
CHAPTER 2

TRANSFER FUNCTION ANALYSIS

2.1 Introduction

The purpose of this chapter is to illustrate how to derive equations of motion
for Multi Degree of Freedom (mdof) systems and how to solve for their
transfer functions.

The chapter starts by developing equations of motion for a specific three
degree of freedom damped system (indicated throughout the book by the
acronym “tdof”). A systematic method of creating “global” mass, damping
and stiffness matrices is borrowed from the stiffness method of matrix
structural analysis. The tdof model will be used for the various analysis
techniques through most of the book, providing a common thread that links the
pieces into a whole.

Two additional examples are used to illustrate the method for building matrix
equations of motion. The first is a lumped mass six degree of freedom (6dof)
system for which the stiffness matrix is developed. The second is a simplified
rotary actuator system from a disk drive, for which the complete undamped
equations of motion are developed.

Following the equations of motion sections, the chapter continues with a
review of the transfer function and frequency response analyses of a single
degree of freedom (sdof) damped example. After developing the closed form
solution of the equations, MATLAB code is used to calculate and plot
magnitude and phase versus frequency for a range of damping values.

The tdof model is then reintroduced and Laplace transforms are used to
develop its transfer functions. In order to facilitate hand calculations of poles
and zeros, damping is set to zero. The characteristic equation, poles and zeros
are then defined and calculated in closed form. MATLAB code is used to plot
the pole/zero locations for the nine transfer functions using MATLAB’s
“pzmap” command.

MATLAB is used to calculate and plot poles and zeros for values of damping
greater than zero and we will see that additional real values zeros start
appearing as damping is increased from zero. The significance of the real axis
zeros is discussed.

© 2001 by Chapman & Hall/CRC

2.2 Deriving Matrix Equations of Motion

2.2.1 Three Degree of Freedom (tdof) System, Identifying Components
and Degrees of Freedom

Figure 2.1: tdof system schematic.

The first step in analyzing a mechanical system is to sketch the system,
showing the degrees of freedom, the masses, stiffnesses and damping present,
and showing applied forces. The tdof system to be followed throughout the
book, shown in Figure 2.1, consists of three masses, numbered 1 to 3, two
springs between the masses and two dampers also between the masses. The
model is purposely not connected to ground to allow a “rigid body” degree of
freedom, meaning that at “low” frequencies the set of three masses can all
move in one direction or the other as a single rigid body, with no relative
motion between them.

The number of degrees of freedom (dof) for a model is the number of
geometrically independent coordinates required to specify the configuration
for the model. For consistency, the notation “z” will be used for degrees of
freedom, saving “x” and “y” for state space representations later in the book.
For the system shown in Figure 2.1 where each mass can move only along the
z axis, a single degree of freedom for each mass is sufficient, hence the
degrees of freedom 1 2 3z , z and z .

2.2.2 Defining the Stiffness, Damping and Mass Matrices

The equations of motion will be derived in matrix form using a method
derived from the stiffness method of structural analysis, as follows:

Stiffness Matrix: Apply a unit displacement to each dof, one at a
time. Constrain the dof’s not displaced and define the stiffness
dependent constraint force required for all dof’s to hold the system
in the constrained position.

c1

m1 m2 m3

k1 k2

c2

z1 z2 z3F1 F2 F3

© 2001 by Chapman & Hall/CRC

The row elements of each column of the stiffness matrix are then
defined by the constraints associated with each dof that are required
to hold the system in the constrained position.

Damping Matrix: Apply a unit velocity to each dof, one at a time.
Constrain the dof’s not moving and define the velocity-dependent
constraint force required to keep the system in that state.

The row elements of each column of the damping matrix are then
defined by the constraints associated with each dof that are required
to keep the system in that state – with one dof moving with constant
velocity and all the other dof’s not moving.

Mass Matrix: Apply a unit acceleration to each dof, one at a time.
Constrain the dof’s not being accelerated and define the
acceleration-dependent constraint forces required.

The row elements of each column of the mass matrix are then defined
by the constraints associated with keeping one dof accelerating at a
constant rate and the other dof’s stationary. Since in this model the
only forces transmitted between the masses are proportional to
displacement (the springs) and velocity (viscous damping), no forces
are transmitted between masses due to one of the masses accelerating.
This leads to a diagonal mass matrix in cases where the origin of the
coordinate systems are taken through the center of mass of the bodies
and the coordinate axes are aligned with the principal moments of
inertia of the body.

Table 2.1 shows how the three matrices are filled out. To fill out column 1 of
the mass, damping and stiffness matrices, mass 1 is given a unit acceleration,
velocity and displacement, respectively. Then the constraining forces required
to keep the system in that state are defined for each dof, where row 1 is for dof
1, row 2 is for dof 2 and row 3 is for dof 3.

© 2001 by Chapman & Hall/CRC

1m2 m3 m1 m3 m1 m2

z1=1

m1
m2 m3

z2=1 z3=1

Column 1 Column 2 Column 3

accel
UNIT vel dof1

disp

 
 
 
 
 

accel

Unit vel dof 2
disp

 
 
 
 
 

accel

Unit vel dof 3
disp

 
 
 
 
 

1m

0
0






 2

0
m
0

3

0
0

m






dof1
dof 2
dof 3

1

1

c
c
0


−


1

1 2

2

c
c c

c

−
+

−
 2

2

0 dof1
c dof 2

c dof 3


− 


1

1

k
k
0


−


1

1 2

2

k
k k

k

−
+

−
 2

2

0 dof1
k dof 2

k dof 3


− 


Table 2.1: m, c, k columns and associated dof displacements. The cross-hatched masses in
the figures above each column are constrained and non-cross-hatched mass is moved a unit

displacement.

The general matrix form for a tdof system is shown below, where the “ij”
subscripts in ij ij ijm , c , k are defined as follows: “i” is the row number and
“j” is the column number.

 j=1 j=2 j=3

11 12 13 1 11 12 13 1 11 12 13 1 1

21 22 23 2 21 22 23 2 21 22 23 2 2

31 32 33 3 31 32 33 3 31 32 33 3 3

i 1 m m m z c c c z k k k z F
i 2 m m m z c c c z k k k z F
i 3 m m m z c c c z k k k z F

=              
             = + + =             
             =              

 (2.1)

 Mass Damping Stiffness

© 2001 by Chapman & Hall/CRC

Expanding the matrix equations of motion by multiplying across and down:

11 1 12 2 13 3 11 1 12 2 13 3 11 1 12 2 13 3 1m z m z m z c z c z c z k z k z k z F+ + + + + + + + = (2.2)

21 1 22 2 23 3 21 1 22 2 23 3 2l 1 22 2 23 3 2m z m z m z c z c z c z k z k z k z F+ + + + + + + + = (2.3)

31 1 32 2 33 3 31 1 32 2 33 3 31 1 32 2 33 3 3m z m z m z c z c z c z k z k z k z F+ + + + + + + + = (2.4)

The matrix equations of motion for our tdof problem, from Table 2.1, is:

1 1 1 1 1

2 2 1 1 2 2 2

3 3 2 2 3

1 1 1 1

1 1 2 2 2 2

2 2 3 3

m 0 0 z c c 0 z
0 m 0 z c (c c) c z
0 0 m z 0 c c z

k k 0 z F
k (k k) k z F
0 k k z F

−       
       + − + −       
       −       

−     
     + − + − =     
     −     

 (2.5)

Expanding:

1 1 1 1 1 2 1 1 1 2 1

2 2 1 1 1 2 2 2 3 1 1 1 2 2 2 3 2

3 3 2 2 2 3 2 2 2 3 3

m z c z c z k z k z F
m z c z (c c)z c z k z (k k)z k z F

m z c z c z k z k z F

+ − + − =
− + + − − + + − =

− + − + =
 (2.6a,b,c)

2.2.3 Checks on Equations of Motion for Linear Mechanical Systems

Two quick checks which should always be carried out for linear mechanical
systems are the following:

1) All diagonal terms must be positive.

