 minutes
at accelerations above about 10g. Postmortem examination of these animals usually
shows lung damage, often heart damage, and occasionally brain injury. The injuries
to heart and lungs probably result from the beating of these organs against each
other and against the rib cage. The brain injury, which is a superficial hemorrhage,
may be due to relative motion of the brain within the skull, to mechanical action
involving the blood vessels or sinuses directly, or to secondary mechanical effects.
Tearing of intraabdominal membranes rarely occurs.

An increase in body temperature is also observed after exposure to intense vibra-
tion. Since this effect also occurs in dead animals, it is probably mechanical in origin.
Estimates of energy dissipation from body mechanical impedance data suggest that
appreciable heat can be generated at large vibration amplitudes.

In humans, mechanical damage to the heart and lungs, injury to the brain, tearing
of membranes in the abdominal and chest cavities, as well as intestinal injury are
possible, in principle. However, equinoxious contours of whole-body acceleration as
a function of frequency have not been established for any of these phenomena,
owing to an almost complete lack of data.Any effects would be expected to occur at
lower frequencies than those in animals owing to the increased human visceral
masses. Exposure for 15 minutes to an acceleration of 6g has been reported to cause
gastrointestinal bleeding that persisted for several days in one subject.1

Chronic injuries may be produced by vibration exposure of long duration at levels
which produce no acute effects.1,2 There is epidemiological evidence that occupations
with exposure to whole-body vibration are at greater risk of low back pain, sciatic
pain, and herniated lumbar disc when compared with control groups not exposed to
vibration.13,14 There is also an increased risk of developing degenerative changes in
the spine, including lumbar intervertebral disc disorders, for crane operators, tractor
drivers, and drivers in the transportation industry. Nevertheless, it is difficult to dif-
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ferentiate between the relative roles of whole-body vibration and ergonomic risk fac-
tors, such as posture and awkward back movements, from epidemiological studies,
though both are clearly cofactors in the development of the observed pathology.
Exposure to repeated random jolts (in contrast to sinusoidal motion), such as the buf-
feting that occurs in aircraft, in small craft on rough water, or in off-the-road vehicles
is commonly associated with the chronic injuries described.

Chronic injuries may also be produced when the hand is exposed to intense vibra-
tion, such as occurs during occupational use of some power tools (e.g., pneumatic drills
and hammers, grinders, chain saws, and riveting guns).3 Symptoms of numbness or
paresthesias in the fingers are common and may be accompanied by episodes of finger
blanching. Reduced grip strength and muscular weakness may also be experienced.
The vascular, nerve, and muscular disorders associated with the use of hand-held
vibrating power tools are known as the hand-arm vibration syndrome (HAVS). Patho-
logical changes have been observed in the structure of the nerves and walls of the
blood vessels in the fingers.3 Changes in tactile function have been linked to changes
in acuity of specific types of mechanoreceptive nerve endings at the fingertips.15

Few exposure-response relationships have been derived from epidemiological
data for any sign, or symptom, of HAVS resulting from occupational use of hand-
held power tools or industrial processes. For groups of workers who perform similar
tasks throughout the workday, the latency, that is, the duration of exposure (in years)
prior to the onset of episodes of finger blanching, and prevalence, may be predicted
from the acceleration of a surface in contact with the hand.16 These relationships
serve as the basis for occupational exposure criteria (see Human Tolerance Criteria).

The tendons, tendon sheaths, muscles, ligaments, joints, and nerves in the hand
and arm can also be damaged by repeated movement of the hand relative to the
arm. These soft tissue and nerve injuries occur among blue- and white-collar work-
ers performing tasks involving repeated hand-wrist flexure (e.g., keyboard opera-
tors) and are termed repetitive strain injuries (RSI).17 Nerve compression may result
from changes in the contents of restricted nerve passageways (e.g., the carpal tunnel
at the wrist—carpal tunnel syndrome).3 Pain and paresthesias in the hand and arm
are common symptoms.

Physiological Responses. Vibration can induce physiological responses in the
cardiovascular, respiratory, skeletal, endocrine, and metabolic systems and in mus-
cles and nerves. The cardiovascular changes in response to intense vertical vibration
are similar to those accompanying moderate exercise: increased heart rate, respira-
tion rate, cardiac output, and blood pressure. Vibration of sufficient intensity will
cause mechanical pumping of the respiratory system, as already noted, but is
unlikely to produce significantly increased ventilation or oxygen uptake. Changes in
blood and urine constituents are commonly used as indicators of generalized body
stress and may, in consequence, be observed in persons exposed to vibration. It is dif-
ficult if not impossible, however, to relate specific endocrine and metabolic
responses to a given vibration stimulus. Vibration can stimulate a tonic reflex con-
traction in muscles, which is a response to the stretching force (the tonic vibration
reflex), disturb postural stability, and lead to body sway. Extremely low-frequency
whole-body vibration, such as occurs in many transportation vehicles and ships, may
also cause motion sickness (kinetosis).1

Vibration of the hand may cause peripheral vascular, neurological, and muscular
responses.3 Blood flow within the fingers may be reduced during stimulation, and
tingling and paresthesias in the hands may be reported after exposure. Somatosen-
sory perception and tactile function may be temporarily decreased. Grip strength
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may also be affected. Extremely low-frequency, large-amplitude motions, which are
usually described as repetitive movements of the hand (and frequently involve
repeated wrist rotation), may lead to tendon and muscle fatigue and to transitory
parathesias or numbness.

Therapeutic applications of vibration include cardiac and circulatory assist
devices and the control of spastic muscle. Ultrasonic frequencies are used in medical
diagnosis, for soft tissue visualization, and for therapy. A common therapeutic use is
to promote the return of limb function in rehabilitation medicine.

Subjective Responses. Feelings of discomfort and apprehension may be associ-
ated with exposure to whole-body and hand-arm vibration once the stimulus has
been perceived. The extent of the discomfort depends on the magnitude, frequency,
direction and duration of the exposure, and the posture and orientation of the body,
as well as the point of contact with the stimulus. The response is also influenced by
the environment in which the motion is experienced (e.g., floor motion in hospital
versus aircraft). The range in response of different individuals to a given stimulus is
large. In some circumstances, whole-body vibration may be exhilarating (e.g., a fair-
ground ride) or soothing (e.g., rocking a baby in a cradle or a rocking chair).

In general, subjective responses to vibration may be subdivided into three broad
categories: the threshold of perception, the onset of unpleasant sensations, and the
limit of tolerance. The specification of acceptable vibration environments is dis-
cussed later in this chapter.

Once detected, the growth in sensation follows a Stevens’ power law function
with index k, in which the psychophysical magnitude of a stimulus, ψ, is related to its
physical magnitude φ by

ψ = constant{φ k} (42.1)

For discomfort associated with whole-body vibration, k ≈ 1. Frequency contours of
equal sensation magnitude depend principally on the direction in which vibration
enters the body and whether the person is standing, seated, or recumbent.1 Contours
which summarize current knowledge may be inferred from the frequency-weighting
functions employed in the international standard for whole-body vibration (i.e., by
reciprocal curves to those shown later in Fig. 42.23). The effect of the duration of
exposure t on subjective responses to suprathreshold vibration is often found to fol-
low a power law relationship of the form

φnt = constant (42.2)

where the magnitude of the index n is from 2 to 4. For situations in which the per-
ception of vibration is judged unacceptable, the boundary between acceptable and
unacceptable exposures will be related to the physical magnitude of the stimulus
corresponding to the threshold of perception, and will not depend on the duration of
exposure. There is an extensive literature discussing the comfort/discomfort of pas-
sengers in road and rail vehicles, aircraft, and ships.1, 32

The results of an experiment to establish subjective limits of tolerance to vertical
vibration for short-duration exposures (less than 5 minutes) is shown in Fig. 42.16.
The peak accelerations at which 10 subjects refused to continue exposure can be
seen to depend on frequency, and describes an equi-noxious contour for these stim-
uli and experimental conditions. Subjects reported as the reason for discontinuing
exposure either general discomfort or, within restricted frequency ranges, difficulty
breathing (1 to 4 Hz) or chest and/or abdominal pain (3 to 9 Hz).
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EFFECTS OF MECHANICAL SHOCK

Mechanical shock includes several types of force application which have similar,
though not identical, effects. Explosions, explosive compression or decompression,
and impacts and blows from rapid changes in body velocity or from moving objects
produce shock forces of importance. Major damage, short of complete tissue
destruction, is usually to lungs, intestines, heart, head, neck, or brain. Differences in
injury patterns arise from differences in rates of loading, peak force, duration, and
localization of forces.

Blast and Shock Waves.18 The mechanical effects associated with rapid changes
in environmental pressure are primarily localized to the vicinity of air-filled cavities
in the body, i.e., the ears, lungs, and air-containing gastrointestinal tract. Here, heavy
masses of blood or tissue border on light masses of air. The local impedance mis-
match can lead to a relative tissue displacement, which is destructive, by several dif-
ferent mechanisms.

The ear is the part of the human body most sensitive to blast injury. Rupture of the
tympanic membrane and injury to the conduction apparatus can occur singly or
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FIGURE 42.16 Peak acceleration at various frequencies at which sub-
jects refuse to tolerate further a short exposure (less than 5 min) to ver-
tical vibration.The figures above the abscissa indicate the exposure time
in seconds at the corresponding frequency. The shaded area has a width
of one standard deviation on either side of the mean (10 subjects).
(Ziegenruecker and Magid: USAF WADC Tech. Rept. 59–18, 1959.)
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together with injury to the hair cells in the inner ear.The two first-mentioned injuries
may protect the inner ear through energy dissipation. The degree of injury depends
on the frequency content of the blast pressure function. The fact that the ear’s great-
est mechanical sensitivity occurs at frequencies between 1500 and 3000 Hz explains
its vulnerability to short-duration blast waves. Peak pressures of only a few pounds
per square inch can rupture the ear drum, and still smaller pressures can damage the
conducting mechanism and the inner ear.There are wide variations in individual sus-
ceptibility to these injuries.

With very slow differential pressure changes, of approximately 1 sec duration or
longer, dynamic mechanical effects are unimportant; the static pressure is responsi-
ble for destructive mechanical stress or physiological response. Such pressure-time
functions occur with the explosive decompression of pressurized aircraft cabins at
high altitude and with the slow response of well-sealed shelters to blast waves. If the
pressure rise times or fall times are shortened (roughly to the order of tenths of sec-
onds), the dynamic response of the different resonating systems of the body
becomes important, in particular the thorax-abdomen system of Fig. 42.11.Available
data for single pulse, “instantaneously rising” pressures suggest the existence of a
minimum peak pressure which corresponds to natural frequencies for dogs of
between 10 and 25 Hz; for humans this frequency is lower. Contours of equal injury
potential are shown in Fig. 42.17 for various species. The theoretical curves are
obtained by means of the thorax model of Fig. 42.11 after application of appropriate
scaling laws to account for the different species sizes.7 For pressures with total dura-
tions of milliseconds or less and much shorter rise times (duration of wave short
compared to the natural period of the responding tissue), the effect and destruction
seem to depend primarily on the momentum of the shock wave. The mass m of an
oscillatory system located in a wall or body surface, which is struck by a shock wave,
is set into motion according to the relation

Pr dt = mv0 (42.3)

where Pr = reflected pressure at body surface
t = time

v0 = initial velocity

Experimental fatality curves on animals generally show this dependence on momen-
tum for short pressure phenomena (close to center of detonation) and the transition
to a dependence on peak pressure for phenomena of long duration (far away from
center).18 Fatal blast waves in air and water, for example, differ widely in peak pres-
sure and duration (in air, 10 atm in excess of atmospheric pressure with a duration
of 2.8 milliseconds, in water 135 atm in excess with a duration of 0.17 milliseconds),
but their momenta are similar. In this most important range of short-duration blasts,
the mechanical effects are localized because of the short duration, i.e., the high-
frequency content of the wave. The upper respiratory tract and bronchial tree, as
well as the thorax and abdomen system, are too large and have resonance frequen-
cies too low to be excited; there is no general compression or overexpansion of the
thorax, which leads to pulmonary injury as in explosive decompression. The blast
waves go directly through the thoracic wall, producing an impact or grazing blow.
Inside the tissue, blast injury has three possible causes: (1) spalling effects, i.e.,
injuries caused by the tensile stresses arising from the reflection of the shock wave
at the boundary between media with different propagation velocity [for example,
subpleural pulmonary hemorrhages along the ribs]; (2) inertia effects which lead to
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different accelerations of adjacent tissues with various densities, when the shock
wave passes simultaneously through these media; and (3) implosion of gas bubbles
enclosed in a liquid.These phenomena are compatible with observations made when
high-velocity missiles pass through water near air-containing tissues.19 The shock
waves may produce not only pulmonary injuries but also hard, sharply circum-
scribed blows to the heart.

Of the injuries produced by exposure to high-explosive blast, lung hemorrhage is
one of the most common. It may not of itself be fatal, since enough functional lung
tissue may easily remain to permit marginal gas exchange. However, the rupture of
the capillaries in the lung produces bleeding into the alveoli and tissue spaces, which
can seriously hamper respiratory activity or produce various respiratory and cardiac
reflexes. The heart rate is often very slow after a blast injury. Leakage of fluid
through moderately injured, but not ruptured, capillaries may occur. There is also
the possibility that air may enter the circulation to form bubbles or emboli and by
reaching critical regions may fatally impair the heart or brain circulation or produce
secondary damage to other organs.18 Fat emboli also may be formed and these, too,
are capable of blocking vessels supplying vital parts. When gas pockets are present
in the intestines, the shock may produce hemorrhage and in extreme cases rupture
the intestinal wall itself.

The effects of underwater shock waves on man and animals are in general of the
same kind as those produced by air blast. Differences which appear are those of
magnitude and often depend on the mode of exposure of the body. A person in the
water may, for example, be submerged from the waist down only; in this case, dam-
age is practically confined to the lower half of the body so that intestinal, rather than
lung, damage will occur. Direct mechanical injury to the heart muscle and conduct-
ing mechanism is possible.

Cerebral concussion resulting directly from exposure to shock waves is unusual.
Neurological symptoms following exposure to blast, however, may include general
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FIGURE 42.17 Estimated maximum tolerable blast overpressures for mouse, rabbit, dog, and
man. The curve for man is calculated by means of a model of the type given in Fig. 42.11. Using
the same model, dimensionally scaled to the animal sizes, results in curves matching closely the
experimental data.
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depression of nervous activity sometimes to the point of abolition of certain reflexes.
Psychological changes such as memory disturbances and abnormal emotional states
are found sometimes. In extreme cases, there may be paralysis or muscular dysfunc-
tion. Unconsciousness and subsequent amnesia for events immediately preceding
the injury result more commonly from blows to the head than from air blast. Recov-
ery from minor concussion apparently may be complete, but repeated concussion
may produce lasting damage.

Impacts, Blows, Rapid Deceleration. This type of force is experienced in falls, in
motor vehicle or aircraft crashes, in parachute openings, in seat ejections for escape
from high-speed military aircraft, and in many other situations. Interest in the body’s
responses to these forces centers on mechanical stress limits.Accident statistics from
the United States (from 1979 to 1986) indicate that serious injuries to occupants of
automobiles involved in frontal impacts, and who were wearing seat belts, were most
commonly to the head (approximately 35 percent), followed by the thorax (includ-
ing abdomen), and lower extremities (approximately 25 percent each).The distribu-
tion of injuries in fatal accidents involving military helicopters and pilot ejections
from fixed-wing aircraft is similar to that of the automobile statistics cited with, in
addition, injuries to the spine in approximately 13 percent of cases.5 For crewmen
who survived seat ejection from military aircraft, the most common injury was to the
spine, while for passengers surviving civil air transport accidents the most common
injury remained to the head.4

Serious injuries to the head usually involve brain injury, either with or, commonly,
without skull fracture.The brain may suffer either diffuse or focal injuries.The former
consists of brain swelling, concussion, and diffuse axonal injury, that is, mechanical
disruption of the nerve fibers; the latter consists of localized internal bleeding and
contusions (coup and contrecoup). Concussion is the most common brain injury.
Skull motion and fracture have been extensively investigated (see later in this sec-
tion), and have led to criteria for head injury (see Human Tolerance Criteria).

The most common neck and spinal injury is caused by rearward flexion and for-
ward extension of the neck, such as commonly occurs in rear-end motor vehicle col-
lisions (“whiplash”), and results in localized pain in the neck and shoulders, and even
cord injuries.The motion can also result in dislocation or fracture of the first and sec-
ond vertebral joints, and may lead to the spinal cord being crushed or severed. Both
neck and spine may be injured by vertical accelerations directed from the head or
buttocks, leading to dislocation and fracture with, again, the potential for spinal cord
injury. The nature and degree of injury is critically dependent on the body position
at impact.

The chest encloses important organs—the heart, lungs, trachea, esophagus, and
major blood vessels—and so injuries may be divided into those affecting the organs,
and those affecting the rib cage. Injuries to the internal organs include ruptures of the
heart, the lung, and of the arteries connected to the heart, while injuries to the rib
cage involve fractures of the ribs and sternum, and sometimes dislocations and frac-
tures of the thoracic vertebrae. Compound rib fractures may, if sufficiently displaced,
also result in puncturing of internal organs. Organs within the abdomen (especially
liver, kidneys, and spleen) are also subject to injury by external trauma involving
transverse (e.g., front-to-back or side-to-side) accelerations.

Common injuries to the lower extremities involve fractures of the long bones and
injuries to the joints.

Force Duration. The correlation between the response of the body system to
continuous vibration and to spike and step-force functions may be used to guide and
interpret exposures. The tissue areas stressed to maximum relative displacement at
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the various frequencies during steady-state excitation are preferred target areas for
injury under impact load if the force-time functions of the impacts have appreciable
energy in these frequency bands. If the impact exposure times are shorter, stress tol-
erance limits increase; if exposure times decrease to hundredths or thousandths of a
second, the response becomes more and more limited and localized to the point of
application of the force (blow). Elastic compression or injury will depend on the
load distribution over the application area, i.e., the pressure, to which tissues are sub-
jected. If tissue destruction or bone fracture occurs close to the area of application
of the force, these will absorb additional energy and protect deeper-seated tissues by
reducing the peak force and spreading it over a longer period of time.An example is
the fracture of foot and ankle of men standing on the deck of warships when an
explosion occurs beneath. The support may be thrown upward with great momen-
tum; if the velocity reaches 5 to 10 ft/sec (which corresponds, under these conditions,
to an acceleration of several hundred g) fractures occur.20 However, the energy
absorption by the fracture protects structures of the body which are higher up.

If the force functions contain extremely high frequencies, the compression effects
spread from the area of force application throughout the body as compression waves.
If these are of sufficient amplitude, they may cause considerable tissue disruption.
Such compression waves are observed from the impact of high-velocity missiles.

If the exposure to the accelerating forces lasts long enough so that (as in most
applications of interest) the whole body is displaced, exact measurement of the force
applied to the body and of the direction and contact areas of application becomes of
extreme importance. In studies of seat ejection, for example, a knowledge of seat
acceleration alone is not sufficient for estimating responses. One must know the
forces in those structures or restraining harnesses through which acceleration forces
are transmitted. The location of the center-of-gravity of the various body parts such
as arms, head, and upper torso must be known over the time of force application so
that the resulting body motion and deformation can be analyzed and controlled for
protection purposes. In addition to the primary displacements of body parts and
organs, there are secondary forces from decelerations if, due to the large amplitudes,
the motions of parts of the body are stopped suddenly by hitting other body parts.
Examples occur in linear deceleration where, depending on the restraint, the head
may be thrown forward until it hits the chest or, if only a lap belt is used, the upper
torso may jackknife and the chest may hit the knees. There is always the additional
possibility that the body may strike nearby objects (e.g., automobile dashboard or
door post), thus initiating a new impact deceleration history.

