
CHAPTER 3 

SHEARING FORCE AND BENDING MOMENT 
DIAGRAMS 

Summary 

At any section in a beam carrying transverse loads the shearing force is defined as the 
algebraic sum of the forces taken on either side of the section. 

Similarly, the bending moment at any section is the algebraic sum of the moments of the 
forces about the section, again taken on either side. 

In order that the shearing-force and bending-moment values calculated on either side of 
the section shall have the same magnitude and sign, a convenient sign convention has to be 
adopted. This is shown in Figs. 3.1 and 3.2 (see page 42). 

Shearing-force (S.F.) and bending-moment (B.M.) diagrams show the variation of these 
quantities along the length of a beam for any fixed loading condition. 
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3.1. Shearing force and bending moment 

At every section in a beam carrying transverse loads there will be resultant forces on either 
side of the section which, for equilibrium, must be equal and opposite, and whose combined 
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42 Mechanics of Materials $3.1 

action tends to shear the section in one of the two ways shown in Fig. 3.la and b. The shearing 
force (S.F.) at the section is defined therefore as the algebraic sum of the forces taken on one side 
of the section. Which side is chosen is purely a matter of convenience but in order that the 
value obtained on both sides shall have the same magnitude and sign a convenient sign 
convention has to be adopted. 

3.1.1. Shearing force (S.F.) sign convention 

Forces upwards to the left of a section or downwards to the right of the section are positive. 
Thus Fig. 3.la shows a positive S.F. system at X-X and Fig. 3.lb shows a negative S.F. 
system. 

t X  A!'? 
( b )  Negative Ix 5.E 

723 IX  

( a )  Positive 5 F: 

Fig. 3.1. S.F. sign convention. 

In addition to the shear, every section of the beam will be subjected to bending, i.e. to a 
resultant B.M. which is the net effect of the moments of each of the individual loads. Again, 
for equilibrium, the values on either side of the section must have equal values. The bending 
moment (B.M.) is defined therefore as the algebraic sum of the moments of the forces about the 
section, taken on either side of the section. As for S.F., a convenient sign convention must be 
adopted. 

3.1.2. Bending moment (B.M.) sign convention 

Clockwise moments to the left and counterclockwise to the right are positive. Thus 
Fig. 3 . h  shows a positive bending moment system resulting in sagging of the beam at X-X 
and Fig. 3.2b illustrates a negative B.M. system with its associated hogging beam. 
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Fig. 3.2. B.M. sign convention. 

It should be noted that whilst the above sign conventions for S.F. and B.M. are somewhat 
arbitrary and could be completely reversed, the systems chosen here are the only ones which 
yield the mathematically correct signs for slopes and deflections of beams in subsequent work 
and therefore are highly recommended. 
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Diagrams which illustrate the variation in the B.M. and S.F. values along the length of a 
beam or structure for any fixed loading condition are termed B.M. and S.F. diagrams. They 
are therefore graphs of B.M. or S.F. values drawn on the beam as a base and they clearly 
illustrate in the early design stages the positions on the beam which are subjected to the 
greatest shear or bending stresses and hence which may require further consideration or 
strengthening. 

At this point it is imperative to note that there are two general forms of loading to which 
structures may be subjected, namely, concentrated and distributed loads. The former are 
assumed to act at a point and immediately introduce an oversimplification since all practical 
loading systems must be applied over a finite area. Nevertheless, for calculation purposes this 
area is assumed to be so small that the load can be justly assumed to act at a point. Distributed 
loads are assumed to act over part, or all, of the beam and in most cases are assumed to be 
equally or uniformly distributed; they are then termed uniformly distributed loads (u.d.1.). 
Occasionally, however, the distribution is not uniform but may vary linearly across the 
loaded portion or have some more complex distribution form. 

'X w x  k 

Fig. 3.3. S.F.-B.M. diagrams for standard cases. 

Thus in the case of a cantilever carrying a concentrated load Wat the end (Fig. 3.3), the S.F. 
at any section X-X, distance x from the free end, is S.F. = - W. This will be true whatever the 
value of x, and so the S.F. diagram becomes a rectangle. The B.M. at the same section X-X is 
- Wx and this will increase linearly with x. The B.M. diagram is therefore a triangle. 

If the cantilever now carries a uniformly distributed load, the S.F. at X-X is the net load to 
one side of X-X, i.e. -wx. In this case, therefore, the S.F. diagram becomes triangular, 
increasing to a maximum value of - W L  at the support. The B.M. at X-X is obtained by 
treating the load to the left of X-X as a concentrated load of the same value acting at the 
centre of gravity, 

i.e. 
X - wx2 

B.M. at X - X  = - w x  - = - __ 
2 2 

Plotted against x this produces the parabolic B.M. diagram shown. 

