
CHAPTER 2 

STRUTS 

End condition 

Summary 

Fixed-free Pinned-pinned Fixed-pinned Fixed-fixed 

T ~ E I  X ~ E I  2n2EI 4n2EI 
4L2 L2 L2 L2 

(or rounded) 

~ ~ ~ ~ 

The allowable stresses and end loads given by Euler’s theory for struts with varying end 
conditions are given in Table 2.1. 

Table 2.1. 

Euler load 
P, I or, writing I = A k 2 ,  where k = radius of gyration 

Here L is the length of the strut and the term L/k is known as the slenderness ratio. 

Validity limit for  Euler formulae 

where C is a constant depending on the end condition of the strut. 

Rankine -Gordon Formula 
*?, o =  

1 + U(L/k)* 
where a = (o , . /n2E) theoretically but is usually found by experiment. Typical values are 
given in Table 2.2.  

Table 2.2 

Material 

Cast iron 
Timber 

Compressive yield stress 

Pinned ends Fixed ends 
1/7500 1 /30 000 

1 /64 000 
1/12000 

N.B.  The value of I I  for pinned ends i s  always four times that for tixed ends 
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Struts 

Perry-Robertson Formula 
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where q is a constant depending on the material. 
For a brittle material 

q = 0.015L/k 

For a ductile material 
2 

t) = 0.3 (&) 
These values will be modified for eccentric loading conditions. The Perry-Robertson formula 
is the basis of BS 449 as shown in $2.7. 

Struts with initial curvature 

Maximum deflection 6,,, = 

Maximum stress amax = - f 

where CO is the initial central deflection and h is the distance of the highest strained fibre 
from the neutral axis (N.A.). 

Smith-Southwell formula for eccentrically loaded struts 

With pinned ends the maximum stress reached in the strut is given by 

a,,, = 0 [ 1 + - : sec - :/(&I] 
or 

where e is the eccentricity of loading, h is the distance of the highest strained fibre from 
the N.A., k is the minimum radius of gyration of the cross-section, and o is the applied 
loadkross-sectional area. 

Since the required allowable stress a cannot be obtained directly from this equation a 
solution is obtained graphically or by trial and error. 

With other end conditions the value L in the above formula should be replaced by the 
appropriate equivalent strut length (see 52.2) .  
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Webb's approximation for the Smith-Southwell formula 

P ,  + 0.26P 
o m a x = !  [ I + $ (  p , - p  )] A 

Laterally loaded struts 

(a)  Central concentrated load 

Maximum deflection = 
2n P 
W nL 

maximum bending moment (B.M.) = - tan - 
2n 2 

(6) Uniformly distributed load 

Maximum deflection = 

maximum B.M. = sec - - 1 
n " (  ) 

Introduction 

Structural members which carry compressive loads may be divided into two broad 
categories depending on their relative lengths and cross-sectional dimensions. Short, thick 
members are generally termed columns and these usually fail by crushing when the yield 
stress of the material in compression is exceeded. Long, slender columns or struts, however, 
fail by buckling some time before the yield stress in compression is reached. The buckling 
occurs owing to one or more of the following reasons: 

(a) the strut may not be perfectly straight initially; 
(b) the load may not be applied exactly along the axis of the strut; 
(c) one part of the material may yield in compression more readily than others owing to 

some lack of uniformity in the material properties throughout the strut. 

At values of load below the buckling load a strut will be in stable eqilibrium where the 
displacement caused by any lateral disturbance will be totally recovered when the disturbance 
is removed. At the buckling load the strut is said to be in a state of neutral equilibrium, and 
theoretically it should then be possible to gently deflect the strut into a simple sine wave 
provided that the amplitude of the wave is kept small. This can be demonstrated quite simply 
using long thin strips of metal, e.g. a metal rule, and gentle application of compressive loads. 

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with 
loads exceeding the buckling load, any slight lateral disturbance then causing failure by 
buckling; this condition is never achieved in practice under static load conditions. Buckling 
occurs immediately at the point where the buckling load is reached owing to the reasons 
stated earlier. 
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The above comments and the contents of this chapter refer to the elastic stability of struts 
only. It must also be remembered that struts can also fail plastically, and in this case the 
failure is irreversible. 

2.1. Euler’s theory 

(a) Strut with pinned ends 

Consider the axially loaded strut shown in Fig. 2.1 subjected to the crippling load P ,  
producing a deflection y at a distance x from one end. Assume that the ends are either 
pin-jointed or rounded so that there is no moment at either end. 

Fig. 2.1. Strut with axial load and pinned ends. 

. .  

d 2  Y B.M. at C = EI-  = - P e y  
dx2 

E I - + P e y = O  d 2  Y 
dx2 

. .  

Le. in operator form, with D d / d x ,  

(D2 + n2)y  = 0, where n2 = PJEI 

This is a second-order differential equation which has a solution of the form 

y = A cosnx + B sin nx 

i.e. 

Now at x = 0 ,  y = 0 

and at x = L, y = 0 

Y = A cos ,/( $ ) x  + B sin ,/( $)x 

:. A = 0 

:. B sin L, / (Pe/EZ)  = 0 

. .  either B = 0 or sinL 

If B = 0 then y = 0 and the strut has not yet buckled. Thus the solution required is 

2 E Z  P, = - 
L2 
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It should be noted that other solutions exist for the equation 

The solution chosen of n L  = T is just one particular solution; the solutions nL = 2 ~ ,  
317, 517, etc., are equally as valid mathematically and they do, in fact, produce values of 
P, which are equally valid for modes of buckling of the strut different from that of the 
simple bow of Fig. 2.1. Theoretically, therefore, there are an infinite number of values of 
P,, each corresponding with a different mode of buckling. The value selected above is the 
so-called fundamental mode value and is the lowest critical load producing the single-bow 
buckling condition. The solution rzL = 237 produces buckling in two half-waves,  IT in three 
half-waves, etc., as shown in Fig. 2.2. If load is applied sufficiently quickly to the strut, 
it is possible to pass through the fundamental mode and to achieve at least one of the 
other modes which are theoretically possible. In practical loading situations, however, this 
is rarely achieved since the high stress associated with the first critical condition generally 
ensures immediate collapse. The buckling load of a strut with pinned ends is, therefore, for 
all practical purposes, given by eqn. (2.1). 

nL=27r 

Fig. 2 . 2 .  Strut failure modes. 