Longitudinal Acceleration. The study of positive longitudinal (headward)
acceleration of short duration is connected closely with the development of upward
ejection seats for escape from aircraft. Since the necessary ejection velocity of
approximately 60 ft/sec and the available distance for the catapult guide rails of about
3 ft are determined by the aircraft, the minimum acceleration required (step function)
is approximately 18.6g. Since the high jolt of the instantaneous acceleration increase
is undesirable because of the high dynamic load factor in this direction for the fre-
quency range of body resonances, slower build-up of the acceleration with higher
final acceleration is preferable to prevent injury. Investigations show that the body’s
ballistic response can be predicted by means of analog computations making use of
the frequency-response characteristics of the body. The simplest analog used for the
study of headward accelerations is the single degree-of-freedom mechanical res-
onator composed of the lumped-parameter elements of a spring, mass, and damper.A
diagram of this model is shown in Fig. 42.18A. The model is used to simulate the max-
imum stress developed within the vertebral column (the first failure mode in this
direction) for any given impact environment. The maximum dynamic deflection of
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the spring, ∆max, may be calculated for a given input acceleration-time history to the
model. The potential for spinal injury is estimated by forming the dynamic response
index (DRI), which is defined as ωn

2∆max/g, where the natural frequency of the model
ωn = (k/m)1/2 is 52.9 rad/sec and the damping ratio c/2(km)1/2 is 0.224. Experience with
nonfatal ejections from military aircraft, shown by the crosses and dashed line in Fig.
42.18B, suggests a 5 percent probability of spinal injury from exposure to a dynamic
response index of 18. An estimate of the rate of spinal injury from cadavers is shown
in this diagram by the continuous line. The success of the model has led to its adop-
tion for the specification of ejection seat performance, for its extension to accelera-
tions in three orthogonal directions,21 and to measures of ride comfort for exposure to
repeated impacts in some land vehicles and high-speed boats.22

For negative (tailward) acceleration (downward ejection) no firm point for appli-
cation of the accelerating force is accessible as for positive acceleration. If the force
is applied as usual through harness and belt at shoulder and groin, the mobility of
the shoulder girdle together with the elasticity of the belts results in a lower reso-
nance frequency than the one observed in upward ejection. To avoid overshooting
with standard harnesses, the acceleration rise time must be at least 0.15 sec.This type
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FIGURE 42.18 Prediction of spinal compression injury
from pilot ejection seat accelerations. (A) Model for the
study of spinal compression ∆ with mass m, spring stiff-
ness k and damping c; (B) relation between the dynamic
response index (DRI) and spinal injury rate for 361 non-
fatal ejections from six different types of aircraft (dashed
line) (aircraft type A, 64 ejections; B, 62; C, 65; D, 89; E, 33;
F, 48). Data from cadavers (continuous line). (After Grif-
fin,1 and von Gierke.6)
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of impact can excite the thorax-abdomen system (Fig. 42.11). The diaphragm is
pushed upward by the abdominal viscera; as a result, air rushes out of the lungs (if
the glottis is open) or high pressures develop in the air passages.

Transverse Accelerations. The forward- and backward-facing seated positions
are most frequently exposed to high transverse (i.e., horizontal) components of
crash loads. Human tolerance to these forces has been studied extensively by volun-
teer tests on linear decelerators, in automobile crashes, and by the analysis of the
records of accidental falls. The results indicate the importance of distributing the
decelerative forces or impact over as wide an area as possible.The tolerable acceler-
ation amplitudes of well over 50g (100g and over for falling flat on the back with
minor injuries, 35 to 40g for 0.05-sec voluntary deceleration when seated with
restraining harness) are probably limited by injury to the brain. An indication that
the latter might be sensitive to and based on specific dynamic responses is the fact
that the tolerance limit depends strongly on the rise time of the acceleration. With
rise times around 0.1 sec (rate of change of acceleration 500g/sec), no overshooting
of head and chest accelerations is observed, whereas faster rise times of around 0.03
sec (1000 to 1400g/sec) result in overshooting of chest accelerations of 30 percent
(acceleration front to back) and even up to 70 percent (acceleration back to front).
All these results depend critically on the harness for fixation and the back support
used (see Protection Methods and Procedures). These dynamic load factors indicate
a natural frequency of the body system between 10 and 20 Hz. Impact of the heart
against the chest wall is another possible injury discussed and noted in some animal
experiments.

The head and neck supporting structures seem to be relatively tough. Injury seems
to occur only upon backward flexion and extension of the neck (“whiplash”) when
the body is accelerated from back to front without head support, as already noted.

Head Impact.23 The reaction of the head to a blow is a function of the velocity,
duration, area of impact, and the transfer of momentum. Near the point of applica-
tion of the blow there will be an indentation of the skull. This results in shear strains
in the brain in a superficial region close to the dent. Compression waves emanate
from this area, which have normally small amplitudes since the brain is nearly
incompressible. In addition to the forces on the brain resulting from skull defor-
mation there are acceleration forces, which also would act on a completely unde-
formable skull. The centrifugal forces and linear accelerations producing
compressional strains are negligible compared to the shear strains produced by the
rotational accelerations.The maximum strains are concentrated at regions where the
skull has a good grip on the brain owing to inwardly projecting ridges, especially at
the wing of the sphenoid bone of the skull. Shear strains also must be present
throughout the brain and in the brain stem. Many investigators consider these shear
strains, resulting from rotational accelerations due to a blow to the unsupported
head, as the principal event leading to concussion. Blows to the supported, fixed
head are supposed to produce concussion by compression of the skull and elevation
of cerebrospinal fluid pressure. There is now general acceptance that rotational
acceleration can be one of the main causes of concussion. This follows from animal
experiments in which typical primate brain injuries were reproduced, ranging from
subconcussive injury with little histological evidence of axonal damage, to prolonged
traumatic coma (lasting hours or days) with extensive axonal injury throughout the
white matter and brainstem, to immediate fatal injury.4

In general a high-velocity projectile (for example, a bullet of 10 grams with a
speed of 1000 ft/sec) with its high kinetic energy and low momentum produces
plainly visible injury to scalp, skull, and brain along its path.The high-frequency con-
tent of the impact is apt to produce compression waves which in the case of very high
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energies may conceivably lead to cavitation with resulting disruption of tissue. Skull
fracture is not a prerequisite for these compression waves. However, if the head hits
a wall or another object whose mass is large compared to the head’s mass, the local,
visible damage is small and the damage due to rotational acceleration may be large.
Blows to certain points, especially on the midline, produce no rotation. Blows to the
chin upward and sideward produce rotation relatively easily (“knock-out” in box-
ing). Velocities listed in the literature for concussion from impact of large masses
range from 15 to 50 ft/sec. At impact velocities of about 30 ft/sec, approximately 
200 in.-lb of energy is absorbed in 0.002 sec, resulting in an acceleration of the head
of 47g. Impact energies for compression concussion are probably approximately in
the same range.

Scalp, skin, and subcutaneous tissue reduce the energy applied to the bone. If the
response of the skull to a blow exceeds the elastic deformation limit, skull fracture
occurs. Impact by a high-velocity, blunt-shaped object results in localized circum-
scribed fracture and depression. Low-velocity blunt blows, insufficient to cause
depression, occur frequently in falls and crashes. Given enough energy, two, three, or
more cracks appear, all radiating from the center of the blow. The skull has both
weak and strong areas, each impact area showing well-defined regions for the occur-
rence of the fracture lines.

The total energy required for skull fracture varies from 400 to 900 in.-lb, with an
average often assumed to be 600 in.-lb. This energy is equivalent to the condition
that the head hits a hard, flat surface after a free fall from a 5-ft height. Skull frac-
tures occurring when a batter is accidentally hit by a ball (5 oz) of high velocity (100
ft/sec) indicate that about the same energy (580 in.-lb) is required. Additional
energy 10 to 20 percent beyond the single linear fracture demolishes the skull com-
pletely. Dry skull preparations required only approximately 25 in.-lb for fracture.
The reason for the large energy difference required in the two conditions is attrib-
uted mainly to the attenuating properties of the scalp.

In automobile and aircraft crashes the form, elasticity, and plasticity of the object
injuring the head is of extreme importance and determines its “head injury poten-
tial.” For example, impact with a 90° sharp corner requires only a tenth of the energy
for skull fracture (60 in.-lb) that impact with a hard, flat surface requires.

EFFECTS OF SHOCK AND VIBRATION ON TASK PERFORMANCE

The performance of tasks requiring a physical response to some stimulus involves
peripheral (e.g., perceptual and motor) and central neurological processes, with multi-
ple feedback paths characteristic of a sophisticated control system. Each of these
processes is complex, is more or less developed in different individuals, and may be
influenced by training and the general state of health. In consequence, unique rela-
tionships between vibration and task performance are unlikely, except for well-
defined situations in which some part of the body reaches a physical or physiological
limit to performance. For example, movement of images on the retina may cause de-
focusing and a reduction of visual acuity. The movement may be caused by vibration
of the display (i.e., the source), the head (and/or observer), or both. At frequencies
below approximately 1 Hz, a pursuit reflex assists visual acuity. At frequencies above
20 Hz an eyeball resonance can degrade acuity.The effects of whole-body vibration on
visual acuity therefore depend on the frequency and amplitude, as well as the viewing
distance.1 As already discussed, whole-body vibration can affect speech.

Vibration may also degrade the manual control of objects. The influence of
whole-body vibration on writing and drinking is a common experience in public

42.30 CHAPTER FORTY-TWO

8434_Harris_42_b.qxd  09/20/2001  12:21 PM  Page 42.30



transportation vehicles and ships. Vibration may interfere with the performance of
manually controlled systems. The extent of the effect depends on hand motion, the
type of control (e.g., a “stiff” control that responds to the application of force with-
out moving or one that moves and responds with little force applied), and the
dynamics of the control and the controlled system. A control that responds to hand
displacement may be disrupted by vertical vibration at frequencies between 2 and 6
Hz. The effect of the duration of vibration exposure on task performance is influ-
enced by motivation, arousal, and adaptation and may therefore be observed to
improve or degrade performance over time.

Exposure of the hand to vibration can lead to sensorineural dysfunction suffi-
cient to reduce the ability to perform fine manual tasks, such as buttoning clothing.3

The motion associated with a shock is unlikely to interfere directly with the per-
formance of most tasks unless it is coincident with some critical component of the
task. This condition may occur with shocks repeated at very short intervals.

PROTECTION METHODS AND PROCEDURES

Protection of man against mechanical forces is accomplished in two ways: (1) isola-
tion to reduce transmission of the forces to the man and (2) increase of man’s
mechanical resistance to the forces. Isolation against shock and vibration is achieved
if the natural frequency of the system to be isolated is lower than the exciting fre-
quency at least by a factor of 2. Both linear and nonlinear resistive elements are used
for damping the transmission system; irreversible resistive elements or energy-
absorbing devices can be used once to change the time and amplitude pattern of
impulsive forces (e.g., progressive collapse of automobile engine compartment in
frontal crash). Human tolerance to mechanical forces is strongly influenced by select-
ing the proper body position with respect to the direction of forces to be expected.
Man’s resistance to mechanical forces also can be increased by proper distribution of
the forces so that relative displacement of parts of the body is avoided as much as
possible. This may be achieved by supporting the body over as wide an area as possi-
ble, preferably loading bony regions and thus making use of the rigidity available in
the skeleton. Reinforcement of the skeleton is an important feature of seats designed
to protect against crash loads.The flexibility of the body is reduced by fixation to the
rigid seat structure. The mobility of various parts of the body, e.g., the abdominal
mass, can be reduced by properly designed belts and suits. The factor of training and
indoctrination is essential for the best use of protective equipment, for aligning the
body in the least dangerous positions during intense vibration or crash exposure, and
possibly for improving operator performance during vibration exposure.

PROTECTION AGAINST VIBRATIONS

The transmission of vibration from a vehicle or platform to a man is reduced by
mounting him on a spring or similar isolation device, such as an elastic cushion. The
degree of vibration isolation theoretically possible is limited, in the important reso-
nance frequency range of the sitting man, by the fact that large static deflections of
the man with the seat or into the seat cushion are undesirable. Large relative move-
ments between operator and vehicle controls interfere in many situations with
man’s performance. Therefore a compromise must be made. Cushions are used pri-
marily for static comfort, but they are also effective in decreasing the transmission of
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vibration above man’s resonance range. They are ineffective in the resonance range
and may even amplify the vibration in the subresonance range. In order to achieve
effective isolation over the 2- to 5-Hz range, the natural frequency of the man-
cushion system should be reduced to 1 Hz, i.e., the natural frequency should be small
compared with the forcing frequency (see Chap. 30). This would require a static
cushion deflection of 10 in. If a seat cushion without a back cushion is used (as is
common in some tractor or vehicle arrangements), a condition known as “back
scrub” (a backache) may result. Efforts of the operator to wedge himself between
the controls and the back of the seat often tend to accentuate this uncomfortable
condition.

For severe low-frequency vibration, such as occur in tractors and other field
equipment, suspension of the whole seat is superior to the simple seat cushion.
Hydraulic shock absorbers, rubber torsion bars, coil springs, and leaf springs all have
been successfully used for suspension seats. A seat that is guided so that it can move
only in a linear direction seems to be more comfortable than one in which the seat
simply pivots around a center of rotation. The latter situation produces an uncom-
fortable and fatiguing pitching motion. Suspension seats can be built which are capa-
ble of preloading for the operator’s weight so as to maintain the static position of the
seat and the natural frequency of the system at the desired value. Suspension seats
for use on tractors and on similar vehicles are available which reduce the resonance
frequency of the man-seat system from approximately 4 to 2 Hz. This can be seen
from the comparison of the transmissibility of a rigid seat, a truck suspension seat,
and a conventional foam and metal sprung car seat in Fig. 42.19.The transmissibility
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FIGURE 42.19 Comparison of the transmissibilities of a rigid
seat, a foam-covered metal sprung seat, and a truck suspension
seat. (Griffin.1)
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of the car seat is in excess of 2 at the resonance frequency (4 Hz), implying that the
seat motion reaching the body is amplified by this ratio. In contrast, the amplifica-
tion introduced by the suspension seat is at most a factor of 1.3 at the resonance fre-
quency (2 Hz), and improved attenuation of vibration is obtained throughout the
frequency range from 4 to 12 Hz. At frequencies below 2 Hz and above 12 Hz, less
vibration is transmitted to the subject by the foam and metal sprung seat. There are
large differences in the performance of suspension seats, with transmissibilities in
excess of 2 being recorded in some designs at the resonance frequency (which is
usually close to 2 Hz).1 In consequence, the selection of a seat for a particular appli-
cation must take into account both the performance of the seat and the critical seat
vibration frequencies to be attenuated.

For severe vibrations, close to or exceeding normal tolerance limits, such as those
which may occur in military operations, special seats and restraints can be employed
to provide maximum body support for the subject in all critical directions. In gen-
eral, under these conditions, seat and restraint requirements are the same for vibra-
tion and rapidly applied accelerations (discussed in the next section). Laboratory
experiments show that protection can be achieved by the use of rigid or semirigid
body enclosures. Immersion of the operator in a rigid, water-filled container with
proper breathing provisions has been used in laboratory experiments to protect sub-
jects against large, sustained static g loads.This principle can be used to provide pro-
tection against large alternating loads.

Isolation of the hand and arm from the vibration of hand-held or hand-guided
power tools is accomplished in several ways. A common method is to isolate the 
handles from the rest of the power tool, using springs and dampers (see Chap. 30).
The application of vibration-isolation systems to chain saws for occupational use in
forestry has become commonplace and has led to a reduction in the incidence of
HAVS. A second method is to modify the tool so that the primary vibration is coun-
terbalanced by an equal and opposite vibration source. This method takes many dif-
ferent forms, depending on the operating principle of the power tool.24 An example
is shown for a pneumatic scaling chisel in Fig. 42.20, in which an axial impact is
applied to a work piece to remove metal by a chisel P. The chisel is driven into the
work piece by compressed air and is returned to its initial position by a spring S. The
axial motion of the chisel is counterbalanced by a second mass m and spring k which
oscillate out of phase with the chisel motion.The design of an appropriate vibration-
isolation system must include the dynamic properties of the hand-arm system. The
model of Fig. 42.14 is suitable for this purpose.

Conventional gloves do not attenuate the vibration transmitted to the hand but
may increase comfort and keep the hands warm. So-called antivibration gloves also
fail to reduce vibration at frequencies below 100 Hz, which are most commonly
responsible for HAVS, but may reduce vibration at high frequencies (the relative
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FIGURE 42.20 An antivibration power tool design for a pneu-
matic scaler: P—vibrating chisel; S—chisel return spring; m—coun-
terbalancing oscillating weight; and k—counterbalance return
spring. (Lindqvist.24)
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importance of different frequencies in causing the vascular component of HAVS is
shown in Fig. 42.26).

Preventive measures for HAVS to be applied in the work place include: minimiz-
ing the duration of exposure to vibration, using minimum hand-grip force consistent
with safe operation of the power tool or process (“let the tool do the work”), wear-
ing sufficient clothing to keep warm, and maintaining the tool in good working
order, with minimum vibration. As recovery from HAVS has only been demon-
strated for early vascular symptoms, medical monitoring of persons exposed to
vibration is essential. Monitoring should include a test of peripheral neurological
function,25 since this component of HAVS appears to persist.

PROTECTION AGAINST RAPIDLY APPLIED 

ACCELERATIONS (CRASH)

The study of automobile and aircraft crashes and of experiments with dummies and
live subjects shows that complete body support and restraint of the extremities pro-
vide maximum protection against accelerating forces and give the best chance for
survival. If the subject is restrained in the seat, he makes full use of the force moder-
ation provided by the collapse of the vehicle structure, and is protected against shifts
in position which would injure him by bringing him in contact with interior surfaces
of the cabin structure.The decelerative load must be distributed over as wide a body
area as possible to avoid force concentration with resulting bending moments and
shearing effects. The load should be transmitted as directly as possible to the skele-
ton, preferably directly to the pelvic structure—not via the vertebral column.

Theoretically, a rigid envelope around the body will protect it to the maximum pos-
sible extent by preventing deformation.A body restrained to a rigid seat approximates
such a condition; proper restraints against longitudinal acceleration shift part of the
load of the shoulder girdle and arms from the spinal column to the back rest.Arm rests
can remove the load of the arms from the shoulders. Semirigid and elastic abdominal
supports provide some protection against large abdominal displacements. The effec-
tiveness of this principle has been shown by animal experiments and by impedance
measurements on human subjects (see Fig. 42.6). Animals immersed in water, which
distributes the load applied to the rigid container evenly over the body surface, or in
rigid casts are able to survive acceleration loads many times their normal tolerance.

Many attempts have been made to incorporate energy-absorptive devices, either
in a harness or in a seat, with the intent to change the acceleration-time pattern by
limiting peak accelerations. For example, consider an aircraft which is stopped in a
crash from 100 mph in 5 ft; it is subjected to a constant deceleration of 67g. An
energy-absorptive device designed to elongate at 17g would require a displacement
of 19 in. In traveling through this distance, the body or seat would be decelerated rel-
ative to the aircraft by 14.4g and would have a maximum velocity of 36.8 ft/sec rela-
tive to the aircraft structure. A head striking a solid surface (e.g., cabin interior
surface) with this velocity has many times the minimum energy required to fracture
a skull.The available space for seat or passenger travel using the principle of energy
absorption therefore must be considered carefully in the design. Seats for jet air-
liners have been designed which have energy-absorptive mechanisms in the form of
extendable rear-legs. The maximum travel of the seats is 6 in.; their motion is
designed to start between 9 and 12g horizontal load, depending on the floor
strength. During motion, the legs pivot at the floor level—a feature considered to be
beneficial if the floor wrinkles in the crash.Theoretically, such a seat can be exposed
to a deceleration of 30g for 0.037 sec or 20g for 0.067 sec without transmitting a
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deceleration of more than 9g to the seat. However, the increase in exposure time
must be considered as well as the reduction in peak acceleration. For very short
exposure times where the body’s tolerance probably is limited by the transferred
momentum and not the peak acceleration, the benefits derived from reducing peak
loads would disappear.