3.2. S.F. and B.M. diagrams for beams carrying concentrated loads only 

In order to illustrate the procedure to be adopted for the determination of S.F. and B.M. 
values for more complicated load conditions, consider the simply supported beam shown in 
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Fig. 3.4. 

Fig. 3.4 carrying concentrated loads only. (The term simply supported means that the beam 
can be assumed to rest on knife-edges or roller supports and is free to bend at the supports 
without any restraint.) 

The values of the reactions at the ends of the beam may be calculated by applying normal 
equilibrium conditions, i.e. by taking moments about F. 

Thus RA x 12 = (10 x 10) + (20 x 6) + (30 x 2) - (20 x 8) = 120 
RA = 10 kN 

For vertical equilibrium 
total force up = total load down 

RA+RF = 10+20+30-20 = 40 
R F =  3OkN 

At this stage it is advisable to check the value of RF by taking moments about A. 
Summing up the forces on either side of X-X we have the result shown in Fig. 3.5. Using 

the sign convention listed above, the shear force at X-X is therefore +20kN, Le. the 
resultant force at X-X tending to shear the beam is 20 kN. 
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Fig. 3.5. Total S.F. at X-X. 

X 

Similarly, Fig. 3.6 shows the summation of the moments of the forces at X-X, the resultant 
B.M. being 40 kNm. 

In practice only one side of the section is normally considered and the summations 
involved can often be completed by mental arithmetic. The complete S.F. and B.M. diagrams 
for the beam are shown in Fig. 3.7, and the B.M. values used to construct the diagram are 
derived on page 45. 
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R,x5=50 20x1, 30x5 

I 
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Fig. 3.6. Total B.M. at X-X. 

B.M. at A = o  
B.M. at B = + (10 x 2) = +20kNm 
B . M . a t C =  +(lOx4)-(1Ox2) = +20kNm 
B.M. at D = + ( l o x  6)+ (20 x 2)- (10 x 4) = +60kNm 
B.M. at E = + (30 x 2) = +60kNm 
B.M. at F = o  

All the above values have been calculated from the moments of the forces to the left of each 
section considered except for E where forces to the right of the section are taken. 

10 

Fig. 3.1. 

It may be observed at this stage that the S.F. diagram can be obtained very quickly when 
working from the left-hand side, since after plotting the S.F. value at the support all 
subsequent steps are in the direction of and equal in magnitude to the applied loads, e.g. 
10 kN up at A, down 10 kN at B, up 20 kN at C,  etc., with horizontal lines joining the steps to 
show that the S.F. remains constant between points of application of concentrated loads. 

The S.F. and B.M. values at the left-hand support are determined by considering a section 
an infinitely small distance to the right of the support. The only load to the left (and hence the 
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S.F.) is then the reaction of 10 kN upwards, Le. positive, and the bending moment = reaction 
x zero distance = zero. 

The following characteristics of the two diagrams are now evident and will be explained 
later in this chapter: 

(a) between B and C the S.F. is zero and the B.M. remains constant; 
(b) between A and B the S.F. is positive and the slope of the B.M. diagram is positive; vice 

(c) the difference in B.M. between A and B = 20 kN m = area of S.F. diagram between A 
versa between E and F; 

and B. 

3.3. S.F. and B.M. diagrams for uniformly distributed loads 

Consider now the simply supported beam shown in Fig. 3.8 carrying a u.d.1. w = 25 kN/m 
across the complete span. 

25 kN/rn 
A C D E F G  0 

RA R.2 
I ”  

150 

I50 

0.M. dmgrorn (kN rn) 
450 

Fig. 3.8. 

Here again it is necessary to evaluate the reactions, but in this case the problem is simplified 
by the symmetry of the beam. Each reaction will therefore take half the applied load, 

i.e. 
25 x 12 R A =  R s =  ~ - - 150 kN 

2 

The S.F. at A, using the usual sign convention, is therefore + 150kN. 

is, therefore, 
Consider now the beam divided into six equal parts 2 m long. The S.F. at any other point C 

150 - load downwards between A and C 
= 150 - (25 x 2) = + 100 kN 

The whole diagram may be constructed in this way, or much more quickly by noticing that 
the S.F. at A is + 150 kN and that between A and B the S.F. decreases uniformly, producing 
the required sloping straight line, shown in Fig. 3.7. Alternatively, the S.F. at A is + 150 kN 
and between A and B this decreases gradually by the amount of the applied load (Le. by 
25 x 12 = 300kN) to - 150kN at B. 
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When evaluating B.M.’s it is assumed that a u.d.1. can be replaced by a concentrated load of 
equal value acting at the middle of its spread. When taking moments about C ,  therefore, the 
portion of the u.d.1. between A and C has an effect equivalent to that of a concentrated load of 
25 x 2 = 50 kN acting the centre of AC, i.e. 1 m from C .  