( 6 )  One endJiued, the other free 

Consider now the strut of Fig. 2.3 with the origin at the fixed end. 

. .  

. .  

Fig. 7.3. Fixed-free strut. 
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N.B.-It is always convenient to arrange the diagram and origin such that the differential 
equation is achieved in the above form since the solution will then always be of the form 

y = A cos n x  + B sin nx + (particular solution) 

The particular solution is a particular value of y which satisfies eqn. (2.2), and in this 
case can be shown to be y = a .  

. .  

Now when x = 0, y = 0 

. .  A = -a 

when x = 0, d y l d x  = 0 

. .  B = O  

. .  y = - a c o s n x + a  

But when x = L ,  y = a 

. .  a = -acosnL + a  

y = A cosnx + B sinrzx + a 

0 = cosnL 

The fundamental mode of buckling in this case therefore is given when n L  = in. 

or 
~ E I  P, = - 
4LZ 

(c)  Fixed ends 

Consider the strut of Fig. 2.4 with the origin at the centre. 

Fig. 2.4. Strut with fixed ends. 

In this case the B.M. at C is given by 

(2.3) 

d 2 y  P A4 

dx2 E l  

(D2 + n 2 ) y  = M / E I  
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Here the particular solution is 
M M  y = - -  - - 

n2EI P 
. .  y = Acos nx + Bsinnx + M / P  

Now when x = 0, dy/dx = 0 :. B = 0 
1 -M nL 

:.A = - sec - and when x = ,L, y = 0 P 2 

. .  
M nL M 

y =  --sec-cosnx+- 
P 2  P 

But when x = iL ,  dy/dx is also zero, 

nM nL nL 
0 = ~ sec - sin - 

P 2 2  
nM nL 

0 = - tan - 
P 2 

The fundamental buckling mode is then given when nL/2 = JT 

'&) 2 = Y t  

or 
4 d E I  P, = - 

L= 

(d)  One end Bed, the other pinned 

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary 
in this case to introduce a vertical load F at the pin (Fig. 2.5). The moment of F about the 
built-in end then balances the fixing moment. 

Fig. 2.5. Strut with one end pinned, the other fixed. 

With the origin at the built-in end the B.M. at C is 

d2Y 
dx2 

d'v P F 
-+ -y=- (L-x )  

E t -  - P y  + F(L - X) 

dx2 E t '  EI 
F 
EI 

(0' + n2)y = -(L - x )  
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The uarticular solution is 
F F 

n2EI P 
y = -  ( L - x ) = - ( L - x )  

The full solution is therefore 
F 
P 

y = Acosnx + Bsinnx + -(L - x) 

F L  
P 

. A = - -  When x = 0, y = 0 ,  . .  

F 
When x = 0, dyldx = 0, :. B = - 

n P  
F .  F 

osnx + - sinnx + -(L - x) 
F L  y = - - c  
P n P  P 

F 
n P  

= -[-nL cos nx + sin nx + n (L - x>I 

But when x = L, y = 0 

. .  nL cos nL = sin nL 

tannL = nL 

The lowest value of nL (neglecting zero) which satisfies this condition and which therefore 
produces the fundamental buckling condition is nL = 4.5 radians. 

or 
20.25EI 

P, = ~ 

L* 
or, approximately 

2.2. Equivalent strut length 

Having derived the result for the buckling load of a strut with pinned ends the Euler loads 
for other end conditions may all be written in the same form, 

i.e. 
X ~ E I  P, = - 

1 2  
(2.7) 

where 1 is the equivalent length of the strut and can be related to the actual length of the 
strut depending on the end conditions. The equivalent length is found to be the length of a 
simple bow (half sine-wave) in each of the strut deflection curves shown in Fig. 2.6. The 
buckling load for each end condition shown is then readily obtained. 

The use of the equivalent length is not restricted to the Euler theory and it will be used 
in other derivations later. 
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Pinned - pinned 

P 

pe*+[ T 
1 

fixed-free 

I P  

fixed- fixed 

I P  

f ixed-pinned 

P b7 L 

Ends fixed in &reclan 
but not in position 

Fig. 2.6. “Equivalent length” of struts with different end conditions. In each case 1 is the length of a single bow. 

23.  Comparison of Euler theory with experimental results (see Fig. 2.7) 

Between L / k  = 40 and L / k  = 100 neither the Euler results nor the yield stress are close 
to the experimental values, each suggesting a critical load which is in excess of that which 
is actually required for failure-a very unsafe situation! Other formulae have therefore been 
derived to attempt to obtain closer agreement between the actual failing load and the predicted 
value in this particular range of slenderness ratio. 

(a )  Straight-line formula 

P = cYA[1 - n(L/k ) ]  

the value of n depending on the material used and the end condition. 

(b)  Johnson parabolic formula 

P = uyA[l - b(L/k)’] 

the value of b depending also on the end condition. 
(2.9) 
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Neither of the above formulae proved to be very successful, and they were replaced by: 

( c )  Rankine-Gordon formula 

(2.10) 

where P ,  is the Euler buckling load and P, is the crushing (compressive yield) load = a,A. 
This formula has been widely used and is discussed fully in $2.5. 

2.4. Euler "validity limit" 

From the graph of Fig. 2.7 and the comments above, it is evident that the Euler theory 
is unsafe for small L/k  ratios. It is useful, therefore, to determine the limiting value of L/k  
below which the Euler theory should not be applied; this is termed the validity limit. 

Eukr curve 

Yield or colbpse stress 

Curves coincide 
a t  L/k*120 
1 

50 100 150 

Slenderness ratio L/k 

Fig. 2.7. Comparison of experimental results with Euler curve. 