The high tolerance limits of the well-supported human body to decelerative forces
suggest that in aircraft and other vehicles, seats, floors, and the whole inner structure
surrounding crew and passengers should be designed to resist crash decelerations as
near to 40g as weight or space limitations permit.26 The structural members sur-
rounding this inner compartment should be arranged so that their crushing reduces
forces on the inner structure. Protruding and easily loosened objects should be
avoided. To allow the best chance for survival, seats should also be stressed for
dynamic loadings between 20 and 40g. Civil Air Regulations require a minimum
static strength of seats of 9g. A method for computing seat tolerance for typical sur-
vivable airplane crash decelerations is available for seats of conventional design.26 It
has been established that a passenger who is riding in a seat facing backward has a
better chance to survive an abrupt crash deceleration since the impact forces are then
more uniformly distributed over the body. Neck injury must be prevented by proper
head support. Objections to riding backward on a railway or in a bus are minimized
for air transportation because of the absence of disturbing motion of objects in the
immediate field of view.Another consideration concerning the direction of passenger
seats in aircraft stems from the fact that for a rearward-facing seat the center of pas-
senger support during deceleration is about 1 ft above the point where the seat belt
would be attached for a forward-facing passenger. Consequently, the rearward-facing
seat is subjected to a higher bending moment; in other words, for seats of the same
weight the forward-facing seat will sustain higher crash forces without collapse. For
the same seat weight, the rearward-facing seat will have approximately only half the
design strength of the forward-facing seat and about one-third its natural frequency.

Increased safety in automobile as well as airplane crashes can be obtained by dis-
tributing the impact load over larger areas of the body and fixing the body more
rigidly to the seat. Shoulder straps, thigh straps, chest straps, and hand holds are addi-
tional body supports used in experiments. They are illustrated in Fig. 42.21. Table
42.3 shows the desirability of these additional restraints to increase possible surviv-
ability to acceleration loads of various direction. In airplane crashes, vertical and
horizontal loads must be anticipated. In automobile crashes, horizontal loads are
most likely.

Safety lap, or seat, belts are used to restrain the occupants of aircraft or automo-
biles and to prevent their being hurled about within, or being ejected from, the car
or aircraft. Their effectiveness has been proved by many laboratory tests and in
actual crash accidents. A forward-facing passenger held by a seat belt flails about
when suddenly decelerated; his hands, feet, and upper torso swing forward until his
chest hits his knees or until the body is stopped in this motion by hitting other
objects (back of seat in front, cabin wall, instrument panel, steering wheel, control
stick, see Fig. 42.22). Since 15 to 18g longitudinal deceleration can result in 3 times
higher acceleration of the chest hitting the knees, this load appears to be about the
limit a human can tolerate with a seat belt alone. Approximately the same limit is
obtained when the head-neck structure is considered.

The effectiveness of adequately engineered shoulder or chest straps in automobile
crashes is illustrated in Fig. 42.22. Lap straps always should be as tight as comfort will
permit to exclude available slack. During forward movement, about 60 percent of the
body mass is restrained by the belt, and therefore represents the belt load. If the
upper torso is fixed to the back of the seat by any type of harness (shoulder harness,

EFFECTS OF SHOCK AND VIBRATION ON HUMANS 42.35

8434_Harris_42_b.qxd  09/20/2001  12:21 PM  Page 42.35



chest belt, etc.), the load on the seat is approximately the same for forward- and aft-
facing seats.The difference between these seats with respect to crash tolerance as dis-
cussed above no longer exists. These body restraints for passenger and crew must be
applied without creating excessive discomfort.

A rapidly inflating “air bag” situated in front of an automobile driver, and often
the front passenger, and inflated on frontal collision, has been installed in most vehi-
cles during the last decade. While initially conceived as an alternative to passive
restraints, that is, as a safety system that would operate when an automobile occu-
pant was not wearing a seat belt, air bags are now recognized to provide most bene-
fit when considered as a complementary system to lap and shoulder seat belts. The
device consists of a crash sensor, or sensors, mounted near the front of the vehicle
that signal velocity changes to a controller; those in excess of about 20 ft/sec cause a
pyrotechnic reaction to generate gas that inflates a porous fabric bag within, typi-
cally, 25 m/sec, so that the bag is inflated sufficiently to distribute the deceleration
forces over a large surface area on contact with the occupant. Accident data have
shown that while air bags do save lives, believed to be some 2,620 people in the
United States from 1990 to 1997, they were also responsible for the deaths of at least
44 children and 36 adults during this period.27 Most of the fatalities have been attrib-
uted to the size and position of the occupant at the time of impact with the air bag,
which is not defined if a seat belt is not worn (see Fig. 42.22). In these circumstances,
the air bag may impact the occupant with sufficient force to produce fatal injury. Sys-
tems are under development to mitigate these effects (e.g., reducing the inflation
rate of the bag and monitoring occupant position).27

The dynamic properties of seat cushions are extremely important if an accelera-
tion force is applied through the cushion to the body. In this case the steady-state
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FIGURE 42.21 Protective harnesses for rapid accelerations or decelerations.The following devices
were evaluated in sled deceleration tests: (A) Seat belt for automobiles and commercial aviation. (B)
Standard military lap and shoulder strap. (C) Like (B) but with thigh straps added to prevent head-
ward rotation of the lap strap. (D) Like (C) but with chest strap added. (Stapp: USAF Tech. Rept.
5915, pt. I, 1949; pt. II, 1951.)
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TABLE 42.3 Human-Body Restraint and Possible Increased Impact Survivability (After Eiband.36)

Direction of acceleration Conventional Possible survivability increases
imposed on seated occupants restraint available by additional body supports*

Spineward: Forward facing:
Crew Lap strap (a) Thigh straps (assume crew members will be

Shoulder performing emergency duties with hands and feet
straps at impact)

Forward facing:
Passengers Lap strap (a) Shoulder straps, (b) thigh straps, (c) nonfailing 

arm rests, (d) suitable hand holds, and (e) emer-
gency toe straps in floor

Sternumward: Aft facing:
Passengers only Lap strap (a) Nondeflecting seat back, (b) integral, full-height 

head rest, (c) chest strap (axillary level), (d) lat-
eral head motion restricted by padded “winged 
back,” (e) leg and foot barriers, and (f) arm 
rests and hand holds (prevent arm displacement 
beyond seat back)

Headward: Forward facing:
Crew Lap strap (a) Thigh straps, (b) chest strap (axillary level), and

Shoulder (c) full, integral head rest (assume crew mem-
straps bers will be performing emergency duties;

extremity restraint useless)

Forward facing:
Passengers Lap strap (a) Shoulder straps, (b) thigh straps, (c) chest strap 

(axillary level), (d) full, integral head rest,
(e) nonfailing contoured arm rests, and (f) suit-
able hand holds

Aft facing:
(a) Chest strap (axillary level), (b) full, integral 

head rest, (c) nonfailing arm rests, and (d) suit-
able hand holds

Tailward: Forward facing:
Crew Lap strap (a) Lap-belt tie-down strap (assume crew members

Shoulder will be performing emergency duties; extremity
straps restraint useless)

Forward facing:
Passengers Lap strap (a) Shoulder straps, (b) lap-belt tie-down strap,

(c) hand holds, (d) emergency toe straps

Aft facing:
(a) Chest strap (axillary level), (b) hand holds, and 

(c) emergency toe straps

Feet forward:
Berthed occupants Lap strap Full-support webbing net

Athwart ships:
Full-support webbing net

* Exposure to maximum tolerance limits (see Figs. 42.28 to 42.35) requires straps exceeding conventional strap
strength and width.
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response curve of the total man-seat system (Fig. 42.19) provides a clue to the possi-
ble dynamic load factors under impact. Overshooting should be avoided, at least for
the most probable impact rise times. This problem has been studied in detail in con-
nection with seat cushions used on upward ejection seats. The ideal cushion is
approached when its compression under static load spreads the load uniformly and
comfortably over a wide area of the body and if almost full compression is reached
under the normal weight. The impact acceleration then acts uniformly and almost
directly on the body without intervening elastic elements. A slow-responding foam
plastic, such as an open cell rate-dependent polyurethane foam, of thickness from 2
to 2.5 in. satisfies these requirements.28

A significant factor in human impact tolerance appears to be the acceleration-time
history of the subject immediately preceding the impact event. A so-called dynamic
preload consists of an imposed acceleration preceding, and/or during, and in the same
direction as the impact acceleration.29 A dynamic preload occurs, for example, when
the brakes are applied to a moving automobile before it hits a barrier. The phenome-
non is found experimentally to reduce the acceleration of body parts on impact,
thereby potentially mitigating adverse health effects.The dynamic preload should not
be confused with the static preload introduced by a protective harness. The latter
brings the occupant into contact with the seat or restraint but does not introduce the
dynamic displacement of body parts and tissue compression necessary to reduce the
body’s dynamic response.

A summary of methods used to improve the performance of occupant restraint
systems in motor vehicles is given in Table 42.4.

FIGURE 42.22 Effect of varying safety-belt arrangements on driver and passenger for a 25-mph
automobile collision with a fixed barrier. The sketches and evaluations are based on actual collision
tests. (Severy and Matthewson: Trans. SAE, 65:70, 1957.)
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TABLE 42.4 Occupant Restraint Performance Enhancers (After R. Eppinger, in “Accidental
Injury: Biomechanics and Prevention,” p. 196, Springer-Verlag, New York, 1993.)

Belt systems

Pretensioner—A device, activated by a sensor detecting the onset of the crash, which retracts belts
rapidly, removing any slack and coupling the occupant to the vehicle structure sooner than a stan-
dard belt system would
• Effect: Maximizes time and distance over which belt forces are applied, applies greater restraint

forces earlier in the crash event, and therefore affords greater energy extraction
Variable stiffness seat cushion—A cushion that is stiffer at the front edge than toward the rear by

the seat back
• Effect: Prevents the pelvis from moving down while being restrained by a lap-belt system, thus

maintaining correct belt geometry to ensure the belt remains on the bony pelvis and does not
slip up and over the pelvis into the soft abdomen and cause injuries

Force-limiting belt webbing—Seat-belt webbing designed to stretch at a predetermined level
• Effect: Limits the maximum force applied to the body and allows the body to translate more

within the occupant compartment as well as over the ground, thus extracting a greater amount
of the initial kinetic energy

Retracting steering system—A steering system designed to move forward within the compartment
as the front of the car crushes during an impact
• Effect: Provides a greater translation distance within the compartment for the driver using a

safety-belt system, thus increasing the energy extraction potential with reduced force
Inflating belts—A torso belt system, which, upon sensing the initiation of a crash, inflates to large-

diameter cylinder
• Effect: Increases the contact area between the belt and the thorax as well as removing slack for

the system and coupling the occupant to the vehicle earlier in the crash sequence
Web lockers—A device that clamps the torso belt and prevents it from unwrapping from its take-up

spool or reel
• Effect: Prevents torso belt from becoming longer and allowing the occupant to translate within

the compartment without substantial restraint forces being applied to occupant

Air bag systems

Dual inflation levels—Air bag systems that, depending on the logic provided, are either crash-
sensitive and/or occupant-sensitive, will inflate with different rates and/or volumes of gas depend-
ing on the intensity of the crash and/or the size or proximity of occupant to the inflation module
• Effect: Crash- or size-sensitive systems modulate the forces applied to the occupant according to

need (greater forces in higher-intensity crashes or for heavier occupants), thus allowing optimal
stroke within compartment. Proximity-sensitive systems reduce inflation rate when occupant
near module to prevent unnecessarily high forces being applied

Dual air bags—An air bag within an air bag where the inflator directly inflates the inner bag and
then vents the gases into the outer bag to inflate it
• Effect: Allows the small-volume inner bag to inflate rapidly and apply forces earlier in the crash

event with the subsequent large outer bag adding area and force capability later in the crash
event

Precrash sensing (anticipatory)—Means by which an imminent crash is sensed prior to the actual
initiation of the crash and restraint operations are begun
• Effect: Allows the restraint system to initiate its application of forces earlier in the crash event

by either pretensioning-belt systems or initiating inflation of air bag sooner
Stroking columns—Specifically designed column support structure that deforms in a specified

direction while applying a controlled force
• Effect: Allows the occupant to have greater stroke within the compartment, thus extending the

time over which he accomplishes the necessary velocity change and extracting more of his
kinetic energy

Air bag/seat-belt combination—Safety system designed to exploit advantages of both restraint sys-
tems
• Effect: Employs the best operational characteristics of both restraint concepts to provide opti-

mal restraint for the occupant
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PROTECTION AGAINST HEAD IMPACT

The impact-reducing properties of protective helmets are based on two principles:
the distribution of the load over a large area of the skull and the interposition of
energy-absorbing systems. The first principle is applied by using a hard shell, which
is suspended by padding or support webbing at some distance from the head (5⁄8 to 3⁄4
in.). High local impact forces are distributed by proper supports over the whole side
of the skull to which the blow is applied. Thus, skull injury from relatively small
objects and projectiles can be avoided. However, tests usually show that contact
padding alone over the skull results in most instances in greater load concentration,
whereas helmets with web suspension distribute pressures uniformly. Since helmets
with contact padding usually permit less slippage of the helmet, a combination of
web or strap suspension with contact padding is desirable.The shell itself must be as
stiff as is compatible with weight considerations; when the shell is struck by a blow,
its deflection must not be large enough to permit it to come in contact with the head.

Padding materials can incorporate energy-absorptive features. Whereas foam
rubber and felt are too elastic to absorb a blow, foam plastics like polystyrene or
Ensolite result in lower transmitted accelerations.

Most helmets constitute compromises among several objectives such as pressur-
ization, communication, temperature conditioning, minimum bulk and weight, visi-
bility, protection against falling objects, etc.; usually, impact protection is but one of
many design considerations.30 The protective effect of helmets against concussion and
skull fracture has been proved in animal experiments and is apparent from accident
statistics.

PROTECTION AGAINST BLAST WAVES

Individual protection against air blast waves is extremely difficult since only very thick
protective covers can reduce the transmission of the blast energy significantly.Further-
more, not only the thorax but the whole trunk would require protection. In animal
experiments, sponge-rubber wrappings and jackets of other elastic material have
resulted in some reduction of blast injuries.18 Enclosure of the animal in a metal cylin-
der with the head exposed to the blast wave has provided the best protection—short of
complete enclosure of the animal.Therefore it is generally assumed that shelters are the
only practical means of protecting humans against blast.They may be of either the open
or closed type; both change the pressure environment. Changes in pressure rise time
introduced by the door or other restricted openings are physiologically most important.

HUMAN TOLERANCE CRITERIA

WHOLE-BODY VIBRATION EXPOSURE

International Standard ISO 2631 defines methods for the measurement of periodic,
random, and transient whole-body vibration.The standard also describes the principal
factors that combine to determine the acceptability of an exposure and suggests the
possible effects, recognizing the large variations in responses between individuals.31

Measurement. Whole-body vibration is measured at the principal interface
between the human body and the source of vibration. For seated persons, this inter-
face is most likely to be the seat surface and seat back, if any; for standing persons,
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the feet; and for reclining persons, the supporting surface(s) under the pelvis, torso,
and head. When vibration is transmitted to the body through a nonrigid or resilient
material (e.g., a seat cushion), the measuring transducer should be within a mount,
in contact with the body, formed to minimize the change in surface pressure distri-
bution of the resilient material.1 The measurement should be of sufficient duration
to ensure that the data are representative of the exposure being assessed and, for
random signals, contain acceptable statistical precision.

Frequency-Weighted Acceleration. The magnitude of the exposure is charac-
terized by the rms frequency-weighted acceleration calculated in accordance with the
following equation or its equivalent in the frequency domain:

aW = � �T

0
aW

2 (t)dt�
1/2

(42.4)

where aw(t) is the frequency-weighted acceleration, or angular acceleration, at time t
expressed in meters per second squared (m/s2), or radians per second squared
(rad/s2), respectively; and T is the duration of the measurement in seconds. The fre-
quency weightings to be employed for different applications are shown in Fig. 42.23,
with their applicability summarized in Table 42.5. The coordinate systems for the
directions of motion referred to in Table 42.5 are shown in Fig. 42.24. Frequency
weightings Wd and Wk are the principal weightings for the assessment of the effects
of vibration on health, comfort, and perception, with Wf used for motion sickness.
Wc, We, and Wj apply to specific situations involving, respectively: motion coupled to
the body from a seat back (Wc); body rotation (We); and head motion in the X direc-
tion of reclining persons (Wj).Application of a frequency weighting selected accord-
ing to Table 42.5, Fig. 42.23, and Fig. 42.24 to one component of vibration transmitted
to the body provides a measure of the component frequency-weighted acceleration
for that direction of motion and human response.

Equation (42.4) is suitable for characterizing vibrations with a crest factor less
than 9, where the crest factor is here defined as the magnitude of the ratio of the
peak value of the frequency-weighted acceleration signal to its rms value.

Vibration Containing Transient Events. For exposures to whole-body vibra-
tion containing transient events resulting in crest factors in excess of 9, either the
running rms or the fourth-power vibration dose, or both, may be used in addition to
the rms frequency-weighted acceleration to ensure that the effects of transient
vibrations are not underestimated.The running rms is calculated for a short integra-
tion time τ ending at time t0 in the time record as follows:

aW(t0) = � �t0

(t0 − τ)
aW

2(t) dt�
1/2

(42.5)

A correlation with some subjective human responses to transient vibration may be
obtained by constructing the maximum transient vibration value MTVV(T) during
the measurement

MTVV(T ) = |aW(t0)|max (42.6)

where the right-hand side of this equation is determined by the maximum value of
the running rms acceleration obtained using Eq. (42.5) when τ = 1 sec.

The fourth-power vibration dose value VDV is defined by

VDV = ��
T

0
aW

r(t) dt�
1/r

(42.7)

1
�
τ

1
�
T
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with r = 4, and provides a measure of exposure that is more sensitive to large ampli-
tudes by forming the fourth power of the frequency-weighted acceleration time-
history, aw

4(t). If the total exposure consists of i exposure elements with different
vibration dose values (VDV)i then

VDVtotal = ��
i

(VDV)i
4�

1/4

(42.8)

Use of the maximum transient vibration value or the total vibration dose value in
addition to the rms frequency-weighted acceleration is advisable whenever

MTVV(T ) > 1.5aW (42.9)

or

VDVtotal > 1.75aWT1/4 (42.10)

TABLE 42.5 Applicability of Whole-Body Vibration Frequency Weightings Wk, Wd, Wf, Wc,
We, and Wj, Shown in Fig. 42.23, for the Vibration Directions X, Y, Z, Rx, Ry, and Rz Specified
in Fig. 42.24 (ISO 2631-1.31)

Frequency weighting Health Comfort* Perception Motion sickness

Principal weighting

Wk Z Z-seat Z
X,Y,Z-feet
Z-standing
X-lying

Wd X-seat X-seat X-, Y-
Y-seat Y-seat

X,Y-standing
Y,Z-lying
Y,Z-back

Wf Z

Additional weighting

Wc X-seat back X-seat back

We Rx, Ry, Rz

Wj X-lying (head)

* Values of the multiplying factor k to be applied to component accelerations for assessing the comfort
of seated persons in situations in which vibration enters the body at several points, e.g., the seat pan, seat
back, and the feet (see text).

Component Acceleration Value of k
X direction at seat back 0.8
Y direction at seat back 0.5
Z direction at seat back 0.4
X & Y directions at feet 0.25
Z direction at feet 0.4

Rx axis at seat 0.63 m/rad
Ry axis at seat 0.4 m/rad
Rz axis at seat 0.2 m/rad

For other component accelerations the value of k is unity.
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The total vibration dose value will integrate the contribution from each transient
event, irrespective of magnitude or duration, to form a time- and magnitude-
dependent dose. In contrast, the maximum transient vibration value will provide 
a measure dominated by the magnitude of the most intense event occurring in a 
1-second time interval, and will be little influenced by events occurring at times sig-
nificantly greater than 1 second from this event.Application of either measure to the
assessment of whole-body vibration should take into consideration the nature of the
transient events, and the anticipated basis for the human response (i.e., source and
variability of, and intervals between, transient motions, and whether the human
response is likely to be dose related).