B.M. at C = (RA x 2)- (50 x 1) = 300-50 = 250kNm 

Similarly, for moments at D the u.d.1. on AD can be replaced by a concentrated load of 

25 x 4 = 100 kN at the centre of AD, i.e. at C .  

B.M. at D = (R A x 4) - ( 100 x 2) = 600 - 200 = 400 kN m 

B.M. at E = (RA x 6)- (25 x 6)3 = 900-450 = 450kNm 

The B.M. diagram will be symmetrical about the beam centre line; therefore the values of 
B.M. at F and G will be the same as those at D and C respectively. The final diagram is 
therefore as shown in Fig. 3.8 and is parabolic. 

Point (a) of the summary is clearly illustrated here, since the B.M. is a maximum when the 
S.F. is zero. Again, the reason for this will be shown later. 

Similarly, 

3.4. S.F. and B.M. diagrams for combined concentrated and 
uniformly distributed loads 

Consider the beam shown in Fig. 3.9 loaded with a combination of concentrated loads and 
u.d.1.s. 
Taking moments about E 

(RA x 8) + (40 x 2) = (10 x 2 x 7) + (20 x 6) + (20 x 3) + (10 x 1) + (20 x 3 x 1.5) 
8RA + 80 = 420 

R A = 42.5 kN ( = S.F. at A )  
Now RA+RE = (10 x 2)+20+20 + 10+ (20 x 3)+40 = 170 

RE = 127.5 kN 

Working from the left-hand support it is now possible to construct the S.F. diagram, as 
indicated previously, by following the direction arrows of the loads. In the case of the u.d.l.’s 
the S.F. diagram will decrease gradually by the amount of the total load until the end of the 
u.d.1. or the next concentrated load is reached. Where there is no u.d.1. the S.F. diagram 
remains horizontal between load points. 

In order to plot the B.M. diagram the following values must be determined: 

B.M. at A = o  
B.M. at B = 

B.M. at C = 

B.M. at D = 

B.M. at E = 

B.M. at F = o  

(42.5 x 2) - (10 x 2 x 1) = 85 - 20 
(42.5 x 5 )  - (10 x 2 x 4) - (20 x 3) = 212.5 - 80 - 60 
(42.5 x 7) - (10 x 2 x 6 )  - (20 x 5 )  - (20 x 2) 

( -  40 x 2) working from r.h.s. 

= 65kNm 
= 72.5 kNm 

- (20 x 2 x 1) = 297.5- 120- 100 -40-40 = 297.5 - 300 = -2.5 kNm 
= -80kNm 
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Fig. 3.9. 

For complete accuracy one or two intermediate values should be obtained along each u.d.1. 
portion of the beam, 

e.g. B.M. midway between A and B = (42.5 x 1) - (10 x 1 x $) 
= 42.5 - 5 = 37.5 kNm 

Similarly, B.M. midway between C and D = 45 kN m 
B.M. midway between D and E = - 39 kN m 

The B.M. and S.F. diagrams are then as shown in Fig. 3.9. 

3.5. Points of contraflexure 

A point of contraflexure is a point where the curvature of the beam changes sign. It is 
sometimes referred to as a point ofinflexion and will be shown later to occur at the point, or 
points, on the beam where the B.M. is zero. 

For the beam of Fig. 3.9, therefore, it is evident from the B.M. diagram that this point lies 
somewhere between C and D (B.M. at C is positive, B.M. at D is negative). If the required 
point is a distance x from C then at that point 

20x2 
B.M. = (42.5)(5+~)-(10 x 2 ) ( 4 + ~ ) - 2 0 ( 3 + ~ ) - 2 0 ~ - -  2 

= 212.5 + 4 2 . 5 ~  - 80 - 2 0 ~  - 60 - 2 0 ~  - 2 0 ~  - lox2 
= 72.5 - 1 7 . 5 ~  - lox2 

Thus the B.M. is zero where 

i.e. where 
0 = 72.5 - 1 7 . 5 ~  - lox2 
x = 1.96 or -3.7 
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Since the last answer can be ignored (being outside the beam), the point of contraflexure 
must be situated at 1.96m to the right of C .  

3.6. Relationship between shear force Q, bending moment M and 
intensity of loading w 

Consider the beam AB shown in Fig. 3.10 carrying a uniform loading intensity (uniformly 
distributed load) of w kN/m. By symmetry, each reaction takes half the total load, i.e., wL/2 .  

A 0 

- W L  EL 
2 2 

Fig. 3.10. 

The B.M. at any point C,  distance x from A,  is given by 

W L  X 
M = - x - ( w x ) -  

2 2 

i.e. M = ~ W L X  -3.1.’ 

Differentiating, 
d M  
dx 

- - = + w L - w x  

Now S.F. at C = 4 w L  - wx = Q (3.1) 
d M  
dx 
-- . .  - Q  

Differentiating eqn. (3.1), 
9- - - w  
dx (3.3) 

These relationships are the basis of the rules stated in the summary, the proofs of which are as 
follows: 

(a) The maximum or minimum B.M. occurs where d M / d x  = 0 

But 
d M  
dx 

- - - -=Q 

Thus where S.F. is zero B.M. is a maximum or minimum. 