The validity limit is taken to be the point where the Euler a, equals the yield or crushing 
stress ay, i.e. the point where the strut load 

P = ayA 

Now the Euler load can be written in the form 

where C is a constant depending on the end condition of the strut. 
Therefore in the limiting condition 

n2EAk2 
L2 

aVA = C------ 
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L - = JC?) 
k 

The value of this expression will vary with the type of end condition; as an example, low 
carbon steel struts with pinned ends give L / k  fi 80. 

2.5. Rankine or Rankine-Gordon formula 

As stated above, the Rankine formula is a combination of the Euler and crushing loads 
for a strut 

1 1 1  + -  
P R  Pe P ,  

For very short struts P ,  is very large; 1/P, can therefore be neglected and P R  = P, .  For 
very long struts P ,  is very small and 1 / P ,  is very large so that l / P c  can be neglected. Thus 

The Rankine formula is therefore valid for extreme values of L / k .  It is also found to be 
fairly accurate for the intermediate values in the range under consideration. Thus, re-writing 
the formula in terms of stresses, 

_ - _  - 

PR = P , .  

1 1 =-+-  
c A  oeA a,A 

I - 

i.e. 

For a strut with both ends pinned 

(2.1 1) UY 

1 + a(L/kI2 
i.e. Rankine stress UR = 

where a = a,/n2E, theoretically, but having a value normally found by experiment for 
various materials. This will take into account other types of end condition. 

Therefore Rankine load 
(2.12) 

Typical values of a for use in the Rankine formula are given in Table 2.3. 
However, since the values of LI are not exactly equal to the theoretical values, the Rankine 

loads for long struts will not be identical to those estimated by the Euler theory as suggested 
earlier. 
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Material 

Low carbon steel 
Cast iron 
Timber 

Struts 

t ~ ?  or a,. a 
(MN/m2) 

Pinned ends Fixed ends 

315 117500 1/3OOOO 
540 1/1600 1 /64 000 
35 1/3000 1/12OOO 
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2.6. Perry-Robertson formula 

The Perry-Robertson proof is based on the assumption that any imperfections in the strut, 
through faulty workmanship or material or eccentricity of loading, can be allowed for by 
giving the strut an initial curvature. For ease of calculation this is assumed to be a cosine 
curve, although the actual shape assumed has very little effect on the result. 

Consider, therefore, the strut AB of Fig. 2.8, of length L and pin-jointed at the ends. The 
initial curvature yo at any distance x from the centre is then given by 

T X  
yo = cocos - 

L 

Fig. 2.8. Strut with initial curvature. 

If a load P is now applied at the ends, this deflection will be increased to y + yo. 

. .  " 1  B M c = E I -  d2 Y = - P ( y + c o c o s -  

- + - ( y  + cocos "") L = 0 

L dx2  

d 2 y  P 
dx2 EI 

the solution of which is 

y = A s i n , / ( & ) x + B c o s , / ( & ) x +  [(%cos?) / (5 - k)] 
where A and B are the constants of integration. 
Now when x = f L / 2 ,  y = 0 

. .  A = B = O  

. .  y =  [($cos7)/($-;)] = [ ( P c o c o s ~ ) / ( F - P ) ]  T ~ E I  
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Therefore dividing through, top and bottom, by A ,  

y = [ ( fCo cos 7) / (g - 31 
But PIA = a and ( r2EZ) / (L2A)  = a, (the Euler stress for pin-ended struts) 

Therefore total deflection at any point is given by 

. .  Maximum deflection (when x = 0) = 

maximum B.M. = P ~ 

[ (De:  a)] c0 

maximum stress owing to bending = 9 = [A] Coh 
I I (ae - a) 

where h is the distance of the outside fibre from the N.A. of the strut. 
Therefore the maximum stress owing to combined bending and thrust is given by 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

If amax = a,,, the compressive yield stress for the material of the strut, the above equation 
when solved for a gives 

(2.17) 

This is the Perry-Robertson formula required. If the material is brittle, however, and 
failure is likely to occur in tension, then the sign between the two square-bracketed terms 
becomes positive and av is the tensile yield strength. 
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2.7. British Standard procedure (BS 449) 

With a load factor N applied, the Perry -Robertson equation becomes 

With values for steel of (T, = 225 MN/m2, E = 200 GN/m2, N = 1.7 and 9 = 0.3(L/100k)2, 
the above equation gives-the graph shown in Fig. 2.9. This graph then indicates the basis of 
design using BS449: 1959 (amended 1964). Allowable values are provided in the standard, 
however. in tabular form. 

t 

I I I I I I I 
40 80 I20 160 200 240 

Slenderness ratio L/k 

Fig. 2.9. Graph of allowable stress as given in BS 449: 1964 (in tabulated form) against slenderness ratio. 

If, however, design is based on the safety factor method instead of the load factor method, 
then N is omitted and a,/n replaces ( T ~  in the formula, where n is the safety factor. 

2.8. Struts with initial curvature 

In 02.6 the Peny-Robertson equation was derived on the assumption that strut imperfec- 
tions could be allowed for by giving the strut an initial curvature. This proof applies equally 
well, of course, for struts which have genuine initial curvatures and, provided the curvature 
is small, the precise shape of the curve has little effect on the end result. 

Thus for an initial curvature with a central deflection Co, 

maximum deflection = (2.19) 

maximum B.M. = P (2.20) 

and 
P 
A [ ( ( T ~ ~ o ) ]  '7 omax = - f ~- - 
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(2.21) 

where h is the distance from the N.A. to the outside fibres of the strut. 

2.9. Struts with eccentric load 

For eccentric loading at the ends of a strut Ayrton and Perry suggest that the 
Perry-Robertson formula can be modified by replacing CO by (CO + 1.2e) where e is the 
eccentricity. 
Then 

eh 
k2 

17’ = 1 + 1.2- (2.22) 

and 17’ replaces q in the original Perry-Robertson equation. 

(a)  Pinned ends - the Smith-Southwell formula 

For a more fundamental treatment consider the strut loaded as shown in Fig. 2.10 carrying 
a load P at an eccentricity e on one principal axis. In this case there is strictly no ‘buckling” 
load as previously described since the strut will bend immediately load is applied, bending 
taking place about the other principal axis. 

Fig. 2.10. Strut with eccentric load (pinned ends) 

Applying a similar procedure to that used previously 

B.M. at C = -P(y  + e )  

d 2  Y 
dx2 

E t -  = - P ( y + e )  . .  