Health. Guidance for the effect of whole-body vibration on health is provided in
international standard ISO 2631-1 for vibration transmitted through the seat pan in
the frequency range from 0.5 to 80 Hz.31 The assessment is based on the largest
measured translational component of the frequency-weighted acceleration (see Fig.
42.24 and Table 42.5). If the motion contains transient events that result in the con-
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FIGURE 42.24 Basicentric axes of the human body for translational (X, Y, and Z) and rotational
(Rx, Ry, and Rz) whole-body vibration. (ISO 2631-1.31)
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dition in Eq. (42.10) being satisfied, then a further assessment may be made using
the vibration dose value. The frequency weightings to be applied, Wd and Wk (see
Table 42.5), are to be multiplied by factors of unity for vibration in the Z direction
and 1.4 for the X and Y directions of the coordinate system shown in Fig. 42.24. The
largest component-weighted acceleration is to be compared at the daily exposure
duration with the shaded health caution zone in Fig. 42.25. The dashed lines in this
diagram correspond to a relationship between the physical magnitude of the stimu-
lus and exposure time with an index of n = 2 in Eq. (42.2), while the dotted lines cor-
respond to an index of n = 4 in this equation.The lower and upper dotted lines in Fig.
42.25 correspond to vibration dose values of 8.5 and 17, respectively. For exposures
below the shaded zone, which has been extrapolated to shorter and longer daily
exposure durations in the diagram, health effects have not been reproducibly
observed; for exposures within the shaded zone, the potential for health effects
increases; for exposures above the zone, health effects are expected.13

If the total daily exposure is composed of several exposures for times ti to differ-
ent frequency-weighted component accelerations (aW)i then the equivalent acceler-
ation magnitude corresponding to the total time of exposure (aW)equiv may be
constructed using

(aW)equiv = � �
1/2

(42.11)
�

i
(aW)i

2ti

��
�

i

ti
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To characterize occupational exposure to whole-body vibration, the 8-hour 
frequency-weighted component accelerations may be measured according to Eq.
(42.4) with T = 28,800 seconds. The total daily vibration dose value is constructed
using Eq. (42.8).

A method for assessing the effect of repeated, large magnitude (i.e., in excess of
the acceleration of gravity), transient events on health is described under Multiple
Shocks in the Vertical Direction.

Discomfort. Guidance for the evaluation of comfort and vibration perception is
provided in international standard ISO 2631-1 for the exposure of seated, standing,
and reclining persons (the last-mentioned supported primarily at the pelvis).31 The
guidance concerns translational and rotational vibration in the frequency range
from 0.5 to 80 Hz that enters the body at the locations, and in the directions, listed in
Table 42.5. The assessment is formed from rms component accelerations. For tran-
sient vibration, the maximum transient component vibration values should be con-
sidered if the condition in Eq. (42.9) is satisfied, while the magnitude of the vibration
dose value may be used to compare the relative comfort of events of different dura-
tions. Each measure is to be frequency weighted according to the provisions of Table
42.5 and Fig. 42.24. Frequency weightings other than those shown in Fig. 42.23 have
been found appropriate for some specific environments, such as for passenger and
crew comfort in railway vehicles.32

Overall Vibration Value. The vibration components measured at a point where
motion enters the body may be combined for the purposes of assessing comfort into
a so-called frequency-weighted acceleration sum aWAS, which for orthogonal transla-
tional component accelerations aWX, aWY, and aWZ, is

aWAS = [aWX
2 + aWY

2 + aWZ
2]1/2 (42.12)

An equivalent equation may be used to combine rotational acceleration components.
When vibration enters a seated person at more than one point (e.g., at the seat

pan, the backrest, and the feet), a weighted acceleration sum is constructed for each
entry point. In order to establish the relative importance of these motions to com-
fort, the values of the component accelerations at a measuring point are ascribed a
magnitude multiplying factor k so that, for example, aWX

2 in Eq. (42.12) is replaced
by k2aWX

2, etc. The values of k are listed in Table 42.5, and are dependent on vibra-
tion direction and where motion enters the seated body. The overall vibration total
value aoverall is then constructed from the root sum of squares of the frequency-
weighted acceleration sums recorded at different measuring points, i.e.

aoverall = [aWAS1
2 + aWAS2

2 + aWAS3
2 + . . . ]1/2 (42.13)

where the subscripts 1,2,3, etc., identify the different measuring points.
Many factors, in addition to the magnitude of the stimulus, combine to determine

the degree to which whole-body vibration causes discomfort (see Effects of Mechan-
ical Vibration above). Probable reactions of persons to whole-body vibration in pub-
lic transport vehicles are listed in Table 42.6 in terms of overall vibration total values.

Fifty percent of alert, sitting or standing, healthy persons can detect vertical
vibration with a frequency-weighted acceleration of 0.015 meter per sec2.

ACCEPTABILITY OF BUILDING VIBRATION

The vibration of buildings is commonly caused by motion transmitted through the
building structure from, for example, machinery, road traffic, and railway and sub-
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way trains. Experience has shown that the criterion of acceptability for continuous,
or intermittent, building vibration lies at, or only slightly above, the threshold of per-
ception for most living spaces. Furthermore, complaints will depend on the specific
circumstances surrounding vibration exposure. Guidance is provided for building
vibration in Part 2 of the international standard for whole-body vibration, for the
frequency range from 1 to 80 Hz,33 and is adapted here to reflect alternate proce-
dures for estimating the acceptability of building vibration (see Ref. 1).

In order to estimate the response of occupants to building vibration, the motion
is measured on a structural surface supporting the body at, or close to, the point of
entry of vibration into the body. For situations in which the direction of vibration
and the posture of the building occupants are known (i.e., standing, sitting, or lying),
the evaluation is based on the magnitudes of the component frequency-weighted
accelerations measured in the X, Y, and Z directions shown in Fig. 42.24, using the
frequency weightings for comfort, Wk and Wd, as appropriate (see Table 42.5 and Fig.
42.23). If the posture of the occupant with respect to the building vibration changes
or is unknown, a so-called combined frequency weighting may be employed which is
applicable to all directions of motion entering the human body, and has attenuation
proportional to

10 log[1 + (f/5.6)2] (42.14)

where the frequency f is expressed in hertz. No adverse reaction from occupants is
expected when the rms frequency-weighted acceleration of continuous or intermit-
tent building vibration is less than 3.6 × 10−3 meter/sec2.

Transient building vibration, that is, motion which rapidly increases to a peak
followed by a damped decay (which may, or may not, involve several cycles of
vibration), may be assessed either by calculating the maximum transient vibration
value or the total vibration dose value using Eqs. (42.6) and (42.8), respectively. No
adverse human reaction to transient building vibration is expected when the maxi-
mum rms frequency-weighted transient vibration value is less than 3.6 × 10−3

meters/sec2, or the total frequency-weighted vibration dose value is less than 0.1
meter/sec1.75.

Human response to building vibration depends on the use of the living space. In
circumstances in which building vibration exceeds the values cited to result in no
adverse reaction, the use of the room(s) should be considered. Site-specific values
for acceptable building vibration are listed in Table 42.7 for common building and
room uses. Explanatory comments applicable to particular room and/or building
uses are provided in footnotes to that table.
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TABLE 42.6 Probable Subjective Reactions of
Persons Seated in Public Transportation to Whole-
Body Vibration Expressed in Terms of the Overall
Vibration Value (defined in text) (ISO 2631-1.31)

Vibration Reaction

Less than 0.315 m/s2 Not uncomfortable
0.315 to 0.63 m/s2 A little uncomfortable
0.5 to 1 m/s2 Fairly uncomfortable
0.8 to 1.6 m/s2 Uncomfortable
1.25 to 2.5 m/s2 Very uncomfortable
Greater than 2 m/s2 Extremely uncomfortable
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It should be noted that building vibration at frequencies in excess of 30 Hz may
cause undesirable acoustical noise within rooms, a subject not considered in this
chapter. In addition, the performance of some extremely sensitive or delicate oper-
ations (e.g., microelectronics fabrication) may require control of building vibration
more stringent than that acceptable for human habitation.

MOTION SICKNESS

Guidance for establishing the probability of whole-body vibration causing motion
sickness is obtained from international standard ISO 2631-1 by forming the motion
sickness dose value, MSDVz.31 This energy-equivalent dose value is given by the
term on the right-hand side of Eq. (42.7) with r = 2, and the acceleration time-
history frequency-weighted using Wf (see Fig. 42.23). If the exposure is to continu-
ous vibration of near constant magnitude, the motion sickness dose value may be
approximated by the frequency-weighted acceleration recorded during a measure-
ment interval τ of at least 240 seconds by

MSDVz ≈ [aWZ
2τ]1/2 (42.15)

While there are large differences in the susceptibility of individuals to the effects of
low-frequency vertical vibration (0.1 to 0.5 Hz), the percentage of persons who may
vomit is

P = Km(MSDVz) (42.16)
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TABLE 42.7 Maximum RMS Frequency-Weighted Acceleration, RMS Transient
Vibration Value, MTVV, and Vibration Dose Value, VDV (defined in text) 
for Acceptable Building Vibration in the Frequency Range 1–80 Hz1

Continuous/
Transient vibrationintermittent

vibration MTVV VDV
Place Time2 (meters/sec2) (meters/sec2) (meters/sec1.75)

Critical working areas
(e.g., hospital

operating rooms)3
Any 0.0036 0.0036 0.1

Residences4,5 Day 0.0072 0.07/n1/2 0.2
Night 0.005 0.007 0.14

Offices5 Any 0.014 0.14/n1/2 0.4
Workshops5 Any 0.028 0.28/n1/2 0.8

1 The probability of adverse human response to building vibration that is less than the weighted
accelerations, MTVVs, and VDVs listed in this table is small. Complaints will depend on specific cir-
cumstances. For an extensive review of this subject, see Ref. 1. Note that: (a) VDV has been used for
the evaluation of continuous and intermittent, as well as for transient, building vibration; and (b)
annoyance from acoustic noise caused by vibration (e.g., of walls or floors) has not been considered
in formulating the guidance in Table 42.7.

2 Daytime may be taken to be from 7 AM to 9 PM and nighttime from 9 PM to 7 AM.
3 The magnitudes of transient vibration in hospital operating theaters and critical working places

pertain to those times when an operation, or critical work, is in progress.
4 There are wide variations in human tolerance to building vibration in residential areas.
5 n is the number of discrete transient events that are 1 second or less in duration.When there are

more than 100 transient events during the exposure period, use n = 100.
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where Km is a constant equal to about one-third for a mixed population of males and
females. Note that females are more prone to motion sickness than males.

Further guidance for the evaluation of exposure to extremely low frequency
whole-body vibration (0.063 to 1 Hz) such as occurs on off-the-shore structures is to
be found in ISO 6987.34

HAND-TRANSMITTED VIBRATION

Guidance for the measurement and assessment of hand-transmitted vibration is pro-
vided in international standard ISO 5349-1.35 Three, rms frequency-weighted com-
ponent accelerations, ahwx, ahwy, and ahwz, are first determined at the hand-handle
interface for the directions described in Fig. 42.13, using the frequency weighting
specified for all directions of vibration coupled to the hand (shown in Fig. 42.26).The
values are constructed according to Eq. (42.4). The vibration total value, ahv, is then
formed, which is defined as the frequency-weighted acceleration sum constructed
from the hand-transmitted component accelerations, i.e., using Eq. (42.12), but with
aWAS replaced by ahv, aWX by ahwx, aWY by ahwy, and aWZ by ahwz.

If it is not possible to record the vibration in each of the three coordinate direc-
tions, then an estimate of ahv is made from the largest component acceleration meas-
ured (i.e., either ahwx, ahwy, or ahwz) by multiplying by a factor in the range from 1.0 to
1.7.The factor is designed to account for the contribution to the vibration total value
from any unmeasured vibration.

The assessment of vibration exposure is based on the 8-hour energy equivalent
vibration total value, (ahv)eq(8). If the measurement procedure results in the daily expo-
sure being composed of i exposures for times ti to vibration total values ahvi, then the
8-hour energy equivalent vibration total value is obtained by forming the sum:

(ahv)eq(8) = � �
i

a2
hviti�

1/2
(42.17)

If, alternatively, the measurement procedure provides a time-history of the vibration
total value, ahv(t), then (ahv)eq(8) may be calculated directly by energy averaging for an
eight-hour period, T0:

(ahv)eq(8) = � �T0

0
a2

hv(t)dt�
1/2

(42.18)

Development of White Fingers (Finger Blanching). For groups of persons who
are engaged in the same work using the same, or similar, vibrating hand tools, or
industrial processes in which vibration enters the hands (e.g., forestry workers using
chain saws, chipping and grinding to clean castings, etc.), the number of years of
exposure, on average, before 10 percent of the group experience episodes of finger
blanching, Dy, is related to the 8-hour energy equivalent vibration total value by the
relationship, shown in Fig. 42.27:

[(ahv)eq(8)]1.06Dy = 31.8 (42.19)

The expression assumes that (ahv)eq(8) is expressed in m/sec2, and Dy in years. Expo-
sures below the line in Fig. 42.27 incur less risk of developing HAVS (hand-arm
vibration syndrome).There is no epidemiologic evidence for finger blanching occur-
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4
2
.5

0

8
4
3
4
_
H
a
r
r
i
s
_
4
2
_
b
.
q
x
d
  0

9
/
2
0
/
2
0
0
1
  1

2
:
2
1
 P
M
  P

a
g
e
 4
2
.
5
0



ring at values of (ahv)eq(8) of less than 1 m/sec2. Deviation from the relationship shown
in Fig. 42.27 may be expected for industrial situations that differ significantly from
common practice (e.g., mixed occupations, such as painting for a week followed by
chipping for a week).

SHOCK, IMPACT, AND RAPID DECELERATION

Human and animal experiments, frequently conducted using pneumatic or rocket-
powered test sleds and water-brake deceleration, have established the tolerance of
seated persons to short deceleration pulses. This unique body of information, which
is unlikely to be extended for ethical reasons, was consolidated by Eiband who char-
acterized the impacts at the seat by idealized trapezoidal time-histories, with a con-
stant onset acceleration rate, a constant peak acceleration, and a constant decay
rate.36 The tolerance limits so obtained are shown for accelerations directed toward
the spine (from in front), the sternum (from behind), the head (upward), and the tail
bone (downward) in Figs. 42.28 to 42.35. The results are presented in terms of peak
accelerations and their durations for the four impact directions (Figs. 42.28, 42.30,
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FIGURE 42.28 Tolerance to spineward acceleration as a function of magnitude and duration of
impulse. (Eiband.36)

FIGURE 42.29 Effect of rate of onset on spineward acceleration tolerance. (Eiband.36)
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FIGURE 42.30 Tolerance to sternumward acceleration as a function of magnitude and duration of
impulse. (Eiband.36)

FIGURE 42.31 Effect of rate of onset on sternumward acceleration tolerance. (Eiband.36)
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FIGURE 42.32 Tolerance to headward acceleration as a function of magnitude and duration of
impulse. (Eiband.36)

FIGURE 42.33 Effect of rate of onset on headward acceleration tolerance. (Eiband.36)

42.54
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42.32, and 42.34), and in terms of onset acceleration rates, which are characterized by
the onset time (t1 − t0) and plotted on the abscissa of Figs. 42.29, 42.31, 42.33, and
42.35. The upper boundary of the lower shaded area in Figs. 42.28, 42.30, 42.32, and
42.34 defines the limit of voluntary human exposures that resulted in no injury. The
corresponding lower boundary of the upper shaded area delineates the limit of seri-
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FIGURE 42.34 Tolerance to tailward acceleration as a function of magnitude and duration of
impulse. (Eiband.36)

FIGURE 42.35 Effect of rate of onset on tailward acceleration tolerance. (Eiband.36)
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ous injury in animal experiments involving hogs and chimpanzees. No corrections
for size or species differences were attempted. Maximum body support was pro-
vided to the subject in all experiments (i.e., lap belt, shoulder harness, thigh and
chest straps, and arm rests, as appropriate; see Table 42.3 and Fig. 42.21).

While caution must be exercised in applying these tolerance curves, since they
are based on experiments involving healthy young volunteers and animals, rigid
seats, well-designed body supports, and minimum slack in harnesses, they form the
primary information on which to base safety requirements for transportation vehi-
cles. Additional sources of information have been used for specific impact condi-
tions which, for this reason, will be described separately. Examples of short duration
accelerations to illustrate the magnitudes and durations experienced in practice are
listed in Table 42.8.

Single Shock in the Vertical Direction. The most common exposures of this
type occur in aircraft seat ejection for which an extensive body of information and
an accepted criterion exist, the latter based on a biodynamic model, namely the
dynamic response index, DRI (see Effects of Mechanical Shock). As already noted,
a DRI of 18 is predicted to correspond to a 5 percent risk of spinal injury. It should
also be noted that a maximum upward acceleration of 18 to 22g is shown as the
design limit for ejection seats in Fig. 42.32, which is from a 1944 ejection seat study

42.56 CHAPTER FORTY-TWO

TABLE 42.8 Approximate Duration and Magnitude of Some Short-Duration 
Acceleration Loads

Type of operation Acceleration, g Duration, sec

Elevators:
Average in “fast service” 0.1–0.2 1–5
Comfort limit 0.3
Emergency deceleration 2.5

Public transit:
Normal acceleration and deceleration 0.1–0.2 5
Emergency stop braking from 70 mph 0.4 2.5

Automobiles:
Comfortable stop 0.25 5–8
Very undesirable 0.45 3–5
Maximum obtainable 0.7 3
Crash (potentially survivable) 20–100 <0.1

Aircraft:
Ordinary take-off 0.5 >10
Catapult take-off 2.5–6 1.5
Crash landing (potentially survivable) 20–100
Seat ejection 10–15 0.25

Man:
Parachute opening, 40,000 ft 33 0.2–0.5

6,000 ft 8.5 0.5
Parachute landing 3–4 0.1–0.2
Fall into fireman’s net 20 0.1
Approximate survival limit with well-distributed 

forces (fall into deep snow bank) 200 0.015–0.03
Head:

Adult head falling from 6 ft onto hard surface 250 0.007
Voluntarily tolerated impact with protective headgear 18–23 0.02
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in Germany that describes the level as the limit of static and dynamic tolerance of
vertebrae.4

Control or prevention of injury is critically dependent on optimal body position-
ing and restraint to minimize unwanted and forceful flexion of the spinal column.
The fracture tolerance limits are influenced by age, physical condition, clothing,
weight, and many other factors which detract from the optimum. If the tolerance
limits are exceeded, fractures of the lumbar and thoracic vertebrae occur first.While
in and of itself this injury may not be classified as severe, small changes in orienta-
tion may be enough to involve the spinal cord, an injury which is extremely severe
and may be life-threatening. Neck injuries from headward accelerations appear to
occur at considerably higher levels.

There have been 126 fatalities among the 620 crewmen who have escaped from a
variety of U.S. Air Force aircraft from 1975 to 1991.5 While the causes of the fatal
injuries in addition to the rapid acceleration are not known (e.g., wind blast, impact-
ing cockpit/canopy on ejection), these statistics would suggest that the single shock
limit should be applied with caution and only when the body is well restrained.

Tolerance limits for downward acceleration probably are set by the compression
load on the thoracic vertebrae, which are exposed to the load of the portion of the
body below the chest. This load on the vertebrae is higher than that for the positive
acceleration case due to the greater weight; therefore a tolerance limit for accelera-
tion has been set at 13g. Shoulder accelerations of 13g have been tolerated by human
subjects without injury, when the load was divided between hips and shoulders.

Multiple Shocks in the Vertical Direction. For evaluating exposures consisting
of multiple shocks to the body, the following procedure should be considered.37 This
is based on an extension of the concept of the dynamic response index (DRI), which
was introduced to quantify the potential for spinal injury associated with one large
vertical acceleration (see Effects of Mechanical Shock). The tentative criterion for
exposure to multiple shocks during a 24-hour period is given in Fig. 42.36. Upper
limits of exposure are proposed for an estimated 5 percent risk of injury (dashed
line), and for varying degrees of discomfort. The circles with crosses indicate expo-
sures in which the risk of injury has been documented.The ordinate is given in terms
of the DRI, which is equivalent to the maximum static acceleration (above normal
gravity) and may be obtained by applying the acceleration time-history to the DRI
model (Fig. 42.18).