2) The mass, damping and stiffness matrices must be symmetrical.
For example ij jik k= for the stiffness matrix.

2.2.4 Six Degree of Freedom (6dof) Model – Stiffness Matrix

The stiffness matrix development for a more complicated model than the tdof
model used so far is shown below. The figure below shows a 6dof system
with a rigid body mode and no damping.

© 2001 by Chapman & Hall/CRC

m1

m2 m3 m4 m5

m6

k1

k2

k3 k4 k5

k6

k7

z1

z2

z3

z4

z5

z6

Figure 2.2: 6dof model schematic.

Moving each dof a unit displacement and then writing down the reaction
forces to constrain that configuration for each of the column elements, the
stiffness matrix for this example can be written by inspection as shown in
Table 2.2. Note that the symmetry and positive diagonal checks are satisfied.

1 2 l 2

1 1 3 7 3 7

3 3 4 6 4 6

4 4 5 5

7 6 5 5 6 7

2 2

(k k) k 0 0 0 k
k (k k k) k 0 k 0
0 k (k k k) k k 0
0 0 k (k k) k 0
0 k k k (k k k) 0
k 0 0 0 0 k

+ − − 
 − + + − − 
 − + + − −
 − + − 
 − − − + +
 

−  

Table 2.2: Stiffness matrix terms for 6dof system.

2.2.5 Rotary Actuator Model – Stiffness and Mass Matrices

The technique is also applicable to systems with rotations combined with
translations, as long as rotations are kept small. The system shown below
represents a simplified rotary actuator from a disk drive that pivots about its
mass center, has force applied at the left-hand end (representing the rotary
voice coil motor) and has a “recording head” 2m at the right-hand end. The
“head” is connected to the end of the actuator with a spring and the pivot
bearing is connected to ground through the radial stiffness of its bearing.

© 2001 by Chapman & Hall/CRC

Figure 2.3: Rotary actuator schematic.

Starting off by defining the degrees of freedom, stiffnesses, mass and inertia
terms:

dof:
 z1 translation of actuator
 z2 rotation of actuator
 z3 translation of head

Stiffnesses:
 k1 actuator bearing radial stiffness
 k2 “suspension” stiffness

Inertias:
 m1,J1 actuator mass, inertia

m2 “head” mass

z3

k2

m2

m1,J1

F1,z1

T2,z2

k1l1

Fc

l2

© 2001 by Chapman & Hall/CRC

z3

k2

k1 l2

z3

k2z1

z2

k1 l2

z3

k2

z2

k1 l2

z1=1

Z2 = 1

Rotary Actuator Stiffness Example

First Column: z1 = 1

Second Column: z2 = 1

Third Column: z3 = 1

z2

z1

z1

z3=1

Figure 2.4: Unit displacements to define mass and stiffeness matrices.

See Figure 2.4 to define the entries of each column of (2.7), the
forces/moments required to constrain the respective dof in the configuration
shown.

© 2001 by Chapman & Hall/CRC

1 1 1 2 2 2 2 1 1 c
2

1 2 2 2 2 2 2 2 2 2 c 1

2 3 2 2 2 2 3

m 0 0 z (k k) l k k z F F
0 J 0 z l k l k l k z T F l
0 0 m z k l k k z 0 0

+ − −           
           + − = =           
           − −           

 (2.7)

 1 cF F= − (2.8)

 2 c 1T F l= (2.9)

2.3 Single Degree of Freedom (sdof) System Transfer Function
and Frequency Response

2.3.1 sdof System Definition, Equations of Motion

The sdof system to be analyzed is shown below. The system consists of a
mass, m, connected to ground by a spring of stiffness k and a damper with
viscous damping coefficient c. Since the mass can only move in the z
direction, a single degree of freedom is sufficient to define the system
configuration. Force F is applied to the mass.

m

z F

c

k

Figure 2.5: Single degree of freedom system.

The equation of motion for this system is given by:

mz cz kz F+ + = (2.10)

2.3.2 Transfer Function

Taking the Laplace transform of a general second order differential equation
(DE) with initial conditions is:

© 2001 by Chapman & Hall/CRC

 Second Order DE: { } 2z(t) s z(s) sz(0) z(0)= − −L , (2.11)

where z(0) and z(0) are position and velocity initial conditions, respectively,
and z(s) is the Laplace transform of z(t). See Appendix 2 for more on Laplace
transforms.

Because we are taking a transfer function, representing the steady state
response of the system to a sinusoidal input, initial conditions are set to zero,
leaving

 { } 2z(t) s z(s)=L (2.12)

The Laplace transform of the sdof equation of motion (2.10), where F(s)
represents the Laplace transform of F, is:

2ms z(s) csz(s) kz(s) F(s)+ + = (2.13)

Solving for the transfer function:

2
2

z(s) 1 1/ m
c kF(s) ms cs k s s
m m

= =
+ + + +

 (2.14)

We can simplify the equation above by applying the following definitions:

1) 2
n

k
m

ω = , where nω is the undamped natural frequency,

rad/sec

2) crc 2 km= , where crc is the “critical” damping value

3) ζ is the amount of proportional damping, typically
stated as a percentage of critical damping

4) n2ζω is the multiplier of the velocity term, z ,
developed below:

© 2001 by Chapman & Hall/CRC

n

cr

c 2
m

c k2
c m

2c k
2 km m
c
m

= ζω

=

=

=

 (2.15)

Rewriting, using the above substitutions:

2 2
n n

z(s) 1/ m
F(s) s 2 s

=
+ ζω + ω

 (2.16)

2.3.3 Frequency Response

Substituting “ jω ” for “s” to calculate the frequency response, where “j” is the
imaginary operator:

2 2
n n

2 2
n n

2

2
n n

2

2

2
n n
2

2

2
n n

z(j) 1/ m
F(j) (j) 2 (j)

1/ m
2 j

1/(m)
2 j1

1/(m)
2 j1

1/(m)

1 j2

ω =
ω ω + ζω ω + ω

=
−ω + ζωω + ω

ω=
ζω ω− + +
ω ω

ω=
 ω ζω− +  ωω 

ω=
 ω ω   − + ζ    ω ω     

 (2.17a,b,c,d,e)

The frequency response equation above shows how the ratio (z/F) varies as a
function of frequency, ω . The ratio is a complex number that has some
interesting properties at different values of the ratio ()n /ω ω .

© 2001 by Chapman & Hall/CRC

At low frequencies relative to the resonant frequency, 2 2
n nω >> ωω >> ω , and

the transfer function is given by:

2 2
n n

2 2
n n

z(j) 1/ m
F(j) 2 j

1/ m 1 1 1
k km m
m

ω =
ω −ω + ζωω + ω

≅ = = =
ω ω  

 
 

 (2.18)

Since the frequency response value at any frequency is a complex number, we
can take the magnitude and phase.

z(j) 1
F(j) k

z(j) 0
F(j)

ω =
ω

ω∠ =
ω

 (2.19a,b)

Thus, the gain at low frequencies is a constant, (1/k) or the inverse of the
stiffness. Phase is 0 because the sign is positive.