. .  
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where n = J(P/EI) 

This is a second-order differential equation, the solution of which is as follows: 

y = Asin nx + Bcosnx - e 

Now when x = 0, y = 0 

. .  B = e  

L d y  and when x = - - = 0 
2’  dx 

. .  

. .  

:. maximum deflection, when 

L L 
0 = nAcosn- - nesinn- 

2 2 
nL 

A = e tan - 
2 

nL . y + e = etan - sinnx + ecosnx 
2 

x = L / 2  and y = 8, is 

nL 
maximum B.M. = P(6 + e )  = Pe sec - 

2 
(2.24) . .  

MY nL h maximum stress owing to bending = - = Pesec - x - 
I 2 1  

. .  

where h is the distance from the N.A. to the highest stressed fibre. 

assuming a ductile material?, is given by 
Therefore the total maximum compressive stress owing to combined bending and thrust, 

(2.25) 

For a brittle material which is relatively weak in tension it is the maximum tensile stress which becomes the 
criterion of failure and the bending and direct stress components are opposite in sign. 
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i.e. (2.26) 

This formula is known as the Smith-Southwell formula. 
Unfortunately, since a = P/A, the above equation represents a function of P (the required 

unknown) which can only be solved by trial and error or graphically. A good approximation 
however, is obtained as shown below: 

Webb’s approximation 

From above a,,, = e [ 1 + $ sec $1 
n L  
2 

= e  - Let 

Then 

Now for 8 between 0 and nI2, 

= ‘.d(k) =&E) L2 P = $5) 
2 

P 
1 + 0.26- 

1 - -  

P ,  + 0.26P 1 + 0.26 ($) 
- P e  - 

P -  P, - P 
sece 2 - 

1 - ( ; ) 2  p e  

Therefore substituting in eqn. (2.25) 

P, + 0.26P =‘[1.$( p,-p )] A 

(2.25)(bis) 

(2.27) 

where a,,, is the maximum allowable stress in the strut material, P, is the Euler buckling 
load for axial loading, and P is the maximum allowable value of the eccentric load. 

The above equation can be re-written into a more readily observed quadratic equation in 
P ,  thus: 

For any given eccentric load condition P is the only unknown and the equation can be readily 
solved. 

(6 )  One endjixed, the other free 

Consider the strut shown in Fig. 2.1 1 

d 2  Y BM,. = E I -  = P(eo - y) 
dx2 
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. .  d2 Y - + n2y = n2eo 
dx2 

Fig. 2.1 1 .  Strut with eccentric load (one end fixed, the other free) 

The solution of the expression is 

y = A cos nx + B sinxn + eo 

At x = 0, y = 0 

At x = 0, dyldx  = 0 

. .  
Now at x = L, y = 6 

. .  

:.A + eo = 0 or A = -eo 

:. B = 0 

y = -eo cos nx + eo 

6 = -eo cos n l  + eo 

= eo(1 - cosn l )  

= (6 + e)( 1 - cos n l )  

= 6 - 6cosnL + e - ecos nL 

. .  

. .  
6cosnL = e - ecosnL 

6 = e(secnL - 1 )  

or 6 + e = e s e c n L  

This is the same form of solution as that obtained previously for pinned ends with L replaced 
by 2L, i.e. the Smith-Southwell formula will apply in this case provided that the equivalent 
length of the strut (I = 2L) is used in place of L. 

Thus the Smith-Southwell formula can be written in the form 

urnax = u [ 1 + : sec - :Jca] (2.29) 

the value of the equivalent length I to be used for any given end condition being given by 
the diagrams of Fig. 2.6, $2.2. 

The exception to this rule, however, is the case of fixed ends where the only effect of 
eccentricity of loading is to increase the fixing moments within the supports at each end; 
there will be no effect on the deflection or stress in the strut itself. Thus, eccentricity of 
loading can be neglected in the case of fixed-ended struts - an important factor since most 
practical struts can be considered to be of this type. 
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2.10. Laterally loaded struts 

( a )  Central concentrated load 

With the origin at the centre of the strut as shown in Fig. 2.12, 

d2Y - + n  2 y = - x ( k - x )  
dx2 2EI 2 

P 

P 

Fig. 2.12 

The solution of this equation is similar to that of 92. l (d) ,  

i.e. y = A cos nx + B sin nx - - 

W :. B = -- 
2n P 

Now when x = 0, d y l d x  = 0 

and when x = L / 2 ,  y = 0 
W nL 

: . A  = - tan - 
2nP 2 

The maximum deflection occurs where x is zero, 

i.e. 
nL 2 2  nL1 W 

2nP 
ymax = - [,an - - - 

The maximum B.M. acting on the strut is at the same position and is given by 

(2.30) 
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W nL 
tan - 

2n 2 
- -- - 
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(2.31) 

(b) Uniformly distributed load 

Consider now the uniformly loaded strut of Fig. 2.13 with the origin again selected at the 
centre but y measured from the maximum deflected position. 

. .  (e - x2) + n26 - + n  y = -  
dx2 2EI 4 
d2Y 2 W 

y I w/unit Length , 
P 

Fig. 2.13. 

The solution of this equation is 

W 2w 
y=Acosnx+Bs innx- -  ( E - - x 2 )  + a + -  

2P 4 2n2P 

i.e. y -S=Acosnx+Bs innx-  

When x = 0, dyldx = 0 

When x = L/2, y = S 
:. B = 0 

w nL 
:.A = - sec - 

n2P 2 

. .  y - S =  - W [(sec-cosnx- nL 2 1 ) - n 2 ( 4 - ; ) ]  
n2P 

Thus the maximum deflection 6, when y = 0 and x = 0, is given by 

6 = y,,, = - [(set: - 1) - F] 
n 2P 

and the maximum B.M. is 

wL2 
M,,, = pa + - = - sec - - 8 r2 ( ') 

(2.32) 

(2.33) 
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In the case of a member carrying a tensile load (i.e. a tie) together with a uniformly 
distributed load, the above procedure applies with the sign for P reversed. The relevant 
differential expression then becomes 

[ - x2] + n26 - - n  y = -  
dx2 2EI 4 
d2Y 2 W 

i.e. (02 - n2)y in place of (02 + n2)y as usual. 

to that obtained previously, 

i.e. M = A coshnx + B sinhnx + etc. 

