
CHAPTER 1 

UNSYMMETRICAL BENDING 

Summary 

The second moments of area of a section are given by 

I ,  = 1 y2 dA and I , ,  = 1 x 2  dA 

The product second moment of area of a section is defined as 

I , ,  = xydA 

which reduces to I,, = Ahk for a rectangle of area A and centroid distance h and k from the 
X and Y axes. 

The principal second moments of area are the maximum and minimum values for a section 
and they occur about the principal axes. Product second moments of area about principal 
axes are zero. 

With a knowledge of I,, I,, and I,, for a given section, the principal values may be 
determined using either Mohr’s or Land’s circle construction. 

The following relationships apply between the second moments of area about 
different axes: 

s 

I ,  = ;(I,,  +I , , )  + ; ( I=  - 1,,)sec28 

I ,  = ; (I , ,  + I , , )  - ; ( I=  - I,,)sec20 

where 0 is the angle between the U and X axes, and is given by 

Then 

I ,  + I ,  = I.r, + I , ,  

The second moment of area about the neutral axis is given by 

 IN.^,. = ; ( I ,  + I , )  + 4 (I, - I , )  COS 2a, 

where u, is the angle between the neutral axis (N.A.) and the U axis. 

Also I, = I, cos2 8 + I, sin2 8 

I,, = I, cos2 8 + I, sin2 0 

I,, = ; ( I ~  - 1,)sin20 

I ,  - I , ,  = (I, - I , > )  cos 28 
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Stress determination 

For skew loading and other forms of bending about principal axes 

M,v M,u c=-+- 
1, 1, 

where M u  and M ,  are the components of the applied moment about the U and V axes. 
Alternatively, with 0 = Px + Q y  

M ,  = PI,, + QIM 

Myy = -Plyy - Q I x y  

Then the inclination of the N.A. to the X axis is given by 

P 
tana! = -- 

Q 
As a further alternative, 

M’n 
1N.A. 

o=- 

where M’ is the component of the applied moment about the N.A., IN.A .  is determined either 
from the momenta1 ellipse or from the Mohr or Land constructions, and n is the perpendicular 
distance from the point in question to the N.A. 

Deflections of unsymmetrical members are found by applying standard deflection formulae 
to bending about either the principal axes or the N.A. taking care to use the correct component 
of load and the correct second moment of area value. 

Introduction 

It has been shown in Chapter 4 of Mechanics of Materials 1 that the simple bending 
theory applies when bending takes place about an axis which is perpendicular to a plane of 
symmetry. If such an axis is drawn through the centroid of a section, and another mutually 
perpendicular to it also through the centroid, then these axes are principal axes. Thus a plane 
of symmetry is automatically a principal axis. Second moments of area of a cross-section 
about its principal axes are found to be maximum and minimum values, while the product 
second moment of area, J x y d A ,  is found to be zero. All plane sections, whether they have 
an axis of symmetry or not, have two perpendicular axes about which the product second 
moment of area is zero. Principal axes are thus de$ned as the axes about which the product 
second moment of area is Zero. Simple bending can then be taken as bending which takes 
place about a principal axis, moments being applied in a plane parallel to one such axis. 

In general, however, moments are applied about a convenient axis in the cross-section; 
the plane containing the applied moment may not then be parallel to a principal axis. Such 
cases are termed “unsymmetrical” or “asymmetrical” bending. 

The most simple type of unsymmetrical bending problem is that of “skew” loading of 
sections containing at least one axis of symmetry, as in Fig. 1.1. This axis and the axis 

EJ. Hearn, Mechanics of Murerids I ,  Buttenvorth-Heinemann, 1997 
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section section 

Fig. 1 . I .  Skew loading of sections containing one axis of symmetry. 

perpendicular to it are then principal axes and the term skew loading implies load applied 
at some angle to these principal axes. The method of solution in this case is to resolve 
the applied moment M A  about some axis A into its components about the principal axes. 
Bending is then assumed to take place simultaneously about the two principal axes, the total 
stress being given by 

M,v M,u a=-+- 
1, I ,  

With at least one of the principal axes being an axis of symmetry the second moments of 
area about the principal axes I ,  and I ,  can easily be determined. 

With unsymmetrical sections (e.g. angle-sections, Z-sections, etc.) the principal axes are 
not easily recognized and the second moments of area about the principal axes are not easily 
found except by the use of special techniques to be introduced in $ 3  1.3 and 1.4. In such 
cases an easier solution is obtained as will be shown in 51.8. Before proceeding with the 
various methods of solution of unsymmetrical bending problems, however, it is advisable to 
consider in some detail the concept of principal and product second moments of area. 