At high frequencies, 2 2
n nω >> ωω >> ω , the transfer function is given by:

2 2
n n

2 2

z(j) 1/ m
F(j) 2 j

1/ m 1
m

ω =
ω −ω + ζωω + ω

−≅ =
−ω ω

 (2.20)

Once again, taking the magnitude and phase:

2 2

z(j) 1 1
F(j) m m

z(j) 180
F(j)

ω −= =
ω ω ω

ω∠ = −
ω

 (2.21a,b)

At high frequencies, the gain is given by 21/(m)ω and the phase is 180−
because the sign is negative.

© 2001 by Chapman & Hall/CRC

At resonance, nω = ω , the transfer function is given by:

2 2
n n

2 2
n n n

z(j) 1/ m
F(j) 2 j

1/ m 1/ m 1 1 1 1/ k j / k
2 kmj2 j 2 kj 2 j 22 j 2 mj

m

ω =
ω −ω + ζωω + ω

−= = = = = = =
ζζωω ζ ζ ζζω ζω

 (2.22)

Taking magnitude and phase at resonance:

z(j) j / k 1/ k
F(j) 2 2

z(j) 90
F(j)

ω −= =
ω ζ ζ

ω∠ = −
ω

 (2.23a,b)

The magnitude at resonance is seen to be the gain at low frequency, 1/k,
divided by 2ζ . Since ζ is typically a small number, for example 1% of
critical damping or 0.01, the magnitude at resonance is seen to be amplified.
At resonance the phase angle is 90− .

10-1 100 101

10-3

10-2

10-1

100

101
SDOF frequency response magnitudes for zeta = 0.1 to 1.0 in steps of 0.1

frequency, rad/sec

m
ag

ni
tu

de

Figure 2.6: sdof magnitude versus frequency for different damping ratios.

© 2001 by Chapman & Hall/CRC

The MATLAB code sdofxfer.m, listed in the next section, is used to plot the
frequency responses from (2.17) for a range of damping values for
m = k = 1.0, shown in Figures 2.6 and 2.7. These m and k values give a nω
value of 1.0 rad/sec.

Since nω is 1.0 rad/sec, the resonant peak in Figure 2.6 should occur at that
frequency. The low frequency magnitude was shown above to be equal to
1/k = 1.0. The curves for all the damping values approach 1.0 (010 1.0=) at

low frequencies. At high frequencies the magnitude is given by ()21/ mω ,

and since m = 1, we should have magnitude of 21/ ω . Checking the plot
above, at a frequency of 10 rad/sec, the magnitude should be 1/100 or 0.01.

Note that the slope of the low frequency asymptote is zero, meaning it is not
changing with frequency. However, the slope of the high frequency asymptote
is “ 2− ,” meaning that for every decade increase in frequency the magnitude at
high frequency decreases by two orders of magnitude by virtue of the 2ω term
in the denominator. The “ 2− ” slope on a log magnitude versus log frequency
plot comes from the following:

 () ()2
2

1log high frequency log log 2log− ∝ = ω = − ω ω 
 (2.24)

10-1 100 101

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
SDOF frequency response phases for zeta = 0.1 to 1.0 in steps of 0.1

frequency, rad/sec

m
ag

ni
tu

de

Figure 2.7: sdof phase versus frequency for different damping ratios.

© 2001 by Chapman & Hall/CRC

From Figure 2.7, note that at resonance (n 1.0 rad / secω =) the phase for all
values of damping is 90− . At low frequencies phase is approaching 0 and
at high frequencies it is approaching 180− .

2.3.4 MATLAB Code sdofxfer.m Description

The code uses the transfer function form shown in (2.14) to calculate the
complex quantity “xfer,” where s j= ω , using a vector of defined ω values.
Magnitude and phase of the complex value of the transfer function are then
plotted versus frequency.

2.3.5 MATLAB Code sdofxfer.m Listing

% sdofxfer.m plotting frequency responses of sdof model for different damping values

 clf;

 clear all;

% assign values for mass, percentage of critical damping, and stiffnesses
% zeta is a vector of damping values from 10% to 100% in steps of 10%

 m = 1;
 zeta = 0.1:0.1:1; % 0.1 = 10% of critical
 k = 1;

 wn = sqrt(k/m);

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10^-1 = 0.1 rad/sec, and 1 is
% 10^1 = 10 rad/sec. The 400 defines 400 frequency points.

 w = logspace(-1,1,400);

% pre-calculate the radians to degree conversion

 rad2deg = 180/pi;

% define s as the imaginary operator times the radian frequency vector

 s = j*w;

% define a for loop to cycle through all the damping values for calculating
% magnitude and phase

 for cnt = 1:length(zeta)

% define the frequency response to be evaluated

 xfer(cnt,:) = (1/m) ./ (s.^2 + 2*zeta(cnt)*wn*s + wn^2);

© 2001 by Chapman & Hall/CRC

% calculate the magnitude and phase of each frequency response

 mag(cnt,:) = abs(xfer(cnt,:));

 phs(cnt,:) = angle(xfer(cnt,:))*rad2deg;

 end

% define a for loop to cycle through all the damping values for plotting magnitude

 for cnt = 1:length(zeta)

 loglog(w,mag(cnt,:),'k-')
 title('SDOF frequency response magnitudes for zeta = 0.1 to 1.0 in steps of 0.1')
 xlabel('frequency, rad/sec')
 ylabel('magnitude')
 grid

 hold on

 end

 hold off

 grid on

 disp('execution paused to display figure, "enter" to continue'); pause

% define a for loop to cycle through all the damping values for plotting phase

 for cnt = 1:length(zeta)

 semilogx(w,phs(cnt,:),'k-')
 title('SDOF frequency response phases for zeta = 0.1 to 1.0 in steps of 0.1')
 xlabel('frequency, rad/sec')
 ylabel('magnitude')
 grid

 hold on

 end

 hold off

 grid on

 disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC

2.4 tdof Laplace Transform, Transfer Functions,
Characteristic Equation, Poles, Zeros

We now return to the original tdof model as shown in Figure 2.1. In order to
define transfer functions and understand poles and zeros of the system, we
need to transform from the time domain to the frequency domain. We do this
by taking Laplace transforms of the equations of motion.

2.4.1 Laplace Transforms with Zero Initial Conditions

Repeating (2.5) for the tdof system:

1 1 1 1 1

2 2 1 1 2 2 2

3 3 2 2 3

1 1 1 1

1 1 2 2 2 2

2 2 3 3

m 0 0 z c c 0 z
0 m 0 z c (c c) c z
0 0 m z 0 c c z

k k 0 z F
k (k k) k z F
0 k k z F

−       
       + − + −       
       −       

−     
     + − + − =     
     −     

 (2.25)

Taking Laplace transforms assuming initial conditions of zero, where
1 2, 3z , z z now represent the Laplace transforms of the original 1 2, 3z , z z :

2
1 1 1 1 1

2
2 2 1 1 2 2 2

2
3 3 2 2 3

1 1 1 1

1 1 2 2 2 2

2 2 3 3

m 0 0 s z c c 0 sz
0 m 0 s z c (c c) c sz
0 0 m s z 0 c c sz

k k 0 z F
k (k k) k z F
0 k k z F

  −     
      + − + −      
      −      

−     
     + − + − =     
     −     

 (2.26)

Rearranging:

2
1 1 1 1 1 1 1

2
1 1 2 1 2 1 2 2 2 2 2

2
2 2 3 2 2 3 3

(m s c s k) (c s k) 0 z F
(c s k) (m s c s c s k k) (c s k) z F

0 (c s k) (m s c s k) z F

 + + − −    
     − − + + + + − − =     
     − − + +     
 (2.27)

© 2001 by Chapman & Hall/CRC

2.4.2 Solving for Transfer Functions

In this section we solve for the nine possible transfer functions for all
combinations of degrees of freedom where force is applied and where
displacements are taken. Solving for the transfer functions for greater than a
2dof system is a task not to be taken lightly – symbolic algebra programs such
as Mathematica, Maple or the MATLAB Symbolic Toolbox should be used.