(b) The slope of the B.M. diagram = d M / d x  = Q. 
Thus where Q = 0 the slope of the B.M. diagram is zero, and the B.M. is therefore constant. 

(c) Also, since Q represents the slope of the B.M. diagram, it follows that where the S.F. is 
positive the slope of the B.M. diagram is positive, and where the S.F. is negative the slope of 
the B.M. diagram is also negative. 

(d) The area of the S.F. diagram between any two points, from basic calculus, is 
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dM

dx
But = Q or

i.e. the B.M. change between any two points is the area of the S.F. diagram between these

points.
This often provides a very quick method of obtaining the B.M. diagram once the S.F.

diagram has been drawn.
(e) With the chosen sign convention, when the B.M. is positive the beam is sagging and

when it is negative the beam is hogging. Thus when the curvature of the beam changes from
sagging to hogging, as at x-x in Fig. 3.11, or vice versa, the B.M. changes sign, i.e. becomes
instantaneously zero. This is termed a point of inflexion or contra flexure. Thus a point of
contra flexure occurs where the B.M. is zero.

x

x

Fig. 3.11. Beam with point of contraflexure at X -X .

3.7. S.F. and B.M. diagrams for an applied couple or moment

In general there are two ways in which the couple or moment can be applied: (a) with
horizontal loads and (b) with vertical loads, and the method of solution is different for each.

Type (a): couple or moment applied with horizontal loads

Consider the beam AB shown in Fig. 3.12 to which a moment F.d is applied by means of
horizontal loads at a point C, distance a from A.

Fig. 3.12.
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Since this will tend to lift the beam at A, R ,  acts downwards. 

Moments about B: 

and for vertical equilibrium 

The S.F. diagram can now 
shear. 

R ,  x L = Fd 

Fd 
R ,  = - 

L 

R = R  =- Fd 
L3 , L  

be drawn as the horizontal loads have no effect on the vertical 

The B.M. at any section between A and C is 

- Fd 
L 

Thus the value of the B.M. increases linearly from zero at A to - a at C. 

Similarly, the B.M. at any section between C and B is 

Fd 
L 

M = - R , x + F d =  R & = - x '  

Fd 
L 

i.e. the value of the B.M. again increases linearly from zero at B to - b at C. The B.M. 

diagram is therefore as shown in Fig. 3.12. 

Type (b): moment applied with vertical loads 

Consider the beam AB shown in Fig. 3.13; taking moments about B: 
R , L  = F ( d + b )  

F ( d + b )  
L 

R ,  = ____ . .  

Similarly, F ( a - d )  
L 

R , = - - -  

The S.F. diagram can therefore be drawn as in Fig. 3.13 and it will be observed that in this 

For the B.M. diagram an equivalent system is used. The offset load F is replaced by a 
case F does affect the diagram. 

moment and a force acting at C, as shown in Fig. 3.13. Thus 

B.M. between A and C = R,x 

X 
F ( d + b )  

L 
=--- 

a at C .  i.e. increasing linearly from zero to ~ 

F ( d + b )  
L 
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F 

a d b  

------- ----- ------- ----- f ‘Fd 7 
I S F diagram I 

Fig. 3.13. 

Similarly, 
B.M. between C and B = R,x’ 

F ( a - d )  
L 

X’ - -- 

F ( a - d )  
L i.e. increasing linearly from zero to ____ b at C. 

The difference in values at C is equal to the applied moment Fd, as with type (a). 
Consider now the beam shown in Fig. 3.14 carrying concentrated loads in addition to the 

applied moment of 30 kN m (which can be assumed to be of type (a) unless otherwise stated). 
The principle of superposition states that the total effect of the combined loads will be the 
same as the algebraic sum of the effects of the separate loadings, i.e. the final diagram will be 
the combination of the separate diagrams representing applied moment and those 
representing concentrated loads. The final diagrams are therefore as shown shaded, all values 
quoted being measured from the normal base line of each diagram. In each case, however, the 
applied-moment diagrams have been inverted so that the negative areas can easily be 
subtracted. Final values are now measured from the dotted lines: e.g. the S.F. and B.M. at any 
point G are as indicated in Fig. 3.14. 