1.1. Product second moment of area 

Consider a small element of area in a plane surface with a centroid having coordinates 
(x ,  y )  relative to the X and Y axes (Fig. 1.2). The second moments of area of the surface 
about the X and Y axes are defined as 

zXx = J y ’ d ~  and zYy = /x’& (1 .1)  

Similarly, the product second moment of area of the section is defined as follows: 

zXy = Jxy  (1.2) 

Since the cross-section of most structural members used in bending applications consists 
of a combination of rectangles the value of the product second moment of area for such 
sections is determined by the addition of the I, ,  value for each rectangle (Fig. 1.3), 

i.e. Zxy = Ahk (1.3) 
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Y 

t 

Fig. 1.2. 

where h and k are the distances of the centroid of each rectangle from the X and Y axes 
respectively (taking account of the normal sign convention for x and y) and A is the area of 
the rectangle. 

k -  kt 

h- I h- 

Fig. 1.3. 

1.2. Principal second moments of area 

The principal axes of a section have been defined in the introduction to this chapter. 
Second moments of area about these axes are then termed principal values and these may 
be related to the standard values about the conventional X and Y axes as follows. 

Consider Fig. 1.4 in which GX and GY are any two mutually perpendicular axes inclined 
at 8 to the principal axes GV and G U .  A small element of area A will then have coordinates 
(u, v) to the principal axes and (x ,  y) referred to the axes GX and G Y .  The area will 
thus have a product second moment of area about the principal axes given by uvdA. 
:. total product second moment of area of a cross-section 

I , ,  = / "uvdA 

= S ( x c o s O + y s i n 8 ) ( y c o s 8 - x s i n e ) ~ A  
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= /(x y cos2 8 + y 2  sin 8 cos 8 - x2 cos 8 sin 8 - x y  sin2 8)  dA 

= (cos2 8 - sin2 8)  /xy d A  + sin 8 cos 8 [ / ”  y2 dA - /x2  dA] 

Y 

Principal 
axis 

Fig. 1.4. 

Now for principal axes the product second moment of area is zero. 

. .  o = I,, COS 28 + 4 (I, - z Y y )  sin 28 

This equation, therefore, gives the direction of the principal axes. 
To determine the second moments of area about these axes, 

I, = v2 d A  = (y cos 8 - x sin dA s s  
= cos2 8 y2 dA + sin2 8 /x2 dA - 2cos8 sin 8 x y d A  I 
= I, cos2 8 + I,, sin2 8 - I , , ~  sin 28 

Substituting for I,, from eqn. (1.4), 

sin228 
I,= ;(1+cos28)Ixx+;(1-cos28)z,,--- 2 cos28 (I,r - 1,) 

(1.4) 

= ;(I + cos 2011, + ; (1 - cos 28)1,, - sec 213(1,, - I , )  + ; cos 20(1,,. .. - I,) 
I - - ( I ,  + I , , )  + (I, - I , , )  cos 28 - (I,, - I,) sec 28 + ( I v v  - I,) cos 213 . .  
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i.e. 
1 1, = T U x x  +zYy> + 

Similarly, 

- 1,,)sec20 

$1.3 

(1.6) 

I ,  = u2dA = (xcos8+ysin8)2dA J J  
1 = z(zxx + zyy) - ;(L - zyy) sec 28 

N.B .-Adding the above expressions, 

I ,  + I ,  = I,, + I , ,  

Also from eqn. ( 1  S) ,  

I ,  = I ,  cos2 8 + I , ,  sin2 8 - I,, sin 20 

= (1 + cos B)I,  + (1 - cos 20)1,, - I, ,  sin 28 

Z, = ; ( z ~  +I,,)+ ;(zxx - Z , . ~ ) C O S ~ O - Z ~ S ~ ~ ~ ~  (1.8) 

Similarly, 

I,, = ;(zXx + zYy) - ;(zX, - zYy) cos 28 + z,, sin 28 (1.9) 

These equations are then identical in form with the complex-stress eqns. (1 3 .S) and (1 3.9)t 
with I, ,  I , , ,  and I,, replacing a,, oy and txy and Mohr’s circle can be drawn to represent 
I values in exactly the same way as Mohr’s stress circle represents stress values. 

13. Mohr’s circle of second moments of area 

The construction is as follows (Fig. 1.5): 

(1) Set up axes for second moments of area (horizontal) and product second moments of 

(2) Plot the points A and B represented by (I,,  I , ,)  and (I,, ,  - I x y ) .  
(3) Join AB and construct a circle with this as diameter. This is then the Mohr’s circle. 
(4) Since the principal moments of area are those about the axes with a zero product second 

area (vertical). 

moment of area they are given by the points where the circle cuts the horizontal axis. 

Thus OC and OD are the principal second moments of area I ,  and I , .  
The point A represents values on the X axis and B those for the Y axis. Thus, in order to 

determine the second moment of area about some other axis, e.g. the N.A., at some angle 
a! counterclockwise to the X axis, construct a line from G at an angle 2a! counterclockwise 
to GA on the Mohr construction to cut the circle in point N .  The horizontal coordinate of N 
then gives the value of I N . A .  

t E.J. H e m ,  Mechanics ofMuteriuls I ,  Butterworth-Heinemann, 1997. 
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Fig. 1.5. Mohr's circle of second moments of area. 