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

z z z
F F F
z z z
F F F
z z z
F F F

Table 2.3: Nine possible transfer functions for tdof system.

The results below were obtained by use of a symbolic algebra program.

() ()
() ()

4 3
2 3 3 1 3 2 2 21

2
1 1 2 2 2 3 1 3 2 1 2 2 1 1 2

s m m s m c m c m cz / Den
F s c c m k m k m k s c k c k k k

 + + + =  
+ + + + + + +  

 (2.28)

() () (){ }3 21
3 1 1 2 3 1 1 2 1 2 1 2

2

z s m c s c c m k s c k k c k k / Den
F

= + + + + + (2.29)

() (){ }21
1 2 1 2 2 1 1 2

3

z s c c s c k c k k k / Den
F

= + + + (2.30)

() () (){ }3 22
3 1 1 2 3 1 1 2 2 1 1 2

1

z s m c s c c m k s c k c k k k / Den
F

= + + + + + (2.31)

() ()
()

()

4 3
1 3 1 2 3 1

22
1 2 1 2 3 1

2
1 2 2 1 1 2

s m m s m c m c
z s m k c c m k / Den
F

s c k c k k k

 + +
  = + + + 
 + + +  

 (2.32)

() () (){ }3 32
1 2 1 2 1 2 1 2 2 1 1 2

3

z s m c s m k c c s c k c k k k / Den
F

= + + + + + (2.33)

© 2001 by Chapman & Hall/CRC

() (){ }23
1 2 1 2 2 1 1 2

1

z
s c c s c k c k k k / Den

F
= + + + (2.34)

() () (){ }3 23
1 2 1 2 1 2 1 2 2 1 1 2

2

z
s m c s m k c c s c k c k k k / Den

F
= + + + + + (2.35)

() ()
()

() ()

4 3
1 2 1 2 1 1 2 1

23
2 1 1 1 1 2 1 2

3
2 1 1 2 1 2

s m m s m c m c m c
z

s m k m k m k c c / Den
F

s c k c k k k

 + + +
  = + + + + 
 + + +  

 (2.36)

Where Den is:

4 3
1 2 3 2 3 1 1 3 1 1 2 2 1 3 2

2
1 3 1 1 3 2 1 2 2 2 1 2 3 1 2 1 1 2

2
1 2 3

3 1 2 2 2 1 1 2 1 1 1 2 3 2 1 2 1 2

1 1 2 2 1 2 3 1 2

s (m m m) s (m m c m m c m m c m m c)

s (m m k m m k m m k m c c m c c m c c
Den s k m m)

s (m c k m c k m c k m c k m c k m c k)
(m k k m k k m k k)

 + + + +
 

+ + + + + + 
 = + 
 + + + + + + 
 + + + 

 (2.37)

Note that all the transfer functions have the same denominator, Den, called the
characteristic equation.

To simplify the system for hand calculations, take:

1 2 3

1 2

1 2

m m m m
c c c
k k k

= = =
= =
= =

 (2.38)

()()2 4 3 2 2 21
11

1

zz m s 3mcs c 3mk s 2cks k / Den1
F

= = + + + + + (2.39)

()()3 2 2 21
12

2

zz mcs c mk s 2cks k / Den1
F

= = + + + + (2.40)

()2 2 21
13

3

zz c s 2cks k / Den1
F

= = + + (2.41)

© 2001 by Chapman & Hall/CRC

() ()()3 2 2 22
21

1

zz mcs c mk s 2ck s k / Den1
F

= = + + + + (2.42)

()()2 4 3 2 2 22
22

2

zz m s 2mcs 2mk c s 2cks k / Den1
F

= = + + + + + (2.43)

()()3 2 2 22
23

3

zz mcs c mk s 2cks k / Den1
F

= = + + + + (2.44)

()2 2 23
31

1

z
z c s 2cks k / Den1

F
= = + + (2.45)

()()3 2 2 23
32

2

z
z mcs c mk s 2cks k / Den1

F
= = + + + + (2.46)

()()2 4 3 2 2 23
33

3

z
z m s 3mcs c 3mk s 2cks k / Den1

F
= = + + + + + (2.47)

Where:

(){ }3 4 2 3 2 2 2 2 2Den1 m s 4m cs 4m k 3mc s 6mcks 3mk s= + + + + + (2.48)

To enable hand calculations of roots, simplify another level by making
damping equal to zero:

()2 4 2 21

1

z m s 3mks k / Den2
F

= + + (2.49)

()2 21

2

z mks k / Den2
F

= + (2.50)

21

3

z k / Den2
F

= (2.51)

()2 22

1

z mks k / Den2
F

= + (2.52)

© 2001 by Chapman & Hall/CRC

()2 4 2 22

2

z m s 2mks k / Den2
F

= + + (2.53)

()2 22

3

z mks k / Den2
F

= + (2.54)

23

1

z
k / Den2

F
= (2.55)

()2 23

2

z
mks k / Den2

F
= + (2.56)

()2 4 2 23

3

z
m s 3mks k / Den2

F
= + + (2.57)

()2 3 4 2 2 2Den2 s m s 4m ks 3mk= + + (2.58)

2.4.3 Transfer Function Matrix for Undamped Model

A more convenient method of arranging and keeping track of the various
transfer functions is to use a matrix form for the transfer function, called the
transfer function matrix:

11 12 13

21 22 23

31 32 33

z z z
z z z
z z z

 
 
 
  

 (2.59)

Where:

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

z z z z F
z z z z F
z z z z F

     
     =     
          

 (2.60)

The transfer function matrix can then be written for the undamped case as
follows, where each term of the numerator matrix is divided by the common
denominator:

© 2001 by Chapman & Hall/CRC

()

1

2

3

2 4 2 2 2 2 2

2 2 2 4 2 2 2 2

1
2 2 2 2 4 2 2

2
2 3 4 2 2 2

3

z
z
z

(m s 3mks k) (mks k) k
(mks k) (m s 2mks k) (mks k) F

k (mks k) (m s 3mks k) F
s m s 4m ks 3mk F

 
  = 
  

 + + +
 + + + +   

  + + +   
 + +  

 (2.61)

2.4.4 Four Distinct Transfer Functions

We will be dealing with only Single Input Single Output (SISO) systems until
Chapter 19, when a Multi Input Multi Output (MIMO) system is examined.
This means that we will be applying only a single force to the system at any
time, 1 2 3F , F or F ,and will only be taking the displacement of a single degree
of freedom, 1 2 3z , z or z .