To evaluate exposures consisting of multiple shocks of various magnitudes, if
there are nq shocks of magnitude DRIq, where q = 1,2,3,4 . . . Q, then the exposure is
considered acceptable if

�
Q

q = 1
� � ≤ 1 (42.20)

In this expression, the denominator is the maximum allowable DRI corresponding
to the observed number of shocks nq with magnitude DRIq, and is obtained from the
chosen criterion curve in Fig. 42.36.

Crash. Motor vehicle and aircraft crashes commonly result in injury to occupants
or fatalities from horizontal impacts. There are no internationally accepted guide-
lines for occupant protection, with most safety requirements being either required
by law or applied voluntarily by vehicle manufacturers. Federal Motor Vehicle
Safety Standards (FMVSS), promulgated in the U.S.A. by the National Highway
Traffic Safety Administration (NHTSA), have had the most influence on automo-

DRIq
��
(DRImax)nq
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tive safety, commencing with a proposal to restrict injury from the head hitting the
instrument panel in 1966 (FMVSS 201).The primary concern has continued to be to
reduce head injuries, considered below in more detail. Broader requirements for
occupant protection including passive restraints were subsequently included in
FMVSS 208 (“Occupant Crash Protection”) which, as amended and expanded to
include different crash configurations and injuries, forms the basis for current safety
regulations.38 In parallel with the development of regulations, the results of research
on human, cadaver, animal, and surrogate exposure to impacts characteristic of
those occurring in motor vehicle collisions have been summarized by the Society of
Automotive Engineers (SAE).39 SAE J885 provides biomechanical data for injuries
to the head, neck, thorax, abdomen, and the lower extremities, and suggests some
maximum loads, deflections, and accelerations for use in vehicle design.

Federal Aircraft Administration (FAA) regulations for improved seat strength
and occupant crash injury protection in large transport aircraft [see Protection
Against Rapidly Applied Accelerations (Crash)] were promulgated in the U.S.A. in
1988.4

Head Injury Criterion. The goal of protecting the head from irreversible brain
damage in motor vehicle collisions involving unrestrained occupants led to the for-
mulation of the Wayne State Concussion Tolerance Curve, which is shown in Fig.
42.37 as reported in SAE J885.39 The original curve, shown by the continuous line,
was derived from experiments in which instrumented, embalmed human cadavers
were positioned horizontally and then dropped so that their foreheads fractured on
impact with steel anvils or other targets (including motor-vehicle instrument pan-
els). Impact durations measured on the skull of from 1 to 6 milliseconds could be

42.58 CHAPTER FORTY-TWO

FIGURE 42.36 Tentative injury and discomfort limits for whole-body exposure to multiple
impacts. The magnitude of the shocks is expressed in terms of the dynamic response index, DRI
(see Fig. 42.18). (After Allen.37)
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obtained from this experiment. The tolerance curve was extended to impact dura-
tions of 100 milliseconds using an asymptotic acceleration of 42g, which corresponds
to the limit of voluntary human exposure that resulted in no injury in Fig. 42.28 (the
duration of motor vehicle crashes depends primarily on vehicle speed and typically
lasts for less than 100 milliseconds).The asymptotic limit was subsequently raised to
a head acceleration of 80g for impacts of the forehead on padded surfaces that were
believed to be survivable (shown by the dashed line in Fig. 42.37).

The Wayne State Concussion Tolerance Curve has proved difficult to apply to
complex acceleration-time impact waveforms, because of uncertainty in determining
the effective acceleration and time.A straight-line approximation to the power curve
(between 2.5 and 25 milliseconds) led to the definition of the severity index SI as:

SI = �T

0
a2.5(t)dt (42.21)

where T is the impact duration, and a(t) the acceleration time-history of the head (in
units of g). The maximum value was proposed to be 1000. A revised index has been
defined by the NHTSA for use in the frontal crash tests specified in motor vehicle
regulations, which has become known as the head injury criterion (HIC):

HIC = �(t2 − t1) � �t2

t1
a(t)dt�

2.5

�max (42.22)

where t1 and t2 are the initial and final times (in seconds) of the interval during which
the HIC attains the maximum value, and a(t) is measured at the center of gravity of

1
�
(t2 − t1)
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the manikin’s head.This measure is to be applied to tests using instrumented anthro-
pometric dummies, in which a maximum value of 1000 is allowed. FMVSS 208 spec-
ifies the time interval (t2 − t1) to be 33 milliseconds.

There are several challenges in attempting to set human tolerance criteria, based
on either the SI or HIC.23 First, the ability of crash tests employing HICs computed
from measurements on an anthropometric dummy to rank order impact conditions
by severity has been questioned. Second, the original Wayne State Concussion Tol-
erance Curve was designed for unrestrained vehicle occupants, whereas the data
employed to extend the relationship to head impact durations greater than 6 mil-
liseconds, which commonly occur in vehicle crash tests, are for subjects with opti-
mum body restraints. Third, the basis for the Wayne State Concussion Tolerance
Curve, shown by the dashed line in Fig. 42.37, suggests that criteria based on it will
represent impacts that may be survivable rather than tolerable in the sense used
elsewhere in this chapter (i.e., boundary between no injury and some health effect).
Despite these limitations, the severity index has been successfully applied to the
reduction of brain injuries in football players, by employing football helmets that
attenuate head impacts to SI < 1500, while the head injury criterion remains a cor-
nerstone of occupant safety testing for automobiles and, more recently, for transport
aircraft.

Motor Vehicle Regulations. According to NHTSA statistics from 1994 to 1996,
chest injury has now become the most common serious injury in motor vehicle acci-
dents in the U.S.A. In response to this situation, NHTSA has additionally set frontal
crash test limits for a Hybrid III anthropometric dummy for impacts to the chest and
to the knee.38 See the NHTSA web site (www.nhtsa.dot.gov/cars/rules/crashworthy/).

REFERENCES

GENERAL

1. Griffin, M. J.: “Handbook of Human Vibration,” Academic Press, London, 1990.

2. Dupuis, H., and G. Zerlett: “The Effects of Whole-Body Vibration,” Springer-Verlag, New
York, 1986.

3. Pelmear, P. L., and D. E. Wasserman (eds.): “Hand-Arm Vibration,” 2d ed., OEM Press,
Beverly Farms, Mass., 1998.

4. Nahum, A. M., and J. W. Melvin (eds.): “Accidental Injury: Biomechanics and Prevention,”
Springer-Verlag, New York, 1993.

BIODYNAMICS, MODELS, AND ANTHROPOMETRIC DUMMIES

5. “Anthropomorphic Dummies for Crash and Escape System Testing,” AGARD-AR-330,
North Atlantic Treaty Organization, Neuilly Sur Seine, France, 1997.

6. von Gierke, H. E.: “To Predict the Body’s Strength,” Aviation Space & Environ. Med.,
59:A107 (1988).

7. von Gierke, H. E.: “Biodynamic Models and Their Applications,” J. Acoust. Soc. Amer.,
50:1397 (1971).

8. “Mechanical Vibration and Shock—Range of Idealized Values to Characterize Seated
Body Biodynamic Response Under Vertical Vibration,” ISO/DIS 5982, International
Organization for Standardization, Geneva, 2000.

42.60 CHAPTER FORTY-TWO

8434_Harris_42_b.qxd  09/20/2001  12:21 PM  Page 42.60



9. “Mechanical Vibration and Shock—Free Mechanical Impedance of the Human Hand-
Arm System at the Driving-Point,” ISO 10068, International Organization for Standard-
ization, Geneva, 1998.

10. von Gierke, H. E., H. L. Oestreicher, E. K. Franke, H. O. Parrach, and W. W. von Wittern:
“Physics of Vibrations in Living Tissues,” J. Appl. Physiol., 4:886 (1952).

11. von Gierke, H. E.: “Bioacoustics,” part XV, in M. J. Crocker (ed.), “Encyclopedia of
Acoustics,” John Wiley & Sons, New York, 1997.

EFFECTS OF SHOCK AND VIBRATION

12. Pape, R. W., F. F. Becker, D. E. Drum, and D. E. Goldman: “Some Effects of Vibration on
Totally Immersed Cats,” J. Appl. Physiol., 18:1193 (1963).

13. Bovenzi, M., and C. T. J. Hulshof: “An Updated Review of Epidemiologic Studies of the
Relationship between Exposure to Whole-Body Vibration and Low Back Pain,” J. Sound
Vib., 215:595 (1998).

14. Wilder, D. G.: “The Biomechanics of Vibration and Low Back Pain,” Am. J. Ind. Med.,
23:577 (1993).

15. Brammer, A. J., and J. E. Piercy: “Rationale for Measuring Vibrotactile Perception at the
Fingertips as Proposed for Standardization in ISO 13091-1,” Arbetslivsrapport, 4:125
(2000).

16. Brammer,A. J.:“Dose-Response Relationships for Hand-Transmitted Vibration,” Scand. J.
Work Environ. Health, 12:284 (1986).

17. Pascarelli, E., and D. Quilter: “Repetitive Strain Injury: A Computer Users’ Guide,” John
Wiley & Sons, New York, 1994.

18. “German Aviation Medicine, World War II, Vol. 2,” Government Printing Office, Washing-
ton, D.C., 1950.

19. Harvey, E. N.:“A Mechanism of Wounding by High Velocity Missiles,” Proc.Am. Phil. Soc.,
92:294 (1948).

20. Barr, J. S., R. H. Draeger, and W.W. Sager:“Solid Blast Personnel Injury:A Clinical Study,”
Mil. Surg., 91:1 (1946).

21. Brinkley, J. W., L. J. Specker, and S. E. Mosher: “Development of Acceleration Exposure
Limits for Advanced Escape Systems,” in AGARD-CP-472: “Implications of Advanced
Technologies for Air and Spacecraft Escape,” North Atlantic Treaty Organization, Neuilly
Sur Seine, France, 1990.

22. Payne, P. R.: “On Quantizing Ride Comfort and Allowable Accelerations,” Paper 76-873,
AIAA/SNAME Advanced Marine Vehicles Conf., Arlington, American Institute of Aero-
nautics and Astronautics, New York, 1976.

23. “Impact Head Injury: Responses, Mechanisms,Tolerance,Treatment and Countermeasures,”
AGARD-CP-597, North Atlantic Treaty Organization, Neuilly Sur Seine, France, 1997.

PROTECTION METHODS AND DEVICES

24. Linqvist, B. (ed.): “Ergonomic Tools in Our Time,” Atlas-Copco, Stockholm, Sweden, 1986.

25. “Clinical and Laboratory Diagnostics of Neurological Disturbances in the Hands of Work-
ers Using Hand-Held Vibrating Tools,” in G. Gemne,A. J. Brammer, M. Hagsberg, R. Lund-
ström, and T. Nilsson (eds.), “Proceedings of the Stockholm Workshop on the Hand-Arm
Vibration Syndrome,” Arbete och Hälsa, 5:187 (1995).

26. Laananen, D. H.: “Aircraft Crash Survival Design Guide,” USARTL-TR-79-22, Vols. I–IV,
Applied Technology Lab., U.S.Army Research and Technology Labs, Fort Eustis,Va., 1980.

EFFECTS OF SHOCK AND VIBRATION ON HUMANS 42.61

8434_Harris_42_b.qxd  09/20/2001  12:21 PM  Page 42.61



27. Phen, R. L., M. W. Dowdy, D. H. Ebbeler, E.-H. Kim, N. R. Moore, and T. R. VanZandt:
“Advanced Air Bag Technology Assessment—Final Report,” JPL Publications 98-3, Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., 1998.

28. Hearon, B. F., and J. W. Brinkley: “Effects of Seat Cushions on Human Response to +Gz

Impact,” Aviat. Space Environ. Med., 57:113 (1986).

29. “Impact Injury Caused by Linear Acceleration: Mechanisms, Prevention and Cost,”
AGARD-CP-322, North Atlantic Treaty Organization, Neuilly Sur Seine, France, 1982.

30. “Specifications for Protective Headgear for Vehicular Users,” ANSI Z90.1, American
National Standards Institute, New York, 1992.

TOLERANCE CRITERIA

31. “Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole Body
Vibration—Part 1: General Requirements,” ISO 2631-1, International Organization for
Standardization, Geneva, 1997 (2d ed.).

32. “Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole Body
Vibration—Part 4: Guidelines for the Evaluation of the Effects of Vibration and Rota-
tional Motion on Passenger and Crew Comfort in Fixed Guideway Transport Systems,”
ISO 2631-4, International Organization for Standardization, Geneva, 2001.

33. “Evaluation of Human Exposure to Whole-Body Vibration and Shock—Part 2: Continu-
ous and Shock-Induced Vibrations in Buildings (1 to 80 Hz),” ISO 2631-2, International
Organization for Standardization, Geneva, 1989.

34. “Guide to the Evaluation of the Response of Occupants of Fixed Structures, Especially
Buildings and Off-Shore Structures to Low Frequency Horizontal Motion (0.063 to 1 Hz),”
ISO 6987, International Organization for Standardization, Geneva, 1984.

35. “Mechanical Vibration—Measurement and Evaluation of Human Exposure to Hand-
Transmitted Vibration—Part 1: General Guidelines,” ISO 5349-1, International Organiza-
tion for Standardization, Geneva, 2001.

36. Eiband, A. M.: “Human Tolerance to Rapidly Applied Accelerations: A Summary of the
Literature,” NASA Memo 5-19-59E, National Aeronautics and Space Administration,
Washington, D.C., 1959.

37. Allen, G.: “The Use of a Spinal Analogue to Compare Human Tolerance to Repeated
Shocks with Tolerance to Vibration,” in AGARD-CP-253: “Models and Analogues for the
Evaluation of Human Biodynamic Response, Performance and Protection,” North
Atlantic Treaty Organization, Neuilly Sur Seine, France, 1978.

38. “Models for Aircrew Safety Assessment: Uses, Limitations and Requirements,” RTO-MP-20,
North Atlantic Treaty Organization, Neuilly Sur Seine, France, 1999.

39. “Human Tolerance to Impact Conditions as Related to Motor Vehicle Design,” SAE J885,
Society of Automotive Engineers, Warrendale, Pa., 1986.

42.62 CHAPTER FORTY-TWO

8434_Harris_42_b.qxd  09/20/2001  12:21 PM  Page 42.62



 

 

Index terms Links       
absolute measurements  18.3     
absolute transmissibility  30.1  30.6  30.11    
accelerated test  20.15     
acceleration:     

definition of  1.16     
transducers for measuring  12.4     
vibration  1.26     

acceleration pulse  31.16     
acceleration response  2.10     
acceleration time-histories:     

complex  23.7  23.9  24.3    
decaying sinusoidal  23.7  23.9     
equivalent static  23.12     
half-sine  23.5  23.7     
impulse  23.6  23.7     
peak  23.22     
step  23.7  23.18     

acceleration transmissibility  30.15     
accelerometers  16.4     

amplitude linearity of  12.11     
characteristics of  12.10     
cross-axis sensitivity of  12.11     
definition of  1.1     
effects of environment on  12.14    
effects of humidity on  12.14     
effects of noise on  12.14     
effects of size on  12.15     
effects of weight on  12.15     
force-balance type  12.37     
frequency range of  12.12     
high-frequency limit of  12.13     
low-frequency limit of  12.12     
operating range of  12.12     
phase shift in  12.13     
piezoelectricity (see piezoelectric      
     accelerometers)     
preamplifiers for  13.1     
reliability of  12.22     
resolution of  12.10     
sensitivity of  12.10  13.2     
servo-type  12.37     
survivability of  12.9     
transverse sensitivity of  12.11     
variable-capacitance  12.38     
zero shift in  12.9     

(See also piezoelectric transducers)     
acceptance test  20.5     



 

 

Index terms Links       
acronyms  1.5     
activated vibration absorbers  6.38     
active environment  32.5     
active fraction of critical   32.20     
damping     
active vibration isolation systems  32.16     
actuator (see vibration exciter)     
A/D conversion (see      
     analog-to-digital conversion)     
A/D recorders  13.13     
Admittance; mechanical  12.30    
     (See also mechanical mobility)     
aerodynamic excitation  29.21  29.54     
air guns  26.7     
air springs  32.13     
aliasing  14.13  22.16  27.7    
almost-periodic vibrations  22.5     
ambient vibration; definition of  1.16     
American National Standards   19.1     
      Institute       
American Petroleum Institute  38.23     
American Society for Testing   19.1     

and Materials     
amplification ratio  12.21     
amplitude  1.7     
amplitude demodulation  14.38    
analog  1.16     
analog recorders  13.11     
analog-to-digital converters  13.13  22.16     

27.6     
analogy, definition of  1.12    
analysis, matrix methods  27.11 28.1    
analysis, transient  23.1    

by finite element method  28.39     
by statistical energy analysis  11.31     

analytical modeling procedures:     
classical  20.7  29.56     
finite element method  28.29  41.18     
statistical energy analysis  11.18     

analytical tests  20.4     
ANCI  19.1     
angular frequency  1.7  1.17  2.3    
angular mechanical impedance  1.16     
anti-aliasing filters  13.14  14.33     
antinode  1.16     
antiresonance  1.16     
aperiodic motion  1.16     



 

 

Index terms Links       
apparent mass  12.30     
applied damping treatments  37.1     
ASTM  19.1     
asymmetric stiffness  4.5  4.9     
asynchronous averaging  21.32     
asynchronous excitation  4.18     
asynchronous quenching  4.18     
audio frequency  1.16     
autocorrelation  11.7  22.6     
autocorrelation coefficient  1.16     
autocorrelation function  1.16     
automobile vibration  20.15  25.21     
autonomous system  4.25     
autospectral density  1.17  11.8  22.7    
auxiliary mass dampers  1.17  6.1  6.9  6.41  40.19   
auxiliary mass systems  6.1  6.2  6.4    
auxiliary tanks to reduce   6.25     

ship roll     
average damping energy  36.6     
average value  22.3  22.17  22.21    
averaging; signal  13.7     
averaging time  14.8  22.17     

optimum  22.26     
axial loads  7.21    
background noise  1.17     
balance, perfect  39.2    
balancing:     

criteria for  39.30    
definition of  1.17     
in the field  39.2     
flexible-rotor  39.4     
rigid-rotor  39.2     
of rotating machinery  39.1     
of rotating parts  39.26     
single-plane  39.3     
terminology used in  39.34     

balancing machines  39.12     
ball joint  3.23     
centrifugal  39.15     
evaluation of  39.15     
field  39.27     
gravity  39.13     
standards for  39.25     

ballistic pendulum calibrator  18.18     
ball-passing frequency  16.21     
bandpass filter  1.17  14.1  22.7    
bandwidth  2.18     



 

 

Index terms Links  
     

effective  1.19     
half-power  36.5  37.12     
nominal  1.22     
optimum resolution  22.22  22.27     

beams  7.4     
axial loads on  7.21     
clamped  7.15     
lateral vibration in  7.11  7.21     
partly clamped  7.23     
simply supported  7.47     
uniform  7.17  7.23     
variable-section  7.21     

bearings  11.26  40.5     
beat frequency  1.17     
beats  1.17     
Belleville springs  32.11     
belt drives  40.4     
belt friction system  4.3     
biaxial stiffness isolator  30.31     
Bibby coupling  6.31     
bistable vibration  5.20     
blast, effects on humans  42.23    
body:     

crash protection  42.31  42.34     
effects of blast and shock waves on  42.23     
effects of blows, impacts, and rapid     
deceleration on  42.26     
effects of crash on  42.51  42.57     
effects of deceleration   42.26     
exposure to the     
effects of mechanical shock on  42.26     
effects of repeated shocks to the  42.57     
effects of vibration on  42.21     
mechanical studies of  42.6     
physical characteristics of  42.7     
protection against shock   42.31  42.57     
and vibration     
protection against shock waves  42.45     
skull vibrations  42.17     
vibrations transmitted   42.15  42.49     
from the hand     

body-induced vibration  3.42     
Bogoliuboff’s method  4.26     
bolted joints  41.13     
bolts  11.26  41.13     
bonded strain gage  17.1     
boring bars  6.40     

bandwidth  



 