The procedure is therefore identical to that for determining the direct stress on some plane 
inclined at CY to the plane on which uX acts in Mohr's stress circle construction, i.e. angles 
are DOUBLED on Mohr's circle. 

1.4. Land's circle of second moments of area 

An alternative graphical solution to the Mohr procedure has been developed by Land as 
follows (Fig. 1.6): 

Y 

t V 

Fig. 1.6. Land's circle of second moments of area. 

(1) From 0 as origin of the given XY axes mark off lengths OA = I, and AB = I,, on the 
vertical axis. 
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(2) Draw a circle with OB as diameter and centre C .  This is then Land's circle of second 

(3) From point A mark off AD = I,, parallel with the X axis. 
(4) Join the centre of the circle C to D, and produce, to cut the circle in E and F .  Then 

ED = I, and D F  = I, are the principal moments of area about the principal axes OV 
and OU the positions of which are found by joining OE and OF.  The principal axes are 
thus inclined at an angle 8 to the OX and OY axes. 

moment of area. 

1 5 .  Rotation of axes: determination of moments of area in terms of the 
principal values 

Figure 1.7 shows any plane section having coordinate axes X X  and Y Y and principal axes 
U U  and V V ,  each passing through the centroid 0. Any element of area dA will then have 
coordinates (x ,  y) and (u, v), respectively, for the two sets of axes. 

I "  
Y 

Fig. I .7. The momental ellipse. 

Now 

1, = /y2dA = /(vcos8+usin8)2dA 

= /u2cos28dA+ J ~ u v s i n ~ c o s ~ d A +  s u2sin28dA 

But UU and V V  are the principal axes so that I,, = SuvdA is zero. 

. .  zXx = I ,  cos2 8 + Z, sin' e (1.10) 
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Similarly, 

I , ,  = /x2dA = /(ucos6 - wsinQ2dA 

= /u2cos26dA - 2uvsin6cos6dA+ 

and with S uvdA = 0 
zYy = I,, cos2 e + I ,  sin2 e 

Also 

I, ,  = /xydA = / (ucos8-  wsin8)(vcos6+usin6)dA 

(1.11) 

= J [uw(cos2 8 - sin2 6) + (u2 - w2) sin 6 cos 61 dA 

(1.12) 

= I , ,  cos 26 + : ( I ,  - I , )  sin 26 and I , ,  = 0 

Zxy = z(Z. 1 - Z,)sin28 . .  
From eqns. (1.10) and (1.11) 

I,, - I , ,  = I ,  cos2 6 + I ,  sin2 8 - I ,  cos2 6 - I ,  sin2 6 

= ( I ,  - 1,) cos2 0 - ( I ,  - I , )  sin2 8 

z, - iyy = ( I ,  - 1.1 COS 28 (1.13) 

Combining eqns. ( 1 .12) and (1 .13) gives 

(1.14) 

and combining eqns. (1 .lo) and (1.1 1) gives 

I ,  + I , ,  = I ,  + I ,  (1.15) 

Substitution into eqns. (1.10) and (1.11) then yields 

1, = [(zXx + + (zXx - zYy) sec 281 (1.16) as (1.6) 

1. = $ [(L + zYy) - (zXx - zYy ) sec 281 (1.17) as (1.7) 

1.6. The ellipse of second moments of area 

The above relationships can be used as the basis for construction of the moment of area 
ellipse proceeding as follows: 

(1) Plot the values of I ,  and I ,  on two mutually perpendicular axes and draw concentric 

(2) Plot the point with coordinates x = I ,  cos 6 and y = I , ,  sin 6,  the value of 6 being given 
circles with centres at the origin, and radii equal to I ,  and I ,  (Fig. 1.8). 

by eqn. (1.14). 



10 Mechanics of Materials 2 $1.6 

(3) 

Fig. 1.8. The ellipse of second moments of area. 

It then follows that 
X2 Y 2  - + - = l  

( I d 2  (I,>2 
This equation is the locus of the point P and represents the equation of an ellipse - the 
ellipse of second moments of area. 
Draw OQ at an angle 8 to the I, axis, cutting the circle through I, in point S and join 
SP which is then parallel to the I, axis. Construct a perpendicular to OQ through P to 
meet OQ in R.  

Then 

OR = OQ - RQ 

= I ,-(I ,sine-I,sine)sine 

= I, - (I, - I , )  sin2 e 
= I, cos2 e + I, sin2 e 
= I, 

Similarly, repeating the process with OQ1 perpendicular to OQ gives the result 

OR, = I , ,  

Further, 

PR = PQcose 

= (I, sin 8 - I, sin 8) cos 0 

= (I, - I,) sin 28 = I,, I 

Thus the construction shown in Fig. 1.8 can be used to determine the second moments 
of area and the product second moment of area about any set of perpendicular axis at a 
known orientation to the principal axes. 
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1.7. Momenta1 ellipse 

Consider again the general plane surface of Fig. 1.7 having radii of gyration k, and k, 
about the U and V axes respectively. An ellipse can be constructed on the principal axes 
with semi-major and semi-minor axes k, and k,,, respectively, as shown. 