Because there are three inputs and three outputs, there are nine possible SISO
transfer functions to investigate. However, because of the symmetry of the
system (zij = zji) there are only four distinct transfer functions. Expanding the
denominator into factors and simplifying:

 ()
2 4 2 2

1
2 3 4 2 2 2

1

z m s 3mks k
F s m s 4m ks 3mk

+ +=
+ +

 (2.62)

 ()
2 2

2
2 3 4 2 2 2

1

z (mks k)
F s m s 4m ks 3mk

+=
+ +

2

2 2 2 2

k(ms k)
s (ms k)(m s 3km)

+=
+ +

 2 2 2

k
s (m s 3km)

=
+

 (note cancelling of pole/zero) (2.63)

 ()
2

3
2 3 4 2 2 2

1

z k
F s m s 4m ks 3mk

=
+ +

 (2.64)

© 2001 by Chapman & Hall/CRC

 ()
2 4 2 2

2
2 3 4 2 2 2

2

z m s 2mks k
F s m s 4m ks 3mk

+ +=
+ +

 (2.65)

2.4.5 Poles

The poles, eigenvalues, or resonant frequencies, are the roots of the
characteristic equation. Poles show the frequencies where the system will
amplify inputs, and are a basic characteristic of the system. The poles are not
a function of which transfer function is used since all the transfer functions for
a given system have the same characteristic equation, as shown by the
common denominator of (2.61).

The poles for a system depend only on the distribution of mass, stiffness,
and damping throughout the system, not on where the forces are applied
or where displacements are measured.

Setting the characteristic equation equal to zero and solving for the roots
(poles):

 ()2 3 4 2 2 2s m s 4m ks 3mk 0+ + = (2.66)

 2s 0= is a double root at the origin 1,2s 0= (2.67)

Now taking the term in parentheses and setting equal to zero:

 () () ()3 4 2 2 2m s 4m k s 3mk 0+ + = (2.68)

Solving as a quadratic in s2:

()

1
2 4 2 4 2 2

2
3

4m k 16m k 12m k
s

2m

− ± −
=

()

1
2 4 2 2

3

4m k 4m k

2m

− ±
=

2 2 2

3 3

4m k 2m k 2m k
2m m

− ± −= =

© 2001 by Chapman & Hall/CRC

 2k 6k,
2m 2m
− −=

 k 3k,
m m
− −= (2.69)

 3,4
ks j j1
m

= ± = ± (2.70)

 5,6
3ks j j1.732
m

= ± = ± (2.71)

Because there is no damping, the poles all fall on the s-plane imaginary axis.

2.4.6 Zeros

The zeros of each SISO transfer function are defined by the roots of its
numerator. Zeros show the frequencies where the system will attenuate inputs.
Unlike the poles, which are a characteristic of the system and are the same for
every transfer function, zeros can be different for every transfer function and
some transfer functions may have no zeros. Chapter 4 will discuss one
physical interpretation of zeros, showing how to calculate the number of zeros
for various transfer functions for a series-connected lumped mass system.

Calculate the 1 1z / F zeros:

 2 4 2 2m s 3mks k 0+ + = (2.72)

()

1
2 2 2 2 2

2
2

3mk 9m k 4m k
s

2m

− ± −
=

 2

3mk 5mk 3k 5k
2m2m

− ± − ±= =

 () ()k 3 5 k k0.3820 , 2.618
m 2 m m

 − ±     = = − −             
 (2.73)

Taking the square root of the two values above gives two pair of complex
conjugate roots:

© 2001 by Chapman & Hall/CRC

 1,2
ks j0.618 j 0.618
m

= ± = ± (2.74)

 3,4
ks j1.618 j 1 .618
m

= ± = ± (2.75)

Calculate the 2 1z / F zeros:

 2 2mks k 0+ = (2.76)

2

2 k ks
mk m
− −= = (2.77)

 1,2
ks j j
m

= ± = ± (2.78)

Calculate the 3 1z / F zeros:

 2k 0= there are no zeros. (2.79)

Calculate the 2 2z / F zeros:

 2 4 2 2m s 2mks k 0+ + = (2.80)

()2 2 2 2

2
2

2mk 4m k 4m k
s

2m

− ± −
=

 2

2mk k 0
m2m

− −= = ± (2.81)

 1,2
ks j j
m

= ± = ± (2.82)

 3,4s j= ± (2.83)

As with the poles, since there is no damping in the system, all the zeros are
also on the imaginary axis.

© 2001 by Chapman & Hall/CRC

2.4.7 Summarizing Poles and Zeros, Matrix Format

(0.62, 1.62) j none
j (j, j) j

none j (0.62, 1.62)
(0 j)(1, 1.732) j

± ± ± 
 ± ± ± ± 
 ± ± ± 

± ± ±
 (2.84)

The 3x3 matrix of zero values for the 3x3 transfer function matrix is in the
numerator of (2.82) and the pole values are in the denominator.

2.5 MATLAB Code tdofpz3x3.m – Plot Poles and Zeros

2.5.1 Code Description

The program listing below uses the “num/den” form of the transfer function
and calculates and plots all nine pole/zero combinations for the nine different
transfer functions. It prompts for values of the two dampers, c1 and c2, where
the default values (hitting the “enter” key) are set to zero to match the hand-
calculated values in (2.82). The “transfer function” forms of the transfer
functions are then converted to “zpk - zero/pole/gain” form to enable graphical
construction of frequency response in the next chapter.

The values of the poles and zeros as well as the “zpk” forms of the transfer
functions are listed in the MATLAB command window.

Note that in most MATLAB code, the critical definitions and calculations take
only a few commands while plotting and annotating the plots take the bulk of
the space.

2.5.2 Code Listing

% tdofpz3x3.m plotting poles/zeros of tdof model, all 9 plots

 clf;

 clear all;

% using MATLAB's pzmap function with the "tf" form using num/den
% to define the numerator and denominator terms of the different
% transfer functionx

% assign values for masses, damping, and stiffnesses

 m1 = 1;
 m2 = 1;

© 2001 by Chapman & Hall/CRC

 m3 = 1;
 k1 = 1;
 k2 = 1;

% prompt for c1 and c2 values, set to zero to match closed form solution

 c1 = input('enter value for damper c1, default is zero, ... ');

 if isempty(c1)
 c1 = 0;
 end

 c2 = input('enter value for damper c2, default is zero, ... ');

 if isempty(c2)
 c2 = 0;
 end

% define row vectors of numerator and denominator coefficients

 den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ...
 (m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ...
 m1*c1*c2 + k1*m2*m3) ...
 (m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + …
 m3*c2*k1 + m2*c1*k2) ...
 (m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

 z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) (c1*c2 + m2*k2 +…

 m3*k1 + m3*k2) (c1*k2 + c2*k1) (k1*k2)];

 z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

 z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

 z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
 (c1*k2 + c2*k1) (k1*k2)];

% use the "tf" function to convert to define "transfer function" systems

 sysz11 = tf(z11num,den)

 sysz21 = tf(z21num,den)

 sysz31 = tf(z31num,den)

 sysz22 = tf(z22num,den)

% use the "zpk" function to convert from transfer function to zero/pole/gain form

 zpkz11 = zpk(sysz11)

 zpkz21 = zpk(sysz21)

 zpkz31 = zpk(sysz31)

© 2001 by Chapman & Hall/CRC

 zpkz22 = zpk(sysz22)

% use the "pzmap" function to map the poles and zeros of each transfer function

 [p11,z11] = pzmap(sysz11);

 [p21,z21] = pzmap(sysz21);

 [p31,z31] = pzmap(sysz31);

 [p22,z22] = pzmap(sysz22);

 p11

 z11

 z21

 z31

 z22

% plot z11 for later use

 subplot(1,1,1)
 plot(real(p11),imag(p11),'k*')
 hold on
 plot(real(z11),imag(z11),'ko')
 title('Poles and Zeros of z11')
 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 disp('execution paused to display figure, "enter" to continue'); pause

% plot all 9 plots on a 3x3 grid

 subplot(3,3,1)
 plot(real(p11),imag(p11),'k*')
 hold on
 plot(real(z11),imag(z11),'ko')
 title('Poles and Zeros of z11')
 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 subplot(3,3,2)
 plot(real(p21),imag(p21),'k*')
 hold on
 plot(real(z21),imag(z21),'ko')
 title('Poles and Zeros of z12')