The solution of this equation involves hyperbolic functions but remains of identical form 

giving MmaX = (sech - - 1 
n2 2 

2.11. Alternative procedure for any strut-loading condition 

If deflections are not the primary interest and only the B.M.'s and hence maximum stress 
are required, it is convenient to commence the analysis with a differential expression for 
the B.M. M. 

This is most easily achieved by considering the moment divided into two parts: 

that due to the end load P; 
that due to any transverse load ( M ' ) .  

Thus total moment M = -Py + M' 

d2M d2y d2M' 
dx2 dx2 dx2 

Differentiating twice, - +p---=- 

But 

. .  

d2y P d2y 
dx2 E l  ( dx2) 

P-=- E I -  =n2M 

d2M d2M' 
- + n 2 ~ = -  
dx2 dx2 

The general solution will be of the form 

M = A cos nx + B sin nx + particular solution 

Now for zero transverse load (or for any concentrated load) (d2M'/dx2) is zero, the particular 
solution is also zero, and the solution for the above expression is in the form 

M =Acosnx+Bsinnx 

Thus, for an eccentrically loaded strut (Smith-Southwell): 

when x = 0 :. B = 0 
dM 
dx 

shear force = - = 0 

nL 
:.A = Pesec - 

2 
when x = 4L and M = Pe 
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nL 
2 
nL 

Mmay = Pe sec - 
2 

Therefore substituting, M = Pe sec - cos nx 

and 

For a central concentrated load (see Fig. 2.12) 

as before 

M' = w ( k  -.) 
2 2  

- = 0 and the particular solution = 0 
d2M' 
dx2 

. .  

. .  M = Acosnx + B sinnx 
dM W W 

when x = 0 :. B = - 
dx 2 2n 

Shear force = - = - 

and M = O  
W nL 

:,A = --tan - 
2n 2 

when x = $L 

and 
W nL 

Mmax = -- tan - 
2n 2 

as before 

For a uniformly distributed lateral load (see Fig. 2.13) 

-- - -w 
d2M' 
dx2 

d2M W 
- + n M = -w and the particular integral is 
dx2 n 

M = Acosnx + Bsinnx - w/n2 

. .  

Hence 

. .  
Now when x = 0, dM/dx = 0 

and when x = L/2, M = 0 

:. B = 0 
w nL 

:.A = - sec - 
n2 2 

. .  

and 

1 
W nL 

Mmax = ;;z [sec 2 - 11 as before 

2.12. Struts with unsymmetrical cross-sections 

The formulae derived in the preceding paragraphs have assumed that buckling takes place 
about an axis of symmetry. Loading is then normally applied to produce bending on the 



50 Mechanics of Materials 2 

T' 

strongest or major principal axis (that about which I has a maximum value) so that buckling 
is assumed to occur about the minor axis. It is also assumed that the end conditions allow 
rotation in this direction and this is normally achieved by loading through ball ends. 

For sections with only one axis of symmetry, e.g. channel or T-sections, the shear centre 
is not coincident with the centroid and torsional effects are often introduced. These may, 
in some cases, affect the failure condition of the strut. Certainly, in the case of totally 
unsymmetrical sections, the loading condition always involves considerable torsion and the 
theoretical buckling load has little relevance. One popular form of section which falls in this 
category is the unequal-leg angle section. 

Some sections, e.g. cruciform sections, are subject to both flexural and torsional buckling 
and the reader is referred to more advanced texts for the methods of treatment is such cases. 

A special form of failure is associated with hollow low carbon steel columns with small 
thickness to diameter ratios when the strut is found to crinkle, i.e. the material forms into folds 
when the direct stress is approximately equal to the yield stress. Southwell has investigated 
this problem and produced the formula 

I 
1 I 1 

1 1/2 . = E - [  t ] 
R 3(1 - v 2 )  

I 1 I 

where n is the stress causing yielding, R is the mean radius of the column and t is the 
thickness. It should be noted, however, that this type of failure is not common since very 
small r/R ratios of the order of 1/400 are required before crinkling can occur. 

i I 

+ LkZ; 

Examples 

1 
165 mrn --I 

Example 2.1 

Two 300 mm x 120 mm I-section joists are united by 12 mm thick plates as shown in 
Fig. 2.14 to form a 7 m long stanchion. Given a factor of safety of 3,  a compressive yield 
stress of 300 MN/m2 and a constant a of 117500, determine the allowable load which can 
be carried by the stanchion according to the Rankine-Gordon formulae. 

I" 

X 

Fig. 2.14. 
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The relevant properties of each joist are: 

51 

I ,  = 96 x m4, I, ,  = 4.2 x IOp6 m4, A = 6 x lop3 m2 

Solution 
For the strut of Fig. 2.14: 

I, for joists = 2 x 96 x = 192 x m4 

0.3243 0.33 x 0.3003 
I, for plates = 0.33 x - - 

12 12 
0.33 

12 
= -[0.034 - 0.0271 = 192.5 x 

total I, = (192 + 192.5)10-6 = 384.5 x IOp6 m4 

m4 

. .  
From the parallel axis theorem: 

and 

I, for joists = 2(4.2 x + 6 x x 0.l2) 

= 128.4 x m4 

I, for plates = 2 x 0.012 x - 0'333 - - 71.9 x lop6 m4 
12 

. .  total I , ,  = 200.3 x m4 

Now the smallest value of the Rankine-Gordon stress CJR is given when k ,  and hence I ,  
is a minimum. 

smallest I = I,, = 200.3 x lop6 = Ak2 

total area A = 2 x 6 x 

19.92 x 10-3k2 = 200.3 x 

+ 2 x 0.33 x 12 x = 19.92 x 

. .  

. .  
200.3 x 
19.92 x 

k =  = 10.05 x IOp3 

= 4.9 x io3 
72 ( t)2 = 10.05 x 

. .  