Thus the perpendicular distance between the axis U U  and a tangent to the ellipse which 
is parallel to UU is equal to the radius of gyration of the surface about U U .  Similarly, the 
radius of gyration k,  is the perpendicular distance between the tangent to the ellipse which 
is parallel to the VV axis and the axis itself. Thus if the radius of gyration of the surface 
is required about any other axis, e.g. the N.A., then it is given by the distance between the 
N.A. and the tangent AA which is parallel to the N.A. (see Fig. 1.1 I) .  Thus 

~ N . A .  = h 
The ellipse is then termed the momenta1 ellipse and is extremely useful in the solution of 

unsymmetrical bending problems as described in $ 1 .lo. 

1.8. Stress determination 

Having determined both the values of the principal second moments of area I, and I, and 
the inclination of the principal axes U and V from the equations listed below, 

and 

(1.16) 

(1.17) 

(1.14) 

the stress at any point is found by application of the simple bending theory simultaneously 
about the principal axes, 

i.e. (1.18) 

where M, and Mu are the moments of the applied loads about the V and U axes, e.g. if 
loads are applied to produce a bending moment M, about the X axis (see Fig. 1.14), then 

M, = M, sin8 

Mu = M,COSe 

the maximum value of M,, and hence Mu and M,, for cantilevers such as that shown in 
Fig. 1 .lo, being found at the root of the cantilever. The maximum stress due to bending will 
then occur at this position. 

1.9. Alternative procedure for stress determination 

Consider any unsymmetrical section, represented by Fig. 1.9. The assumption is made 
initially that the stress at any point on the unsymmetrical section is given by 

a = P x + Q y  (1.19) 
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Fig. 1.9. Alternative procedure for stress determination. 

where P and Q are constants; in other words it is assumed that bending takes place about 
the X and Y axes at the same time, stresses resulting from each effect being proportional to 
the distance from the respective axis of bending. 
Now let there be a tensile stress a on the element of area dA.  Then 

force F on the element = a d A  

the direction of the force being parallel to the 2 axis. The moment of this force about the X 
axis is then a d A y .  

. .  total moment = M ,  = a d A y  

Now, by definition, 

the latter being termed the product second moment of area (see $1  .l): 

. .  Mx = PZxy + Q Z x x  (1.20) 

Similarly, considering moments about the Y axis, 

. .  My = -PZYy - QZxy (1.21) 

The sign convention used above for bending moments is the corkscrew rule. A positive 
moment is the direction in which a corkscrew or screwdriver has to be turned in order to 
produce motion of a screw in the direction of positive X or Y ,  as shown in Fig. 1.9. Thus 
with a knowledge of the applied moments and the second moments of area about any two 
perpendicular axes, P and Q can be found from eqns. (1.20) and (1.2 1 )  and hence the stress 
at any point (x,  y )  from eqn. (1.19). 
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Since stresses resulting from bending are zero on the N.A. the equation of the N.A. is 

PX + Q y  = 0 

(1.22) 

where (YN.A, is the inclination of the N.A. to the X axis. 
If the unsymmetrical member is drawn to scale and the N.A. is inserted through the 

centroid of the section at the above angle, the points of maximum stress can be determined 
quickly by inspection as the points most distant from the N.A., e.g. for the angle section 
of Fig. 1 .lo, subjected to the load shown, the maximum tensile stress occurs at R while the 
maximum compressive stress will arise at either S or T depending on the value of a. 

t 
W 

Fig. 1.10. 

1 .lo. Alternative procedure using the momenta1 ellipse 

Consider the unsymmetrical section shown in Fig. 1 .1  1 with principal axes U U  and VV.  
Any moment applied to the section can be resolved into its components about the principal 
axes and the stress at any point found by application of eqn. (1.18). 

For example, if vertical loads only are applied to the section to produce moments about 
the OX axis, then the components will be Mcos8 about U U  and M sin8 about V V .  Then 

Mcos8 Msin8 
1, 1,. 

stress at P = ~ u-- U (1.23) 

the value of 8 having been obtained from eqn. (1.14). 
Alternatively, however, the problem may be solved by realising that the N.A. and the 

plane of the external bending moment are conjugate diameters of an ellipse? - the momenta1 

Conjugate diameters of an ellipse: two diameters of an ellipse are conjugate when each bisects all chords 
parallel to the other diameter. 

x? \.z 17' 

u- 172 - 0 - 
Two diameters y = rnlx and y = m2x are conjugate diameters of the ellipse -i + - - 1 if mlm2 = --. 
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V 

\ i  

V 

"M 

Fig. 1 . I  I .  Determination of stresses using the momental ellipse. 

ellipse. The actual plane of resultant bending will then be perpendicular to the N.A., the 
inclination of which, relative to the U axis (a,), is obtained by equating the above formula 
for stress at P to zero, 

i.e. 

so that 

Mcos0 Msin8 
1, 1, 

'u 1, tana, = - = - tan0 
l.4 1, 

'u=- U 

k,2 
k,2 

= - tan0 (1.24) 

where k,  and k, are the radii of gyration about the principal axes and hence the semi-axes 
of the momental ellipse. 