© 2001 by Chapman & Hall/CRC

 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 subplot(3,3,3)
 plot(real(p31),imag(p31),'k*')
 hold on
 plot(real(z31),imag(z31),'ko')
 title('Poles and Zeros of z13')
 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 subplot(3,3,4)
 plot(real(p21),imag(p21),'k*')
 hold on
 plot(real(z21),imag(z21),'ko')
 title('Poles and Zeros of z21')
 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 subplot(3,3,5)
 plot(real(p22),imag(p22),'k*')
 hold on
 plot(real(z22),imag(z22),'ko')
 title('Poles and Zeros of z22')
 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 subplot(3,3,6)
 plot(real(p21),imag(p21),'k*')
 hold on
 plot(real(z21),imag(z21),'ko')
 title('Poles and Zeros of z23')
 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 subplot(3,3,7)
 plot(real(p31),imag(p31),'k*')
 hold on
 plot(real(z31),imag(z31),'ko')
 title('Poles and Zeros of z31')

© 2001 by Chapman & Hall/CRC

 xlabel('Real')
 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 subplot(3,3,8)
 plot(real(p21),imag(p21),'k*')
 hold on
 plot(real(z21),imag(z21),'ko')
 title('Poles and Zeros of z32')
 xlabel('Real')
 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 subplot(3,3,9)
 plot(real(p11),imag(p11),'k*')
 hold on
 plot(real(z11),imag(z11),'ko')
 title('Poles and Zeros of z33')
 xlabel('Real')
 ylabel('Imag')
 axis([-2 2 -2 2])
 axis('square')
 grid
 hold off

 disp('execution paused to display figure, "enter" to continue'); pause

% check for real axis values to set plot scale

 z11_realmax = max(abs(real(z11)));
 z21_realmax = max(abs(real(z21)));
 z31_realmax = max(abs(real(z31)));
 z22_realmax = max(abs(real(z22)));

 maxplot = max([z11_realmax z21_realmax z31_realmax z22_realmax]);

 if maxplot > 2

 maxplot = ceil(maxplot);

 else

 maxplot = 2.0;

end

 z11_realmax = max(abs(real(z11)));
 subplot(1,1,1)

© 2001 by Chapman & Hall/CRC

 plot(real(p11),imag(p11),'k*')
 hold on
 plot(real(z11),imag(z11),'ko')
 title('Poles and Zeros of z11, z33')
 ylabel('Imag')
 axis([-maxplot maxplot -maxplot maxplot])
 axis('square')
 grid
 hold off

 disp('execution paused to display figure, "enter" to continue'); pause

 plot(real(p21),imag(p21),'k*')
 hold on
 plot(real(z21),imag(z21),'ko')
 title('Poles and Zeros of z21, z12, z23, z32')
 ylabel('Imag')
 axis([-maxplot maxplot -maxplot maxplot])
 axis('square')
 grid
 hold off

 disp('execution paused to display figure, "enter" to continue'); pause

 plot(real(p31),imag(p31),'k*')
 hold on
 plot(real(z31),imag(z31),'ko')
 title('Poles and Zeros of z31, z13')
 xlabel('Real')
 ylabel('Imag')
 axis([-maxplot maxplot -maxplot maxplot])
 axis('square')
 grid
 hold off

 disp('execution paused to display figure, "enter" to continue'); pause

 plot(real(p22),imag(p22),'k*')
 hold on
 plot(real(z22),imag(z22),'ko')
 title('Poles and Zeros of z22')
 ylabel('Imag')
 axis([-maxplot maxplot -maxplot maxplot])
 axis('square')
 grid
 hold off

© 2001 by Chapman & Hall/CRC

2.5.3 Code Output – Pole/Zero Plots in Complex Plane

2.5.3.1 Undamped Model – Pole/Zero Plots

The pole/zero plot and pole/zero calculated values for c1 = c2 = 0 are shown
below. Poles are plotted as asterisks and zeros as circles.

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z11

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z12

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z13

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z21

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z22

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z23

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z31

Real

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z32

Real

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z33

Real

Im
ag

Figure 2.8: Pole/zero plots for nine transfer functions. Poles are indicated by asterisks and
zeros by circles.

The first thing to notice about the pole/zero plots is that they all have the same
poles. The rigid body mode (resonant frequency = 0 hz) is evident by the pair
of zeros at the origin, 0 j± . The zeros of each particular transfer function are
seen to be dependent upon which transfer function is taken. Note that with
zero damping, all the poles and zeros are on the imaginary axis, indicating that
the real portions of their complex values are zero and that there is no damping.

© 2001 by Chapman & Hall/CRC

In the next chapter we will discuss frequency responses of transfer functions
and will link the pole/zero locations in the complex plane to
amplification/attenuation regions of the frequency response plots.

The poles and zeros from the MATLAB output are listed below:

poles =

 0
 0
 0 + 1.7321i
 0 - 1.7321i
 0 + 1.0000i
 0 - 1.0000i

zeros_z11 =

 0 + 1.6180i
 0 - 1.6180i
 0 + 0.6180i
 0 - 0.6180i

zeros_z21 =

 0 + 1.0000i
 0 - 1.0000i

zeros_z31 =

 Empty matrix: 0-by-1

zeros_z22 =

 -0.0000 + 1.0000i
 -0.0000 - 1.0000i
 0.0000 + 1.0000i
 0.0000 - 1.0000i

Table 2.3: Poles and zeros of tdof transfer functions, undamped.

Repeating the matrix listing of pole/zero locations from previous analysis:

(0.62, 1.62) j none
j (j, j) j

none j (0.62, 1.62)
(0 j)(1, 1.732) j

± ± ± 
 ± ± ± ± 
 ± ± ± 

± ± ±
 (2.85)

© 2001 by Chapman & Hall/CRC

Note that MATLAB calculates an “Empty matrix 0 by 1” for the zeros of z31,
which matches our calculations which show “none.” Also note that several of
the plots, z12, z21, z22, z23 and z32, have zeros and poles overlaying each
other, where the pole cancels the effect of the zero. We will discuss this
cancellation further in the next chapter.

2.5.3.2 Damped Model – Pole/Zero Plots

If damping is not set to zero for c1 and/or c2, the poles (with the exception of
the two poles at the origin) and zeros will move from the imaginary axis to the
left hand side of the complex plane, with the real parts of the poles and zeros
having negative values. The pole/zero plot and MATLAB output listing
below are for values of c1 = c2 = 0.1, arbitrarily chosen to illustrate the
“damped” case.

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z11

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z12

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z13

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z21

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z22

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z23

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z31

Real

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z32

Real

Im
ag

-2 0 2
-2

-1

0

1

2
Poles and Zeros of z33

Real

Im
ag

Figure 2.9: Pole/zero plots for nine transfer functions for c1 = c2 = 0.1. Poles are indicated
by asterisks and zeros by circles. Negative real axis zeros not shown because of plot

scaling.

© 2001 by Chapman & Hall/CRC

The limited scale for the nine plots above do not show the real axis zeros, see
the figures below for the entire plot. The only poles/zeros that are on the
imaginary axis are the two poles at zero, the rigid body mode – which will be
described in detail in Chapter 3.

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10
Poles and Zeros of z11, z33

Im
ag

Figure 2.10: Expanded scale pole/zero plots for z11, z33 transfer functions – no real axis
zeros.