3.8. S.F. and B.M. diagrams for inclined loads 

If a beam is subjected to inclined loads as shown in Fig. 3.15 each of the loads must be 
resolved into its vertical and horizontal components as indicated. The vertical components 
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-56 7 

1 Final B M., 

Fig. 3.14 

1 I I I 
H2=T t T2 

53 

Fig. 3.15. S.F., B.M. and thrust diagrams for system of inclined loads. 
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yield the values of the vertical reactions at the supports and hence the S.F. and B.M. diagrams 
are obtained as described in the preceding sections. In addition, however, there must be a 
horizontal constraint applied to the beam at one or both reactions to bring the horizontal 
components of the applied loads into equilibrium. Thus there will be a horizontal force or 
thrust diagram for the beam which indicates the axial load carried by the beam at any point. If 
the constraint is assumed to be applied at the right-hand end the thrust diagram will be as 
indicated. 

3.9. Graphical construction of S.F. and B.M. diagrams 

Consider the simply supported beam shown in Fig. 3.16 carrying three concentrated loads 
of different values. The procedure to be followed for graphical construction of the S.F. and 
B.M. diagrams is as follows. 

Y 

X 

Fig. 3.16. Graphical construction of S.F. and B.M. diagrams. 

(a) Letter the spaces between the loads and reactions A, B, C, D and E. Each force can then be 
denoted by the letters of the spaces on either side of it. 

(b) To one side of the beam diagram construct a force vector diagram for the applied loads, 
i.e. set off a vertical distance ab to represent, in magnitude and direction, the force W, 
dividing spaces A and B to some scale, bc to represent W, and cd to represent W , .  

(c) Select any point 0, known as a pole point, and join Oa, Ob, Oc and Od. 
(d) Drop verticals from all loads and reactions. 
(e) Select any point X on the vertical through reaction R ,  and from this point draw a line in 

space A parallel to Oa to cut the vertical through W ,  in a,. In space B draw a line from a, 
parallel to ob, continue in space C parallel to Oc, and finally in space D parallel to Od to cut 
the vertical through Rz in Y: 
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(f) Join XY and through the pole point 0 draw a line parallel to XY to cut the force vector 
diagram in e. The distance ea then represents the value of the reaction R1 in magnitude 
and direction and de represents R2. 

(g) Draw a horizontal line through e to cut the vertical projections from the loading points 
and to act as the base line for the S.F. diagram. Horizontal lines from a in gap A, b in gap 
B, c in gap C, etc., produce the required S.F. diagram to the same scale as the original force 
vector diagram. 

(h) The diagram Xa,b,c,Y is the B.M. diagram for the beam, vertical distances from the 
inclined base line XY giving the bending moment at any required point to a certain scale. 

If the original beam diagram is drawn to a scale 1 cm = L metres (say), the force vector 
diagram scale is 1 cm = Wnewton, and, if the horizontal distance from the pole point 0 to the 
vector diagram is k cm, then the scale of the B.M. diagram is 

1 cm = kL Wnewton metre 

The above procedure applies for beams carrying concentrated loads only, but an 
approximate solution is obtained in a similar way for u.d.1.s. by considering the load divided 
into a convenient number of concentrated loads acting at the centres of gravity of the 
divisions chosen. 

3.10. S.F. and B.M. diagrams for beams carrying distributed loads of 
increasing value 

For beams which carry distributed loads of varying intensity as in Fig. 3.18 a solution can 
be obtained from eqn. (3.3) provided that the loading variation can be expressed in terms of 
the distance x along the beam span, i.e. as a function of x .  

Integrating once yields the shear force Q in terms of a constant of integration A since 

dM 
- = Q  dx 

Integration again yields an expression for the B.M. M in terms of A and a second constant of 
integration B. Known conditions of B.M. or S.F., usually at the supports or ends of the beam, 
yield the values of the constants and hence the required distributions of S.F. and B.M. A 
typical example of this type has been evaluated on page 57. 

3.11. S.F. at points of application of concentrated loads 

In the preceding sections it has been assumed that concentrated loads can be applied 
precisely at a point so that S.F. diagrams are shown to change value suddenly from one value 
to another, and sometimes one sign to another, at the loading points. It would appear from 
the S.F. diagrams drawn previously, therefore, that two possible values of S.F. exist at any one 
loading point and this is obviously not the case. In practice, loads can only be applied over 
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finite areas and the S.F. must change gradually from one value to another across these areas. 
The vertical line portions of the S.F. diagrams are thus highly idealised versions of what 
actually occurs in practice and should be replaced more accurately by lines slightly inclined to 
the vertical. All sharp corners of the diagrams should also be rounded. Despite these minor 
inaccuracies, B.M. and S.F. diagrams remain a highly convenient, powerful and useful 
representation of beam loading conditions for design purposes. 

Examples 

Example 3.1 

Draw the S.F. and B.M. diagrams for the beam loaded as shown in Fig. 3.17, and determine 
(a) the position and magnitude of the maximum B.M., and (b) the position of any point of 
contraflexure. 

L I S.F. Diagram 

/ + \ 

Fig. 3.17. 