300 x lo6 

'+'(:) '+  7500 

a r  and O R  = 
2 = 4.9 103 

. .  300 x IO6 
1.653 

= 18 1.45 MN/m2 - - 

. .  

With a factor of safety of 3 the maximum permissible load therefore becomes 

allowable load = UR x A = 181.45 x IO6 x 19.92 x lov3 = 3.61 MN 

3.61 x IO6 
3 

= 1.203 M N  pmax = 
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Example 2 2  

An 8 m long column is constructed from two 400 mm x 250 mm I-section joists joined 
as shown in Fig. 2.15. One end of the column is arranged to be fixed and the other free and 
a load equal to one-third of the Euler load is applied. Determine the load factor provided if 
the Perry-Robertson formula is used as the basis for design. 

X - 
400 mm 

X -- 

Fig. 2.15 

For each joist: 

I,,, = 213 x m4, Imin = 9.6 x m4, A = 8.4 x m2, 

with web and flange thicknesses of 20 mm. For the material of the joist, E = 208 GN/m2 
and cry = 270 MN/m2. 

Solution 

the centre line of the vertical joist. 
To find the position of the centroid G of the built-up section take moments of area about 

2 8.4 x 1 0 - ~  x = 8.4 x 10-~(200 + 10)10-~ 
210 
2 

X = - x = 105 mm 

Now I, = (213 + 9 ~ 5 ) 1 0 - ~  = 222.6 x m4 

and 

i.e. greater than I,. 

. .  least I = 222.6 x m4 

I,,, = [213 + 8.4(210 - 105)2]10-6 + [9.6 + 8.4 x 1052]10-6 

222.6 x lop6 
. .  least k2 = = 13.25 x  IO-^ 2 x 8.4 x 10-3 

Now Euler load for fixed-free ends 
x2EI 
4L2 4 x 82 

r2 x 208 x lo9 x 222.6 x 
- - 

= 1786 x lo3 = 1.79 MN 
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Therefore actual load applied to the column 

i.e. 

1.79 
- 0.6 MN 

3 
- - 

load 0.6 x IO6 
area 2 x 8.4 x 

actual stress = - = 

= 35.7 MN/m2 

The Perry-Robertson constant is 

Q = 0.3 (A)* = 0.3 ( 82 
104 x 13.25 x 10-3 

But 
1.79 x IO6 

oy = 270 MN/m2 and a, = = 106.5 MN/m2 
2 x 8.4 10-3 

i.e. in units of MN/m2: 

. .  - 270 x 106.5 
(270 + 121.8) - /{ [ 270 +2121.8]2 

N O  = 
2 

= 196 - 98 = 98 
98 
35.7 

load factor N = - = 2.75 . .  

Example 2 3  

Determine the maximum compressive stress set up in a 200 mm x 60 mm I-section girder 
carrying a load of 100 kN with an eccentricity of 6 mm from the critical axis of the section 
(see-Fig. 2.16). Assume that the 
is 4 m. 

Take I , ,  = 3 x m4, A 

Solution 
Normal stress on the section 

. .  

a =  

ends of the strut are pin-jointed and that the overall length 

= 6 x m2, E = 207 GN/m2. 

P 100~103 100 - -  - -- - MN/m2 
A 6 x 6 

I = A k 2  = 3 x m4 

2 3 x 
k =  = 5 x m2 

6 x 
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IY 

Srrut cross-secrion x :  

Fig. 2.16. 

Now from eqn. (2.26) 

amax = (T [ 1 + - : sec - :/(%)I 
. .  with e = 6 mm and h = 30 mm 

io0 x io6 x io4 
6 x 207 x lo9 x 5 

sec2 Jc 30 x 6 x lop6 
+ 5 x 10-4 amax = 

6 [ 
100 
6 

= -[l +0.36sec2J(O.l61)] 

100 
6 

= - [ 1 + 0.36 x 1.441 = 25.3 MN/m* 

Example 2.4 
A horizontal strut 2.5 m long is constructed from rectangular section steel, 50 mm wide 

by 100 mm deep, and mounted with pinned ends. The strut carries an axial load of 120 kN 
together with a uniformly distributed lateral load of 5 kN/m along its complete length. If 
E = 200 GN/m2 determine the maximum stress set up in the strut. 

Check the result using the approximate Perry method with 

Solution 
From eqn. (2.34) 

nL 
Mma, = (sec - 1) 

n 

where 
2 p  120 x 103 12 n = - =  

= 0.144 
EZ 200 x 109 x 50 x 1003 x 10-12 
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. .  

nL 2.5 
- = - J(0.144) = 0.474 radian 
2 2  

5 x 103 
M m a x  = ~ (sec0.474 - 1) 

0.144 
= 34.7 x 103(1.124 - 1) = 4.3 x lo3 Nm 

The maximum stress due to the axial load and the eccentricity caused by bending is then 
given by 

p MY omax = - + - 
A t  

120 103 4.34 x 103 x 0.05 x 12 
(50 x 1003)10-12 

+ - - 
(0.1 x 0.05) 

= 24 x lo6 + 51.6 x lo6 

= 75.6 MN/m2 

Using the approximate Perry method, 

where 

But 

. .  

wL2 
Mo = B.M. due to lateral load only = - 

8 
rr2Et n2 x 200 x lo9 (50 x 1003)10-'2 

p - X 
L2 2S2 12 e -  

= 1.316 MN 

M,,, = -- wL2 [ pe ] 
8 P e - P  

In this case, therefore, the approximate method yields the same answer for maximum B.M. 
as the full solution. The maximum stress will then also be equal to that obtained above, i.e. 
75.6 MN/mZ. 

Example 2.5 

A hollow circular steel strut with its ends fixed in position has a length of 2 m, an outside 
diameter of 100 mm and an inside diameter of 80 mm. Assuming that, before loading, there 
is an initial sinusoidal curvature of the strut with a maximum deflection of 5 mm, determine 
the maximum stress set up due to a compressive end load of 200 kN. E = 208 GN/m2. 
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Solution 

mentary cosine form 
The assumed sinusoidal initial curvature may be expressed alternatively in the comple- 

75X 
yo = &,cos - 

L 
Now when P is applied, yo increases to y and the central deflection increases from 60 = 5 mm 
to 6. 