The N.A. can now be added to the diagram to scale. The second moment of area of the 
section about the N.A. is then given by Ah2, where h is the perpendicular distance between 
the N.A. and a tangent AA to the ellipse drawn parallel to the N.A. (see Fig. 1 . 1  1 and 5 1.7). 

The bending moment about the N.A. is M COS(YN.A. where (YN.A. is the angle between the 
N.A. and the axis X X  about which the moment is applied. 

The stress at P is now given by the simple bending formula 

(1.25) 

the distance n being measured perpendicularly from the N.A. to the point P in question. 
As for the procedure introduced in 51.7, this method has the advantage of immediate 

indication of the points of maximum stress once the N.A. has been drawn. The soIution 
does, however, involve the use of principal moments of area which must be obtained by 
calculation or graphically using Mohr's or Land's circle. 
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1.1 1. Deflections 

The deflections of unsymmetrical members in the directions of the principal axes may 

For example, the deflection at the free end of a cantilever carrying an end-point-load is 
always be determined by application of the standard deflection formulae of $5.7.? 

WL3 - 
3EI 

With the appropriate value of I and the correct component of the load perpendicular to 
the principal axis used, the required deflection is obtained. 

Thus 
w, L3 WVL3 a, = - and a, = - 
3EI, 3EIv 

(1.26) 

where W, and W ,  are the components of the load perpendicular to the U and V principal 
axes respectively. 

The total resultant deflection is then given by combining the above values vectorially as 
shown in Fig. 1.12, 

i.e. 

Fig. 1.12. 

Alternatively, since bending always occurs about the N.A., the deflection equation can be 
written in the form 

(1.27) 

where I N . A .  is the second moment of area about the N.A. and W' is the component of the 
load perpendicular to the N.A. The value of I N , A .  may be found either graphically using 
Mohr's circle or the momenta1 ellipse, or by calculation using 

IN.A. = ;[([, + IT,) + ( I ,  - IT! )  COS 201~1 

where 01, is the angle between the N.A. and the principal U axis. 

(1.28) 

E.J. Hearn, Mechanics ofMuteriuls I ,  Butterworth-Heinemann, 1997. 
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Examples 

Example I .I 

A rectangular-section beam 80 mm x 50 mm is arranged as a cantilever 1.3 m long and 
loaded at its free end with a load of 5 kN inclined at an angle of 30" to the vertical as 
shown in Fig. 1.13. Determine the position and magnitude of the greatest tensile stress in 
the section. What will be the vertical deflection at the end? E = 210 GN/m2. 

Y 

5 k N  

Fig. 1.13. 

Solution 
In the case of symmetrical sections such as this, subjected to skew loading, a solution 

is obtained by resolving the load into its components parallel to the two major axes and 
applying the bending theory simultaneously to both axes, i.e. 

o=-*- M X X Y  Mvvx 
1x1 I . .  Y Y  

Now the most highly stressed areas of the cantilever will be those at the built-in end where 

Mxx = 5000 cos 30" x 1.3 = 5629 Nm 

M\7y = 5000 sin 30" x 1.3 = 3250 Nm 

The stresses on the short edges AB and DC resulting from bending about X X  are then 

M,, 5629 x 40 x x 12 
-y = = 105.5 MN/m2 
I,, 50 x 803 x 10-l2 

tensile on AB and 
The stresses on 

compressive on DC.  
the long edges AD and BC resulting from bending about Y Y  are 

M , ,  
-x = = 97.5 MN/m2 
I\\ 

3250 x 25 x lo-' x 12 
80 x 503 x lo-'* 

tensile on BC and compressive on AD.  

add, i.e. 
The maximum tensile stress will therefore occur at point B where the two tensile stresses 

maximum tensile stress = 105.5 + 97.5 = 203 MN/m* 
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The deflection at the free end of the cantilever is then given by 

Therefore deflection vertically (i.e. along the Y Y  axis) is 

5000 x 0.866 x 1.33 x 12 
3 x 210 x lo9 x 50 x 803 x lo-'* 

- - (W cos 30°)L3 
3EIxx 

= 0.0071 = 7.1 mm 

a, = 

Example 12 
A cantilever of length 1.2 m and of the cross section shown in Fig. 1.14 carries a vertical 

load of 10 kN at its outer end, the line of action being parallel with the longer leg and 
arranged to pass through the shear centre of the section (i.e. there is no twisting of the 
section, see 57.5t). Working from first principles, find the stress set up in the section at 
points A ,  B and C ,  given that the centroid is located as shown. Determine also the angle of 
inclination of the N.A. 

I ,  = 4 x m4, I,, . .  = 1.08 x lop6 m4 

Fig. 1.14 

Solution 
The product second moment of area of the section is given by eqn. (1.3). 