Solution 

Taking the moments about A, 

5 R B =  (5 x 1)+(7  x 4)+(2 x 6)+(4 x 5) x 2.5 

. .  5+28+12+50 = 19kN 
5 

R, = 
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and since R , + R , =  5 + 7 + 2 + ( 4 ~ 5 ) =  34 
R A = 3 4 - 1 9 = 1 5 k N  

The S.F. diagram may now be constructed as described in 43.4 and is shown in Fig. 3.17. 

Calculation of bending moments 

B.M. at A and C = 0 
B.M. at B 
B.M. at D 
B.M. at E 

= - 2 x  1 = -2kNm 
= - ( 2 ~ 2 ) + ( 1 9 ~ 1 ) - ( 4 x l x i ) =  +13kNm 
= + ( 1 5 ~ 1 ) - ( 4 x l x ~ ) =  +13kNm 

The maximum B.M. will be given by the point (or points) at which dM/dx  (Le. the shear 
force) is zero. By inspection of the S.F. diagram this occurs midway between D and E, i.e. at 
1.5 m from E. 

B.M. at this point = (2.5 x 15) - (5 x 1.5) - 4 x 2.5 x - ( 25) 
= + 17.5 k N m  

There will also be local maxima at the other points where the S.F. diagram crosses its zero 
axis, i.e. at point B. 

Owing to the presence of the concentrated loads (reactions) at these positions, however, 
these will appear as discontinuities in the diagram; there will not be a smooth contour change. 
The value of the B.M.s at these points should be checked since the position of maximum 
stress in the beam depends upon the numerical maximum value of the B.M.; this does not 
necessarily occur at the mathematical maximum obtained above. 

The B.M. diagram is therefore as shown in Fig. 3.17. Alternatively, the B.M. at any point 
between D and E at a distance of x from A will be given by 

4 2  
2 M,,=  1 5 ~ - 5 ( ~ - 1 ) - - =  1Ox+5-2x2 

dM 
dx 

The maximum B.M. position is then given where - = 0. 

x = 2.5m 

i.e. 1.5m from E, as found previously. 

(b) Since the B.M. diagram only crosses the zero axis once there is only one point of 
contraflexure, i.e. between B and D. Then, B.M. at distance y from C will be given by 

M y ,  = - 2y + 19(y - 1) - 4(y - 1 ) i  ( y  - 1) 
= - 2 ~ ~ + 1 9 y - 1 9 - 2 ~ ~ + 4 ~ - 2  = O  

The point of contraflexure occurs where B.M. = 0, i.e. where M y ,  = 0, 

. .  0 = -2yz+21y-21 



58 Mechanics of Materials 

i.e. 2y2-21y+21 = 0 

Then 
21 & J(212 - 4 x 2 x 21) 

= 1.12m 
4 Y =  

i.e. point of contraflexure occurs 0.12 m to the left of B. 

Example 3.2 

A beam ABC is 9 m long and supported at B and C, 6 m apart as shown in Fig. 3.18. The 
beam carries a triangular distribution of load over the portion BC together with an applied 
counterclockwise couple of moment 80 kN m at Band a u.d.1. of 10 kN/m over AB, as shown. 
Draw the S.F. and B.M. diagrams for the beam. 

48 kN/m 

I 

I -125 

Fig. 3.18. 

Solution 

Taking moments about B, 

(R, x 6) + (10 x 3 x 1.5) + 80 = (4 x 6 x 48) x 4 x 6 
6R,+45+80 = 288 

R, = 27.2 kN 
and R,+ R, = (10 x 3)+(4 x 6 x 48) 

= 30+ 144 = 174 
. .  R, = 146.8 kN 
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At any distance x from C between C and B the shear force is given by 

S.F.,, = - $WX + R, 

w 48 
x 6  

and by proportions - = - = a  

i.e. 
. .  

w = 8x kN/m 
S.F.,, = - (R,-* x 8~ x X) 

= -R,+4x2 
= -27.2+4x2 

The S.F. diagram is then as shown in Fig. 3.18. 

Also 
X 

B.M.,, = - (4 WX)- + R,x 
3 

4x3 
= 2 7 . 2 ~  -_ 

3 

For a maximum value, 

i.e.,where 
or 

d (B.M.) -- - S.F. = 0 
d X  

4x2 = 27.2 
x = 2.61 m from C 

4 
3 

B.M.,,, = 27.2(2.61) - -(2.61y 

= 47.3kNm 
B.M. at A and C = 0 

B.M. immediately to left of B = - (10 x 3 x 1.5) = -45 kNm 

At the point of application of the applied moment there will be a sudden change in B.M. of 
80 kN m. (There will be no such discontinuity in the S.F. diagram; the effect of the moment 
will merely be reflected in the values calculated for the reactions.) 

The B.M. diagram is therefore as shown in Fig. 3.18. 