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10
Poles and Zeros of z21, z12, z23, z32

Im
ag

Figure 2.11: Expanded scale pole/zero plots for z21, z12, z23 and z32 transfer functions –
one real axis zero at -10.

© 2001 by Chapman & Hall/CRC

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10
Poles and Zeros of z31, z13

Real

Im
ag

Figure 2.12: Expanded scale pole/zero plots for z31 and z13 transfer functions – two real
axis zeros at -10.

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10
Poles and Zeros of z22

Im
ag

Figure 2.13: Expanded scale pole/zero plots for z31 and z13 transfer functions – no real
axis zeros.

The MATLAB calculated values for the poles and zeros for the damped case
are below:

© 2001 by Chapman & Hall/CRC

p11 =

 0
 0
 -0.1500 + 1.7255i
 -0.1500 - 1.7255i
 -0.0500 + 0.9987i
 -0.0500 - 0.9987i

z11 =

 -0.1309 + 1.6127i
 -0.1309 - 1.6127i
 -0.0191 + 0.6177i
 -0.0191 - 0.6177i

z21 =

 -10.0000
 -0.0500 + 0.9987i
 -0.0500 - 0.9987i

z31 =

 -10.0000 + 0.0000i
 -10.0000 - 0.0000i

z22 =

 -0.0500 + 0.9987i
 -0.0500 - 0.9987i
 -0.0500 + 0.9987i
-0.0500 - 0.9987i

Table 2.4: Poles and zeros of tdof transfer functions, damped.

Several observations can be made about the poles and zeros above. First, all
of the poles with the exception of the two rigid body poles p11 = 0 are to the
left of the imaginary axis, indicating that the system now has damping. Note
that there are several new zeros. The z21 transfer function now has a real zero
at –10.0 in addition to the two complex zeros. The z31 transfer function has
two zeros now at –10, whereas for the no damping case it had no zeros. These
extra zeros do not show up on Figure 2.9 because of plot axis scaling but with
the real axis expanded in Figures 2.10 to 2.13 they appear. The reason for
these “additional” zeros can be seen if we look at the z21 and z31 transfer
functions, repeated from (2.31) and (2.34):

© 2001 by Chapman & Hall/CRC

 () () (){ }3 22
3 1 1 2 3 1 1 2 2 1 1 2

1

z s m c s c c m k s c k c k k k / Den
F

= + + + + + (2.86)

() (){ }23
1 2 1 2 2 1 1 2

1

z
s c c s c k c k k k / Den

F
= + + + (2.87)

With values for c1 and c2 not equal to zero, the z21 transfer function is third
degree, meaning that it should have three roots. With damping equal to zero,
only two complex zeros are calculated by MATLAB and by hand. The third
root is located at −∞ . As damping values for c1 and c2 are increased the root
at −∞ moves to the right, towards the origin.

The z31 transfer function has no zeros with zero damping, but is second
degree and with infinitely small damping values has two roots at −∞ . As the
values of c1 and c2 increase, the two zeros at −∞ start moving toward the
origin.

2.5.3.3 Root Locus, tdofpz3x3_rlocus.m

In the last two sections we have discussed pole/zero plots for undamped and
damped models. For the damped model we chose values of 0.1 for c1 and c2.
It would be nice to have a systematic method to display poles and zeros for a
range of damping values. There is a MATLAB Control Toolbox function
“rlocus” which plots the root locus for an open-loop SISO system. We could
use this function if the damping values could be broken out of the system and
be treated as a feedback gain. Unfortunately for our tdof system this is not
possible, but we can still plot a locus by using a for-loop.

The code listed below, tdofpz3x3_rlocus.m, is taken from the initial section
of tdofpz3x3.m. A for-loop cycles through a vector of damping values,
calculating and plotting the poles and zeroes for each damping value.

 echo off
% tdofpz3x3_rlocus.m plotting locus of poles/zeros of z11 for tdof
% model for range of damping values.

 clf;

 clear all;

% assign values for masses, damping, and stiffnesses

 m1 = 1;
 m2 = 1;
 m3 = 1;

© 2001 by Chapman & Hall/CRC

 k1 = 1;
 k2 = 1;

% define vector of damping values for c1 and c2

 cvec = [0 .2 .4 .6 .8 1.0 1.1 1.05 1.1 1.15 1.16];

 for cnt = 1:length(cvec)

 c1 = cvec(cnt);

 c2 = cvec(cnt);

% define row vectors of numerator and denominator coefficients

 den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ...
 (m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ...
 m1*c1*c2 + k1*m2*m3) ...
 (m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + …

 m3*c2*k1 + m2*c1*k2) ...
 (m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

 z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) …

 (c1*c2 + m2*k2 + m3*k1 + m3*k2) .(c1*k2 + c2*k1) (k1*k2)];

 z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

 z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

 z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
 (c1*k2 + c2*k1) (k1*k2)];

% use the "tf" function to convert to define "transfer function" systems

 sysz11 = tf(z11num,den);

 sysz21 = tf(z21num,den);

 sysz31 = tf(z31num,den);

 sysz22 = tf(z22num,den);

% use the "pzmap" function to map the poles and zeros of each transfer function

 [p11,z11] = pzmap(sysz11);

 [p21,z21] = pzmap(sysz21);

 [p31,z31] = pzmap(sysz31);

 [p22,z22] = pzmap(sysz22);

% plot poles and zeros of z11

 subplot(1,1,1)

© 2001 by Chapman & Hall/CRC

 plot(real(p11),imag(p11),'k*')
 hold on
 plot(real(z11),imag(z11),'ko')
 title('Poles and Zeros of z11 for range of damping values c1 and c2')
 xlabel('Real')
 ylabel('Imag')
 axis([-3 1 -2 2])
 axis('square')
 grid on

 end

 hold off

The root locus plot below is for the following values of damping:

cvec = [0 .2 .4 .6 .8 1.0 1.1 1.05 1.1 1.15 1.16];

-3 -2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Poles and Zeros of z11 for range of damping values c1 and c2

Real

Im
ag

Figure 2.14: Pole zero plot for z11 transfer function.

The plot starts out with damping values of zero for c1 and c2. The poles and
zeros for zero damping are located on the imaginary axis. The poles are
located at 0, 0, 1j± , 1.732 j± . The zeros are located at 0.62 j± and 1.62 j± .
As damping is increased from zero, the poles and zeros (except the two poles
at the origin) start moving to the left, away from the imaginary axis. The poles
and zeros move at different rates as damping is increased. The poles at 1j±

© 2001 by Chapman & Hall/CRC

and zeros at 0.62 j± move to the left less than the poles at 1.732 j± and the
zeros at 1.62 j± . In fact, the two poles at 1.732 j± move so much that at
damping values of 1.16 the poles intercept the real axis and split. One moves
to the left and the other to the right along the real axis.

Plotting pole and zero locations as a function of system parameters was
introduced in 1949 (Evans 1949), as the Evans root locus technique. The
hand plotting originally used has been largely replaced with computer plotting
techniques as shown above or by using the “rlocus” function. However,
because the ability to hand sketch root loci is such a powerful tool, it is still
taught in beginning control theory courses (Franklin 1994).

2.5.3.4 Undamped and Damped Model – tf and zpk Forms

This section is included to start familiarizing the reader with the various forms
of transfer functions available with MATLAB and to prepare for issues in the
next chapter.

Table 2.6 shows the transfer function form of the four distinct transfer
functions for the tdof model for the undamped (c1 = c2 = 0) and damped
(c1 = c2 = 0.1) cases run earlier. The numerator and denominator are both
arranged in polynomial form. Table 2.7 shows the zpk form, where the
numerator and denominator are both arranged as products of the zeros and
poles with a gain term multiplying the numerator.