I,, = CAhk 

= (76 x 13(4 x 76-  19)(44- 4 x 13) 

+ 114 x 13[-(83 - x 114)][-(19 - 4 x 13)])10-'2 

t E.J. H e m ,  Mechanics of Materials I .  Butterworth-Heinemann, 1997. 
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= (0.704 +0.482)10-6 = 1.186 x m4 

From eqn. (1.20) M ,  = PI,, + QI.r, = 10000 x 1.2 = 12000 

i.e. 1.186P+4Q= 12000 x IO6 (1) 

Since the load is vertical there will be no moment about the Y axis and eqn. (1.21) gives 

M, = -PIvv - QIrV = 0 

-1.08P - 1.186Q = 0 . .  
1.186 P 

Q -  1.08 
= -1.098 - - -- . .  

But the angle of inclination of the N.A. is given by eqn. (1.22) as 
P 

t a n c r ~ . ~ ,  = -- = 1.098 
Q 

i.e. UN.A, = 47"41' 

Substituting P = -1.098Q in eqn. (l), 

1.186(-1.098Q) +4Q = 12000 x IO6 

12000 x 106 
= 4460 x lo6 

= 2.69 
. .  

. .  P = -4897 x IO6 

If the N.A. is drawn as shown in Fig. 1.14 at an angle of 47"41' to the XX axis through 
the centroid of the section, then this is the axis about which bending takes place. The points 
of maximum stress are then obtained by inspection as the points which are the maximum 
perpendicular distance from the N.A. 

Thus B is the point of maximum tensile stress and C the point of maximum compres- 
sive stress. 

Now from eqn (1.19) the stress at any point is given by 

a = P x + Q y  

stress at A = -4897 x 106(57 x lop3) + 4460 x 106(31 x 

= -141 MN/m2 (compressive) 

stress at B = -4897 x lo6(-19 x 

= 289 MN/m2 (tensile) 

+ 4460 x 106(44 x 

stress at C = -4897 x 106(-6 x + 4460 x 106(-83 x 

= -341 MN/m (compressive) 

Example I 3  

(a) A horizontal cantilever 2 m long is constructed from the Z-section shown in Fig. 1.15. 
A load of I O  kN is applied to the end of the cantilever at an angle of 60" to the horizontal as 
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shown. Assuming that no twisting moment is applied to the section, determine the stresses 
at points A and B.  ( I . ,  x 48.3 x lop6 m4, I , ,  = 4.4 x 

(b) Determine the principal second moments of area of the section and hence, by applying 
the simple bending theory about each principal axis, check the answers obtained in part (a). 

(c) What will be the deflection of the end of the cantilever? E = 200 GN/m2. 

m4.) 

A 

Y ' N A  

Fig. 1.15. 

Solution 
(a) For this section I,, for the web is zero since its centroid lies on both axes and hence 

h and k are both zero. The contributions to I,, of the other two portions will be negative 
since in both cases either h or k is negative. 

. .  I,, = -2(80 x 18)(40 - 9)(120 - 9)10-12 

= -9.91 x m4 

NOW, at the built-in end, 

M ,  = +10000sin60" x 2 = +17320 Nm 

M ,  = -10000cos60" x 2 = -10000 Nm 

Substituting in eqns. (1.20) and (1.21), 

17 320 = PI,, + Q I ,  = (-9.91P + 48.3Q)1OW6 

-10000 = -Pf!, - Qf,, = (-4.4P + 9.91Q)10-6 

1.732 x I O i o  = -9.91P + 48.3Q 

-1 x lo io  = -4.4P +9.91& 
4.4 

(1 )  x - 9.91 ' 

0.769 x 10'' = -4.4P + 21.45Q ( 3 )  
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(3) - (2), 

1.769 x 10'" = 11.54Q 

. .  
and substituting in (2) gives 

Q = 1533 x 10' 

P = 5725 x IO6 

The inclination of the N.A. relative to the X axis is then given by 

P 5125 
Q 1533 

tan(2N.A. = -- = -- - - -3.735 

CYN.A. = -75'1' 

This has been added to Fig. 1.15 and indicates that the points A and B are on either side 
of the N.A. and equidistant from it. Stresses at A and B are therefore of equal magnitude 
but opposite sign. 

Now 

a = P x + Q y  

stress at A = 5725 x 10' x 9 x + 1533 x IO6 x 120 x 

= 235 MN/m2 (tensile) 

Similarly, 

stress at B = 235 MN/m2 (compressive) 

(b) The principal second moments of area may be found from Mohr's circle as shown in 
Fig. 1.16 or from eqns. (1.6) and (1.7), 

i.e. I,, I, = i ( ~ ~ ~  + zYy) ~f: ;(zXx - zyy) sec 20 

with 

. .  

- -2 x 9.91 x - 21,) tan28 = 
IyY - I, (4.4 - 48.3)10-6 

= 0.451 

20 = 24"18', e = 12~9 '  

I,, I, = ;[(48.3 + 4.4) f (48.3 - 4.4)1.0972]10-6 

= ;[52.7 f 48.17]10-6 

. .  I ,  = 50.43 x lo-' m4 

I ,  = 2.27 x m4 

The required stresses can now be obtained from eqn. (1.18). 