(Fig. 2.17) 

Y 
8 
I 

For the above initial curvature it can be shown that 

6 =  ["]so P ,  - P 

. .  maximum B.M. = P60 ~ [ Pe: PI  

I T ~ E I  
L2 

where P ,  for ends fixed in direction only = - 

6 4  n n 
I = -(0.14 - 0.084) = -(1 - 0.41)10-4 = 2.896 x 10- m 

64 64 
n2 x 208 x lo9 x 2.89 x 

= 1.486 MN 
4 

. .  P ,  = 

:. maximum B.M. = 200 x lo3 x 5 x lop3 [ (1~~~6~Lfoq:03] = 1.16 kN m 

P M~ 200 x 103 4 1.16 x 103 x 0.05 
+ 2.89 x A I n(0.12 - 0.082) :. maximum stress = - + - = 

= 70.74 x lo6 + 20.07 x IO6 

= 90.8 MN/m2 

Problems 

2.1 (A/B). Compare the crippling loads given by the Euler and Rankine-Gordon formulae for a pin-jointed 
cylindrical strut 1.75 m long and of 50 mm diameter. (For Rankine-Gordon use g y  = 315 MN/m2; a = 1/7500; 
E = 200 GN/m2.) [197.7, 171 kN.] 

2.2 (A/B). In an experiment an alloy rod I m long and of 6 mm diameter, when tested as a simply supported 
beam over a length of 750 mm, was found to have a maximum deflection of 5.8 mm under the action of a central 
load of 5 N. 
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(a) Find the Euler buckling load when this rod is tested as a strut, pin-jointed and guided at both ends. 
(b) What will be the central deflection of this strut when the material reaches a yield stress of 240 MN/m2? 

[74.8 N;67 mm.] 

23 (B) A steel strut is built up of two T-sections riveted back to back to form a cruciform section of overall 
dimensions 150 mm x 220 mm. The dimensions of each T-section are 150 mm x 15 mm x 1 IO  mm high. The 
ends of the strut are rigidly secured and its effective length is 7 m. Find the maximum safe load that this strut can 
carry with a factor of safety of 5, given u, = 315 MN/m2 and a = 1/30000 in the Rankine-Gordon formula. 

[I92 kN.] 

2.4 (B). State the assumptions made when deriving the Euler formula for a strut with pin-jointed ends. Derive 
the Euler crippling load for such a strut-the general equation of bending and also the solution of the differential 
equation may be assumed. 

A straight steel rod 350 mm long and of 6 mm diameter is loaded axially in compression until it buckles. 
Assuming that the ends are pin-jointed, find the critical load using the Euler formula. Also calculate the maximum 
central deflection when the material reaches a yield stress of 300 MN/m2 compression. Take E = 200 GN/m2. 

[ I  .03 kN; 5.46 mm.] 
2.5 (B). A steel stanchion 5 m long is to be built of two I-section rolled steel joists 200 mm deep and 150 mm 

wide flanges with a 350 mm wide x 20 mm thick plate riveted to the flanges as shown in Fig. 2.18. Find the 
spacing of the joists so that for an axially applied load the resistance to buckling may be the same about the axes 
XX and Y Y .  Find the maximum allowable load for this condition with ends pin-jointed and guided, assuming 
a = 1/7500 and u, = 315 MN/m2 in the Rankine formula. 

p MY (Clue: maximum stress = - f - where M = P x amax.) 
A I  

X- 

Y 

Fig. 2.18. 

If the maximum working stress in compression u for this strut is given by u = 135[1 - 0.005 L / k ]  MN/m2, what 
factor of safety must be used with the Rankine formula to give the same result? For each R.SJ. A = 6250 mm2, 
k, = 85 mm, k, = 35 mm. [180.6 mm, 6.23 MN; 2.32.1 

2.6 (B). A stanchion is made from two 200 mm x 75 mm channels placed back to back, as shown in Fig. 2.19, 
with suitable diagonal bracing across the flanges. For each channel I,, = 20 x IO-'m4, Ivy = 1.5 x IO-' m4, the 
cross-sectional area is 3.5 x IOp3 m2 and the centroid is 21 mm from the back of the web. 

At what value of p will the radius of gyration of the whole cross-section be the same about the X and Y axes? 
The strut is 6 m long and is pin-ended. Find the Euler load for the strut and discuss briefly the factors which cause 
the actual failure load of such a strut to be less than the Euler load. E = 210 GN/m2. [163.6 mm; 2.3 MN.] 

2.7 (B). In tests it was found that a tube 2 m long, 50 mm outside diameter and 2 mm thick when used as a 
pin-jointed strut failed at a load of 43 kN. In a compression test on a short length of this tube failure occurred at 
a load of 115 kN. 

(a) Determine whether the value of the critical load obtained agrees with that given by the Euler theory. 
(b) Find from the test results the value of the constant a in the Rankine-Gordon formula. Assume E = 200 GN/m2. 

[Yes: 1/7080.] 
2.8 (B). Plot, on the same axes, graphs of the crippling stresses for pin-ended struts as given by the Euler and 

Rankine-Gordon formulae, showing the variation of stress with slenderness ratio 
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' I  
Y i y  

Fig. 2.19. 

For the Euler formula use L / k  values from 80 to 150, and for the Rankine formula L / k  from 0 to 150, with 

From the graphs determine the values of the stresses given by the two formulae when L / k  = 130 and the 

[122.6 MN/mZ, 96.82 MN/m2; 124,100.] 
2.9 (B/C). A timber strut is 75 mm x 75 mm square-section and is 3 m high. The base is rigidly built-in and the 

top is unrestrained. A bracket at the top of the strut carries a vertical load of 1 kN which is offset 150 mm from 
the centre-line of the strut in the direction of one of the principal axes of the cross-section. Find the maximum 
stress in the strut at its base cross-section if E = 9 GN/mZ. [I.Mech.E.] [2.3 MN/m2.] 