 

Index terms Links       
Bourdon tube  17.10     
boundary element method  27.12     
branched systems  38.8     
“break-loose” frequency ratio  30.9     
broadband random vibration  1.17     
buckling loading of isolators  32.7     
buffeting  29.23     
building vibration;   42.46     
acceptability criteria     
Buna N  32.2     
cables  15.18     

noise generation in  15.19     
calibration:     

comparison method of  18.4     
field techniques for  15.13     
random excitation method of  18.5     
shields; use of  15.19     
standards  19.2     
transducer (see transducer      

calibration)     
transverse sensitivity  18.24     
voltage substitution method of  15.16  15.16     

calibration factor  18.1     
calibration traceability  18.2     
calibrator:     

ballistic pendulum  18.18     
centrifuge  18.9     
drop-ball  18.19     
earth’s gravitational field  18.8     
Fourier-transform shock  18.22     
high-acceleration  18.15     
impact-force shock  18.20     
interferometer  18.10     
pendulum  18.8     
reciprocity  18.5     
resonant-bar  18.15     
resonant-beam  18.25     
rotating table  18.9     
shock excitation  18.16     
sinusoidal excitation  18.15     

(See also calibration)     
Campbell diagram  14.28     
cantilever beam method  36.5     
capacitance-type transducers  12.38     
cascade plot  14.28  22.26     
causal signal  14.37     
cement  15.9     



 

 

Index terms Links       
    

cement mounting  15.9     
CEN  19.1     
CENELEC  19.1     
center-of-gravity  1.17  3.14     
center-of-mass  1.17  3.14     
central limit theorem  11.6     
centrifugal balancing machines  39.15     

classification of  39.22     
centrifuge  26.14     
centrifuge calibrator  18.9     
cepstrum  14.34     
cepstrum analysis  14.34  16.21     
ceramic matrix composites  35.2     
ceramic transducers      

(see piezoelectric accelerometers)      
chain drives  40.5     
chaotic dynamics  4.22     
characteristic space  21.43     
charge preamplifiers  13.1     
charge sensitivity  12.21     
chatter  5.19  6.39     

machine-tool  40.8     
circuit boards  41.13     
circular frequency  1.17     
circular rings  7.41     
clamped beams  7.15     
classical normal mode analysis  29.56     
classification of vibrations  22.1  41.3     
coefficient condensation  21.53     
coefficient of restitution  9.1     
coefficient transformation  30.34     
coherence function  21.25  22.9     
coil springs  32.9     
comparison method of   18.4     
calibration     
complex angular frequency  1.17     
complex cepstrum  14.34  14.37     
complex function  1.17     
complex shock  23.9  26.10  26.15    
complex vibration  1.17  22.5     
compliance  1.17  10.3     
component mode synthesis  27.11     
composite materials  35.1     

damping  35.26     
design  35.2  35.14     
failure criteria  35.9     



 

 

Index terms Links       
composite materials (Cont.)     

fatigue performance  35.15     
properties  35.6     
types of  35.1     
wearout model  35.24     

compound pendulum  2.31     
compression-type   12.18     

accelerometers     
compressional wave  1.17     
compressors  19.4     
computer programs  24.16  27.1  28.1  28.29    
computers  27.1     

analytical applications of  27.10     
experimental applications of  27.14     
types of  27.2     

condition monitoring of  16.1     
 machinery     

computers in  16.24     
intermittent  16.2     
off-line  16.2     
on-line  16.2     
permanent  16.2     
relation to spectrum changes in  16.6     

conditioners, signal  13.3    
confidence coefficient  20.9     
conjugate even  14.13     
conservation of linear momentum  9.2     
constantan  17.4     
constant-bandwidth analysis  14.9     
constant-percentage bandwidth analysis  14.9  22.22     
continuous fiber composites  35.2     
constrained-layer damping  11.26  37.8     
continuous system  1.17     
control systems:     

mixed mode  25.20  27.27     
random vibration  27.23     
sine-wave  27.25     
transient/shock  27.26     
wave-form  27.27     

coordinate modal assurance   21.70     
criterion     

coordinate system  3.1     
correlation coefficient  1.17     
correlation function  1.17  11.7  22.6    
Coulomb dampers  30.4  30.7  30.12    
Coulomb damping  1.17  4.33  6.17  8.54    
Coulomb friction  36.2     



 

 

Index terms Links       
coupled modes  1.17  30.24     
coupling factor, electromechanical  1.18    
coupling loss factor  11.21  11.26  11.28    
couplings, elastic  38.7    
crack propagation  11.16  34.16     
Craig-Bampton reduction  28.47     
crankshaft  38.5     
crash protection for humans  42.34     
crest factor  1.18  13.8     

    
critical damping, fraction of  1.19  2.5    
critical damping coefficient  24.2     
critical damping ratio  11.10     
critical speeds  1.18  38.14  38.25  39.4    
critical strain velocity  34.7     
cross-axis (transverse) sensitivity  12.11  18.24     
cross-correlation function  11.8  14.39     
cross-spectral density function  21.23  22.8     

computation of  22.23     
cross talk  15.16     
crystal transducer      

(see piezoelectric transducer)     
cumulative damage  11.15  34.18     
cumulative distribution function  11.4     
cycle  1.18     
cycle counting  34.18     
cyclic averaging  21.33    
D/A conversion (see      

digital-to-analog conversion)     
D’Alembert’s principle  7.45     
Damage, cumulative  11.15  34.18    
damage potential of dynamic load  26.2  41.20     
damage rules, in metals  34.18    
damped natural frequency  1.18     
damped systems  2.27     
damper  1.18  2.2  10.2    

applied to rotating systems  38.28     
auxiliary mass  6.1  6.9  6.29  40.19    
Coulomb  30.4  30.12     
linear  30.2     
pendulum  38.31     

damper-controlled system  2.10     
damping:     

by bolts, rivets, and bearings  11.26  41.12    
caused by sliding  36.25     
of composite materials  35.26     
constrained-layer  11.26  37.8     

criteria,  test  20.1  



 

 

Index terms Links       
damping (Cont.)     

Coulomb  4.33  30.7  30.12    
critical  1.18  2.5     
definition of  1.18     
free-layer  11.26  37.6     
linear velocity  4.33     
in machine tools  40.18     
mass  2.27     
materials  36.1  37.3     
measuring properties of  36.3     
mechanical  36.2     
mechanisms of  21.14  37.2     
nonlinear  1.22     
nonproportional  21.14     
optimum  30.10     
proportional  21.14     
slip  36.1  36.25     
structural  2.18     
tuned  37.11     
uniform mass  2.29     
uniform structural  2.29     
velocity-squared  4.33     
in vibration isolators  32.16     
viscoelastic  36.16  36.19  37.2    
viscous  2.5  4.3  8.50  30.2  30.6   
in welded joints  11.26  41.12     

damping characteristics of   32.7     
isolators     
damping coefficient  2.2  2.5     

(See also fraction of      
critical damping)     

damping constant  10.2    
damping energy  36.6     
damping loss factor  11.21  11.25  29.61    
damping materials:     

constrained layer  37.8     
free-layer  37.5     
hysteretic  36.18     
tapes  37.10     
types of  37.3     

damping measurements  37.18     
damping measures,   37.11    

comparison of     
damping properties of materials  36.17     
damping ratio  37.14     

(See also fraction of  
 critical damping)     



 

 

Index terms Links       
damping ring  6.39     
damping treatments  37.1     

applied  37.1     
benefits of  37.5     
constrained-layer  37.8     
free-layer  37.6     
integral  37.9     
rating of  37.11     
tapes  37.10     

damping values, comparison of  11.26  36.14  41.12    
data analysis:     

digital  21.16  22.16  27.14    
matrix methods  28.1     
statistical sampling errors  22.18     

data domain  21.41     
data reduction:     

to frequency domain  23.6     
in the response domain  23.11     
for shock data  23.6  23.25     
for vibration data  22.16     

(See also data analysis)     
data sieving  21.52     
data window  14.14  14.16  14.18    
DAT recorders  13.12     
dead-weight load, definition of  25.1    
decaying sinusoidal acceleration  23.5  23.9  23.20    
decibel (dB), definition of  1.18    
decoupling of modes  30.30     
deflection, static  2.4    
deformation,  plastic  9.10    
degrees-of-freedom  1.18  2.19  7.1  21.2  21.6   

detectors  13.5  14.6     
envelope  13.10     
multiple  21.11  30.18     
peak  13.7     
two  31.27  31.34     

delamination of composites  35.5     
delta function  23.3     
design criteria  41.14     
design issues using composites  35.3     
design lateral forces  24.17     
design life  41.16     
design margins  41.17     
design procedure, equipment  41.2    

final design  41.23     
preliminary  41.20     

design requirements  41.7     



 

 

Index terms Links       
design response spectra  24.9     
design reviews  41.24     
design verification  41.25     
deterministic function  1.18  22.4  22.10    

analysis of  22.17  22.26     
deterministic signal, stationary  14.22    
deterministic vibration  1.1     
development tests  20.4     
DFT (see discrete Fourier     

 transform)     
digital analysis of data  21.16  22.16  27.14    
digital computers  27.1     

analytical applications of  27.10     
experimental applications of  27.14     
types of  27.2     

digital control systems, for shock and     
vibration testing  27.19     

digital filter  14.2     
digital processing  13.13  13.17     
digital recorders  13.12     
digital signal processing  21.16  27.5     

(See also Chaps. 14 and 22)     
digital-to-analog conversion  13.16  27.6     
discrete Fourier transform  14.11  21.18  22.17    
displacement:     

definition of  1.18     
as design requirement  41.6     
measurement of  12.34  17.7     

displacement pickup  1.18     
displacement shock  26.5     
displacement transducers  12.38  16.4     
displacement transmissibility  30.8  30.15  30.27    
distortion  1.18     
distributed-mass vibration   6.21     
absorber     
distributed systems  1.18     
dither  13.14     
driving point impedance  1.18  12.30     
drop-ball shock calibrator  18.19     
drop tables  26.7     
drop-test calibrator  18.19     
dry friction whip  5.11     
ductility of metals  34.3     
Duffing’s method  4.23     
Duhamel’s integral  8.5  23. 4  23.14    
durability test  20.16     
duration of shock pulse  1.18     



 

 

Index terms Links       
durometer  33.5     
dwell time  14.8  14.9     
dynamic disturbances; types of  32.2     
dynamic environment  32.2     
dynamic hysteresis  36.19     
dynamic mass  12.30     
dynamic reduction  28.45     
dynamic response index  42.57     
dynamic stability  40.9     
dynamic stiffness  1.19  12.30     
of isolators  32.8     
dynamic vibration absorber  1.19  6.1  6.7  6.24    

(See also auxiliary mass damper)     
earthquake  24.5     

design for  24.14  24.19     
ground motion due to  24.5     
simulation  24.19     

earth’s gravitational field      
method of     
calibration  18.8     

effective bandwidth  1.19     
effective mass  1.19     
eigenvalues  28.12     
elastic axis  3.22     
elastic center  3.23     
elastic couplings  38.7     
elastic design spectrum  24.13     
elastomer  33.2     
elastomeric isolators  32.1     
elastomeric materials  37.2     
electric filter  14.1  14.2     
electric motors  40.4     
electrodynamic exciters  18.23     
electrodynamic transducers  12.36     
electrodynamic vibration   25.7     
machines     
controls for  27.19     
electromechanical coupling   1.19     

factor     
electro-optical displacement   12.32     
measurement     
electroplastic systems  24.12     
electrostatic shields  15.20     
electrostriction  1.19     
endurance limit of metals  34.10     
energy balance method  38.18     
energy method  9.12     



 

 

Index terms Links       
energy spectral density  11.9     
engines  38.1     
ensemble  1.19     
entrainment of frequency  4.18     
envelope detectors  13.10  16.17     
environment:     

active  32.5     
aero acoustic  20.11  29.47     
of concern in design  41.1     
dynamic (summary)  28.37  32.2     
fluid flow  29.1     
ground motion  24.1     
induced  1.20     
natural  1.22     
types of  20.2     
wind  29.21     

environmental conditions  21.19     
environmental test specifications  20.1     
equation condensation  21.52     
equipment design:     

practice of  41.1     
for shock  41.20     
for vibration  41.20     

equipment loading effects  20.12  41.15     
equivalent elastoplastic   24.11     
resistance     
equivalent fraction of critical damping  30.8     
equivalent mass  6.3     
equivalent static acceleration  23.12     
equivalent system  1.19     
equivalent viscous damping  1.19  1.26     
ergodic process  1.19  11.2     
error chart  21.55     
European Committee for      
Electrotechnical     
Standardization  19.1     
European Committee for Standardization  19.1     
excitation:     

aeroacoustic  29.47     
classifications of  21.33     
definition of  1.19     
engine  38.16     
impact  21.35     
multiple-axis  20.18     
periodic chirp  21.34     
periodic random  21.37     
pure random  21.37     



 

 

Index terms Links       
excitation (Cont.)     

pseudo-random  21.37     
random transient  21.37     
slow swept-sine  21.34     
sound  29.47     
step-relaxation  21.37     
types of  20.17  21.34  41.3    

exciters (see vibration exciters)     
Experimental modal analysis  21.1  21.14     

(See also modal analysis)     
exponential pulses  8.40     
extrapolation procedures  20.8     
failure:     

criteria for  11.14  41.6     
definition of  20.13    

false alarms  16.6    
fast Fourier transform  14.11  22.17     
fast Fourier transform      
analyzers (see FFT analyzers)     
fatigue, acoustic  29.63    
fatigue diagram  34.10     
fatigue failure  11.15  41.24     
fatigue performance:     

of composites  35.15     
of metals  34.8     

fatigue; tests for  34.17     
fault detection in machinery  14.9  16.5     
fault diagnosis in machinery  16.8     
FEM (see finite element method)     
FFT analyzers  14.11     
FFT spectrum analysis  14.11  14.22  14.25  14.31    
fiberoptic displacement sensor  12.35     
field balancing machines  39.27     
field calibration techniques  15.13     
filter:     

bandwidth of  14.3     
choice of bandwidth of  14.4  22.22  22.27    
definition of  1.19     
digital  14.2     
effective noise bandwidth of  14.3     
electrical  14.1     
high-pass  1.20     
impulsive response of  14.4     
low-pass  1.21     
properties of  14.3     
relative bandwidth of  14.3     
response time of  14.3     



 

 

Index terms Links       
finite element analysis  20.7  21.67  29.60  41.18    
finite element method  20.7  27.11  28.1  28.29  28.33  38.11 41.18 
finite element models      

(see finite element method)     
finite element programs  27.11  28.29     
fixed reference transducers  12.2     
flattest spectrum rule  15.4  16.4     
flattop window  14.16     
flexible-rotor balancing  39.4  39.8     
flexibly coupled rotating   39.39     
floating shock platform  26.12     
flow-induced vibration  29.1  29.54     
fluid bearing whip  5.12     
fluid elastic instability  29.14     
fluid flow  29.1     

in pipes  29.16     
over structures  29.54     

fluid-structure interaction  28.33     
flutte  29.40     
flutter mechanisms  29.23     
FM tape recorders  13.12     
force-balance accelerometer  12.37     
force factor  1.19     
force gages  12.30     
force measurement  17.0     
force transmissibility  2.7  30.17  30.26    
force transmission  2.12     
forced motion  2.23     
forced oscillation  1.19     
forced vibration  1.1  1.19  2.7  2.8  
forcing frequency  1.2     
foundation  1.19     

motion of  2.16  2.26     
foundation-induced vibration  3.42  41.21     
Fourier coefficients  22.4     
Fourier series  22.4     
Fourier spectrum  23.6  23.25     

relation to shock spectrum  23.24     
Fourier transform  14.11  23.25     

discrete  21.18  22.17     
finite  22.4     

Fourier transform shock   18.22     
calibration     

fraction of critical damping  1.19  2.5  30.7  32.20  37.14   
fracture energy  34.8     
fracture mechanics  11.16  34.16     
free-damping  11.26  37.6     

 2.9    7.1 



 

 

Index terms Links       
free-fall calibration  15.13     
free vibration  1.1  1.20  2.21  4.6    

with damping  2.5  7.1     
without damping  2.3     

frequency:     
angular  1.7  1.16  2.3    
audio  1.16     
circular  1.16     
definition of  1.7  1.20     
forcing  1.2     
fundamental  1.20     
natural  1.22  2.3  30.18    
normalized  29.51     
resonance  1.24     

frequency analysis      
(see spectral analysis;      

spectrum analysis)     
frequency domain  22.6  23.6     
frequency equation  2.21     
frequency resolution  21.38  22.21     
frequency response function  21.7  22.8  41.25    

measurement procedures  21.21  27.18     
frequency response procedures  20.8     
frequency sampling  14.15     
friction, Coulomb  36.26    
fringe-counting interferometer  18.10     
fringe-disappearance interferometer  18.12     
functional test  20.16     
function transforms  8.9     
fundamental frequency  1.20     
fundamental mode of vibration  1.20     
g, definition of 1.20    
gage factor  12.24  17.2     
galloping  29.23     
galloping oscillations  29.40    
Gaussian distribution  11.2  22.6     
gearbox  16.7     
geared systems  38.8     
gear-induced vibration  40.4     
generalized coordinates  2.22  2.24     
generalized force  2.24     
generalized impulsive response  8.23     
generalized mass  2.24     
generators  19.4     
ghost components in   16.14     

vibration spectra     
Gibbs phenomenon  13.16     



 

 

Index terms Links       
Goodman diagram  34.13     
graphical integration  4.33     
graphic level recorder  14.8     
gravity, center of  3.14    
gravity balancers  39.13     
grinding wheels  40.2  40.6     
grounding  15.21     
ground loops  15.21     
ground motion  24.1     

earthquake-induced  24.5  24.7    
machine-induced  24.3     
simulated  24.19     

ground vibration testing      
(see modal testing)     

guideways  40.6     
gust-factor  29.32     
Guyan reduction  28.45     
gyroscope  6.26     
H-type elements  28.30     
half-bridge circuit  17.12     
half-cycle sine-wave  8.5     
half-power bandwidth  36.5  37.12     
half-power point  2.18     
half-sine acceleration  23.5  23.7  23.18    
Hamilton’s principle  28.30     
Hamming window  14.16     
hand, vibrations transmitted from  42.15    
hand-arm vibration syndrome  42.33     
hand-held accelerometer  15.12    
hand-transmitted   42.49     
vibration exposure     
Hanning window  14.16     
hardening, definition of  4.2    
hardening spring  22.6  31.10  31.14  31.24    
hard failure  20.13     
harmonic  1.20     
harmonic motion  1.7     

(See also simple      
harmonic motion)     

harmonic response  1.20     
head impact protection  42.40     
helical spring  32.9     
helical spring isolators  32.9     
Hertz theory of impact  9.2     
heterodyne interferometer  18.15     
high-acceleration methods of   18.15     

calibration     



 

 

Index terms Links       
high-frequency shock  26.6  26.15     
high-impact shock machines  26.10     
high-pass filter  1.20     
Hilbert transform  14.37     
homodyne interferometer  18.15     
Hooke’s law  4.2     
Hopkinson bar  26.13     
Hopkinson bar calibrator  18.17     
hum, control of  15.20    
human body (see body)     
human performance,   42.20  42.30    

effects of shock and      
vibration on     

humans, effects of shock   42.1  42.20  42.23    
and vibration on     

(See also body)     
humans, simulation of  42.4    
humans, tolerance criteria   42.40    

for vibration     
hydraulic vibration machines  25.16     

controls for  27.19     
hysteresis  2.16  36.2     

dynamic  36.19     
static  36.21     

hysteresis loss  2.18    
hysteresis whirl  5.5  16.8     
hysteretic damping materials  36.18     
IEC  19.1     
image impedance  1.20     
impact  1.20     

on bars  9.10     
of body on a beam  9.6     
effect on structures  9.1     
excitation of  21.35  25.19     
Hertz theory of  9.2     
of mass on a beam  9.5     
plastic deformation resulting from  9.10     
with rebound  31.22     
without rebound  31.26     
of rigid body on a beam  9.6     
of sphere on a plate  9.3     
transverse, on a beam  9.5    
of two spheres  9.2     

impact-force shock calibrator  18.20     
impedance:     

image  1.20     
measurement of mechanical  12.30     



 