Mvu Muv a=-----+- 
I" I u  

Now M u  = 10 000 sin(60" - 12"9') x 2 

= 10000sin47"51' x 2 = 14828 Nm 
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I 

- I" =50.43 L 

Fig. 1.16. 

and M, = lOOOOcos47"51' x 2 = 13422 Nm 

and, for A ,  

u = xcose + ysin8 = (9 x 0.9776) + (120 x 0.2105) 

= 34.05 mm 

21 = ycose -xsinB = (120 x 0.9776) - (9 x 0.2105) 

= 115.4 mm 
14828 x 115.4 x lop3 13422 x 34.05 x 

. .  u =  + 
50.43 x 2.27 x 

= 235 M N h 2  as before. 

(c) The deflection at the free end of a cantilever is given by 

WL3 a = -  
3EI 

Therefore component of deflection perpendicular to the V axis 

10000cos47"51' x 2' 
- 

W,L3 &=- -  
3 E I ,  3 x 200 x lo9 x 2.27 x 

= 39.4 mm = 39.4 x 
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and component of deflection perpendicular to the U axis 

W,L3 a,, = ~ 

3E1, 
1000Osin47~51’ x 2’ - - 

3 x 200 x lo9 x 50.43 x 

= 1.96 x lo-’ = 1.96 mm 

The total deflection is then given by 

= J(6: + 6:)  = lo-’ J(39.42 + 1 .962) = 39.45 x lo-’ 

= 39.45 mm 

Alternatively, since bending actually occurs about the N.A., the deflection can be found from 

a=--- wN.A.L3 
3EIN.A. 

its direction being normal to the N.A. 
From Mohr’s circle of Fig. 1.16, IN.A. = 2.39 x m4 

10000 sin(30” + 14”59’) x 2’ 
6 =  = 39.44 io-’ 

3 x 200 x 109 x 2.39 x 10-6 

= 39.44 mm 

Example 1.4 

using the momental ellipse procedure. 

Solution 

Check the answer obtained for the stress at point B on the angle section of Example 1.2 

The semi-axes of the momental ellipse are given by 

k,  = fi and k, ,  = & 
The ellipse can then be constructed by setting off the above dimensions on the principal axes 
as shown in Fig. I .I7 (The inclination of the N.A. can be determined as in Example 1.2 or 
from eqn. (1.24).) The second moment of area of the section about the N.A. is then obtained 
from the momental ellipse as 

2 I N A  = A h  

Thus for the angle section of Fig. 1.14 

I , ,  = 1.186 x IOp6 m4, I , ,  = 4 x m4, I , ,  = 1.08 x m4 

The principal second moments of area are then given by Mohr’s circle of Fig. 1.18 or 
from the equation 

I,,, I,, = ;[(I,, + I , , > *  (It, - 1,,)sec201 

where 
2 x 1.186 x IO-‘ 

= -0.8123 21,\ - tan 28 = - 
( I , \  - - I , , )  (1.08-4)10-6 



Unsymmetrical Bending 

Y 
V ! I N.A. 

23 

. .  

and 

X X 

ellipse 
parellel 
to  NA 

mental ellipse 

Y 

Fig. 1.17 

Fig. 1.18. 

42 

20 = -39"5', 0 = -19"33' 

S ~ C  28 = - 1.2883 

I , ,  I ,  = 4[(4 + 1.08) f (4 - l.08)(-1.2883)]10-6 

= iIS.08 f 3.762]10-6 
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and 

. .  

I, = 4.421 x 

A = [(76 x 13) + ( 1  14 x 13)]10-6 = 2.47 x lop3 m2 

f,. = 0.659 x IOp6  m4 

4.421 x IOp6 
k,  = /( 2.47 l o - ~  ) = 0.0423 = 42.3 mm 

0.659 x lop6 
k,,  = J( ) = 0.0163 = 16.3 mm 

2.47 x 10-3 

The momenta1 ellipse can now be constructed as described above and drawn in Fig. 1.17 
and by measurement 

Then 

h = 22.3 mm 

ZN.A. = A h 2  = 2.47 x lo-' x 22.32 x lop6 

= 1.23 x lop6 m4 

(This value may also be obtained from Mohr's circle of Fig. 1.18.) 
The stress at B is then given by 

M N . A . ~  
I N . A .  

(T= -  

where 

and 

n = perpendicular distance from B to the N.A. 

= 4 4  mm 

MN.A.  = 1 0 0 0 0 ~ 0 ~ 4 7 ~ 4 1 '  x 1.2 = 8079 Nm 

8079 x 44 x 

1.23 x 
stress at B = = 289 M N h 2  

This confirms the result obtained with the alternative procedure of Example 1.2. 