2.10 (B/C). A slender column is built-in at one end and an eccentric load is applied at the free end. Working 
from first principles find the expression for the maximum length of column such that the deflection of the free end 
does not exceed the eccentricity of loading. (I.Mech.E.1 [sec-' Z / , / m . ]  

2.11 (B/C). A slender column is built-in one end and an eccentric load of 600 kN is applied at the other (free) 
end. The column is made from a steel tube of 150 mm 0.d. and 125 mm i.d. and it is 3 m long. Deduce the 
equation for the deflection of the free end of the beam and calculate the maximum permissible eccentricity of load 
if the maximum stress is not to exceed 225 MN/m2. E = 200 GN/m2. [I.Mech.E.] (4 mm.] 

2.12 (B). A compound column is built up of two 300 mm x 125 mm R.S.J.s arranged as shown in Fig. 2.20. 
The joists are braced together; the effects of this bracing on the stiffness may, however, be neglected. Determine 
the safe height of the column if it is to carry an axial load of 1 MN. Properties of joists: A = 6 x m2; 
k , !  = 27 mm; k,, = 125 mm. 

[8.65 m.] 

uy = 315 MN/m2 and a = 1/7500. 

slenderness ratio required by both formulae for a crippling stress of 135 MN/mZ. E = 210 GN/m2. 

The allowable stresses given by BS449: 1964 may be found from the graph of Fig. 2.9. 

X 
I 

Fig. 2.20. 
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2.13 (B). A 10 mm long column is constructed from two 375 mm x 100 mm channels placed back to back with 
a distance h between their centroids and connected together by means of narrow batten plates, the effects of which 
may be ignored. Determine the value of h at which the section develops its maximum resistance to buckling. 

Estimate the safe axial load on the column using the Perry-Robertson formula (a) with a load factor of 2, 
(b) with a factor of safety of 2. For each channel I, = 175 x m4, I , ,  = 7 x m4,A = 6.25 x m2, 
E = 210 GN/m2 and yield stress = 300 MN/m2. Assume r~ = 0.003 L / k  and that the ends of the column are 
effectively pinned. [328 mm; 1.46, 1.55 MN.] 

2.14 (B). (a) Compare the buckling loads that would be obtained from the Rankine-Gordon formula for two 
identical steel columns, one having both ends fixed, the other having pin-jointed ends, if the slenderness ratio 
is 100. 

(b) A steel column, 6 m high, of square section 120 mm x 120 mm, is designed using the Rankine-Gordon 
expression to be used as a strut with both ends pin-jointed. 

The values of the constants used were a = 1/7500, and crc = 300 MN/m2. If, in service, the load is applied 
axially but parallel to and a distance x from the vertical centroidal axis, calculate the maximum permissible value 
of x. Take E = 200 GN/m2. [7.4; 0.756 m.] 

2.15 (B). Determine the maximum compressive stress set up in a 200 mm x 60 mm I-section girder carrying a 
load of 100 kN with an eccentricity of 6 mm. Assume that the ends of the strut are pin-jointed and that the overall 
length is 4 m. 

Take I = 3 x m4; A = 6 x m2 and E = 207 GN/m2. [25.4 MN/m2.] 

2.16 (B). A slender strut, initially straight, is pinned at each end. It is to be subjected to an eccentric compressive 
load whose line of action is parallel to the original centre-line of the strut. 

Prove that the central deflection y of the strut, relative to its initial centre-line, is given by the expression 

where P is the applied load, L is the effective length of the strut, e is the eccentricity of the line of action of 
the load from the initially straight strut axis and E l  is the flexural rigidity of the strut cross-section. 
Using the above formula, and assuming that the strut is made of a ductile material, show that, for a maximum 
compressive stress, u,  the value of P is given by the expression 

LTA 
P =  

the symbols A ,  h and k having their usual meanings. 
Such a strut, of constant tubular cross-section throughout, has an outside diameter of 64 mm, a principal second 
moment of area of 52 x 10-*m4 and a cross-sectional area of 12.56 x 10-4m2. The effective length of the strut 
is 2.5 m. If P = 120 kN and CT = 300 MN/m2, determine the permissible value of e. Take E = 200 GN/m2. 

[B.P.] [6.25 mm.] 
2.17 (C). A strut of length L has each end fixed in an elastic material which can exert a restraining moment p 

per radian. Prove that the critical load P is given by the equation 

The designed buckling load of a 1 m long strut, assuming the ends to be rigidly fixed, was 2.5 kN. If ,  during 
service, the ends were found to rotate with each mounting exerting a restraining moment of 1 kN m per radian, 
show that the buckling load decreases by 20%. [C .E.1.] 

2.18 (C). A uniform elastic bar of circular cross-section and of length L ,  free at one end and rigidly built-in at 
the other end, is subjected to a single concentrated load P at the free end. In general the line of action of P may 
be at an angle 0 to the axis of the bar (0 < 0 < n/2)  so that the bar is simultaneously compressed and bent. For 
this general case: 
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(a) Show that the deflection at the free end is given by 

tan mL 
6 = tan8 { ( 

- L) } 
(b) Hence show that as 8 + n/2, then 6 -+ PL3/3EI 
(c) Show that when 0 = 0 no deflection unless P has certain particular values. 

Note that in the above, m2 denotes P cosB/EI. 
The following expression may be used in part (b) where appropriate: 

ff3 2~ 
tanct = ct + - + - 

3 15 
[City U.] 

2.19 (C). A slender strut of length L is encastr6 at one end and pin-jointed at the other. It carries an axial load 
P and a couple M at the pinned end. If its flexural rigidity is E l  and PIE1 = n, show that the magnitude of the 
couple at the fixed end is 

I M [nLcosnL-sinnL 
nL - sinnL 

What is the value of this couple when (a) P is one-quarter the Euler critical load and (b) P is zero? 
[U.L.] [OS71 M, 0.5 M.] 

2.20 (C). An initially straight strut of length L has lateral loading w per metre and a longitudinal load P applied 
with an eccentricity e at both ends. 

If the strut has area A, second moment of area I, section modulus Z and the end moments and lateral loading 
have opposing effects, find an expression for the central bending moment and show that the maximum stress at 
the centre will be equal to 

[U.L.] 