Problems 

3.1 (A). A beam AB, 1.2m long, is simply-supported at its ends A and Band carries two concentrated loads, one 
of 10 kN at C, the other 15 kN at D. Point C is 0.4m from A, point D is 1 m from A. Draw the S.F. and B.M. diagrams 
for the beam inserting principal values. C9.17, -0.83, -15.83kN 3.67, 3.17kNm.l 
3.2 (A). The beam of question 3.1 carries an additional load of 5 kN upwards at point E, 0.6m from A. Draw the 

S.F. and B.M. diagrams for the modified loading. What is the maximum B.M.? 
C6.67, -3.33, 1.67, -13.33kN,2.67, 2,2.67kNm.] 

3.3 (A). A cantilever beam AB, 2.5 m long is rigidly built in at A and carries vertical concentrated loads of 8 kN at 

[-8, -20kN; -11.2, -31.2kNm.l 
B and 12 kN at C, 1 m from A. Draw S.F. and B.M. diagrams for the beam inserting principal values. 
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3.4 (A). A beam AB, 5 m long, is simply-supported at the end B and at a point C, 1 m from A. It carries vertical 
loads of 5 kN at A and 20kN at D, the centre of the span BC. Draw S.F. and B.M. diagrams for the beam inserting 
principal values. [ - 5 ,  11.25, -8.75kN; - 5 ,  17.5kNm.l 

3.5 (A). A beam AB, 3 m long, is simply-supported at A and E. It carries a 16 kN concentrated load at C, 1.2 m 
from A, and a u.d.1. of 5 kN/m over the remainder of the beam. Draw the S.F. and B.M. diagrams and determine the 
value of the maximum B.M. [12.3, -3.7, -12.7kN; 14.8kNm.] 

3.6 (A). A simply supported beam has a span of 4m and carries a uniformly distributed load of 60 kN/m together 
with a central concentrated load of 40kN. Draw the S.F. and B.M. diagrams for the beam and hence determine the 
maximum B.M. acting on the beam. [S.F. 140, k20, -140kN; B.M.0,  160,OkNm.l 
3.7 (A). A 2 m long cantilever is built-in at the right-hand end and carries a load of 40 kN at the free end. In order 

to restrict the deflection of the cantilever within reasonable limits an upward load of 10 kN is applied at mid-span. 
Construct the S.F. and B.M. diagrams for the cantilever and hence determine the values of the reaction force and 
moment at the support. [30 kN, 70 kN m.] 

3.8 (A). A beam 4.2m long overhangs each of two simple supports by 0.6m. The beam carries a uniformly 
distributed load of 30 kN/m between supports together with concentrated loads of 20 kN and 30 kN at the two ends. 
Sketch the S.F. and B.M. diagrams for the beam and hence determine the position of any points of contraflexure. 

[S.F. -20, +43, -47, + 3 0 k N  B.M. - 12, 18.75, - 18kNm; 0.313 and 2.553111 from 1.h. support.] 

3.9 (A/B). A beam ABCDE, with A on the left, is 7 m long and is simply supported at Band E. The lengths of the 
various portions are AB = 1.5 m, BC = 1.5 m, C D  = 1 m and DE = 3 m. There is a uniformly distributed load of 
15 kN/m between Band a point 2m to the right of B and concentrated loads of 20 kN act at A and D with one of 
50 kN at C. 

(a) Draw the S.F. diagrams and hence determine the position from A at which the S.F. is zero. 
(b) Determine the value of the B.M. at this point. 
(c) Sketch the B.M. diagram approximately to scale, quoting the principal values. 

[3.32m;69.8kNm;O, -30,69.1, 68.1,OkNm.l 

3.10 (A/B). A beam ABCDE is simply supported at A and D.  It carries the following loading: a distributed load of 
30 kN/m between A and B a concentrated load of 20 kN at B; a concentrated load of 20 kN at C; aconcentrated load 
of 10 kN at E; a distributed load of 60 kN/m between D and E. Span AB = 1.5 m, BC = CD = DE = 1 m. Calculate 
the value of the reactions at A and D and hence draw the S.F. and B.M. diagrams. What are the magnitude and 
position of the maximum B.M. on the beam? C41.1, 113.9kN; 28.15kNm; 1.37m from A.] 

3.11 (B). A beam, 12m long, is to be simply supported at 2m from each end and to carry a u.d.1. of 30kN/m 
together with a 30 kN point load at the right-hand end. For ease of transportation the beam is to be jointed in two 
places, one joint being situated 5 m from the left-hand end. What load (to the nearest kN) must be applied to the left- 
hand end to ensure that there is no B.M. at the joint (Le. the joint is to be a point ofcontraflexure)? What will then be 
the best position on the beam for the other joint? Determine the position and magnitude of the maximum B.M. 
present on the beam. [ 114 kN, 1.6 m from r.h. reaction; 4.7 m from 1.h. reaction; 43.35 kN m.] 