Note that the denominators of all the undamped transfer functions are the
same, as are the denominators of all the damped transfer functions. However,
the numerators are all different because of the different number of poles and
zeros for each transfer function. For instance the z31 undamped transfer
function has no zeros, only a gain term of 1.0, while the z11 undamped
transfer function has two sets of complex zeros.

In going from the undamped to damped case, we showed that extra zeros
appeared in the z21 and z31 transfer functions. It is easier to see where the
extra zeros originate using the zpk form than using the tf form. Comparing the
undamped and damped numerators of the z31 zpk transfer function form
shows the extra 2(s 10)+ term, from which the two real axis zeros arise. We
will use the zpk form of the transfer functions in the next chapter to calculate
frequency response at a specific frequency.

© 2001 by Chapman & Hall/CRC

z11 Undamped Transfer function: z11 Damped Transfer function:

 s^4 + 3 s^2 + 1 s^4 + 0.3 s^3 + 3.01 s^2 + 0.2 s + 1
------------------------ ---
s^6 + 4 s^4 + 3 s^2 s^6 + 0.4 s^5 + 4.03 s^4 + 0.6 s^3 + 3 s^2

z21 Undamped Transfer function: z21 Damped Transfer function:

 s^2 + 1 0.1 s^3 + 1.01 s^2 + 0.2 s + 1
------------------------ ---
s^6 + 4 s^4 + 3 s^2 s^6 + 0.4 s^5 + 4.03 s^4 + 0.6 s^3 + 3 s^2

z31 Undamped Transfer function: z31 Damped Transfer function:

 1 0.01 s^2 + 0.2 s + 1
------------------------ ---
s^6 + 4 s^4 + 3 s^2 s^6 + 0.4 s^5 + 4.03 s^4 + 0.6 s^3 + 3 s^2

z22 Undamped Transfer function: z22 Damped Transfer function:

 s^4 + 2 s^2 + 1 s^4 + 0.2 s^3 + 2.01 s^2 + 0.2 s + 1
------------------------ ---
s^6 + 4 s^4 + 3 s^2 s^6 + 0.4 s^5 + 4.03 s^4 + 0.6 s^3 + 3 s^2

Table 2.5: Transfer function (tf) form of undamped and damped tdof transfer functions.

z11 Undamped Zero/pole/gain: z11 Damped Zero/pole/gain:

(s^2 + 0.382) (s^2 + 2.618) (s^2 + 0.0382s + 0.382) (s^2 + 0.2618s + 2.618)
--------------------------------- --
 s^2 (s^2 + 1) (s^2 + 3) s^2 (s^2 + 0.1s + 1) (s^2 + 0.3s + 3)

z21 Undamped Zero/pole/gain: z21 Damped Zero/pole/gain:

 (s^2 + 1) 0.1 (s+10) (s^2 + 0.1s + 1)
--------------------------- -------------------------------------
s^2 (s^2 + 1) (s^2 + 3) s^2 (s^2 + 0.1s + 1) (s^2 + 0.3s + 3)

z31 Undamped Zero/pole/gain: z31 Damped Zero/pole/gain:

 1 0.01 (s+10)^2
--------------------------- --
s^2 (s^2 + 1) (s^2 + 3) s^2 (s^2 + 0.1s + 1) (s^2 + 0.3s + 3)

z22 Undamped Zero/pole/gain: z22 Damped Zero/pole/gain:

 (s^2 + 1)^2 (s^2 + 0.1s + 1)^2
---------------------------- --
s^2 (s^2 + 1) (s^2 + 3) s^2 (s^2 + 0.1s + 1) (s^2 + 0.3s + 3)

Table 2.6: Zero/Pole/Gain (zpk) for undamped and damped tdof transfer functions.

© 2001 by Chapman & Hall/CRC

Problems

m1 m2 m3 m4k1
k2 k3

k5

k4

z1

z2

z3

z4

k6

Figure P2.1: four dof system.

P2.1 Derive the global stiffness and mass matrices for the four dof system in
Figure P2.1.

m1 m2

k1 k2

c2

z1 z2F1 F2

c1

Figure P2.2: two dof problem.

P2.2 Derive the equations of motion in matrix form for the two dof model in
Figure P2.2. Check for signs of diagonal terms and symmetry of off-diagonal
terms.

P2.3 Solve for the four transfer functions for the two dof problem and define
the 2x2 transfer function matrix. Are the denominators of all four transfer
functions the same? How many unique transfer functions are there for this
problem?

P2.4 Set 1 2m m m 1= = = , 1 2k k k 1= = = and 1 2c c 0= = and solve for the
eigenvalues for the system. Solve for the zeros of the system and use the form

© 2001 by Chapman & Hall/CRC

shown in (2.84) to summarize the poles and zeros. Hand sketch the poles and
zeros in the s-plane.

P2.5 (MATLAB) Set 1 2m m m 1= = = , 1 2k k k 1= = = . Modify the
tdofpz3x3.m file to plot the poles and zeros of the undamped two dof system.
Identify the poles and zeros in the MATLAB output listing and compare with
the hand-calculated values.

P2.6 (MATLAB) Set 1 2m m m 1= = = , 1 2k k k 1= = = , add damping values
of 1 2c c 0.1= = and plot the poles and zeros in the s-plane. List the poles and
zeros from MATLAB and correlate the listed values with the plots. Are there
any real axis zeros? How do the real axis zero(s) change with different values
of 1c and 2c , where 1 2c c= .

© 2001 by Chapman & Hall/CRC

	Vibration Simulation Using MATLAB and ANSYS
	Table of Contents
	CHAPTER 2: TRANSFER FUNCTION ANALYSIS
	2.1 Introduction
	2.2 Deriving Matrix Equations of Motion
	2.2.1 Three Degree of Freedom (tdof) System, Identifying Components and Degrees of Freedom
	2.2.2 Defining the Stiffness, Damping and Mass Matrices
	2.2.3 Checks on Equations of Motion for Linear Mechanical Systems
	2.2.4 Six Degree of Freedom (6dof) Model – Stiffness Matrix
	2.2.5 Rotary Actuator Model – Stiffness and Mass Matrices

	2.3 Single Degree of Freedom (sdof) System Transfer Function and Frequency Response
	2.3.1 sdof System Definition, Equations of Motion
	2.3.2 Transfer Function
	2.3.3 Frequency Response
	2.3.4 MATLAB Code sdofxfer.m Description
	2.3.5 MATLAB Code sdofxfer.m Listing

	2.4 tdof Laplace Transform, Transfer Functions, Characteristic Equation, Poles, Zeros
	2.4.1 Laplace Transforms with Zero Initial Conditions
	2.4.2 Solving for Transfer Functions
	2.4.3 Transfer Function Matrix for Undamped Model
	2.4.4 Four Distinct Transfer Functions
	2.4.5 Poles
	2.4.6 Zeros
	2.4.7 Summarizing Poles and Zeros, Matrix Format

	2.5 MATLAB Code tdofpz3x3.m – Plot Poles and Zeros
	2.5.1 Code Description
	2.5.2 Code Listing
	2.5.3 Code Output – Pole/Zero Plots in Complex Plane
	2.5.3.1 Undamped Model – Pole/Zero Plots
	2.5.3.2 Damped Model – Pole/Zero Plots
	2.5.3.3 Root Locus, tdofpz3x3_rlocus.m
	2.5.3.4 Undamped and Damped Model – tf and zpk Forms

	Problems