 

Index terms Links       
impedance (Cont.)     

mechanical  1.21  6.3  10.1  10.4
definition of  1.20     
transfer  1.25     

(See also mechanical impedance)     
impedance heads  12.32     
impulse  1.20  23.21     

acceleration  23.6     
impulsive response:     

of filters  14.4     
function  21.7     
generalized  8.23     

impulsive-type forces  9.1     
induced environments  1.20     
inertia:     

moment of  3.15     
product of  3.15     

inertial frame of reference  3.1     
influence coefficients  30.35     
initial conditions  2.4     
insertion loss  1.20     
instantaneous line spectrum  22.11     

computation of  22.26     
instantaneous power spectrum  22.11     

computation of  22.27     
integral damping treatments  37.9     
integration, graphical  4.33    
integration, phase-plane  4.33    
interferometer calibrators  18.10     
intermittent monitoring system  16.2     
International Electrotechnical   19.1     

Commission     
International Organization for     
Standardization  19.1     
inverse Laplace transform  8.7     
inverse power law  20.14     
involute springs  32.11     
ISO  19.1     
isochronous system  4.6     
isolation:     

definition of  1.20     
shock (see shock isolation)     
vibration (see vibration isolation)      

isolator, vibrator     
 (see vibration isolators)     

jerk, definition of  1.20    
joint acceptance function  29.58     

 10.5    41.16  



 

 

Index terms Links       
joints  41.11     
jump phenomena  4.9  4.40     
Kaiser-Bessel window  14.16     
Karma  17.4     
Kirchhoff’s laws  10.6     
Kryloff’s method  4.26     
kurtosis  11.6     
Lagrangian equations  2.30     
laminate design, composites  35.8    
Lanchester damper  6.31  40.19     
Laplace domain  21.8     
Laplace transform  8.7     
laser-Doppler vibrometers  12.32     
lateral instability of shafts  5.16     
lateral vibration of beams  7.11     
leaf springs  32.11     
leakage  14.13  21.19  22.18    
least squares  21.19     
level  1.21     
level crossings  11.14     
level recorder  14.8     
Liénard’s method  4.37     
life cycle analysis  41.5     
limit cycle  4.38     
linear dampers  30.2     
linear mechanical impedance  1.21     
linear resilient support  3.22     
linear spring  31.12  31.16     
linear system, definition of  1.21    
linear velocity damping  4.33     
line-drive preamplifiers  13.1     
line spectrum  1.21  22.5  22.18    
load deflection  32.1     
loading  20.12  23.21  41.15    

variable-amplitude  34.17     
logarithmic decrement  1.21  2.6  36.4  37.14  40.12   
log dec (see logarithmic      

decrement)     
longitudinal vibration  7.6  7.10     
longitudinal wave  1.21     
loss factor  11.21     

coupling  11.26     
damping  11.25  36.11  37.12    

low-cycle fatigue in metals  34.10     
low-pass filter  1.21     
lumped parameter systems  2.1  7.4  31.4  41.18    



 

 

Index terms Links       
machinery:        

monitoring of  16.1     
reciprocating  16.22     
rotating  39.1     
shaft misalignment  39.37     
types of  19.2     

machinery vibration  19.4     
rotating faults  16.9     
spectrum analysis of  16.17     
stationary faults in  16.9     

machine tools:     
chatter in  40.8     
control of vibration in  40.11     
damping in  40.18     
design of  40.21     
vibration in  40.1     

MacNeal-Rubin reduction  28.47     
magnetic shields  15.20     
magnetic tape recorder  1.21  13.11     
magnetostriction  1.21     
mainframe computers  27.2     
mass  2.2  10.3     
center of  3.14     
mass centering  39.26     
mass computation  3.3     
mass controlled system  2.10     
mass damping  2.27     
mass loading  15.13  41.16     
mass-spring transducers  12.2     
material damping  36.1     
material damping mechanisms,   36.23    

comparison of     
Mathieu’s equation  4.41     
Matrices, types of  27.14  28.3    
matrix,  definition of  28.2    
matrix eigenvalues  28.12     
matrix methods of analysis  28.1     
matrix operations  28.4     
maximum environment  20.4     
maximum expected environment  20.9  41.15     
maximum value  1.21     
mean phase deviation  21.71     
mean-square value  11.5  13.5  22.3    

computation of  22.25     
mean value  11.5  22.3     

computation of  22.25     



 

 

Index terms Links       
mean wind velocity  29.25     
measurement:     

absolute  18.3  18.5     
comparison  18.4     
synthesis  21.66     

measurements      
(see vibration measurements)     

measuring instrument  12.1     
mechanical admittance  12.30     

(See also mobility, mechanical)     
mechanical circuits  10.6     
mechanical exciters  18.23     
mechanical impedance  1.20  1.21  6.3  10.1  10.4  10.5  

applications of  10.12  41.16     
measurement of  10.11  12.30    
mechanical elements in  30.47     
rotational      
(see angular mechanical      

impedance)     
mechanical mobility  10.1  10.5     
mechanical power sources  30.46     
mechanical properties of      
materials:     

aluminum alloys  34.6  34.12     
cast iron  34.3     
composites  35.4     
copper-zinc alloys  34.5     
elastomers  33.6     
mechanical properties of     
magnesium alloys  34.12     
steels  34.4  34.11     

mechanical resistance  10.2     
mechanical shock  1.21     

(See also shock)     
medal matrix composites  35.2     
metals:     

critical strain velocity in  34.7     
ductility in  34.7     
effects of temperature on  34.4     
endurance limit in  34.10     
engineering properties of  34.1     
equipment design using  41.1     
fatigue in  34.8     
fracture energy in  34.8     
physical properties of  34.2     
reliability factors of  34.14     
static properties of  34.2     



 

 

Index terms Links       
metals (Cont.)        

tensile strength of  34.3  34.4     
toughness of  34.7     

metal spring isolators  32.9     
Miner’s rule  34.18     
mixed mode testing control  27.27     
mixed vibration environments  22.2     
mobility, mechanical  10.1  10.5    
modal analysis  21.1     

applied to rotary systems  38.21     
effect of environment  21.19     
measurements in  21.30     
parameter estimation  21.2     
theory of  21.5     

modal complexity  21.70     
modal coupling  3.27     
modal damping  21.13     
modal data acquisition  21.15     
modal data presentation/  21.68     

validation     
modal density  11.23  28.37     
modal excitation  11.28     
modal identification:     

algorithms  21.61     
concepts  21.39     
models  21.46     

modal mass  21.12     
modal matrices  28.13     
modal modification prediction  21.70     
modal numbers  1.21     
modal order:     

determination  21.54     
relationships  21.42     

modal overlap factor  11.21     
modal parameter estimation  21.39  21.49     
modal phase colinearity  21.71     
modal power potential  11.21     
modal scaling  21.12     
modal superposition  11.13     
modal testing  21.1     

control systems for  27.19     
experimental setup  21.35     

modal truncation  28.41     
modal vector consistency  21.68     
modal vector orthogonality  21.67     
mode counts  11.23     



 

 

Index terms Links       
model, shock and vibration  28.29    

single degree-of-freedom  41.20     
structural  23.2  28.29  41.17    

mode natural frequency  2.24     
of rotors  39.7     

modes:     
of driven machinery  38.2     
failure  20.14     
modal identification  21.46     

mode shapes  21.1     
modes of vibration  1.21     

coupled  30.24     
decoupling of  30.30     
fundamental  1.20     
natural frequency of  1.22     
normal  1.22     

(See also modes)     
modulation  1.21     
modulus of rigidity  34.3     
moments of inertia  3.15     

experimental determination of  3.17  38.5     
polar  38.3     

moments of the probability   11.5     
distribution     
monitoring of machinery  16.1     
motion:     

periodic  1.1     
rigid body  3.1     
rotational  2.2     
transitional  2.1     
uncoupled  31.1     
undamped  2.3     

motion response  2.7  30.2     
motion sickness  42.48     
motion transmissibility  2.7     
motors  19.4     

electric  40.4     
moving-coil differential      
transformer     

transducers  12.36     
multimass vibration absorber  6.21     
multiple-axis excitation  20.18  25.20     
multiple degree-of-freedom system  1.21  2.19  2.27  8.57  21.11  30.18  

response of  11.12     
narrow-band random vibration  1.22     
natural environment  1.22     
natural frequency 1.22 2.3 7.2 30.18    



 

 

Index terms Links       
natural frequency (Cont.)     

angular  2.3     
of circular rings  7.41     
damped  1.18     
torsional  38.9     
undamped  1.26     
of vibration isolators  32.16     

natural mode of vibration  1.22  2.22  7.2  11.2    
Neoprene  32.2     
neutral surface  1.22     
node  1.22     
noise  1.22     

background  1.17     
generation of noise in cable  15.19     
suppression  15.20     

nominal bandwidth  1.22     
nominal passband center frequency  1.22     
nominal upper and lower cutoff frequencies  1.22     
noncontact transducer      

(see proximity probe transducer)     
nonisochronous system  4.6     
nonlinear damping  1.22     
nonlinear spring  6.19     
nonlinear systems  4.1  4.8  28.36  29.61    
nonlinear vibration  4.1  4.6  4.18  4.23  4.25  4.40  
of vibration isolators  30.38     
nonstationary random process  11.2     
nonstationary vibration environment  20.3  22.2  22.11    
normal distribution  11.2     

(See also Gaussian distribution)     
normalizing condition  2.22     
normal modes of vibration  1.22  2.22  7.2  11.12  21.1   

of beams  7.17     
Norton’s equivalent system  10.9     
Nyquist frequency  22.16     
octave  1.22     
on-line monitoring system  16.2     
one degree-of-freedom      

(see single degree-of-freedom)     
operation transforms  8.9     
optical-electronic transducers  12.32     
optimum damping  30.10     
optimum transmissibility  30.11     
order of vibration  6.31     
orthogonality  7.5     
orthogonality condition  2.22     
oscillation  1.22     



 

 

Index terms Links       
oscillation (Cont.) 

 29.40
    

    galloping     
turbulence-induced  29.22  29.54     
wake-induced  29.23     

P-type element  28.30     
palmtop computers  27.3     
parametric instability  5.15     
partial node  1.22     
peak acceleration  23.22     
peak detectors  13.7     
peak-to-peak value  1.22     
peak value  1.22     
pendulum  2.31  4.2  4.3    

dampers  38.31     
nonlinear  4.3     

pendulum vibration absorber  6.32  6.37     
perfect balance  39.2     
performance, effects of      
shock and vibration on  42.30     
period  1.22  2.3     
periodic chirp  21.36     
periodic functions  22.4     
periodic motion  1.1     
periodic quantity  1.22     
periodic random  21.38     
permanent monitoring system  16.2     
personal computers  27.3     

applications of  27.13    
perturbation method  4.25     
phase angle  2.4     
phase coherent signal  14.38     
phase coherent vibrations  22.10     
phase demodulation  14.40     
phase of periodic quantity  1.23     
phase-plane analysis  4.39     
phase-plane graphical method  8.6     
phase-plane integration  4.33     
phase-plane method  8.54     
picket fence corrections  14.18     
pickup (see accelerometers,      

transducer)     
pickup calibration      

(see transducer calibration)     
pickup calibrators (see calibrator)     

piezoelectric accelerometers  12.15     
amplitude range of  12.23     
beam-type  12.19     



 

 

Index terms Links       
pickup calibrators (see calibrator) (Cont.) 

 18.1
    

calibration of     
charge sensitivity of  12.21     
compression-type  12.18     
effects of temperature on  12.23     
electrical characteristics of  12.21     
frequency range of  12.17     
internal electronics for  12.22     
mounting of  15.5     
physical characteristics of  12.20     
resonance frequency of  12.21     
selection of  15.4     
shear-type  12.19     
types of  12.18    
voltage sensitivity of  12.21     
weight of  12.20    

piezoelectric drivers  12.32     
piezoelectric exciters  18.23  25.18     
piezoelectricity  1.23     
piezoelectric materials  12.1  12.18     
piezoelectric transducers (See   12.18    

also piezoelectric accelerometers)     
piezoelectric vibration exciters  25.18     
piezoresistive accelerometers  12.24     

bending-beam types  12.25     
sensitivity of  12.27     
stress-concentrated types  12.27     

pipes, fluid flow in  29.16    
plastic deformation  9.10     
plastic isolators  32.9     
plates  1.14  7.4  7.33    

lateral vibration of  1.14  7.25     
uniformly loaded  7.30     

pneumatic springs  32.13     
point mass  2.19     
polar moments of inertia  38.3     

measurement of  38.5     
polymer matrix composites  35.1     
polymeric materials  35.6  37.2     
potentiometer circuit  17.12     
power spectral density  1.23  14.9     
power spectral density function  11.8  20.11  22.7    

computation of  22.21     
instantaneous  22.27     

power spectral density level  1.23     
power spectrum  1.23  14.9  14.34    

(See also power spectral density function)     



 

 

Index terms Links       
preamplifiers, accelerometer  13.1    
pressure measurement  17.9     
preventive maintenance, machinery  16.1    
primary standard  18.3     
principal component analysis  21.30     
principal elastic axes  3.22     
printed wiring assembly  41.26     
probability density function  11.4  22.6     

computation of  22.21     
probability distribution moments  11.5     
process  1.23     
product of inertia  3.15     

experimental determination of  3.19     
production test  20.5     
propellers  38.4     
propeller whirl  5.14     
proportional damping  21.14     
proximity probe transducer  12.37  16.4     
pseudo acceleration  24.6     
pseudo-random excitation  21.37     
pseudo velocity  24.6  41.21     
pulse:     

acceleration  31.16     
half-sine  23.5  31.18     
rectangular  31.17     
triangular  8.27     
versed sine  31.18     

pulse excitation  8.7  8.11  8.14  8.22  8.23  8.27  8.33 
pulse rise-time  1.23     
pumps  19.4     
pyroshock:     

characteristics of  26.16     
definition of  26.15     
measurement techniques  26.21     
simulation of  26.22  26.24     
test specifications for  26.19  26.21     
testing techniques  26.15  26.18     

Q (quality factor)  1.23  2.18    
qualification test  20.5  41.27     
quality control test  20.5     
quality factor  37.11     
quantization  21.17  22.16     
quasi-ergodic process  1.23     
quasi-periodic signal  1.23     
quasi-periodic vibrations  22.5     
quasi-sinusoid  1.23     
quasi-static acceleration  41.3     

  



 

 

Index terms Links       
quefrency  14.34     
quenching  4.18     
radius of gyration  3.4     
rahmonic  14.34     
rainflow counting method  34.18     
random excitation  20.17  21.37  41.4  41.22    

by jet and rocket exhausts  29.49     
by turbulent boundary layer  29.54     
by vortices  29.37     
by waves  29.6     
by wind  29.21     

random process:     
nonstationary  11.2  22.24     
stationary  11.2  22.6     

random response  11.10  28.51  41.22    
random signal:     

broadband  11.2  22.9     
narrow-band  11.2  22.9     
stationary  14.22  22.6    

random sine-wave      
(see narrow-band random      

vibration)     
random test  20.17     
random transient excitation  21.37     
random vibration  1.23     

analysis of  11.1  22.21     
broadband  1.17     
control systems for  27.19     
isolation of  30.43     
laboratory test exciters for  25.7    
narrow-band  1.22     
statistical parameters  11.3  22.6     
testing  20.17  25.20     

ratio of critical damping      
(see fraction of critical damping)     

Rauscher’s method  4.24     
Rayleigh distribution  11.2     
Rayleigh’s equation  4.28  4.39     
Rayleigh’s method  7.3  7.11  7.16  7.25  7.33   
Rayleigh’s quotient  28.16     
Rayleigh wave  1.23     
real-time analysis  14.23     
real-time digital analysis of   14.9     

transients     
real-time frequency  14.24     
real-time parallel filter analysis  14.9  22.22     
receptance  12.30     



 

 

Index terms Links       
reciprocating machinery  16.22  19.4  38.1    
reciprocity method of calibration  18.5     
reciprocity theorem  10.8     
recording:     

DAT  13.12     
FM  13.12     
magnetic tape  13.11     

recording channel  1.24     
recording system  1.24     
rectangular pulse  31.17     
rectangular shock pulse  1.24     
rectangular-step excitation  8.10     
rectangular weighting  14.25     
reduction, of modal complexity  27.11  28.45    
reed gage  23.26     
reference standard  18.3     
relative transmissibility  30.1  30.11     
relaxation excitation  4.38     
relaxation oscillations  4.17     
relaxation time  1.24     
reliability factors:     

of accelerometers  12.22     
in metals  34.14     

reliability growth test  20.6  41.27     
reliability test, statistical  20.6    
repetitive motion, injury from  42.57    
re-recording  1.24     
reservoir method  34.18     
residues  21.11     
resilient elements, elastic center of  3.23    
resilient supports:     

linear  3.22     
orthogonal  3.36     

resonance  1.24  2.18     
resonance frequency  1.24     

acceleration  2.18     
damped natural  2.18     
displacement  2.18     
velocity  2.18     

resonant bar  26.30     
resonant-bar calibrator  18.15     
resonant beam  26.31     
resonant-beam calibrator  18.25     
resonant plate  26.29     
resonant whirl  16.8     
response  1.24     

subharmonic  4.14     



 

 

Index terms Links       
     

response (Cont.)     
superharmonic  4.10     

response curves  4.7     
response spectrum  1.24  4.7  8.1  23.11
 24.13     

(See also shock response spectra)     
rigid-body motion  3.1     
rigid-rotor balancing  39.2     
ring springs  32.10     
Ritz method  4.28  4.31  7.3  7.33    
riveted joints  11.26  41.12     
rms detector  13.5     
rms value  22.3     
road simulator  25.21     
rods  7.4     
rotary accelerator  26.14     
rotating machinery  5.2  5.22  6.27  19.4  38.1   

balancing of  39.1     
condition monitoring of  16.1    
fault detection in  16.5     
shaft misalignment  39.37     
tolerance guide  39.39     

rotating shafts  5.6     
rotating table (centrifuge)  18.9     

 calibrator     
rotational mechanical   1.24     
impedance     
rotational motion  2.2     
rotational speed, low harmonics of  16.9    
rotational wave (see shear wave)     
rotors, unbalanced  39.11    
rubber:     

adhesion  33.8     
compounding of  33.1     
compression in  33.8     
creep in  33.8     
damping in  33.12  33.13     
dynamic properties of  33.10     
effects of temperature on  33.15     
effects of transmissibility on  33.14     
environmental effects on  33.8  33.9     
fatigue failure in  33.15     
hardness of  33.5     
molding of  33.5     
natural  33.2     
physical properties of  33.5     

 24.6    24.11  



 

 

Index terms Links  
     

postvulcanization bonding in  33.8     
stress vs. strain in  33.5     
vulcanization of  33.4     

safety, in design  41.8    
sampling  21.17  27.6     

frequency  14.15     
rate of  22.16  27.7    
theorem  21.17     

scaling  14.9     
scan averaging  14.26     
screening test  20.6     
SEA (see statistical energy      

analysis)     
secondary standard  18.4     
seismic forces  24.18     
seismic pickup (see seismic transducer)     
seismic system  1.24     
seismic transducer  1.24  12.2  12.36    

(See also mass-spring transducers)     
self-excited vibration  1.24  4.17  5.1  5.22    
sensing element  1.24     
sensitivity  1.24     
servo accelerometers  12.37     
servo-controlled isolation  32.18     

systems     
shaft misalignment  39.37     
shaker (see vibration machines)     
shake table (see vibration      

machines)     
Shannon’s sampling theorem  21.17     
shear-type accelerometers  12.19     
shear wave  1.24     
shielding  15.20     
shipboard vibration  19.6     
shock:     

complex  23.9  26.10     
control methods  1.2     
definition of  1.2     
displacement  26.5     
effects on humans   42.40 42.1     

(See also body)     
high-frequency  26.5     
mechanical  1.21     

(See also mechanical shock)     
protection of equipment  31.32     
pyrotechnic  26.15     
simple pulse  26.5     

  
rubber (Cont.) 