Problems 

1.1 (B). A rectangular-sectioned beam of 75 mm x 50 mrn cross-section is used as a simply supported beam 
and carries a uniformly distributed load of 500 N/m over a span of 3 m. The beam is supported in such a way that 
its long edges are inclined at 20" to the vertical. Determine: 
(a) the maximum stress set up in the cross-section: 
(b) the vertical deflection at mid-span. 
E = 208 GNlm' , [ 17.4 MNlm'; I .76 mm.] 

1.2 (B). An I-section girder I .3 m long is rigidly built in at one end and loaded at the other with a load of 
I .5 kN inclined at 30" to the web. If the load passes through the centroid of the section and the girder dimensions 
are: flanges 100 mm x 20 mm. web 200 mm x 12 mm, determine the maximum stress set up in the cross-section. 
How does this compare with the maximum stress set up if the load is vertical'? 

[18.1,4.14 MN/m'.] 

1.3 (B). A 75 mm x 75 mm x 12 mm angle is used as a cantilever with the face AB horizontal, as showli in 
Fig. I .19. A vertical load of 3 kN is applied at the tip of the cantilever which is I m long. Determine the stress at 
A.  R and C. [ 196.37. -207 MNlrnI.1 



Unsymmetrical Bending 25 

7 5  mml I 

. .  
12 mm 

Fig. 1.19. 

1.4 (B). A cantilever of length 2 m is constructed from 150 mm x 100 mm by 12 mm angle and arranged with 
its 150 mm leg vertical. If a vertical load of 5 kN is applied at the free end, passing through the shear centre of 
the section, determine the maximum tensile and compressive stresses set up across the section. 

[B.P.] [169, - 204 MN/m2.] 

1.5 (B). A 180 mm x 130 mm x 13 mm unequal angle section is arranged with the long leg vertical and simply 
supported over a span of 4 m.  Determine the maximum central load which the beam can carry if the maximum 
stress in the section is limited to 90 MN/m*. Determine also the angle of inclination of the neutral axis. 

I , ,  = 12.8 x IO-' m4, I,, = 5.7 x m4. 

What will be the vertical deflection of the beam at mid-span? E = 210 GN/rnZ. [8.73 kN, 41.6", 7.74 mm.] 

1.6 (B). The unequal-leg angle section shown in  Fig. I .20 is used as a cantilever with the 130 mm leg vertical. 
The length of the cantilever is I .3 m. A vertical point load of 4.5 kN is applied at the free end, its line of action 
passing through the shear centre. 

130mm 43 rnm 

Fig. 1.20. 

The properties of the section are as follows: 

X =  1 9 m m , ~ = 4 5 m m , 1 , , = 4 x  1 0 - ~ ~ ~ . 1 , . , . = 1 . 1  x 1 0 - ~ ~ ~ . 1 , , , = 1 . 2 x   IO-^^^. 

Determine: 
(a) the magnitude of the principal second moments of area together with the inclination of their axes relative to 

xx: 
(b) the position of the neutral plane ( N - N )  and the magnitude of f" ;  
(c) the end deflection of the centroid G in magnitude. direction and sense. 
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Take E = 207 GN/m2 (2.07 Mbar). 
[444 x IO-' m4, 66 x IO-' m4, - 19"51' to XX, 47"42' to XX, 121 x IO-' m4, 8.85 mm at - 42"18' to XX.] 
1.7 (B). An extruded aluminium alloy section having the cross-section shown in Fig. 1.21 will be used as a 

cantilever as indicated and loaded with a single concentrated load at the free end. This load F acts in the plane 
of the cross-section but may have any orientation within the cross-section. Given that I, = 101.2 x m4 and 
I, , ,  = 29.2 x IO-' m4: 

Fig. 1.21. 

(a) determine the values of the principal second moments of area and the orientation of the principal axes; 
(b) for such a case that the neutral axis is orientated at -45" to the X-axis, as shown, find the angle a of the line 

of action of F to the X-axis and hence determine the numerical constant K in the expression B = K F z ,  which 
expresses the magnitude of the greatest bending stress at any distance z from the free end. 

[City U.] [116.1 x 14.3 x 10-8,22.5", -84O.0.71 x I d . ]  

Fig. 1.22. 

1.8 (B). A beam of length 2 m has the unequal-leg angle section shown in Fig. 1.22 for which I, = 0.8 x 
m4 and the angle between X - X and the principal second moment of area axis XI - XI 

is 30". The beam is subjected to a constant bending moment (M,) of magnitude IO00 Nrn about the X - X axis 
as shown. 
Determine: 
(a) the values of the principal second moments of area 1x1 and Iyl  respectively; 
(b) the inclination of the N.A., or line of zero stress (N - N) relative to the axis XI -XI  and the value of the 

m4, I,? = 0.4 x 

second moment of area of the section about N - N, that is I N ;  
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(c) the magnitude, direction and sense of the resultant maximum deflection of the centroid C. 

M ,  the maximum deflection 6 is given by the formula 
For the beam material, Young's modulus E = 200 GN/m2. For a beam subjected to a constant bending moment 

[ I  x IOp6, 0.2 x m4, -70"54' to XlXl, 0.2847 x m4, 6.62 mm, 90" to N.A.] 