3.12 (B). A horizontal beam AB is 4 m long and of constant flexural rigidity. It is rigidly built-in at  the left-hand 
end A and simply supported on a non-yielding support at the right-hand end E.  The beam carries uniformly 
distributed vertical loading of 18 kN/m over its whole length, together with a vertical downward load of lOkN at 
2.5 m from the end A. Sketch the S.F. and B.M. diagrams for the beam, indicating all main values. 

[I. Struct. E.] [S.F. 45, -10, -37.6kN; B.M. -18.6, +36.15kNm.] 

3.13 (B). A beam ABC, 6 m long, is simply-supported at the left-hand end A and at B 1 m from the right-hand end 
C. The beam is of weight 100N/metre run. 

(a) Determine the reactions at A and 8. 
(b) Construct to scales of 20 mm = 1 m and 20 mm = 100 N, the shearing-force diagram for the beam, indicating 

(c) Determine the magnitude and position of the maximum bending moment. (You may, if you so wish, deduce 

[C.G.] [240N, 360N, 288Nm, 2.4m from A.] 

3.14 (B). A beam ABCD, 6 m long, is simply-supported at the right-hand end D and at a point B lm from the left- 
hand end A. It carries a vertical load of 10 kN at A, a second concentrated load of 20 kN at C, 3 m from D, and a 
uniformly distributed load of 10 kN/m between C and D. Determine: 

thereon the principal values. 

the answers from the shearing force diagram without constructing a full or partial bending-moment diagram.) 

(a) the values of the reactions at B and D, 
(b) the position and magnitude of the maximum bending moment. 

[33 kN, 27 kN, 2.7 m from D, 36.45 k Nm.] 

3.15 (B). Abeam ABCDissimplysupportedat BandCwith AB = CD = 2m;BC = 4m.Itcarriesapointloadof 
60 kN at the free end A, a uniformly distributed load of 60 kN/m between Band C and an anticlockwise moment of 
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80 kN m in the plane of the beam applied at the free end D. Sketch and dimension the S.F. and B.M. diagrams, and 
determine the position and magnitude of the maximum bending moment. 

[E.I.E.] [S.F. -60, +170, -7OkN;B.M. -120, +120.1, +80kNm; 120.1kNmat 2.83m torightofB.1 

3.16 (B). A beam ABCDE is 4.6m in length and loaded as shown in Fig. 3.19. Draw the S.F. and B.M. diagrams 
for the beam, indicating all major values. 

[I.E.I.] [S.F. 28.27, 7.06, - 12.94, -30.94, + 18, 0 B.M. 28.27, 7.06, 15.53, - 10.8.1 

E 

Fig. 3.19 

3.17 (B). A simply supported beam has a span of 6m and carries a distributed load which varies in a linear 
manner from 30 kN/m at one support to 90 kN/m at the other support. Locate the point of maximum bending 
moment and calculate the value of this maximum. Sketch the S.F. and B.M. diagrams. 

[U.L.] C3.25 m from 1.h. end; 272 kN m.] 

3.18 (B). Obtain the relationship between the bending moment, shearing force, and intensity of loading of a 
laterally loaded beam. A simply supported beam of span L carries a distributed load of intensity kx2/L2, where x is 
measured from one support towards the other. Determine: (a) the location and magnitude of the greatest bending 
moment, (b) the support reactions. [U. Birm.] C0.0394 kL2 at 0.63 of span; kL/12 and kL/4.] 

3.19 (B). A beam ABC is continuous over two spans. It is built-in at A, supported on rollers at B and C and 
contains a hinge at the centre of the span AB. The loading consists of a uniformly distributed load of total weight 
20 kN on the 7 m span AB and a concentrated load of 30 kN at the centre of the 3 m span BC. Sketch the S.F. and 
B.M. diagrams, indicating the magnitudes of all important values. 

[I.E.I.] [S.F. 5 ,  -15, 26.67, -3.33kN; B.M.4.38, -35, +5kNm.] 

3.20 (B). A log of wood 225 mm square cross-section and 5 m in length is rendered impervious to water and floats 
in a horizontal position in fresh water. It is loaded at the centre with a load just sufficient to sink it completely. Draw 
S.F. and B.M. diagrams for thecondition when this load isapplied, stating their maximum values. Take thedensity of 
wood as 770 kg/m3 and of water as loo0 kg/m3. [S.F. 0, +0.285,OkN; B.M. 0,0.356, OkNm.] 

3.21 (B). A simply supported beam is 3 m long and carries a vertical load of 5 kN at a point 1 m from the left-hand 
end. At a section 2 m from the left-hand end a clockwise couple of 3 kN m is exerted, the axis of the couple being 
horizontal and perpendicular to the longtudinal axis of the beam. Draw to scale the B.M. and S.F. diagrams and 
mark on them the principal dimensions. CI.Mech.E.1 [S.F. 2.33, -2.67 kN; B.M. 2.33, -0.34, +2.67 kNm.] 