 

 

Index terms Links  
     

velocity  26.5     
(See also mechanical shock)     

shock absorber  1.24     
shock calibration, Fourier   18.22    
transform     
shock calibrator, impact-force  18.20    
methods of calibration  18.16     
shock data analysis  23.1     
shock data reduction  23.1     
shock environment  20.2  23.1 26.1  41.3    
shock excitation  23.1  26.13  41.21    
shock isolated equipment  31.32     
shock isolation:     

classification of problems in  31.3     
of equipment  31.32     
support protection  31.31     
theory of  31.1     

shock isolators  32.1     
selection of  32.11  32.13  32.14    
specification of  32.7     

shock machines  26.1  26.7  26.10  26.13  26.22  26.24  
calibration of  26.3     
characteristics of  26.2     
standards for  19.3     
types of shocks produced by  26.5  26.18     

shock measurements, interpretation of  23.1    
shock motion  1.24  23.3     
shock mount (see shock isolators)     
shock pulse  1.24     

duration of  1.18     
shock response spectra  11.9  23.11  23.14  23.26  24.6 26.6  
  26.19  31.21  41.21    

limiting values  23.21     
relation to Fourier spectrum  23.24     
three-dimensional  23.22     

shock response using SEA  11.31     
shock simulation (see shock      

testing)     
shock spectra  1.24  8.1     

(See also response spectrum;      
shock response spectra)     

shock testing  26.1     
digital control systems for  27.19     
machines for (see shock      

machines)     
specifications for  20.7  26.3  26.21    
standards for  19.3     

  
shock (Cont.) 



 

 

Index terms Links       
shock transmissibility  31.21  31.27     
shock waves, effects on humans   42.23    
short fiber/particulate composites  35.2     
sideband patterns  16.14  22.12     
signal  1.25     
signal analysis (see spectrum      

analysis)     
signal analyzers (see spectrum      

analyzers)     
signal averaging  13.7  21.32     
signal conditioners  13.3  17.11     
signal enhancement  14.32     
signal-nulling interferometer  18.14     
signal processing, digital  13.13  21.16    

(See also Chaps. 14 and 22)     
signal-to-noise ratio  22.16     
simple harmonic motion  1.7  1.25     
simple pendulum  4.2     
simple spring-mass system  4.2     
sine-sweep tests  20.4  37.20     
sine-wave,  random     
 (see narrow-band random      

vibration)     
sine-wave control systems  27.25     
sine-wave test  20.17     
single degree-of-freedom system  1.25  2.3  2.9  8.2  

idealized  31.4     
nonlinear  8.55     
response of  11.10  41.22     

single-plane balancing  39.3     
singular points  4.34     
sinusoidal acceleration,   23.5    

decaying     
sinusoidal excitation methods  18.15     
sinusoidal motion  1.25     

foundation-induced  3.42     
skewness  11.6     
slip damping  36.1  36.25     
slip-stick phenomena  5.19  40.6     
smart accelerometer  12.22     
snubber  1.25  32.6     
softening, definition of  4.2    
softening spring  31.10  31.15  31.24    
soft failure  20.13     
sound sources  29.47     

jet and rocket exhausts  29.49     
propellers and fans  29.53     

 8.51    21.6 



 

 

Index terms Links       
turbulent boundary layers  29.54     

specialized processors  27.4     
specific damping energy  36.6  37.17     
specifications:     

environmental  20.1     
test  20.1     
(See also standards)     

spectral analysis  14.1  16.17  22.18  27.14    
(See also spectrum analysis)     

spectral density functions  22.7  22.11     
spectral matrices  21.24  27.14  28.13    
spectrum  1.25  20.3     

instantaneous  22.11     
line  1.21  22.5     
maximax  20.4  41.15     
response  1.24     
shock response  23.11  23.14  23.25  31.20    

spectrum amplification factors  24.10     
in studying shaft misalignment  39.38     
techniques in  16.17     
use of FFT in  14.22  14.25     

spectrum analysis, speed of  14.6    
nonstationary signals  14.26     
real-time  14.23     
time-window effect in  14.14     
zoom  14.17  14.19  16.16    

spectrum analyzers  14.1     
spectrum density  1.25     
spectrum interpretation  16.8     
spring  10.3  32.13     

Belleville  32.11     
coil  32.9     
hardening  22.6  31.10  31.14  31.24    
helical  32.9     
ideal  2.1     
involute  32.11     
leaf  32.11     
linear  31.12     
metal  32.9     
nonlinearity  6.19     
parallel combination of  32.8     
ring  32.10     
selection of  32.9     
series combination of  32.8     
softening  31.10  31.15  31.24    
stiffness of  10.3  32.14     
wire mesh  32.11     

  
sound sources (Cont.) 



 

 

Index terms Links       
spring-controlled system  2.10     
spring-mass system  4.2     
spring rate (see dynamic stiffness)     
stability diagram  21.56     
standard:     

primary  18.3     
reference  18.4     
transfer  18.4     

standard deviation  1.25 11.5 20.10  22.3    
standards  19.1     

DoD  19.6  26.10  38.23    
international  19.3     
NASA  19.5     
organizations  19.7     

standards laboratories  18.3     
standing wave  1.25     
static deflection  2.4     
static hysteresis  36.21     
static stiffness  40.11     
stationary deterministic signals  14.22     
stationary faults  16.9     
stationary process  1.25     
stationary random process  11.2  22.1     
stationary random signals  14.22     
stationary signal  1.25     
stationary vibration environment  20.3     
statistical analysis  11.3     
statistical energy analysis  11.16  11.31  27.13  29.58    
statistical methods of analysis  11.1     
statistical reliability test  20.6     
statistical sampling errors  22.18     
steady-state vibration  1.1  1.25     
steel, properties of  34.11    
step excitation  8.10  8.16  8.18  8.49    
step function, unit  8.1  23.4    
step relaxation excitation  21.37     
step velocity  23.3     
stick-slip  5.16  40.6     
stiffness  1.25     

asymmetric  4.5  4.9     
coefficient of  2.20     
dynamic  1.19     
vs. static  32.18     
isolators  32.8     
in machine tools  40.11     
spring  10.3     
symmetric  4.7     



 

 

Index terms Links       

stimulus (see excitation) 
    

 strain:     
in composites  35.6     
in metals  34.2     

strain energy vs. damping energy  36.6     
strain gages:     

accuracy of  17.6     
bonding techniques  17.6     
circuitry  17.11     
classification of  17.4     
construction of  17.2     
displacement measurements   17.7     
using     
force measurements using  17.9     
gage factor of  17.2     
instrumentation for  17.1  17.11     
measurements using  17.6  17.7  17.8    
pressure measurement using  17.9     
properties of  17.1     
selection of  17.4  17.13     
sensitivity of  17.2    
temperature effects on  17.3    
theory of  17.1     
transverse sensitivity  17.2     
velocity measurements using  17.8     

strain-hardening modulus  34.3     
strain-life method  34.15     
strength of materials      

(see mechanical properties)     
stress distribution  36.11     
stress intensity factor  34.16     
stress-life method  34.10     
stress-strain relationship  36.3     

in composites  35.6     
in metals  34.2     

stress-velocity relationship  26.2  41.20     
stretched string  4.3     
Strouhal number  29.9     

(See also frequency, normalized)     
structural damping  2.18     

uniform  2.29     
structural design  24.14  41.14     
structural-gravimetric calibrator  18.8     
structural model  23.2  27.11  28.29  41.17    
structural vibration  24.1     

fluid-flow-induced  29.1     
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ground-motion-induced  24.2

    

sound-induced  29.47
    
    

wave-induced  29.6     
wind-induced  29.21     

subharmonic response  1.25  4.14     
subsynchronous components   16.8     

of vibration     
superharmonic response  1.25  4.10     
superposition theorem  10.8     
survivability  12.9     
sweep speed  14.8     
swept sine-wave, slow  21.34    
swept sine-wave testing  20.4  20.17     
symbols  1.5     
symmetric stiffness  4.7     
synchronous averaging  14.32  21.33     
system response distribution  11.29     
tape recorders  13.11  13.12     
task performance, effects of     

shock and vibration on  42.30     
tension loading of isolators  32.6     
terminology, standards for  19.2    
test:     

accelerated  20.15     
acoustic  29.64     
durability  20.16     
functional  20.16     
random  20.17     
sine-wave  20.17     
swept sine-wave  20.17     

test criteria  20.1     
test duration  20.13     
test failures  20.16  41.6     
test fixture  20.18  25.21     
test level  20.7  20.11     
test load, definition of  25.1    
test specifications  20.1     
testing standards  19.5     
Thévenin’s theorem  10.9     
three degrees-of-freedom system  2.31     
tilting support calibrator  18.8     
time-dependent failure   20.13     
mechanism     
time domain  21.7     
time history  1.26     

analysis of  22.1     

structural vibration (Cont.) 



 

 

Index terms Links       
time-varying functions  22.2     
time-window effect  14.14     
Timoshenko beam theory  7.18     
tolerance limit  20.9     
tool life  40.11     
tools (see machine tools)     
torsion loading of isolators  32.6     
torsional vibration  7.6     

in machinery  38.1     
model of  38.15     

total damping energy  36.6     
total least squares  21.21     
traceability of calibrations  18.2     
tracking analysis  14.30     
trajectories  4.34     
transducer  12.1     

acceleration measuring  12.4     
calibration of (see transducer      

calibration)     
capacitance-type  12.38     
classification of  12.2     
definition of  1.25  12.1     
displacement  12.38  16.4     
electrodynamic  12.35     
fixed reference  12.2     
frequency response  18.1     
hand-held  15.12     
high-frequency response  12.5     
low-frequency response  12.8     
mass-spring  12.2     
mountings for  15.5  15.10     
moving-coil differential   12.36     
transformer     
optical-electronic  12.32     
proximity probe  12.38     
seismic  12.2  12.6  12.36    
selection of  15.4  16.4     
sensitivity  18.1     
velocity-type  12.36  16.4     

transducer calibration  18.1     
ballistic pendulum method of  18.18     
centrifuge method of  18.9     
comparison method  15.13  18.4     
drop-ball method of  18.19     
drop test method of  18.19     
earth’s gravitational method  15.14  18.8     
electrodynamic exciter method  18.23     



 

 

Index terms Links       

field methods  15.13
    

free-fall method  15.13
    
    

Fourier transform method of  18.22     
heterodyne interferometer   18.15     
method     
high-acceleration method of  18.15     
impact-force shock method of  18.20     
interferometer method of  18.10     
inversion method  15.14     
pendulum calibrator method of  18.8     
reciprocity method of  18.5     
rotating table method of  18.8     
shaker excitation method of  18.23     
shock excitation method of  18.20     
signal-nulling interferometer   18.14     
method of     
sinusoidal-excitation method of  18.15     
structural-gravimetric method of  18.8     
techniques of  15.13     
tilting-support method of  18.8     

transfer function method of  18.5     
vibration exciter method of  18.22     
transfer function      

(see frequency response function)     
transfer function measurements  21.21     
transfer impedance  1.25  12.30     
transfer matrix method  7.40  38.21     
transfer standard  18.4     
transient analysis  11.31  14.25  23.1  28.39    
transient response  8.1  8.58  11.31    
transient vibration  1.1  1.25     
translational motion  2.1     
transmissibility  2.9  2.12  30.4    

absolute  30.1     
acceleration  30.15     
displacement  30.8  30.15  30.27    
force  2.7  30.17  30.26    
motion  2.7     
optimum  30.11     
relative  30.1  30.8  30.11    
at resonance  30.10     
shock  31.21  31.27     

transmission loss  1.25     
transportation environments  19.4  20.14  41.5    
transverse sensitivity  12.11  18.24     
transverse wave  1.26     

transducer calibration (Cont.) 



 

 

Index terms Links       
trend analysis  16.7  16.23     
triangular weighting  14.25     
triboelectricity  15.19     
tuned damper  1.1  37.11     

(See also dynamic      
vibration absorber)     

tuned resonant fixtures  26.28     
turbomachinery, whirl  5.12  5.14    
turbulence, excitation by  29.28  29.54    
turbulence-induced   29.22     
oscillations     
two degrees-of-freedom   31.27  31.34  38.17    
system     
U-tube  2.32     
ultimate tensile strength  34.2  34.13     
ultra-subharmonic response  4.14     
unbalance  40.2     

rotating  40.2     
sources of  39.10     

uncoupled mode  1.26     
uncoupled motion  30.1     
undamped motion  2.3     
undamped natural frequency  1.26     
unified matrix   21.47     

polynomial approach     
Uniform Building Code  24.17     
uniform mass damping  2.27  2.29     
uniform structural damping  2.29     
uniform viscous damping  2.27     
United States National Committee  19.1     
unit step function  23.4     
unstable imbalance  5.21     
USNC/IEC  19.1     
Van der Pol’s equation  4.17     
variable-amplitude loading  34.17     
variable-capacitance   12.39     
accelerometer     
variance  1.26  11.5  22.3    

computation of  22.17     
for nonstationary data  22.10     

vector cancellation method  38.26     
vehicle vibration  20.15  25.21     
velocity  1.26     
velocity-coil pickups  12.36     
velocity pickup  1.26  12.36  16.4    
velocity response  2.10     
velocity shock  3.51  26.5  31.6    



 

 

Index terms Links       
velocity-squared damping  4.33     
velocity step, response of body to  31.6    
versed-sine force pulse  8.4     
versed-sine pulses  8.45  31.18     
vibrating beam test  37.18     

 methods     
vibration:     

aerodynamically induced  29.1     
ambient  1.16     
bistable  5.20     
body-induced  3.42     
building  42.46     
complex  1.17     
control methods  1.2     
definition of  1.26     
deterministic  1.1     
effects on humans  42.1  42.20  42.30    

(See also body)     
equipment design to   41.1     
withstand     
fluid-flow-induced  29.1     
forced  1.1  2.7  2.8    
foundation-induced  3.42     
free  1.1  1.20  2.2  4.6    
gear-induced  40.4     
longitudinal  7.6     
machine-tool  40.1     
nonlinear  4.1  4.6     
periodic  1.1     
random  1.1     
rotating shaft  5.6     
self-excited  4.17  5.1     
ship  19.6     
sound-induced  29.47     
steady-state  1.1  1.25     
structural  24.1     
subsynchronous components  16.8     
torsional  7.6     

(See also torsional vibration)     
transient  1.1  1.25     
vortex-induced  29.8  29.13  29.40    
wave-induced  29.6     
wind-induced  29.21     

vibration absorber  6.1  6.21  6.28  6.38   
multimass  6.21     
pendulum  6.32  6.37     

(See also Chaps. 5 and 7)     



 

 

Index terms Links       
vibration acceleration  1.26     
vibration acceleration level  1.26     
vibration analysis:     

cepstrum  16.21     
gated  16.22     
techniques  16.19     

vibration control,   40.11    
in machine tools     

vibration damping ring  6.39     
vibration data,  analysis of  22.1    
vibration dose value  42.41     
vibration environment  20.2    
vibration exciters  25.1  25.15     

electrodynamic  18.23  25.7     
hydraulic  25.16     
impact  25.19     
mechanical  18.23  25.2     
piezoelectric  18.23  25.18     

vibration exposure,   42.49    
hand-transmitted     

vibration generator      
(see vibration exciters)     

vibration isolation  1.3  30.1     
coupled modes in  30.24     
efficiency of  32.12     
of force  30.51     
of random vibration  30.43     

vibration isolation systems: active  32.16     
checking  32.15     
damping in  30.5     
servo-controlled  32.19     

vibration isolators  1.26  32.1     
air  32.13     
ambient environments for  32.5     
application of  32.1     
Belleville  32.11     
biaxial stiffness  30.31     
coil spring  32.9     
commercial  32.16     
damping characteristics of  32.16     
dynamic stiffness  32.7     
elastomeric  32.1  32.2     
fail-safe installation  32.7     
fatigue failure in  32.4     
helical spring  32.9     
hydraulically damped  32.18     
inclined  30.29     



 

 

Index terms Links       

installation of  32.7
    

involute  32.11
    

vibration isolators (Cont.) 

    
leaf  32.11     
location of  32.3     
materials for  32.6     
metal spring  32.9     
natural frequency of  30.41  32.16     
nonlinear  30.38     
plastic  32.9     
pneumatic  32.13     
ring spring  32.10     
selection of  32.1  32.9     
service life  32.6     
shear loading of  32.5     
specifications for  32.7     
standards for  19.3     
static stiffness of  32.18     
stiffness of  32.14     
tangent  30.39     
tension loading of  32.6     
torsion loading of  32.6     
unbonded  32.4     
wire mesh  32.11     

vibration machines  25.1     
circular motion machine  25.4     
direct drive  25.2     
electrodynamic  25.7     
hydraulic  25.16     
impact  25.19     
piezoelectric  25.18     
reaction type  25.4     
rectilinear  25.5     

vibration measurements  15.1     
data sheets for  15.22     
measurements, factors   15.3    
important in     
false alarms in  16.6     
field calibration techniques in  15.13     
instrumentation for  13.1     
parameters for  15.2  16.4     
planning of  15.1     
techniques in  15.1     
time interval between measurements  16.5     
transducer locations for  16.5     
transducer selection in  15.4     

(See also Chap. 12)     
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vibration measurement  
    

system:  
   

    
calibration of  15.14     
wiring considerations for  15.18     

vibration meter  1.26  13.1  13.10    
vibration monitoring of machinery  16.1     
vibration mount (see     

 vibration isolators)     
vibration pickup      

(see accelerometers;      
transducer)     

vibration problems, matrix forms of  28.9    
vibration reduction in rotating machinery  6.27     
vibration spectra:     

of machinery  16.17     
sideband patterns  16.17     
vibration standards  19.1     
vibration test:     

criteria for  20.1     
duration of  20.13     
magnitude of  20.11     

vibration test codes  19.1     
vibration testing  20.4  25.1  41.25    

digital control systems for  27.19     
machines for (see vibration      

machines)     
multiple-exciter applications  25.20  27.29     

vibration test specifications  20.1     
vibration transducer (see pickup;      

transducer)     
vibration troubleshooting in  16.10  16.15     
 machinery     
vibrograph  1.26     
vibrometer  12.32     
laser-Doppler  12.32     
virtual mass effect  29.1     
virtual work  7.45  28.30     
viscoelastic damping  37.2     
viscoelastic materials  36.16  36.20     
viscous dampers  30.2  30.4     
viscous damping  1.26  2.5  2.9  4.3  8.52   

equivalent  1.26     
uniform  2.27     

voltage preamplifiers  13.1     
voltage substitution method  15.16     
volume stress function  36.8     
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vortex-induced oscillation  29.35     
vortex-induced vibration  29.8     
vortex shedding  29.35     
vulcanizing agents  33.4     
wake buffeting  29.40     
wake-induced oscillations  29.23     
waterfall plot  14.28  22.26     
wave  1.26     

compressional  1.17     
wave-induced vibration  29.6     
wave interference  1.27     
wavelength  1.27     
weighting:     

rectangular  14.25     
triangular  14.25     

weighting functions  21.38     
for spectrum averaging  14.24     

welded joints  11.26  40.15  41.12    
Wheatstone bridge  17.13     
whipping  5.2  5.11  5.12    
whirl  5.14     

resonant  16.8     
whirling  5.2  5.9     
white fingers  42.49     
white noise  1.27  11.6     
Wigner distribution  22.11     
wind:     

characteristics of  29.24     
fluctuating components of  29.26     
gradient  29.25     
gustiness of  29.27     
mean velocity  29.25     

windows  14.14  14.16  14.18    
Hamming  14.16     
Hanning  14.16     

wire mesh springs  32.11     
working reference standard  18.4     
workstations  27.3     
yield strength; metals  34.3     
zero period acceleration  24.16     
zero shift  12.9     
zone  20.9     
zone limit  20.9     
zoom analysis  14.9     
zoom demodulation  14.41     
zoom FFT analysis  14.26     
zoom spectrum  16.16     
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